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a b s t r a c t

Distributed real-time optimization (RTO) enables optimal operation of large-scale process systems with
common resources shared across several clusters. Typically in distributed RTO, the different subsystems
are optimized locally, and a centralized master problem is used to coordinate the different subsystems
in order to reach system-wide optimal operation. This is especially beneficial in industrial symbiosis,
where only limited information can be shared between the different clusters. However, one of the main
challenges with this approach is the need to solve numerical optimization problems online for each
subsystem. With the recent surge of interest in feedback optimizing control, where the optimization
problem is converted into a feedback control problem, this paper proposes a distributed feedback-
based RTO (DFRTO) framework for optimal resource sharing in an industrial symbiotic setting. In this
approach, a master coordinator updates the shadow price for the shared resource, and the different
subsystems locally optimize their operation using feedback control for the given shadow price. The
proposed framework is shown to converge to a stationary point of the system-wide optimization
problem, and is demonstrated using an industrial symbiotic offshore oil and gas production system
with shared resources.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In the face of growing competition, stringent emission reg-
lations, and increased necessity for sustainable manufacturing,
here is a clear need to focus on energy and resource efficiency
n order to reduce waste. In the process and manufacturing in-
ustries, there is an increasing trend of industrial symbiosis, where
ifferent organizations come together in an industrial cluster/eco-
ark, and share resources and equipment in a mutually beneficial
anner.
As the process industry is embracing industrial symbiosis, this

reates new challenges. Finding a feasible and optimal operation
or a large-scale system is challenging and typically requires
nformation about the entire process, in the form of models, real
ime measurements, local constraints and the economic objective.
his challenge is only amplified in an industrial symbiotic setting
ith shared resources, since the different companies might be
eluctant to share information across the different organizations,
or example due to intellectual property rights, trade secrets, and
arket competitiveness.
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One potential solution that facilitates industrial symbiosis is
the distributed optimization framework, where the different sub-
systems are locally modeled and optimized and a centralized
master problem coordinates the subproblems. This addresses pri-
vacy and data sharing issues, since only limited information is
shared between the different subsystems [1]. There are different
strategies that can be used to decompose a large-scale problem
into several smaller subproblems. This can be broadly categorized
into primal decomposition and dual decomposition [2].

In primal decomposition, the different subproblems report
the price they are willing to pay for the shared resource, and
the master coordinator directly allocates the shared resource
accordingly. However, this approach may require the subsystems
to share additional knowledge about the local constraints to the
master coordinator in order to ensure that the allocated resource
is feasible for the subproblems. Therefore, this approach may not
be suitable for industrial symbiosis [1].

Dual decomposition, also known as Lagrangian decomposition,
on the other hand is a price-based coordination, where the master
coordinator sets the price of the shared resource, which regulates
the local decision making in each subsystem. Unlike primal de-
composition, this approach does not require information about
the local constraints to be shared with the master coordinator,
which makes it a favorable approach for industrial symbiosis.
Both the primal and dual decomposition strategies involve it-
eratively solving the subproblems and the master coordinator,
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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here each subproblem solves a numerical optimization problem
t each iteration.
Decomposition strategies are a popular area of research, in the

ontext of both model predictive control (MPC) as well as real-
ime optimization (RTO). In this paper, we focus on steady-state
eal time optimization, and the reader is simply referred to [3]
or a comprehensive compilation of literature on distributed MPC.
esearch on distributed RTO for large-scale process systems has
een gaining increasing interest, with some notable works such
s [1,4–8] to name a few. However, the use of distributed RTO
ethods in practice remains rather low, if not nonexistent [1].
he main reasons for this is attributed to the computational cost
f solving the numerical optimization problems online and the
low convergence rate.
Currently, there is active research to improve the rate of

onvergence, such that the master and subproblems converge
o a feasible optimal solution in a small number of iterations/
ommunication rounds. Some notable works in this direction
nclude fast ADMM [9], Newton-based methods (ALADIN) [10],
nd quadratic approximations [1] to name a few.
Despite the algorithmic developments to improve the con-

ergence rate, the subproblems still need to solve numerical
ptimization problems online at each iteration, which is a more
undamental limiting factor for practical implementation of real
ime optimization due to computational and numerical robust-
ess issues [11,12]. In addition to the computational cost of
olving numerical optimization problems online, the lack of tech-
ical expertise and competence to implement and maintain such
umerical optimization-based RTO is one of the major imped-
ng factors for practical application in many industries. The ex-
ected benefits of optimization are at risk without regular main-
enance and monitoring [13], which requires expert knowledge.
s pointed out by the authors in [14], the performance degra-
ation due to lack of maintenance and support often leads to
he application being turned off by the operator. For this reason,
any traditional process industries still prefer to optimize their
perations using simple feedback control tools [15]. Therefore,
here is a need to develop a distributed framework with limited
nformation exchange that eliminates the need to solve numerical
ptimization problems online. This would enable industrial sym-
iosis even in the case where some participating organizations
refer to use only feedback control.
Recently, there has been a surge of interest in achieving op-

imal operation using feedback control. This is often referred to
s “feedback optimizing control” [16,17] or “direct input adapta-
ion” [18], where the aim is to translate the economic objectives
nto control objectives, thereby achieving optimal process opera-
ion by directly manipulating the input using feedback control.
he concept of feedback optimizing control dates back to the
980s [16] motivated by the industrial and academic gap. Some
ecent survey articles such as [18–22] provides a good overview
f the different feedback-based RTO methods that have been
eveloped across several research groups since then. In addition
o process control, feedback-based optimization is also gaining
opularity in other application domains such as power systems,
ee for example [23,24].
Feedback optimizing control, in general, is more suited for unit

perations, or for small-scale processes. In large-scale systems, it
ecomes easier to design feedback optimizing control for small
ubgroups of processes. This leads to a decentralized control
tructure, where some clusters of operating units are optimized
ocally without any coordination. However, when the system is
oupled in one form or the other, system-wide optimal operation
oes not result from the aggregates of individual operating units
n a decentralized fashion. This was also discussed in detail in the

ame paper that introduced the concept of feedback optimizing
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Fig. 1. Schematic representation of a large-scale process system with N clusters
coupled by the shared resource. The different subsystems may consume or
supply the shared resource.

control [16], where the authors quantified the relative loss due
to insufficient or lack of coordination. Therefore, there is also
a need for a distributed feedback optimizing control structure
with a master coordinator, in order to broaden the utilization of
feedback optimizing control for large-scale process systems.

To this end, the two main motivations to develop a distributed
feedback-based RTO framework are (1) to enable industrial sym-
biosis without the need to solve numerical optimization problems
online, and (2) to broaden the applicability of feedback optimizing
control to large-scale systems with complex interconnections.
This paper aims to address this gap and formulates a distributed
feedback-based RTO (DFRTO) framework for large-scale systems
with shared resources as shown in Fig. 1. In particular, this
paper formulates, “what to control” such that the overall eco-
nomic objectives are translated into control objectives for each
subproblem. When used along with a centralized price-based
coordination mechanism, this ensures that the closed-loop tra-
jectories of the different subsystems converge to a stationary
solution of the system-wide optimization problem, which is often
also optimal in many applications.

The main contributions of this paper are, a distributed
feedback-based RTO (DFRTO) framework for optimal resource
sharing and convergence analysis of the proposed DFRTO scheme.

The reminder of the paper is organized as follows. The pro-
posed method is described in Section 2 and the convergence
analysis is shown in Section 3. A subsea oil and gas production
optimization problem involving two companies in an industrial
symbiotic setting with shared resource is used as a case study to
demonstrate the effectiveness of the proposed approach in Sec-
tion 4. Section 5 provides useful discussions and future research
directions before concluding the paper in Section 6.

2. Proposed method

2.1. Problem formulation

Consider an optimal resource sharing problem written in the
generic form

min
x1,...,xN

N∑
i=1

fi(xi) + fs

(
N∑
i=1

Aixi

)
(1)

where xi ∈ Xi ⊆ Rni denotes the decision variables (i.e. the
degrees of freedom) for the ith subsystem, fi : Rni → R denotes
the local objective of the ith subsystem, and fs : Rm

→ R is
the shared objective that couples the different subsystems with
Ai ∈ Rm×ni and m is the number of shared resource constraints.

This can equivalently be written by introducing an additional
variable x0 ∈ Rm

min
x0,x1,...,xN

N∑
i=1

fi(xi) + fs(x0) (2a)

s.t.
N∑
i=1

Aixi = x0 (2b)



D. Krishnamoorthy Journal of Process Control 97 (2021) 72–83

w

x

w

R
s
t
x
i

A
c

L

w
s

m

∇

hich can be further condensed as

min
0,x1,...,xN

N∑
i=0

fi(xi) (3a)

s.t.
N∑
i=0

Aixi = 0 (3b)

here f0 = fs and A0 = −Im.

emark 1. Note that the shared resource may either be con-
umed or produced by the different subsystems. xi > 0 implies
hat the shared resource is being consumed by subsystem i, and
i < 0 implies that the shared resource is produced by subsystem
.

ssumption 1. fi(·) is smooth, but may be nonconvex, Xi is a
losed convex set, and Ai has full rank.

The Lagrangian of (3) is given by,

(x0, . . . , xN , λ) =

N∑
i=0

fi(xi) + λT
N∑
i=0

Aixi (4)

here λ ∈ Rm is the Lagrange multiplier of the coupling con-
traint.
Defining x := {x0, . . . , xN}, the necessary conditions of opti-

ality for this problem can be stated as

xL(x, λ) =

N∑
i=0

∇xi f (xi) +

N∑
i=0

AT
i λ = 0 (5a)

N∑
i=0

Aixi = 0 (5b)

and a point (x∗, λ∗) that satisfies (5) is known as a KKT point, or
a stationary point.

For the KKT point to be a local optimum, we further require
that the Hessian of the Lagrangian H(x, λ) is positive definite,
that is, dTH(x, λ)d > 0 holds for all d ̸= 0 such that ATd = 0,
where A := [A0, A1 . . . , An]

T. If this is true, then strong second
order sufficient conditions (SSOSC) is said to hold at the KKT point
(x∗, λ∗).

The objective here is to drive the process to a KKT point of
(3) in a distributed fashion with limited information exchange
using only simple feedback controllers, such as PID control. To
do this, we first decouple the subproblems and then identify
self-optimizing controlled variables for each subsystem.

Notice that the cost (3a) is additively separable, but the shared
resource constraint (3b) couples the different subproblems to-
gether. We see that the Lagrangian (4) is additively separable.

Li(xi, λ) = fi(xi) + λTAixi (6)

We can therefore decompose the problem using the Lagrangian
decomposition framework by relaxing the coupling constraints
[25]. This is known as dual decomposition or Lagrangian decom-
position. In the standard distributed RTO framework, the different
subproblems solve the unconstrained optimization problem

x∗

i (λ) = arg min
xi∈Xi

Li(xi, λ) (7)

for a given λ, and the master coordinator updates λ, typically
using the dual ascent step,

λ+
= λ + α

N∑
Aix∗

i (8)

i=0 s
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where α = diag(α1, . . . , αm) with α > 0 is the step-size.
Traditionally, the subproblems (7) and the master problem (8) are
iteratively solved until convergence.

The Lagrangian decomposition framework has an economic in-
terpretation, where the Lagrange multiplier λ is the shadow price
of the shared resource. Here the goal of the master coordinator
is to find an equilibrium price for the shared resource such that
the supply matches the demand in the micro market. In other
words, when the supply of the shared resource increases, the
master coordinator decreases the price λ in order to encourage
consumption by the subproblems. Similarly, if the demand for the
shared resource increases, the master coordinator increases the
price λ to find the equilibrium price. Such problems have been
studied extensively in general equilibrium theory, economics,
resource allocation, optimal exchange etc. [25,26], and have also
been studied in the context of process systems engineering (PSE),
see for example [1,4,5] and the references therein.

However, in this paper, we do not want to explicitly solve
(7), instead we want to translate the unconstrained optimization
problem (7) into a feedback control problem. In other words,
the objective is to find a self-optimizing controlled variable for each
subproblem as a function of the shadow price ci(λ), which when kept
at a constant setpoint cspi leads to optimal operation of the local
subsystem, and when the master coordinator updates the shadow
price, leads to system-wide optimal operation.1

Remark 2. Note that the dual ascent step (8) in the master
coordinator can be seen as a simple integral controller that drives
the coupling constraint

∑N
i=0 Aixi to zero, that is the price λ is

updated if the supply does not match the demand.

The ideal self-optimizing variable is the steady-state cost
gradient which must be driven to a constant setpoint of zero,
thereby satisfying the necessary condition of optimality (5). NCO-
tracking control [27], extremum seeking control [28,29], Feedback
RTO [30], hill-climbing control [31] etc. are some of the feedback
optimizing control approaches in the RTO literature that use the
steady-state cost gradient as the self-optimizing variable.

Therefore, for each subproblem (7), the self-optimizing vari-
able ci(λ) ∈ Rni can be expressed as

ci(λ) := ∇xiLi(λ) = ∇xi f (xi) + AT
i λ (9)

which must be driven to a constant setpoint of cspi = 0. Note
that the controlled variable is now a function of the shadow price
λ, which is updated by the master coordinator using (8), just
as in the traditional distributed RTO scheme. Controlling ci(λ)
requires the online estimation of the local cost gradient ∇xi f (xi),
which can be done using any suitable model-based or model-
free gradient estimation scheme, see for example [22] and the
references therein.

If the objective function is nonconvex, then controlling (9)
may lead to some convergence issues. In order to make the
dual decomposition approach robust and yield convergence, it is
common in the distributed optimization framework to use the
augmented Lagrangian function instead. Similarly, we can also
consider the augmented Lagrangian in the distributed feedback-
based RTO framework to ensure the convergence properties even
in the case where fi(xi) is nonconvex.

The augmented Lagrangian of (3) can be expressed as

Lρ(x, λ) =

N∑
i=0

fi(xi) + λT
N∑
i=0

Aixi +
ρ

2


N∑
i=0

Aixi


2

(10)

1 Note that for the sake of exposition, this is stated assuming that the
tationary point is also the optimum point here.
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Fig. 2. Schematic representation of the proposed Distributed feedback based RTO framework. Anything inside the information boundary (depicted using gray dashed
lines) is contained within the subsystem. The residual r and the shadow price λ are the only variables that are shared across the different subsystems.
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here an additional regularization term is added to the La-
rangian (4). Clearly, any stationary point of the augmented La-
rangian (10) is also a stationary point of the Lagrangian (4). The
ifferent subproblems can then be expressed as an unconstrained
ptimization problem for a given λ,
∗

i (λ) = arg min
xi∈Xi

Lρ,i(xi, λ) (11)

here

ρ,i(xi, λ) = fi(xi) + λTAixi +
ρ

2


N∑
i=0

Aixi


2

(12)

In the traditional distributed RTO, this is solved using the al-
ternating directions method of multipliers (ADMM), where the
ith subproblem is solved by fixing xj for all j ̸= i, similar to
one pass of a Gauss–Seidel method [25]. In this paper, instead of
solving this problem using ADMM, we convert it into a feedback
control problem by controlling the steady-state gradient of the
augmented Lagrangian ∇xiLρ,i(λ) to a constant setpoint of zero.
In this case, the self-optimizing variable ci(λ) ∈ Rni for each
subsystem is expressed as,

ci(λ) := ∇xi f (xi) + AT
i λ + ρAT

i

N∑
i=0

Aixi  
=r

(13)

where r =:
∑N

i=0 Aixi is the residual that represents the total
surplus or shortage of the shared resource (i.e supply/demand).
The master coordinator updates the shadow price λ using the
ual ascent step (8) with α = ρ. Note that since the residual r
s a real-time measurement, the feedback-based approach does
ot need to be solved in an alternating directions fashion.

emark 3. Compared to the self-optimizing controlled variable in
9), we now need r in addition. Note that we do not need to share
nformation regarding the individual contribution/consumption
y each subsystem, but we only need the overall residual r .

For a convex problem, the controlled variables (9) and (13)
onverges to the same stationary point, since at the optimum
= 0 (thanks to the integral action in the master coordinator)
nd (7) and (11) are equivalent. One of the main motivation for
sing (13) instead of (9) is to ensure convergence properties if
he objective function is nonconvex, which will be shown later in
ection 3.
Apart from the advantages of feedback optimizing control

oted in Section 1, it also has other advantages. For example,
 g

75
he DFRTO approach can be implemented at higher sampling
ates than the traditional distributed RTO framework, since we
o not need to solve numerical optimization problems online. In
ddition, the proposed DFRTO approach does not need to wait
or the process to reach steady-state before re-optimizing, thus
lleviating the steady-state wait-time issue associated with the
raditional RTO framework [8,11,12].

emark 4. Another advantage of the proposed DFRTO scheme is
hat the sampling time of the local controllers for the different
ubsystems may be chosen independently. The sampling time of
he master coordinator (denoted by t, t + 1, . . .) may either be
he same as the local controllers, or slower.

emark 5. In the case where xi ∈ Xi becomes optimally active,
hen the feedback control problem for the subsystem simply
ecomes an active constraint control problem [17].

.2. Distributed feedback-based RTO (DFRTO)

We now formulate the distributed feedback-based RTO frame-
ork, which is schematically shown in Fig. 2. The three main
omponents of the DFRTO framework are :

1. For each subsystem i = 0, . . . ,N , estimate ∇xi fi using the
local real time measurements.2

2. For each subsystem i = 0, . . . ,N , control

ci(λ[t]) = ∇xi fi + AT
i λ[t] + ρAT

i

N∑
i=0

Aixi  
=r

for a given shadow price λ[t] to a constant setpoint of
cspi = 0 using simple feedback controllers.

3. At every sample time of the master coordinator t+1, gather
the residual r[t + 1] =

∑N
i=0 Aixi[t + 1] and update the

shadow price

λ[t + 1] = λ[t] + ρ

N∑
i=0

Aixi[t + 1] (14)

in the centralized master coordinator, and broadcast λ[t +

1] to the subsystems.

2 Direct measurements of the local cost fi is required when using model-free
radient estimation methods [22].
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The shadow price λ[t] and the residual r are the only informa-
ion that are shared among the different subsystems. This is also
learly shown in Fig. 2, with the information boundary for each
ubsystem shown in gray dashed lines, and only λ and r crosses
he information boundary of each subsystem.

The traditional distributed optimization framework typically
equires several iterations between the subproblems and the
aster coordinator to converge to a KKT point. However, in

he proposed distributed feedback-based RTO, we do not iterate
etween the master and subproblem, since xi[t] is a real time
easurement, and not the solution to a numerical optimization
roblem. Therefore the “iteration” is done in real-time, and as
ime t → ∞, xi[t] computed by the different controllers con-
erges to a KKT-point of the original problem. This can be seen
s the traditional distributed RTO with a single iteration between
he master and subproblems with warm-starting at every time
tep.

. Convergence analysis

In this section we analyze the convergence properties of the
roposed distributed feedback-based RTO scheme for an opti-
ization problem of the form (3), where fi(xi) is possibly non-
onvex, but smooth. We show that by using the proposed self-
ptimizing controlled variable with the penalty parameter ρ cho-

sen sufficiently large, the system converges to a feasible set of
stationary solutions. Here we use the augmented Lagrangian (10)
as the merit function and show that it monotonically decreases
over time using the proposed framework. To show convergence of
the proposed method, we follow a similar framework as in [32],
where the augmented Lagrangian was used as the merit function
to guide convergence of nonconvex ADMM problems.

Assumption 2 (Perfect Control). In each subsystem, we have per-
fect control such that ci(λ[t]) = cspi for all i at each sampling time
of the master coordinator. Furthermore we assume that there is
no communication delay for the globally shared variables r and
λ.

Assumption 3 (Lipschitz Continuous Gradient). The shared cost
f0(·) is smooth nonconvex, and has a Lipschitz continuous gra-
dient with a positive constant L0 > 0, i.e.

∥∇f0(a) − ∇f0(b)∥ ≤ L0∥a − b∥

Definition 1 (Strong Convexity). For a, b ∈ Rn, any function h :

Rn
→ R is said to be γ -strongly convex if

h(a) − h(b) ≤ ∇h(a)T(a − b) −
γ

2
∥a − b∥2

Assumption 4. The penalty parameter ρ in the self-optimizing
variable (13) is chosen sufficiently large such that

(i) The augmented Lagrangian (10) is γ -strongly convex in the
sense of Definition 1

(ii) ργ > 2L20
(iii) ρ > L0

Lemma 1 (Successive Boundedness of the Shadow Price). Suppose
Assumptions 2 and 3 hold, then the following inequalities hold

∥λ[t + 1] − λ[t]∥2
≤ L20∥x0[t + 1] − x0[t]∥2 (15)

Proof. Assuming perfect control, at time t + 1, the controlled
variables for i = 0 is given by

∇x0 f0(x0[t + 1]) + AT
0λ[t] + ρAT

0

N∑
Aixi[t + 1] = 0
i=0

76
From the master update step (14) at time t + 1, we have with
0 = −Im

∇x0 f0(x0[t + 1]) + AT
0λ[t + 1] = 0

∇x0 f0(x0[t + 1]) − λ[t + 1] = 0

⇒ λ[t + 1] = ∇x0 f0(x0[t + 1]) (16)

From Assumption 3, we have

∥λ[t + 1] − λ[t]∥ = ∥∇x0 f0(x0[t + 1]) − ∇x0 f0(x0[t])∥
≤ L0∥x0[t + 1] − x0[t]∥

from which (15) follows. □

The following lemma bounds the successive difference of the
overall unconstrained cost (10).

Lemma 2 (Successive Boundedness of the Augmented Lagrangian).
Given Assumptions 2, 3 and 4, the following holds for the distributed
feedback-based RTO

Lρ(x[t + 1], λ[t + 1]) − Lρ(x[t], λ[t])

≤

(
L20
ρ

−
γ

2

)
∥x0[t + 1] − x0[t]∥2 (17)

−

N∑
i=1

γ

2
∥xi[t + 1] − xi[t]∥2

Proof. We split the L.H.S. into two parts,

Lρ(x[t + 1], λ[t + 1]) − Lρ(x[t], λ[t])
= Lρ(x[t + 1], λ[t + 1]) − Lρ(x[t + 1], λ[t])  

=A

+ Lρ(x[t + 1], λ[t]) − Lρ(x[t], λ[t])  
=B

We start by bounding A

A =

N∑
i=0

fi(xi[t + 1]) + λT
[t + 1]

N∑
i=0

Aixi[t + 1]

+
ρ

2


N∑
i=0

Aixi[t + 1]


2

−

N∑
i=0

fi(xi[t + 1]) − λT
[t]

N∑
i=0

Aixi[t + 1]

−
ρ

2


N∑
i=0

Aixi[t + 1]


2

= (λ[t + 1] − λ[t])

(
N∑
i=0

Aixi[t + 1]

)
From the master update step (14),

A =
1
ρ

∥λ[t + 1] − λ[t]∥2

ow we consider B. Using Assumption 4.i and the definition of
strong convexity,

B = Lρ(x[t + 1], λ[t]) − Lρ(x[t], λ[t])

≤

N∑
i=0

∇xiLρ,i(xi[t + 1])(xi[t + 1] − xi[t])

−

N∑ γ

2
∥xi[t + 1] − xi[t]∥2
i=0
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F

f

≤ −

N∑
i=0

γ

2
∥xi[t + 1] − xi[t]∥2

where the last inequality comes from Assumption 2. Adding A
and B,

A + B ≤
1
ρ

∥λ[t + 1] − λ[t]∥2
−

N∑
i=0

γ

2
∥xi[t + 1] − xi[t]∥2

≤
L20
ρ

∥x0[t + 1] − x0[t]∥2
−

N∑
i=0

γ

2
∥xi[t + 1] − xi[t]∥2

≤

(
L20
ρ

−
γ

2

)
∥x0[t + 1] − x0[t]∥2

−

N∑
i=1

γ

2
∥xi[t + 1] − xi[t]∥2

where the inequality in the second line comes from Lemma 1.
This proves (17). □

Lemma 2 implies that if 2L20 ≤ ργ (i.e. Assumption 4.ii
holds), then the unconstrained system-wide cost function (10)
will monotonically decrease since the R.H.S of (17) is always
negative. Since 2L20 is a constant, one can easily find ρ such that
Assumption 4.ii holds as long as γ > 0.

We now have to show that the unconstrained system-wide
cost function (10) is also convergent in addition to being mono-
tonically decreasing.

Lemma 3. Consider the same setup as in Lemma 2, and further
assume that

∑N
i=0 fi(xi) is lower bounded, then the following limit

exists and is also lower bounded

lim
t→∞

Lρ(x[t + 1], λ[t + 1])

Proof. From (16), we can write

Lρ(x, λ) =

N∑
i=0

fi(xi[t + 1]) + λT
[t + 1]

N∑
i=0

Aixi[t + 1]

+
ρ

2


N∑
i=0

Aixi[t + 1]


2

(18)

=

N∑
i=0

fi(xi[t + 1]) + ∇x0 f0(x0[t + 1])

(
N∑
i=0

Aixi[t + 1]

)

+
ρ

2


N∑
i=0

Aixi[t + 1]


2

(19)

rom Assumption 3, we have [33]

0(x0[t + 1]) + ∇x0 f0(x0[t + 1])

(
N∑
i=1

Aixi[t + 1] − x0[t + 1]

)

≥ f0

(
N∑
i=1

Aixi[t + 1]

)
−

L0
2


N∑
i=0

Aixi[t + 1]


2

(20)

Substituting (20) in (19) yields,

Lρ(x, λ) ≥

N∑
i=1

fi(xi[t + 1]) + f0

(
N∑
i=1

Aixi[t + 1]

)

+
ρ − L0

2


N∑
i=0

Aixi[t + 1]


2

(21)

Since ρ > L0 (Assumption 4.iii) and
∑N

i=0 fi(xi) is assumed to be
lower bounded, (21) implies that L (x, λ) is also lower bounded.
ρ
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The lower bound on Lρ(x, λ) obtained above along with the
monotonicity of Lρ(x, λ) from Lemma 2 implies convergence. □

With this we are now ready to state the main convergence
result.

Theorem 1 (Convergence of DFRTO). Consider the distributed
feedback-based RTO framework as described in Section 2.2. Given
Assumptions 2–4, we have the following,

(i) Primal feasibility of the coupling constraint

lim
t→∞


N∑
i=0

Aixi[t + 1]

 = 0 (22)

(ii) Dual feasibility

∇xi f (x
∗

i ) + λ∗
= 0 ∀i = 1, . . . ,N (23)

where x∗

i = limt→∞ xi[t] and λ∗
= limt→∞ λ[t].

Proof. From Lemma 2 and Assumption 4, the R.H.S of (17) ≤ 0.
From Lemma 3, as t → ∞, the L.H.S. of (17) → 0. Therefore, we
have

lim
t→∞

∥xi[t + 1] − xi[t]∥ = 0 ∀i = 1, . . . ,N (24)

Using Lemma 1, this implies

lim
t→∞

∥λ[t + 1] − λ[t]∥ = 0 (25)

Therefore, from the master update step (14) we arrive at (22).
This proves primal feasibility of the coupling constraint.

From (24) and (25), let

lim
t→∞

xi[t + 1] = xi[t] = x∗

i ∀i = 0, . . . ,N

lim
t→∞

λ[t + 1] = λ[t] = λ∗

Substituting this in (16) gives

∇xi f (x
∗

i ) + AT
i λ

∗
= 0 ∀i = 0, . . . ,N □

To summarize, we have shown that for optimal resource shar-
ing problems with linear constraints of the form (3), convergence
of the distributed feedback-based RTO framework to a feasi-
ble set of stationary solution can be achieved by choosing a
sufficiently large penalty parameter ρ in the self-optimizing con-
trolled variable (13) and the master coordinator (14). By doing
so, the proposed DFRTO framework is guaranteed to drive the
system to a stationary point, which is often also optimal in many
applications.

Remark 6. Eqs. (22) and (23) imply that the proposed distributed
feedback-based RTO scheme converges to a KKT point. If the
Hessian of the Lagrangian is positive definite at every point in
the feasible hyperplane described by the coupling constraint, then
the KKT point is also the unique minimum, and in this case, the
proposed approach converges to the system-wide optimum.

4. Case study: Optimal resource sharing in an oil production
network

4.1. Problem formulation

As the era of easy oil is declining, offshore and subsea oil
and gas production networks are becoming more complex. Often
subsea wells producing from remote reservoir pockets are tied-
back to an existing common processing facility since it may
not be economically viable to construct dedicated processing
facilities, especially for reservoirs with relatively low recoverable
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Fig. 3. Schematic representation of an oil and gas production network with two
ubsea clusters operated by different companies, with a common processing
acility. The gas-lift is a shared resource provided by the processing facility that
ust be optimally allocated between the two clusters.

esources. It is not uncommon that wells producing from differ-
nt reservoir sections are operated by different companies, but
hare a common processing facility. Resources are often limited
n an offshore facility, and must be optimally allocated in order
o maximize production. Distributed real time production opti-
ization enables optimal resource sharing in such production
etworks3 [8,35].
However, the offshore production industry tends to prefer

imple feedback control tools that can be implemented on the
igital control system (DCS), for various reasons that are dis-
ussed at length in [36]. In such cases, the proposed distributed
eedback-based RTO enables real-time production optimization of
he production network using simple feedback controllers and at
he same time with limited information sharing.

In this paper, we consider a subsea production network with
= 2 subsea clusters comprising of three gas-lifted wells each,
aking up a total of six gas-lifted wells. We assume that the

wo subsea clusters, denoted by the sets W1 and W2 respectively,
re operated by two different companies that share a common
rocessing facility, as shown in Fig. 3. Gas-lift is an artificial lift
echnology, where compressed gases are injected into the wells
o increase production. In this case study, the lift gas which is a
hared resource is compressed in the topside processing facility
nd must be optimally allocated between the two clusters.
The objective is to maximize the revenue from the oil pro-

uction from each subsea cluster and minimize the costs asso-
iated with gas compression. Thus the system-wide optimization
roblem is stated as

in − $o
∑
i∈W1

wpo,i − $o
∑
i∈W2

wpo,i + $gl
∑

i∈W1∪W2

wgl,i (26a)

s.t
∑

i∈W1∪W2

wgl,i ≤ wmax
gl (26b)

where $o is the oil price, $gl is the cost of gas compression,∑
j∈W1

wpo,j and
∑

j∈W2
wpo,j are the total oil produced by clusters

and 2 respectively, wgl,tot =
∑

i∈W1∪W2
wgl,i is the total lift

gas supplied by the compressor, which has a maximum capacity

3 One such example is the Norne FPSO, where subsea wells producing from
ifferent reservoir sections operated by Equinor and Eni Norge in the Norwegian
ea share the same processing facility [34].
 i
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of wmax
gl . This problem can be written in the general form (3) as

shown below.
Subsystem 1 - Wells operated by company 1: Company 1 oper-
ates three wells denoted by the set W1 = {1a, 1b, 1c}, and the
local objective is to maximize the oil production from the three
wells. Hence

x1 =
[
wgl,1a wgl,1b wgl,1c

]T
f1 = −$o

∑
i∈W1

wpo,i

A1 =
[
1 1 1

]
Subsystem 2 - Wells operated by company 2: Company 2 oper-
ates three wells denoted by the set W2 = {2a, 2b, 2c}, and the
local objective is to maximize the oil production from the three
wells. Hence

x2 =
[
wgl,2a wgl,2b wgl,2c

]T
f2 = −$o

∑
i∈W2

wpo,i

A2 =
[
1 1 1

]
Shared objective: The shared objective fs = f0 is to minimize the
costs associated with gas compression in the topside processing
facility. Hence

x0 = wgl,tot

f0 = $glwgl,tot

A0 = −1

In this work, we assume $o = 1 and $gl = 0.25.

4.2. Problem setup

We now solve this problem using the proposed distributed
feedback-based RTO (DFRTO) scheme. The self-optimizing con-
trolled variables for the different subsystems are given by:

• Subsystem i = 0

c0(λ) = $gl − λ − ρr

• Subsystem i = 1

c1(λ) =

⎡⎢⎢⎢⎣
∂ f1

∂wgl,1a
+ λ + ρr

∂ f1
∂wgl,1b

+ λ + ρr
∂ f1

∂wgl,1c
+ λ + ρr

⎤⎥⎥⎥⎦
• Subsystem i = 2

c2(λ) =

⎡⎢⎢⎢⎣
∂ f2

∂wgl,2a
+ λ + ρr

∂ f2
∂wgl,2b

+ λ + ρr
∂ f2

∂wgl,2c
+ λ + ρr

⎤⎥⎥⎥⎦
where λ is the shadow price of the lift gas, ρ is the penalty
parameter that satisfies Assumption 4 and

r = −wgl,tot +

∑
i∈W1

wgl,i +
∑
i∈W2

wgl,i

denotes the residual of the shared resource constraint.
In this case study, we choose to use a model-based gradi-

ent estimation scheme from [30] to estimate the steady-state
cost gradient ∂ fi

∂wgl,i
for each subsystem. The gradient estimation

cheme uses a nonlinear ODE model that models each subsystem
ndividually. The use of the model-based gradient estimation
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cheme from [30] for gas-lifted wells has previously been demon-
trated in [36] and [37]. Since the proposed DFRTO scheme is not
ontingent upon the particular gradient estimation scheme used
ere, the reader is simply referred to [30,36,37] for more detailed
escription of the gradient estimation scheme. The model equa-
ions and the model parameters for the six wells can be found
n [36, Appendix A].

For each subsystem, we design three SISO PI controllers that
ontrol c1(λ) and c2(λ) to csp1 = [0, 0, 0]T and csp2 = [0, 0, 0]T
respectively, making a total of six PI controllers. The controllers
are tuned using the SIMC tuning rules as described in [36]. In this
example, c0 can be driven to its setpoint of zero by setting

x∗

0 = min

⎡⎣wmax
gl ,

(
−$gl + λ

ρ

)
+

∑
i∈W1

wgl,i +
∑
i∈W2

wgl,i

⎤⎦ (27)

Note that a minimum selector is used in (27) to switch between
the unconstrained optimum and the constraint wmax

gl [38]. The
master coordinator updates the shadow price with a sampling
time of 1s. The plant simulator is modeled as an Index-1 DAE
model, that comprises of the entire system, which is simulated
using the IDAS integrator [39]. The performance of the proposed
DFRTO approach is benchmarked using the ideal steady-state
optimum values computed by solving the system wide opti-
mization problem (26) in a centralized manner using the IPOPT
solver [40].4

4.3. Simulation results

In this simulation, we test the performance of the distributed
feedback-based RTO over a period of 12 h. Disturbances enter the
system in the form of maximum compressor capacity wmax

gl and
he ratio of gas to oil entering the well from the reservoir (feed
isturbance). The gas–oil-ratio (GOR) disturbance profile used in
he simulation is shown in Fig. 4c, and the maximum compressor
apacity wmax

gl is shown in the left subplot of Fig. 4b in black
dotted lines.

The shadow price λ and the residual r , that are shared across
the different subsystems are shown in Fig. 4a. The residual r
shown in the right subplot of Fig. 4a clearly indicates that the
proposed DFRTO scheme attains primal feasibility of the coupling
constraints.

The total gas lift rate consumed, and the total oil produced
by the two clusters using the proposed method is shown along
with the ideal steady-state optimum (gray dashed lines) in Fig. 4b,
which indicates that the proposed method is able to drive the sys-
tem to a stationary point (which is also the optimum point in this
case study), in a distributed fashion without solving numerical
optimization problems online.

The controlled variables c1(λ) and c2(λ), along with the manip-
ulated variables wgl,i for the different wells operated by company
1 and company 2 are shown in Figs. 5a and 5b respectively. To
benchmark the performance of the proposed DFRTO approach,
the ideal optimal gas lift rates for the different wells operated
by company 1 and 2 are plotted in dashed lines in Figs. 5a
and 5b respectively. This clearly shows that using the proposed
DFRTO method xi converges to same stationary solution as the
overall optimization problem (26). The controlled variables ci(λ)
shown on the left subplots in Figs. 5a and 5b indicates that the
proposed DFRTO method is also able to attain dual feasibility.
The simulation with noise can be found in the supplementary
information.

4 The models were implemented in MATLAB v.2019b which can be found in
the supplementary information or in https://github.com/dinesh-krishnamoorthy/
Industrial-Symbiosis/tree/master/Feedback_DistRTO_AL.
 m
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As mentioned earlier, one of the main advantages of the pro-
posed approach is that it does not need to solve the optimization
problems online. In the example above, solving each subproblem
in the traditional ADMM approach incurred a computation cost of
3 orders of magnitude5 compared to using feedback controllers.
Using ADMM also leads to solving the master and subproblems
iteratively, further increasing the online computational cost. The
proposed approach on the other hand does not need to iterate
between the master problem and the subproblems, and does
not need to solve numerical optimization problems online. The
simulation results obtained using ADMM can be found in the
supplementary information.

5. Discussions

Section 2.2 presented a distributed feedback-based RTO frame-
work with a centralized master coordinator, where the different
subsystems use simple feedback control to drive the process
to a stationary point of the original optimization problem (3),
which was also shown using an oil production optimization case
study in Section 4. The proposed approach is computationally
fast, since this does not require the need to solve numerical
optimization problems online. This also enables the feedback
controllers to be implemented at higher sampling rates than
traditional model-based RTO.

5.1. Constraint feasibility

We noted earlier that the proposed framework does not iterate
between the master and the subproblems unlike the traditional
distributed RTO framework, since this is done in real time. This
implies that, like any feedback-based RTO method, the coupling
constraint may not be feasible during the transients. This was also
noted in Theorem 1, where primal feasibility is guaranteed only
upon convergence. However, this is not an issue, since the focus
here is steady-state real time optimization.

Even in the case of traditional distributed steady-state RTO,
the optimal solution computed iteratively may be primal feasible,
but this is only provided as setpoints to the lower level regulatory
controllers. Consecutively, the actual closed-loop trajectory of the
system itself may not be feasible during the transients until the
process reaches steady-state.

5.2. Choice of self-optimizing controlled variables

In the proposed DFRTO framework, we considered the self-
optimizing controlled variable (13). Using this controlled vari-
able enables us to analyze under what conditions the proposed
framework converges to a stationary point. Furthermore, the
convergence analysis in Section 3 provide guidelines on choos-
ing the penalty parameter ρ, which is also used as the step
length in the dual ascent step in the master coordinator. Alter-
natively, one can also use the simpler self-optimizing variable
obtained from the unaugmented Lagrangian (9). Although the
convergence properties using (9) is not guaranteed, it may work
well in practice.

We also considered the optimal sharing problem of the form
(3), where the coupling constraints are linear. Although this may
seem restrictive, a wide range of optimal resource sharing prob-
lem arising in the process industry can be expressed in this form.

5
∼0.015 s, as opposed to ∼ 0.15 × 10−4 s using a standard 2.6 GHz 16 GB

emory processor.

https://github.com/dinesh-krishnamoorthy/Industrial-Symbiosis/tree/master/Feedback_DistRTO_AL
https://github.com/dinesh-krishnamoorthy/Industrial-Symbiosis/tree/master/Feedback_DistRTO_AL
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Fig. 4. Simulation results of the proposed DFRTO framework. (a) The shadow price λ and the residual r that is shared across all the subsystems. (b) The total gas
ift rate and the system-wide optimal cost obtained using the DFRTO approach (shown in solid black) and the ideal steady-state optimum (shown in dashed gray).
c) The gas–oil-ratio (GOR) from the two reservoir sections, which acts as the feed disturbance.
n the case of additively separable nonlinear coupling constraints
f the form
N

i=1

gi(xi) = 0

he self-optimizing controlled variable in the proposed DFRTO
ramework can be modified as

i(λ) = ∇xi fi(xi) + ∇xigi(xi)(λ + ρr)

where r =
∑

i gi(xi). We now have to estimate the constraint
gradient ∇xigi(xi) in addition to the cost gradient.

In many industrial symbiosis systems, the different subsys-
tems must agree upon a common variable, for example, the flow
rate of a particular stream from one subsystem to another. This
leads to a consensus problem, where each subsystem has a local
copy of the common variable, and the master coordinator ensures
that the local copies of the common variable are equal to the
optimum value. In the case of a consensus problem of the form,

min
x0,x1,...

∑
i

fi(xi) + fs(x0) (28a)

s.t. x = x ∀i (28b)
i 0
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the self-optimizing controlled variables can be given by driving
the gradient of the augmented Lagrangian of each subproblem to
a constant setpoint of zero, i.e.

ci(λi) = ∇xi fi(xi) + λi + ρ(xi − x0) ∀i

The convergence analysis framework presented in Section 3 can
also be used to provide convergence properties of the feedback-
based consensus problem with suitable adjustments.

5.3. Plant-model mismatch

As mentioned earlier, any gradient estimation scheme may
be used with the proposed DFRTO framework. In Section 4, we
have used a model-based gradient estimation scheme [30] as-
suming no structural uncertainty. In the presence of structural
mismatch, one can alternatively estimate the plant gradients
directly from the cost measurement in a model-free fashion.
However, the convergence to the stationary point is significantly
slower when using a model-free gradient estimation scheme as
opposed to model-based gradient estimation scheme, as noted
in several works, see for example [19,22,30] and the references
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Fig. 5. Controlled variables and manipulated variables for the different wells using the proposed DFRTO approach compared with the ideal steady-state optimum. (a)
ells operated by company 1 (shown in solid blue). The ideal steady-state optimal gas lift rate for each well is shown in light blue dashed lines. (b) Wells operated
y company 2 (shown in solid red). The ideal steady-state optimal gas lift rate for each well is shown in yellow dashed lines.
herein. In addition, it is important to understand the require-
ents and limitations of the different model-free gradient es-

imation algorithms, such as the need for direct cost measure-
ents, persistence of excitation etc., see for example discussions

n [22].
Each subproblem may also use a combination of model-based

nd model-free gradient estimation methods in a hierarchical
ramework as shown in Fig. 6. Here, the model-based gradient es-
imation scheme enables fast convergence to the model optimum,
here as the slow model-free gradient estimation scheme adjusts
81
the setpoint cspi in order to account for the plant-model mismatch
and drive the process to the plant optimum, see for example [41].
In this case, instead of driving the controlled variable (13) to a
constant setpoint of zero, the setpoint is now given by

cspi = ∇fp − ∇f

where ∇fp is the plant gradient estimated directly from the cost
measurement and ∇f is the model-gradient. This is similar to
the idea used in modifier adaptation (MA) scheme for RTO [42],
where the term (∇f −∇f ) is the so-called modifier, and instead of
p
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Fig. 6. The proposed DFRTO framework using both model-based and model-free
gradient estimation to handle plant-model mismatch.

using the modifier in the numerical optimization problem, it can
be used to “modify” the setpoint used in the feedback controller
as shown in Fig. 6. Combining the use of model-based and model-
free gradient estimation to handle plant-model mismatch in the
DFRTO framework is an interesting future reserch direction.

The proposed DFRTO framework also allows one to easily
combine both model-based and model-free gradient estimation
in different subsystems. For example, the subsystem 1 may use a
model-based gradient estimation scheme, whereas subsystem 2
may use a model-free gradient estimation scheme.

5.4. Methodology agnostic approach

Perhaps most intriguingly, the proposed framework enables a
methodology agnostic approach, where different RTO tools may
be used by the different subsystems, truly enabling industrial
symbiosis. For example, currently the distributed RTO frame-
work requires that the all the subproblems are solved using
the traditional model-based RTO approach. However, in an in-
dustrial symbiosis with different organizations, one organization
may wish to use a traditional model-based RTO, whereas an-
other organization may prefer to use simple feedback controllers,
while another organization prefers to use a purely data-driven
approach. Lack of consensus between the different organizations
on the RTO tool impedes successful industrial symbiosis.

Since the centralized coordinator used in the proposed ap-
proach is the same as the one used in the traditional distributed
RTO, this enables the use of traditional distributed RTO along
with the feedback-based distributed RTO, such that some of the
subproblems are solved numerically, while others using feedback
control. Furthermore, as mentioned earlier, both model-based
and model-free data-driven approaches can be used simulta-
neously with the proposed framework. This is a natural and
interesting research direction that would enable co-ordination
among the different subsystems without imposing strict require-
ments on the RTO methodology in order to establish a centralized
coordinator.

6. Conclusion

This paper proposed a distributed feedback-based online pro-
cess optimization framework for optimal resource sharing prob-
lems without the need to solve numerical optimization problems
online. We proposed a local self-optimizing variable for each sub-
system (13) expressed as a function of the shadow price, which
can be controlled to a constant setpoint of zero using simple

feedback controllers. As the centralized master coordinator (14)
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updates the shadow price to reach market equilibrium, this leads
to a stationary point of the overall system. Theorem 1 showed
that the proposed DFRTO framework is guaranteed to converge
to a stationary point of the system, which is often also optimal
in many applications. The proposed approach was demonstrated
using a subsea oil and gas production optimization case example.

CRediT authorship contribution statement

Dinesh Krishnamoorthy: Conceptualization, Methodology,
Software, Validation, Formal analysis, Investigation, Writing -
original draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary data

Additional simulation results using the same case study as in
Section 4 that shows the performance of the proposed DFRTO
approach with measurement noise, as well as comparison with
the traditional ADMM approach can be found online at https:
//doi.org/10.1016/j.jprocont.2020.11.006.
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