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Abstract—The fifth generation (5G) mobile networks are en-
visioned to provide connectivity not only to mobile users but
also to a wide range of other services such as enhanced mobile
broadband (eMBB) and massive Internet of Things (mIoT). In
order to meet the diverse requirements of these services in 5G,
Software Defined Networking (SDN) has been proposed as an
enabling technology for both the core cloud and the edge cloud,
in addition to Network Slicing to achieve isolation among services.
In this paper, an analytical model is developed for such an SDN-
based edge cloud, focusing on the support of two services: eMBB
and mIoT. To illustrate the use of the model, delay analysis of a
switching node in the edge cloud is presented. The results show
the relation between the packet delay and the underlying system
parameters, such as slice density, and the impact of the SDN
controller on the delay. An implication of the model, analysis
and results is that they may be used for network / resource
planning and admission control in 5G edge clouds to meet delay
requirements of the services.

Index Terms—5G, edge cloud, software defined networking
(SDN), network slicing, delay analysis

I. INTRODUCTION

The 5G mobile technology is designed to keep up the pace

with the explosion in the number of devices connected, and the

services provided, on mobile networks. The number is forecast

to reach 12.4 Billion by 2022 and these devices are estimated

to generate 77 Exabytes of data per month of which 12% will

be carried by 5G networks [1].

The mobile traffic mix has also evolved, from voice-only

to mainly voice with little data and now to mainly IP traffic.

Similarly, the targeted services have also diversified. Mobile

networks are no longer confined to serving human users only.

They do and will support, e.g., vehicular networks, sensor

networks, e-health and broadcast applications, among many

others [2]. Each of these applications has different quality of

service (QoS) requirements on the services provided by the

mobile network. In 5G, such services include enhanced mobile

broadband (eMBB) and massive Internet of Things (mIoT).

Each of these service categories has different quality of

service (QoS) requirements and each of them requires isolation

from others even though they are utilising the same underlying

resources. The corresponding logical networks are referred

to as Network Slices in 5G [3]. Besides Network Function

Virtualization (NFV), Software Defined Networking (SDN) is

a key enabling technology for network slicing, which enables

engineering traffic among and across network functions for

the corresponding network slices [3]. The 5G architectural

proposals advocate SDN to be used in both the core cloud

and the edge cloud [2], [4].

The focus of this paper is on investigating the capability of

such an SDN-based edge cloud in meeting the QoS require-

ments of its supported services. For the sake of simplicity

and tractability, we focus on two service categories, namely

eMBB and mIoT. Given that these two types of services have

highly different characteristics and QoS requirements, some

scheduling policy between them on the data path is assumed

for service isolation / differentiation between them. The aim

of the paper is to develop a queueing model for performance

analysis of the services in an edge cloud, based on which,

delay analysis of a switching node is exemplified. Unlike

classical packet-switched networks where data forwarding and

traffic routing are integrated at the same node, the data plane

and the control plane are separated in SDN, which makes

the vast amount of analysis results for the classical computer

networks, e.g. [5], no more applicable for SDN networks.

The novel contributions of the paper are as follow. First,

a queueing model is proposed for performance analysis of

the SDN-based 5G edge cloud that supports, e.g., eMBB and

mIoT and adopts some scheduling among them on the data

path. The proposed model takes into account the impact of

SDN controller on the packet forwarding performance in the

cloud: A packet entering an SDN switch finding no flow match

will invoke the controller to decide the forwarding rule before

being forwarded by the switch. In addition, to demonstrate the

use of the model, packet delay analysis of a switching node in

the edge cloud is presented. Moreover, numerical results are

introduced to show the relation between the packet delay and

the underlying system parameters, such as slice density, and

the impact of the SDN controller on the delay. An implication

of the model, analysis and results is that they may be used

for network / resource planning and admission control in 5G

edge clouds to meet delay requirements of the services. To the

best of our knowledge, this is the first attempt to model SDN

in 5G edge clouds with emphasis on having multiple network

slices across different service categories, although there has

been research on modelling SDN for other uses which will be

discussed in Sec. VI.

The rest is organized as follows. In Sec. II, the cloud-based

5G network architecture is reviewed. In Sec. III, a queueing

network model is proposed to analyze packet forwarding in an

SDN-based edge cloud. In Sec. IV, packet delay analysis of a

switching node in the cloud is provided. In Sec. V, numerical

results are presented and discussed. In Sec. VI, related work

is reviewed. Finally, concluding remarks are made in Sec. VII.



II. THE SYSTEM

In this section, a brief description of the system and its

operation is presented. Specifically, the network under study

follows the standard 5G cellular architecture which divides the

infrastructure into two parts: core network, and radio access

network (RAN) (of which transport network is a part) as

depicted in Fig 1. Some network functions and services are

brought closer to the user and hosted in the edge clouds [4]

located in the RAN to meet the 5G service requirements [2],

while the main functions are situated in the core cloud.

The radio access network is divided into cells where each

cell is served by a fifth Generation Node B (gNB). An edge

cloud may cover or support multiple such cells. To simplify the

representation, in this study, we will focus on one cell part of

the cloud. This edge cloud “cell” consists of all the equipment

at the base station (gNB) used to provide the services, and

the radio resources of the cell. The equipment includes an

SDN switch, equipment implementing physical network func-

tions (PNFs), and a micro datacenter hosting virtual network

functions (VNFs), to support e.g. network slicing in the edge

cloud. Such cell SDN switches are connected to the transport

network of the whole edge cloud, which further connects to

the backbone network and the core cloud as shown in Fig 1.� � � � � � � � � 	 
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Fig. 1. An overview of the edge cloud in 5G RAN

An SDN switch in this system configuration (i) forwards

all the data originating from the mobile terminals and mIoT

devices to the respective functions and routes, (ii) provides

connectivity to all the edge cloud equipment and functions,

and (iii) transports traffic from/to the core network and other

edge clouds. The SDN controller for the edge cloud is assumed

to be located in the same RAN. It is also assumed that the

control traffic is in-phase with the data traffic, i.e., the control

traffic uses the same channels and occupies the same buffers

as the data traffic as provisioned in [6].

To provide communication between the SDN controller and

SDN switches, an OpenFlow architecture is considered. Al-

though OpenFlow has a few standard messages, we shall limit

our discussion to only those that are used for; i) notifying the

controller that a new flow has arrived, ii) installing new rules

in the switches, iii) initiating a handover, and iv) configuring

the switches. The OpenFlow messages identified for fulfilling

these tasks are, Packet-in, Flow-mod, and Port-status.

In SDN, when a packet arrives at a switch, it is checked

against the flow table at the switch. If there is a matching

rule, the packet is forwarded according to it. Otherwise, a

Packet-in message is generated at the switch and is sent to the

controller. Once the controller has determined the forwarding

rule, it sends Flow-mod messages to all the switches in the

route so that they update their flow tables.

In case of a handover, the OpenFlow-based handover im-

plementation [7] utilizes Port-status messages for it. In this

approach, the source switch – from where the mobile node

is being handed over to the target switch – sends an Off-port

message to the controller initiating a handover. Subsequently,

the target switch sends an On-port message to the controller

signalling that the mobile node is in its coverage area. Since for

each Off-port message their is a respective On-port message,

they can be collectively modelled as Port-status messages [7].

The controller, on its part, updates all the switches that are

forwarding flows from the mobile node by sending Flow-mod

messages to them.

It is supposed that multiple classes of services are supported,

such as eMBB and mIoT that have highly diverse traffic

characteristics. At an SDN switch, some scheduling discipline

between the traffic of these service classes is assumed for

service isolation / differentiation between them, while within

the same class, the traffic shares the same FIFO queue.

III. QUEUEING NETWORK MODEL FOR EDGE CLOUDS

In order to model the system presented in Section II, we

refer back to Fig. 1. The notation is summarized in Table I.

A. Traffic to the Switch: Originated and Forwarded

Consider an edge cloud cell with switch i, which spans area

Ai, serves a number ne
i of eMBB slices and a number nm

i of

mIoT slices. It is one of the n cells served by a single SDN

controller of the edge cloud. The users in the jth eMBB slice

and the devices in the kth mIoT slice are considered to be

spatially distributed following Poisson Point Processes with

parameters α
j(e)
i users per unit area and α

k(m)
i devices per

unit area respectively as reasoned in [8], [9]. Subsequently,

the respective packet arrival processes are given by (1) for

eMBB slice and by (2) for mIoT slice where Be and Bm

denote the respective data rates, P e and Pm stand for their

average IP packet sizes, and pe and pm are the fractions of

active users/devices in the slice at any given time.

ζ
j(e)
i = α

j(e)
i Ai

peBe

P e
(1)

ζ
k(m)
i = α

k(m)
i Ai

pmBm

Pm
(2)

We assume that the spatial distributions for all eMBB

and mIoT slices in a cell are i.i.d. across their respective

serve classes, also referred to as verticals in the rest of the



TABLE I
PARAMETERS AND THEIR DEFINITIONS

Parameter Description

Ai Cell size of ith cell
n Number of cells controlled by an SDN controller

ne
i Number of eMBB slices in ith cell

nm
i Number of mIoT slices in ith cell

α
j(e)
i Users in jth eMBB Slice of ith cell

α
k(m)
i Devices in kth mIoT Slice of ith cell

Be/m Data rate of eMBB/mIoT service

P e/m Average eMBB / mIoT packet size

pe/m Percentage of active users in eMBB/mIoT slice

ζ
j(e/m)
i eMBB/mIoT packet arrival rate in jth slice of ith cell

λ
e/m
i eMBB/mIoT packet arrival rate in cell i

γ
e/m
i eMBB/mIoT data plane packet arrival rate in cell i

Γ
e/m
i eMBB/mIoT total (data + control) arrival rate in cell i
Γc Total packet arrival rate in controller

p
e/m
ji Routing probability of cell i for cell j for eMBB /mIoT

u
j(e/m)
i eMBB/mIoT indicator: cell i in new flow path for cell j

v
j(e)
i eMBB indicator: cell i in handover path for cell j

o
j(e/m)
i Prob. that cell i is in route for cell j for eMBB/mIoT
µi Switch i service intensity
µc Controller service intensity
ρi Switch i server utilization
ρc Controller server utilization
δei Handover intensity

q
nf(e/m)
i Probability of new eMBB/mIoT flow in cell i

K Controller buffer size

paper, with parameters ζei and ζmi respectively. Therefore the

aggregate eMBB and mIoT arrival rates in cell i are given by

(3) and (4).

λe
i = ne

i ζei (3)

λm
i = nm

i ζmi (4)

Additionally, the switch of each edge cloud cell also for-

wards data traffic from other edge clouds. Since the data for

each vertical is separated from the other verticals hosted at the

switch, the cross data traffic from other edge clouds will go to

the queues of their respective verticals. The routing probability

from switch j to switch i is given by peji for eMBB and by

pmji for mIoT vertical. The resulting aggregated traffic input to

the eMBB queue at the switch i, is given in (5) and that to

the mIoT queue is given in (6).

γe
i = λe

i +
∑

j∈N

peji γ
e
j (5)

γm
i = λm

i +
∑

j∈N

pmji γm
j (6)

where N is the set of all switches connected to switch i.
It is worth highlighting that γe

i and γm
i only consider the

traffic in the data plane, and how the traffic from the control

plane contributes additionally is presented in the following.

B. Traffic to the Switch: Contributed by the Control Plane

Note that the SDN controller is invoked whenever:

(i) there is a new flow entering the SDN switch;

(ii) a mobile node is handed over from one switch to another.

As a consequence of (i), when a packet enters the switch

and misses a flow match, it is sent to the controller. For the

probability that the arriving packet belongs to a new flow and

does not have a match in the switch flow table, we call it miss

probability, and use q
nf(e)
i to denote for the eMBB packets and

q
nf(m)
i for the mIoT packets. The controller then computes the

route for the flow and sends the forwarding rules back to the

switch, and all the switches that will forward packets of that

flow. This means that the first packet of a flow goes through

the switch twice: first time to the controller and second time

being transmitted to the next node. Whether the switch i is in

the route for a new flow originating from switch j and should

have a flow added to it is indicated by the function u
j(e)
i for

eMBB and by the function u
j(m)
i for mIoT. If the value of the

function is 1 it means that the switch is in the route, while 0
means otherwise.

For (ii), to simplify the representation and taking into

account the fact that IoT devices are generally stationary in a

broad range of applications, in the following, handovers will be

only considered in the eMBB vertical. Suppose that handover

requests from eMBB arrive at the gNB, either originated or

terminated, with rate δei requests per second. The requests are

received by the gNB and subsequently its switch i sends a port-

status message to the controller. In response, the controller

sends back a message to the switch to update the flow table.

It also sends messages to all the switches whose flow tables

should be updated. Accordingly, an indicator function v
j(e)
i

is used to capture whether a switch needs to be updated in

response to a handover. It has the value 1 if switch i needs to

be updated for handover originating or terminating at switch

j, and 0 otherwise.

Note that the functions u
j(x)
i , and v

j(x)
i where x ∈ {e,m},

are similar indicator functions, and the routing probabilities

pxji from neighbouring switches are similar to the probability

that switch i lies in the path for traffic originated from a

different switch j. To ease representation, we will use o
j(x)
i to

collectively model if switch i is in the route for flows coming

from an arbitrary switch j, where j may be the same as i.
This implicitly means that it will also cover the two indicator

functions u
j(x)
i , and v

j(x)
i . The simplified total arrival rates to

the eMBB and mIoT queues at the switch are now expressed

in (7) and (8) respectively.

Γe
i =

(

1 + q
nf(e)
i

)

λe
i + 2δei

+
n
∑

j=1,j 6=i

o
j(e)
i

((

1 + q
nf(e)
j

)

λe
j + δej

)

(7)

Γm
i =

(

1 + q
nf(m)
i

)

λm
i +

n
∑

j=1,j 6=i

o
j(m)
i

((

1 + q
nf(m)
j

)

λm
j

)

(8)

C. Traffic to the Controller

The central part of the system is the SDN controller.

Following the same discussion in the previous subsection,



the traffic to the controller has two contributors (i) and (ii).

Essentially, the way in which the controller is incorporated in

our model is that when a packet arrives at the switch and does

not find a matching flow rule at the switch, it is forwarded to

the controller, due to being the first packet of either a newly

generated flow (i) or a handover flow (ii).

This brings us to the expression for the input rate at the

controller queue, which is given in (9).

Γc =
n
∑

i=1

(

q
nf(m)
i λm

i + q
nf(e)
i λe

i + δei

)

(9)

D. Queueing Network Model

In the edge cloud system we consider, each SDN switch has

a dedicated queue for each service class and adopts a certain

scheduling discipline to schedule packets among the queues.

In contrary, the SDN controller only maintains a single FIFO

queue to process requests. For the queue at the controller,

in order to avoid excessive delay waiting in queue for the

requests, a limitation on the queue length may be enforced.

A blueprint of the system thus modelled by a queueing

network is depicted in Fig. 2, considering two inter-connected

switches i and j and the controller c.
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Fig. 2. Queueing Network Model of the SDN-based Edge Cloud

IV. DELAY ANALYSIS

To demonstrate the use of the queueing network model

developed in the previous section, this section presents analysis

of the packet sojourn time at a switch corresponding to an edge

cloud cell. By making use of results in the queueing theory

literature, e.g. Jackson network analysis, the single switch

delay analysis can be extended to the whole edge cloud case,

but due to space limitation, this extension is omitted here.

For the delay analysis, we make the following assumptions.

To start with, the system is assumed to support two service

classes, namely eMBB and mIoT, and be stable, i.e. ρi =
(Γe

i+Γm
i )/µi < 1 and ρc = Γc/µc < 1, and in steady state. At

the switch, non-preemptive priority scheduling is adopted with

eMBB traffic given higher priority, and there is no limitation

on the size of each class’ queue. As for the controller, a limit

on the queue length is enforced, which is denoted as K.

Note that the total traffic to each queue in the switch or

the controller is the aggregation of traffic from multiple input

processes. For such an aggregate process, following the Palm –

Khintchine theorem, we approximate it with a Poisson process.

This is in agreement with the literature as argued in [10], [11]

for mIoT traffic and [12]–[15] for eMBB traffic.

In addition, for the service time of a packet at the switch

or controller, it consists of two parts: processing time for

the switch to check if its flow has a matching rule in the

switch or for the controller to decide a forwarding rule for its

corresponding flow, and transmission time of the packet at the

switch or transmission time of the message packet containing

the rule to the switch at the controller. To ease the analysis,

we assume the service time of a packet is exponentially

distributed. This is inline with the Kleinrock independence

approximation for classical computer networks [5].

With the above assumptions, the switch is modelled as

an M/M/1/∞/priority queueing system, and the controller

as an M/M/1/K queueing system. Then, based on existing

queueing results for them [16], the respective average number

of packets at switch i can be derived as:

Ne
i = Γe

i

(1 + ρi −
Γe

i

µi

)

µi − Γe
i

(10)

Nm
i = Γm

i

(1 + ρi
Γe

i

µi

−
Γe

i

µi

)

(1− ρi)(µi − Γe
i )

(11)

and the average number of packets in the controller as:

Nc =
ρc

1− ρc
−

(K + 1) ρK+1
c

1− ρK+1
c

(12)

By using (10), (11) and (12), and applying the Little’s

formula in queueing theory [16], the average time spent in

the switch by an eMBB packet is given by W e = Ne
i /Γ

e
i and

by an mIoT packet by Wm = Nm
i /Γm

i , and the average time

spent by a packet in the controller is given by Wc = Nc/Γc.

Now, we take into account the miss probability while

calculating the delay due to controller. To ease representation,

we assume that the miss probability is the same across the

vertical, i.e. q
nf(e)
i = qnf(e) ∀ i ∈ {1, 2, ..., n} and

q
nf(m)
i = qnf(m) ∀ i ∈ {1, 2, ..., n}.

Finally, the average time taken by an eMBB / mIoT packet

in the edge cloud cell is given by (13), where x ∈ {e,m}:

Dx
tot = (1− qnf(x))W x + qnf(x) (2 W x +Wc) (13)

In (13), the first term on the right hand side of the equation

is for the delay when the packet finds matching flow entry in

the switch and hence will only experience one-time W x at the

switch. In addition, the second term is due to that, the packet

finds no flow entry in the switch, and consequently it needs to

be sent to the controller for it to generate the entry message

that is sent to the switch before the packet can use it to be

forwarded. As a consequence, the involved delay includes one-

time Wc and two times W x, as also discussed in the previous

section.



V. RESULTS AND DISCUSSION

We now use the delay analysis (13) and the typical values

of the parameters as reported in the literature [2], [12], [14]

to obtain results. Specifically, we take µi = 1250 pkt/ms
to show processing at line rate 10 Gbps with average packet

length Pe = Pm = 1 KB. In addition, we choose the values

o
j(x)
i = 0.2, n = 5, K = 750, µc = 250 ms−1, and δei =
0.01 ms−1 to emulate the reality as much as possible. Finally,

we consider a sub-urban cell covering Ai = 1 km2 and having

on average α
j(e)
i = 40 eMBB users, with only pe = 30%

active at a time, and an average of α
k(m)
i = 400 active mIoT

devices, in each respective service slice. The data rates are

kept at 50 Mbps for eMBB and 100 kbps for mIoT following

the standards [2].| } ~ � � � � � � � | } ~ � � � � � � � | } ~ � � � � � � � �� � �� � � � � �
Fig. 3. eMBB Delay Performance for Different Number of Slices

A. Packet Sojourn Time

Fig. 3 studies eMBB packet sojourn time in a single

cell with varying number of eMBB slices. The mIoT miss

probability is kept constant at qnf(m) = 0.5 to show that

half the time the packets arriving from mIoT slices will be

forwarded to the controller. This value is kept high to emulate

the fact that, in may IoT applications, each mIoT device sends

packets that are far apart and hence there is high probability

that the flow entry will be deleted from the flow table. The

packet sojourn time is plotted for three different eMBB miss

probability values, i.e. qnf(e) ∈ {0.04, 0.1, 0.2}. Here, the

first value is determined experimentally in [12], while the

other two values demonstrate cases with shorter flow tables

for faster lookups. Also, for each qnf(e) value, sojourn time

plots are generated for different number of mIoT slices. Thus,

for qnf(e) = 0.04 results are plotted for nm
i = 2, 4, 6, 8, 10,

while in the other two cases the number of mIoT slices are

taken to be nm
i = 1, 2, 3, 4, 5.

The results show that by increasing the queries to the

controller, there is significant impact on the packet delays.

For instance, for the case of 4% miss probability, the packet

sojourn time in a cell remains less than 1 ms even when

nm
i = 10 and the maximum number of eMBB slices achieved

is ne
i = 8 in this case. But, once qnf(e) becomes 0.1, the

maximum number of slices reduce to ne
i = 7 for maximum

of nm
i = 5. Although sojourn times remain less than 1 ms

in this case, but for individual curves abrupt rise in delays

are observed. So, when nm
i = 1 the sojourn time jumps an

order of magnitude when number of eMBB slices are increased

from six to seven. This behaviour is observed due to saturation

in controller. The arrival intensity at the controller becomes

higher than the service intensity and therefore the delays

shoot upwards. Another manifestation of this phenomenon

is observed when nm
i ≥ 3. The curves seem to flatten at

around 0.3ms as controller queue will keep overflowing and,

consequently, dropping packets.
Finally, for qnf(e) = 0.2, the system exhibits a similar

behaviour as for 10% miss probability but with controller

queue getting saturated as early as at ne
i = 3. This can be

seen by flattened curves in Fig. 3.
Another noticeable behaviour of eMBB vertical is that the

sojourn times remain fairly close for different number of mIoT

slices for a certain miss probability. This is a result of the

priority given to eMBB vertical over mIoT in the switch. But

as the miss probability increases, the deviation follows the suit

because the controller involvement increases and its queue is

not prioritized. Furthermore, the rapid saturation of the system

by increasing controller-invoking frequency clearly indicates

the bottleneck role that the controller plays in this setting.
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Fig. 4. mIoT Delay Performance for Different Number of Slices

Along the same lines, for mIoT vertical, Fig. 4 shows the

packet sojourn time as a function of the number of mIoT slices

in a cell for different values of qnf(m) and ne
i but by keeping

constant qnf(e) = 0.04. The results are presented for qnf(m) ∈
{0.5, 1.0} and ne

i = 1, 2, 3, 4, 5 for qnf(m) = 0.5 and two

additional values, ne
i = 6, 7, for qnf(m) = 1.0.

The values of qnf(m) are chosen considering that individual

mIoT devices send data in very few packets at a certain instant

of time and then remain dormant for a long period, typically

in minutes. This causes deletion of their flow entries from the

switch flow table. The worst case is that each device sends all

its data in a single packet, for example environmental sensors,

and remains dormant for minutes. It is captured by qnf(m) =
1.0 while an optimistic case is given by qnf(m) = 0.5.

It is evident from Fig. 4 that the maximum number of

mIoT slices under all scenarios presented is nm
i = 10. Unlike



the eMBB case, mIoT packets experience greater deviation

with increasing ne
i for the same value of qnf(m). The reason

traces back to the priority that eMBB packets have over

mIoT packets. It is due to the same reason that mIoT packets

experience larger delays even when the system is not loaded.

So, for example, in case of a single mIoT slice with seven

eMBB slices, the packet delay is already 100µs. Similar to

its eMBB counterpart, the mIoT packet sojourn time curve

also flattens out when it reaches around 2ms indicating the

saturation of controller queue.

B. Admissible Region

In order to determine the admissible region, i.e. the maxi-

mum combination of the number of eMBB slices and that of

mIoT slices which can be supported by a cell, Fig. 5 presents

the number of eMBB slices that can be accommodated in the

cell provided a certain number of mIoT slices. Here, we use the

same parameters values as in Section V-A with qnf(m) = 1.0
and qnf(e) = 0.04 to represent the worst case for mIoT vertical

and a practical case for eMBB vertical.
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Fig. 5. Number of eMBB Slices under Certain Conditions

The results presented in Fig. 5 also consider the finding

from Section V-A that the controller is a delay performance

bottleneck. Thus, the results are plotted considering three

controller utilization cases, where, the controller is either

highly utilized, medium utilized, or mildly utilized. It is seen

from Fig. 5, that a larger number of mIoT slices results in a

smaller number of eMBB slices if the total delay experienced

by a packet is guaranteed. An interesting observation is made

in the high utilization case where reducing the number of

mIoT slices below 5 does not allow the increase in eMBB

slices above 7. The reason for this behaviour is that the

switch utilization takes over the controller utilization as the

bottleneck.

C. Effect of mIoT Traffic to Controller on eMBB Sojourn Time

In order to further analyse the impact that mIoT vertical has

on the performance of eMBB vertical, we further investigate

how eMBB vertical behaves with varying conditions of mIoT

vertical. The plot in Fig. 6 shows the effect of two mIoT

parameters on eMBB sojourn time, namely, the number of

Fig. 6. eMBB Packet Sojourn Time with varying mIoT Vertical States

mIoT slices and the fraction of mIoT traffic forwarded to the

controller.

The plot Fig. 6, which is drawn for seven eMBB slices,

shows the massive improvement that can be attained in eMBB

sojourn time if the expiry time of mIoT flows is just made

long enough for at least 10% of the flows to remain intact.

The gain in sojourn time is much smaller for lesser number

of mIoT slices.

D. Discussion

As shown in Fig. 3 – Fig. 6, under realistic parameter

settings in link speed and eMBB and mIoT traffic rates, the

average sojourn time at a switch in the edge cloud is in the

order of 10µs. Even with propagation delay considered and

more accurate traffic and service models in the analysis, when

the network diameter of the edge cloud is not too large, e.g.

around 5, it can be expected that the average edge-to-edge

delay of the edge cloud can be well around 100µs. We believe

such a delay range suffices not only the delay requirements of

typical mIoT applications but also those of a wide range of

eMBB. This is because, the Markov inequality in probability

theory tells that the probability that a packet’s delay is more

than x is not more than x/E[X], where E[X] denotes the

mean. For instance, with E[X] = 100µs, the probability that

a packet delay in the edge cloud exceeds 10ms is not more

than 1%, which is well suitable for a wide range of multimedia

applications.

Another observation from Fig. 3 – Fig. 6 is that the

maximum numbers of eMBB and mIoT slices that can be

supported by an edge cloud cell is rather limited, particularly

less than 10 in most cases. We remark that, for simplicity,

another 5G service class, which is ultra-reliable low-latency

communication (URLLC), has not been factored in the anal-

ysis. If URLLC would be taken into consideration, such slice

numbers would be further restricted. An implication is that



such service / network slices could become a scarce resource

and care is needed for planning their use.

VI. RELATED WORK

Since this paper essentially focuses on modelling SDN-

based 5G edge cloud, the most relevant research is the one

that is conducted in modelling SDN generically, and as a

5G enabler technology specifically. An early related work is

presented in [12], where the authors modelled a single SDN

node and a single SDN controller as a queueing system with

feedback. The controller was modelled as M/M/1-S queue,

meaning that it has Poisson arrival and departure processes

and limited buffer space, while the switch was modelled with

an infinite buffer size. An experiment was used to derive model

parameters and the model was used to establish expressions

for packet sojourn time and packet loss.

In [13], the authors modelled a single SDN node and a

single SDN controller as a Jackson Network. They used the

model to quantify packet sojourn time and network throughput.

This work was extended for multiple SDN nodes controlled

by a single SDN controller in [14]. It was the first time in

[14] that Flow-mod messages of the OpenFlow standard [6],

the de facto standard for SDN controller-switch interactions,

were also modelled in addition to the conventional Packet-in

packets for updating all the switches in a flow route.

As far as modelling mobile edge networks are concerned,

the most relevant work is presented in [7] in which the authors

used the resilient models from [14] and added the missing

mobility feature, namely, handover. The authors, therefore,

incorporated Port-status messages in addition to the Packet-

in and Flow-mod messages that were previously modelled.

Another analytical model for a mobile edge cloud is presented

in [15]. The authors of [15] first introduced Follow Me Cloud

(FMC) in which services are enabled in the edge clouds

closest to the mobile nodes. The modelling technique used

followed the assumption that the arrival and service processes

are Poisson processes and relevant performance metrics, such

as, service migration cost and service disruption time, were

derived.

Finally, the idea of using SDNs for sensor networks and

IoT, along with sensor OpenFlow and Software Define Wire-

less Sensor Networks (SDWSNs), was proposed in [17].

Furthermore, authors in [18] proposed a mobile edge cloud

architecture that can furnish for IoT networks. Incidentally, in

the literature, energy consumption and reservation are used as

main performance metrics for SDWSNs and very few attempts

exist to quantify packet delays, for example in [19].

VII. CONCLUSION

In this paper, a queueing network model for performance

analysis of SDN-based 5G edge clouds is developed. A novel

contribution of this model is to take into account the impact of

the data and control plane separation on the traffic to the switch

and that to the controller. To demonstrate the application of

the model, the average delay of a packet passing through a

switch in the edge cloud is analyzed, which supports two

5G service verticals, eMBB and mIoT, and adopts priority

to schedule their traffic. By incorporating realistic parameter

settings into the delay analysis, numerical results are obtained

and discussed. Although for tractability of the analysis, some

assumptions on the traffic and service processes are made,

the essential implications of the results are mostly revealed,

e.g. the order of delay and the admissible region, which, we

believe, shed new insights on QoS provisioning in 5G edge

clouds.
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