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ABSTRACT
For manual picking processes in warehouses and assembly line feeding, collaborative robots –
cobots – hold a potential to support operators and, thereby, enhance performance. However, stud-
ies focused on the economic aspects of cobot applications have been scarce. The present paper
aims at modelling a new picking system, in which human operators collaborate with cobots dur-
ing picking (or kitting) activities. It is considered the case of having a cobot on board of the picking
trolley or cart, working in parallel with the picker by performing sorting of the picked items. The
paper focuses on the economic aspects of this application and presents a model of the relative
cost difference between a manual and a cobot-supported process, accounting for the costs asso-
ciated with operators, equipment, and quality. The relative cost difference is analysed in a numerical
example. The findings suggest that the decision to use a cobot sorting mode is robust when there
is considerable sorting work to carry out, for example, when there are higher yearly order vol-
umes to handle, and when higher order commonality among orders processed as a batch can be
achieved. Future research should focus on implementation challenges and safety issues associated
with cobot-supported picking processes.
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1. Introduction

In many production systems, there are some activities
that are still operated mainly manually, like the pick-
ing activities performed in warehouses or for assembly
line feeding. In these cases, human operators walk or
travel within a storage area to retrieve the items that
are requested by a customer order or by the produc-
tion demand. A picking tour can refer to a single order
(as in the case of the so-called order picking) or to a set
of different orders (as in the case of batch picking), that
subsequently must be sorted (De Koster, Le-Duc, and
Roodbergen 2007). Although Tompkins et al. (2010) esti-
mated that picking represents 55 percent of the total costs
in a warehouse, the employ of human operators usually
represents the most economical alternative, above all in
comparison with automated solutions. However, many
studies have already pointed out that manual systems
can present criticalities and hidden costs, for example,
related to musculoskeletal disorders and absenteeism of
the operators (Battini et al. 2017), or to the impact of
the picking errors (Fager, Johansson, and Medbo 2014).
For the first issue, recent researches propose to integrate
human factors and ergonomics in production systems
design and decision models (Grosse et al. 2017), in order
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to increase the efficiency and the effectiveness of the
operators (Grosse et al. 2015). On the other side, warrant-
ing an adequate process quality, thanks to the avoidance
of picking errors, can be reached through the adoption of
proper technologies and devices, able to guide the pickers
during their work (Battini et al. 2015a).

Thanks also to the recent technological developments,
many solutions have been introduced with different lev-
els of automation (Azadeh, De Koster, and Roy 2019).
Fully automated solutions are characterised by higher
investments and impacts on the whole system where
they are implemented. On the other side, partial auto-
mated solutions provide relatively cheaper alternatives,
with high flexibility and scalability. They are based on
the use of mobile robots (mobots), mainly for trans-
portation, or collaborative robots (cobots), for pick-
ing and sorting (Dubey and Veeramani 2017). In fully
automated solutions, mobots are widely used to trans-
port racks in robotic mobile fulfilment systems or in
puzzle-based storage systems, or sorting products in grid
areas. Very few applications of automated picking solu-
tions have been developed, but two examples are the
TORUTM picking robot by Magazino (Sgarbossa et al.
2020), or the one developed in Boudella, Sahin, and
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Dallery (2018). In collaborative and interactive applica-
tions, mobots are mainly used to transport the items,
picked by the operators in the picking zones, to the
packaging area. There are also other solutions where
cobots support the pickers with sorting activities which
have been partially studied. It represents an interest-
ing new application area for cobots due to productivity
and quality increasing (Fager, Calzavara, and Sgarbossa
2020). However, such a scenario must be carefully eval-
uated both from a performance and a cost perspective,
since a cobot requires a high investment that, hence,
needs to be justified by important benefits. Therefore,
this paper aims at modelling a new picking system, in
which human operators collaborate with cobots during
picking (or kitting) activities. In particular, it is consid-
ered the case of having a cobot on board of an AGV
that represents the picking trolley or cart, working in
parallel with the picker by performing sorting of the
picked items. Some previous papers have already con-
sidered a similar configuration (Boudella, Sahin, and
Dallery 2018; Coelho, Relvas, and Barbosa-Póvoa 2018;
Fager, Calzavara, and Sgarbossa 2019; Sgarbossa et al.
2020); however, none of them focused on the economic
aspects of this application, which is the main target of
this paper. This paper uses a modelling approach to
analyse and compare economic aspects associated with
a manual sorting mode and a cobot sorting mode in
a picking system. Previous studies that have dealt with
applications that involve robot-supported picking and
sorting activities have typically focused on operational
aspects and rarely on the economic aspects. For exam-
ple, how items should be assigned to storage locations
in serial kitting workflow between an operator and a
robot (Boudella, Sahin, and Dallery 2018, 2016), or time-
efficiency associated with cobot sorting in a kitting appli-
cation (Fager, Calzavara, and Sgarbossa 2019, 2020). In
this light, this paper expands on the previously available
knowledge by taking into account the costs associated
with operators, equipment, and quality associated with
cobot sorting when contrasted with its manual ditto.
The cost model can be used by managers to decide
whether a cobot setup would be profitable in their own
businesses.

The remainder of the paper is structured as follows.
In the next section, a literature review about cost mod-
elling of picking and kitting systems, especially focused
on time efficiency and quality, is reported. In Section 3,
the cost model for the comparison between manual and
cobot supported picking is presented. Section 4 shows the
application of the proposedmodel to understand itsmain
and interaction effects and the possible fields of applica-
tion of the two scenarios. Finally, Section 5 reports the
conclusions and suggestions for future research.

2. Literature review

Order picking is a frequently used activity in distribution
and manufacturing settings, whereby various items are
collected in accordance with customer orders. In produc-
tion systems, manual order picking and kitting systems
deal with different fields of application and are typically
characterised by different warehouse dimensions. In fact,
in case of warehouse order picking, the operators have to
collect the items requested by the customers’ orders by
travelling within a large warehouse. On the other side,
in a kitting system, the operators prepare the kits used
during the assembly process, picking the items in a small
warehouse, called supermarket. However, although their
fields of application are different, both systems have in
common the employ of human operators to perform the
retrieval of the needed items from the warehouse shelves.
It derives that they can also share some of their critical-
ities, such as the need of warranting high performances
in terms of time or process quality. The existing literature
provides several interesting contributions related to these
scopes, by analysing them from different points of view.

2.1. Performance of order picking and kitting
systems

Themain purpose of the papers related to time efficiency
of order picking and kitting systems usually concerns the
modelling of the activities and the proposal of strate-
gies to reduce the time needed to process a picking or
a kitting tour. Brynzér and Johansson (1995) analysed
various case studies concerning materials kitting sys-
tems, by comparing different approaches for deciding the
location of the picking activity, the work organisation,
the picking method, the used information system and
the operators’ equipment. Their results show that kit-
ting efficiency and accuracy can be improved by taking
into account the product structure both for the infor-
mation system design and for the storage assignment
policy, or by applying orders batching. Also starting from
empirical studies, Hanson andMedbo (2019) proposed a
methodology to assess how the man-hour efficiency of
kit preparation is affected by the design and the context
of the kit preparation. They found that a high picking
density leads to shorter kitting times, and, therefore, they
suggested to take it into account during the dimension-
ing and the layout of the kitting area, in the design of the
storage racks, and in the choice of the batch size. Battini
et al. (2018) compared two different order picking strate-
gies, i.e. carton picking from pallets and carton picking
from racks, by a time perspective. The introduced Carton
Pick from rack Convenience Condition allowed to estab-
lish which items should be stored on pallets and which
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on racks, with positive impacts on space and time sav-
ings, thanks to the reduced travelled distances. In their
research, Grosse and Glock (2015) stated that the mod-
elling of worker learning in order picking could improve
the predictability of order throughput times, and that it
could be useful to properly allocate the available human
resources.

As far as process quality is concerned, the existing lit-
erature shows a particular focus on the description of
the possible arising errors. Fager, Johansson, and Medbo
(2014) focused on quality issues of materials kit prepa-
ration, through the proposal of a framework including
the types, the causes and the determinants of quality in
kitting. The highlighted quality problems were associ-
ated, for example, to the pick of the wrong component,
to the miss or to the surplus of pieces, to the wrong items
of kits positioning. Caputo, Pelagagge, and Salini (2017a,
2017b) investigated the impact of human errors and other
quality problems that could arise during kitting activi-
ties. Starting from the estimation of errors probability
and errors correction costs, they defined their impact on
the overall quality costs of a kitting system. It turned out
that the main sources of error costs are: assembly of a
non-conforming product from a wrong kit, delivering
replacement kits, end of line correction of errors from
assembly of kits having undetected parts errors.

For order picking systems, pick errors can lead to the
delivery of an order that does not correspond to what
the customer wants, since it contains wrong items or it
lacks some products. The impact of such errors can vary
according to the moment in which the error is detected,
as described by Battini et al. (2015a). Here, the authors
suggested to adopt paperless picking technologies to pre-
vent someof the possible picking errors and, then, to limit
their economic impact.

2.2. Costmodelling of order picking and kitting
systems

A possible approach for evaluating a production system
is the definition of a mathematical model that considers
its arising costs. In this case, it is important to describe
the activities that are considered significant for the final
outcomes, as well as the involved resources (operators,
devices, hardware, etc.).

For assembly systems, some of the existing researches
have the aim of comparing line stocking and kitting. In
this direction, the cost model by Limère et al. (2012)
showed that the best feeding policy is a hybrid one, with
some parts kitted while others line stocked, according
to the characteristics of the parts. Battini et al. (2009),
Caputo and Pelagagge (2011) and Caputo, Pelagagge, and
Salini (2015) provide similar findings. In the first paper,

the cost model is applied to compare three strategies:
pallet to workstation, trolley to workstation and kit to
assembly line, with the aim of minimising total storage
costs. The second and third strategies consider kitting
and just in time kanban-based continuous supply and
line storage. Subsequently, Limère, Van Landeghem, and
Goetschalckx (2015) added the consideration of variable
assembly operator walking distances, which are influ-
enced exactly by how the parts are fed to the assembly
line. Caputo, Pelagagge, and Salini (2018) proposed an
economicmathematical model tomap convenience areas
of each feeding policy, in order to quickly derive the best
feeding policy for each assembly part on an economic
basis.

Battini et al. (2015a) focused on the description of
the warehouse picking process by a cost perspective to
justify the adoption of paperless picking technologies.
On the other side, Frazelle, Hackman, and Platzman
(1989), Frazelle et al. (1994) and Bartholdi and Hack-
man (2008) preferred to consider the costs related to
forward area dimensioning, items allocation, and replen-
ishment impact. Another perspective considered that the
most important costs of a picking warehouse are related
to the time needed for processing a picking order (De
Koster, Le-Duc, and Roodbergen 2007; Gu, Goetschal-
ckx, and McGinnis 2010). Therefore, research on this
topic mainly propose to reduce costs by decreasing the
picking time and, particularly, the travel time (Daniels,
Rummel, and Schantz 1998; Tompkins et al. 2010;
Battini et al. 2015b).

2.3. Automation of order picking and kitting
systems

Other contributions on picking and kitting systems sug-
gest automation as an alternative to the employ of human
operators. Already in 1989, Sellers and Nof discussed the
problem of selecting the proper design of a robotic kit-
ting system based on desired performance criteria. They
compared different robotic configurations from a perfor-
mance point of view, deriving that, for their cases, the
miniload onboard robot/automated storage-retrieval kit-
ting system was the best one. Subsequently, many papers
have studied the possibility of employing automated solu-
tions for substituting or for supporting human operators
during picking and kitting operations (Tamaki and Nof
1991; Comand et al. 2019).

Recently, Boudella, Sahin, and Dallery (2016, 2018)
considered the use of a collaborative robot together
with the operator for kitting operations of mixed-model
assembly lines. Their analyses suggest that such a sys-
tem can be applied only in certain settings, according to
the items characteristics, the throughput and the available
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space. Coelho, Relvas, and Barbosa-Póvoa (2018) devel-
oped a simulation tool for analysing the employ of robots
for assembly kitting activities. The outcomes showed that,
even if robots have a more stable productivity, the sys-
tem performance is often higher with human operators.
Fager, Calzavara, and Sgarbossa (2019, 2020) studied the
potential of cobots to support kit preparation with order
batching, with the pick task performed manually and the
sort task performed by a cobot. The findings report that
cobot-supported kitting provides less variability of the
outcome and it performs better with smaller quantities
per picked item. These studies represented the first con-
tributions focused on the employ of cobots for supporting
kitting activities, while, to the best of our knowledge,
no contributions are available so far regarding the use
of cobots for warehouse order picking. Moreover, Fager,
Calzavara, and Sgarbossa (2019, 2020) focus only on an
operational evaluation, by comparing the time perfor-
mances of the operator and of the cobot for each picked
and sorted item, with a higher detail on the performed
activities. On the other side, this paper aims at keeping
a tactical perspective, in which the system is evaluated
and modelled as a whole, from an economic point of
view, considering operator, equipment and quality costs.
Although the behaviour of the investigated systems is the
same, here the attention is on comparing their emerg-
ing costs to derive the economic sustainability of both
configurations.

The literature review reported above shows that order
picking and kitting systems have inspired various stud-
ies, some of them focused on improving time efficiency
and process quality. Continuing on this line of research,
this paper intends to cover an existing research gap, by
considering the employ of cobots for supporting human
operators during sorting activities, through the relative
cost model introduced in the next sections.

3. Cost modelling of manual and cobot sorting

This section presents a description of the picking pro-
cess considered in the paper. Furthermore, the section
presents mathematical models of two different modes by
which the process is operated: A manual sorting mode
(mode 1) and a cobot sorting mode (mode 2).

The notations used in the models, and example val-
ues used in the model application (see Section 4), are
shown in Table 1. The example values in Table 1 have
been adopted with respect to values used in the relevant
literature, as highlighted in Section 2, including publica-
tions that the authors previously have been involvedwith.
Specific values for factor levels were selected by using the
relevant literature as a point of reference for identifying
realistic factor levels.

3.1. Descriptions ofmanual and cobot sorting
modes

Thepicking process under consideration involves collect-
ing items to order bins in a picking area. Each order bin
represents one order and contains a collection of items for
one customer, for example, an assembly process. The pro-
cess makes use of an order batching approach, meaning
that several orders are prepared during each picking tour.
There is no requirement on the orientation and posi-
tion of items in the order bins. Here, a manual sorting
mode, mode 1, and a cobot sorting mode, mode 2, are
considered. An overview of the two modes is shown in
Figure 1.

The two modes are considered with respect to a set
of assumptions. In the following, important assumptions
are highlighted.

• Effects of learning rates and ergonomic loads on the
operator’s performance are not considered, since they
would only slightly influence the cobot sorting mode,
but largely be the same for the two modes.

• The cobot is assumed to always be able to successfully
pick components on its first try, since components in
the collaborative zone are presented to the cobot on a
flat surface (El Zaatari et al. 2019).

• The cobot is assumed to always be able to success-
fully place components into order bins on its first try,
since the order bins are assumed to be large enough so
that components already present in an order bin never
interfere with the placement activity.

• The length of the picking tour is assumed to be the
same for each work cycle, since a return policy with
S-shape routing is used inside the picking area. In any
case, the results can be generalised dividing the total
travel length by the number of stops, calculating the
average distance per line δl, as shown in the following.

• The vision system analysis of the components in the
collaborative zone is considered to take place in par-
allel with the cobot’s other activities, why it does not
add to the cobot’s time expenditure (Coelho, Relvas,
and Barbosa-Póvoa 2018).

• TheAGV-trolley is assumed to never interferewith the
operator’s movement, since the AGV-trolley moves
in pace with the operator based on the operator’s
activities.

• The space occupancy of the cobot on the AGV-trolley
is assumed to not affect efficiency, since the picking
aisle is assumed to be wide enough to not interfere
withmovement, and since the AGV-trolley is assumed
to be large enough that the order bins can be posi-
tioned on the AGV-trolley so that the cobot can oper-
ate at full efficiency.
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Table 1. Notations and example values.

Example value(s)

Area Notation Description Mode 1 Mode 2

Cost co Hourly cost (e/h) of an operator [10; 20; 30; 40] [10; 20; 30; 40]
cje Yearly cost (e/year) of equipment in mode j 15,000 25,000
cmq Unitary cost (e/error) of correcting an error at picking area (m = 1), at

assembly (m = 2), and at end of line inspection (m = 3)
See Table 5 See Table 5

System nd No. of orders to complete in a year [10,000; 20,000; 30,000] [10,000; 20,000; 30,000]
ns No. of order lines per order [5; 10; 15; 20] [5; 10; 15; 20]
nw No. of work days in a year 261 261
qs No. of items per order line [1; 2; 3; 4] [1; 2; 3; 4]
th No. of hours in a work day 8 8
tw No. of seconds in a work day 28,800 28,800
μs Order commonality [0.15; 0.3; 0.5] [0.1; 0.3; 0.5]

Process B Batch size [2; 4; 8; 16] [2; 4; 8; 16]
j Index for picking mode 1 2
k Index for error type [1; 2; 3; 4; 5] [1; 2; 3; 4; 5]
L Length (m) of a picking tour [25; 50; 100; 200] [25; 50; 100; 200]
n′
s No. of order lines on a batch pick list – –
q′
s No. of items per order line on a batch pick list – –

qtot No. of items to pick on a picking tour with batch size B – –
tjOL Time (s) required to complete an order line on a batch pick list in mode

j
– –

tpick Time (s) for the operator to pick a component 5 5
tset Time (s) for setup between picking tours 30 30
tjsort Time (s) required to sort an item in mode j 4.5 8
v Travelling speed (m/s) 1 1
δ Collaboration ratio – –
ϕ Collaboration factor – –
ρk

ε Probability of error type k See Table 6 See Table 6
π
j
p Probability of correcting an error at the picking area in mode j 0.95 0.99

πa Probability of correcting an error at the internal customer 0.7 0.7
μb Order commonality inverse – –
δl Average distance per order line [1.25; 2.5; 5; 10; 20; 40] [1.25; 2.5; 5; 10; 20; 40]

Model output �Ctot Relative cost difference between modes 1 and 2 – –
CjO Yearly operator cost in mode j – –
CjE Yearly equipment cost in mode j – –
CjQ Yearly quality cost in mode j – –

Cjtot Yearly total cost of mode j – –
pj Productivity (order lines/year) in mode j – –
njop No. of operators required in mode j – –

3.1.1. Manual sortingmode
In the manual sorting mode, the operator picks items
from shelves and sorts the items into order bins, as shown
in the top part of Figure 1. A picking information sys-
tem provides information about which items to pick and
in which order bins to sort them. The picking informa-
tion system allows the operator to receive the pick list
as instructions and to confirm activities and, thereby, get
feedback that items are picked and sorted correctly. The
instructions include information about which SKU to
pick items from, the quantity to pick, which order bins
to place components in and how many items to place in
each order bin. The order bins are carried by anAGV that
moves along the picking aisle from shelf to shelf, mov-
ing as the operator confirms the activities associated with
each order line. Here, the term ‘order line’ refers to a
row on a pick list, indicating the quantity to pick of an
SKU and the order bins into which the items should be
sorted.

3.1.2. Cobot sortingmode
In the cobot sorting mode, a cobot assists the operator
(bottom part of Figure 1). Here, the operator picks items
from the shelves in the same manner as in the manual
sorting mode, but then puts the full quantity in a con-
tainer presented on the AGV – called the collaborative
zone. A cobot, which is mounted on the AGV, then sorts
the items in the collaborative zone into order bins. A
vision system guides the cobot to perform its task cor-
rectly. The camera is mounted above the collaborative
zone and continually analyses the zone’s contents so that
the cobot never has to wait for the analysis to complete.

3.2. Modelling cost of themanual and cobot sorting
modes

A multitude of factors play a role for the cost asso-
ciated with picking activities. With respect to this
paper’s purpose, the differences between manual and
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Figure 1. Overview of the manual sorting mode (top) and the cobot sorting mode (bottom).

cobot-supported picking are of interest, and the costs
associated with operators, equipment, and quality are
considered.

The relative cost difference between the two modes,
�Ctot , of manual picking, Cj=1

tot , when compared with
cobot-supported picking, Cj=2

tot , can be expressed as:

�Ctot = Cj=2
tot

Cj=1
tot

− 1 (1)

The yearly total cost Cj
tot associated with each mode j

is the sum of costs associated with the yearly cost of oper-
ators Cj

O, equipment Cj
E, and quality Cj

Q. Accordingly:

Cj
tot = Cj

O + Cj
E + Cj

Q (2)

3.2.1. Operator cost in themanual sortingmode
Yearly operator cost Cj

O of mode j corresponds to the
product of the number of working hours per day th, the
number of working days per year nw, the number of oper-
ators required with mode j, njop, and the hourly operator

cost co:

Cj
O = th · nw · co · njop (3)

Here, nh, nw and co are fixed, while n
j
op depends on the

productivity inmode j. The number of operators required
to fulfill a yearly order requirement nd is:

njop = nd · ns
pj

(4)

where nd is the yearly order volume, ns is the number of
order lines per order, and pj is the productivity of mode
j in order lines per year and operator. To estimate the
operator cost, it is necessary to know the operator’s pro-
ductivity in terms of the number of order lines completed
per year.

Manual picking has been modelled before, see for
example Fager, Calzavara, and Sgarbossa (2019, 2020),
Caputo, Pelagagge, and Salini (2018), Battini et al. (2015a)
and Battini et al. (2009). Time expenditure in pick-
ing operations generally consists of setup time, travel-
ling time and picking time. Setup time, tset , is the time
required in between picking tours to, for example, unload
full order bins, load empty order bins, and return to the
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Table 2. Example of a pick list for one order.

Order line Quantity Order bin SKU ID Item no. Item description

1 q1 1 A01 123 456 789 Small bearing
2 q2 1 A03 456 123 789 Medium bearing
3 q3 1 A07 789 567 123 Grey plastic cap
...

...
... . . . . . . . . .

ns qns 1 . . . . . . . . .

Table 3. Example of a batch pick list for a setup with B = 8,
qs = 1.

Order line Quantity Order bin(s) SKU ID Item no. Item description

1 4 1, 2, 5, 8 A01 123 456 789 Small bearing
2 3 3, 6, 7 A03 456 123 789 Medium bearing
3 8 1, 2, 3, 4, 5, 6,

7, 8
A07 789 567 123 Grey plastic cap

. . .
... . . . . . . . . . . . .

n′
s q′

n′
s

. . . . . . . . . . . .

starting position of the picking tour. Travelling time, L/v,
occurs during the picking tour, so does picking time, tpick,
and sorting time, tsort .

With a batch picking approach, multiple pick lists for
individual orders can be combined into a batch pick list.
Here, a pick list for an individual order on average con-
sists ofns order lines, where on average qs =

∑ns
i=1 q

i
s

ns items
are picked per order line, see Table 2.

When B orders are combined into a batch pick list,
see Table 3, order commonality can make it possible to
combine individual order lines from different pick lists.

As can be seen from Tables 2 and 3, order commonal-
ity affects the number of items of the same SKU that can
be picked during a single stop during the picking tour.
Here, the number of order lines on the batch pick list,
n′
s, are always fewer than the sum of order lines of the

individual pick lists thatmake up the batch of sizeB. Sim-
ilarly, order commonality affects the average quantity of
items to pick per order line. As it is of interest to esti-
mate the operator’s productivity in terms of order lines
completed per year and operator, order commonality is
important to account for as it plays a different role for the
various time requirements. In fact, the time requirement
of setup and travelling depend on the number of order
lines performed, while the time requirement of picking
and sorting depends on the quantity of items handled.

The relationship between the number of order lines of
a pick list for an individual order, ns, and the number of
order lines of a pick list for a batch of orders with batch
size B, n′

s, can be expressed as:

n′
s = ns · B · (1 − μs) (5)

where μs is the commonality among the orders in the
batch.

Here, μs works as a compression factor when com-
bining pick lists of multiple orders into a batch pick list.
When μs = 0 and there is no commonality, then n′

s =
ns · B. Conversely, if μs = 1 − 1

B there is full common-
ality, then n′

s = ns. Hence, it can be shown that:

0 < μs < 1 − 1
B

(6)

The relationship between the average quantity of items
per order line of a pick list for a batch of orders of batch
size B, q′

s, and the average quantity of items per order line
on the pick lists for the individual orders within the batch
can be expressed as:

q′
s = qs · B · (1 − μb) (7)

where μb is the inverse commonality among order lines
within the batch.

Here, if μb = 0 there is full commonality among the
orders so that all orders in the batch require the same
SKUs and q′

s = qs · B. Conversely, if μb = 1 − 1
B there is

no commonality among the orders so that only one order
requires each SKU and q′

s = qs. Accordingly:

0 < μb < 1 − 1
B

(8)

Since the total number of items to pick during each
picking tour is the same regardless of the order common-
ality, fewer order lines as a result of effective batching that
achieves high order commonality means more items to
pick per order line. Hence, there is a relationship between
μs andμb. The total number of items to pick each picking
tour with a batch size B is:

qtot = qs · ns · B (9)

where ns is the number of order lines associated to a
pick list representing a single order. The number of items
to pick per order line in the batch pick list q′

s can be
calculated as:

q′
s = qtot

n′
s

= qs · ns · B
n′
s

(10)

With (4), (6) and (9), it can be shown that:

μb = 1 − 1
B · (1 − μs)

(11)

For the manual sorting mode, the time for completing
an order line on a batch pick list can now by help of (5)
to (11) be expressed as:

tj=1
OL = tset

n′
s

+ L
v · n′

s
+ q′

s · (tpick + tj=1
sort) (12)

Here, n′
s is the number of order lines completed during a

picking tour, L is the distance travelled during the picking
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tour at speed v, such that L/v is the total travelling time, qs
is the number of items per order line, tpick is picking time
per item, and tj=1

sort is the sorting time for the operator.
For the manual sorting mode, productivity in order

lines per year for one operator can now be estimated as:

pj=1 = tw · nw[
n′
s

B·ns
]

·
[
tset
n′
s

+ L
v·n′

s
+ q′

s · (tpick + tj=1
sort)

] (13)

where tw is the number of seconds in awork day, andnw is
the number of workdays per year. The term

[
n′
s

B·ns
]
in (13)

normalises the effect of combining orders into a batch,
so that the productivity estimate pj=1 corresponds to the
number of completed order lines of individual orders.

With (4) and (13), the operator cost in the manual
sorting mode can now be estimated from (3).

3.2.2. Operator cost in the cobot sortingmode
With the cobot sorting mode, productivity can be cal-
culated based on Fager, Calzavara, and Sgarbossa (2019,
2020). Here, time expenditure associated with cobot
sorting depends on how well the collaboration works
between the operator and the cobot, order line by order
line. Accordingly, the time expenditure of collaboration
is here modelled by means of the collaboration factor ϕ,
and the productivity associated with cobot sorting can be
expressed as:

pj=2 = tw · nw[
n′
s

B·ns
]

·
[

tset
n′
s

+ (1 − ϕ) ·
(

L
v·n′

s
+ q′

s · tpick
)

+ϕ · (q′
s · tj=2

sort)

]

(14)
To set ϕ, it is necessary to estimate howwell the collab-

oration between the operator and cobot works, and this
is represented by δ:

δ =
L

v·n′
s
+ q′

s · tpick
q′
s · tj=2

sort

(15)

For δ, when assuming deterministic time and constant
values of all parameters yield:

ϕ =
{

1 δ ≤ 1
0 δ > 1 (16)

Here, δ > 1 means that the operator on average is slower
than the cobot, so ϕ = 0. Conversely, δ ≤ 1 means that
the cobot on average is slower than operator, so ϕ = 1.
However, since the process is stochastic, it is appropriate

Table 4. Equipment related costs associatedwith the twomodes.

Manual sorting (j = 1) Cobot sorting (j = 2)

• AGV for transporting order bins
and travelling in the warehouse
(depreciation cost)

• Manual sorting support system
on the AGV (depreciation cost of
diodes, displays, wifi equipment/
cables)

• Maintenance cost of sorting sup-
port system (covered in mainte-
nance of shelf pick-by-light)

• AGV for transporting order bins
and travelling in the warehouse
(depreciation cost)

• Cost of cobot (depreciation
cost)

• Cost of cobot maintenance
• Licensing costs of cobot-control

software

to assume that:

ϕ =
⎧⎨
⎩

1 δ ≤ 0.8
−2.5 · δ + 3 0.8 < δ < 1.2

0 δ ≥ 1.2
(17)

By assuming linearity from 1 to 0 when δ goes from
0.8 to 1.2, it can be shown that ϕ = −2.5 · δ + 3.

3.2.3. Equipment cost in themanual and cobot
sortingmodes
The yearly cost of equipment associated with eithermode
j is:

Cj
E = cje · njop (18)

The differences between the two modes are of inter-
est. Important equipment related costs associated with
the two modes are shown in Table 4.

3.2.4. Quality costs in themanual and cobot sorting
modes
Quality costs of picking activities are a consequence of
errors that arise during the order picking process. When
an error occurs, it has to be corrected either during the
picking process, at the internal customer, e.g. an assembly
line, or at a final quality inspection (Caputo, Pelagagge,
and Salini 2017a, 2017b). The costs associated with man-
ual errors in kitting processes have been modelled before
by Caputo, Pelagagge, and Salini (2017a, 2017b); here,
these models have been adopted to estimate quality costs
associated with the two modes.

Errors that are related to delivery and assembly are not
directly linked to picking activities in the kit preparation
process and are hence not considered here. This means
that, in the Caputo, Pelagagge, and Salini (2017a, 2017b)
frameworks, quality problems of type 1 and type 2 are not
considered, and that quality problems of type 3 and type 4
are considered. In addition, errors that are detected and
corrected at the kit preparation process are considered,
which result in a time addition to the kit preparation cycle
time. Different costs arise depending on where in the
materials flow the error is corrected, and it is more costly
to correct errors later in the materials flow. In Table 5,
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Table 5. Types and example values of error correction costs.

Correction type (m) Description Notation Cost

1 Error is detected and
corrected at picking area

cm= 1
q 0.05e/error

2 Error is detected and
corrected at assembly
workstation

cm= 2
q 3.5e/error

3 Error is corrected at end of
line inspection

cm= 3
q 18.5e/error

Table 6. Example values for error probabilities.

Error type Description ρk
ε

k = 1 Missing item error 0.02
k = 2 Wrong item error 0.02
k = 3 Item unfit for use or damaged error 0.01
k = 4 Incorrect number of items error 0.01
k = 5 Items in wrong sequence or position error 0.04

the three types of error corrections considered are shown,
along with example values of correction costs as adopted
from Caputo, Pelagagge, and Salini (2017a, 2017b).

As explained by Caputo, Pelagagge, and Salini (2017a,
2017b), there is a chance that errors are detected and cor-
rected already at the picking process, π

j
p, or that errors

are detected and corrected at the assembly work station,
πa, thereby avoiding correction at end of line inspec-
tion. With respect to the two modes, there is a differ-
ence in probability of detecting errors at the picking
process, π

j
p, as the cobot in mode 2 analyses all com-

ponents that are sorted, while the probability to detect
errors at the assembly process is identical for the two
modes.

Various error types can occur in picking processes.
Here, five error types and their probabilities of occurring
ρk

ε in accordance with the frameworks of Caputo, Pela-
gagge, and Salini (2017a, 2017b) and Fager, Johansson,
and Medbo (2014) are considered, as shown in Table 6.

The quality costs associated with mode j can now be
estimated as:

Cj
Q = nd · ns · qs ·

5∑
k=1

(ρk
ε · (π

j
p · cm=1

q + (1 − π
j
p)

· (πa · cm=2
q + (1 − πa) · cm=3

q ))) (19)

4. Model application

This paper focuses on the economic aspects of picking
systems. This section presents an economic analysis and
comparison of the manual and cobot sorting modes.

The model application is carried out for all permu-
tations of the factor levels presented in Table 1, using
(1) through (19). Of interest is the relative cost differ-
ence cost in accordance with (1). The analysis consists of
three parts, (1) identifying the main effects in the model;

(2) identifying interaction effects among the factors, and
(3) analysing the relative cost difference between the two
modes. The analysis results are presented with respect to
the factors identified to have the greatest impact.

The example values used in the model application, as
shown in Tables 1, 5, 6, were adopted from the available
literature on the topic, as described in Section 2. This
includes studies that the authors have been involvedwith,
for example previous case research and experiments, that
have focused on contexts of both order picking and kit-
ting. Specific values were selected by using the relevant
literature as a point of reference for identifying realistic
factor levels.

4.1. Main cost components

This paper considers the relative cost difference between
a manual and cobot sorting mode in a picking system
with respect to threemain cost components: cost of oper-
ators, equipment, and quality. Figure 2 shows a compar-
ison between the costs for the two sorting modes with
respect to the main cost components.

Figure 2 shows that the cobot-sorting mode is benefi-
cial with respect to both operator and quality cost, but on
average more costly with respect to equipment cost. The
benefits of mode 2 with respect to operator cost comes
from the improved productivity associated with mode 2,
whereby fewer operators, or picking units, are required.
With equipment cost, as mode 2 reduces the number of
picking units required by improving productivity, as can
be seen from the operator cost in Figure 2, the differ-
ences in equipment cost in comparison with the manual
sorting mode are small, as fewer operators and, thereby,
fewer picking units are needed to achieve the productiv-
ity requirement with mode 2. Figure 2 also shows that
the quality cost is smaller than the equipment cost by
roughly a factor of ten, and smaller than the operator cost
by roughly a factor of a hundred, making quality cost
inconsequential for the relative cost difference between
the twomodes. The relative cost comparison between the
twomodes hence largely depends on the differences with
respect to operator and equipment cost.

4.2. Main effects

Before considering the relative cost difference between
the two modes, �Ctot , it is important to first identify
which are the factors that play the more important role.

Figure 3 shows the main effects with respect to the
relative cost difference associated with varying levels of
yearly order volume, nd, number of order lines per order,
ns, number of items per order line, qs, order commonal-
ity,μs, batch size, B, hourly operator cost, co, and picking
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Figure 2. Main cost components in e/year (logarithmic scale) of the two modes with respect to operator cost (left), equipment cost
(middle), andquality cost (right). Boxes represent average cost and standarddeviation. Bracketed lines representmaximumandminimum
cost.

Figure 3. Main effect plot of�Ctot , showing effect size (vertical axis) and factor levels (horizontal axis) for the considered factors.

tour length, L. Additionally, the effect of average distance
per line, δl, defined as the length of the picking tour, L,
divided by the number of order lines per order, ns, is also
considered. δl quantifies the average travel distance, and,
indirectly also the time, available from one pick location
to another.

As shown in Figure 3, the yearly order volume, nd, the
number of order lines per order, ns, and the number of
items per order line, qs, all play a major role for the rela-
tive cost difference. Noteworthy with respect to nd is that
the lowest level of 10,000 orders per year gives mode 1 a
cost advantage, whilemode 2 ismore beneficial for higher
yearly order volumes. Here, the effect of nd stems from
scaling, as small differences between the modes in terms
of operator, equipment and quality costs become more

important with larger order volumes. With ns and qs,
both factors are related to the number of items involved
in each work cycle, and higher levels implies more items
to pick and sort. As both modes rely on handling items
one at a time, it is natural that they play a major role for
the relative cost difference, affecting both operator and
equipment costs. Furthermore, more items to handle also
increase the risk of errors in the picking process, thereby
affecting the quality costs.

Figure 3 also shows the order commonality,μs, to also
have a major impact, as does hourly operator cost, co.
With μs, the number of order lines on the batch pick list
are affected, and, in turn, affects how many items must
be sorted during the work cycle. This affects productivity
and hence the operator costs.With hourly operator costs,
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Figure 4. Interaction plot with respect to �Ctot , showing size of interaction effects (vertical axis) and the factor levels used for each
parameter (horizontal axis).

it is clear from Figure 3 that cobot-sorting is the costlier
option when the hourly operator cost is low, but also that
it becomes a more cost-efficient option when the hourly
operator costs is higher.

With respect to the batch size, B, and the travel dis-
tance, L, Figure 3 shows that the factors barely affect the
relative cost difference. The batch size has little effect on
its own, as μs largely determines the effect on how many
items should be sorted at each order line on the batch
pick list, q′

s. A similar effect can be observed with respect
to the travel distance, L, where both modes are affected
similarly, resulting in a small effect on the relative cost
difference. These factor interactions are discussed more
in Section 4.3.

Finally, Figure 3 shows that the effect from the average
distance per order line, δl, on the relative cost difference is
substantial, but somewhat irregular. Here, mode 2 is the
more cost-efficient option with low δl because items are
picked more frequently and there is more sorting-work
to carry out, leading to that most of the cobot’s capacity
can be utilised. With high δl, however, the cobot’s capac-
ity utilisation drops and the operator starts controlling
the work pace. This mechanism becomes clear when δl
goes from 5m/order line to 10m/order line, as indicated
by the sudden drop in �Ctot between these points. Here,
the collaboration factor ϕ switch value from 1 to its’ lin-
ear approximation in accordancewith (17), depending on
several other factors, in accordance with (15).

4.3. Interaction effects

While main effects indicate the importance of individual
parameters, interaction effects can reveal relationships
among parameters that play an important role for the
relative cost difference between the two modes.

Interaction effects among the model parameters are
shown in Figure 4. Here, there is substantial interaction
among nd, ns, qs and μs. With batch size, B, the interac-
tion is small with the other factors, except for the interac-
tion with the average distance per order line, δl. Here, it is
clear that a larger batch size benefits mode 2 with longer
δl by giving the cobot more sorting-work to perform.
co interacts with the other parameters by linearly mod-
erating the effects of the other factors. While the travel
distance, L, barely interacts at all with the other factors, as
indicated by the almost parallel and overlapping lines in
its associated rows and columns, its interaction becomes
more prominent when considered together with ns, as in
the average travel distance per order line, δl. Here, several
significant interactions appear with respect to the other
factors, for example with nd, qs,μs,B and co.

From looking at the main effects and interactions
among the factors, the parameters ns and qs show
substantial main effects when considered individually,
but also show considerable interaction effects both with
respect to each other, and with respect to the other fac-
tors. This is because ns and qs both affect the number of
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Figure 5. Relative cost difference between themanual sortingmode and the cobot sortingmodewith respect to nd (vertical axis) and qs
(horizontal axis) under different levels ofμs and δl . Grey areas indicate a more profitable manual sorting mode and white areas indicate
a more profitable cobot sorting mode.

items picked and sorted during each work cycle. As both
mode 1 and 2 operate by handling a single item at a time,
the productivity is strongly affected by qs and ns, and,
consequently, so is the relative cost difference associated
with the two modes. Additionally, this effect is accentu-
ated by μs which affects how many items are associated
with each order line, in accordance with (10).

nd accentuates the effects of other factors by increas-
ing the amount of work that has to be carried out each
year. However, as can be noted from the interaction plots
between nd and ns, qs and μs – by how the effects diverge
for higher levels of nd – is that the effect associated with
nd depends onwhen ϕ change from 1 to its linear approx-
imation, in accordance with (17). This means that if suf-
ficient capacity utlisation can not be achieved with the
cobot-sorting in mode 2, for example when ns, qs, μs,
and B are too low for there to be a sufficient number
of items for the cobot to sort, the cost benefits of mode
2 become less prominent also for higher yearly order
volumes. Finally, the interaction effects associated with
average distance per order line, δl, shows to be strongwith
respect to the other factors, apart from the lower levels
of B.

4.4. Relative cost difference betweenmanual and
cobot sortingmodes

Based on the analysis of main- and interaction effects in
Subsections 4.2 and 4.3, Figure 5 shows the relative cost
difference between the two modes with respect to the
most influential parameters qs, nd, μs, and δl.

Figure 5 provides several indications as to which set-
tings affect the relative cost difference between the two
modes. To begin with, Figure 5 indicates that higher μs
improves the robustness of choosing mode 2 over mode
1. Here, it is only for longer average distances per order
line, e.g. 20–40m per order line, that the cost-benefits
become less prominent when μs is high, but high levels
of nd and qs still make mode 2 the better option. Mode
2 should, however, be avoided when there are very few
items and longer average distance per order line, even for
high μs.

Figure 5 also shows that lower levels of μS makes the
benefit of mode 2 questionable. If mode 2 should be
considered in a low μs setting, it is crucial that qs and
nd are high, so that the cobot’s capacity can be utilised.
However, even if a sufficient capacity utilisation can be
achieved, the decision to use mode 2 with low μs would
still be sensitive to volume fluctuations, where changes
to both higher and lower volume could, more or less,
nullify the benefits, ormakemanual mode themore cost-
efficient option. This becomes more problematic when
δl is long, where mode 1 generally is more cost-efficient,
except when nd and qs are high.

Finally, as can be noticed in Figure 5, the cost-benefit
of the decision to use mode 2 appears to be unpredictable
with increasing levels of nd and qs. For example, the cost-
benefit associated with nd of 30,000 and qs of 4 is, under
most settings, less than with nd of 20,000 and qs of 3. This
is because of the number of picking units (njop) required
with each mode, as additional picking units are required
to handle the larger volumes and sorting requirements.
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Figure 6. The average number of picking units required in mode 1 and 2 with respect to nd (vertical axis) and qs (horizontal axis) under
different levels of μs and δl . Grey circle without border indicate the average number of picking units required with mode 1, and hollow
circle with border indicate the average number of picking units required with mode 2.

4.5. Number of picking units

As was pointed out in the analysis of the main cost com-
ponents, the costs associated with operators and equip-
ment make up most of the effects with respect to the
relative cost difference. These costs are strongly linked
to the number of picking units each mode requires. The
number of picking units (i.e. corresponding to the num-
ber of operators, njop) required in each of the modes is
shown in Figure 6.

From comparing Figures 5 and 6, it is clear that since
each new picking unit is more expensive with mode 2
than with mode 1, the effect on the relative cost differ-
ence is substantial whenever an additional picking unit is
necessary to use due to, for example, an increase in yearly
volume or a change in order mix. This makes choos-
ing mode 2 on grounds of cost-benefits a more sensitive
decision when μs is low and δl is long, as mode 1 may
well be the more cost-efficient option depending on the
values of other factors in the system. When the decision
is this sensitive, a picking system that makes use of both
modes could instead be a better option, where some pick-
ing units sort manually, and others by help of a cobot.
For higher μs and shorter δl, the decision to use mode
2 is more robust, and the need for an additional picking
unit with mode 2 is, more or less, always associated with
a cost-benefit.

5. Conclusions

This paper has modelled and compared the costs associ-
ated with operators, quality and equipment in a picking

process when the sorting task is performed manually
or by a cobot. A manual and a cobot sorting modes
were compared based on the relative cost differences and
main and interaction effects were identified. The paper
advances the analysis of an application of cobots in kit
preparation that was presented in Fager, Calzavara, and
Sgarbossa (2019) by considering how the cost associated
with the application compares with its manual alterna-
tive under various settings of important factors of the
picking system. The comparison was made with respect
to relative cost difference, which is central when robot
applications are considered for use in practice.

The findings suggest that the use of a cobot sorting
mode is a profitable alternative over a manual sorting
mode for picking systems where there is a more exten-
sive sorting task to be carried out. This is often the case
when there are many order lines per order, many items
per order line, order batching is used, andwhere different
orders have more items in common. These character-
istics can often be found in picking systems associated
with assembly operations where there is a product struc-
ture available, but may also be common characteristics
in distributions settings, for example, in spare parts sup-
ply or at logistics service providers that deal with some
level of order commonality. The findings illustrate that
a cobot sorting mode is a more beneficial option over a
manual mode when the average distance per order line
is shorter and a higher order commonality within each
order batch can be achieved. These aspects can be affected
by, for example, selection of storage policy, routing policy,
and batching policy, for which there are rich amounts of
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literature available (see e.g.DeKoster, Le-Duc, andRood-
bergen 2007). Cost-benefits of cobot-sorting stems partly
from increased productivity that can be achieved when a
cobot relieves the operator from sorting activities during
the picking process, and, to an extent, from an improved
ability to detect errors already during the picking process,
thereby reducing the quality costs, which is important in
industrial picking systems (Caputo, Pelagagge, and Salini
2017a, 2017b; Fager, Johansson, and Medbo 2014). The
paper also shows under what circumstances the addi-
tional equipment cost associated with a cobot-sorting
mode ismotivated by increased productivity and reduced
quality costs.

The paper acknowledged that economic aspects of
cobots applied in picking systems rarely have been dealt
with in the literature, although operational aspects have
been studied recently by Fager, Calzavara, and Sgar-
bossa (2019, 2020), Boudella, Sahin, and Dallery (2016,
2018) and Coelho, Relvas, and Barbosa-Póvoa (2018).
The available literature did, however, present relevant
input such that the paper could expand on the available
knowledge by considering new settings where the cobot-
application can be considered for use. For example, the
findings illustrate that to use cobot-sorting generally is
an economically beneficial decision if considerable order
commonality can be achieved, but also that it can be a
worthwhile option with less order commonality if the
cobot’s capacity utilisation can be ensured, for exam-
ple, by reducing the average distance per order line or
by adjusting the yearly order volume that is assigned to
cobot-supported picking units. Similarly, the paper also
demonstrates that a manual sorting mode is preferable,
for example, when there are long average distance per
order line, such as in many warehouses with a multitude
of SKU’s and few order lines per order, and where orders
have few items in common. Furthermore, the paper also
demonstrates the robustness of the decision to use either
a manual or a cobot-supported mode by considering
the relative cost across a considerable range of settings.
In this way, this paper extends the previously available
knowledge by demonstrating the costs of cobot sorting
compared with a manual alternative across a range of
typical warehouse settings, accounting for costs related
to operators, equipment and quality, something which is
new in literature.

Some assumptions used in the model lack empirical
grounding, for example concerning quality in terms of
error probabilities, both with respect to manual picking,
as noted by Caputo, Pelagagge, and Salini (2017a, 2017b),
and with respect to cobot sorting. It is reasonable to
assume that an application of a cobot to support the sort-
ing task with a batch picking approach is beneficial for
quality, as it removes risks of human errors when sorting

components among order bins. However, incomplete or
unskilled implementation of cobots in picking systems
could result in new types of potential error sources, for
example, dropped items due to the robot unsuccessfully
gripping the items, or outdated data in the warehouse
management system that causes the robot to pick and sort
the wrong items. Some researchers have pointed out that
manual picking systems are apt at dealing with ambigu-
ity and problems in the picking systems design (Glock
et al. 2017), but this is likely not the case with robot-
supported systems, which instead require an unambigu-
ous and precisely designed system. Empirical studies that
address quality are encouraged to this end, and themodel
in this paper is readily applicable when such empirical
data becomes available. Moreover, the model could be
expanded in future studies by also considering, for exam-
ple, ergonomic aspects or flexibility. It is likely that cobots
can support these other performance areas as well.

The model presented in the paper makes up an effec-
tive yet comprehensive approach for assessing relative
cost betweenmanual and cobot sorting. This can be used
by managers to assess potential cost benefits in their own
picking systems, but it can also be used as input when
planning the number of picking units required to handle,
for example, a yearly order volume of a certain ordermix.
The model relies on data that is readily available in most
warehouse management systems and thereby promotes
straightforward application.

Empirical studies concerning robotics in picking sys-
tems are still scarce in the research literature (Azadeh,
De Koster, and Roy 2019). In future research, empiri-
cal studies in laboratory settings or in industrial pilots
are an important next step that could shed light on the
challenges that come with implementation of robotic
picking applications. For example, there may be unsuit-
able component characteristics for cobot picking (see
e.g. Boudella, Sahin, and Dallery 2016, 2018), or safety
regulations that interfere with how the application is
intended to work, since other people than the operator
may be present at the picking area. While the model pre-
sented in this paper is helpful for assessing the economic
impact, a comprehensive analysis must be carried out
before implementation is considered and more knowl-
edge of implementations and use of robotics in picking
applications would help practitioners to a more complete
assessment whether robot applications are suitable given
their unique requirements. Such studies would also pro-
vide valuable empirical data that can be used together
with the model presented in this paper.
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