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Abstract. In Norway, more than 10 hydropower plants are known to have caused biologically
relevant levels of total dissolved gas supersaturation in the rivers downstream power plants.
This phenomenon is causing fish kills due to gas bubble disease and have large impacts on
the biodiversity. The gas supersaturation is often caused by undersized or blocked brook
intakes creating turbulent flows and resulting in large amounts of air dragged into the tunnel.
One possible solution to this problem is employing power ultrasound (20 kHz - 1 MHz) for
degassing water prior to releasing it back into the river system. Acoustic cavitation is known
to have a positive effect on the degassing mechanism, and this paper is investigating whether
ultrasound can be applied to create acoustic cavitation and avoid biologically relevant levels
of total dissolved gas supersaturation from hydropower plants. The objective is to develop
background knowledge for constructing an experimental setup in the Waterpower Laboratory
at NTNU to investigate whether gas supersaturation can be decreased from power plants by
application of ultrasound. Preliminary experiments, carried out at the NTNU Hydrogen Energy
and Sonochemistry Laboratory, exploring the behaviour of the degassing process at different
ultrasonic frequencies and amplitudes conclude that the most effective degassing occur at high
acoustic amplitude and a frequency of 24 kHz.

1. Introduction
Hydropower is the most important resource for energy production in Norway as 94 % of the
electricity production is based on hydroelectric power generation. Technological development
has enabled power demanding industry and power system technology to evolve throughout
the past 100 years [1]. During this century knowledge about hydropower systems has grown,
and researcher’s attention has been directed towards new challenges like preservation of
environmental values and biodiversity. One of these more resent challenges is the issue of gas
supersaturation in rivers and lakes downstream hydropower plants. This phenomenon was first
observed downstream river power plants in the Colombia and Snake rivers in the 1960s [2]. In
Norway suspicion that supersaturated water from power plants could cause fish kills were raised
in 1972 when dead fish were observed downstream Matre power plant in Masfjorden [3].
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Gas supersaturation occur if the amount of dissolved air in water is higher than the solubility
threshold at a given ambient pressure and temperature. Supersaturated water can occur in
hydropower plants when pressurized water with high concentration of dissolved gas is exposed
to atmospheric pressure in the downstream river or lake. Air is usually entering the water
system through the brook intakes [4]. The intakes are designed to avoid air from entering
the system, although, undersized intakes and flood situations with high water levels cause
turbulent flows around the intakes and results in air transportation into the tunnel system.
When this phenomenon appear, fish and other aquatic species die from gas bubble disease if the
supersaturation levels are high over a longer period of time [3, 5]. The supersaturated water is
degassing slowly, especially in deep and calm rivers or lakes. This results in supersaturated water
being transported for tens of kilometres downstream the power plant and affecting biodiversity
in vast areas of the water system [3].

One possible solution to the challenge of minimizing emission of supersaturated water from
hydropower plants, is by using ultrasound to enhance the degassing process. Utilizing ultrasound
for degassing has been used widely in the food industry to improve quality and durability of food
products, and in material technology to ensure better quality of metal, glass and other products.
When ultrasound is applied to supersaturated water, the rarefaction induces cavitation bubbles
that can contribute to accelerate the degassing mechanism [6]. Performing a literature review
on acoustic cavitation creates a foundation of knowledge to perform experiments with degassing
water with ultrasound, further, the hypothesis is tested by applying ultrasound to small amounts
of oxygen saturated water and measuring the decay of dissolved oxygen over time.

2. Theory
The solubility of air in water increase with increasing pressure and decreasing temperature[7].
When the water is undersaturated air is slowly dissolving in the water, and conversely, when
the water is supersaturated air is transported from the water[3]. This degassing mechanism
can be enhanced by applying ultrasound to supersaturated water, and the background theory
explaining this phenomenon is given in the following section.

2.1. Ultrasound
Ultrasound is acoustic waves with frequencies above the human hearing range i.e. above 10
kHz [8]. One way to classify ultrasound is according to frequency and power. Ultrasound with
frequencies above 1 MHz is defined as low power ultrasound and is transmitting low levels of
power with high frequencies. This type of ultrasound usually has an acoustic power of less than
10 W and is not affecting the medium of propagation. Therefore, it can be used for medical
imaging and diagnostics [9]. Ultrasound with low frequencies, between 20 kHz and 1 MHz, is
power ultrasound. These acoustic waves are transferred through a medium with power larger
than 10 W, and the acoustic waves are altering the medium of propagation. This range of
ultrasonic frequencies is used in sonochemistry where sound waves are introduced to produce
chemical reactions in the medium of propagation, for instance to produce hydrogen from water
[10].

An acoustic wave can be described mathematically with Equation 1.

P = Pasin(2πft)[Pa] (1)

Pa is the maximum pressure amplitude, f is the frequency and t is time [11]. The maximum
pressure amplitude is directly proportional to the input power from the transducer. One
important measure used for ultrasound is the ultrasonic intensity, I, defined as follows.
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I =
Pa

2

2ρa
[W/m2] (2)

ρ is the density and a is the speed of sound in the medium. The intensity is defined as the
average rate of flow of energy through a unit area normal to the direction of propagation [8].

2.2. Acoustic Cavitation
Ultrasonic waves are pressure pulsations moving through a medium like illustrated in Figure
1. If the rarefaction pressure is below the vapour pressure for water, small bubbles of water
vapor starts to form in the liquid. The rarefaction is followed by a compression phase where
the pressure no longer can sustain the water vapour, resulting in a violent collapse of the
bubble. This collapse launch shock waves into the water that can increase temperatures to
about 5000 ◦C and pressure to 2000 atm at this point [10]. The bubble implosion can induce
light emission (sonoluminescence) and chemical reactions where highly reactive radicals are
produced (sonochemistry) [12]. If the bubble collapse happens close to a solid wall, the bubble
implodes in a nonlinear manner and creates a jet with speeds up to 200 m/s directed towards
the solid surface [10]. The forces induced by the collapse have erosive effects on the wall [8]. The
process of bubble formation, growth and collapse due to changes in acoustic pressure is called
acoustic cavitation. Acoustic cavitation is comparable to boiling, with two major differences.
First, boiling is a result of increased temperature in a liquid, not a pressure decrease. Secondly,
in boiling the bubble collapse is not present [8].

Figure 1. Ultrasonic pressure wave propagation and growth of a cavitation bubble during some
cycles of ultrasound [13].

2.3. Other Phenomena Introduced by Ultrasound
In an ideal system with a fluid exposed to an ultrasonic wave, one parcel of fluid is moving back
and forth to the same place with the ultrasonic pressure pulsation. However, in a real fluid the
parcel will not move in this manner, and the position will change over time. This phenomenon is
called acoustic streaming and results in a direct current flow in the wave propagation direction.
This motion can be explained by the fact that the pushing of a viscous fluid along the direction
of the acoustic wave is stronger than the pulling of it due to the moment of inertia of the fluid.
This creates motion in the liquid. Acoustic micro-streaming is a phenomenon that occurs when
the length scale of streaming caused by viscous stress near an object or wall is smaller than the
acoustic wavelength [8].
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[14] studied the effect of ultrasonic frequency and power on the bubble size of cavitation
bubbles. Looking at bubble size for frequencies from 20 kHz to 1136 kHz it was shown that
the bubble size decreased considerably with increasing frequency and increased with increasing
power. Also, the study concluded that the difference in bubble size was larger for lower
frequencies and higher power. To understand this phenomenon one can look at the mechanism
of bubble collapse in an ultrasonic field. When a cavitation bubble is created it is vibrating with
a natural frequency much higher than the ultrasonic frequency. The bubble starts growing and
when the surface area becomes larger, the natural vibration frequency decreases. This process
will continue until the oscillation frequency of the bubble equals the frequency of the ultrasonic
field. When this happens, the bubble collapses [15]. At high frequencies, the maximum bubble
size is therefore limited to a smaller size compared to lower frequencies.

[11] investigated the effect of ultrasonic power on the propagation medium. It was found that
low frequencies produce high temperatures due to energy dissipation from high power ultrasound,
cavitation and micro-streaming. For higher frequencies cavitation becomes less violent, and for
frequencies in the MHz - range, only acoustic streaming is observed. The article concludes that
the mode of action of ultrasonic waves changes as a function of input power. At low input
powers no chemical or physical changes are detected, while at high power the medium changes
chemically or physically. Additionally, [15] points out that bubble collapse is an almost adiabatic
process where all energy is converted into heat. For low frequencies, the bubbles are larger and
the energy discharge from the bubble collapse is stronger compared to smaller bubbles.

When a bubble collapses it produces highly reactive radicals due to the high temperature
and pressure and fewer cavitation bubbles are introduced at low frequencies compared to higher
frequencies. All together this means that the radical production which is attractive to achieve
when doing sonochemistry will have a maximum when both bubble size and bubble numbers
are large. For creating share stress and movement in the solution on the other hand, frequencies
lower than this are effective [15].

The theoretical cavitation threshold in water, the limit pressure where cavitation is initiated,
is calculated by the pressure that is needed to overcome the tensile strength of pure water.
Theoretically this limit is at about 1000 atm. Although, experiments show that the actual
cavitation threshold is much lower than this limit. The reason for this phenomenon is that the
cavity is more easily able to form around micro particles or bubbles that are already present
in the water, so-called cavitation nuclei. In water small bubbles will always be present and the
amount of bubbles will increase with the amount of dissolved air in the water [15]. [8] presents
experimental results showing a decrease in cavitation threshold with increased dissolved air.
This is evidence that the cavitation bubbles also contain air, not only water vapor. Therefore,
cavitation bubbles can theoretically enhance the degassing process.

2.4. Degassing with Ultrasound
Ultrasound can have many effects on the medium of propagation. During the rarefaction phase
acoustic cavitation occur if the rarefaction pressure is below the cavitation threshold pressure.
When cavitation bubbles starts to form, they are pulsating and dissolved air is transported
into the bubbles with diffusion [16]. When the pressure is high the bubble decrease in size and
the gas diffuses from the bubble into the liquid. Conversely, when the pressure decreases, the
bubbles expand, and gas diffuses from the liquid into the bubble. During the rarefaction the
surface area is larger, and more gas can diffuse in through the bubble surface compared to the
amount that escapes during the compression phase. This phenomenon is called the area effect
on gas diffusion. Additionally, there is a resistance for molecules to move from a low density
environment inside the bubble to a high density environment in the water phase. This effect is
called the shell effect. Both the area effect and the shell effect is preventing air from leaving
the bubble [15]. Hence, the bubble acts like a pump; for each expansion the bubble gain more
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gas than it loses during the compression and is gradually filled with air. Therefore, the bubble
manages to grow and after some time it floats to the surface driven by buoyancy forces. This
process is called rectified diffusion. Additionally, microscopic acoustic streams are generated
in the viscous boundary layers around the bubble surface and contribute to mass transfer that
supplies the bubble with new liquid at the bubble surface. When the bubbles starts moving it
creates convective flows in the liquid that contribute to increase the degassing efficiency because
the bubbles are distributed around in the liquid [6]. The growth of a cavitation bubble during
some cycles of ultrasound is described in Figure 1.

3. Experiment Setup
A small scale experimental setup was used to look at the degassing effect of different frequencies
of ultrasound on 1.2 litres of oxygen saturated, distilled water. The water was pumped between
two glass vessels at a flow rate of approximately 0.5 L/min. The first vessel had a cooling system
and the ultrasonic transducers attached to it, and in the second vessel the measurements were
taken. The measurements were separated from the ultrasonic transducer to avoid disturbances
from the ultrasound. The two vessels are connected with silicon tubing to circulate the water
between them. The silicon tubes should not be put in vicinity of the ultrasound. Therefore,
glass pipes were used in the vessel with the ultrasonic transducer to circulate the solution and
add oxygen to the water.

The probes used to measure pH, dissolved oxygen (DO) and electrical conductivity (EC)
are Hanna Instruments Edge measurement probes. Three ultrasonic transducers were used to
conduct experiments on ultrasonic degassing of oxygen from water. To produce the frequencies
580 kHz, 860 kHz and 1140 kHz, the Meinhardt Ultrasonics Multi-frequency System was used.
A Meinhardt Ultrasonics Transducer was used for 40 kHz and the Hielscher UP400St was used
for 24 kHz. The Multi-frequency system and the 40 kHz system use plate transducers while the
Hielscher system uses a sonotrode.

The experimental procedure begun by filling the vessels with 1200 mL distilled water and
the circulation pump was started. When the pH, EC and DO readings stabilized, oxygen
was bubbled into the circulating solution at atmospheric pressure until it reached an oxygen
saturation of about 19 mg/L. The oxygen bubbling was stopped, and the solution circulated
until the saturation level stabilized and started to decrease. When the saturation level reached
18 mg/L the ultrasound was turned on, as well as the cooling system. The cooling system kept
the solution at approximately 25◦C. The transducer was on until the dissolved oxygen level
decreased to its original level, about 7.8 mg/L. During this process the DO, pH and EC were
logged once every minute, as well as the temperature. Each experiment was repeated three times
to reduce the random experimental error and the presented results are the averaged values from
the experiments.

4. Results and Discussion
The decay of dissolved oxygen for different frequencies is presented in Figure 2. The most
effective degassing frequency was 24 kHz, therefore, different acoustic pressure amplitudes were
tested for this frequency to look at the effect of acoustic intensity on the degassing effect. The
results are shown in Figure 3. The change in pH and EC during the experiments is presented
in Tables 1 and 2. Additionally the transferred energy from the transducer to the water was
determined for the experiments on 24 kHz with calorimetry and the results are shown in Figure
4 [17, 18].
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Figure 2. The decay of dissolved oxygen with time for ultrasonic frequencies 24 kHz, 40 kHz,
580 kHz, 860 kHz, 1140 kHz and no ultrasound (NU).

Figure 3. The decay of dissolved oxygen with time for ultrasonic frequency of 24 kHz and
amplitudes 100 %, 80 %, 60 %, 40% and 20 %.
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The explanation of this degassing behaviour is based on the provided theory. The effects that
are increasing degassing efficiency are share stresses created in the flow and thicker boundary
layers around the bubbles. This increases the mass transfer of oxygen into the bubbles as micro-
streaming is supplying the bubbles with high saturation levels of oxygen. A large bubble size
allows each bubble to contain more oxygen that is transported out of the water when it floats to
the surface. All these effects are dominating for low frequencies of ultrasound and can explain
how 24 kHz can be the most effective degassing frequency.

For higher frequencies favourable effects that may increase the efficiency of degassing are the
facts that a higher number of bubbles are created at higher frequencies and acoustic streaming
is stronger and creates secondary flows inside the glass vessel. This leads to a larger amount of
air inside bubbles in total, that is transported to the surface by the streaming effect. Although,
if the frequency becomes too high the bubbles will collapse before they are transported to the
surface and the degassing effect will be limited by this phenomenon. Therefore, the increase of
acoustic frequency above 860 kHz is not increasing the degassing efficiency further.

In between the high frequencies and lower frequencies, the degassing effect is lower. When
going from low to higher frequencies the bubble size decreases as well as acoustic micro-streaming
decreases, lowering the degassing efficiency. While further increasing the frequency the number of
bubbles increases as well as the acoustic streaming. Therefore, the degassing efficiency increases
to a new maximum point until the more frequent early bubble collapse limits the amount of
bubbles that can float to the surface. This can explain why frequencies of 40 kHz and 580 kHz
are clearly less effective for degassing purposes.

When the experiments on frequency dependence were conducted, one acoustic frequency was
chosen to experiment with amplitudes. 24 kHz was the most effective frequency for degassing
but was very close to the 860 kHz degassing efficiency. [13] preformed calorimetry experiments
using the Multi-frequency transducer and the Heilcher sonotrode and found that the power
transmitted to 250 mL water at 860 kHz was 34.5 % of the power transmitted at 24 kHz. These
numbers are not directly comparable to the setup used in this experiment but shows that the
energy usage is considerably larger for 24 kHz. Although, it was observed that the increase in
pH was lower at 24 kHz, and the degassing efficiency was slightly better. Hence, 24 kHz was
chosen.

The amplitude effect on degassing in Figure 3 shows that the higher acoustic pressure
amplitude used, a more effective degassing was observed. When increasing the amplitude with
20 % steps the degassing efficiency increases almost linearly. This means that increasing the
pressure amplitude, i.e. the acoustic intensity, improves the degassing efficiency at this frequency.
With this in mind, another possible explanation of the poor degassing efficiency of 40 kHz is
that the acoustic power transferred to the water using the 40 kHz plate transducer transmitted
a significantly lower amount of acoustic power compared to the 24 kHz sonotrode, although this
has not been proven in experiments. The degassing efficiency is highly dependent on the power
and the ultrasonic intensity supplied to the water.

The water was saturated to 18 mg/L, corresponding to a 230 % saturation level at 25◦C.
The results in Figures 2 and 3 clearly show that the degassing efficiency is depending on the
saturation level in water. The degassing slope is steeper for high saturation levels and flattens out
when the saturation level is closer to the solubility limit. The explanation to this phenomenon
is that the air content of the water supplied to the bubbles is lower at lower saturation levels.
Therefore, the bubble growth is slower, and hence, the degassing is slower. This represents a
challenge for using ultrasound for degassing in hydropower plants. The water in a hydropower
plant is moving through an ultrasonic field and will only be exposed to the ultrasound for a
short amount of time. If saturation levels are high, it might be possible to reduce the saturation
level to some extent, but the exposure time will always be an issue. The question whether the
degassing can be effective in these conditions is yet to be investigated.
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Frequency dpH
dt

dpH
dt

dpH
dt NU

dEC
dt

dEC
dt

dEC
dt NU

No ultrasound -0.0051 1 0.0216 1
24 kHz -0.0137 2.7 0.0626 2.9
40 kHz -0.0151 2.9 0.0348 1.6
580 kHz -0.0290 5.7 0.1185 5.5
860 kHz -0.0210 4.1 0.0576 2.7
1140 kHz -0.0311 6.1 0.0706 3.3

Table 1. The slopes of decrease of pH and increase of EC over time for the different frequencies.
Additionally, the relative slopes compared to no ultrasound (NU) are listed.

Amplitude dpH
dt

dpH
dt

dpH
dt NU

dEC
dt

dEC
dt

dEC
dt NU

20 % -0.0197 3.9 0.0148 0.7
40 % -0.0119 2.3 0.0254 1.2
60 % -0.0097 1.9 0.0332 1.5
80 % -0.0148 2.9 0.0500 2.3
100 % -0.0137 2.7 0.0626 2.9

Table 2. The slopes of decrease of pH and increase of EC over time for the different amplitudes
at frequency 24 kHz. Additionally, the relative slopes compared to no ultrasound (NU) are
listed.

Figure 4. Relationship between acoustic pressure amplitude and acoustic power transferred to
the system for 24 kHz ultrasound applied to a system containing 1200 mL water. The dotted
line is a linear curve fitting to the data points.

The pH development shows a negative trend throughout all the experiments. In general, the
negative slope is steeper when ultrasound is used compared to experiments without ultrasound.
One explanation for the negative trend when ultrasound is not used is that deionized water was
used to conduct the experiments. This water is neutral until it comes into contact with air. When



Current Research in Hydropower Technologies (CRHT X)

Journal of Physics: Conference Series 1608 (2020) 012004

IOP Publishing

doi:10.1088/1742-6596/1608/1/012004

9

that happens, CO2 gas starts dissolving in the water, making it slightly acidic. This process
is continuing throughout the experiment because the glass vessels are open to the atmosphere,
explaining the decay in pH. Further, the experiments with ultrasound induce an additional effect
making the slope even more negative. The EC measurement is an indication of the amount of
ions in the solution because electrically charged ions increase the electric conductivity. The
EC is increasing gradually during the experiment for no ultrasound and the increase is steeper
when ultrasound is used. One can understand the change of pH and EC over time as measures
of sonochemical activity. In general, the sonochemical activity is high for high temperatures
and pressures generated from the cavitation bubble collapse. This occurs at lower frequencies
where large bubbles create high pressure and temperature, and at a large number of bubbles
i.e. at higher frequencies. Therefore, there should be a best point at medium frequencies where
radical production is high. At 580 kHz both the pH and EC- slopes are relatively steep, and
this might indicate closeness to a point of high sonochemical activity. It is not favourable to
have a decrease in pH in the water downstream a hydropower plant. It is best to avoid using
frequencies that produce the steepest gradients of pH although the increase of pH when exposing
water to ultrasound for a short amount of time is expected to be very small.

5. Conclusions
From the experiments it is found that the degassing effect is dependent on both acoustic power
and frequency. Various phenomenon introduced by acoustic cavitation results in a high degassing
effect for low frequencies around 24 kHz and higher frequencies around 860 kHz with a less
effective region in between them. The sonochemical activity is high for medium frequencies
around 580 kHz and should be avoided in degassing purposes for environmental reasons. The
increase in power results in a higher degassing efficiency, and the power must be increased to
maintain the degassing efficiency when the sonicated water volume is increased. The fastest
completed degassing of 1200 mL water from 230 % saturation with a frequency of 24 kHz and
a transmitted acoustic power of 134 W was measured to take about 20 minutes.

The presented results show that the application of ultrasound on oxygen-supersaturated water
is making the degassing process more effective. Although, some challenges for future work are
revealed. The sonochemical activity that is initiated when ultrasound is applied to water creates
highly reactive radicals contributing to lowering the pH and increase the electrical conductivity.
The extent of these phenomenon needs to be further investigated to ensure good water quality
in the water systems. Additionally, the exposure time of ultrasound in these experiments have
been in the order of twenty minutes. In a hydropower system this time may be in the order of
one second, and proving that the concept works in cases of smaller exposure times will become
an important task in further research.
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