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Abstract

Updatable encryption allows a client to outsource ciphertexts to some untrusted server and periodically
rotate the encryption key. The server can update ciphertexts from an old key to a new key with the help of
an update token, received from the client, which should not reveal anything about plaintexts to an adversary.

We provide a new and highly efficient suite of updatable encryption schemes that we collectively call
SHINE. In the variant designed for short messages, ciphertext generation consists of applying one per-
mutation and one exponentiation (per message block), while updating ciphertexts requires just one expo-
nentiation. Variants for longer messages provide much stronger security guarantees than prior work that
has comparable efficiency. We present a new confidentiality notion for updatable encryption schemes that
implies prior notions. We prove that SHINE is secure under our new confidentiality definition while also
providing ciphertext integrity.

1

https://doi.org/10.1007/978-3-030-56784-2_16
https://orcid.org/0000-0002-5935-5725


Contents

1 Introduction 3
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Security Models for UE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Constructions of Ciphertext-Independent UE . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Related Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Document History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 8
2.1 Hardness Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Updatable Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Security Models for Updatable Encryption 10
3.1 Existing Definitions of Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Trivial Win Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Trivial Win Conditions in Confidentiality Games . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Trivial Win Conditions in Ciphertext Integrity Games . . . . . . . . . . . . . . . . . . 16

3.3 Firewall Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Example of Epoch Corruption and Trivial Wins . . . . . . . . . . . . . . . . . . . . . 17

4 On the Security of Updates 18
4.1 A New Definition of Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Relations among Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Relations between IND-UE and IND-UE∗ . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Relations among IND-ENC, IND-UPD, and IND-UE . . . . . . . . . . . . . . . . . . 22
4.2.3 Relation among CPA, CTXT and CCA Security . . . . . . . . . . . . . . . . . . . . . 29

5 The SHINE Schemes 31
5.1 Construction of SHINE Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 SHINE via Zero Block: SHINE0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.1.2 SHINE via Double Encryption: MirrorSHINE . . . . . . . . . . . . . . . . . . . . . . 32
5.1.3 SHINE for Long Messages via Checksum: OCBSHINE. . . . . . . . . . . . . . . . . 32

5.2 Security - SHINE is detIND-UE-CPA, INT-CTXT, detIND-UE-CCA Secure . . . . . . . . . . 34
5.3 Proof Challenges in Schemes with Deterministic Updates . . . . . . . . . . . . . . . . . . . . 34
5.4 SHINE is detIND-UE-CPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 SHINE is INT-CTXTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6 Implementing the SHINE Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusions 45

A SHINE0 is IND-ENC -CPA Secure 48

B The BLMR Scheme of Boneh, Lewi, Montgomery, and Raghunathan 50
B.1 BLMR+ is weakIND-UE-CPA Secure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

C The RISE Scheme of Lehmann and Tackmann 56
C.1 RISE is randIND-UE-CPA Secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2



1 Introduction

The past decades have demonstrated clearly that key compromise is a real threat for deployed systems. The
standard technique for mitigating key compromise is to regularly rotate the encryption keys – generate new
ones and switch the ciphertexts to encryption under the new keys. Key rotation is a well-established technique
in applications such as payment cards [PCI] and cloud storage [KRS+03].

For a local drive or server, key rotation is feasible by decrypting and re-encrypting with a new key, since
symmetric encryption operations are fast and parallelizable and bandwidth is often plentiful. When ciphertext
storage has been outsourced to some (untrusted) cloud storage provider, bandwidth is often considerably more
expensive than computation, and even for small volumes of data it may be prohibitively expensive to download,
re-encrypt and upload the entire database even once. This means that key rotation by downloading, decrypting,
re-encrypting and reuploading is practically infeasible.

An alternative approach to solving this problem is to use updatable encryption (UE), first defined by Boneh
et al. [BLMR13] (henceforth BLMR). The user computes a token and sends it to the storage server. The token
allows the server to update the ciphertexts so that they become encryptions under some new key. Although the
token clearly depends on both the old and new encryption keys, knowledge of the token alone should not allow
the server to obtain either key. In a typical usage of UE, the cloud storage provider will receive a new token on
a periodic basis, and the provider then updates every stored ciphertext. The time period for which a given key
is valid for is called an epoch.

In the past few years there has been considerable interest in extending the understanding of UE. A series of
prominent papers [BLMR13, EPRS17a, LT18a, KLR19a] have provided both new (typically stronger) security
definitions and concrete or generic constructions to meet their definitions. (We make a detailed comparison
of related work in Section 1.1.1 next.) An important distinction between earlier schemes is whether or not
the token (and in particular its size) depends on the ciphertexts to be updated (and in particular the number
of ciphertexts). Schemes for which a token is assigned to each ciphertext are ciphertext-dependent and were
studied by Everspaugh et al. [EPRS17a] (henceforth EPRS). If the token is independent of the ciphertexts to be
updated, such as in BLMR [BLMR15], we have a ciphertext-independent1 scheme. A clear and important goal
is to limit the bandwidth required and so, in general, one should prefer ciphertext-independent schemes. Thus,
as with the most recent work [LT18a, KLR19a], we focus on such schemes in this paper. The ciphertext update
procedure, performed by the server, may be deterministic or randomized – note that in the latter case the server
is burdened with producing (good) randomness and using it correctly.

Despite the considerable advances of the past few years, there remain some important open questions re-
garding basic properties of UE. In terms of security, various features have been added to protect against stronger
adversaries. Yet it is not obvious what are the realistic and optimal security goals of UE and whether they have
been achieved. In terms of efficiency, we only have a few concrete schemes to compare. As may be expected,
schemes with stronger security are generally more expensive but it remains unclear whether this cost is neces-
sary. In this paper we make contributions to both of these fundamental questions by defining new and stronger
security properties and showing that these can be achieved with more efficient concrete UE schemes.

Security. The main security properties that one would expect from updatable encryption are by now well
studied; however the breadth of information that is possible to protect in this context is more subtle than at first
glance. Consider, for example, a journalist who stores a contact list with a cloud storage provider. At some
point, the storage is compromised and an adversary recovers the ciphertexts. At this point, it may be important
that the cryptography does not reveal which of the contacts are recent, and which are old. That is, it must be
hard to decide if some ciphertext was recently created, or if it has been updated from a ciphertext stored in an
earlier epoch.

So how do we define realistic adversaries in this environment? A natural first step for security in updatable
encryption is confidentiality of ciphertexts – given a single ciphertext, the adversarial server should not be able
to determine anything about the underlying plaintext. The security model here must take into account that this
adversary could be in possession of a number of prior keys or update tokens, and snapshot access to the storage

1Note that Boneh et al. [[BLMR15], § Definition 7.6] use ciphertext-independence to mean that the updated ciphertext should have
the same distribution as a fresh ciphertext (i.e. independent of the ciphertext in the previous epoch) – we follow the nomenclature of
Lehmann and Tackmann [LT18a].
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database in different epochs. The next step is to consider unlinkability between different epochs arising from
the ciphertext update procedure: given a ciphertext for the current epoch, the adversary should not be able to
tell which ciphertext (that existed in the previous epoch) a current ciphertext was updated from. Both of these
properties can be naturally extended to chosen-ciphertext (CCA) security via provision of a decryption oracle.

These steps have been taken by prior work, but unfortunately even a combination of these properties is
not enough to defend against our motivating example. Previous security definitions cannot guarantee that the
adversary is unable to distinguish between a ciphertext new in the current epoch and an updated ciphertext
from an earlier epoch. We give a single new security property that captures this requirement and implies the
notions given in prior work. Therefore we believe that this definition is the natural confidentiality property that
is required for updatable encryption.

An additional factor to consider is integrity: the user should be confident that their ciphertexts have not
been modified by the adversarial server. While prior work has shown how to define and achieve integrity
in the context of updatable encryption, a composition result of the style given by Bellare and Namprempre
for symmetric encryption [BN08] – the combination of CPA security and integrity of ciphertexts gives CCA
security – has been missing. We close this gap.

Efficiency and Functionality. Although UE is by definition a form of symmetric key cryptography, tech-
niques from asymmetric cryptography appear to be needed to achieve the required functionality in a sensible
fashion. All of the previous known schemes with security proofs use exponentiation in both the encryption
and update functions, even for those with limited security properties. Since a modern database may contain
large numbers of files, efficiency is critical both for clients who will have to encrypt plaintexts initially and for
servers who will have to update ciphertexts for all of their users.

To bridge the gap between the academic literature and deployments of encrypted outsourced storage, it is
crucial to design fast schemes. We present three novel UE schemes that not only satisfy our strong security
definitions (CCA and ciphertext integrity), but in the vast majority of application scenarios are also at least
twice as fast (in terms of computation each message block) as any previous scheme with comparable security
level.

The ciphertext expansion of a scheme says how much the size of a ciphertext grows compared to the size
of the message. For a cloud server that stores vast numbers of files, it is naturally crucial to minimize the
ciphertext expansion rate. It is also desirable to construct UE schemes that can encrypt arbitrarily large files,
since a client might want to upload media files such as images or videos. Prior schemes that have achieved
these two properties have only been secure in comparatively weak models. Our construction suitable for long
messages – enabling encryption of arbitrarily large files with almost no ciphertext expansion – is secure in our
strong sense and is thus the first to bridge this gap.

1.1 Related Work

1.1.1 Security Models for UE.

We regard the sequential, epoch-based corruption model of Lehmann and Tackmann [LT18a] (LT18) as the
most suitable execution environment to capture the threats in updatable encryption. In this model, the adversary
advances to the next epoch via an oracle query. It can choose to submit its (single) challenge when it pleases,
and it can later update the challenge ciphertext to the ‘current’ epoch. Further, the adversary is allowed to
adaptively corrupt epoch (i.e. file encryption) keys and update tokens at any point in the game: only at the end
of the adversary’s execution does the challenger determine whether a trivial win has been made possible by
some combination of the corruption queries and the challenge.

LT18 introduced two notions: IND-ENC asks the adversary to submit two plaintexts and distinguish the
resulting ciphertext, while possibly having corrupted tokens (but of course not keys) linking this challenge
ciphertext to prior or later epochs. Further, they introduced IND-UPD: the adversary provides two ciphertexts
that it received via regular encryption-oracle queries in the previous epoch, and has to work out which one
has been updated. They observed2 that plaintext information can be leaked not only through the encryption

2The proceedings and full versions of LT18 stated that “IND-ENC security cannot guarantee anything about the security of updates.
In fact, a scheme where the update algorithm UE.Upd includes all the old ciphertexts C0, ...,Ce in the updated ciphertext Ce+1 could
be considered IND-ENC secure, but clearly lose all security if a single old key gets compromised.” This line of argument is flawed,
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procedure, but also via updates. For schemes with deterministic updates, the adversary would trivially win if it
could acquire the update token that takes the adversarially-provided ciphertexts into the challenge epoch, hence
the definition for this setting, named detIND-UPD, is different from that for the randomized setting, named
randIND-UPD.

LT18’s IND-UPD definition was not the first approach to formalizing the desirable property of unlinkabil-
ity of ciphertexts, which attempts to specify that given two already-updated ciphertexts, the adversary cannot
tell if the plaintext is the same. Indeed EPRS (UP-REENC) and later KLR19 (UP-REENC-CCA) also con-
sidered this problem, in the ciphertext-dependent update and CCA-secure setting respectively. The work of
KLR19 [[KLR19a], § Appendix A] stated that “an even stronger notion [than IND-UPD] might be desirable:
namely that fresh and re-encrypted ciphertexts are indistinguishable... which is not guaranteed by UP-REENC”
– we will answer this open question later on in our paper.

In the full version of their work [BLMR15], BLMR introduced a security definition for UE denoted update
– an extension of a model of symmetric proxy re-encryption. This non-sequential definition is considerably less
adaptive than the later work of LT18, since the adversary’s key/token corruption queries and ciphertext update
queries are very limited. Further, they only considered schemes with deterministic update algorithms.

EPRS [EPRS17a] provided (non-sequential) definitions for updatable authenticated encryption, in the ciphertext-
dependent setting. Their work (inherently) covered CCA security and ciphertext integrity (CTXT). These defi-
nitions were ambiguous regarding adaptivity: these issues have since been fixed in the full version [EPRS17b].

KLR19 attempted to provide stronger security guarantees for ciphertext-independent UE than LT18, con-
centrating on chosen-ciphertext security (and the weaker replayable CCA) in addition to integrity of plaintexts
and ciphertexts. We revisit these definitions later on, and show how a small modification to their INT-CTXT
game gives rise to natural composition results.

In practice, LT18’s randIND-UPD definition insists that the ciphertext update procedure Upd requires the
server to generate randomness for updating each ciphertext. Further, a scheme meeting both IND-ENC and
IND-UPD can still leak the epoch in which the file was uploaded (the ‘age’ of the ciphertext). While it is
arguable that metadata is inherent in outsourced storage, the use of updatable encryption is for high-security
applications, and it would not be infeasible to design a system that does not reveal meta-data, which is clearly
impossible if the underlying cryptosystem reveals the meta-data.

Recent work by Jarecki et al. [JKR19] considers the key wrapping entity as a separate entity from the data
owner or the storage server. While this approach seems promising, their security model is considerably weaker
than those considered in our work or the papers already mentioned in this section: the adversary must choose
whether to corrupt the key management server (and get the epoch key) or the storage server (and get the update
token) for each epoch, and thus it cannot dynamically corrupt earlier keys or tokens at a later stage.

1.1.2 Constructions of Ciphertext-Independent UE

The initial description of updatable encryption by Boneh et al. [BLMR13] was motivated by providing a
symmetric-key version of proxy re-encryption (see below). BLMR imagined doing this in a symmetric manner,
where each epoch is simply one period in which re-encryption (rotation) has occurred. Their resulting scheme,
denoted BLMR, deploys a key-homomorphic PRF, yet the nonce attached to a ciphertext ensures that IND-UPD
cannot be met (the scheme pre-dates the IND-UPD notion).

The symmetric-Elgamal-based scheme of LT18, named RISE, uses a randomized update algorithm and is
proven to meet IND-ENC and randIND-UPD under DDH. These proofs entail a seemingly unavoidable loss –
a cubic term in the total number of epochs – our results also have this factor. LT18 also presented an extended
version of the scheme by BLMR, denoted BLMR+, where the nonce is encrypted: they showed that this scheme
meets a weak version of IND-UPD called weakIND-UPD, in which if the adversary corrupts the token that links
the challenge epoch to the epoch immediately after then a trivial win condition is triggered.

The aim of KLR19 was to achieve stronger security than BLMR, EPRS and LT18 in the ciphertext-
independent setting: in particular CCA security and integrity protection. They observed that the structure
of RISE ensures that ciphertext integrity cannot be achieved: access to just one update token allows the storage

and in fact IND-ENC rules out schemes of this form: encryptions were always fresh at some point. This claim was corrected and
clarified in a June 2019 presentation by the first author [Leh19], and further elaborated on in an update to the full version in December
2019 [LT18b].
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provider to construct ciphertexts of messages of its choice. Their generic constructions, based on encrypt-and-
MAC and the Naor-Yung paradigm, are strictly less efficient than RISE. We show how to achieve CCA security
and integrity protections with novel schemes that are comparably efficient with RISE.

1.1.3 Related Primitives

Proxy re-encryption (PRE) allows a ciphertext that is decryptable by some secret key to be re-encrypted such
that it can be decrypted by some other key. Security models for PRE are closer to those for encryption than
the strictly sequential outsourced-storage-centric models for UE, and as observed by Lehmann and Tack-
mann [LT18a] the concepts of allowable corruptions and trivial wins for UE need considerable care when
translating to the (more general) PRE setting. Unlinkability is not necessarily desired in PRE – updating the
entire ciphertext may not be essential for a PRE scheme to be deemed secure – thus even after conversion to the
symmetric setting, prior schemes [AFGH05, CH07] cannot meet the indistinguishability requirements that we
ask of UE schemes. Recent works by Lee [Lee17] and Davidson et al. [DDLM19] have highlighted the links
between the work of BLMR and EPRS and PRE, and in particular the second work gives a public-key variant
of the (sequential) IND-UPD definition of LT18. Myers and Shull [MS18] presented security models for hybrid
proxy re-encryption, and gave a single-challenge version of the UP-IND notion of EPRS. While the models are
subtly different, the techniques for achieving secure UE and PRE are often similar: in particular rotating keys
via exponentiation to some simple function of old and new key (RISE is essentially a combination of Blaze et
al.’s symmetric version of ElGamal [BBS98] and ciphertext randomization). Further, the symmetric-key PRE
scheme of Sakurai et al. [SNS17] is at a high level similar to SHINE (their all-or-nothing-transform as an inner
layer essentially serves the same purpose as the ideal cipher in SHINE), but in a security model that does not
allow dynamic corruptions. Their approach includes – this natural approach is somewhat similar to the schemes
that we introduce later in the paper.

Tokenization schemes aim to protect short secrets, such as credit card numbers, using deterministic encryp-
tion and deterministic updates: this line of work reflects the PCI DSS standard [PCI] for the payment card
industry. Provable security of such schemes was initially explored by Diaz-Santiago et al. [DRC14] and ex-
tended to the updatable setting by Cachin et al. [CCFL17]. While much of the formalism in the model of Cachin
et al. has been used in recent works on UE (in particular the epoch-based corruption model), the requirements
on ciphertext indistinguishability are stronger in the UE setting, where we expect probabilistic encryption of
(potentially large) files.

1.2 Contributions

Our first major contribution is defining the xxIND-UE-atk security notion for updatable encryption, for (xx, atk) ∈
{(det,CPA), (rand,CPA), (det,CCA)}, and comprehensively analyzing its relation to other, existing3 security
notions (xxIND-ENC-atk, xxIND-UPD-atk). Our single definition requires that ciphertexts output by the en-
cryption algorithm are indistinguishable from ciphertexts output by the update algorithm. We show that our new
notion is strictly stronger even than combinations of prior notions, both in the randomized- and deterministic-
update settings under chosen-plaintext attack and chosen-ciphertext attack. This not only gives us the unlinka-
bility desired by prior works, but also answers the open question posed by KLR19 mentioned on page 5. Fig. 18
describes the relationship between our new notion xxIND-UE-atk and prior notions.

After a slight tweak to KLR19’s definitions for CTXT and CCA, we show the following generic composi-
tion result: detIND-yy-CPA + INT-CTXT ⇒ detIND-yy-CCA for yy ∈ {UE,ENC,UPD}. Combining this
result with the relations from detIND-UE-atk above, we thus show that the combination of detIND-UE-CPA
and INT-CTXT yields detIND-yy-CCA for all yy ∈ {UE,ENC,UPD}.

Our second major contribution is in designing a new, fast updatable encryption scheme SHINE. Our scheme
is based on a random-looking permutation combined with the exponentiation map in a cyclic group, and comes
in a number of variants: SHINE0, MirrorSHINE and OCBSHINE, for small messages, medium-sized messages
and arbitrarily large messages respectively. In Fig. 1, we provide a comparison of security, ciphertext expansion
and efficiency between our new schemes and those from prior literature. We also further the understanding of

3The notions IND-ENC, randIND-UPD and detIND-UPD (which we denote as IND-ENC-CPA, randIND-UPD-CPA and
detIND-UPD-CPA, resp.) are from LT18. The notions UP-IND-CCA and UP-REENC-CCA (detIND-ENC-CCA and
detIND-UPD-CCA, resp.) are from KLR19. LT18 and KLR19 both build upon the definitions given by EPRS.
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IND INT |M| |C| Enc (Upd)
BLMR [BLMR13] (det,ENC,CPA) 8 l|G| (l+1)|G| lE

BLMR+ [BLMR13, LT18a] (weak,UE,CPA) 8 l|G| (l+1)|G| lE

RISE [LT18a] (rand,UE,CPA) 8 1|G| 2|G| 2E

SHINE0[CPA] § 5.1.1 (det,UE,CPA) 8 (1-γ)|G| 1|G| 1E

NYUE [KLR19a]
(rand,ENC,RCCA)
(rand,UPD,RCCA)

8 1|G1| (34|G1|, 34|G2|) (60E,70E)

NYUAE [KLR19a]
(rand,ENC,RCCA)
(rand,UPD,RCCA)

PTXT 1|G1| (58|G1|, 44|G2|) (110E,90E)

E&M [KLR19a]
(det,ENC,CCA)
(det,UPD,CCA)

CTXT 1|G| 3|G| 3E

SHINE0 § 5.1.1 (det,UE,CCA) CTXT (1-2γ)|G| 1|G| 1E

MirrorSHINE § 5.1.2 (det,UE,CCA) CTXT (1-γ)|G| 2|G| 2E

OCBSHINE § 5.1.3 (det,UE,CCA) CTXT l|G| (l+2)|G| (l+2)E

Figure 1: Comparison of security, ciphertext expansion and efficiency for updatable encryption schemes.
(xx, yy, atk) represents the best possible xxIND-yy-atk notion that each scheme can achieve. E represents
the cost of an exponentiation, for encryption Enc and ciphertext update Upd. γ represents the bit-size of the
used nonce as a proportion of the group element bit-size. For NYUE and NYUAE, size/cost is in pairing groups
G1,G2. SHINE0[CPA] is SHINE0 with a zero-length integrity tag. BLMR, BLMR+ and OCBSHINE support
encryption of arbitrary size messages (of l blocks), with |M| ≈ l|G|.

schemes with deterministic update mechanisms. In particular, we identify the properties that are necessary of
such schemes to meet a generalized version of our detIND-UE-atk notion. Another important contribution is
that we further improve on the existing epoch insulation techniques that have been used to create proofs of
security in the strong corruption environment we pursue. These have been shown to be very useful for studying
updatable encryption schemes, and we expect our new techniques to be useful in the future.

1.3 Further Discussion

We have had to make a number of practical design decisions for our new UE scheme SHINE. The main idea
is to permute the (combination of nonce and) message and then exponentiate the resulting value, with different
mechanisms for enforcing ciphertext integrity depending on the flavor that is being used (which is in turn
defined by the desired message length). In this subsection we give some motivation for why we believe that
these choices are reasonable.

Deterministic updates. Since we will require indistinguishability of ciphertexts, we know that the UE en-
cryption algorithm should be randomized. The update algorithm may or may not be randomized, however. All
known schemes indicate that randomized updates are more expensive than deterministic updates, but there is a
small, well-understood security loss in moving to deterministic updates: an adversary with an update token in
an appropriate epoch can trivially distinguish between an update of a known ciphertext and other ciphertexts
in the next epoch. As a result, in the detIND-UE-CPA case the adversary is only forbidden from obtaining
one token compared to randIND-UE-CPA. Furthermore, UE schemes with randomized updates cannot achieve
CTXT and CCA security, which is possible for the deterministic-update setting. We believe that the minor CPA
security loss is a small price to pay for stronger security (CTXT and CCA) and efficiency gain, in particular to
reduce computations in the UE encryption and update algorithms and also improve ciphertext expansion.

Bi-directional key updates. In principle, the token used to update ciphertexts need not be sufficient to derive
the new key from the old key. But for every known practical scheme, this derivation is indeed easy. Moreover,
for every known practical scheme including ours, the old key can be derived from the new key (and token).
While uni-directional update algorithms are desirable, constructing efficient protocols has so far been elusive:
this has technical implications for how security notions are defined.
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Limited number of epochs. In many applications that we would like to consider, the user of the storage
service will control when updates occur (perhaps when an employee with access to key material leaves the
organisation, or if an employee loses a key-holding device): this indicates that the total number of key rotations
in the lifetime of a storage system might be numbered in the thousands, and in particular could be considerably
smaller than the number of outsourced files.

1.4 Document History

This is the third version of this document. The first version4 contained two versions of SHINE that were only
detIND-UE-CPA secure, with one flavor for long messages and the other for short messages. The second
version5 introduced a number of technical changes, including: three new schemes that all meet the stronger
notion of detIND-UE-CCA security via differing integrity mechanisms; the composition result in Theorem 3;
the formulation of INT-CTXT (a tweak of that given by KLR19), plus the description of the relationship
between possible integrity notions (Lemma 1 and Remark 1). This latest version is more incremental: in
addition to various bug fixes, the main new content is the discussion of implementation of SHINE in Section 5.6.

1.5 Organization

After introducing syntax and preliminaries in Section 2, we detail the necessary formalism for security modeling
in updatable encryption in Section 3. In Section 4 we define our new confidentiality property IND-UE and
show how it implies prior notions; in Section 5 we give our new scheme, SHINE, including intuition behind
its security analysis and implementation options. We show the security properties that can be met, in our new
framework, by prior work schemes BLMR and RISE (LT18) in Section B and C respectively.

2 Preliminaries

Pseudocode return b′
?
= b is used as shorthand for if b′ = b then return 1 // else return 0, with an output

of 1 indicating adversarial success. We use the concrete security framework, defining adversarial advantage as
probability of success in the security game, and avoid statements of security with respect to security notions. In
the cases where we wish to indicate that notion A implies notion B (for some fixed primitive), i.e. an adversary’s
advantage against B carries over to an advantage against A, we show this by bounding these probabilities.

2.1 Hardness Assumptions

For the definition of DDH, CDH and later on, we assume the existence of a group-generation algorithm that is
parameterized by λ and outputs a cyclic group G of order q (where q is of length λ bits) and a generator g. We
adapt the definition of pseudorandom functions from Boneh et al. [BLMR13].

Definition 1 (DDH). Fix a cyclic group G of prime order q with generator g. The advantage of an algorithmA
solving the Decision Diffie-Hellman (DDH) problem for G and g is

AdvDDH
G, A(λ) =

∣∣∣Pr[ExpDDH-1
G, A (λ) = 1]−Pr[ExpDDH-0

G, A (λ) = 1]
∣∣∣

where the experiment ExpDDH-b
G, A is given in Fig. 2.

Definition 2 (CDH). Fix a cyclic group G of prime order q with generator g. The advantage of an algorithmA
solving the Computational Diffie-Hellman (CDH) problem for G and g is

AdvCDH
G,A (λ) = Pr[ExpCDH

G, A(λ) = 1]

where the experiment ExpCDH
G, A is given in Fig. 3.

4https://eprint.iacr.org/2019/1457/20191218:195141, 17th December 2019
5https://eprint.iacr.org/2019/1457/20200221:133540, 21st February 2020
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ExpDDH-b
G, A (λ)

1 : x, y, r
$←− Zq

2 : X ← gx;Y ← gy

3 : if b = 0

4 : Z ← gxy

5 : else

6 : Z ← gr

7 : b′ ← A(g,X, Y, Z)

8 : return b′

Figure 2: DDH experiment ExpDDH-b
G, A

ExpCDH
G, A(λ)

1 : x, y
$←− Zq

2 : X ← gx

3 : Y ← gy

4 : Z ← A(g,X, Y )

5 : if Z = gxy

6 : return 1

7 : else

8 : return 0

Figure 3: CDH experiment ExpCDH
G, A

Definition 3 (PRF). Let F : K × X −→ Y be an efficiently computable function, where K is called the key
space, X is the domain, and Y is the range. The PRF advantage for A against F is given by

AdvPRF
F, A(λ) =

∣∣∣Pr[ExpPRF-1
F, A (λ) = 1]−Pr[ExpPRF-0

F, A (λ) = 1]
∣∣∣

where the experiment ExpPRF-b
F, A is given in Fig. 4.

ExpPRF-b
F, A (λ)

1 : if b = 0

2 : k
$←− K

3 : f(·)← F (k, ·)
4 : else

5 : f(·) $←− {f : X −→ Y}
6 : b′ ← AO.f ()

7 : return b′

O.f(x)

8 : if x 6∈ X
9 : return ⊥

10 : else

11 : return f(x)

Figure 4: PRF experiment ExpPRF-b
F, A

2.2 Updatable Encryption

We follow the syntax of prior work [KLR19a], defining an Updatable Encryption (UE) scheme as a tuple of
algorithms {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} that operate in epochs, these algorithms are described
in Fig. 5. A scheme is defined over some plaintext spaceMS, ciphertext space CS , key space KS and token
space T S . We specify integer n + 1 as the (total) number of epochs over which a UE scheme can operate,
though this is only for proof purposes. Correctness [KLR19a] is defined as expected: fresh encryptions and
updated ciphertexts should decrypt to the correct message under the appropriate epoch key. In contrast to prior
work, we only consider deterministic token generation algorithms – all schemes in prior literature and our
schemes allow the token to be produced deterministically from epoch keys alone.

In addition to enabling ciphertext updates, in many schemes the token allows ciphertexts to be ‘down-
graded’: performing some analog of the UE.Upd operation on a ciphertext C created in (or updated to) epoch
e yields a valid ciphertext in epoch e-1. Such a scheme is said to have bi-directional ciphertext updates6. Fur-
thermore, for many constructions, the token additionally enables key derivation, given one adjacent key. If
this can be done in both directions – i.e. knowledge of ke and ∆e+1 allows derivation of ke+1 AND knowl-
edge of ke+1 and ∆e+1 allows derivation of ke – then such schemes are referred to by LT18 as having bi-
directional key updates. If such derivation is only possible in one ‘direction’ then the scheme is said to have uni-
directional key updates. Much of the prior literature on updatable encryption has distinguished these notions:

6For example if the Upd procedure exponentiates all ciphertext components using the token, as done in SHINE, then Upd itself is
sufficient to demonstrate this property.
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Algorithm Rand/Det Input Output Syntax

UE.KG Key Gen Rand λ ke ke
$←− UE.KG(λ)

UE.TG Token Gen Det ke, ke+1 ∆e+1 ∆e+1 ← UE.TG(ke, ke+1)

UE.Enc Encryption Rand M, ke Ce Ce
$←− UE.Enc(ke,M)

UE.Dec Decryption Det Ce, ke M′ or ⊥ {M′/ ⊥} ← UE.Dec(ke,Ce)

UE.Upd Update Ctxt Rand/det Ce,∆e+1 Ce+1 Ce+1
$←− UE.Upd(∆e+1,Ce)

Figure 5: Syntax of algorithms defining an Updatable Encryption scheme UE.

we stress that all schemes and definitions of security considered in this paper have bi-directional key updates
and bi-directional ciphertext updates.

3 Security Models for Updatable Encryption

We consider a number of indistinguishability-based confidentiality games and integrity games for assessing
security of updatable encryption schemes. The environment provided by the challenger attempts to give as
much power as possible to adversary A. The adversary may call for a number of oracles, and after A has
finished running the challenger computes whether or not any of the actions enabled a trivial win. The available
oracles are described in Fig. 6. An overview of the oraclesA has access to in each security game is provided in
Fig. 7.

Setup(λ)

1 : k0 ← UE.KG(λ)

2 : ∆0 ←⊥
3 : e, c← 0

4 : phase, twf ← 0

5 : L, L̃, C,K, T ← ∅

O.Enc(M)

6 : C← UE.Enc(ke,M)

7 : c← c + 1

8 : L ← L ∪ {(c,C, e)}
9 : return C

O.Dec(C)

10 : twf ← 1 if

11 : phase = 1 and C ∈ L̃
12 : M′ or ⊥ ← UE.Dec(ke,C)

13 : return M′ or ⊥

O.Next()

14 : e← e + 1

15 : ke
$←− UE.KG(λ)

16 : ∆e
$←− UE.TG(ke-1, ke)

17 : if phase = 1

18 : C̃e ← UE.Upd(∆e, C̃e-1)

O.Upd(Ce−1)

19 : if (j,Ce−1, e− 1) /∈ L
20 : return ⊥
21 : Ce ← UE.Upd(∆e,Ce−1)

22 : L ← L ∪ {(j,Ce, e)}
23 : return Ce

O.Corr(inp, ê)

24 : if ê > e

25 : return ⊥
26 : if inp = key

27 : K ← K ∪ {ê}
28 : return kê

29 : if inp = token

30 : T ← T ∪ {ê}
31 : return ∆ê

O.UpdC̃

32 : C ← C ∪ {e}
33 : L̃ ← L̃ ∪ {(C̃e, e)}
34 : return C̃e

O.Try(C̃)

35 : if phase = 1

36 : return ⊥

37 : phase← 1

38 : twf ← 1 if

39 : e ∈ K∗ or C̃ ∈ L∗

40 : M′ or ⊥ ← UE.Dec(ke, C̃)

41 : if M′ 6= ⊥
42 : win← 1

Figure 6: Oracles in security games for updatable encryption. The boxed lines in O.Try only apply to
INT-CTXTs: in this game the adversary is allowed to query the O.Try oracle only once. Computing L̃∗ is
discussed in Section 3.2.
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Notion O.Enc O.Dec O.Next O.Upd O.Corr O.UpdC̃ O.Try
detIND-yy-CPA X × X X X X ×
randIND-yy-CPA X × X X X X ×
detIND-yy-CCA X X X X X X ×
INT-CTXT X × X X X × X

Figure 7: Oracles the adversary is allowed to query in different security games, where yy ∈ {ENC,UPD,UE}.
× indicates the adversary does not have access to the corresponding oracle,X indicates the adversary has access
to the corresponding oracle.

Confidentiality. A generic representation of all confidentiality games described in this paper is detailed in
Fig. 8. The current epoch is advanced by an adversarial call to O.Next – simulating UE.KG and UE.TG – and
keys and tokens (for the current or any prior epoch) can be corrupted via O.Corr. The adversary can encrypt
arbitrary messages via O.Enc, and update these ‘non-challenge’ ciphertexts via O.Upd. In CCA games, the
adversary can additionally call decryption oracleO.Dec (with some natural restrictions to prevent trivial wins).
At some point A makes its challenge by providing two inputs, and receives the challenge ciphertext – and
in later epochs can receive an updated version by calling O.UpdC̃ (computing this value is actually done by
O.Next, a call to O.UpdC̃ returns it). A can then interact with its other oracles again, and eventually outputs
its guess bit. The flag phase tracks whether or not A has made its challenge, and we always give the epoch
in which the challenge happens a special identifier ẽ. If A makes any action that would lead to a trivial win,
the flag twf is set as 1 and A’s output is discarded and replaced by a random bit. We follow the bookkeeping
techniques of LT18 and KLR19, using the following sets to track ciphertexts and their updates that can be
known to the adversary.

• L: List of non-challenge ciphertexts (from O.Enc or O.Upd) with entries of form (c,C, e), where query
identifier c is a counter incremented with each new O.Enc query.

• L̃: List of updated versions of challenge ciphertext (created via O.Next, received by adversary via
O.UpdC̃), with entries of form (C̃, e).

Further, we use the following lists that track epochs only.

• C: List of epochs in which adversary learned updated version of challenge ciphertext (via CHALL or
O.UpdC̃).

• K: List of epochs in which the adversary corrupted the encryption key.

• T : List of epochs in which the adversary corrupted the update token.

All experiments necessarily maintain some state, but we omit this for readability reasons. The challenger’s
state is S← {L, L̃, C,K, T }, and the system state in the current epoch is given by st← (ke,∆e,S, e).

An at-a-glance overview of CHALL for various security definitions is given in Fig. 9. For security games
such as LT18’s IND-UPD notion, where the adversary must submit as its challenge two ciphertexts (that it
received from O.Enc) and one is updated, the game must also track in which epochs the adversary has updates
of these ciphertexts. We will later specify a version of our new xxIND-UE-atk notion that allows the adversary
to submit a ciphertext that existed in any epoch prior to the challenge epoch, not just the one immediately
before: this introduces some additional bookkeeping (discussed further in Section 3.2).

CHALL Output of “ Create C̃ with CHALL” (in ẽ)

xxIND-ENC-atk M̄0, M̄1 UE.Enc(kẽ, M̄0) or UE.Enc(kẽ, M̄1)

xxIND-UPD-atk C̄0, C̄1 UE.Upd(∆ẽ, C̄0) or UE.Upd(∆ẽ, C̄1)

xxIND-UE-atk M̄, C̄ UE.Enc(kẽ, M̄) or UE.Upd(∆ẽ, C̄)

Figure 9: Intuitive description of challenge inputs and outputs in confidentiality games for updatable encryption
schemes, for (xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)}. Full definitions are given in Section 3.1 and
4.1.
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ExpxxIND-yy-atk-b
UE, A (λ)

1 : do Setup

2 : CHALL← AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr(λ)

3 : phase← 1; ẽ← e

4 : Create C̃ with CHALL; L̃ ← L̃ ∪ {(C̃e, e)}

5 : b′ ← AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr,O.UpdC̃(C̃)

6 : twf ← 1 if

7 : K∗ ∩ C∗ 6= ∅ or

8 : xx = det and I∗ ∩ C∗ 6= ∅
9 : if twf = 1

10 : b′
$←− {0, 1}

11 : return b′

Figure 8: Generic description of confidentiality experiment ExpxxIND-yy-atk-b
UE, A for scheme UE and adversary

A, for xx ∈ {det, rand}, yy ∈ {ENC,UPD,UE} and atk ∈ {CPA,CCA}. We do not consider (and thus do
not formally define) randIND-yy-CCA; only in detIND-yy-CCA games does A have access to O.Dec. CHALL
is the challenge input provided by A: how to perform Create C̃ with CHALL is shown in Fig. 11, Fig. 12 and
Fig. 17. Trivial win conditions, i.e. deciding the value of twf and computing K∗, C∗, I∗, are discussed in
Section 3.2.

A note on nomenclature: the adversary can make its challenge query to receive the challenge ciphertext,
and then acquire updates of the challenge ciphertext via calls to O.UpdC̃, and additionally it can calculate
challenge-equal ciphertexts via applying tokens it gets via O.Corr queries.

When appropriate, we will restrict our experiments to provide definitions of security that are more suitable
for assessing schemes with deterministic update mechanisms. For such schemes, access to the update token
for the challenge epoch (∆ẽ) allows the adversary to trivially win detIND-UPD-atk and detIND-UE-atk for
atk ∈ {CPA,CCA}. Note however that the definitions are not restricted to schemes with deterministic updates:
such schemes are simply insecure in terms of randIND-UPD-CPA and randIND-UE-CPA.

Ciphertext Integrity. In ciphertext integrity (CTXT) game, the adversary is allowed to make calls to oracles
O.Enc, O.Next, O.Upd and O.Corr. At some point A attempts to provide a forgery via O.Try; as part of this
query the challenger will assess if it is valid. We distinguish between the single-O.Try case (INT-CTXTs) and
the multi-O.Try case (INT-CTXT). Here, “valid” means decryption outputs a message (i.e. not ⊥). In the
single-O.Try case, A can continue making oracle queries after its O.Try query, however this is of no benefit
since it has already won or lost. In the multi-O.Try case, A can make any number of O.Try queries: as long
as it wins once, it wins the ciphertext integrity game. Formally, the definition of ciphertext integrity is given in
Definition 4.

Definition 4. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
Then the INT-CTXT advantage of an adversary A against UE is defined as

AdvINT-CTXT
UE, A (λ) = Pr[ExpINT-CTXT

UE, A = 1]

where the experiment ExpINT-CTXT
UE, A is given in Fig. 6 and Fig. 10. Particularly, if A is allowed to ask only one

O.Try query, denote such notion as INT-CTXTs.
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ExpINT-CTXT
UE, A (λ)

1 : do Setup

2 : win← 0

3 : AO.Enc,O.Next,O.Upd,O.Corr,O.Try(λ)

4 : if twf = 1

5 : win← 0

6 : return win

Figure 10: INT-CTXT security notion for updatable encryption scheme UE and adversary A. Deciding twf
and computing L∗ are discussed in Section 3.2.

Note that INT-CTXT trivially implies INT-CTXTs. We can prove that INT-CTXTs implies INT-CTXT
too, with loss upper-bounded by the number of O.Try queries. We prove this result in Lemma 1. KLR19
defined ciphertext integrity with one O.Try query plus access to O.Dec, and the game ends when the O.Try
query happens. It is hard to prove the generic relation among CPA, CTXT and CCA using this formulation.
Notice that decryption oracles give the adversary power to win the CTXT game even it only has one O.Try
query. The adversary can send its forgery to the decryption oracle to test if it is valid (if O.Dec outputs a
message and not ⊥) – thus A can continue to send forgeries to O.Dec until a valid one is found, and then send
this as a O.Try query (and win the game). So intuitively, a decryption oracle is equivalent to multiple O.Try
queries. Proving that all these variants of CTXT definitions are equivalent to each other is straightforward, with
the loss upper-bounded by the sum of O.Try queries and decryption queries.

Remark 1. The definition of INT-CTXT is more natural for defining ciphertext integrity, however, it is eas-
ier to use INT-CTXTs notion to prove ciphertext integrity for specific UE schemes. As INT-CTXT ⇐⇒
INT-CTXTs, we use both definitions in this paper.

Lemma 1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme. For
any INT-CTXT adversary A against UE that queries as most QT O.Try queries, there exists an INT-CTXTs

adversary B1 against UE such that

AdvINT-CTXT
UE, A (λ) ≤ QT ·AdvINT-CTXTs

UE, B1 (λ).

Proof. As definition 4, we have

AdvINT-CTXT
UE, A (λ) = Pr[ExpINT-CTXT

UE, A = 1].

We define QT games, for the i-th game Gi, it is identical to INT-CTXT game except for the challenger only
responses the i-th O.Try query and returns ⊥ to the rest of O.Try queries. Then we have

Pr[ExpINT-CTXT
UE, A = 1] ≤

QT∑
i=1

Pr[Gi = 1].

Then we claim that for any i ∈ {1, ..., QT } there exists an adversary

Pr[Gi = 1] = AdvINT-CTXTs

UE, B1,i (λ).

We can construct the reduction B1,i playing INT-CTXTs game and simulating the responses of Gi by
submitting the i-th O.Try query to its INT-CTXTs challenger and returns ⊥ for the rest O.Try queries. Other
queries and the final result can be passed from INT-CTXTs game to Gi. Then we have the desired result.

3.1 Existing Definitions of Confidentiality

Here we describe existing confidentiality notions given by LT18 and KLR19, including formal definitions for
their IND-yy-CPA and IND-yy-CCA notions, respectively. (Note that KLR19 used UP-REENC to refer to the
the unlinkability notion that we and LT18 call IND-UPD). We will define our new security notion in Section 4.1
and compare the relationship between all notions in Section 4.2.
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Definition 5. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
Then the xxIND-ENC-atk advantage, for (xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)}, of an adversary
A against UE is defined as

AdvxxIND-ENC-atk
UE, A (λ) =

∣∣∣∣Pr[ExpxxIND-ENC-atk-1
UE, A = 1]−Pr[ExpxxIND-ENC-atk-0

UE, A = 1]

∣∣∣∣,
where the experiment ExpxxIND-ENC-atk-b

UE, A is given in Fig. 6, Fig. 8 and Fig. 11.

Definition 6. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
Then the xxIND-UPD-atk advantage, for (xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)}, of an adversary
A against UE is defined as

AdvxxIND-UPD-atk
UE, A (λ) =

∣∣∣Pr[ExpxxIND-UPD-atk-1
UE, A = 1]−Pr[ExpxxIND-UPD-atk-0

UE, A = 1]
∣∣∣,

where the experiments ExpxxIND-UPD-atk-b
UE, A are given in Fig. 6, Fig. 8 and Fig. 12.

ExpxxIND-ENC-atk-b
UE, A (λ)

1 : (M̄0, M̄1)← A
2 : Create C̃ with (M̄0, M̄1)

3 : if |M̄0| 6= |M̄1|
4 : return ⊥

5 : C̃
$←− UE.Enc(kẽ, M̄b)

6 : return C̃

Figure 11: Challenge call definition for
xxIND-ENC-atk security experiment; the full
experiment is given in combination with Fig. 6 and
Fig. 8.

ExpxxIND-UPD-atk-b
UE, A (λ)

1 : (C̄0, C̄1)← A
2 : Create C̃ with (C̄0, C̄1)

3 : if |C̄0| 6= |C̄1|
4 : return ⊥
5 : if (C̄0, ẽ-1) /∈ L or (C̄1, ẽ-1) /∈ L
6 : return ⊥

7 : C̃
$←− UE.Upd(∆ẽ, C̄b)

8 : return C̃

Figure 12: Challenge call definition for
xxIND-UPD-atk security experiment; the full
experiment is given in combination with Fig. 6 and
Fig. 8.

We do not define randIND-ENC-CCA or randIND-UPD-CCA – these notions were formalized by KLR19.
Note that trivial win via direct update (see Section 3.2) is never triggered in the detIND-ENC-CPA game.
Thus, randIND-ENC-CPA is equivalent to detIND-ENC-CPA. For simplicity, we will often denote the notion
xxIND-ENC-CPA as IND-ENC-CPA.

Remark 2. LT18 defined weakIND-ENC-CPA and weakIND-UPD-CPA for analyzing BLMR+, a modification
of BLMR’s scheme where the nonce is encrypted using symmetric encryption. In this notion, the adversary
trivially loses if it obtains an update token linking the challenge epoch to the epoch before or after. In Section B
we show that BLMR+ is weakIND-UE-CPA secure.

3.2 Trivial Win Conditions

3.2.1 Trivial Win Conditions in Confidentiality Games

Trivial wins via keys and ciphertexts. The following is for analyzing all confidentiality games. We again
follow LT18 in defining the epoch identification sets C∗, K∗ and T ∗ as the extended sets of C, K and T in
which the adversary has learned or inferred information via its acquired tokens. These extended sets are used
to exclude cases in which the adversary trivially wins, i.e. if C∗ ∩ K∗ 6= ∅, then there exists an epoch in which
the adversary knows the epoch key and a valid update of the challenge ciphertext. Note that the challenger
computes these sets once the adversary has finished running. We employ the following algorithms of LT18 (for
bi-directional updates):
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K∗ ← {e ∈ {0, ..., n}|CorrK(e) = true}
true← CorrK(e) ⇐⇒ (e ∈ K) ∨ (CorrK(e-1) ∧ e ∈ T ) ∨ (CorrK(e+1) ∧ e+1 ∈ T )

T ∗ ← {e ∈ {0, ..., n}|(e ∈ T ) ∨ (e ∈ K∗ ∧ e-1 ∈ K∗)}
C∗ ← {e ∈ {0, ..., n}|ChallEq(e) = true}
true← ChallEq(e) ⇐⇒

(e = ẽ) ∨ (e ∈ C) ∨ (ChallEq(e-1) ∧ e ∈ T ∗) ∨ (ChallEq(e+1) ∧ e+1 ∈ T ∗)

Trivial wins via direct updates. The following is for analyzing detIND-yy-atk security notions, for yy ∈
{UE,UPD} and atk ∈ {CPA,CCA}, where the adversary provides as its challenge one or two ciphertexts that
it received from O.Enc. The challenger needs to use L to track the information the adversary has about these
challenge input values.

Define a new list I as the list of epochs in which the adversary learned an updated version of the cipher-
text(s) given as a challenge input. Furthermore, define I∗ to be the extended set in which the adversary has
learned or inferred information via token corruption. We will use this set to exclude cases which the adversary
trivially wins, i.e. if I∗ ∩ C∗ 6= ∅, then there exists an epoch in which the adversary knows the updated cipher-
text of C̄ and a valid challenge-equal ciphertext. For deterministic updates, the adversary can simply compare
these ciphertexts to win the game. In particular, if C̄ is restricted to come from ẽ−1 (recall the challenge epoch
is ẽ), then the condition I∗ ∩C∗ 6= ∅ is equivalent to the win condition that LT18 used for IND-UPD: ∆ẽ ∈ T ∗
or A did O.Upd(C̄) in ẽ. Our generalization is necessary for a variant of xxIND-UE-atk that we define later in
which the challenge ciphertext input can come from any prior epoch, and not just the epoch immediately before
the one in which the challenge is made.

To compute I, find an entry in L that contains challenge input C̄. Then for that entry, note the query
identifier c, scan L for other entries with this identifier, and add into list I all found indices:

I ← {e ∈ {0, ..., n}|(c, ·, e) ∈ L}.

Then compute I∗ as follows:

I∗ ← {e ∈ {0, ..., n}|ChallinputEq(e) = true}
true← ChallinputEq(e) ⇐⇒

(e ∈ I) ∨ (ChallinputEq(e-1) ∧ e ∈ T ∗) ∨ (ChallinputEq(e+1) ∧ e+1 ∈ T ∗)

Additionally, if the adversary submits two ciphertexts C̄0, C̄1 as challenge (as in xxIND-UPD-atk), we
compute Ii, I∗i , i ∈ {0, 1} first and then use I∗ = I∗0 ∪ I∗1 to check the trivial win condition. An example of
trivial win conditions K∗ ∩ C∗ 6= ∅ and I∗ ∩ C∗ 6= ∅ is shown in Fig. 16.

We do not consider this trivial win condition for the ENC notion, as there is no ciphertext in the challenge
input value, i.e. I∗ = ∅. Thus, the assessment I∗∩C∗ 6= ∅ in experiment ExpdetIND-ENC-atk-b

UE, A (see Fig. 8) will
never be true.

Trivial wins via decryptions. The following is for analyzing detIND-yy-CCA for yy ∈ {UE,ENC,UPD},
where the adversary has access to O.Dec. We follow the trivial win analysis in KLR19: suppose the adversary
knows a challenge ciphertext (C̃, e0) ∈ L̃ and tokens from epoch e0 + 1 to epoch e, then the adversary can
update the challenge ciphertext from epoch e0 to epoch e. If A sends the updated ciphertext to O.Dec this will
reveal the underlying message, and A trivially wins the game: we shall exclude this type of attack.

Define L̃∗ to be the extended set of L̃ in which the adversary has learned or inferred information via token
corruption. Whenever O.Dec receives a ciphertext located in L̃∗, the challenger will set the trivial win flag
twf to be 1. The list L̃∗ is updated while the security game is running. After the challenge query happens, the
challenger updates L̃∗ whenever an element is added to list L̃ or a token is corrupted. In Fig. 13 we show how
list L̃∗ is updated.
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Update L̃∗

1 : if challenge query or O.UpdC̃ happens

2 : L̃∗ ← L̃∗ ∪ {(C̃, ·)}
3 : if phase = 1 and O.Corr(token, ·) happens

4 : for i ∈ T ∗ and (C̃i−1, i− 1) ∈ L̃∗ do

5 : L̃∗ ← L̃∗ ∪ {(C̃i, i)}

Figure 13: Update procedure for list L̃∗

Update L∗

1 : if O.Enc or O.Upd happens
2 : L∗ ← L∗ ∪ {(·,C, ·)}
3 : if O.Corr(token, ·) happens
4 : for i ∈ T ∗ do

5 : for (j,Ci−1, i− 1) ∈ L∗ do

6 : Ci ← UE.Upd(∆i,Ci−1)

7 : L∗ ← L∗ ∪ {(j,Ci, i)}

Figure 14: Update procedure for list L∗.

3.2.2 Trivial Win Conditions in Ciphertext Integrity Games

We again follow the trivial win analysis in KLR19. In ciphertext integrity games for updatable encryption, we
do not consider the randomized update setting as the adversary can update an old ciphertext via a corrupted
token to provide any number of new valid forgeries to the Try query to trivially win this game.

Trivial wins via keys. If an epoch key is corrupted, then the adversary can use this key to forge ciphertexts in
this epoch. We exclude this trivial win: if the adversary provides a forgery in an epoch in listK∗, the challenger
sets twf to 1.

Trivial wins via ciphertexts. Suppose the adversary knows a ciphertext (C, e0) ∈ L and tokens from epoch
e0 + 1 to epoch e, then the adversary can provide a forgery by updating C to epoch e. We shall exclude this
type of forgeries.

Define L∗ to be the extended set of L in which the adversary has learned or inferred information via token
corruption. If O.Try receives a ciphertext located in L∗, the challenger will set twf to 1. The list L∗ is updated
while the security game is running. Ciphertexts output by O.Enc and O.Upd are known to the adversary.
Furthermore, whenever a token is corrupted, the challenger may update list L∗ as well. In Fig. 14 we show how
list L∗ is updated.

3.3 Firewall Technique

In order to prove security for updatable encryption in the epoch-based model with strong corruption capabilities,
cryptographic separation is required between the epochs in which the adversary knows key material, and those
in which it knows challenge-equal ciphertexts (acquired/calculated via queries to O.UpdC̃ and O.Corr(∆)).
To ensure this, we follow prior work in explicitly defining the ‘safe’ or insulated regions, as we explain below.
These regions insulate epoch keys, tokens and ciphertexts: outside of an insulated region a reduction in a
security proof can generate keys and tokens itself, but within these regions it must embed its challenge while
still providing the underlying adversary with access to the appropriate oracles. A thorough discussion of how
we leverage these insulated regions in proofs is given in Section 5.3.

To understand the idea of firewalls, consider any security game (for bi-directional schemes) in which the
trivial win conditions are not triggered. If the adversary A corrupts all tokens then either it never corrupts any
keys or it never asks for a challenge ciphertext. Suppose that A does ask for a challenge ciphertext in epoch
ẽ 7. Then there exists an (unique) epoch continuum around ẽ such that no keys in this epoch continuum, and
no tokens in the boundaries of this epoch continuum are corrupted. Moreover, we can assume that all tokens
within this epoch continuum are corrupted, because once the adversary has finished corrupting keys, it can
corrupt any remaining tokens that do not ‘touch’ those corrupted keys. This observation is first used in the
IND-UPD proof of RISE provided by Lehmann and Tackmann [LT18a], and Klooß et al. [KLR19a] provided
an extended description of this ‘key insulation’ technique. We name these epoch ranges insulated regions and
their boundaries to be firewalls.

7In the situation that the adversary does not corrupt any keys to the left or the right (or both) of the challenge epoch, the insulated
region thus extends to the boundary (or boundaries) of the epoch continuum.
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Definition 7. An insulated region with firewalls fwl and fwr is a consecutive sequence of epochs (fwl, . . . , fwr)
for which:

• no key in the sequence of epochs (fwl, . . . , fwr) is corrupted;

• the tokens ∆fwl and ∆fwr+1 are not corrupted (if they exist);

• all tokens (∆fwl+1, . . . ,∆fwr) are corrupted (if any exist).

We denote the firewalls bordering the special insulated region that contains ẽ as ˆfwl and ˆfwr – though note
that there could be (many, distinct) insulated regions elsewhere in the epoch continuum. Specifically, when
the adversary asks for updated versions of the challenge ciphertext, the epoch in which this query occurs must
also fall within (what the challenger later calculates as) an insulated region. In Fig. 15 we give an algorithm
FW-Find for computing firewall locations. The list FW tracks, and appends a label to, each insulated region
and its firewalls. Observe that if an epoch is a left firewall, then neither the key nor the token for that epoch are
corrupted. From the left firewall, since we assume that all tokens are corrupted, track to the right until either a
token is not corrupted or a key is.

FW-Find

1 : FW ← ∅
2 : j = 0

3 : for e ∈ {0, ..., n} do

4 : if e ∈ ¬(T ∗ ∪ K∗)
5 : j ← j + 1

6 : fwlj ← e

7 : if (e + 1 /∈ T ∗) and (e /∈ K∗)
8 : fwrj ← e

9 : FW ← {(j, fwlj , fwrj)}

Figure 15: Algorithm FW-Find for computing all firewalls.

3.3.1 Example of Epoch Corruption and Trivial Wins

In Fig. 16 we indicate the trivial win conditions and insulated regions for a particular adversarial corruption
strategy, in the experiment for detIND-UE∗-CPA (this notion chosen here to demonstrate how the challenger
populates its lists). Suppose challenge epoch ẽ = 8, and further assume K∗ = {1, 6, 9}, and T ∗ = {3, 4, 8},
meaning that C∗ = {7, 8}. Suppose C̄ is in epoch 1 and the adversary has asked O.Upd(C̄) in epoch 2, so
C̄2, C̄3, C̄4 are updated ciphertexts of C̄, therefore I∗ = {1, 2, 3, 4}. So C∗∩K∗ = ∅ and I∗∩C∗ = ∅, the trivial
win conditions have not occurred. Then we see insulated regions: {0} is the first insulated region, {2, 3, 4} is
the second insulated region, etc. We compute T ∗ ∪K∗ = {1, 3, 4, 6, 8, 9}, so ¬(T ∗ ∪K∗) = {0, 2, 5, 7}: using
FW-Find we know this is the set of left firewalls, and the right firewalls are {0, 4, 5, 8}.

Epoch {0} 1 {2 3 4} {5} 6 {7 ẽ} 9
Key × k1 × × × × k6 × × k9

Token × × ∆3 ∆4 × × × ∆8 ×
Challenge ciphertexts × × × × × × × C̃7 C̃8 ×
Challenge input × C̄ C̄2 C̄3 C̄4 × × × × ×

Figure 16: An example of trivial win conditions and insulated regions incurred by an adversary playing
detIND-UE∗-CPA, where × indicates the keys/tokens/ciphertexts not revealed to the adversary, and {} indi-
cates insulated regions.
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4 On the Security of Updates

In this section we present a new notion of security for updatable encryption schemes, which we denote xxIND-UE-atk.
This notion captures both security of fresh encryptions (i.e. implies xxIND-ENC-atk) and unlinkability (i.e. im-
plies xxIND-UPD-atk). We first explain the new notion and then describe its relation to previous notions. Then,
we prove a generic relationship among CPA, CTXT and CCA to complete the picture for security notions for
UE schemes.

4.1 A New Definition of Confidentiality

In the security game for xxIND-UE-atk, the adversary submits one message and a ciphertext from an earlier
epoch that the adversary received via a call toO.Enc. The challenger responds with either an encryption of that
message or an update of that earlier ciphertext, in the challenge (current) epoch ẽ.

Definition 8 (xxIND-UE-atk). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable en-
cryption scheme. Then the xxIND-UE-atk advantage, for (xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)},
of an adversary A against UE is defined as

AdvxxIND-UE-atk
UE, A (λ) =

∣∣∣Pr[ExpxxIND-UE-atk-1
UE, A = 1]−Pr[ExpxxIND-UE-atk-0

UE, A = 1]
∣∣∣

where the experiment ExpxxIND-UE-atk-b
UE, A is given in Fig. 6, Fig. 8 and Fig. 17.

Note that randIND-UE-CPA is strictly stronger than detIND-UE-CPA, since the adversary has strictly more
capabilities. A generalized version of xxIND-UE-atk, denoted xxIND-UE∗-atk, is also given in Fig. 17. In
this game the input challenge ciphertext can come from (i.e. be known to A in) any prior epoch, not just the
epoch immediately before ẽ. Note that xxIND-UE-atk is a special case of xxIND-UE∗-atk. Under some fairly
weak requirements (that all schemes discussed in this paper satisfy) we can prove that xxIND-UE-atk implies
xxIND-UE∗-atk – we prove this result in Section. 4.2.1.

ExpxxIND-UE-atk-b
UE, A (λ)

1 : (M̄, C̄)← A
2 : Create C̃ with (M̄, C̄)

3 : if (C̄, ẽ− 1) /∈ L
4 : return ⊥
5 : if b = 0

6 : C̃ẽ ← UE.Enc(kẽ, M̄)

7 : else

8 : C̃ẽ ← UE.Upd(∆ẽ, C̄)

9 : return C̃ẽ

ExpxxIND-UE∗-atk-b
UE, A (λ)

1 : (M̄, (C̄, e′))← A
2 : Create C̃ with (M̄, (C̄, e′))

3 : if (C̄, e′) /∈ L
4 : return ⊥
5 : if b = 0

6 : C̃ẽ ← UE.Enc(kẽ, M̄)

7 : else

8 : C̃e′ ← C̄

9 : for j ∈ {e′+1, ..., ẽ} do

10 : C̃j ← UE.Upd(∆j , C̃j−1)

11 : return C̃ẽ

Figure 17: Challenge call definition for xxIND-UE-atk and xxIND-UE∗-atk security experiments; the full
experiment is defined in Fig. 6 and Fig. 8.

Remark 3. The definition of xxIND-UE-atk is more concise and intuitively easier to understand than that of
xxIND-UE∗-atk, however in Theorem 2.1 and Theorem 2.2 in Section 4.2.1 we show that xxIND-UE-atk ⇐⇒
xxIND-UE∗-atk. This result and our generic proof techniques mean that all results in this paper that hold for
xxIND-UE-atk, also hold for xxIND-UE∗-atk, and vice versa.

Remark 4. In Section C.1 we show that the RISE scheme presented by LT18 is randIND-UE-CPA secure
under DDH. While this result is perhaps unsurprising8, the proof techniques we use are novel and may be of

8LT18 had already shown that RISE is IND-ENC-CPA and randIND-UPD-CPA, so our result shows that it is stronger than was
previously known.
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independent interest. We give an Oracle-DDH-like game that inherits the epoch-based nature of the updatable
encryption security model, and then use this as a bridge to prove security.

4.2 Relations among Security Notions

In Fig. 18 we show the relationship between the new and existing UE security notions. Note that our new
notion is strictly stronger than the xxIND-ENC-atk and xxIND-UPD-atk notions presented in prior work, and
is in fact stronger than the combination of the prior notions. Further, we show that the generic relation among
CPA, CTXT and CCA, that CPA security coupled with ciphertext integrity implies CCA security, also holds
for updatable encryption schemes. The relationships are proven via Theorem 2.2 to 2.8, and Theorem 3, which
follow next.

Theorem 2 (Informal Theorem). The relationship among the security notions xxIND-UE-atk, xxIND-ENC-atk
and xxIND-UPD-atk are as in Fig. 18. This is proven via Theorem 2.2 to 2.8, and Theorem 3.

randIND-UE-CPA

IND-ENC-CPA

randIND-UPD-CPA

IND-ENC-CPA
+randIND-UPD-CPA

Thm. 2.3
2.5

\ 2.7

detIND-UE-CPA

detIND-UPD-CPA

IND-ENC-CPA

IND-ENC-CPA
+detIND-UPD-CPA

2.6
2.4+2.2

\ 2.7
Def. 8

\

2.8
detIND-UE-CCA

detIND-UPD-CCA

detIND-ENC-CCA

IND-ENC-CCA
+detIND-UPD-CCA

+CTXT

Thm. 3

+CTXT

Thm. 3

+CTXT

Thm. 3

2.4+2.2

2.6

\ 2.7

Figure 18: Relations among confidentiality notions xxIND-yy-atk for xx ∈ {det, rand}, yy ∈
{UE,ENC,UPD}, atk ∈ {CPA,CCA}, and ciphertext integrity (INT-CTXT). Arrow labelling refers to Theo-
rem numbering except where otherwise specified.

4.2.1 Relations between IND-UE and IND-UE∗

Properties of Deterministic Updates Here we will use an an alternative representation of UE.Enc that spec-
ifies a deterministic algorithm with randomness as input, i.e. Ce ← UE.Enc(ke,M; r).

One of our main contributions is a scheme with a deterministic update mechanism – we now discuss some
of the properties of such schemes. The first two properties, simulatable token generation and randomness-
preserving updates, were introduced by Klooß et al. [KLR19a]. Simulatable token generation states that the
real token looks like a token generated from a token simulation algorithm, as we consider bi-directional updates
we omit the generation of the reverse token. Randomness-preserving states that the update of a ciphertext looks
like an encryption of the same message, with the same randomness, under the new key.

Definition 9. [Simulatable token [KLR19a]] Let UE be an updatable encryption scheme. We say that UE
has simulatable token generation if it has the following property: There is a PPT algorithm SimTG(λ) which

samples a token ∆. Furthermore, for arbitrary (fixed) kold
$←− UE.KG(λ) following distributions of ∆ are

identical:

• {∆ | ∆ $←− SimTG(λ)}

• {∆ | knew
$←− UE.KG(λ),∆← UE.TG(kold, knew)}
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Notice that BLMR, BLMR+, RISE, SHINE all have simulatable token generation. Furthermore, the simu-
latable token generation algorithms of these UE schemes generates a token by randomly picking a token from

the token space, i.e. SimTG : ∆
$←− T S .

Definition 10. [Randomness-preserving [KLR19a]] Let UE be an updatable encryption scheme. We say
that UE.Upd (for UE) is randomness-preserving if the following holds: First, as usually assumed, UE en-

crypts with uniformly chosen randomness. Second, all keys (kold, knew)
$←− UE.KG(λ), tokens ∆new $←−

UE.TG(kold, knew), plaintext m and randomness r, we have

UE.Upd(∆new,Cold) = UE.Enc(knew,m; r),

where Cold = UE.Enc(kold,m; r).

Suppose Ci = UE.Enc(ki,m; r), and Cj is an update of Ci from epoch i to epoch j. Randomness-
preserving property makes sure that Cj = UE.Enc(kj ,m; r), which means a (updated) ciphertext under some
epoch key is uniquely decided by the message and randomness.

We define an even weaker property which we call update-preserving: any update sequence starting and
ending at the same key that starts with the same ciphertext will result in the same ciphertext.

Definition 11. [Update-preserving] Let UE be an updatable encryption scheme. with deterministic update al-
gorithm We say that UE.Upd (for UE) is update-preserving if the following holds: for any two sequence of key
pairs with the same start key and end key (ki, ki+1, ..., kj) and (k′i, k

′
i+1, ..., k′j), where ki(= k′i), ki+1, k

′
i+1, ..., kj−1, k

′
j−1, kj(=

k′j)
$←− UE.KG(λ), and tokens ∆l

$←− UE.TG(kl−1, kl), ∆′l
$←− UE.TG(k′l−1, k

′
l), f or any ciphertext Ci in epoch

i, we have Cj = C′j where C′i = Ci,Cl = UE.Upd(∆l,Cl−1), C′l = UE.Upd(∆′l,C
′
l−1) for l = i+ 1, ..., j.

The diagrams in Fig. 19 show how the property works, with the left-hand side indicating keys and tokens
and the right-hand side showing ciphertexts.

ki

k′i+1

ki+1

k′j−1

kj−1

kj

∆′i+1 ∆′i+2, ...,∆′j−1
∆′j

∆i+1
∆i+2, ...,∆j−1 ∆j Ci

C′i+1

Ci+1

C′j−1

Cj−1

Cj

∆′i+1 ∆′i+2, ...,∆′j−1
∆′j

∆i+1
∆i+2, ...,∆j−1 ∆j

Figure 19: Keys and updated ciphertexts in Definition 11

Update-preserving property implies that the updated ciphertext is uniquely determined by (Ci, kj , j-i),
where Ci is the beginning ciphertext for updating, j-i decides how many updates have occurred, and kj decides
the value of the ending epoch’s epoch key.

We now define another property which states that ciphertexts encrypted under one key can be simulated by
ciphertexts encrypted under another key. All schemes in this paper meet this property.

Definition 12 (Simulatable Encryption). Let UE be an updatable encryption scheme. For all keys kold, knew $←−
UE.KG(λ), tokens ∆new $←− UE.TG(kold, knew), plaintext m, define Xold, Xnew to be the statistical distribu-
tion of the ciphertexts output by UE.Enc(kold,m), UE.Enc(knew,m), resp.. We say that UE has simulatable

encryption if update algorithm keeps the ciphertext distribution, i.e. UE.Upd(∆new, Xold)
dist
= Xnew.

Note that we do not restrict that the update algorithm is probabilistic. This means when the update algorithm
is deterministic, it will not add randomness to the updated ciphertext, and it maintains the ciphertext distribution.
For example, suppose U(Z) is a uniform distribution over Z, and for any integer ∆, let UE.Upd(∆, x) =
x+∆, then UE.Upd(∆, U(Z)) = U(Z). This definition looks similar to the definition of perfect re-encryption
provided by Klooß et al. [KLR19a], which mandates that update has the same distribution as decrypt-then-
encrypt. Perfect re-encryption requires the update algorithm is probabilistic, which makes it possible for any
updated ciphertext looks like a fresh encryption. The simulatable encryption property is to make sure that the
update algorithm can keep the distribution of encryption – however it is not necessary to require that the update
algorithm is probabilistic.
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All schemes discussed in this paper satisfy all of the above properties. Note that randomness-preserving
property is strictly stronger than the update-preserving property and simulatable encryption. Obviously, if
a scheme is randomness-preserving then it is also update-preserving and has simulatable encryption. How-
ever, the update-preserving property does not imply randomness-preserving property, even with simulatable
encryption. To see this, construct a deterministic update variant of the RISE scheme (Section C) such that the
randomness r updates to r+ 2: this scheme has the update-preserving property and simulatable encryption, but
not the randomness-preserving property.

xxIND-UE-atk implies xxIND-UE∗-atk. We prove xxIND-UE-atk implies xxIND-UE∗-atk in this section, and
consequently xxIND-UE-atk and xxIND-UE∗-atk are equivalent.

randIND-UE-CPA implies randIND-UE∗-CPA.

Theorem 2.1. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any randIND-UE∗-CPA adversary A against UE, there exists an randIND-UE-CPA adversary B2.1 against
UE such that

AdvrandIND-UE∗-CPA
UE, A (λ) ≤ AdvrandIND-UE-CPA

UE, B2.1 (λ).

Proof. We construct a reduction B2.1: before the epoch counter is incremented, every ciphertext is updated
using the available update oracles. This needs to happen when the adversary moves to the next epoch, so that
it is always possible to provide a valid challenge input to the reducton’s own randIND-UE-CPA challenger and
respond with a valid challenge output to the adversary.

More precisely, when the adversary makes the randIND-UE∗-CPA challenge query, the reduction make its
own randIND-UE-CPA query, submitting the ciphertext provided by the adversary but updated to the epoch one
before the challenge epoch that both algorithms are in. This should give the exact same result as updating the
older ciphertext. Consequently, and since all other oracle queries can just be forwarded, the reduction perfectly
simulates the randIND-UE∗-CPA game. We have the required result.

detIND-UE-atk implies detIND-UE∗-atk.

Proof technique of Theorem 2.2. The proof uses the firewall technique, where the reduction will ‘pause’ its
own epoch continuum while responding to the adversary’s queries. The main left firewall in the detIND-UE∗-atk
game is an epoch in which the detIND-UE-atk reduction can possibly ask for a valid challenge query. Before
the left firewall, the reduction sends the queries received from the adversary A to its own detIND-UE-atk chal-
lenger, and forwards responses to A. Within the firewalls, the reduction stops asking any O.Next queries,
and instead simulates the responses of each query to provide answers to A. Because of this action, the
detIND-UE-atk challenger will stay in epoch ˆfwl. When A makes the detIND-UE∗-atk challenge queries
(if the trivial win conditions of the detIND-UE∗-atk game are not satisfied then the trivial win conditions of the
detIND-UE-atk game will be not satisfied as well), the reduction makes its detIND-UE-atk query using the old
ciphertext (in ˆfwl − 1) instead. After receiving the response, the reduction updates its challenge ciphertext to
the challenge epoch to reply toA. After the right firewall, the query responses are calculated and forwarded, in
the same manner as before the left firewall.

Theorem 2.2. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme
has simulatable token generation, update-preserving property and simulatable encryption property. For any
detIND-UE∗-atk adversaryA against UE, where atk ∈ {CPA,CCA}, there exists an detIND-UE-atk adversary
B2.2 against UE such that

AdvdetIND-UE∗-atk
UE, A (λ) ≤ (n+ 1)2 ·AdvdetIND-UE-atk

UE, B2.2 (λ),

Proof. We use three steps to prove this result.
(Step 1.) Consider a modified version of detIND-UE∗-atk. For b ∈ {0, 1}, define experiments ExpINT1-b

to be the same as ExpdetIND-UE∗-atk-b except that the experiments randomly pick ˆfwl, ˆfwr, and if ˆfwl, ˆfwr are
not the firewalls around challenge epoch ẽ, then the experiment returns a random bit b′. More formally, the
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values ˆfwl, ˆfwr are the desired firewalls if the challenge is made inside – i.e. ẽ ∈ [ ˆfwl, ˆfwr] – and they actually
consitute an insulate region, i.e. (, ˆfwl, ˆfwr) ∈ FW)).

These firewalls ˆfwl, ˆfwr could take any value in {0, ..., n}, so this loss is upper bounded by (n + 1)2. We
have

AdvdetIND-UE∗atk
UE,A (λ) ≤ (n+ 1)2AdvINT1

UE,A.

(Step 2.) Then we consider experiments ExpINT2-b, which is the same as ExpINT1-b except for: in the
insulated region all encryptions are updated ciphertexts of ciphertexts encrypted in left firewall ˆfwl By this we
mean that if the adversary asks for any O.Enc, O.Dec and challenge query, the responses work as follows:

• O.Enc(M): if called in an epoch ˆfwl < e ≤ ˆfwr, encrypt the message in left firewall ˆfwl, then update the
ciphertext to epoch e, and return the updated ciphertext.

• O.Dec(C): if called in an epoch ˆfwl < e ≤ ˆfwr, reverse update the ciphertext from e back to ˆfwl, then
decrypt the updated ciphertext, and return the decrypted value.

• challenge query, on input (M̄, (C̄, e′)): if b = 0, encrypt the message M̄ in left firewall ˆfwl, then update
the ciphertext to the challenge epoch ẽ; if b = 1, update ciphertext C̄ from epoch e′ to epoch ẽ. Return
the challenge ciphertext.

Since we assume that UE has the simulatable encryption property, both operations are possible so we have

AdvINT1
UE, A(λ) = AdvINT2

UE, A(λ).

(Step 3.) We construct a reduction B2.2, detailed in Fig. 20 and Fig. 21, that is playing the detIND-UE-atk
game and runs A. We claim that

AdvINT2
UE, A(λ) ≤ AdvdetIND-UE-atk

UE, B2.2 (λ).

If ˆfwl, ˆfwr are the desired firewalls, then [ ˆfwl, ˆfwr] ⊆ C∗. If the trivial win conditions in ExpINT2-b are not
set (the same result as the trivial win conditions in ExpdetIND-UE∗-atk-b), i.e. I∗∩C∗ = ∅, then I∗∩ [ ˆfwl, ˆfwr] =
∅. That means A never asks O.Upd(C̄) and O.Corr(token) in ˆfwl. So the reduction uses the relevant challenge
input to ask a challenge query to its own detIND-UE-atk challenger in epoch ˆfwl, and it will not trivially lose.

Before the epoch counter is incremented, every ciphertext is updated using the available update oracles.
This needs to happen when the adversary moves to the next epoch, so that it is always possible to provide
a valid challenge input to the reducton’s own detIND-UE-atk challenger and respond with a valid challenge
output to the adversary.

Within the firewalls, the reduction simulates all ciphertexts and uses the list FL and the list F̃L to track
non-challenge ciphertexts and challenge-equal ciphertexts, respectively. When the challenge query happens
with input (M̄, (C̄, e′)), the reduction can find all updated versions of C̄ by checking the first entry of the list
L. The reduction uses the ciphertext in epoch ˆfwl-1 with the same query identifier c as a challenge input,
sending to its own detIND-UE-atk challenger. (Note that e′ < ˆfwl, otherwise, [ ˆfwl, ˆfwr] ⊆ I∗ and the trivial
win condition is triggered.) After receiving the response from the detIND-UE-atk challenger, B2.2 updates the
received ciphertext to the challenge epoch to reply A.

Eventually B2.2 receives b′ from A, and simply outputs b′ to its detIND-UE-atk challenger. When B2.2

interacts with ExpdetIND-UE-atk-b
UE, B2.2 , B2.2 can perfectly simulate ExpINT2-b

UE, A to A. Then we have the required
result.

4.2.2 Relations among IND-ENC, IND-UPD, and IND-UE

In this section, we analyze the relations among notions with different challenge input. Since similar proof
techniques are used in Theorems 2.3, 2.4, 2.5 and 2.6, of these we give full proof details only for Theorem 2.3.

Theorem 2.3. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any IND-ENC-CPA adversary A against UE, there exists an randIND-UE-CPA adversary B2.3 against UE
such that

AdvIND-ENC-CPA
UE, A (λ) ≤ 2 ·AdvrandIND-UE-CPA

UE, B2.3 (λ).
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Reduction B2.2 playing ExpdetIND-UE-atk-b
UE, B2.2

1 : do Setup;FL, F̃L,L, L̃ ← ∅

2 : ˆfwl, ˆfwr
$←− {0, ..., n}

3 : M̄, (C̄, e′)← AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr(λ)

4 : phase← 1

5 : Create C̃ with (M̄, (C̄, e′)), get C̃ẽ

6 : b′ ← AO.Enc,(O.Dec),O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)

7 : twf ← 1 if

8 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅

9 : if ABORT occurred or (·, ˆfwl, ˆfwr) 6∈ FW or twf = 1

10 : b′
$←− {0, 1}

11 : return b′

Figure 20: Reduction B2.2 for proof of Theorem 2.2. The adversary may call forO.Dec in the CCA game. The
oracles in Fig. 21 show how B2.2 responds to A, including calls to oracles in its own detIND-UE-atk game.

Proof. We construct a reduction B2.3 running the randIND-UE-CPA experiment which will simulate the re-
sponses of queries made by the IND-ENC-CPA adversary A. To provide a valid non-challenge ciphertext to its
own challenger, B2.3 must run A out of step with its own game, so epoch 0 as far as A is concerned is actually
epoch 1 for B2.3, and so on.

1. B2.3 chooses b
$←− {0, 1}.

2. B2.3 receives the setup parameters from its randIND-UE-CPA challenger, chooses M
$←− MS and calls

O.Enc(M) which returns some C0. Then B2.3 calls O.Next once and sends the setup parameters to A.

3. (a) Whenever B2.3 receives the queries O.Enc,O.Upd,O.Corr from A, B2.3 sends these queries to its
randIND-UE-CPA challenger, and forwards the responses to A.

(b) WheneverO.Next is called byA, B2.3 randomly chooses a message M
$←−MS and callsO.Enc(M)

to receive some Ce, and then calls O.Next.

4. At some point, in epoch ẽ (for its game), B2.3 receives the challenge query (M̄0, M̄1) from A. Then B2.3

sends (M̄b,Cẽ−1) as challenge to its own randIND-UE-CPA challenger. After receiving the challenge
ciphertext, C̃ẽ, from its challenger, B2.3 sends C̃ẽ to A.

5. B2.3 continues to answer A’s queries using its own oracles, now including O.UpdC̃.

6. Finally B2.3 receives the output bit b′ from A. If b = b′ then B2.3 returns 0. Otherwise B2.3 returns 1.

We now bound the advantage of B2.3. The point is that whenever B2.3 returns a random encryption to A,
B2.3’s probability of winning is exactly 1/2 because the bit b′ from A is independent of its choice of b. This
happens with probability 1/2. However, when B2.3 returns a “correct” value to A (an encryption of M̄0 or M̄1),
then B2.3’s probability of winning is the same as the probability that A wins.

First note that, as usual,

AdvrandIND-UE-CPA
UE,B2.3 = |Pr[ExprandIND-UE-CPA-1

UE, B2.3 = 1]−Pr[ExprandIND-UE-CPA-0
UE, B2.3 = 1]|.

We claim that Pr[ExprandIND-UE-CPA-1
UE, B2.3 = 1] = 1/2 because in this case C̃ẽ is independent of b and so b′ must

23



O.Enc(M)

1 : c← c + 1

2 : if e 6∈ { ˆfwl+1, ..., ˆfwr}
3 : call O.Enc(M), get Ce

4 : L ← L ∪ {(c,Ce, e)}

5 : if e ∈ { ˆfwl+1, ..., ˆfwr}
6 : call O.Enc(M), get C ˆfwl

7 : L ← L ∪ {(c,C ˆfwl,
ˆfwl)}

8 : for j ∈ { ˆfwl+1, ..., e} do

9 : Cj ← UE.Upd(∆j ,Cj−1)

10 : FL ← FL ∪ {(c,Ce, e)}
11 : return Ce

O.Next

12 : if e ∈ {1, ..., ˆfwl-1} then

13 : for (c,Ce−1, e− 1) ∈ L do

14 : call O.Upd(Ce-1), get Ce

15 : L ← L ∪ {(c,Ce, e)}
16 : call O.Next

17 : if e ∈ { ˆfwr+1, ..., n} then

18 : call O.Next

19 : if e ∈ { ˆfwl, ..., ˆfwr-1} then

20 : e← e+1

21 : ∆e
$←− SimTG(λ)

22 : if e = ˆfwr then

23 : for j ∈ { ˆfwl+1, ..., ˆfwr+1} do

24 : call O.Next
25 : for (c,Cj-1, j-1) ∈ L do

26 : call O.Upd(Cj-1)

27 : get Cj

28 : L ← L ∪ {(c,Cj , j)}
29 : for (C̃j-1, j-1) ∈ L̃ do

30 : call O.UpdC̃(C̃j-1))

31 : get C̃j

32 : L̃ ← L̃ ∪ {(C̃j , j)}

O.Upd(Ce−1)

33 : if (c,Ce−1, e− 1) /∈ L ∪ FL
34 : return ⊥

35 : if e ∈ {1, ..., ˆfwl}
36 : call O.Upd(Ce−1), get Ce

37 : L ← L ∪ {(c,Ce, e)}

38 : if e ∈ { ˆfwr+2, ..., n}
39 : call O.Upd(Ce−1), get Ce

40 : L ← L ∪ {(c,Ce, e)}

41 : if e ∈ { ˆfwl+1, ..., ˆfwr}
42 : Ce ← UE.Upd(∆e,Ce−1)

43 : FL ← FL ∪ {(c,Ce, e)}

44 : if e = ˆfwr+1

45 : find (c,Ce, e) ∈ L
46 : return Ce

O.Corr(inp, ê)

47 : do Check(inp, ê; e; ˆfwl, ˆfwr)

48 : if inp = key

49 : K ← K ∪ {ê}
50 : return kê

51 : if inp = token

52 : T ← T ∪ {ê}

53 : if ê ∈ {1, ..., ˆfwl-1}
54 : call O.Corr(inp, ê)
55 : get ∆ê

56 : if { ˆfwr+2, ..., n}
57 : call O.Corr(inp, ê)
58 : get ∆ê

59 : if ê ∈ { ˆfwl+1, ..., ˆfwr}
60 : find ∆ê

61 : return ∆ê

Create C̃ with (M̄, (C̄, e′))

62 : if ẽ 6∈ { ˆfwl, ..., ˆfwr}
63 : ABORT

64 : if (c, C̄, e′) 6∈ L
65 : ABORT

66 : find (c,C ˆfwl−1,
ˆfwl− 1) ∈ L

67 : call cq (M̄,C ˆfwl−1)

68 : get C̃ ˆfwl

69 : L̃ ← L̃ ∪ {(C̃ ˆfwl,
ˆfwl)}

70 : for j ∈ { ˆfwl+1, ..., ˆfwr} do

71 : C̃j ← UE.Upd(∆j , C̃j−1)

72 : F̃L ← F̃L ∪ {(C̃j , j)}
73 : return C̃ẽ

O.UpdC̃

74 : if e ∈ {1, ..., ˆfwl-1}
75 : return ⊥
76 : C ← C ∪ {e}

77 : if e ∈ { ˆfwl}
78 : find (C̃e, e) ∈ L̃

79 : if e ∈ { ˆfwl+1, ..., ˆfwr}
80 : find (C̃e, e) ∈ F̃L

81 : if e ∈ { ˆfwr+1, ..., n}
82 : call O.UpdC̃, get C̃e

83 : return C̃e

O.Dec(C)

84 : if phase← 1 and C ∈ L̃∗

85 : twf ← 1

86 : return ⊥

87 : if e 6∈ { ˆfwl+1, ..., ˆfwr}
88 : call O.Dec(C), get M′/⊥

89 : if e ∈ { ˆfwl+1, ..., ˆfwr}

90 : for j ∈ {e, ..., ˆfwl+1} do

91 : Cj−1 ← UE.Upd−1(∆j ,Cj)

92 : call O.Dec(C ˆfwl), get M′/⊥
93 : return M′ or ⊥

Figure 21: Oracles used in the proof of Theorem 2.2. In line 67 of the Create C̃ description, call cq means that
the reduction makes its own challenge query with these values.
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also be independent of b. Then we have:

AdvrandIND-UE-CPA
UE,B2.3 =

∣∣∣∣12 −Pr[ExprandIND-UE-CPA-0
UE, B2.3 = 1]

∣∣∣∣
=

∣∣∣∣12 −
(

1

2
·Pr[ExpIND-ENC-CPA-0

UE, A = 1] +
1

2
·Pr[ExpIND-ENC-CPA-1

UE, A = 0]

)∣∣∣∣
=

∣∣∣∣12 − 1

2
·Pr[ExpIND-ENC-CPA-0

UE, A = 1]− 1

2

(
1−Pr[ExpIND-ENC-CPA-1

UE, A = 1]
)∣∣∣∣

=

∣∣∣∣12 · (Pr[ExpIND-ENC-CPA-0
UE, A = 1]−Pr[ExpIND-ENC-CPA-1

UE, A = 1]
)∣∣∣∣

=
1

2
·AdvIND-ENC-CPA

UE, A .

A remark on Theorem 2.4. Directly proving that detIND-UE-atk implies detIND-ENC-atk is very challeng-
ing, and in fact the difficulty is the same as proving that detIND-UE-atk implies detIND-UE∗-atk. Since we
have proved detIND-UE-atk implies detIND-UE∗-atk in Theorem 2.2 in Section 4.2.1, we do not repeat the
similar proof approach here. We can just prove detIND-UE∗-atk implies detIND-ENC-atk, which is easy. We
follow a very similar approach to the proof of Theorem 2.3. The detIND-UE∗-atk (reduction) adversary can ask
for tokens almost as freely as the detIND-ENC-atk adversary without incurring the trivial win conditions. But
since there should at least one token, in an epoch before (include) challenge epoch ẽ, is unknown to the adver-
sary, we again have to run our reduction out of step with the detIND-ENC-atk adversary (essentially creating
an artificial epoch).

Theorem 2.4. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any detIND-ENC-atk adversary A against UE, where atk ∈ {CPA,CCA}, there exists a detIND-UE∗-atk
adversary B2.4 against UE such that

AdvdetIND-ENC-atk
UE, A (λ) ≤ 2 ·AdvdetIND-UE∗-atk

UE, B2.4 (λ).

Proof. Similar to the proof strategy in Theorem 2.3, we construct a detIND-UE∗-atk adversary B2.4 against

UE to simulate the responses to queries made by detIND-ENC-atk adversary A. B2.4 chooses b
$←− {0, 1}.

Since B2.4 is allowed to takes its challenge ciphertext from any epoch in its detIND-UE∗-atk experiment, it
can in particular uses the random ciphertext created in epoch 0, C0. Note that, in contrast to Step 3 (b) of the
simulation in the proof of Theorem 2.3, there is now no need for B2.4 to generate a random ciphertext for each
epoch. Also B2.4 will never ask for O.Upd(C0) to its own detIND-UE∗-atk challenger.

When receiving the challenge query (M̄0, M̄1) from A, the reduction B2.4 sends (M̄b,C0) as challenge to
its own detIND-UE∗-atk challenger. Since A has no view of epoch 0, A cannot ask for ∆1. In addition, A will
never ask for O.Upd(C0).

Thus the trivial win condition I∗ ∩ C∗ 6= ∅ will not be satisfied in the detIND-UE∗-atk game. The other
trivial win(s), i.e. trivial win via keys and ciphertexts (and trivial wins via decryptions), will also pass from
detIND-ENC-atk game to detIND-UE∗-atk game. The result follows using the same calculation as in the proof
of Theorem 2.3.

Theorem 2.5. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme.
For any randIND-UPD-CPA adversary A against UE, there exists an randIND-UE-CPA adversary B2.5 against
UE such that

AdvrandIND-UPD-CPA
UE, A (λ) ≤ 2 ·AdvrandIND-UE-CPA

UE, B2.5 (λ).

Proof. Similarly to the proof of Theorem 2.3, we construct a randIND-UE-CPA reduction B2.5 against UE to
simulate the responses of queries made by randIND-UPD-CPA adversary A. However in this case it is not

necessary for the reduction to be out-of-step with the adversary. B2.5 first chooses b
$←− {0, 1}. B2.5 forwards

all queries from A to its own oracles, and when it receives challenge query (C̄0, C̄1) from A, B2.5 samples a
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random message M, and sends (M, C̄b) to the randIND-UE-CPA challenger. The result follows using a similar
calculation to that in the proof of Theorem 2.3.

Theorem 2.6. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme
For any detIND-UPD-atk adversary A against UE, where atk ∈ {CPA,CCA}, there exists an detIND-UE-atk
adversary B2.6 against UE such that

AdvdetIND-UPD-atk
UE, A (λ) ≤ 2 ·AdvdetIND-UE-atk

UE, B2.6 (λ).

Proof. The proof follows exactly the same steps as that of Theorem 2.5, in addition to the observation that in
the det versions and CCA versions of the games, the trivial win flag twf is either triggered for both adversary
and reduction or for neither when O.Corr queries are made by the underlying adversary.

Theorem 2.7. Each of the following hold for (xx, atk) ∈ {(det,CPA), (rand,CPA), (det,CCA)}.
(i). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme and let αENC

be the xxIND-ENC-atk advantage of an adversaryA against UE. Then there exists a modified scheme UE′ such
that A’s xxIND-ENC-atk advantage against UE′ is (still) αENC, and there exists an xxIND-UE-atk adversary B
against UE′ with advantage 1.
(ii). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme and let αUPD

be the xxIND-UPD-atk advantage of an adversaryA against UE. Then there exists a modified scheme UE′ such
that A’s xxIND-UPD-atk advantage against UE′ is (still) αUPD, and there exists an xxIND-UE-atk adversary B
against UE′ with advantage 1.
(iii). Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme and let αENC

be the xxIND-ENC-atk advantage of an adversary AENC against UE and αUPD be the xxIND-UPD-atk advan-
tage of an adversary . Then there exists a modified scheme UE′ such that AENC’s xxIND-ENC-atk advantage
against UE′ is (still) αENC, AUPD’s xxIND-UPD-atk advantage against UE′ is (still) αUPD, and there exists an
xxIND-UE-atk adversary B against UE′ with advantage 1.

Proof. All three are demonstrated using the same counterexample. All algorithms for UE′ are the same as for
UE, except UE′.Enc is defined by modifying UE.Enc to append the epoch number in which the ciphertext was
initially created. This does not affect an adversary’s ability to win the xxIND-ENC-atk or xxIND-UPD-atk
games but trivially breaks xxIND-UE-atk security.

A remark on Theorem 2.8. We construct an updatable encryption scheme which is detIND-UE-CPA secure
but not randIND-UE-CPA secure to prove that detIND-UE-CPA does not imply randIND-UE-CPA. Note that in
Section 5 we will prove that SHINE is detIND-UE-CPA secure (yet it is trivially not randIND-UE-CPA secure),
which provides an example to support this result. However the proof that SHINE is detIND-UE-CPA in the
ideal cipher model (if DDH holds). Here we demonstrate the theorem based on a weaker assumption, namely
the existence of pseudorandom functions.

Proof technique of Theorem 2.8. We use a xxIND-UE-CPA secure UE scheme to construct a new UE scheme
UEnew, where we use a PRF to make a part of the new update algorithm deterministic. Because of this UEnew

will not be randIND-UE-CPA secure. In order to bound the detIND-UE-CPA security of UEnew, we need to
make sure the newly added deterministic part of the updates will not make Enc(m) and Upd(C) distinguishable
– this is where we need the PRF.

Theorem 2.8. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme,
and define a new updatable encryption scheme UEnew in Fig. 22, built using pseudorandom function F :
K × X −→ X . Then, for any detIND-UE-CPA adversary A against UEnew that asks at most QE queries to
O.Enc before it makes its challenge, there exists a PRF adversary BPRF against F and a detIND-UE-CPA
adversary B2.8 against UE such that

AdvdetIND-UE-CPA
UEnew, A (λ) ≤ (n+ 1) · (AdvdetIND-UE-CPA

UE, B2.8 (λ) + 2 ·AdvPRF
F, BPRF +

2QE
2

|X |
),

and there exists a randIND-UE-CPA adversary C against UEnew that wins with probability 1.
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UEnew.KG(λ)

1 : k
$←− UE.KG(λ)

2 : return k

UEnew.TG(ke, ke+1)

3 : ∆′e+1 ← UE.TG(ke, ke+1)

4 : fke+1
$←− K

5 : return (∆′e+1, fke+1)

UEnew.Enc(ke,M)

6 : re
$←− X

7 : C′e
$←− UE.Enc(ke,M)

8 : return (re,C
′
e)

UEnew.Dec(ke,Ce)

9 : parse Ce = (re,C
′
e)

10 : M′/⊥ ← UE.Dec(ke,C
′
e)

11 : return M′

UEnew.Upd(∆e+1,Ce)

12 : parse ∆e+1 = (∆′e+1, fke+1)

13 : parse Ce = (re,C
′
e)

14 : re+1 ← F (fke+1, re)

15 : C′e+1 ← UE.Upd(∆′e+1,C
′
e)

16 : return (re+1,C
′
e+1)

Figure 22: Updatable encryption scheme UEnew for proof of Theorem 2.8, built from PRF F and updatable
encryption scheme UE.

Proof. UEnew is not randIND-UE-CPA secure. If the token in the challenge epoch is corrupted then the adver-
sary can compare r in the value it receives with the value it provided and therefore trivially win. So UEnew is
not randIND-UE-CPA secure.
UEnew is detIND-UE-CPA secure. We proceed in three steps.

(Step 1.) Consider a modified version of detIND-UE-CPA. For b ∈ {0, 1}, define experiments ExpINT1-b

to be the same as ExprandIND-UE-CPA-b except that the experiments randomly pick e∗ ← {0, ..., n}, and if
e∗ 6= ẽ the experiments return a random bit for b′. The loss is upper bounded by n+ 1. Then:

AdvdetIND-UE-CPA
UEnew, A (λ) ≤ (n+ 1) ·AdvINT1

UEnew, A(λ).

(Step 2.) Then we consider modified experiments ExpINT2-b, which are the same as ExpINT1-b except
that the first element of ciphertexts in the guessed epoch e∗ is a uniformly random element. We show that
the ability to notice this change is upper bounded by PRF advantage. More precisely, experiment ExpINT2-b

tracks randomness in the set X (initialized as empty), and when adversary asks an O.Upd or challenge query:

• ForO.Upd(Ce∗-1): parse ∆e∗ = (∆′e∗ , ), parse Ce∗-1 = (re∗-1,C
′
e∗-1), if re∗-1 ∈ X , then the experiment

aborts; otherwise, setX ← X ∪{re∗-1}, randomly choose re∗
$←− X . Return (re∗ ,UE.Upd(∆′e∗ ,C

′
e∗-1)).

• For challenge input (M̄, (r, C̄)): parse ∆e∗ = (∆′e∗ , ), if e∗ 6= ẽ or r ∈ X , then the experiment aborts;

otherwise, set X ← X ∪{r}. If b = 0, return UEnew.Enc(ke∗ , M̄). If b = 1, randomly choose re∗
$←− X ,

return (re∗ ,UE.Upd(∆′e∗ , C̄)).

Note that

AdvINT1

UEnew, A(λ) =
∣∣∣Pr[ExpINT1-1

UEnew, A = 1]−Pr[ExpINT1-0
UEnew, A = 1]

∣∣∣
≤ AdvINT2

UEnew, A(λ) +
∣∣∣Pr[ExpINT2-1

UEnew, A = 1]−Pr[ExpINT1-1
UEnew, A = 1]

∣∣∣
+
∣∣∣Pr[ExpINT2-0

UEnew, A = 1]−Pr[ExpINT1-0
UEnew, A = 1]

∣∣∣
For b ∈ {0, 1}, we wish to prove that∣∣∣Pr[ExpINT2-b

UEnew, A = 1]−Pr[ExpINT1-b
UEnew, A = 1]

∣∣∣ ≤ AdvPRF
F +

QE
2

|X |
.

SupposeA is an adversary trying to distinguish ExpINT2-b
UEnew, A from ExpINT1-b

UEnew, A. We construct a PRF reduction
BPRF, detailed in Fig. 23, against F to simulate the responses of queries made by A. BPRF first guesses when
A is going to ask a challenge query (assume e∗) and in that epoch BPRF does bookkeeping for the randomness
in X (initialized as empty set). Note that the reduction generates all keys and tokens except for fke∗ . Update
randomness in epoch e∗ is simulated by sending the randomness to the PRF challenger and forwarding the
response to A.
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Reduction BPRF playing ExpPRF-b
F, BPRF

1 : do Setup

2 : M̄, (r, C̄)← AO.Enc,O.Next,O.Upd,O.Corr(λ)

3 : phase← 1

4 : Create C̃ with (M̄, (r, C̄)), get C̃e∗

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃e∗)

6 : twf ← 1 if

7 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅
8 : if ABORT occurred or twf = 1

9 : b′
$←− {0, 1}

10 : return b′

11 : if b′ = b

12 : return 0

13 : else

14 : return 1

Setup(λ)

15 : k0 ← UE.KG(λ)

16 : ∆0 ←⊥; e← 0; phase, twf ← 0

17 : e∗
$←− {0, ..., n}

18 : L, L̃, C,K, T , X ← ∅

O.Next†

O.Upd(re−1,C
′
e−1)

19 : if (·, (re−1,C
′
e−1), e− 1) 6∈ L

20 : return ⊥
21 : if e 6= e∗

22 : Ce←UEnew.Upd((∆′e, fke), (re−1,C
′
e−1))

23 : if e = e∗

24 : if re−1 ∈ X
25 : return ABORT

26 : X ← X ∪ {re−1}
27 : re ← O.f(re−1) // embed

28 : C′e ← UE.Upd(∆′e,C
′
e−1)

29 : Ce ← (re,C
′
e)

30 : L ← L ∪ {(·,Ce, e)}
31 : return Ce

Create C̃ with (M̄, (r, C̄))

32 : if (·, (r, C̄), ẽ− 1) 6∈ L or e∗ 6= ẽ or r ∈ X
33 : return ⊥
34 : X ← X ∪ {r}
35 : if b = 0

36 : C̃ẽ ← UEnew.Enc(kẽ, M̄)

37 : else

38 : rẽ ← O.f(r) // embed

39 : C̃′ẽ ← UE.Upd(∆′ẽ, C̄)

40 : C̃ẽ ← (rẽ, C̃
′
ẽ)

41 : return C̃ẽ

Figure 23: Reduction BPRF for proof of Theorem 2.8, BPRF simulates O.Enc, O.Next,O.Corr and O.UpdC̃
queries as described in Fig. 6. Recall that the PRF advantage in Definition 3, O.f replies with F(k, r) or a
random value. † indicates fke∗ are skipped in the generation.

Eventually BPRF receives the guess from A, and outputs 0 if A guesses that it is in ExpINT1-b, and 1 if A
guesses that it is in ExpINT2-b.

When BPRF interacts with ExpPRF-0, it can simulate ExpINT1-b perfectly except with a negligible prob-
ability. The negligible term is due to BPRF aborts the game. Since the number of existed randomnesses is
small compared to the number of possible random elements, the probability that BPRF aborts the game is upper
bounded by QE

2

|X | . When BPRF interacts with ExpPRF-1, it can perfectly simulate ExpINT2-b, thus we have the
required result.

(Step 3.) Now we conclude that the advantage of winning INT2 is upper bounded by detIND-UE-CPA ad-
vantage (against UE). Suppose an INT2 adversaryA is trying to attack UEnew. We construct a detIND-UE-CPA
reduction B2.8, detailed in Fig. 24, attacking UE and runs A. B2.8 first guesses when A is going to ask a chal-
lenge query (assume e∗) and in that epoch B2.8 does bookkeeping for the randomness inX (initialized as empty
set).

Eventually B2.8 receives b′ from A, and simply outputs b′. Then B2.8 perfectly simulates ExpINT2-b to A.
We have the required result

AdvINT2

UEnew, A(λ) ≤ AdvdetIND-UE-CPA
UE, B2.8 (λ).
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Reduction B2.8 playing ExpdetIND-UE-CPA
UE, B2.8

1 : do Setup

2 : M̄, (r, C̄)← AO.Enc,O.Next,O.Upd,O.Corr(λ)

3 : phase← 1

4 : Create C̃ with (M̄, (r, C̄)), get C̃e∗

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃e∗)

6 : twf ← 1 if

7 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅
8 : if ABORT occurred or twf = 1

9 : b′
$←− {0, 1}

10 : return b′

Setup(λ)

11 : k0 ← UE.KG(λ)

12 : ∆0 ←⊥; e← 0; phase, twf ← 0

13 : e∗
$←− {0, ..., n}

14 : L, L̃, C,K, T , X ← ∅

O.Enc(M)

15 : call O.Enc(M),get C′

16 : r
$←− X

17 : return (r,C′)

O.Next

18 : call O.Next

19 : fke+1
$←− K

20 : if phase = 1

21 : r̃e+1 = F (fke+1, r̃e)

22 : L̃ ← L̃ ∪ {((r̃e+1, ·), e + 1)}

O.Upd((re−1,C
′
e−1))

23 : if (·, (re−1,C
′
e−1), e− 1) 6∈ L

24 : return ⊥
25 : call O.Upd(C′e−1),get C′e

26 : if e 6= e∗

27 : re = F (fke, r)

28 : if e = e∗

29 : if re−1 ∈ X
30 : return ABORT

31 : X ← X ∪ {re−1}

32 : re
$←− X

33 : L ← L ∪ {(·, (re,C′e), e)}
34 : return (re,C

′
e)

O.Corr(inp, ê)

35 : call O.Corr(inp, ê),get ⊥ or kê or ∆′ê

36 : return ⊥ or kê or (∆′ê, fkê)

Create C̃ with (M̄, (r, C̄))

37 : if (·, (r, C̄), ẽ− 1) 6∈ L or e∗ 6= ẽ or r ∈ X
38 : return ⊥
39 : X ← X ∪ {r}
40 : call cq with (M̄, C̄),get C̃′ // embed

41 : r̃ẽ
$←− X

42 : L̃ ← L̃ ∪ {((r̃ẽ, C̃′), ẽ)}
43 : return (r̃ẽ, C̃

′)

O.UpdC̃

44 : call O.UpdC̃,get C̃′e // embed

45 : L̃ ← L̃ ∪ {((r̃e, C̃′e), e)}
46 : return (r̃e, C̃

′
e)

Figure 24: Reduction B2.8 for proof of Theorem 2.8. In line 40 of the Create C̃ description, call cq means that
the reduction makes its own challenge query with these values.

4.2.3 Relation among CPA, CTXT and CCA Security

Theorem 3. Let UE = {UE.KG,UE.TG,UE.Enc,UE.Dec,UE.Upd} be an updatable encryption scheme. For
any detIND-yy-CCA adversaryA against UE, there exists an INT-CTXT adversary B3a and an detIND-yy-CPA
adversary B3b against UE such that

AdvdetIND-yy-CCA
UE, A (λ) ≤ 2AdvINT-CTXT

UE, B3a (λ) + AdvdetIND-yy-CPA
UE, B3b (λ)

where yy ∈ {UE,ENC,UPD}.

We now prove Theorem 3, which states that the combination of detIND-yy-CPA security and INT-CTXT
security yields detIND-yy-CCA, for yy ∈ {UE,ENC,UPD}. The proof proceeds via a single game hop.
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Proof. Game 0

The first game is the experiment ExpdetIND-yy-CCA
UE, A , given in Fig. 11 (or Fig. 12 or Fig. 17). From Def. 5 (or

Def. 6 or Def. 8) we have
AdvdetIND-yy-CCA

UE, A (λ) = 2
∣∣∣Pr[G0 = 1]− 1/2

∣∣∣.
Game 1

In this game we introduce an event bad that is triggered if the adversary asks its decryption oracle for some-
thing that would count as a forgery, and then show that the success probability of a distinguisher between the
two games is bounded by INT-CTXT. Then, we bound the success probability in this modified game by an
adversary against detIND-yy-CCA. We modify O.Dec, such that the boxed statements only run in Game 1:

O.Dec(C)

1 : if phase← 1 and C ∈ L̃∗

2 : return ⊥
3 : M/ ⊥← UE.Dec(ke,C)

4 : if C /∈ L∗ and M′ 6= ⊥

5 : bad← true

6 : return ⊥

We have ∣∣∣Pr[G0 = 1]− 1/2
∣∣∣ ≤ ∣∣∣Pr[G0 = 1]−Pr[G1 = 1]

∣∣∣+
∣∣∣Pr[G1 = 1]− 1/2

∣∣∣
We claim that there exists an INT-CTXT adversary B3a against UE such that∣∣∣Pr[G0 = 1]−Pr[G1 = 1]

∣∣∣ ≤ AdvINT-CTXT
UE, B3a (λ),

and there exists an detIND-yy-CPA adversary B3b such that

2
∣∣∣Pr[G1 = 1]− 1/2

∣∣∣ ≤ AdvdetIND-yy-CPA
UE, B3b (λ).

Claim 1. ∣∣∣Pr[G0 = 1]−Pr[G1 = 1]
∣∣∣ = Pr[bad = true in G1] = AdvINT-CTXT

UE, B3a (λ).

We construct a reduction B3a playing INT-CTXT that simulates the environment of G1 to A. B3a starts
by picking a random bit b, then runs A answering its queries as follows. For a challenge query with input
(C̃0 or M̄0, C̃1 or M̄1). If b =0, B3a sends C̃0 (or M̄0) to its O.Upd (or O.Enc); b =1, B3a sends C̃1 (or M̄1) to
its O.Upd (or O.Enc); eventually, returns the response to A. Furthermore, B3a simulates O.UpdC̃ by sending
the challenge ciphertext to O.Upd, and forwards the response to A.

For a decryption query O.Dec with input C: If C ∈ L∗, B3a checks the corresponding message in list L∗
(adversary B3a does bookkeeping for this list and additionally stores message in this list, list is updated by
O.Enc, O.Upd, O.Corr. Hence this simulation is feasible by an INT-CTXT adversary.), and returns it to A. If
C /∈ L∗, B3a returns ⊥ to A, and sends C to its O.Try oracle.
B3a perfectly simulates G1. Notice that G0 and G1 are identical until UE.Dec(ke,C) 6= ⊥ and C /∈ L∗

happens (which causes bad = true in G1): denote this event to be E. Thus, we have
∣∣∣Pr[G0 = 1] −Pr[G1 =

1]
∣∣∣ = Pr[bad = true in G1] = Pr[E]. If event E happens, which results in win = 1 in the INT-CTXT game,

that means C is a valid forgery in INT-CTXT game. So Pr[E] = AdvINT-CTXT
UE, B3a (λ).

Claim 2.
2
∣∣∣Pr[G1 = 1]− 1/2

∣∣∣ ≤ AdvdetIND-yy-CPA
UE, B3b (λ).

We only need to consider how the detIND-yy-CPA adversary B3b simulates the O.Dec oracle. Since B3b

knows L̃∗ and L∗, whenever A asks O.Dec with C, B3b checks if C ∈ L̃∗ or C /∈ L∗, and if so, responds ⊥.
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Otherwise, B3b checks the corresponding message in list L∗ (adversary B3b does bookkeeping for this list and
additionally stores message in this list as well, list is updated byO.Enc,O.Upd,O.Corr. Hence this simulation
is feasible by an detIND-yy-CPA adversary), and returns it to A.

5 The SHINE Schemes

We now describe our new UE scheme SHINE (Secure Homomorphic Ideal-cipher Nonce-based Encryption).
The encryption algorithm uses a permutation to obfuscate the input to the exponentiation function. Updating a
ciphertext simply requires exponentiation once by the update token, which itself is the quotient of the current
epoch key and the previous epoch key. The scheme comes in three flavors: SHINE0 is presented in Fig. 25
and takes in short messages and only uses a single permutation. The second flavor, MirrorSHINE, is provided
in Fig. 26 and runs two different permutations with the same input. The third flavor OCBSHINE is given in
Fig. 28 and is for applications with arbitrarily long messages, using a family of permutations.

We discuss implementation details of the SHINE schemes in Section 5.6. In particular, for each scheme
in the SHINE suite, it is necessary to embed the output of the permutation (a regular block cipher) into an
appropriate DDH-hard group.

Our proofs of security, given as Theorem 4 for confidentiality and Theorem 5 for integrity, bound an adver-
sary’s detIND-UE-CPA (INT-CTXTs) advantage by DDH (CDH), and are provided in the ideal cipher model.
Furthermore, combining the results of Theorem 3, Theorem 4 and Theorem 5, we have that the suite of SHINE
schemes (i.e. SHINE0, MirrorSHINE and OCBSHINE) are detIND-UE-CCA secure.

5.1 Construction of SHINE Schemes

5.1.1 SHINE via Zero Block: SHINE0.

Suppose a message space ofMS = {0, 1}m and random nonce spaceN = {0, 1}v. The encryption algorithm
feeds as input to the permutation a nonce, the message, and a zero string. The decryption algorithm will return
⊥ if the decrypted value does not end with 0t. The SHINE0 scheme is defined in Fig. 25. If ciphertext integrity
is not required (or file/ciphertext integrity is performed in some other manner), then SHINE0 without the zero
block results in a scheme (denoted SHINE0[CPA]) that is still detIND-UE-CPA secure.

SHINE0.KG(λ)

1 : k
$←− Z∗q

2 : return k

SHINE0.TG(ke, ke+1)

3 : ∆e+1 ←
ke+1

ke

4 : return ∆e+1

SHINE0.Enc(ke,M)

5 : N
$←− N

6 : Ce ← (π(N‖M‖0t))ke

7 : return Ce

SHINE0.Dec(ke,Ce)

8 : a← π−1(C1/ke
e )

9 : parse† a as N′‖M′‖Z
10 : if Z = 0t

11 : return M′

12 : else

13 : return ⊥

SHINE0.Upd(∆e+1,Ce)

14 : Ce+1 ← (Ce)
∆e+1

15 : return Ce+1

Figure 25: Updatable encryption scheme SHINE0. Note that there may be an additional embedding step after
the permutation π, as discussed in Section 5.6. †: ‖N′‖ = v, ‖M′‖ = m, ‖Z‖ = t.
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5.1.2 SHINE via Double Encryption: MirrorSHINE

The construction of MirrorSHINE is similar to SHINE0, except that instead of padding a zero block after
the message, the encryption algorithm processes each message and nonce twice using two different random
permutations. For authentication, we compare if two ciphertext blocks have the same underlying message and
nonce. The idea of the authentication is similar to SHINE0, however here we use the difference of the underlying
message and nonce as the “zero block”. Compared to SHINE0, MirrorSHINE does one more exponentiation in
both encryption and update and requires two ciphertext elements per message, but larger messages are supported
(when using the same – for example standardized – group).

MirrorSHINE.KG(λ)

1 : k
$←− Z∗q

2 : return k

MirrorSHINE.TG(ke, ke+1)

3 : ∆e+1 ←
ke+1

ke

4 : return ∆e+1

MirrorSHINE.Enc(ke,M)

5 : N
$←− N

6 : C1
e ← (π1(N||M))ke

7 : C2
e ← (π2(N||M))ke

8 : Ce ← (C1
e ,C

2
e )

9 : return Ce

MirrorSHINE.Dec(ke,Ce)

10 : parse Ce = (C1
e ,C

2
e )

11 : a1 ← π−1
1 ((C1

e )1/ke)

12 : a2 ← π−1
2 ((C2

e )1/ke)

13 : parse‡a1 as N′||M′

14 : if a1 = a2

15 : return M′

16 : else

17 : return ⊥

MirrorSHINE.Upd(∆e+1,Ce)

18 : parse Ce = (C1
e ,C

2
e )

19 : C1
e+1 ← (C1

e )∆e+1

20 : C2
e+1 ← (C2

e )∆e+1

21 : return C1
e+1,C

2
e+1

Figure 26: Updatable encryption scheme MirrorSHINE, where π1, π2 are two different random permutations.
Note that there may be an additional embedding step after the permutations π1 and π2, as discussed in Sec-
tion 5.6. ‡: ‖N′‖ = v, ‖M′‖ = m.

5.1.3 SHINE for Long Messages via Checksum: OCBSHINE.

The schemes SHINE0 and MirrorSHINE both require that the message space be smaller than the size of an
element of the exponentiation group. This ciphertext expansion is undesirable in many practical scenarios, and
so we wish to construct a SHINE scheme which gives us (almost) no ciphertext expansion and can be applied
to arbitrarily long messages. We build a new SHINE scheme, OCBSHINE, with these properties.

The construction of OCBSHINE is inspired by the authenticated encryption scheme OCB [RBBK01]. Dif-
ferent from OCB mode, the nonce is encrypted inside the ciphertext instead of sending it along with the ci-
phertext. In order to determine the length of the last message block, the encryption algorithm of OCB mode
removes some bits of the last ciphertext block to reveal this information. However in our setting, the output of
the permutations are (mapped to) the input of the exponentiation function: thus all bits of permutation outputs
must be included. Therefore, OCBSHINE includes the length of the last message block in the first ciphertext
component. If ciphertext integrity is not required, then OCBSHINE can be improved by removing the last
ciphertext block.

OCBSHINE is formally defined in Fig. 28 and the encryption process is pictorially represented in Fig. 27;
we give an intuitive description here. Suppose the blocksize is m, and assume the encryption algorithm
OCBSHINE.Enc has input message M. By “partition M into M1, ...,Ml” we mean setting l← max{d|M|/me, 1}
and dividing M into l blocks, i.e. M1, ...,Ml, where |M1| = ... = |Ml−1| = m. The last message block Ml is
padded with zeros to make it length m before computing the permutation output and the checksum, i.e Ml‖0∗
with |Ml‖0∗| = m. Let a = dlog(m)e, so the length of Ml (|Ml| ≤ m) can be written as an a-bit representation.
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N‖|M3| M1 M2 M3‖0∗ Σ

π0 πN‖1‖0 πN‖2‖0 πN‖3‖0 πN‖3‖1

Expke Expke Expke Expke Expke

C0 C1 C2 C3 C4

Figure 27: Diagram describing how the OCBSHINE encryption algorithm works on message M =
(M1,M2,M3). Σ = M1 ⊕M2 ⊕M3‖0∗. There may be an additional embedding step after the permutations,
as discussed in Section 5.6.

Let Perm(m) be the set of all permutations on {0, 1}m. Randomly choose π0
$←−Perm(m), and use this

permutation to randomize the concatenation of the nonce N and an a-bit representation of the last message
block length. Then, index the (random) permutations used to encrypt message blocks by the nonce and a
counter. Let Perm(S,m) be the set of all mappings from S to permutations on {0, 1}m. Suppose the nonce

space isN = {0, 1}m−a, S = N×N∗×{0, 1}, for each (N ∈ N , i ∈ N∗, b ∈ {0, 1}), set πN‖i‖b
$←−Perm(N×

N∗ × {0, 1},m), which form a random permutation family: we use these permutations to randomize message
blocks and the checksum.

OCBSHINE.KG(λ)

1 : k
$←− Z∗q

2 : return k

OCBSHINE.TG(ke, ke+1)

3 : ∆e+1 ←
ke+1

ke

4 : return ∆e+1

OCBSHINE.Enc(ke,M)

5 : partition M into M1, ...,Ml

6 : Σ← ⊕l-1
i=1Mi ⊕Ml‖0∗

7 : N
$←− N

8 : C0 ←
(
π0(N‖|Ml|)

)ke

9 : Cl+1 ←
(
πN‖l‖1(Σ)

)ke

10 : for i = 1, ..., l-1 do

11 : Ci ←
(
πN‖i‖0(Mi)

)ke

12 : Cl ←
(
πN‖l‖0(Ml‖0∗)

)ke

13 : Ce ← (C0, ...,Cl,Cl+1)

14 : return Ce

OCBSHINE.Dec(ke,Ce)

15 : parse Ce = (C0, ...,Cl,Cl+1)

16 : N′‖A′ ← π−1
0 (
(
C0
)1/ke

)

17 : Σ′ ← π−1
N′‖l‖1(

(
Cl+1

)1/ke
)

18 : for i = 1, ..., l do

19 : M′i ← π−1
N′‖i‖0(

(
Ci
)1/ke

)

20 : if Σ′ = ⊕l
i=1M′i

21 : M′ ← (M′1, ...,M′l[x])

22 : return M′

23 : else

24 : return ⊥

OCBSHINE.Upd(∆e+1,Ce)

25 : parse Ce = (C0, ...,Cl,Cl+1)

26 : for i = 0, ..., l + 1 do

27 : Ci
e+1 ← (Ci

e)
∆e+1

28 : return Ce+1

Figure 28: Updatable encryption scheme OCBSHINE. Note that there may be an additional embedding step
after the permutations, as discussed in Section 5.6. In line 21, Ml[x] represents the first A′ bits of Ml.
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5.2 Security - SHINE is detIND-UE-CPA, INT-CTXT, detIND-UE-CCA Secure

All three SHINE schemes, i.e. SHINE0, MirrorSHINE and OCBSHINE, have the same security properties, and
the proofs are very similar for each flavor. We refer to SHINE to mean the family containing all these three
schemes. In Theorem 4, we show that SHINE is detIND-UE-CPA in the ideal cipher model, if DDH holds.
In Theorem 5, we show that SHINE is INT-CTXTs, and therefore INT-CTXT (INT-CTXT and INT-CTXTs

are equivalent, recall Section 3), in the ideal cipher model, if CDH holds. The loss incurred by this proof is
the normal (n + 1)3 (or (n + 1)2 for INT-CTXT) and also the number of encryption queries the adversary
makes before it makes its challenge: to avoid the issues described in Section 5.3 we not only need to guess the
locations of the challenge firewalls but also the ciphertext that the adversary will submit as its challenge.

The ideal cipher model, a version of which was initially given by Shannon [Sha49] and shown to be equiv-
alent to the random oracle model by Coron et al. [CPS08], gives all parties access to a permutation chosen ran-
domly from all possible key-permutation possibilities of appropriate length. The SHINE schemes exponentiate
the output of the permutation by the epoch key to encrypt, so our reduction can ‘program’ the transformation
from permutation outputs to group elements.

In the following two Theorems we detail the security properties met by SHINE, i.e. detIND-UE-CPA,
INT-CTXT and thus detIND-UE-CCA. Note that this is the strongest known security property for updatable
encryption schemes with deterministic updates. In Section 5.3 we discuss the challenges that arise in the proofs
of these two theorems, and in Section 5.4 and Section 5.5 we describe the novel techniques and methods used
in the proofs.

Theorem 4 (SHINE is detIND-UE-CPA). Let SHINE ∈ {SHINE0,MirrorSHINE,OCBSHINE} be the UE
scheme described in Fig. 25 (or Fig. 26 or Fig. 28). For any ideal cipher model adversary A (that makes max
QE encryption queries before its challenge), there exists an adversary B4 such that

AdvdetIND-UE-CPA
SHINE, A (λ) ≤ O(1)(n+ 1)3 ·QE ·AdvDDH

G, B4(λ).

This is proven via Theorem 4.1, and Theorem 4.3 and Theorem 4.4 in Section 5.4.

Theorem 5 (SHINE is INT-CTXTs). Let SHINE ∈ {SHINE0,MirrorSHINE,OCBSHINE} be the UE scheme
described in Fig. 25 (or Fig. 26 or Fig. 28).For any ideal cipher model adversary A (that makes max QE

encryption queries before calling O.Try), there exists an adversary B5 such that

AdvINT-CTXTs

SHINE, A (λ) ≤ O(1)(n+ 1)2 ·QE ·AdvCDH
B5 + negligible terms

This is proven via Theorem 5.1, and Theorem 5.3 and Theorem 5.4 in Section 5.5.

Remark 5. Combining the results of Theorem 3, Theorem 4 and Theorem 5, we have that SHINE is detIND-UE-CCA.

Remark 6. Proofs for SHINE0 are extendable to MirrorSHINE and OCBSHINE, so we only show full proof
details of Theorem 4.1 and Theorem 5.1 in Section 5.4 and Section 5.5, respectively.

5.3 Proof Challenges in Schemes with Deterministic Updates

In each variant of SHINE all ciphertext components are raised to the epoch key, so the update mechanism
transforms a ciphertext for epoch e to one for e+1 by raising this value to ke+1

ke
. We now highlight the difficulties

in creating security proofs for such ‘single-component’ updatable encryption schemes. Randomness is used in
creation of the initial ciphertext (via N) but updates are completely deterministic, and thus in any reduction
it is necessary to provide consistent ciphertexts to the adversary (i.e. the N value must be consistent). The
(cryptographic) separation gained by using the firewall technique (see Section 3.3 for discussion and definition)
assists with producing (updates of) non-challenge ciphertexts, but embedding any challenge value while also
providing answers to the O.Corr queries of the underlying adversary is very challenging.

The regular key insulation technique as introduced by LT18 – where the reduction constructs one hybrid
for each epoch – does not work. Specifically, in any reduction to a DDH-like assumption, it is not possible to
provide a challenge ciphertext in a left or right sense (to the left of this challenge ciphertext are of some form,
and to the right of this challenge ciphertext are of some other form) if the underlying adversary asks for tokens
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around the challenge epoch: deterministic updates mean that tokens will make these ciphertexts of the same
form and this gap will be easily distinguishable.

We counteract this problem by constructing a hybrid argument across insulated regions. This means that in
each hybrid, we can embed at one firewall of the insulated region, and simulate all tokens within that insulated
region to enable answering queries to both O.Upd and O.UpdC̃. The reduction’s distinguishing task is thus
ensured to be at the boundaries of the insulated regions, the firewalls, so any (non-trivial) win for the underlying
adversary is ensured to carry through directly to the reduction.

5.4 SHINE is detIND-UE-CPA

We now explain how we bound the advantage of any adversary playing the detIND-UE-CPA game for SHINE
by the advantage of a reduction playing DDH.

Proof Method for Confidentiality: Constructing a Hybrid Argument across Insulated Regions. No-
tice that the non-corrupted key space is the union set of all insulated regions, i.e. {0, 1, ..., n} \ K∗ =
∪(j,fwlj ,fwrj)∈FW{fwlj , ..., fwrj}. If the trivial win conditions are not triggered and the adversary knows a
challenge-equal ciphertext in some epoch within an insulated region, then since the adversary knows all to-
kens in that insulated region, the adversary will know all challenge-equal ciphertexts in that insulated region.
Then we have

C∗ = ∪(j,fwlj ,fwrj)∈S⊆FW{fwlj , ..., fwrj},

where S is a subset of firewall list FW .
We apply the firewall technique to set up hybrid games such that in hybrid i, we embed within the i-th

insulated region: this means that to the left of the i-th insulated region the game responds with the b = 1
case of the detIND-UE-CPA experiment, and to the right of the i-th insulated region it gives an encryption of
the challenge input message as output, i.e. b = 0. This means we have one hybrid for each insulated region,
moving left-to-right across the epoch space.

We construct a reduction B playing the DDH experiment in hybrid i. Initially, B guesses the location of
the i-th insulated region. If the underlying adversary has performed a corrupt query within this insulated region
that would lead to the reduction failing, the reduction aborts the game. We use the algorithm Check described
in Fig. 29 to check if this event happens.

Check(inp, ê; e; fwl, fwr)

1 : if ê > e

2 : return ⊥
3 : if inp = key and ê ∈ {fwl, ..., fwr}
4 : return ABORT

5 : if inp = token and ê ∈ {fwl, fwr+1}
6 : return ABORT

Figure 29: Algorithm Check, used in proofs in this section. In Check, ê is the epoch in the adversary’s request,
and e is the current epoch.

In particular, within the insulated region, the reduction can simulate challenge ciphertexts and non-challenge
ciphertexts using its DDH tuple. Furthermore, ciphertexts can be moved around within the insulated region by
tokens.

Remark 7. We note that the problem of challenge insulation in schemes with deterministic updates was also
observed independently by Klooß et al. [[KLR19b], § B.2]. Their solution (though in the different context of
CCA security of UE with certain properties) is to form a hybrid argument with a hybrid for each epoch, and
essentially guess an epoch r which is the first token ‘after’ the hybrid index that the adversary has not corrupted,
and use the inherent ‘gap’ in the adversary’s knowledge continuum to replace challenge updates across this gap
with encryptions of just one of the challenge messages. It is not clear if this approach would work for showing
detIND-UE-CPA (or IND-ENC-CPA) of SHINE. We conjecture that even if it were possible to construct a
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reduction in this vein, our approach enables a more direct proof: in particular we do not need to assume specific
additional properties of the UE scheme in question for it to work.

SHINE0 is detIND-UE-CPA.

Theorem 4.1 (SHINE0 is detIND-UE-CPA). Let G be a group of order q (a λ-bit prime) with generator g, and
let SHINE0 be the updatable encryption scheme described in Fig. 25. For any detIND-UE-CPA adversary A
against SHINE0 that asks at most QE queries to O.Enc before it makes its challenge, there exists an adversary
B4.1 against DDH such that

AdvdetIND-UE-CPA
SHINE0, A (λ) ≤ 2(n+ 1)3 ·QE ·AdvDDH

G, B4.1(λ).

Proof. Play hybrid games. We begin by partitioning non-corrupted key space as follows: {0, 1, ..., n} \ K∗ =
∪(j,fwlj ,fwrj)∈FW{fwlj , ..., fwrj}, where fwri and fwri are firewalls of the i-th insulated region. Recall the
definition from Section 3.3 and firewall computing algorithm FW-Find in Fig. 15: fwli, fwri are firewalls of the
i-th insulated region if (i, fwli, fwri) ∈ FW .

For b ∈ {0, 1}, define game Gb
i as ExpdetIND-UE-CPA-b

SHINE0, A except for:

• The game randomly picks an integer h, and if the challenge input C̄ is not an updated ciphertext of the
h-th O.Enc query, it (aborts and) returns a random bit for b′. This loss is upper-bounded by QE.

• The game randomly picks fwli, fwri
$←− {0, ..., n} and if fwli, fwri are not the i-th firewalls, returns a

random bit for b′. This loss is upper-bounded by (n+ 1)2.

• For the challenge (made in epoch ẽ, input (M̄, C̄)): If ẽ < fwli then return a ciphertext with respect to
C̄, if ẽ > fwri return a ciphertext with M̄, and if fwli ≤ ẽ ≤ fwri then return a ciphertext with M̄ when
b = 0, return a ciphertext with respect to C̄ when b = 1.

• After A outputs b′, returns b′ if twf 6= 1 or some additional trivial win condition triggers.

If h, fwli, fwri are the desired values, then G0
1 is ExpdetIND-UE-CPA-0

SHINE0, A , i.e. all challenges are encryptions
of M̄. And there exists some l (the total number of insulated regions, bounded by n + 1), game G1

l is
ExpdetIND-UE-CPA-1

SHINE0, A , i.e. all challenges are updates of C̄. Let E to be the event that h, fwli, fwri are the desired
values, notice that Pr[Gb

i = 1|¬E] = 1
2 for any 1 ≤ i ≤ n+ 1 and b ∈ {0, 1}. Then

Pr[G1
l = 1] = Pr[G1

l = 1|E] ·Pr[E] + Pr[G1
l = 1|¬E] ·Pr[¬E]

= Pr[ExpdetIND-UE-CPA-1
SHINE0, A = 1] · 1

(n+ 1)2QE
+

1

2
· (1− 1

(n+ 1)2QE
), and

Pr[G0
1 = 1] = Pr[ExpdetIND-UE-CPA-0

SHINE0, A = 1] · 1

(n+ 1)2QE
+

1

2
· (1− 1

(n+ 1)2QE
)

Thus we have that∣∣Pr[G1
l = 1]−Pr[G0

1 = 1]
∣∣ =

1

(n+ 1)2QE
·
∣∣∣Pr[ExpdetIND-UE-CPA-1

SHINE0, A = 1]−Pr[ExpdetIND-UE-CPA-0
SHINE0, A = 1]

∣∣∣
=

1

(n+ 1)2QE
·AdvdetIND-UE-CPA

SHINE0, A (λ)

Notice that all queries in G1
i−1 and G0

i have the equal responses: for the challenge query and O.UpdC̃, if
called in epoch in first i − 1 insulated regions, the reduction returns a ciphertext with respect to C̄, otherwise
returns an encryption of M̄. Therefore, for any l(≤ n + 1), |Pr[G1

l = 1] − Pr[G0
1 = 1]| ≤

∑l
i=1 |Pr[G1

i =
1] − Pr[G0

i = 1]|. We prove that for any 1 ≤ i ≤ l, |Pr[G1
i = 1] − Pr[G0

i = 1]| ≤ 2AdvDDH
G, (λ). We only

prove one of these l hybrids, the rest can be similarly proven.
In hybrid i. Suppose that Ai is an adversary attempting to distinguish G0

i from G1
i . For all queries concerning

epochs outside of the i-th insulated region the responses will be equal in either game, so we assume that Ai

asks for at least one challenge ciphertext in an epoch within the i-th insulated region (then [fwli, fwri] ⊆ C∗)
and this is where we will embed DDH tuples in our reduction.
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We construct a reduction B4.1, detailed in Fig. 30, that is playing the standard DDH game and will simulate
the responses of queries made by adversary Ai.

Reduction B4.1 playing ExpDDH
G, B4.1

1 : receive (g,X, Y, Z)

2 : do Setup

3 : M̄, C̄← Aors(λ)

4 : phase← 1

5 : Create C̃ with (M̄, C̄), get C̃ẽ

6 : b′ ← Aors,O.UpdC̃(C̃ẽ)

7 : twf ← 1 if

8 : C∗ ∩ K∗ 6= ∅ or

9 : I∗ ∩ C∗ 6= ∅
10 : if ABORT occurred or twf = 1

11 : b′
$←− {0, 1}

12 : return b′

13 : if (i, fwli, fwri) 6∈ FW

14 : b′
$←− {0, 1}

15 : return b′

16 : if b′ = b

17 : return 0

18 : else

19 : return 1

Setup(λ)

20 : b
$←− {0, 1}

21 : k0 ← SHINE0.KG(λ)

22 : ∆0 ←⊥
23 : e, c, phase, twf ← 0

24 : L, L̃, C,K, T ← ∅

25 : fwli, fwri
$←− {0, ..., n}

26 : h
$←− {1, ...,QE}

27 : for j∈{0, ..., fwli-1} do

28 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

29 : PKj ← gkj

Setup(λ) cont.

33 : for j∈ {fwri+1, ..., n} do

34 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

35 : PKj ← gkj

36 : if b = 0

37 : PKfwli ← Y ; C
$←− G

38 : else

39 : PKfwli ← Y kfwli−1 ; C← X

40 : for j ∈ {fwli+1, ..., fwri} do

41 : ∆j
$←− Z∗q ;PKj ← PK

∆j

j−1

O.Enc(M)

39 : c← c + 1

40 : if c = h

41 : Ce ← C; inf ← e

42 : else

43 : inf
$←− Z∗q

44 : π(N||M)← ginf

45 : Ce ← PKinf
e

46 : L ← L ∪ {(c,Ce, e; inf)}
47 : return Ce

O.Next

48 : e← e + 1

O.Upd(Ce−1)

49 : if (c,Ce−1, e− 1; inf) 6∈ L
50 : return ⊥
51 : if c = h

52 : Ce ← C∆e
e−1

53 : else

54 : Ce ← PKinf
e

55 : L ← L ∪ {(c,Ce, e; inf)}
56 : return Ce

O.Corr(inp, ê)

57 : do Check(inp, ê; e; fwli, fwri)

58 : if inp = key

59 : K ← K ∪ {ê}
60 : return kê

61 : if inp = token

62 : T ← T ∪ {ê}
63 : return ∆ê

Create C̃ with (M̄, C̄)

64 : if (h, C̄, ẽ− 1; inf) /∈ L
65 : return ABORT

66 : if b = 0

67 : π(N||M̄)← X; C̃fwli ← Z

68 : else

69 : π(N||M̄)
$←− G

70 : C̃fwli ← Z
∏fwli−1

j=inf+1 ∆j

71 : for j ∈ {0, ..., fwli − 1} do

72 : C̃j ← C̄(
∏j

k=0 ∆k)/(
∏ẽ−1

k=0 ∆k) // left

73 : for j ∈ {fwli + 1, ..., fwri} do

74 : C̃j ← C̃
∆j

j−1 // embed

75 : for j ∈ {fwri + 1, ..., n} do

76 : C̃j ← (π(N||M̄))kj // right

77 : L̃ ← ∪nj=0{(C̃j , j)}
78 : return C̃ẽ

O.UpdC̃

79 : C ← C ∪ {e}
80 : find(C̃e, e) ∈ L̃
81 : return C̃e

Figure 30: Reduction B4.1 for proof of Theorem 4.1, in hybrid i. Moving left-to-right through embedding
DDH tuples in the i-th insulated region: when b = 1, embedding DDH tuples to token values to move left
to random; when b = 0, embedding DDH tuples to key values to move right to random. inf encodes fixed
programming information: it marks an epoch if c = h, otherwise it is the random encryption exponent. On
lines 3 and 6, ors refers to the set {O.Enc,O.Next,O.Upd,O.Corr}. On lines 28 and 34, ./ indicates ∆0 and
∆fwri+1 are skipped in the computation.

The reduction B4.1 receives DDH tuples (X,Y, Z), flips a coin b and simulates game Gb
i . Whenever the
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reduction needs to provide an output of π(·) to A, it chooses (‘programs’) some random value r such that
π(·) = gr. Then, we use the fact that (gr)ke = (gke)r and use the gke values as ‘public keys’ to allow
simulation. In this setting, decryption (i.e. π−1) is simply a lookup to this mapping of the ideal cipher π. A
summary of the technical simulations follows:

Initially,

1. B4.1 guesses the values of h, fwli, fwri.

2. B4.1 generates all keys and tokens except for kfwli , ..., kfwri , ∆fwli ,∆fwri+1. If Ai ever corrupts these
keys and tokens – which indicates the firewall guess is wrong – the reduction aborts the game.

3. B4.1 computes the public values of keys in an epoch:

• e 6∈ {fwli, ..., fwri}: B4.1 computes PKe = gke ;

• e ∈ {fwli, ..., fwri}: B4.1 embeds DDH value Y as PKfwli . More precisely, if b = 0,PKfwli = Y ,
otherwise PKfwli = Y kfwli−1 (since g∆fwli = Y ). Then B4.1 uses tokens ∆fwli+1, ...,∆fwri to
compute the remaining public key values PKe in the insulated region.

To simulate a non-challenge ciphertext that is:

• not the h-th query toO.Enc: B4.1 generates a random value r for each encryption (so that the randomness
will be consistent for calls that Ai makes to O.Upd) and programs the ideal cipher with Ce = PKr

e. To
respond to O.Upd queries, the reduction computes Ce′ = PKr

e′ to update a non-challenge ciphertext to
epoch e′.

• the h-th query to O.Enc: B4.1 embeds either a random ciphertext (b = 0) or a DDH value (b = 1) to
the encryption (Ceh). Furthermore, the reduction uses tokens ∆0, ...,∆fwli−1 to update the h-th encryp-
tion. Note that C̄ is an update of the h-th encryption. The adversary can not ask for update of the h-th
encryption in an epoch e ≥ fwli, as this would trigger the trivial win condition [fwli, fwri] ⊆ I∗∩C∗ 6= ∅.

To simulate challenge-equal ciphertext in an epoch that is:

• to the left of the i-th insulated region: B4.1 simulates SHINE0.Upd(C̄) using the tokens that it created
itself.

• within the i-th insulated region: B4.1 simulates SHINE0.Upd(C̄) if b = 1, and simulates SHINE0.Enc(M̄)
if b = 0. More precisely, B4.1 embeds DDH value X to ciphertext information of challenge input, em-
beds DDH value Z to the challenge ciphertext. Which means if b = 1, the reduction will give the value

X to Ceh , Z
∏fwli−1

j=eh+1
∆j to C̃fwli (recall g∆fwli = Y ) since

C̃fwli = SHINE0.Upd(C̄) = C̄
∆fwli
fwli−1 = (C

∆fwli
eh )

∏fwli−1
j=eh+1

∆j
.

If b = 0, the reduction will give X to π(N||M̄), and Z to C̃fwli (recall PKfwli = Y ) since C̃fwli =
SHINE0.Enc(M̄) = π(N||M̄)kfwli . Furthermore, the reduction uses tokens ∆fwli+1, ...,∆fwri to update
C̃fwli to simulate all challenge ciphertext in epochs within the insulated region.

• to the right of the i-th insulated region: B4.1 simulates SHINE0.Enc(M̄) using the keys that it created
itself.

Eventually, B4.1 receives the output bit b′ fromAi. If b′ = b, then B4.1 guesses that it has seen real DDH tuples
(returns 0 to its DDH challenger), otherwise, B4.1 guesses that it has seen random DDH tuples (returns 1).

If B4.1 receives a real DDH tuple, then B4.1 perfectly simulates the environment ofAi in Gb
i . If B4.1 receives

a random DDH tuple, then B4.1 wins with probability 1/2. After some computation similar to that in the proof
of Theorem 2.3 we have AdvDDH

G, B4.1(λ) = 1
2 |Pr[G1

i = 1]−Pr[G0
i = 1]|.
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SHINE0 is IND-ENC-CPA Secure. As a corollary of Theorem 2.4 and Theorem 4.1, SHINE0 is IND-ENC-CPA
– however in Appendix A we give a tighter proof – eliminating the QE term – by directly proving the IND-ENC-CPA
security of SHINE0. The proof follows a similar strategy to that of Theorem 4.1, with one hybrid for each in-
sulated region.

MirrorSHINE is detIND-UE-CPA.

Theorem 4.3 (MirrorSHINE is detIND-UE-CPA). Let G be a group of order q (a λ-bit prime) with generator
g, and let MirrorSHINE be the updatable encryption scheme described in Fig. 26. For any detIND-UE-CPA
adversary A against MirrorSHINE that asks at most QE queries to O.Enc before it makes its challenge, there
exists an adversary B4.3 against DDH such that

AdvdetIND-UE-CPA
MirrorSHINE, A (λ) ≤ 2(n+ 1)3 ·QE ·AdvDDH

G, B4.3(λ).

Proof. The proof is similar to the security proof of Theorem 4.1, except that the reduction will embed two
random group elements to the image of π1, π2 while it simulates the output of the O.Enc oracle, instead of
embedding one random group element to the image of π. We will not give a detailed construction of the
reduction in this proof, since we will give a more general construction in the proof of Theorem 4.4.

OCBSHINE is detIND-UE-CPA. For convenience, we denote a vector with l + 2 elements to be ~C =
(C0, ..., C l+1). We also use the shorthand ~A← ~Bc (component-wise exponentiation) and ~A← B~c (common-
base exponentiation) to mean the following:

~A← ~Bc

1 : for j = 0, ..., l + 1 do

2 : Aj ← (Bj)c

~A← B~c

1 : for j = 0, ..., l + 1 do

2 : Aj ← Bcj

Theorem 4.4 (OCBSHINE is detIND-UE-CPA). Let G be a group of order q (a λ-bit prime, λ = m) with gen-
erator g, and let OCBSHINE be the updatable encryption scheme described in Fig. 28. For any detIND-UE-CPA
adversary A against OCBSHINE that asks at most QE queries to O.Enc before it makes its challenge, there
exists an adversary B4.4 against DDH such that

AdvdetIND-UE-CPA
OCBSHINE, A (λ) ≤ 2(n+ 1)3 ·QE ·AdvDDH

G, B4.4(λ).

Proof. The proof is similar to the security proof of Theorem 4.1, except that here we are dealing with vector of
ciphertexts. To simulate the output of O.Enc, the reduction will embed a vector of random group elements to
the image of the random permutation family. The reduction is detailed in Fig. 31.

5.5 SHINE is INT-CTXTs

We then explain how we bound the advantage of any adversary playing the INT-CTXTs game for SHINE by
the advantage of a reduction playing CDH.

Proof Method for ciphertext integrity. In the INT-CTXTs game, the challenger will keep a list of consistent
values for ciphertexts (i.e. the underlying permutation output). Suppose C̃ is a forgery attempt sent to theO.Try
query in epoch ẽ. Let c̃ = (C̃)1/kẽ be the underlying permutation output.

If c̃ is a new value, since we have that π (or (π1, π2) or (π0, {πN‖i‖b})) is a random permutation then the
INT-CTXTs challenger simulates the preimage of c̃ under the corresponding random permutation(s) to be a
random string(s). So the probability that this (these) random string(s) matches the integrity tag is negligible,
and this carries over to the probability that the adversary wins the INT-CTXTs game.

If c̃ is an already-existing value, and suppose this event happens with probability p. We construct a reduction
playing the CDH game such that it wins CDH game with probability p · 1

QE(n+1)2
. Similar to the proof method

of Theorem 4.1, we construct a reduction playing the CDH experiment by guessing the location of the firewalls
around the challenge epoch. The reduction embeds the CDH value and simulates the INT-CTXTs game, using
any successfully-forged ciphertext to compute the CDH output to its CDH challenger.
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Reduction B4.4 playing ExpDDH
G, B4.4

1 : receive (g,X, Y, Z)

2 : do Setup

3 : ~̄M, ~̄C← Aors(λ)

4 : phase← 1

5 : Create C̃ with ( ~̄M, ~̄C), get C̃ẽ

6 : b′ ← Aors,O.UpdC̃(C̃ẽ)

7 : twf ← 1 if

8 : C∗ ∩ K∗ 6= ∅ or

9 : I∗ ∩ C∗ 6= ∅
10 : if ABORT occurred or twf = 1

11 : b′
$←− {0, 1}

12 : return b′

13 : if (i, fwli, fwri) 6∈ FW

14 : b′
$←− {0, 1}

15 : return b′

16 : if b′ = b

17 : return 0

18 : else

19 : return 1

Setup(λ)

20 : b
$←− {0, 1}

21 : k0 ← SHINE0.KG(λ)

22 : ∆0 ←⊥
23 : e, c, phase, twf ← 0

24 : L, L̃, C,K, T ← ∅

25 : fwli, fwri
$←− {0, ..., n}

26 : h
$←− {1, ...,QE}

27 : for j∈{0, ..., fwli-1} do

28 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

29 : PKj ← gkj

30 : for j∈ {fwri+1, ..., n} do

31 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

32 : PKj ← gkj

Setup(λ) cont.

33 : if b = 0

34 : PKfwli ← Y

35 : ~C
$←− Gl+2

36 : else

37 : PKfwli ← Y kfwli−1

38 : ~r
$←− (Z∗q)l+2

39 : ~C
$←− X~r

40 : for j ∈ {fwli+1, ..., fwri} do

41 : ∆j
$←− Z∗q

42 : PKj ← PK
∆j

j−1

O.Enc(~M)

43 : c← c + 1

44 : if c = h

45 : ~Ce ← ~C; inf ← e

46 : else

47 : ~inf
$←− (Z∗q)l+2

48 : Π(~M)
$←− g ~inf // see caption

49 : ~Ce ← PK
~inf
e

50 : L ← L ∪ {(c, ~Ce, e; inf or ~inf)}

51 : return ~Ce

O.Next

52 : e← e + 1

O.Upd(~Ce−1)

53 : if (j, ~Ce−1, e− 1; inf or ~inf) 6∈ L
54 : return ⊥
55 : if j = h

56 : ~Ce ← ~C∆e
e−1

57 : else

58 : ~Ce ← PK
~inf
e

59 : L ← L ∪ {(j, ~Ce, e; inf or ~inf)}

60 : return ~Ce

O.Corr(inp, ê)

61 : do Check(inp, ê; e; fwli, fwri)

62 : if inp = key

63 : K ← K ∪ {ê}
64 : return kê

65 : if inp = token

66 : T ← T ∪ {ê}
67 : return ∆ê

Create C̃ with ( ~̄M, ~̄C)

68 : if (h, ~̄C, ẽ− 1; inf) /∈ L
69 : return ABORT

70 : if b = 0

71 : ~s
$←− (Z∗q)l+2

72 : Π( ~̄M)
$←− X~s

73 : ~̃Cfwli ← Z~s

74 : else

75 : Π( ~̄M)
$←− Gl+2

76 : ~̃Cfwli ← (Z
∏fwli−1

j=inf+1 ∆j )
~r

77 : for j ∈ {0, ..., fwli − 1} do

78 : ~̃Cj ← ~̄C(
∏j

k=0 ∆k)/(
∏ẽ−1

k=0 ∆k) // left

79 : for j ∈ {fwli + 1, ..., fwri} do

80 : ~̃Cj ← ~̃C
∆j

j−1 // embed

81 : for j ∈ {fwri + 1, ..., n} do

82 : ~̃Cj ← {Π( ~̄M)}kj // right

83 : L̃ ← ∪nj=0{(
~̃Cj , j)}

84 : return ~̃Cẽ

O.UpdC̃

85 : C ← C ∪ {e}

86 : find(~̃Ce, e) ∈ L̃

87 : return ~̃Ce

Figure 31: Reduction B4.4 for proof of Theorem 4.4, in hybrid i. On lines 3 and 6, ors refers to the set
{O.Enc,O.Next,O.Upd,O.Corr}. On lines 28 and 31, ./ indicates ∆0 and ∆fwri+1 are skipped in the compu-
tation. On line 48 of O.Enc, vector Π(~M) = (π0(N), πN‖1‖0(M1), ..., πN‖l‖0(Ml), πN‖l‖1(Σ)).

SHINE0 is INT-CTXTs.

Theorem 5.1 (SHINE0 is INT-CTXTs). Let G be a group of order q (a λ-bit prime, where λ = v+m+ l) with
generator g, and let SHINE0 be the updatable encryption scheme described in Fig. 25. For any INT-CTXTs
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adversary A against SHINE0 that asks at most QE queries to O.Enc before it asks its O.Try query, there exists
an adversary B5.1 against CDH such that

AdvINT-CTXTs

SHINE0, A (λ) ≤ 1/2l + QE(n+ 1)2AdvCDH
B5.1 .

Proof. Note that the probability of a random string ends by 0l is 1/2l.
In the INT-CTXTs game, whenever, the adversary sends a forgery, suppose C∗, to the O.Try oracle. If the

trivial win conditions does not trigger, then C∗ is a new ciphertext to the challenger and there exists an insulated
region around the challenge epoch. We split the proof into two parts based on if C∗1/ke is a new value to the
challenger:

1. If C∗1/ke is a new value, the random permutation π−1 will pick a random string a as the output of
π−1(C∗1/ke). So the probability of a is valid (a (v +m+ l)-bit string with a l-bit zero string in the end)
is upper bounded by 1/2l.

2. If C∗1/ke is an existed value, denote this event as E3, we claim that the probability of E3 happens is very
low. Which means it is hard to provide a valid forgery with a known permutation value. In other words,
without the knowledge of the encryption key, it is difficult to provide a correct exponentiation. Formally,
we prove the following inequality in Lemma 5.2.

Pr[E3] = Pr[C∗1/ke exists,C∗ is new] ≤ QE(n+ 1)2AdvCDH.

In order to analyze the security, we define some events:

• E1 = {C∗ is new},

• E2 = {C∗1/ke is new,C∗ is new},

• Recall E3 = {C∗1/ke exists,C∗ is new}.

Denote the experiment ExpINT-CTXTs

SHINE0, A to be Exp. Then we have the following results:

• Pr[Exp = 1 | ¬E1] = 0.

• We have proved Pr[Exp = 1 | E2] ≤ 1/2l in part 1.

• Events ¬E1, E2, E3 are disjoint from each other, so Pr[¬E1] + Pr[E2] + Pr[E3] = 1.

• We have proved Pr[E3] ≤ QE(n+ 1)2AdvCDH in Lemma 5.2.

Applying the above properties, we can compute the INT-CTXTs advantage

AdvINT-CTXTs

SHINE0, A (λ) = Pr[Exp = 1]

= Pr[Exp = 1 | ¬E1] ·Pr[¬E1] + Pr[Exp = 1 | E2] ·Pr[E2] + Pr[Exp = 1 | E3] ·Pr[E3]

= Pr[Exp = 1 | E2] ·Pr[E2] + Pr[Exp = 1 | E3] ·Pr[E3]

≤ Pr[Exp = 1 | E2] + Pr[E3]

≤ 1/2l + QE(n+ 1)2AdvCDH.

Lemma 5.2. LetA be an INT-CTXTs adversary against SHINE0 that asks at most QE queries toO.Enc before
it asks itsO.Try query. Suppose C̃ is a forgery attempt provided byA and the corresponding permutation value
is c̃. Define E to be the event that c̃ is an existed value but C̃ is a new value. Then there exists an adversary
B5.2 against CDH such that

Pr[E] ≤ QE(n+ 1)2AdvCDH
B5.2
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Proof. Suppose A is an adversary against INT-CTXTs game, and it can provide a forgery such that C̃ is a new
ciphertext but the underlying permutation value is an existed one with probability Pr[E]. We claim that there
exists a reduction B5.2, detailed in Figure 32, such that it wins CDH game with probability Pr[E] · 1

QE(n+1)2
.

Reduction B5.2 playing ExpCDH
G, B5.2

1 : receive (g,X, Y )

2 : do Setup

3 : AO.Enc,O.Next,O.Upd,O.Corr,O.Try(λ)

4 : if twf = 1 or ABORT occurred
5 : win← 0

6 : else

7 : return win

Setup(λ)

8 : k0 ← SHINE0.KG(λ)

9 : ∆0 ←⊥; e, c← 0; win← 0

10 : L∗, C,K, T ← ∅

11 : ˆfwl, ˆfwr
$←− {0, ..., n}

12 : h
$←− {1, ...,QE}

13 : for j ∈ {0, ..., ˆfwl-1} do

14 : kj
$←− Z∗q

15 : ∆j ←
kj

kj−1
// except ∆0

16 : PKj ← gkj

17 : for { ˆfwr+1, ..., n} do

18 : kj
$←− Z∗q

19 : ∆j ←
kj

kj−1
// except ∆ ˆfwr+1

20 : PKj ← gkj

21 : PK ˆfwl ← Y

22 : for j ∈ { ˆfwl+1, ..., ˆfwr} do

23 : ∆j
$←− Z∗q ;PKj ← PK

∆j

j−1

O.Enc(M)

24 : c← c + 1

25 : if c = h

26 : if e < ˆfwl

27 : π(N‖M‖0l)← X

28 : Ce ← Xke

29 : else

30 : return ABORT

31 : else

32 : r
$←− Z∗q ;

33 : π(N‖M‖0l)← gr

34 : Ce ← PKr
e

35 : L∗ ← L∗ ∪ {(c,Ce, e; r)}m

36 : return Ce

O.Next()

37 : e← e + 1

O.Upd(Ce−1)

38 : if (j,Ce−1, e− 1; r) /∈ L∗

39 : return ⊥
40 : if j = h

41 : if e < ˆfwl

42 : Ce ← C∆e
e−1

43 : else

44 : return ABORT

45 : else

46 : Ce ← PKr
e

47 : L∗ ← L∗ ∪ {(j,Ce, e; r)}
48 : return Ce

O.Corr(inp, ê)

49 : do Check(inp, ê; e; ˆfwl, ˆfwr)

50 : if inp = key

51 : K ← K ∪ {ê}
52 : return kê

53 : if inp = token

54 : T ← T ∪ {ê}
55 : for i ∈ T ∗ do

56 : for (j,Ci−1, i− 1; r) ∈ L∗ do

57 : Ci ← O.Upd(Ci−1)

58 : L∗ ← L∗ ∪ {(j,Ci, i; r)}
59 : return ∆ê

O.Try(C̃)

60 : if phase = 1

61 : return ⊥
62 : phase← 1

63 : if ẽ ∈ K∗ or C̃ ∈ L∗

64 : twf ← 1

65 : if ẽ 6∈ { ˆfwl, ..., ˆfwr}
66 : twf ← 1

67 : y ← C̃
1/

∏e=ẽ
e= ˆfwl+1

∆e

68 : call Chall with y; get b

69 : win← b

Figure 32: Reduction B5.2 for proof of Lemma 5.2. On line 35, m indicates r is empty when c = h.

The reduction will guess the location of firewalls around the epoch whenO.Try query happens, furthermore,
it guess which message (suppose the h-th encryption) might be the underlying message of the forgery. After
it receives the CDH values ga, gb, it embeds ga to the h-th encryption as π(N‖M‖0l) ← ga, embeds gb to

the public key value on the left firewall as PK ˆfwl = gk ˆfwl ← gb. Then C̃ = g
ab

∏e=ẽ
e= ˆfwl+1

∆e with probability
Pr[E] · 1

QE(n+1)2
, which is the advantage of winning the CDH game.

MirrorSHINE is INT-CTXTs.

Theorem 5.3 (MirrorSHINE is INT-CTXTs). Let G be a group of order q (a λ-bit prime) with generator g,
and let MirrorSHINE be the updatable encryption scheme described in Fig. 26. For any INT-CTXTs adversary
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A against MirrorSHINE that asks at most queries at most QE queries to O.Enc before it asks its O.Try query,
there exists an adversary B5.3 against CDH such that

AdvINT-CTXTs

MirrorSHINE, A(λ) ≤ 1/2|N | + 2QE(n+ 1)2AdvCDH
B5.3

Proof. Similar to the proof in Theorem 5.1. Suppose C̃ = (C̃1, C̃2) is a new ciphertext sent as theO.Try query.
Then at least one block of the ciphertext, suppose C̃i, is new. We split the proof in two parts:

• If (C̃i)1/ke is new. The random permutation π−1
i will pick a random string ai as the output of π−1

i ((C̃i)1/ke).
So the probability of ai is valid (satisfy a1 = a2) is upper bounded by 1/2|N |.

• If (C̃i)1/ke is an existed value outputted by permutation πi. Similar to the proof in Theorem 5.1, we can
prove that Pr[(C̃i)1/ke exists, C̃i is new ] ≤ 2QE(n+ 1)2AdvCDH

B5.3 .

OCBSHINE is INT-CTXTs.

Theorem 5.4 (OCBSHINE is INT-CTXTs). Let G be a group of order q (a λ-bit prime, λ = m) with generator
g, and let OCBSHINE be the updatable encryption scheme described in Fig. 28. For any INT-CTXTs adversary
A against OCBSHINE that asks at most QE queries, on messages with at most L message blocks, to O.Enc
before it asks its O.Try query, there exists an adversary B5.4 against CDH such that

AdvINT-CTXTs

OCBSHINE, A(λ) ≤ QE
2 + QE

2m−a
+ (L + 1)QE(n+ 1)2AdvCDH

B5.4 .

Proof. Game 0

The first game is the experiment ExpINT-CTXTs

OCBSHINE, A, given in Fig. 6 and Fig. 10. As definition 4 we have

AdvINT-CTXTs

OCBSHINE, A(λ) = Pr[G0 = 1]

Game 1

Modify the response of the encryption oracle such that the game randomly picks a nonce and if the nonce
repeats, it aborts the game and returns win = 0. This loss is upper-bounded by QE

2

2m−a , then we have

|Pr[G0 = 1]−Pr[G1 = 1]| ≤ QE
2

2m−a

Finally, we claim Pr[G1 = 1] ≤ QE

2m−a + (l+ 1)QE(n+ 1)2AdvCDH. Similar to the proof in Theorem 5.1.
Suppose C̃ = (C̃0, ..., C̃l̃+1) is a forgery attempt sent as the O.Try query in epoch ẽ. Suppose c̃i = (C̃i)1/kẽ ,
the corresponding message is M̃i. Let Ñ be the underlying nonce and Σ̃ be the underlying checksum. We
consider the following two situations.

1. If (c̃0, ..., c̃l̃+1) is new, we claim that the probability of the adversary correctly guessing Σ̃ is upper-
bounded by QE

2m−a .

(a) If c̃0 is new, then either Ñ is new or |M̃l̃| is new.

i. If Ñ is equal to some already existing nonce N, we claim that the probability that this event
happens is very low. Since π0 is a random permutation, the first (m-a) bits of the preimage of
c̃0 under π0, which is Ñ, is as likely as any (m-a)-bit string. So the probability that Ñ collides
with one of the existed nonces is upper bounded by QE/2

m−a.
ii. If Ñ is new, therefore πÑ‖l̃‖1 is a new random permutation. The adversary sees no image

and preimage of πÑ‖l̃‖1. The preimage of c̃l̃+1 under πÑ‖l̃‖1, which is Σ̃, is as likely as any

other m-bit string. So the probability that the adversary correctly guesses Σ̃ (which means
Σ̃ = ⊕l

i=1M̃i) is 2−m.
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(b) If c̃0 = c0 for some already existing (c0, ..., cl+1) but l̃ 6= l, similar to the above situation πÑ‖l̃‖1 is

a new random permutation. So the probability that the adversary correctly guesses Σ̃ is 2−m.

(c) If c̃0 = c0 for some already existing (c0, ..., cl+1) and l̃ = l but c̃j 6= cj for some j ∈ {1, ..., l̃}.
The adversary sees one image of πÑ‖j‖0, that is, cj . The preimage of c̃j under πÑ‖j‖0, which is M̃j ,
is as likely as any m-bit string except for Mj (or Ml‖0∗ when j = l). So the probability that the
adversary correctly guesses Σ̃ is 1

2m−1 .

(d) If c̃0 = c0 for some already existing (c0, ..., cl+1) and l̃ = l and c̃j = cj for all j ∈ {1, ..., l̃}
but c̃l̃+1 6= cl+1. This event is impossible to happen, as Ñ = N, |Ml̃| = |Ml| and l̃ = l so
πÑ‖l̃‖1 = πN‖l‖1, furthermore M̃j = Mj for all j ∈ {1, ..., l̃}, so Σ̃ = Σ and then c̃l̃+1 = cl+1.

2. If (c̃0, ..., c̃l̃+1) is an already existing value output by the permutations but C̃ = (C̃0, ..., C̃l̃+1) is a

new ciphertext, then this is equivalent to (c̃0, ..., c̃l̃) exists but (C̃0, ..., C̃l̃) is new, as in the analysis of
1.(d). Similar to the proof in Theorem 5.1, we can prove that the probability of this event happening is
upper-bounded by CDH advantage:

Pr[ (c̃0, ..., c̃l̃) exists but (C̃0, ..., C̃l̃) is new ] ≤ (L + 1)QE(n+ 1)2AdvCDH.

5.6 Implementing the SHINE Schemes

In the proofs of Theorem 4 and Theorem 5, we require that π is a random (unkeyed) permutation which must
be followed by a mapping to an appropriate group for exponentiation by the epoch key. For the permutation we
do not need any specific and strong properties that are provided by modern constructions of block ciphers and
sponges. As far as the proof goes, and in practice, the property that we want from this permutation is that given
a ciphertext and the inverse of the epoch key ke, the only way to extract useful information about the message
is to apply the inverse permutation π−1. The random permutation model (or ideal cipher model) is thus the tool
we need here to create a simple interface for this aspect of our proof.

The different members of the SHINE family are suited to different application scenarios. The variants
SHINE0 and MirrorSHINE are best suited to cases where messages are of small, fixed size, such as customer
credentials (or phone contact details, to return to the motivating example in the Introduction). For applications
with longer messages (i.e. larger than the size of the exponentiation group), OCBSHINE is considerably faster
and we will assume that these choices are made in our implementation suggestions. This removes any need
for larger groups in order to encrypt longer messages. Using larger groups would not only carry a significant
performance penalty, but also force us to construct custom large blocklength block ciphers. Although this can
be done (and has been for RSA groups [GOR18], where our approach would not work), the analysis is tricky.

Instantiating the ideal permutation. The message block in SHINE0, MirrorSHINE and the final message
block in OCBSHINE must be appropriately padded to allow application of the permutation. The permutation
could be deployed using a variable-output-length sponge construction, a block cipher or an authenticated en-
cryption scheme with a fixed key and suitably large nonce space. In practice, we suggest to instantiate the
random permutation with a block cipher of a suitable block length. AES has only 128-bit blocks which does
not match the minimum required size of the group, so we instead suggest block ciphers such as Threefish, or
original Rijndael, allowing block lengths of 256 or 512 bits.

Mapping to elliptic curve group. We would like to instantiate our groups using elliptic curves. Using mod-
ern techniques it is always possible to find a suitable curve over a field with a size matching the block length
of the ideal permutation, but using standard curves like NIST P-256 or P-521 seems desirable. A standard
approach [Kob87] is to embed bit strings in the X-coordinate of a point as follows. Note that close to half the
field elements are X-coordinates of points. Given a field of size q, we consider a t-bit block as an integer x0

and find a small integer u such that u2t + x0 is the X-coordinate of a curve point. If log q− t is between 8 and
9, this will fail to terminate with probability around 2−256 under reasonable assumptions.

With this approach we could use Threefish with 512-bit blocks together with NIST P-521 curve. If we
want to use 256-bit blocks from Threefish, or original Rijndael, together with NIST P-256 curve, we can use
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a standard block cipher iteration trick [RSA78] to reduce the block length from 256 bits, so that embedding in
theX-coordinate still works, as follows. With block length t+τ , concatenate a t-bit block with τ leading zeros
and apply the block cipher until the τ leading bits of the result are all zeros. Discard these zeros to get a t-bit
block. This is fairly cheap as for our purposes 8 or 9 bits will do.

Note that we have constructed an injective embedding of a block into an elliptic curve, not a bijection as
assumed in our proofs. When we sample group elements in our proof, we must take care to sample points in
the image of our embedding, but this can be done cheaply.

6 Conclusions

In this work we provided a suite of new updatable encryption schemes, collectively called SHINE, and a new
definition of security xxIND-UE-atk (that implies prior notions) in which we prove our schemes secure. In the
process, we provided a greater understanding of the proof techniques that are inherent in the strong corruption
model that is desirable for updatable encryption – in particular in the context of deterministic updates that is
desirable in practice.
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A SHINE0 is IND-ENC -CPA Secure

Theorem 4.2. Let G be a group of order q (a λ-bit prime) with generator g, and let SHINE0 be the updatable
encryption scheme described in Fig. 25. For any IND-ENC -CPA adversary A against SHINE0, there exists an
adversary B4.2 against DDH such that

AdvIND-ENC-CPA
SHINE0, A (λ) ≤ 2(n+ 1)3 ·AdvDDH

G, B4.2(λ).

Proof. Similarly to the proof of Theorem 4.1, we use the firewall technique and construct hybrid games. For
b ∈ {0, 1}, define game Gb

i as ExpIND-ENC-CPA-b
SHINE0, A except for:

• The game randomly picks two numbers fwli, fwri and if fwli, fwri are not the i-th firewalls, a random bit
is returned for b′. This loss is upper bounded by (n+ 1)2;

• For challenge made in epoch ẽ with input (M̄0, M̄1): If ẽ < fwli then return a ciphertext of M̄1, if
ẽ > fwri return a ciphertext of M̄0, and if fwli ≤ ẽ ≤ fwri return a ciphertext of M̄b;

• After A outputs b′: returns b′ if twf 6= 1 or some additional trivial win condition is triggered.

Similarly to the computation in Theorem 4.1, we have

AdvIND-ENC-CPA
SHINE0, A (λ) = (n+ 1)2 ·

(
l∑

i=1

|Pr[G1
i = 1]−Pr[G0

i = 1]|

)
,

for some l. Again we need to prove that |Pr[G1
i = 1]−Pr[G0

i = 1]| ≤ 2AdvDDH
G, (λ).

We construct a reduction B4.2, detailed in Fig. 33, that is playing the standard DDH game and runsAi. The
reduction B4.2 flips a coin b, and simulates Gb

i by using DDH tuples (X,Y, Z) to output SHINE0.Enc(M̄b) in
the i-th insulated region. If Ai guess b correctly, then B4.2 guesses its real DDH tuples, otherwise, B4.2 guess
its random DDH tuples. If B4.2 receives a real DDH tuple, then B4.2 perfectly simulates the input of Ai in Gb

i .
If B4.2 receives a random DDH tuple, then B4.2 wins with probability 1/2. After some computation similar to
that in the proof of Theorem 2.3 we have that AdvDDH

G, B4.2(λ) = 1
2 |Pr[G1

i = 1]−Pr[G0
i = 1]|.

48



Reduction B4.2 playing ExpDDH
G, B4.2 in hybrid i

1 : receive (g,X, Y, Z)

2 : do Setup

3 : M̄0, M̄1 ← AO.Enc,O.Next,O.Upd,O.Corr(λ)

4 : phase← 1

5 : Create C̃ with (M̄0, M̄1), get C̃ẽ

6 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)

7 : twf ← 1 if

8 : C∗ ∩ K∗ 6= ∅
9 : if ABORT occurred or twf = 1

10 : b′
$←− {0, 1}

11 : return b′

12 : if (i, fwli, fwri) 6∈ FW

13 : b′
$←− {0, 1}

14 : return b′

15 : if b′ = b

16 : return 0

17 : else

18 : return 1

Setup(λ)

19 : b
$←− {0, 1}; k0 ← SHINE0.KG(λ)

20 : ∆0 ←⊥; e← 0; phase, twf ← 0

21 : L, L̃, C,K, T ← ∅

22 : fwli, fwri
$←− {0, ..., n}

23 : PKfwli ← Y

24 : for j ∈ {fwli+1, ..., fwri} do

25 : ∆j
$←− Z∗q ;PKj ← PK

∆j

j−1

26 : for j∈{0, ..., fwli-1}∪{fwri+1, ..., n} do

27 : kj
$←− Z∗q ; ∆j ←

kj

kj−1

./

;PKj ← gkj

O.Enc(M)

28 : r
$←− Z∗q ;π(N||M)← gr; Ce ← PKr

e

29 : L ← L ∪ {(·,Ce, e; r)}
30 : return Ce

O.Next

31 : e← e + 1

O.Upd(Ce−1)

32 : if (·,Ce−1, e− 1; r) 6∈ L
33 : return ⊥
34 : Ce ← PKr

e

35 : L ← L ∪ {(·,Ce, e; r)}
36 : return Ce

O.Corr(inp, ê)

37 : do Check(inp, ê; e; fwli, fwri)

38 : if inp = key

39 : K ← K ∪ {ê}
40 : return kê

41 : if inp = token

42 : T ← T ∪ {ê}
43 : return ∆ê

Create C̃ with (M̄0, M̄1)

44 : π(N||M̄b)← X

45 : π(N||M̄b⊕1)
$←− G

46 : C̃fwli ← Z

47 : for j ∈ {0, ..., fwli − 1} do

48 : C̃j ← (π(N||M̄1))kj // left

49 : for j ∈ {fwli + 1, ..., fwri} do

50 : C̃j ← C̃
∆j

j−1 // embed

51 : for j ∈ {fwri + 1, ..., n} do

52 : C̃j ← (π(N||M̄0))kj // right

53 : L̃ ← ∪nj=0{(C̃j , j)}
54 : return C̃ẽ

O.UpdC̃

55 : C ← C ∪ {e}
56 : find(C̃e, e) ∈ L̃
57 : return C̃e

Figure 33: Reduction B4.2 for proof of Theorem 4.2. Embedding DDH tuples to challenge ciphertexts requires
faithful responses to queries within the i-th insulated region. On line 27, ./ indicates ∆0 and ∆fwri+1 are
skipped in the computation.
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B The BLMR Scheme of Boneh, Lewi, Montgomery, and Raghunathan

We present the original scheme given by Boneh et al. [BLMR13], which we denote by BLMR. The scheme is a
direct application of the key-homomorphic PRFs defined in the same paper: the authors observed that the Naor-
Reingold-Pinkas PRF [NPR99] is key homomorphic, and presented a number of other constructions based on
DLIN and LWE. The updatable encryption scheme BLMR [BLMR13], which is ciphertext-independent and
defined in Fig. 34, represented the first UE construction.

BLMR.KG(λ)

1 : ke
$←− F.KG(λ)

2 : return ke

BLMR.TG(ke, ke+1)

3 : ∆e+1 ← ke ⊕ ke+1

4 : return ∆e+1

BLMR.Enc(ke,M)

5 : N
$←− χ

6 : C1
e ← F(ke,N)⊗M

7 : Ce ← (C1
e ,N)

8 : return Ce

BLMR.Dec(ke,Ce)

9 : parse Ce = (C1
e ,N)

10 : M′ ← C1
e ⊗ F(ke,N)

11 : return M′

BLMR.Upd(∆e+1,Ce)

12 : parse Ce = (C1
e ,N)

13 : Ce+1 ← (C1
e ⊗ F(∆e+1,N),N)

14 : return Ce+1

Figure 34: Updatable encryption scheme BLMR [BLMR13] for key-homomorphic PRF F.

To present the schemes and the results in this section, we first need to introduce a definition of a key-
homomorphic PRF, and also the regular (left-or-right) IND-CPA security definition for symmetric encryption.

Definition 13 (Key-homomorphic PRF [BLMR13]). Let F : KS × X → Y be some efficiently-computable
function, where (KS,⊕) and (Y,⊗) are groups. Then, (F,⊕,⊗) is a key-homomorphic PRF if F is a PRF,
and for every k1, k2 ∈ KS and every x ∈ X , F (k1, x)⊗ F (k2, x) = F (k1 ⊕ k2).

Definition 14. Let SKE = {KG,E,D} be an symmetric encryption scheme. Then the IND-CPA advantage of
an adversary A against SKE is defined as

AdvIND-CPA
SKE, A (λ) =

∣∣∣∣Pr[ExpIND-CPA-1
SKE, A = 1]−Pr[ExpIND-CPA-0

SKE, A = 1]

∣∣∣∣,
where the experiment ExpIND-CPA-b

SKE, A is given in Fig. 35.

ExpIND-CPA-b
SKE, A (λ)

1 : k
$←− KG

2 : (M0,M1, st)← AO.E(λ)

3 : if |M0| 6= |M1|
4 : return ⊥

5 : C̃
$←− SKE.Enc(k,Mb)

6 : b′ ← AO.E(C̃)

7 : return b′

O.E(M)

8 : C← SKE.Enc(k,M)

9 : return C

Figure 35: The experiments defining IND-CPA security for symmetric encryption schemes.

Note that BLMR is trivially insecure in terms of xxIND-UPD-atk (in any of its three flavors) since the
adversary can gain the epoch key for the epoch preceding the challenge epoch, allowing decryption of the chal-
lenge input ciphertexts and consequently a direct comparison of nonce values between these input ciphertexts
and the challenge ciphertext.
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BLMR+.KG(λ)

1 : k1 $←− F.KG(λ)

2 : k2 $←− SKE.KG(λ)

3 : ke ← (k1, k2)

4 : return ke

BLMR+.TG(ke, ke+1)

5 : parse ke = (k1
e , k

2
e )

6 : parse ke+1 = (k1
e+1, k

2
e+1)

7 : ∆e+1 ← (k1
e ⊕ k1

e+1, (k
2
e , k

2
e+1))

8 : return ∆e+1

BLMR+.Enc(ke,M)

9 : parse ke = (k1
e , k

2
e )

10 : N
$←− χ

11 : C1
e ← F(k1

e ,N)⊗M

12 : C2
e ← SKE.E(k2

e ,N)

13 : Ce ← (C1
e ,C

2
e )

14 : return Ce

BLMR+.Dec(ke,Ce

15 : parse ke = (k1
e , k

2
e )

16 : parse Ce = (C1
e ,C

2
e )

17 : N← SKE.D(k2
e ,C

2
e )

18 : M′ ← C1
e ⊗ F(k1

e ,N)

19 : return M′

BLMR+.Upd(∆e+1,Ce)

20 : parse ∆e+1 = (∆′e+1, (k
2
e , k

2
e+1))

21 : parse Ce = (C1
e ,C

2
e )

22 : N← SKE.D(k2
e ,C

2
e )

23 : C1
e+1 ← C1

e ⊗ F(∆′e+1,N)

24 : C2
e+1 ← SKE.E(k2

e+1,N)

25 : Ce+1 ← (C1
e+1,C

2
e+1)

26 : return Ce+1

Figure 36: Updatable encryption scheme BLMR+ [BLMR13, LT18a] for key-homomorphic PRF F and sym-
metric key encryption scheme SKE.

LT18 detailed an extension of BLMR, denoted BLMR+, where the nonce is encrypted: this scheme is
described in Fig. 36. LT18 showed that BLMR+ is IND-ENC-CPA and weakIND-UPD-CPA secure, however it
is not detIND-UE-CPA secure, since the token contains the encryption key for the nonce value. More precisely,
the adversary runs as follows:

• Choose some M0, call O.Enc(M0) and receive some C.

• Call O.Next, choose M1 (that is distinct from M0), do O.Chall(C,M1) and receive C̃.

• Call O.Next, call O.UpdC̃, call O.Corr(token, 2) and O.Corr(key, 0).

• Do BLMR+.Deck0(C) to see its nonce, do Dk2
2
(C̃) to see nonce of challenge ciphertext and compare.

This is a very similar attack to the one LT18 used to demonstrate that BLMR+ is not detIND-UPD-CPA secure.
Although BLMR+ is not detIND-UE-CPA secure, we can prove that it is weakIND-UE-CPA secure.

B.1 BLMR+ is weakIND-UE-CPA Secure.

Trivial wins for a weak model. An additional notion weakIND-UPD-CPA was used by LT18 for proving
their BLMR+ scheme secure: if the adversary has access to any token or key which could leak the nonce of a
challenge input ciphertext, the trivial win flag is triggered if the adversary gains access to any token which could
reveal the nonce of a known (version of the) challenge ciphertext (i.e. if I∗ ∩ (K∗ ∪ T ∗) 6= ∅, then twf ← 1 if
∃e ∈ C∗ such that e or e + 1 ∈ T ∗). This is necessary because the token in BLMR+ contains the symmetric
keys that enable decryption and re-encryption of the nonce.

Proof technique of Proposition 6. The proof technique is very similar to the proof of weakIND-UPD-CPA
security of BLMR+ in LT18 [LT18a]. We consider two situations of the additional requirements of weakIND-UE-CPA
security and provide two proofs based on these situations. We only describe the first proof technique as both
proofs use the same strategy. We construct hybrid games across each epoch, such that distinguishing the end-
points represents success in the weakIND-UE-CPA game. Suppose Ai is an adversary trying to distinguish
games in hybrid i. We consider a modified hybrid game in which the first element of ciphertexts is a uniformly
random element. We can prove that the ability to notice this change is upper bounded by PRF advantage. Then,
we conclude the proof by switching out the nonce inside the encryption in the second component: noticing this
change is upper bounded by IND-CPA advantage of an adversary against SKE.

51



Proposition 6. Let BLMR+ be the updatable encryption scheme described in Fig. 36. For any weakIND-UE-CPA
adversary A against UE that asks at most QE queries to O.Enc before it makes its challenge, there exists an
IND-CPA adversary BIND-CPA

6b against SKE and an PRF adversary BPRF
6a against F such that

AdvweakIND-UE-CPA
BLMR+, A (λ) ≤ (n+ 1)3 ·

(
AdvIND-CPA

SKE, BIND-CPA
6b

(λ) + 2AdvPRF
F, BPRF

6a
(λ) +

2QE
2

|X |

)
.

Proof. The additional requirement of weakIND-UE-CPA security states: If the adversary knows a secret key or
a token in epoch e∗ ∈ I∗, then for any e ∈ C∗, if the adversary corrupts ∆e or ∆e+1 then the adversary trivially
loses, i.e. twf ← 1. We consider two situations (whether or not I∗ ∩ (K∗ ∪ T ∗) = ∅) that might happen. The
reduction can flip a coin at the beginning of the simulation to guess which situation the adversary will produce
and set up the simulation appropriately.

Situation 1. Suppose the adversary knows a secret key or a token in epoch e∗ ∈ I∗.
(Step 1.) We construct a sequence of hybrid games. Define game Gi as ExpweakIND-UE-CPA-b

BLMR+, A except for:

• The challenge input (M̄, C̄), called in epoch j. If j ≤ i then return a ciphertext that is an update of C̄, if
j > i then return a ciphertext that is an encryption of M̄.

• After A outputs b′, returns b′ if twf 6= 1.

Similarly the advantage AdvweakIND-UE-CPA
BLMR+, A (λ) is upper bounded by |Pr[G−1 = 1] − Pr[Gn = 1]|. For

any i, we prove that

|Pr[Gi = 1]−Pr[Gi−1 = 1]| ≤ AdvIND-CPA
SKE, BIND-CPA

6b
(λ) + 2AdvPRF

F, BPRF
6a

(λ) +
2QE

2

|X |
.

Suppose Ai is an adversary trying to distinguish Gi from Gi−1. For all queries concerning epochs other
than i the responses will be equal in either game, so we assume Ai asks for a challenge ciphertext in epoch i.
That means if the adversary corrupts tokens in epoch i or epoch i + 1, the trivial win condition is met and the
adversary loses.

(Step 2.) We consider a modified game GPRF which is the same as Gi except for: the first element of
ciphertexts given to the adversary in epoch i is a uniformly random element in Y . More precisely, in epoch i,
when Ai asks for O.Enc,O.Upd or a challenge-equal ciphertext to game Gb

PRF:

• An O.Enc(M) query: randomly choose a nonce N
$←− X \ X , set X ← X ∪ {N}, randomly choose

C1
i

$←− Y , compute C2
i ← SKE.E(k2

i ,N), set L ← L ∪ {(·,Ci, i; N,M)}. Output Ci.

• An O.Upd(Ci−1) query: proceed if (·,Ci−1, i− 1; N,M) ∈ L. If N ∈ X , then abort the game; oth-

erwise, set X ← X ∪ {N}, randomly choose C1
i

$←− Y , compute C2
i ← SKE.E(k2

i ,N), set L ←
L ∪ {(·,Ci, i; N,M)}. Output Ci.

• A challenge-equal ciphertext (with the underlying challenge input (M̄0, C̄)): proceed if (·, C̄, ẽ−1; N1, M̄1) ∈
L. If N1 ∈ X , then abort the game; otherwise, set X ← X ∪ {N1}. Randomly choose a nonce

N0
$←− X \ X , set X ← X ∪ {N0}, randomly choose C1

i
$←− Y , compute C̃2

i ← SKE.E(k2
i ,Nb),

(C̃i, i; Nb, M̄b) ∈ L̃. Output C̃i.

We wish to prove that

|Pr[Gi = 1]−Pr[Gi−1 = 1]| ≤ AdvGPRF(λ) + 2AdvPRF
F, BPRF

6a
(λ) +

2QE
2

|X |
.

If the following results are true, then we have the above result.

|Pr[Gi = 1]−Pr[G1
PRF = 1]| ≤ AdvPRF

F, BPRF
6a

(λ) +
QE

2

|X |
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and

|Pr[Gi−1 = 1]−Pr[G0
PRF = 1]| ≤ AdvPRF

F, BPRF
6a

(λ) +
QE

2

|X |
.

We construct an PRF adversary BPRF
6a , detailed in Fig. 37, against F to simulate the responses of queries made

by Ai.
The reduction does appropriate bookkeeping for the nonce, message, and ciphertexts in list L. Specifically,

in epoch i, BPRF
6a collects used nonces in list X (initiated as empty set). Initially, the reduction flips a coin

b
$←− {0, 1}, simulates the challenge response with M̄0 if b = 0; otherwise, simulates the challenge response

with C̄. The reduction BPRF
6a generates all keys and tokens except for k1

i . In epoch i, BPRF
6a calls its PRF

challenger for help computing F(k1
i ,N).

Eventually BPRF
6a receives b′ from Ai, and if b′ = b, then BPRF

6a guesses that it is interacting with the ‘real’
PRF, i.e. outputs 0 to the PRF challenger, otherwise BPRF

6a outputs 1.
When BPRF

6a interacts with ExpPRF-0
F, BPRF

6a
, the simulation of Gi−1 (if b = 0) or Gi (if b = 1) is perfect except

if a nonce collision during the game has caused an abort, this term is bounded by QE
2

|X | . When BPRF
6a interacts

with ExpPRF-1
F, BPRF

6a
, the simulation of Gb

PRF to Ai is perfect. We have the desired result.

(Step 3.) Suppose Ai is an adversary trying to distinguish game G0
PRF from game G1

PRF. Then we construct
a reduction BIND-CPA

6b , detailed in Fig. 38, playing the IND-CPA game that runs Ai. We claim that

AdvGPRF
Ai

(λ) ≤ AdvIND-CPA
BIND-CPA
6b

(λ).

Reduction BIND-CPA
6b generates all keys and tokens except for ki. In epoch i, BIND-CPA

6b uses the IND-CPA
challenger for assistance in computing SKE.E(k2

i ,N). In epoch i, the reduction forwards all nonces of O.Enc
andO.Upd to the IND-CPA challenger, and sets the reply in the second part of ciphertext, i.e. C2

i . For challenge
input (M̄, C̄), suppose C̄ has the underlying nonce N1, BIND-CPA

6b chooses nonce N0 while encrypting M, sends
(N0,N1) to the IND-CPA challenger as challenge input, and sets the reply in the second part of the challenge
ciphertext. The following shows how BIND-CPA

6b simulates the responses of queries made by Ai:
Eventually, BIND-CPA

6b sends the guess bit of A to the IND-CPA challenger. We have the required result.

Situation 2. Suppose the adversary knows none of the secret keys and tokens in epoch e∗ ∈ I∗.
Since the adversary never knows the nonce in the challenge C̄, we do not need to worry if the adversary

knows a token in the challenge epoch or the next epoch will make the adversary trivially win the game.
We use the firewall technique to construct hybrid games: in hybrid i, we embed within the i-th insulated

region. This means that to the left of the i-th insulated region the game responds with an update of the challenge
input ciphertext and to the right of the i-th insulated region it gives an encryption of the challenge input message.
Similarly the advantage AdvweakIND-UE-CPA

BLMR+, A (λ) is upper bounded by (n + 1)2 · |Pr[G1
l = 1] − Pr[G0

1 = 1]|.
For any 1 ≤ i ≤ l, we prove that

|Pr[G1
i = 1]−Pr[G0

i = 1]| ≤ AdvIND-CPA
SKE, BIND-CPA

6b
(λ) + 2AdvPRF

F, BPRF
6a

(λ) +
2QE

2

|X |
.

Suppose Ai is an adversary trying to distinguish game G0
i from game G1

i in hybrid i.
As the above step 2 proof, we consider a modified hybrid game in which the first element of ciphertexts in

epoch fwli is a uniformly random element in Y . The difference here is that if Ai asks for encryption queries
or challenge queries in an epoch within the i-th insulated region, the reduction will simulate these queries in
epoch fwli and then output the updated version (updated from epoch fwli to the queried epoch). Since the
update algorithm of BLMR+ is deterministic, this simulation is valid.

Similarly we can prove the modified hybrid game is indistinguishable from the original hybrid game, and
that the distinguishing advantage is upper bounded by the PRF advantage. Finally, similarly to the above step
3 proof (the difference is the same as the difference mentioned in the former paragraph), the advantage is upper
bounded by IND-CPA advantage of SKE. We have the following result:

AdvweakIND-UE-CPA
BLMR+, A (λ) ≤ (n+ 1)3 ·

(
AdvIND-CPA

SKE, BIND-CPA
6b

(λ) + 2AdvPRF
F, BIND-CPA

6b
(λ) +

2QE
2

|X |

)
.
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Reduction BPRF
6a playing ExpPRF-b

F, B6a in hybrid i

1 : do Setup

2 : M̄0, C̄← AO.Enc,O.Next,O.Upd,O.Corr(λ)

3 : phase← 1

4 : Create C̃ with (M̄0, C̄), get C̃ẽ

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)

6 : if I∗ ∩ (K∗ ∪ T ∗) = ∅
7 : return ABORT

8 : twf ← 1 if

9 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅ or

10 : (∃e ∈ C∗ : e ∈ T ∗ or e + 1 ∈ T ∗)
11 : if ABORT occurred or twf = 1

12 : b′
$←− {0, 1}

13 : return b′

14 : if b′ = b

15 : return 0

16 : else

17 : return 1

Setup(λ)

18 : b
$←− {0, 1}

19 : ∆0 ←⊥; e← 0; phase, twf ← 0

20 : L, L̃, C,K, T , X ← ∅
21 : for j ∈ {0, ..., n} do

22 : k¶j
$←− BLMR+.KG(λ)

23 : ∆�j+1
$←− BLMR+.TG(kj , kj+1)

O.Enc(M)

24 : if e 6= i

25 : Ce ← BLMR+.Enc(ke,M)

26 : if e = i

27 : N
$←− X \X;X ← X ∪ {N}

28 : call y ← O.f(N)

29 : C1
i ← y ⊗M // embed

30 : C2
i ← SKE.E(k2

i ,N)

31 : Ci ← (C1
i ,C

2
i )

32 : L ← L ∪ {(·,Ce, e; N,M)}
33 : return Ce

O.Next

34 : e← e + 1

O.Upd(Ce-1)

35 : if (·,Ce-1, e-1; N,M) 6∈ L or (e = i and N ∈ X)

36 : return ⊥
37 : if e 6= i, i+ 1

38 : Ce ← BLMR+.Upd(∆e,Ce-1)

39 : if e = i+ 1

40 : Ce ← (F(k1
e ,N)⊗M,SKE.E(k2

e ,N))

41 : if e = i

42 : X ← X ∪ {N}
43 : call y ← O.f(N); C1

i ← y ⊗M // embed

44 : C2
i ← SKE.E(k2

i ,N)

45 : Ci ← (C1
i ,C

2
i )

46 : L ← L ∪ {(·,Ce, e; N,M)}
47 : return Ce

O.Corr(inp, ê)

48 : if ê > e or e = i or (e = i+1 and inp = token)

49 : return ⊥
50 : if inp = key

51 : K ← K ∪ {ê}
52 : return kê

53 : if inp = token

54 : T ← T ∪ {ê}
55 : return ∆ê

Create C̃ with (M̄0, C̄)

56 : if (·, C̄, ẽ− 1; N1, M̄1) 6∈ L or N1 ∈ X
57 : return ⊥

58 : N0
$←− X \ (X ∪ {N1}); X ← X ∪ {N0,N1}

59 : call yb ← O.f(Nb); C̃1
i ← yb ⊗ M̄b // embed

60 : C̃2
i ← SKE.E(k2

i ,Nb)

61 : C̃i ← (C̃1
i , C̃

2
i )

62 : for j ∈ {0, ..., i− 1} do

63 : C̃j ← (F(k1
j ,N1)⊗ M̄1,SKE.E(k2

j ,N1)) // left

64 : for j ∈ {i+ 1, ..., n} do

65 : C̃j ← (F(k1
j ,N0)⊗ M̄0,SKE.E(k2

j ,N0)) // right

66 : L̃ ← ∪nj=0{(C̃j , j)}
67 : return C̃ẽ

O.UpdC̃

69 : C ← C ∪ {e}
70 : find (C̃e, e) ∈ L̃
71 : return C̃e

Figure 37: Reduction BPRF
6a for proof of Proposition 6. Recall that in the PRF game in Definition 3, the oracle

O.f responds to query input N with either F(k,N) or a random value. On line 22, ¶ indicates k1
i are skipped

in the generation; on line 23, � indicates ∆i and ∆i+1 are skipped in the generation.
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Reduction BIND-CPA
6b playing ExpIND-CPA

SKE, B6b in hybrid i

1 : do Setup

2 : M̄0, C̄← AO.Enc,O.Next,O.Upd,O.Corr(λ)

3 : phase← 1

4 : Create C̃ with (M̄0, C̄), get C̃ẽ

5 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃ẽ)

6 : if if I∗ ∩ (K∗ ∪ T ∗) 6= ∅
7 : return ABORT

8 : twf ← 1if

9 : C∗ ∩ K∗ 6= ∅ or I∗ ∩ C∗ 6= ∅ or

10 : (∃e ∈ C∗ : e ∈ T ∗ or e + 1 ∈ T ∗)
11 : if ABORT occurred or twf = 1

12 : b′
$←− {0, 1}

13 : return b′

14 : if b′ = b

15 : return 0

16 : else

17 : return 1

Setup(λ)

18 : b
$←− {0, 1}

19 : ∆0 ←⊥; e← 0; phase, twf ← 0

20 : L, L̃, C,K, T , X ← ∅
21 : for j ∈ {0, ..., n} do

22 : k~
j

$←− BLMR+.KG(λ)

23 : ∆�j+1
$←− BLMR+.TG(kj , kj+1)

O.Enc(M)

24 : if e 6= i

25 : Ce ← BLMR+.Enc(ke,M)

26 : if e = i

27 : N
$←− X \X;X ← X ∪ {N}

28 : C1
i

$←− Y
29 : call y ← O.E(N)

30 : C2
i ← y // embed

31 : Ci ← (C1
i ,C

2
i )

32 : L ← L ∪ {(·,Ce, e; N,M)}
33 : return Ce

O.Next

34 : e← e + 1

O.Upd(Ce-1)

35 : if (·,Ce-1, e-1; N,M) 6∈ L or (e = i and N ∈ X)

36 : return ⊥
37 : if e 6= i, i+ 1

38 : Ce ← BLMR+.Upd(∆e,Ce-1)

39 : if e = i+ 1

40 : Ce ← (F(k1
e ,N)⊗M,SKE.E(k2

e ,N))

41 : if e = i

42 : X ← X ∪ {N}; C1
i

$←− Y

43 : call y ← O.E(N); C2
i ← y // embed

44 : Ci ← (C1
i ,C

2
i )

45 : L ← L ∪ {(·,Ce, e; N,M)}
46 : return Ce

O.Corr(inp, ê)

47 : if ê > e or e = i or (e = i+1 and inp = token)

48 : return ⊥
49 : if inp = key

50 : K ← K ∪ {ê}
51 : return kê

52 : if inp = token

53 : T ← T ∪ {ê}
54 : return ∆ê

Create C̃ with (M̄0, C̄)

55 : if (·, C̄, ẽ− 1; N1, M̄1) 6∈ L or N1 ∈ X
56 : return ⊥

57 : N0
$←− X \ (X ∪ {N1}); X ← X ∪ {N0,N1}

58 : C̃1
i

$←− Y

59 : call CHALL with (N0,N1), get C̃2
i // embed

60 : C̃i ← (C̃1
i , C̃

2
i )

61 : for j ∈ {0, ..., i− 1} do

62 : C̃j ← (F(k1
j ,N1)⊗ M̄1,SKE.E(k2

j ,N1)) // left

63 : for j ∈ {i+ 1, ..., n} do

64 : C̃j ← (F(k1
j ,N0)⊗ M̄0,SKE.E(k2

j ,N0)) // right

65 : L̃ ← ∪nj=0{(C̃j , j)}
66 : return C̃ẽ

O.UpdC̃

67 : C ← C ∪ {e}
68 : find(C̃e, e) ∈ L̃
69 : return C̃e

Figure 38: Reduction BIND-CPA
6b for proof of Proposition 6; the simulation is almost the same as BPRF

6a except
for the underlined simulations. Recall that in the IND-CPA game in Definition 14, the encryption oracle O.E
replies to input N with SKE.Enc(k,N). On line 22, ~ indicates ki is skipped in the generation; on line 23, �
indicates ∆i and ∆i+1 are skipped in the generation.
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C The RISE Scheme of Lehmann and Tackmann

In this section we discuss the Elgamal-based updatable encryption scheme RISE, developed by Lehmann and
Tackmann [LT18a] and given in Fig. 39. LT18 showed9 that RISE is randIND-ENC and randIND-UPD-CPA,
under DDH. KLR19 observed that for RISE, knowledge of an update token allows the storage host to create
arbitrary ciphertexts for messages of its choice: this is a very undesirable feature for an UE scheme, and is not
possible for SHINE. This emphasizes the importance of ciphertext integrity for UE schemes.

RISE.KG(λ)

1 : x
$←− Z∗q

2 : ke ← (x, gx)

3 : return ke

RISE.TG(ke, ke+1)

4 : parse ke = (x, y)

5 : parse ke+1 = (x′, y′)

6 : ∆e+1 ← (
x′

x
, y′)

7 : return ∆e+1

RISE.Enc(ke,M)

8 : parse ke = (x, y)

9 : r
$←− Zq

10 : Ce ← (yr, gr ·M)

11 : return Ce

RISE.Dec(ke,Ce)

12 : parse ke = (x, y)

13 : parse Ce = (C1,C2)

14 : M′ ← C2 · C−1/x
1

15 : return M′

RISE.Upd(∆e+1,Ce)

16 : parse ∆e+1 = (∆, y′)

17 : parse Ce = (C1,C2)

18 : r′
$←− Zq

19 : C′1 ← C∆
1 · y′

r′

20 : C′2 ← C2 · gr
′

21 : Ce+1 ← (C′1,C
′
2)

22 : return Ce+1

Figure 39: Updatable encryption scheme RISE [LT18a] for λ-bit prime q.

C.1 RISE is randIND-UE-CPA Secure

We show that RISE is randIND-UE-CPA under DDH. First, we adapt (an extended version of) the Oracle-DDH
experiment to the epoch-based corruption model found in updatable encryption, in a way that ensures that it
still reduces to DDH. In this way, we lift a lot of the bookkeeping and complexity. Then, the reduction from
randIND-UE-CPA to this oracle-based game is straightforward. We believe that this two-step proof strategy
may be useful for proving security of other UE schemes, under any of the security notions discussed so far.

Oracle-Decision-Diffie Hellman for RISE. We give an experimentO-DDHRISE, where each exponent repre-
sents an epoch key, and corruption of keys and tokens is represented: the game allows the adversary to acquire
the difference of two exponents in the form ti = ei

ei−1
. In each ‘epoch’ the adversary can possibly ask for a

challenge via O.Chall, which returns either a ‘real’ DDH tuple, with the epoch key defined as one of the expo-
nents, or a random tuple. The game is given in Fig. 40. Just as in the games for UE, the challenger keeps track
of the epochs in which the adversary has access to ‘updates’ of the ‘challenge’ (via CL∗), and access to the keys
(exponents, via EL∗). If these overlap then the adversary can trivially extract from the challenge value whether
it is ‘real’ or ‘random’ and win, so this is of course ruled out. The syntax also follows the UE games in the sense
that once the adversary asks for a challenge, it can only ask for ‘later’ challenges (i.e. with a higher index) from
this oracle – it can of course move this challenge ‘backwards’ into earlier epochs/indices by applying ‘token’ t.

Definition 15. Fix a cyclic group G of prime order q with generator g. The advantage of an algorithm A
solving the Oracle-Decision Diffie-Hellman for RISE (O-DDHRISE) problem for G and g is

AdvO-DDHRISE

G, A =
∣∣∣Pr[ExpO-DDHRISE-1

G, A (λ) = 1]−Pr[ExpO-DDHRISE-0
G, A (λ) = 1]

∣∣∣
where the experiment ExpO-DDHRISE-b

G, A is given in Fig. 40.

9On 19th December 2019, the authors updated the full version of their paper [LT18b] to include a new proof of randIND-ENC
security, fixing a flaw in the prior proof methodology.
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ExpO-DDHRISE-b
G, A (λ)

1 : phase, i∗ ← 0

2 : EL∗,CL∗ ← ∅
3 : if b = 1

4 : w1, ..., wn
$←− Z∗q

5 : else

6 : w1, ..., wn ← 0

7 : e1, ..., en
$←− Z∗q

8 : x1, ..., xn
$←− Z∗q

9 : for i ∈ {0, ...n} do

10 : si ← gei

11 : Xi ← gxi

12 : b′ ← AO.Open,O.Difr,O.Chall(g, {s1, ..., sn})
13 : if EL∗ ∩ CL∗ 6= ∅

14 : b′
$←− {0, 1}

15 : return b′

O.Open(i)

16 : update EL∗

17 : return ei

O.Difr(i)

18 : ti ←
ei

ei−1

19 : update EL∗,CL∗

O.Chall(i)

20 : if phase = 1 and i < i∗

21 : return ⊥
22 : CL∗ ← CL∗ ∪ {i}
23 : Zi ← sxi

i · g
wi

24 : if phase = 0

25 : i∗ ← i

26 : phase← 1

27 : return (Xi, Zi)

Figure 40: O-DDHRISE experiment for G of order q (λ-bit prime) and generator g.

Proposition 7. Let G be a group of order q (a λ-bit prime) with generator g, and let RISE be the updatable
encryption scheme described in Fig. 39. For any randIND-UE-CPA adversary A against RISE, there exists an
adversary B7 against DDH such that

AdvrandIND-UE-CPA
RISE, A (λ) = 2(n+ 1)3 ·AdvDDH

G, B7(λ).

This theorem is proven by Lemmas 7.1 and 7.2.

Lemma 7.1. Let G be a group of order q (a λ-bit prime) with generator g. For any adversary A against
O-DDHRISE, there exists an adversary B7.1 against DDH such that

AdvO-DDHRISE

G, A (λ) = (n+ 1)3 ·AdvDDH
G, B7.1(λ),

where n+ 1 is the number of exponents in the O-DDHRISE game.

Proof. We use a sequence of game hops and a hybrid argument. Define game Gb
i as ExpO-DDHRISE-b

G, A except for
O.Chall: if called in index j, if j < i then return a ‘real’ sample (with wj = 0), and if j > i return a ‘random

sample’ (wj
$←− Z∗q). Thus G1

0 is ExpO-DDHRISE-1
G , i.e. all challenges result in ‘random’ DDH tuples, and G0

n is

ExpO-DDHRISE-0
G , i.e. all challenges result in ‘real’ DDH tuples. Thus distinguishing G1

0 from G0
n is the task of

distinguishing ExpO-DDHRISE-1
G, A from ExpO-DDHRISE-0

G, A for adversary A.
Notice that all queries in G0

i−1 and G1
i have the equal responses (For j ≤ i − 1, returns a real sample. For

j > i− 1, returns a random sample). We have AdvO-DDHRISE

G, A (λ) =
∑n

i=0 |Pr[G1
i = 1]−Pr[G0

i = 1]|. Then
we prove that |Pr[G1

i = 1]−Pr[G0
i = 1]| ≤ (n+ 1)2 ·AdvDDH

G, (λ) for any i.
Let Ai be an adversary trying to distinguish G1

i from G0
i . For all queries concerning epochs other than i

the responses will be equal in either game, so we assume that Ai asks for a challenge ciphertext in epoch i and
this is where we will embed in our reduction. We construct a reduction B7.1, detailed in Fig. 41, that is playing
the standard DDH game (Fig. 2) and runs Ai. This reduction guesses the locations of the firewalls around the
challenge query: ifAi adds any of the epochs within this insulated region to its EL∗ list then the reduction fails.
fwl and fwr could take any value in {0, ..., n}, so this loss is upper bounded by (n+ 1)2.
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Reduction B7.1 playing ExpDDH-b
G, B7.1(λ) in hybrid i

1 : receive (g,X, Y, Z)

2 : fwl, fwr
$←− {0, ..., n}

3 : wi+1, ..., wn
$←− Z∗q

4 : w0, ..., wi−1 ← 0

5 : si ← Y

6 : for j ∈ {0, ..., i-1} ∪ {i+1, ..., n} do

7 : xj
$←− Z∗q ;Xj ← gxj

8 : for j ∈ {0, ..., fwl-1} ∪ {fwr+1, ..., n} do

9 : ej
$←− Z∗q ; tj ←

ej
ej-1

†
; sj ← gej

10 : for j ∈ {fwl+1, ..., fwr} do

11 : tj
$←− Z∗q

12 : for j ∈ {fwl, ..., i-1} do

13 : sj ← Y −
∏i

k=j+1 tk

14 : for j ∈ {i+1, ..., fwr} do

15 : sj ← Y
∏j

k=i+1 tk

16 : b′ ← AO.Open,O.Difr,O.Chall
i (g, {s1, ..., sn})

17 : if ABORT occurred then

18 : return b′
$←− {0, 1}

19 : return b′

O.Open(j)

20 : if j ∈ {fwl, ..., fwr}
21 : return ABORT

22 : return ei

O.Difr(j)

23 : if j ∈ {fwl, fwr+1}
24 : return ABORT

25 : return tj

O.Chall(j)

26 : if j = i

27 : Xj ← X

28 : Zj ← Z

29 : else

30 : Zj ← sj
xjgwj

31 : return (Xj , Zj)

Figure 41: Reduction B7.1 for proof of Lemma 7.1. On line 9, † indicates t0 and tfwr+1 are skipped in the
computation.

For all challenge queries smaller than i the reduction needs to faithfully respond with a ‘real’ tuple, that is
the exponent of Zj is the product of the exponent used in sj and the exponent in Xj . These queries must still
be consistent with each other, which is why even though the reduction is free to choose xj it must compute the
correct value of sj . For challenge queries larger than i the reduction produces a random value.

Note that Ai will have its own CL∗ and EL∗ lists and B7.1 will simulate these, however we omit this
calculation for readability.

If B7.1 is playing ExpDDH-1
G, B7.1 then it receives a random tuple from its challenger and thus provides a random

response to O.Chall(i), creating a perfect simulation of G1
i to Ai. If B7.1 is playing ExpDDH-0

G, B7.1 then its tuple is
real, providing a perfect simulation of G0

i . We have the required result.

Lemma 7.2. Let G be a group of order q (a λ-bit prime) with generator g, and let RISE be the updatable
encryption scheme described in Fig. 39. For any randIND-UE-CPA adversary A against RISE, there exists an
adversary B7.2 against O-DDHRISE such that

AdvrandIND-UE-CPA
RISE, A (λ) = 2 ·AdvO-DDHRISE

G, B7.2 (λ).

Proof. The reduction B7.2 is given in Fig. 42. The reduction B7.2 is playing O-DDHRISE game and runs A.
B7.2 flips a coin b, and simulates ExprandIND-UE-CPA-b

RISE, A by interacting with its own O-DDHRISE challenger.
To simulate updated non-challenge ciphertexts (i.e. respond to O.Upd queries), B7.2 must track the under-

lying messages for these encryptions so that it can generate valid ‘fresh’ encryptions using the ‘public key’
values {s1, ..., sn} received from its O-DDHRISE challenger. Since updated non-challenge ciphertexts are of
the form Ce = (sre, g

r ·M), where r is a fresh random value, the si values allow B7.2 to successfully simulate
updated non-challenge ciphertexts.
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Reduction B7.2 playing ExpO-DDHRISE

G, B7.2

1 : receive g, {s1, ..., sn}
2 : e← 0; phase← 0;L ← ∅
3 : M̄0,C← AO.Enc,O.Next,O.Upd,O.Corr(λ)

4 : phase← 1

5 : if (·,C = (C1,C2), ẽ− 1; M̄1) 6∈ L
6 : return ⊥
7 : call (Xẽ, Zẽ)← O.Chall(ẽ)

8 : b
$←− {0, 1}

9 : C̃← (Zẽ, Xẽ · M̄b) // embed

10 : b′ ← AO.Enc,O.Next,O.Upd,O.Corr,O.UpdC̃(C̃)

11 : if b′ = b

12 : return 0

13 : else

14 : return 1

O.Enc(M)

15 : r
$←− Z∗q

16 : Ce ← (sre , g
r ·M)

17 : L ← L ∪ {(·,Ce, ·; M)}
18 : return Ce

O.Next

19 : e← e + 1

O.Upd(Ce−1)

20 : if (·,Ce−1, ·; M) 6∈ L
21 : return ⊥

22 : r
$←− Z∗q

23 : Ce ← (sre , g
r ·M)

24 : L ← L ∪ {(·,Ce, ·; M)}
25 : return Ce

O.Corr(inp, ê)

26 : if ê > e

27 : return ⊥
28 : if inp = key

29 : call eê ← O.Open(ê)

30 : kê ← (eê, g
êe)

31 : return kê

32 : if inp = token

33 : call tê ← O.Difr(ê)
34 : ∆ê ← (tê, sê)

35 : return ∆ê

O.UpdC̃

36 : call (Xe, Ze)← O.Chall(e)
37 : C̃← (Ze, Xe · M̄b)

38 : return C̃e

Figure 42: Reduction B7.2 for proof of Lemma 7.2.

To simulate challenge ciphertext (i.e. respond to challenge query or O.UpdC̃), B7.2 must embed using
its own challenge. Recall that in the O-DDHRISE experiment in Fig. 40, a call to O.Chall(i) will result in
a response Zi = gkẽxi or gkẽxi+wi , and Xi = gxi . When B7.2 receives a challenge query (M̄0,C) (where
C = (gr2kẽ−1 , gr2M̄1) for some M̄1) from A, B7.2 tries to simulate RISE.Enc(kẽ, M̄0) = (gr1kẽ , gr1M̄0) or
RISE.Upd(∆ẽ−1,C) = (C

∆ẽ−1

1 gkẽr3 ,C2g
r3) = (gkẽ(r2+r3), gr2+r3M̄1), where r1, r3 are fresh random values.

B7.2 will embed Zẽ to the first part of the challenge ciphertext and embedXẽ to the second part of the challenge
ciphertext, i.e. C̃ẽ = (Zẽ, Xẽ · M̄b). Similarly, B7.2 can simulate the response of O.UpdC̃ using the same
approach.

Eventually, B7.2 receives the output bit b′ from Ai. If b′ = b, then B7.2 returns 0 to its O-DDHRISE

challenger, otherwise, B7.2 returns 1.
If B7.2 interacting with ExpO-DDHRISE-0

G, B7.2 , then it perfectly simulates ExprandIND-UE-CPA-b
RISE, A to A. If B7.2

interacting with ExpO-DDHRISE-1
G, B7.2 , then it wins with probability 1/2. After some computation similar to that in

the proof of Theorem 2.3 we have the desired result.
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