
Surface Charging Formulations for Engineering
Applications. Validation by Experiments and
Transient Models

Andreas Blaszczyk, Thomas Christen, Hans Kristian Meyer, and Michael Schueller

Abstract Electrostatic BEM (Boundary Element Method) formulations are pre-
sented for the calculation of dielectric surface charging, including saturation and
restrike phenomena. The simulation results turn out to be in agreement with surface
potential measurements in a simple rod-barrier-plane configuration, where lightning
impulses initiate streamers and charge accumulation on the barrier. The usefulness
of the given BEM-formulation is additionally supported by transient charging sim-
ulations in the framework of an electric carrier drift model.

1 Introduction

Surface charges (SC) on solid insulator surfaces can significantly influence the di-
electric performance of medium and high voltage power devices. They can mitigate
discharge inception effects during a lightning impulse test, as well as enhance them
for applied voltages with reversed polarity. Unfortunately, the simulation of the in-
trinsically transient charging, which may occur via a zoo of different gas discharge
processes like streamers, leaders, ion motion and combinations thereof, is a complex
task and thus requires simplified approaches for application to real devices.

Recently a simplified engineering approach based on the saturation-charge boundary-
condition has been proposed [1]. It works because saturation is a rather robust ex-
tremal stage of SC accumulation that allows assessment of possible changes in field
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distribution without performing the full analysis of the charging process. By ne-
glecting the influence of the space charge, a simple electrostatic computation based
on integral approach is possible (without meshing the gas volume).

In this paper we present a new formulation of the saturated SC for the 3D bound-
ary element method (BEM), which can be efficiently applied in an industrial design
environment. In addition to the saturation stage, computational models for modifi-
cation of the accumulated charge due to restrikes (back discharges after changes of
electrode potentials) are considered. The new formulation is validated with experi-
ments and transient models.

2 BEM Formulations

The formulations presented below are explained and validated for a simple, air-
insulated arrangement of rod-barrier-plane shown in Fig. 1 where the standardized
lightning impulse (LI) 1.2/50 µs is applied to the active rod electrode. During the
transient load and the dynamically developing discharge we distinguish a few rep-
resentative stages shown in Fig. 1a-e. They occur within a time frame starting from
1 µs, when the applied voltage reaches the peak, up to 2-3 minutes lasting until the
final measurement. Each of these stages can be represented by a steady state (elec-
trostatic) formulation that is described in the following subsections. Such steady
state formulations are applicable for arbitrary 3D geometries and can be efficiently
used in engineering simulations [2].

Fig. 1 Rod-barrier-plane configuration for different stages of discharge development.

The presented equations are limited to boundaries between gas and the solid di-
electric where the surface charge distribution has to be obtained or specified. Other
parts of the traditional BEM formulation including the Fredholm integral equation
of the first order for electrode boundaries as well as formulation for floating poten-
tials are described in [2] - [5].
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2.1 Background Field

For a point i on a dielectric boundary the Gauss law must be fulfilled according to
the following equation:

εrInsε0Eni,Ins = εrGasε0Eni,Gas +σsi (1)

where εr,Ins and εr,Gas are the relative permittivities of the solid insulation and gas,
Eni,Ins and Eni,Gas are normal components of the electric field in the corresponding
medium, and σsi is the density of the accumulated surface charge, which is equal to
zero in case of the initial background field, see Fig. 1a.

The indirect BEM formulation introduces a concept of virtual charge ”in vacuo”
that specifies the density σi for all points i on boundaries of the model as a solution
of the equation system including (1) . Once this charge is obtained the field can be
computed as a superposition of all virtual charge contributions. An essential feature
is handling of the singularity when the field is computed exactly at the point i. This
is solved by introducing a jump term resulting from the Gauss law applied to the vir-
tual charge located on a small, flat surface area around the point i [4]. Consequently,
the normal field components in (1) can be computed as a sum of a jump term and
the normal electric field component E−ni obtained by integrating all virtual charges
σ j except of the charge located within the small, flat surface area around the point i
:

Eni,Ins = E−ni −
σi

2ε0
and Eni,Gas = E−ni +

σi

2ε0
(2)

with
E−ni =

1
4πεo

∑
j

∫
S j

ni · rij

r3
i j

σ jdS (3)

where ni is the normal vector at collocation point i pointing into the gas and ri j is
the distance between collocation point i and the surface element represented by the
integration point j 1. After applying (2) to (1) and assuming σsi = 0 one can obtain
the Fredholm integral equation of the second order as follows:

E−ni −
εr,Ins + εr,Gas

εr,Ins− εr,Gas

σi

2ε0
= 0. (4)

As shown in Fig. 1a, a streamer discharge will start to propagate if the applied
voltage Uappl (peak value) is larger than the inception voltage Uinc at the rod tip
(estimated according to [1]). This will deliver the charge to be accumulated along
the barrier surface.

1 Rigorous mathematical formulations denote the integral included in (3) as the adjoint double
layer potential operator. Since our focus is on physical and engineering models the mathematical
technique of computing this integral is beyond of scope of this paper. For more details we refer to
literature [4], [5]
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2.2 Saturation

We assume that the saturation stage at the dielectric boundary is achieved when the
amount of accumulated charge is so large that the normal component of the electric
field in the gas Eni,Gas is zero. Physically, it means that the accumulated charge
changes the background field in such a way that the streamer discharge instead of
hitting the barrier will follow the field lines going parallel to its surface, which will
prevent further accumulation. Consequently, the equation (1) can be split into the
following two equations where the prescribed surface charge density σsi is replaced
by the unknown saturation charge density σsati:

εrGasε0Eni,Gas = 0 and εrInsε0Eni,Ins = σsati (5)

After applying (2) to (5) we get a system of integral equations where the un-
knowns are both charge densities, the virtual σi related to BEM and the physical
σsati representing the accumulated charge:

E−ni +
σi

2ε0
= 0 and E−ni −

σi

2ε0
− σsati

ε0εr,Ins
= 0 (6)

An example of the computed saturation charge distribution σsati has been shown
in Fig. 2b (bell-shaped curve). The saturation charge will mitigate the field strength
at the rod tip and increase the inception voltage from Uinc to UincS. The saturation
charge can be considered as a good approximation of the accumulated charge if
UincS <Uappl , see Fig 1b. Otherwise, the formulation presented in the next subsec-
tion should be followed.

2.3 Subsaturation

In case of UincS >Uappl the streamers delivering charge to the barrier may be extin-
guished. Consequently, the saturation may not be achieved and the extremal value
of σsati (calculated from (6)) has to be reduced as follows:

σsi = ksiσsati ∼= ksConstσsati (7)

where the reduction factor ksi is approximated, for simplification, by a constant
ksConst ≤ 1 (to be independent of location i). The value of ksConst needs to be esti-
mated iteratively so that the original inception voltage in saturation stage UincS will
decrease to a new value U

′
incS where U

′
incS = Uappl . U

′
incS is the inception voltage

calculated with the presence of the reduced surface charge (7), see Fig 1c. If in the
saturated stage UincS <Uappl then ksConst = 1 and no iterations are required.

The reduced charge (7) applied together with (2) to the continuity equation (1)
leads to the following BEM formulation:
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E−ni −
εr,Ins + εr,Gas

εr,Ins− εr,Gas

σi

2ε0
=

σsi

ε0(εr,Ins− εr,Gas)
. (8)

2.4 Restrikes

Restrikes, called also back discharges, may occur due to changes of the applied
voltage. For example, the maximum voltage applied to the rod during the standard
lightning impulse test 1.2/50 µs lasts approximately a few microseconds. The rod
is grounded after a few hundreds microseconds, see Fig 1d. Due to the charge accu-
mulated on the barrier a new inception may be initiated at the grounded rod tip. The
new discharge will bring the charge of the opposite polarity to the dielectric, which
will recombine with the previously accumulated charge reducing its total amount by
a value of Qremoved . We assume that in the new equilibrium the normal field strength
component at the dielectric will converge to a constant value EnConst within a surface
region affected by the charge removal. For a collocation point i within this region
the charge density σsi calculated in saturation or subsaturation stage will be reduced
by an unknown value σ∆ i. With these assumptions the continuity equation can be
split in two separate equations like in (5), but the additional terms related to EnConst
and σ∆ i must be included as follows:

εrGasε0Eni,Gas = εrGasε0EnConst (9)

εrInsε0Eni,Ins = εrGasε0EnConst +σsi−σ∆ i (10)

After introducing (2) and moving all unknowns to the left hand side the following
BEM formulation can be obtained:

E−ni +
σi

2ε0
−EnConst = 0 (11)

E−ni −
σi

2ε0
+

σ∆ i

ε0εr,Ins
−

εr,Gas

εr,Ins
EnConst =

σsi

ε0εr,Ins
(12)

The unknown value of EnConst requires an additional equation specifying the amount
of removed charge as a fraction of the total accumulated charge:

∑
i

σ∆ iSi = Qremoved = (1− krConst)Qtotal (13)

where σ∆ i is the surface charge density removed in a point i, Si is the surface area
assigned to point i and Qtotal is the total amount of surface charge Qtotal = ∑i σsiSi.
The factor krConst , representing the fraction of the remaining charge, has a value in
the range between 0 and 1, which has to be estimated iteratively using the similar
criterion like in subsection 2.3: the inception voltage initiating the re-strike UincR
should be equal to Uappl . The whole restrike computation can be skipped if initially
UincR > Uappl . Examples of the computed charge density (volcano-shaped curve)
and normal field distributions are shown in Fig. 2b.
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Fig. 2 (a) Rod-barrier-plane configuration. (b) distributions of charge density and normal field
strength before and after the restrike calculated for: Uappl=35 kV, D=4 mm, dP=10 mm, dB=5 mm.

2.5 Surface Potentials

The last step in evaluation of surface charging is computation of the measured sur-
face potentials. Typically a measurement has to be performed in a different geo-
metrical configuration, which may significantly differ from the initial one used for
background field, saturation and re-strikes. An example is shown in Fig. 1e where
the active rod electrode has been replaced by a measurement probe (neglected in
simulations). This requires re-computation of the whole model while preserving the
already computed surface charge (The charge remains unchanged because in this
stage all discharge activities are finished and no additional charge is delivered). For
all charged points i the equations (7) and (8) can be used with the factor ksConst = 1
or smaller if decaying effects should be considered.

3 Iterative Procedure

When using a static approach only snapshots of the final or intermediate charging
stages can be evaluated. For complex geometrical configurations such an analysis is
not straightforward and may require several computational steps in order to prop-
erly reflect the process of surface charge accumulation and the related discharge
development. We propose an iterative procedure consisting of the following steps:

1. Compute electrostatic background field without any surface charge (4).
2. Find a location of saturation boundary condition and compute the corresponding

saturation charge density according to (6):

a. Evaluate the critical spots and identify points with the lowest inception voltage
b. Select a discharge path starting from the most critical point and ending at a

dielectric
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c. Find and verify the surface patch for saturation boundary condition. This patch
must fulfill the following criteria:
• it must include the point where the discharge arrived (”seed point”)
• the initial patch includes all neighboring points with the same orientation

of the normal field component as in the ”seed point”
• the polarity of the resulting charge density must be the same as the polarity

of the discharge; points with the opposite polarity of surface charge density
must be rejected

• surface patches detached from the ”seed point” must be rejected
• all points within the patch must fulfill the stability field criterion [1]: dis-

tance from the discharge start point is not larger than Uappl/Estability .
Note: For complex geometries the above procedure may require several steps
(typically 2-4) including re-computation of saturation charge for the corrected
patch. For simple examples like in Fig. 2 the surface patch represented by a
circle of approximately 70 mm radius (= 35kV/0.5kV mm−1) could be cor-
rectly defined within the first iteration.

3. Compute sub-saturation according to (7)-(8) if required.
4. Repeat steps 2 and 3 above if new inception points and possible discharges ap-

peared due to computed surface charge. For example, the charge accumulated on
the top of the barrier in Fig. 2a can trigger a new inception below the barrier,
which will bring the charge of opposite polarity to the barrier bottom.

5. Compute re-strikes according to (11)-(13) if required.
6. Compute surface potentials for comparison with measurements.

4 Experimental Validation

The experimental test arrangement includes a HV rod with diameter D=7 mm (or 4
mm), a dielectric barrier 600x600x5 mm with εr,Ins=3, and a grounded plate elec-
trode. The rod-barrier distance, dB, and rod-plate distance, dp, vary between 0 and
100 mm. A standard lightning voltage impulse (LI) with 1.2/50 µs and a peak value
in the range between 20 and 100 kV is applied to the rod. The positive streamer
discharge initiated at the spherical rod tip r=3.5 mm (or 2 mm) deposes SC at the
barrier surface. After the impulse and a possible restrike the barrier together with
the grounded plane are moved to another location where the surface potential due
to accumulated charge is scanned by a robot-driven measurement probe. Before ap-
plying the next impulse the barrier is cleaned with alcohol in order to remove the
SC.

For comparison between computations and experiments we selected 3 geometri-
cal configurations representing different combinations of physical effects that have
to be considered in the iterative procedure of section 3: (a) subsaturation with ksConst
= 0.975, Steps: 1,2,3,6; (b) re-strike with krConst = 0.95, Steps: 1,2,5,6; (c) charge
accumulated on both barrier sides due to inception triggered by a small protrusion
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placed at grounded plate under the rod, Steps: 1,2,4,6. The corresponding compar-
isons presented in Fig.3 show reasonable agreement. Multiple measurement curves
illustrate the statistical behavior obtained when repeating the experiments. More
experimental results are included in [6].

Fig. 3 Surface potential dis-
tributions for configurations
with: (a) subsaturation, (b)
re-strike. (c) charge accumu-
lation on both barrier sides.
Note: in case (c) the measure-
ment and computation have
been performed for the pos-
itively charged bottom side
after removing the rod and
turning the barrier around.

5 Validation with a Transient Drift-Diffusion Model

Surface charging is, in general, a dynamic process, and should thus be simulated
with a transient simulation. Note that the iterative procedure discussed in Sect. 3
mimics a kind of transient charging. Of course, there are different types of charging
processes, e.g., by streamers, Corona, or DC ion drift, etc. with different underlying
physics and which may thus lead to different details of the final charge distributions.
Here we show for a specific illustrative example that the previous approach, i.e., the
nullification of the normal field component at the dielectric surface, reproduces well
the result, which is obtained from a drift-diffusion model for space charge in a tran-
sient simulation. The details of the drift-diffusion model are described in Refs. [7,8]
and will not be re-iterated here. It consists of the drift-diffusion equation for charge
carriers with a mobility µ , which are injected from the contact. In principle, one
can take into account in this model [7, 8] the effect of space charge in the Poisson
equation, the effect of suppression of the inception in the electrode boundary condi-
tion model for charge injection, and the stability field in the carrier drift model. But
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we will include here only the effect of the surface charge density, σ , in the Poisson
equation, disregard all other effects, and compare the result with the assumption of
normal field nullification used in Sect. 3. Surface charging is modeled by a local
surface-charge source term on the solid dielectric surface, dσ/dt = j, where j is
the normal component of the current density onto the dielectric surface. The surface
charge density is thus just the time integral of the current density.
The cylindrically symmetric geometry allows to perform the simulations in 2d

Fig. 4 a) Surface charge
and b) normal surface field
at different times during the
transient charging up at 30 kV.
i: capacitive state, ii: 0.2 µs,
iii: 1 µs, iv: 10 µs, v: 100 µs,
vi (blue dots): exact normal
field nullification (Sect. 3), vii
(dashed): with space charge
(see text). c) Simulated final
state: equipotential curves
(blue), field lines (black), and
surface charge (color) (the
box contains a refined mesh).

cylindrical coordinates (r,z); the geometrical details (D = 7 mm, dp = 45mm,
dB = 25mm) are sketched in Fig. 4. Furthermore, although we will not discuss de-
tails of the charging dynamics, we mention that there are two quantities which affect
the duration of the charging process: the speed of the charge propagation, and the
injection current density. The speed is generally very high for streamers as com-
pared to, e.g., ion drift velocities. Although it is rather artificial to model streamers
by a charge density cloud, we will assume a carrier mobility of µ ≈ 1 m2/Vs, which
leads in fields of the order of a few kilo-volts per millimeter to velocities which are
comparable to typical streamer velocities. Nevertheless, due to the artificiality of the
model, the mobility value should not be taken too serious but rather as a mean to
control the characteristic time scale.
The simulation results are shown in Fig. 4. Parts a) and b) provide the space charge
and field distributions, respectively, at different times during charging up. The final
saturated state (curve v) is in good accordance with the normal field nullification
approach obtained from a separate simulation, shown as curve vi. Of course, if one
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includes further phenomena, like space charge effects, the normal field component
does not necessarily vanish on charged surfaces. As an example, the dashed curves
in Fig. 4a and 4b show the result for a case study, where the transient is simulated
with taking space charge into account. The presence of space charge increases the
accumulated saturation charge density by approximately 20 % (curve vii in Fig.
4a). After charging (steady state) the space charge is removed, such that the final
field distribution is only due to the applied voltage and the surface charge. The nor-
mal field, which nullifies in presence of space charge, leads to a nonzero reversed
field when the positive space charge is removed (curve vii in Fig. 4b). However, the
inclusion of space charge can lead to a strongly nonlinear behavior (e.g., the forma-
tion of space charge limited currents [7,8]), and requires additional justification and
validation which is not the purpose here.

6 Conclusion

A comparison with experiments and transient modelling indicates that the numeri-
cally efficient steady-state surface charging model based on the discussed saturation
concept can be used for a reasonable prediction of field characteristics during high
voltage tests.
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