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Abstract

In this paper a multiple object detection, recognition, and tracking system for un-

manned aerial vehicles (UAVs) has been studied. The system can be implemented on

any UAVs platform, with the main requirement being that the UAV has a suitable

onboard computational unit and a camera. It is intended to be used in a maritime

object tracking system framework for UAVs, which enables a UAV to perform

multiobject tracking and situational awareness of the sea surface, in real time,

during a UAV operation. Using machine vision to automatically detect objects in the

camera's image stream combined with the UAV's navigation data, the onboard

computer is able to georeference each object detection to measure the location of

the detected objects in a local North‐East (NE) coordinate frame. A tracking algo-

rithm which uses a Kalman filter and a constant velocity motion model utilizes an

object's position measurements, automatically found using the object detection al-

gorithm, to track and estimate an object's position and velocity. Furthermore, a

global‐nearest‐neighbor algorithm is applied for data association. This is achieved

using a measure of distance that is based not only on the physical distance between

an object's estimated position and the measured position, but also how similar

the objects appear in the camera image. Four field tests were conducted at sea to

verify the object detection and tracking system. One of the flight tests was a two‐
object tracking scenario, which is also used in three scenarios with an additional two

simulated objects. The tracking results demonstrate the effectiveness of using visual

recognition for data association to avoid interchanging the two estimated object

trajectories. Furthermore, real‐time computations performed on the gathered data

show that the system is able to automatically detect and track the position and

velocity of a boat. Given that the system had at least 100 georeferenced mea-

surements of the boat's position, the position was estimated and tracked with an

accuracy of 5–15m from 400m altitude while the boat was in the camera's field of

view (FOV). The estimated speed and course would also converge to the object's

true trajectories (measured by Global Positioning System, GPS) for the tested

scenarios. This enables the system to track boats while they are outside the FOV of
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the camera for extended periods of time, with tracking results showing a drift in the

boat's position estimate down to 1–5m/min outside of the FOV of the camera.
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1 | INTRODUCTION

The recent increase of commercial availability of small unmanned

aerial vehicles (UAVs) has led to the use of UAVs in many different

applications, such as inspections of structures, surveillance, and

search and rescue.

UAV related research often emphasizes the UAV's capabilities as a

remote sensing platform (Nonami, 2007). In this regard, cameras have

become a common and useful remote sensing instrument for UAV

platforms. Moreover, thermal cameras have recently become smaller,

lighter, and cheaper, making them readily available for use in UAVs.

Equipping a low‐cost UAV with a thermal camera has therefore become

viable, and is useful since it will be able to see and observe parts of the

environment differently (and sometimes more clear) compared with

visual spectrum cameras. In addition, several processing platforms have

become both small and power efficient enough to be placed onboard

UAVs for online processing of data. This calls for novel algorithms, not

only for processing the collected video data after a UAV flight, but also

for analyzing the (thermal) image data onboard and in real time. Per-

forming the image processing onboard and in real time can extend the

range of UAV operations, as the UAV will not be required to con-

tinuously maintain a stable communication link with the ground station

to transfer the thermal images for processing.

In a scenario where there are several (moving) objects of interest

that one wants to keep track of in an Earth‐fixed coordinate frame

using a single UAV equipped with a camera, it quickly becomes

challenging to perform this manually with an increasing number of

tracked objects. Objects need to be revisited from time to time to

verify where they have moved from their expected positions, while

at the same time giving all of the tracked objects enough camera time

to have a sufficiently good estimate of the movement of the objects.

This is a task that is well suited for automation, however, that would

require the UAV payload to be able to automatically detect and track

multiple objects in real time during flight. It would also require the

UAV payload to be able to perform object recognition to distinguish

between the UAV revisiting an already detected object and the UAV

detecting a novel object.

The process of monitoring multiple moving objects is often referred

to as multitarget tracking, and many different approaches to the problem

are found in the literature. This problem is not restricted to UAVs as

there exist many different remote sensing platforms. Nevertheless,

studying solutions that can be applied for thermal cameras in UAVs is

still useful and necessary since, for example, radar‐based multitarget

tracking is not directly applicable. Section 1.1 covers the literature in the

field of (multi)target detection and tracking in UAVs.

1.1 | Related work

The problem of automated multiobject detection and tracking using a

UAV with an onboard computer and camera can be separated into three

different subproblems. First, in order for the process to be automated,

robust, and reliable, machine vision techniques for automatic object de-

tection need to be developed and implemented. Second, filters or esti-

mators are needed to estimate the position (and possibly the velocity) of

the detected objects in a given coordinate frame. Third, there is the

problem of data association, that is, how to associate new measurements

of objects' position with objects already being tracked. This section will

cover some of the recent works on these three subproblems.

The problem of object detection is the problem of having a com-

puter automatically segment an image into objects of interest and

nonobject regions. That is, using an algorithm, the computer should be

able to say which regions of an image that contains objects of interest.

This problem is well studied, and several different approaches are de-

scribed in the literature. In Qadir, Neubert, and Semke (2011) a tem-

plate matching with zero mean normalized cross correlation is used to

identify objects of interest in an image. This approach requires that the

machine vision algorithm is supplied with an image (template) of the

object of interest beforesearching novel images for said object. This is a

fast and reliable method if the appearance of the object or type of

objects of interest is not changing over time and/or changing with the

angle and distance the object is viewed from. However, if the object can

take on different appearances, and is nonsymmetric, the number of

templates needed to perform the object detection increases quickly.

The computation time needed to detect objects using this approach is

directly proportional to the number of different templates used for an

object, and also grows with the resolution of the template and image.

Furthermore, in some scenarios this approach is not viable due to the

fact that the appearance of the object is not exactly known before

detecting the object. Teuliere, Eck, and Marchand (2011) use a com-

bination of color segmentation (filtering an image based on color) with a

Continuously Adaptive Meanshift (CAMshift) algorithm. The CAMshift

algorithm was first introduced in Bradski (1998), and is an algorithm

that adaptively finds the position and orientation of an object of in-

terest in an image. However, the algorithm requires that the image

already is segmented into object and nonobject regions, hence the

object detection step itself in Teuliere et al. (2011) is completely de-

pendent on the accuracy of the color segmentation step. Segmenting an

image based on color and/or intensity is suitable for many applications,

but often requires manual and individual tuning for specific scenarios

and scenery. Furthermore, this technique will easily generate false

positives (segmenting parts of the image as an object although there is
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no object to be found) because it treats everything in a scene with a

specific color or intensity as an object of interest. Some variation of the

color segmentation technique for object detection in UAVs can also be

found in Shah, Hakeem, and Basharat (2006), Sengupta et al. (2010),

and Štěpán, Krajník, Petrlík, and Saska (2019). These approaches han-

dle false positives by having robust algorithms that will filter out the

false positives. This could, for instance, be done by observing that

the detections of actual objects are persistent, whereas detections of

false positives often are not, or by filtering out detected objects with a

shape or contour different from what the algorithm is expected to find.

Another approach to object detection is based on optical flow in a

sequence of images, and examples where this is utilized can be found in

Rodríguez‐Canosa, Thomas, delCerro, Barrientos, and MacDonald (2012)

and Helgesen, Stendahl Leira, Johansen, and Fossen (2016). This is an

effective but often computationally heavy approach, and is mainly used

for detection of moving (i.e., not stationary) objects. There is also a group

of algorithms that utilize machine learning to detect objects. There exist a

large variety of object detection approaches within this group, but they

all have in common that they are taught which objects to detect with a

training data set. Chapelle, Haffner, and Vapnik (1999) use example

images of humans to train a support vector machine (SVM). The SVM

projects an object's feature descriptor into a subdimensional feature

space, and the training process adjusts the projection parameters in such

a way that the discrimination between object and nonobject is max-

imized. In recent years convolutional neural network (CNN) has also

gained a lot of attention, and is now one of the most popular machine

learning methods for object detection. While the performance of SVM

approaches will greatly depend on the human design variables, for ex-

ample, which features and howmany should be used to classify an image,

the CNN training process trains the network to find and inherently use

the most discriminating features. The CNN works as a network of neu-

rons, and an input image propagates through the network by emulating

the response of individual neurons to visual stimuli. The output of the

CNN is the classification result (object or nonobject) of the input image.

This approach is demonstrated in Rodin et al. (2018) for detection of

boats and humans at sea in thermal images taken from a UAV. The major

issue with the machine learning approaches is that their accuracy is

greatly affected by the size and quality of the training set (Doherty &

Rudol, 2007; Gaszczak, Breckon, & Han, 2011; Portmann, Lynen, Chli, &

Siegwart, 2014; Viola & Jones, 2001). This also implies that it is difficult

to make this group of object detectors able to detect objects whose

appearance is not consistent or already well documented.

The detection and tracking framework presented in Kalal,

Mikolajczyk, and Matas (2012), Tracking–Learning–Detection (TLD), is

an open‐source framework which, given a region containing an object in

an initial image frame, detects the location of said object throughout the

duration of the image sequence (for as long as the object is within the

image frame). This is done by decomposing the long‐term tracking

process into three subproblems: tracking, learning, and detection. That

is, the tracker follows the object from frame to frame. The detector

localizes all appearances that have been observed so far and corrects

the tracker if necessary, and the learning module estimates the de-

tector's errors and updates it to avoid these errors in the future. The

major weakness of the TLD framework is that the tracking results are

greatly affected by the initially chosen region for the object to track,

hence care has to be taken as to how this region is (automatically)

chosen. Pestana, Sanchez‐Lopez, Saripalli, and Campoy (2014) present a

successful implementation of the TLD framework on a small multirotor

UAV, but their system requires the operator to manually select an

object to track and follow.

For the object tracking problem, several solutions using UAVs have

been proposed. Barber, Redding, McLain, Beard, and Taylor (2006) use a

ground station computer for image processing and object detection in

combination with a recursive least square filter to estimate an object's

position. The filter converges in approximately 40 measurements, and

the object's position estimate is reported to be within 5m of the object's

actual position, albeit flying at a relatively low altitude (100m). In ad-

dition to estimating an object's position, they simultaneously estimate

the bias offset angles of the mounting of the camera gimbal. This is done

by flying in circles around the object while solving a minimization pro-

blem. However, the system is assuming that there is only one single

object to track, and that said object is stationary in the duration of the

flight. Similar approaches to tracking, but extended to tracking multiple

stationary objects, are described in Štěpán et al. (2019) and Goodrich

et al. (2008).

Dobrokhodov, Kaminer, Jones, and Ghabcheloo (2006) propose a

solution for single‐object tracking using UAVs and offline image proces-

sing. A nonlinear parametrically varying (NLPV) filter is applied to esti-

mate both the object's position and velocity. The NLPV filter combines

the advantages of a parametrically varying model structure and the

nonlinear autoregressive exogenous moving average (NARMAX) algo-

rithm. With a UAV altitude of 500m, an accuracy of 10–40m in the

positional estimate and 0.1–0.4m/s in the velocity estimate is reported.

Although the proposed solution is able to track a moving object, a

method to expand this system to the case of multiple object tracking is

not presented.

Prevost, Desbiens, and Gagnon (2007) perform object tracking

by using an extended Kalman filter (EKF) to estimate an object's

position, velocity, and course based on measurements of the object's

position. These estimates are then used to calculate an optimal

predicted object movement for a short‐time horizon into the future.

This is an effective approach to enable the UAV to plan its future

movement; however, the work presented in Prevost et al. (2007) is

only tested in simulation. Furthermore, it is only tested in the case

where there exist continuous measurements of the tracked object's

position throughout the whole tracking process.

Helgesen et al. (2016) use a Kalman filter and a linear motion model

to estimate an object's position and velocity based on measurements of

both the object's position and velocity (acquired using optical flow). The

results are based on a small data set containing thermal images of a boat

gathered from a UAV flying at 100m altitude. Initial results show that

even with limited visual data, the estimated position of an object is within

15m of its actual position, and the speed estimate is within 1m/s of the

object's actual speed. However, the object's velocity estimate is prone to

noise in the UAV's attitude measurements.

When multiple objects are tracked simultaneously, the problem of

data association arises. This is a problem where object detections have

to be associated with objects already being tracked, or as a novel object
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entering the image frame. Niedfeldt and Beard (2013) propose a mul-

tiple object tracking framework which performs tracking and data as-

sociation simultaneously based on the Random Sample Consensus

(RANSAC) algorithm. RANSAC is a powerful algorithm used in many

machine vision problems (Niedfeldt & Beard, 2013), and is based on the

concept that a data set contains so‐called “inliers” and “outliers”. Inliers

are data points which can be explained by some set of model para-

meters. The outliers are data points that do not fit with the set of model

parameters, hence should ideally not be used when trying to estimate

the model parameters. Typically algorithms would estimate the model

parameters using the total data set; RANSAC, however, assumes that

given a small set of inlier data points, there exists a procedure which can

estimate the parameters of a model that optimally explains or fits the

data. Niedfeldt and Beard (2013) and Niedfeldt and Beard (2014) pre-

sent how this can be a powerful tool when performing multiple object

tracking of an unknown number of dynamic objects. The strength of the

approach is in its ability to handle a huge amount of false positives and

false negatives from the object detection module. However, the weak-

ness of the system is that knowing exactly how many objects currently

are being tracked is difficult, as one object may have several plausible

tracks, and as a consequence, several possible model parameters.

In some tracking applications, sensors which generate several dis-

tinct measurements across each object's spatial expression can be used.

There is a lot of information to be extracted from such detection

clusters, but when doing so it is crucial to interpret this information in a

way that is consistent with the tracked object's physical state and

shape. Granström, Baum, & Reuter (2016) give an excellent overview of

extended target tracking approaches. Extended target tracking uses a

model of objects' physical shape and incorporates it with estimating the

objects' motion. Since each object can cause a cluster of detections,

the process of data association is even harder, as there are more pos-

sible solutions to the data association problem. However, knowledge of

the objects' physical shape and orientation can be useful information

and is in fact often utilized when performing the data association step.

While not directly within the extended target tracking group of tracking

algorithms, it is also not unusual to use sensors which will generate

several nonspatial (e.g., object color) measurements per object. The

measurements not directly linked to an object's position are often

combined into the object's appearance model. Kuo, Huang, and Nevatia

(2010; color and histogram), Ullah, Mohammed, Cheikh, and Wang

(2017; a CNN classifier), and Yinghui and Jianjun (2009; color histogram

and image region covariance) all present different ways of incorporating

an object's appearance model in the tracking and data association

process. However, a general framework in which different appearance

models can be included seems to be lacking.

In Wu, Thangali, Sclaroff, and Betke (2012), the traditional

“detection‐tracking” approach is replaced by stating the object detec-

tion, tracking, and data association problem as a single‐objective func-

tion. The main concept of the approach is to have a robust object

detector mark separate blobs in each image frame in a video sequence,

and then stating the data association as a network flow problem where

the goal is to optimize the flow going through the network. The

strength of this approach is that the whole data set is considered

simultaneously when solving the data association and tracking process.

However, this is also its weakness as the computational burden be-

comes large for longer video sequences. Furthermore, the approach

would have to be extended to deal with false positives in the object

detection algorithm.

The nearest‐neighbor (NN) method is regarded as one of the most

straightforward approaches to data association (Konstantinova,

Udvarev, & Semerdjiev, 2003). Given several possible detections for the

position of an object, the associated detection is assumed to be the

detection “closest” to the estimated or predicted position of the tracked

object. The term “closest” is based on a predefined measurement of the

distance to the object, for example, this could be the distance in image

pixels between the object measurement and the estimated object po-

sition in the image frame. However, the NN method is prone to end up

in nonoptimal solutions for the data association problem when multiple

objects are being tracked simultaneously. This is because the order of

associating measurements with tracked objects can affect the overall

result (Konstantinova et al., 2003). To address the shortcomings of the

NN method a global‐nearest‐neighbor (GNN) algorithm can be ap-

plied (Konstantinova et al., 2003). The GNN algorithm seeks to find the

global minimum solution in the case of multiple object tracking, effec-

tively avoiding the nonoptimal solution which the NN method can

possibly generate. This solution is optimal in the way that the total

distance between the measured object positions and the estimated

position of the tracked objects is minimized. The GNN algorithm is a

more computationally heavy approach, but it is otherwise very similar

to the NN algorithm. Helgesen, Leira, Johansen, and Fossen (2017)

extend upon the work of Helgesen et al. (2016) by presenting three

different observation models and tracking methods, and evaluating

their performance in a multiobject tracking scenario using the GNN

approach to data association. While the performance of all of the

presented observation models is similar (96% correct data association

in the presented case study), the performance is majorly dependent on

the objects' distance to each other. This dependency can in many cases

be mitigated by incorporating objects' visual appearance into the data

association process.

1.2 | Contributions

This paper extends the automatic detection, recognition, and tracking

framework for objects in the sea surface presented in Leira, Trnka,

Fossen, and Johansen (2015) and Leira, Fossen, and Johansen (2015) by

improving the tracking module's ability to recognize objects on the UAV's

revisitation of the objects it is tracking. Furthermore, the tracking process

is extended from tracking objects only in the image frame to the case

where the UAV is able to track the position and velocity of multiple

objects of interest in Earth‐fixed coordinates. This means that the

tracked objects can be outside the field of view (FOV) for prolonged

periods of time while their positions are still being estimated by the

tracking system. The UAV payload used for experiments is also modified

to meet the requirement of onboard and real‐time image processing.

Although parts of the object detection and tracking system are similar to
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already published methods, the combination of algorithms and UAV

payload presented in this paper constitutes a state‐of‐the‐art system in

the robustness in which the position, speed, and course of the objects are

estimated based on thermal images from a fixed‐wing UAV. That is, the

system is robust in the sense that the system will keep tracking objects

for extended periods of time even when they are outside the FOV of the

UAV camera, and also in the sense that it uses thermal image features for

object recognition. The latter enables the system to better distinguish

between objects when tracking multiple objects close to each other, and

to recognize objects re‐entering the FOV of the camera. Finally, this

study also includes numerous experimental results from field tests con-

taining (multi)object tracking scenarios with a fixed‐wing UAV.

The remainder of this paper is organized as follows. First, a machine

vision algorithm for automatically detecting objects in real time in a

processing unit placed onboard the UAV is presented. Second, a tracking

algorithm is developed to track the position and velocity of the auto-

matically detected objects. This approach covers both the process of

estimating an object's position and velocity based on image‐based de-

tections, as well as data association, that is, associating new detections

with objects already being tracked. Section 5 covers the details of the

field tests conducted to test the object detection, recognition, and

tracking algorithms presented in this paper, while Section 6 covers the

results of the conducted flights. Finally, conclusions are presented and

ideas for future development of the detection, recognition, and tracking

algorithms are discussed.

2 | SYSTEM OVERVIEW

This section describes a framework for object tracking with UAVs

equipped with a thermal camera, with example implementations of

each module designed to detect and track objects at the ocean

surface in a maritime environment. However, note that adjusting

these modules (or reimplementing them in a different manner) using

the same framework structure would allow the system to be used in

different applications in different environments.

Object tracking is here defined as the action of using the UAV to

keep track of multiple objects' position and velocity in an Earth‐fixed
coordinate frame during the UAV flight. The tracking process does

not only consider already known object positions, but also focus on

detecting, recognizing, and tracking potential objects of interest with

unknown positions. This can be achieved by using an onboard sensor,

typically a camera, mounted in a pan‐tilt gimbal, and a path con-

troller. The overall proposed object tracking system is illustrated in

Figure 1. The UAV object detection, tracking, and recognition mod-

ule, also illustrated in Figure 1, is a machine vision algorithm running

onboard the UAV supplying the path planner with estimates of ob-

ject's position and velocity. These estimates can be found using dif-

ferent methods. An autonomous method is to have an onboard

computer analyze the images coming from the onboard camera,

automatically detecting, recognizing, and tracking objects of interest

over a series of images. An example of such a system is described in

Section 3. This approach is applied without any prior knowledge of

the location and number of objects of interest, but the user will

typically input to a machine vision module some features of the

objects that are of interest (e.g., size or shape). Another option is the

scenario where you know the location of the objects that you want

to track, but still want to do some verification and/or surveillance of

the objects. In this case the object detection, tracking, and recogni-

tion module is initialized with a list of the positions and velocities of

all objects, and the path planner should then make sure that these

objects will be observed by the UAV. This approach can be combined

with the previously mentioned autonomous approach. That is, the

object detection, tracking, and recognition module can update and/or

F IGURE 1 Overall object tracking system description. A path planner module is combined with an onboard object detection, tracking, and
recognition module to detect and track objects using a UAV platform. UAV, unmanned aerial vehicle
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verify an object's position and velocity when the machine vision

module is automatically detecting the object, effectively estimating

its current position and velocity.

The path planner is a module which seeks to determine a

turning rate or a series of way‐points for the UAV, as well as the

optimal gimbal orientation along the pan and tilt axes, that will

allow the UAV to successfully track objects of interest. The

control outputs calculated by the path planner module are given

to the UAV's flight controller (autopilot), which in turn has its

own algorithms to control the dynamics of the UAV. The path

planner module can (and should) be adjusted for different

tracking scenarios. A scenario where the UAV is tracking several

slow‐moving objects, such as vessels at the ocean's surface, re-

quires a different path‐planning approach as opposed to tracking

a fast‐moving vehicle constantly changing its velocity. An ex-

ample of a path‐planning module that is intuitive and easily

configurable can be found in Skjong, Nundal, Leira, and Johansen

(2015). When performing the tracking of multiple objects si-

multaneously, the Object Handler is the module responsible for

choosing which object to observe at any given time. This mod-

ule will be highly application dependent, while the other modules

are more generic in nature. An example Object Handler module

used with this system, which is based on an occupancy grid map

and Bayesian probabilistic reasoning, can be found in Leira,

Johansen, and Fossen (2017). This reference shows how the

Object Handler and UAV path planner modules can be im-

plemented such that they enable the UAV to do a fully autono-

mous flight, only affected by the user's predefined tracking

priorities. These two modules could also be implemented to in-

clude a search component in the path planning, meaning that the

path planner could choose to search for new undetected objects

instead of only focusing on the objects currently being tracked.

The user could also change the UAV's tracking priorities online

and in real time to accommodate needs that arise due to, for

example, a change in the environment.

3 | OBJECT DETECTION AND
RECOGNITION

The Object Detection, Tracking, and Recognition module uses images

from an onboard camera to automatically do segmentation of the

images. That is, using machine vision, the module's task is to segment

pixels into foreground (object) or background (nonobject). To auto-

matically detect objects of interest the machine vision algorithm

developed in Leira, Fossen et al. (2015) is applied, with the extension

of a feature vector which aids the system in the process of classifi-

cation and recognition for data association.

The method is conceptually similar to the Canny edge de-

tector (Canny, 1986), in the sense that it is fundamentally based on edge

detection. The image is first smoothed using a kernel approximating a

Gaussian distribution. The motivation for this is to reduce the thermal

noise present in the image, which in turn will make edge detection easier

as it results in a low‐pass filtered gradient image (Canny, 1986). This was

found to make the edge detector more robust than when performed on

the raw thermal images. The result of smoothing an image showing a big

boat (length of 56m), a rigid‐hulled inflatable boat (RHIB), and a small

buoy can be seen in Figure 2b.

To detect the edges in the resulting smoothed image, its gradient

image is calculated using the Prewitt operator (Soille, 2003). The

resulting gradient image is shown in Figure 2c. It is seen that the big

boat, the RHIB, and the small buoy are clearly visible after these

image processing operations. Further it is apparent that the waves

and ripples in the ocean in addition to some of the noise in the image

are also still visible, albeit smaller in magnitude (intensity) than the

objects of interest. By simply thresholding the gradient image with

(a) (b) (c)

(d) (e) (f)

F IGURE 2 An example of a thermal image going through each step in the machine vision algorithm for automatic object detection
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an appropriate thresholding value Tg, the visible ripples and waves

can be removed. The result of thresholding the gradient image is

seen in Figure 2d.

Looking at Figure 2d it is obvious that some of the blobs clearly do

not originate from any object of interest (i.e., the small dots scattered

across the image), and therefore have to be filtered out. To filter out the

unwanted blobs from the image a connected component algorithm

(Suzuki & Abe, 1985) is used to group and label components together in

blobs. Furthermore, the area of each blob is then calculated, and blobs

with a smaller or larger area than what is expected from an object of

interest are then removed from the image. The result of this process is

seen in Figure 2e and the resulting image is hereby referred to as the

binary image, B, of the original image I.

The resulting image (Figure 2e) contains three remaining blobs

which are of further interest. The three blobs are marked as detected

objects, and are now ready for classification. The center positions of

the remaining blobs are calculated in both the image frame and in the

world frame, and then passed on to the tracking module as position

measurements for the objects.

The detection step provides the position of objects of interest in

the image. However, since the detector is using edge detection, the

areas of an image that is highlighted as interesting will often only

contain the exterior edges of an object. When performing, for in-

stance, recognition based on characteristics, such as size, average

infrared radiation, and overall form, it is crucial that the whole object

is evaluated. To expand the detections to also include the interior of

the objects of interest, an algorithm that seeks to fill holes in the

binary image (Soille, 2003) shown in Figure 2e is applied. The result

of applying this algorithm can be seen in Figure 2f, and the image

with filled contours is hereby denoted Bfilled.

Using the location of the bright pixels in the binary image seen in

Figure 2f, the pixels that make out the object in the original image

(Figure 2a) can be analyzed. In this paper, the object characteristics

used for recognition are the observed object area, detected average

object infrared radiation and one of the scale, rotation, and translation

invariant moments proposed by Hu (1962). Using scale, rotation, and

translation invariant features when describing objects observed from

the air are very important, as the altitude, angle, and orientation that

the object is viewed from are constantly changing. Note that both the

observed object area and the detected average object infrared radiation

will be, to some extent, invariant to the scale, rotation, and translation

of the object. However, the detected average object infrared radiation

will be somewhat dependent on the UAV's distance and attitude re-

lative to the object, hence if the UAV altitude or attitude was to change

drastically, the reference for the object's detected average infrared

radiation should be adjusted. It should be kept in mind that the re-

cognition method presented can be used for a large variety of other

object characteristics and be modified to include other object features.

The invariant moments presented in Hu (1962) are based on the

following moment function:

∑= = …
∈

Bm x y x y p q( , ), , 0, 1, ,
O

pq
x y

p q

,

filled (1)

where x and y indicate a pixel location in the horizontal and vertical

directions in the image. mpq is referred to as a +p q( )th order moment of

the image region O, where O is defined as the set of pixels inside the

object's bounding box. Note that since Bfilled is a binary image, the 0th

moment (m00) simply becomes the number of positive pixels in the image

region. This in turn can be interpreted as the pixel area of the object.

This is an effective parameter to use when classifying objects, especially

when pixel area is converted into the metric area of the object through

the use of onboard altimeter and attitude and heading reference system

(AHRS) measurements. The metric area of an object can provide a good

indication of the object's type and inertia. Assuming that the UAV is

flying approximately straightforward (low roll and pitch values), the

metric area of an object can be found by multiplying the pixel area of the

object (m00) with a factor a h( ), where a h( ) is defined as square meters

per pixel when the camera is at altitude h. Note that it would be more

accurate to also account for the UAV's attitude, but for simplicity a

scaling dependent only on UAV altitude is used. This factor is given by

the thermal camera lens and characteristics. Hence, the metric area of an

object can be approximated by

≈A a h m( ) ,00 (2)

Central moments are also used in the calculation of Hu's in-

variant moments, and are given as

μ =∑ − − = …
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∈
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where x y( ¯ , ¯ ) is the centroid of the image region. Note that the central

moments are invariant to translation. This is readily seen by obser-

ving that the central moment is just mpq shifted to the centroid of the

image region. Now, to get scale‐invariant moments, the normalized

central moments are introduced. The normalized central moments

are given as

η
μ

μ
γ

γ
= = + + ∕ + = …p q p q, ( 2) 2, 2, 3, .pq

pq

00

(4)

Using the normalized central moments, Hu introduced seven

moments invariant to rotation, translation and scale. However, re-

search has shown that for objects represented with a small amount

of pixels (less than ×100 100 pixels), these moments may vary when

the image is scaled and/or rotated. Furthermore, Flusser (2005)

show that the higher order moments (ϕ −2 7) vary much more than the

lower order moment (ϕ1) for images with low resolution. Since the

resolution of most thermal imaging cameras is quite low, objects of

interest will not be represented by a lot of pixels. Because of this,

only the first invariant Hu moment is included in the feature vector.

ϕ η η= +1 20 02 (5)

It should be noted that ϕ1 is analogous to the moment of inertia

around the object's centroid, where the object's pixel intensities

would be the physical density.
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To calculate the detected average object infrared radiation, the

settings of the thermal‐imaging camera are utilized. That is, the

camera can be set to capture infrared radiation intensities in a range

from a minimum and a maximum intensity (IRmin and IRmax ). Fur-

thermore, assuming that the output from the camera is an image

where each pixel is represented by n bits, each pixel can take on a

value between 0 and 2n. This means that the detected infrared ra-

diation of an area covering only 1 pixel will be

= − +IR
I x y

IR IR IR
( , )

2
( ) .

n max min min (6)

Expanding this to calculate the detected average infrared radiation

over a detected object, we get

= − +

∑ ∈

IR IR IR IR
2

( ) ,

I x y

m
navg

( , )

max min min

Opx y,

00 (7)

where

= ∈ ∣ =O O Bx y x y{ , ( , ) 1}p filled

O is the set of pixels in the object's bounding box. Hence, the image

region Op is given by the set of pixels in the detected object blob in

the binary image Bfilled. Note that the detected infrared radiation is

found from pixel intensities in the original image I.

Combining the detected average object infrared radiation with

the invariant moments, we can represent any group of pixels in an

image using the feature vector

ϕ

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

A
IRX .avg

1

(8)

In the case that a new object appears in the image frame and is not

matched to any of the objects currently being tracked, the object's fea-

ture vector X is calculated for the first m images where the whole object

is visible. The average of these m feature vectors, X̄ , is then stored

onboard the UAV for future reference. However, since an object's de-

tected average infrared radiation might drift over time (the thermal

camera heating up) or change due to the weather or the UAV's variable

distance and attitude relative to the object, this component of the fea-

ture vector is continuously averaged over the last m measurements as-

sociated with an object. The object's measured feature vector is then

used when detected objects are associated with objects already being

tracked. This enables the system to better recognize already tracked

objects. The details of the data association process are described in

Section 4.2.

4 | OBJECT TRACKING

The object tracking module is responsible for estimating and keeping

track of the position and velocity of the detected objects. This is

done by using Kalman filters to estimate and predict the position and

velocity for each object. If an object detection is not likely to origi-

nate from any of the objects currently being tracked, the tracking

module assumes that a novel object has been detected, and creates a

new Kalman filter instance associated with this object. Further de-

tections of the tracked object are then used as measurements in the

Kalman filter to estimate the object's position and velocity. This

means that the tracking module also has to be able to associate new

detections with already existing tracked objects. This is done by

associating object detections to the most likely among the tracking

gaits. A tracking gait is defined as the complete state history of an

object, that is, the history of its positions and velocities. An overview

of the object tracking approach presented in this section is illustrated

in Figure 3.

4.1 | Kalman filter

The Kalman filter implemented in the detection, recognition, and

tracking module is based on Ali and Terada (2010), and utilizes a

motion model based on the assumption that the UAV is tracking

objects located on a flat surface (e.g., the sea surface) and moving

with a constant velocity. This yields the following linear equations of

motion:
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F IGURE 3 An overview of the tracking process. The machine
vision (MV) module receives an infrared image I x y( , ) from the
infrared camera, and detects the centroid (p p,u v) of objects of
interest within the image. These data are combined with navigation
data from the autopilot and gimbal (camera attitude, Rned

cam and
position pcam) to georeference the object's pixel location. Having
found the object's measured location in the NED frame, the object is
associated with a specific Kalman filter track based on the measured
position and the object's features (size, infrared radiation, etc.). The
Kalman filter track associated with the measurement is then used to
update the Kalman filter estimates. IR, infrared; NED, North‐
East‐Down
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where x y V, ,k k x k
obj obj

,
obj, and Vy k,

obj are the position and linear velocitis of

an object in North‐East (NE) coordinates (x is north and y is east) at

time step k and Δt is the time passed from time steps k to +k 1. wk

and zk are the Gaussian white noise terms representing a change in

velocity of an object. This yields the following model in state‐
space form:

= +

= +

+ A E

C

x x w

y x v

,

.

k k k

k k k

1
obj obj

obj obj
(10)

The matrices A E, , and C are equal to
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and we have that
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wk and zk are here as previously defined, while qk and rk are the

Gaussian white noise terms which represent noise and errors in the

measurement of an object's position. For the two‐dimensional mo-

tion described in (9), the state vector xk
obj and the measurement yk

obj

are equal to
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where y y,x k y k,
obj

,
obj are the detected object's measured positions at time

step k .

Note that y y,x k y k,
obj

,
obj are the measured positions of the object in NE

coordinates, while the detection step described in Section 3 only

yields the centroid of an object in image frame coordinates (pixel

location of the centroid). Hence, to find the NE coordinates that this

pixel location corresponds to, we need to project the pixel location

onto the NE plane. This can be done by assuming the pinhole camera

model (Ma, Soatto, Kosecka, & Sastry, 2012) and using the equations

found in Leira, Fossen et al. (2015). That is, given the pixel co-

ordinates of the centroid of an object (p p,u v
obj obj

k k ) and by assuming that

the object is located at the sea surface, the object's position (north

and east coordinate) in the NE frame can be found by the following

equation:
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where Gxyk is the extrinsic camera parameter matrix (camera attitude

and position) given by

= ⎡⎣
− ⎤⎦

G r r R p ,xy 1 2 ned
cam

camk k k k k (15)

r1kwhere and r2k are the first‐ and second‐column vectors of Rned
cam

k ,

which is the rotation matrix for the rotation from the North‐East‐
Down (NED) frame to the UAV's camera frame. pcamk is the position

of the camera center given in NED frame coordinates. λk is a scaling

factor required to isolate the normalized homogeneous coordinates

of the NE position of the object ⎡⎣ ⎤⎦
x y, , 1k k

Tobj obj . −K 1 is the inverse of

the intrinsic camera parameters (Ma et al., 2012), that is, the matrix

transforming the normalized homogeneous pixel coordinates

p p[ , , 1]u v
obj obj

k k from image coordinates (pixels) to camera coordinates

(world units).

At each time step k the matrices Rned
cam

k and pcamk can be calcu-

lated using the navigation data received from the onboard autopilot.

Note that since (14) will simultaneously depend on data from both

the autopilot's navigation data and pixel location of a detected object

from the camera's image data, the two data sources should be time

synchronized as accurately as possible.

A Kalman filter can be used to calculate an estimate, x̂k
obj, of an

object's state at time step k using measurements of the object's position

in the form of yk
obj and predictions based on the object's current esti-

mated state. For the Kalman filter to be efficient, the magnitude of the

measurement noise, vk , and the process noise, wk, should be tuned to fit

the sensor accuracy and the motion model uncertainty, respectively.

That is, we define the following stochastic terms:
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Further, when a new object is detected a Kalman filter is initialized

with the object's measured position as the filter's position states

x yˆ , ˆk k
obj obj. Since the object's velocity cannot be known (or estimated)

from only one measurement, the object's estimated velocity is in-

itialized as 0. Moreover, since the measured object position is un-

certain due to being based on only one noisy measurement, and the

estimated velocity being unknown, the filter's initial covariance matrix

should be tuned to reflect this fact. That is, the Kalman filter must be

tuned such that it is aware that an object's initial position and velocity

are uncertain. The Kalman filter's initial a posteriori estimate of the

covariance matrix is given by the following equation:
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Choosing appropriate values for R Q,k k , and ∣P0 0 is detrimental

to the accuracy and the consistency of the filter's position and ve-

250 | LEIRA ET AL.



locity estimates. To find appropriate values for Rk , the result pre-

sented in Section 6 is a good basis. More specifically, the results

show the error in the georeferenced position for 4903 object de-

tections and can be used to find mean values for the measurement

error obtained in georeferencing. Note that if the UAV is in perfectly

leveled flight, and the camera is pointing directly downwards, the

altitude of the UAV will not affect the accuracy of a measured object

position. This is not the case if the UAV is turning or changing the

altitude, and the accuracy of the measured object position would

scale proportionally with the UAV altitude. Experimental results

from Helgesen, Leira, Bryne, Albrektsen, and Johansen (2019) also

show that the error in georeferencing increases with the roll and

pitch angles of the UAV. Hence, Rk would ideally be a function of

both the UAV camera's attitude (Rned
cam

k ) and altitude (hk), that is,

( )R hR ,k kned
cam

k . However, the relationship between the attitude and the

georeferencing error is nonlinear and difficult to generalize. There-

fore, Rk is designed to be proportional with the altitude of the UAV

because this is true in most situations (perfectly leveled flight is not

common due to wind and other environmental effects and a pitch

angle of a few degrees often occur). A value of =R h0.05k k was found

to be an approximate model for the error distribution experienced in

Section 6. Note that both Qk and ∣P0 0 can be difficult to identify, as

objects in the real world usually do not move exactly, like described

in (9). First, since a new track is initialized using only one object

detection, a reasonable choice for the upper ×2 2 matrix of ∣P0 0

could be σ σ σ σ= = =q r x yk k 0
obj

0
obj. The remainder of the filter's para-

meters could potentially be tuned in accordance with prior knowl-

edge of the objects dynamics. In this study the remaining tuning

parameters were set to fixed values which were used in all tracking

scenarios. This was done to investigate the filter's robustness and

consistency for different object dynamics.

4.2 | Data association

When tracking objects, one of the most crucial parts is to be able

correctly perform data association and recognition. In the present

system, a GNN approach similar to the one found in Konstantinova

et al. (2003) is utilized to perform data association. This involves

using the following distance metric for the distance between mea-

surement i and tracking gait j:

γ γ Γ= − +−y S yD X X(1 )~ ~ ~ ~
,i j i j

T
j i j i j

T
i j, ,

1
, , , (18)

where

= − = −y y y X X X~ [ ˆ ] and
~

[ ¯ ].i j
i j

i j i j,
obj, obj,

,

Note that the first term is the sum of the squares of two in-

dependent Gaussian random variables, hence it will have a chi‐
squared probability distribution with two degrees of freedom

(Konstantinova et al., 2003). This fact will be used later on to discard

unlikely measurements. Here, y iobj, is the measurement i (given as a

measurement of an object's position in NE coordinates), ŷ jobj, is the a

priori predicted position of object j, and Sj is the prediction's asso-

ciated covariance matrix. Both the predicted position and the cov-

ariance matrix are given by the Kalman filter estimating the position

of tracking gait j. In this paragraph the time index k is dropped for

simplicity of notation. The tuneable parameter γ is in the interval

(0, 1) when the whole object (all edges) is contained within the image

frame and 0 otherwise. This is because the detected object's feature

vector should only be calculated when the whole object is visible. Xi

is the feature vector corresponding to measurement i , and X̄j is the

previously stored feature vector associated with object j. Γ is a

tunable weighting matrix, allowing the difference between each

measured and stored object feature to affect the total distance be-

tween measurement i and object j differently.

Conceptually there are two reasons to include the object fea-

tures in the distance measurement. The first reason is to avoid as-

sociating measurements of a novel object with an object that is

already being tracked. If object features were not included in the

distance measurement, this could happen if the novel object is lo-

cated on the same location as the predicted position (not the actual

position) of an object that is already detected. However, by using

object features it is (sometimes) possible to detect that the object is

not the object that was expected to be at said location, hence re-

gistering it as a new object in the object database. The second reason

is that if there are two or more objects in the same image, noise in

the measured object position, and uncertainty in the position esti-

mate of objects could easily confuse the association process. How-

ever, if the objects differ in appearance, using the object features to

aid the data association is effective, as the appearance of an object is

not as prone to noise as the measured position. Moreover, since a so‐
called hard measurement association is conducted through the GNN

method, robustness is key to avoid mixing tracks and visual features

are needed.

To associate a measured object position with the most likely

among the tracking gaits, a matrixD expressing the distances from all

n measurements to all m tracking gaits is calculated. Hence, the

matrix D takes on the following form:
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If the distance Di j, exceeds some threshold >d D0, i j, is set to infinity.

This is because in the case of

≥D d,i j, (20)

the measurement i is not very likely to be a measurement originating

from the object in tracking gait j. The value for the threshold d

should be based on the chi‐squared probabilities for two degrees of

freedom since the first term of Di j, as previously mentioned will have
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a chi‐squared distribution. This also means that Γ should be tuned to

scale the contribution from the object's feature vector according to

the same chi‐squared probability. An approximation for this can be

achieved by tuning Γ to make, for example, 95% of an example set of

an object's features contribute less than the 5% critical value (5.991)

for chi‐squared distributions with two degrees of freedom.

Note that if all values along column j are equal to infinity, it is

concluded that a measurement for tracking gait j is not present. To

cope with this, column j should be removed from D, and the pre-

dicted object position should be used as the best available estimate

for tracking gait j. Furthermore, if all values along a row i is equal to

infinity, it is assumed that there exists no probable tracking gait for

measurement i. In other words, this is most likely a measurement

originating from a new, not yet tracked object. Hence, row i should

be removed from the matrix D, and a new tracking gait should be

instantiated with measurement i as the initial position.

After calculating D and removing superfluous rows and columns,

the data association problem is a matter of finding the combination

of distances Di j, that yield the global minimum distance. This implies

that the combination which is selected assigns exactly one mea-

surement to exactly one tracking gait, in a way such that the total

distance between all measurements and their assigned tracking gaits

is the shortest achievable distance. This is a well‐studied problem

and can be solved by applying the Kuhn–Munkres algorithm

(Bourgeois & Lassalle, 1971) to the modified matrix D.

5 | UAV AND FIELD TEST

To test the performance of the framework described in the previous

sections, several field tests were conducted. The system was im-

plemented on the CruiserMini platform shown in Figure 4a. It is a

small fixed‐wing UAV with the focus of supplying a low‐cost aircraft
for short‐endurance (≤2 h) UAV flights. The CruiserMini was equip-

ped with a payload based on the work in Leira, Trnka et al. (2015),

with some improvements. More specifically, the avionics and payload

consist of the open‐source Pixhawk 2 autopilot (Pixhawk, 2018), a

pan‐tilt gimbal, a thermal camera, and an onboard single‐board
computer capable of performing real‐time image processing. The

single‐board computer used in the flight tests conducted in this study

is an Odroid XU4 (HardKernel, 2016), which has an ARM‐based
2.0 GHz octa‐core CPU and 2 GB RAM. The thermal camera used is

an FLIR Tau2 640 (FLIR‐Systems, 2018), and by using a USB device

(TEAX‐Technology, 2018) it supplies the onboard computer with

digital ×640 512 pixels of radiometric data images 7.5 times/s. The

camera is sensitive to the long‐wave infrared spectral band

(7.5–13.5 μm) with a sensitivity of <50mK, and has a resolution of

14 bits/pixel. An example image captured with the FLIR Tau2 camera

is shown in Figure 6a. The camera is placed inside a retractable

R‐BTC88 (MicroUAV, 2011) gimbal, which can be controlled either

automatically by the onboard single‐board computer or from a

manual controller located in the ground station. The onboard com-

puter is connected to both the autopilot and the digital interface of

the Tau2 camera, and stores the data from these two devices

(telemetry and thermal images) locally during flight testing.

For the tests conducted in this study it was the performance of

the detection, recognition, and tracking modules of the system that

was emphasized, hence the UAV was either remotely controlled by a

UAV pilot or the path planning was done manually preflight. That is,

the path planner was not connected to the real‐time feedback loop

illustrated in Figure 1. Hence, during the field tests the path‐planning
module was not doing any real‐time onboard calculations, and the

autopilot was simply following a predefined flight path or manual

instructions from the UAV operator.

All of the tests were carried out operating from the shoreside at

Agdenes outside Trondheim in Norway. Further, the gimbal was set

to a fixed position, pointing directly downwards, during all of the

flight tests. The gathered data set consists of four flight tests where

some of the captured thermal images contain the boat Telemetron

(an RHIB) and/or a small fishing boat. Both objects can be seen in the

thermal image shown in Figure 6a. Telemetron is approximately 8m

long and is shown in Figure 4b, while the fishing boat is of a similar

(a) (b)

F IGURE 4 The fixed‐wing UAV (CruiserMini) used to implement and test the system described in this paper together with one of the boats
(Telemetron) being tracked during the flight tests. UAV, unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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shape but smaller in size. The position and velocity of the Telemetron

and the fishing boat were measured by Global Positioning System

(GPS) devices located in the boats, effectively supplying a relatively

accurate measurement of their true position, speed, and course

(referred to as the “ground truth”). Since the ground truth is mea-

sured with a single‐frequency GPS device, the accuracy of these

measurements can be expected to be within 3m of the object's ac-

tual position. In Section 6, the GPS measurements from the boats are

simply referred to as measured position, speed, and course. Also note

that the position estimates (originating from georeferencing the

position of the boats in the thermal images) are referred to as the

georeferenced position of the boats. Finally, in the results, Tele-

metron is denoted as ‘Boat’ in flights 1–3, and ‘Boat 1’ in flight 4. The

fishing boat is denoted as ‘Boat 2’ in flight test 4.

The following results are the results of the detection and

tracking algorithm tested in an offline real‐time computation using

(a) (b)

(c) (d)

F IGURE 5 The UAV flight path (blue) together with the path of the tracked boat(s) (orange and yellow)) during the object tracking periods
for flight tests 1–4. Each flight test has its own reference point for their NED frames, chosen to be in the proximity of the first object detection.
The beginning (circle) and the end (cross) of each path are also shown. NED, North‐East‐Down; UAV, unmanned aerial vehicle [Color figure can
be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d) (e)

F IGURE 6 The result of applying the image processing algorithm described in Section 3 to one of the images captured during flight
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data gathered during the four test flights. Computational tests for

the tracking scenarios presented in this paper show that the onboard

computer use on average 0.07 s to perform the processing needed

for each time step (image analysis, data association, and updating

Kalman filters). Since the thermal camera's frame rate is 7.5 frames/s

(0.13 s between each image frame), running the object detection,

recognition, and tracking module onboard/online is expected to yield

identical results as the findings presented below. For demonstrations

of real‐time and online use of variations of the presented framework

the reader is referred to Leira et al. (2017) and Mathisen, Leira,

Helgesen, Gryte, and Johansen (2020).

6 | RESULTS

The tracking results presented in this paper are based on data from four

test flights. During the four tracking scenarios described in this

section the UAV was airborne for a total of 1 h, 1min, and 50 s, and

gathered a total of 27,866 thermal images. A subset of 4903 of the

images contained complete thermal signatures of the Telemetron and/or

the fishing boat, meaning the whole object was within the camera's FOV.

All of the thermal signatures originating from Telemetron and the fishing

boat were automatically detected by the system.

By setting the threshold, Tg, described in Section 3 to 230 and

removing every detection consisting of less than 100 pixels, the ob-

ject detection algorithm successfully detected the objects of interest

in all of the images where they were fully contained. The threshold Tg

could potentially be tuned adaptively, but 230 was found to be a

value that consistently removed thermal signatures with a smaller

gradient magnitude than the ones caused by the objects of interest.

Due to the ocean being so uniform in the emission of thermal ra-

diation, the system reported only 15 false positives, which by manual

inspection were found to be due to distinct thermal signatures whose

origin was not identifiable by only looking at the thermal images. These

detections were however easily removed through filtering by size and

form. Figure 6 illustrates each step in the detection algorithm (tuned as

described above) on an image containing two boats.

For the tracking process, the measurement noise variables q and

r (measurement noise in the north and east directions) were set to

have a standard deviation of h0.05 k m (σ σ= = h0.05q r k m). As dis-

cussed at the end of Section 4.1 the measurement noise is propor-

tional to the altitude of the UAV. The four flight tests were

conducted at altitudes between 200 and 400m, where experimental

data are mostly consistent and show that while the UAV is flying at

an altitude h h, 0.05k k m is a reasonable choice for the standard de-

viation for the measurement noise. The process noise variables w

and z will affect how quickly the Kalman filter adapts to perceived

changes in the velocity of the object being tracked. Hence, this

parameter should ideally be chosen based on the size and mode

(speeding and drifting) of the object being tracked. For Telemetron

and the fishing boat, the standard deviation of the process noise was

set to 0.2m/s (σ σ= = 0.2w z m/s). That is, it was assumed that both

of the boats had a more or less constant velocity with some smooth

minor changes over time. The discretization time for the Kalman

filter was set to Δ = ∕t 1 7.5, which is the expected rate at which the

thermal camera supplies the onboard computer with a new image

(measurement). The Kalman filter was initialized with a covariance

matrix set to h(0.05 ) mk
2 2 (σ σ= = h0.05x y k

0
obj

0
obj m) for the positional

estimates, and ∕5 m s2 2 2 (σ σ= = 5v vx
j

y,0
ob

,0
obj m/s) for the velocities. The

filters were also initialized with the first measured object position

(the first time the object enters the camera's FOV) as the initial

position, and 0m/s velocity in both the North and the East directions.

Below is a more detailed view on the performance of the object

detection and tracking module for each flight.

6.1 | Flight 1

During the first flight test, Telemetron was manually operated to

keep a constant low speed (≈ 0.5 m/s) and a fixed heading. The UAV

was controlled to loiter at an altitude of 300m in a so‐called eight‐
pattern over the boat's location, as illustrated in Figure 5a. During

the tracking period (24min), the boat was automatically detected a

total of 989 times, which approximately corresponds to only 2min

and 10 s of camera time. For each detection, an NE position of the

boat's location was calculated using (14). The georeferenced position

was then compared with the boat's measured (“ground truth”) po-

sition at the instant that the image containing the detection was

taken. The Euclidean distance from the boat's measured position to

its georeferenced position was then calculated for each boat detec-

tion. The error in distance for each measurement can be seen as blue

crosses in Figure 7. The pentagonal marker in the NE plot illustrates

the tracked boat's measured position and heading at fixed time in-

tervals throughout the tracking process.

Using a Kalman filter as described in Section 4 with these

georeferenced position measurements, yielded the tracking trajec-

tory illustrated in Figure 7. It is observed that the initial position

estimate is at 20m from the center of the boat's measured position.

However, as more georeferenced measurements of the boat's posi-

tion are processed by the Kalman filter, the estimated boat velocity

and course quickly converge to the boat's actual speed and course.

This is clearly illustrated in Figure 7. Comparing the speed plot and

the error plot in Figure 7, it is seen that the estimated object speed

converges to the measured object speed by the third batch of

measurements (the third cluster of georeferenced object detections).

The three clusters consist of only 109 georeferenced image boat

positions spread over a time period of 2 min and 50 s. In total, 109

images correspond to 14.5 s of camera time, and illustrate the short

time needed for the estimates to converge.

After the speed and course estimates have converged to the

measured object speed and course, the accuracy of the boat's esti-

mated position does not increase by adding further detections. The

boat's position estimate is within 5–15m of the boat's measured

position for most of the 24‐min tracking processes, only drifting less

than 5m away from the boat's measured position. This is also the

case even though the boat is outside the FOV of the UAV camera for

254 | LEIRA ET AL.



up to 70 s at a time. Some of the object detection clusters towards

the end of the tracking process have degraded accuracy, which is due

to the object being detected while the UAV has a large bank angle

(≈40°), causing inaccuracies in the UAV's pose estimate to impact the

boat's georeferenced position estimate more than in earlier seg-

ments. This illustrates the dependency on accurate navigation esti-

mates in georeferencing as described in Helgesen et al. (2019).

6.2 | Flight 2

In the second flight test Telemetron was drifting with the current,

with no input from the boat's operator. As in the first flight test, the

UAV was controlled to loiter in a figure of eight above Telemetron's

position, as shown in Figure 5b, but now at an altitude of 200m.

During the tracking period for this flight (16min), Telemetron was

automatically detected in a total of 1250 images, with each image

giving a measurement of the boat's position in the NED frame by

georeferencing the boat's image position. The accuracy of each

georeferenced measurement is shown in Figure 8 as blue crosses.

The estimated position, speed, and course of Telemetron using a

Kalman filter with the georeferenced boat positions as measure-

ments are illustrated in Figure 8. The initial position estimate is ≈5m

from the boat's measured position, and the position estimate keeps well

within one boat length 10m for the majority of the tracking periods.

As seen from Figure 8, even though the speed estimate of Tel-

emetron converges to the measured speed quickly (again around the

100th Telemetron detection), the estimate of the boat's course never

converges. The mean error in the course estimate for the whole

tracking period of flight 2 is 48°. The reason for this difference is

probably two‐fold. First, the boat is moving too slow compared with

the magnitude of the measurement variance in each cluster of

F IGURE 7 Tracking results for test flight 1. GPS, Global Positioning System [Color figure can be viewed at wileyonlinelibrary.com]
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georeferenced positions, and second, since the GPS measured posi-

tion also is noisy the GPS could struggle to identify the boat's actual

course. However, with an average speed of 0.078m/s (both esti-

mated and measured by GPS), the estimate of Telemetron's position

would only drift ≈55m from the boat's actual position if the detec-

tion and tracking would rely solely on prediction after the first 100

georeferenced position measurements. Although not ideal, it is safe

to say that the UAV would be able to relocate the boat after 15min

of Telemetron being outside the FOV of the UAV's camera, if the

Kalman filter was used to predict the boat's future movements.

6.3 | Flight 3

In the third flight test Telemetron was manually controlled to have a

higher speed (≈10m/s) with a constant heading. The UAV was

controlled to fly in a straight line in the same direction that the boat

was moving, and was then controlled to do a loiter whenever the

UAV ended up in front of the boat. This movement pattern is illu-

strated in Figure 5c. The UAV had an altitude of 400m during the

whole tracking period. The altitude for this test was chosen higher

than the other two flight tests to make it easier for the UAV operator

to control the UAV such that Telemetron would be visible in the UAV

camera's FOV.

During the tracking period for this flight (2 min and 30 s), Tele-

metron was automatically detected in a total of 264 images (corre-

sponds to 35 s of camera time), spread over three different segments

in time. The accuracy of each georeferenced measurement is shown

in Figure 9 as blue crosses. The first cluster consists of 88, the sec-

ond of 104, and the third of 72 image detections of Telemetron.

The estimated position, speed, and course of Telemetron from

the Kalman filter with the georeferenced boat positions as input are

F IGURE 8 Tracking results for test flight 2. GPS, Global Positioning System [Color figure can be viewed at wileyonlinelibrary.com]
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illustrated in Figure 9. It is observed that the first cluster of geor-

eferenced measurements does not contain enough information for

the speed and course estimate to fully converge to the boat's actual

speed and course. Although the course and speed estimates are only

6° and 2m/s from the GPS measured speed and course after the first

cluster of measurements, the boat is moving at such a high speed

that the position estimate starts to drift from the boat's measured

position immediately after Telemetron leaves the FOV. While the

course and speed estimates are adjusted close to the measured va-

lues once the UAV's camera has the Telemetron within the camera's

FOV again (the second cluster of georeferenced measurements), the

position estimate has drifted 150m in 50 s. Note that although it

might be difficult to relocate the boat in this scenario relying solely

on the information gained in the first cluster of measurements, the

search to relocate the boat could be restricted significantly. Given

that the boat would keep a constant speed and course, the UAV

would simply need to expand the search along the line in the same

direction as the course estimate, while using the speed estimate and

the filter's certainty to adjust the search area until the boat was

relocated.

6.4 | Flight 4

The fourth flight test is a two‐object tracking scenario. Both Tele-

metron and the fishing boat were manually operated to have a low

speed (≈1m/s) and a similar heading. Telemetron crosses the path of

the fishing boat once (approximately at the 250‐s mark), in addition

to moving closer and then further away from the fishing boat. The

path of Telemetron (Boat 1) and the fishing boat (Boat 2) for the

tracking period of flight test four is seen in Figure 5d. The UAV was

controlled to fly in a figure of eight above the two boats, getting

F IGURE 9 Tracking results for test flight 3. GPS, Global Positioning System [Color figure can be viewed at wileyonlinelibrary.com]
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intermittently position measurements of both boats. Note that the

UAV had an altitude of 300m during the whole tracking period.

During the tracking period of the two boats (18min and 50 s) the

UAV automatically detected 2400 objects of interest. It was found,

by manually classifying all detections, that 1535 of the detections

were of Telemetron, and 865 were of the fishing boat. Finally, it was

found that 349 of the captured thermal images had both Telemetron

and the fishing boat within the FOV of the camera. The feature

vector described in Section 3 was calculated for each detection and

put into two groups (Boats 1 and 2) based on manual classification.

The result can be seen in Figure 10. It is readily seen that, in the case

of distinguishing the two boats by appearance, it is the area feature

that has the biggest between‐group difference, then intensity and

finally the invariant Hu moment. This is expected, as the fishing boat

is in fact a little bit smaller than Telemetron, and also appears to

radiate and reflect less infrared energy. Note that, as expected, the

detected average infrared radiation is the feature which has

the biggest in‐group variance. This fact justifies the choice to use the

average of the 10 most recent feature vectors associated with an

object as a reference for this feature.

However, since the Hu moments are both size and rotation in-

variant, and the geometric form of the boats is similar, it is reason-

able that the difference in Hu moments between the groups is

negligible. Although the area feature would be the most efficient to

distinguish the two objects, all of the three features were considered

when doing the data association for the tracking process. Each fea-

ture's element in the weighting matrix Γ was chosen according to

their average in‐group variance. That is, each feature's weighting

element was set such that the expected cost addition from that

feature (given that the measurement was compared with the mea-

sured object's average feature vector) would be in the same range as

the cost addition caused by the distance element. This yiel-

ded Γ = − −diag(10 , 10 , 10 )5 4 3 .

To test the effectiveness of including an image recognition ele-

ment in the tracking process, the trajectories of the two boats in the

scenario shown in Figure 5d were tracked both with γ set to 0 and

0.5. With γ set to 0, an object's appearance is not considered when

doing data association, and with γ set to 0.5, an object's visual re-

semblance to the object being tracked is weighted equally with the

object's measured physical distance to the tracked object. One of the

critical points in the tracking process of this flight test is when Tel-

emetron crosses the path of the fishing boat, switching which side of

the fishing boat Telemetron is closest to. As seen from the tracking

results in Figure 11 (γ = 0), the pure physical distance data asso-

ciation fails at this point, switching tracks between the objects. That

is, the Kalman filter that was initially tracking Telemetron ends up

tracking the fishing boat and vice versa. It should also be noted that

after confusing the two objects and the two boats moving apart from

each other again, the Kalman filters continue to track each of their

(wrongly associated) respective objects' position correctly.

Setting γ = 0.5 solves this problem, and even though the cost

caused by the associating correctly based on measured physical

distances to each of the boats and their estimated position is big, the

cost caused by the object's thermal signature and image features

when associating incorrectly is bigger. This can be seen from

Figure 12, as the object being initially tracked by each of the two

Kalman filters keeps constant during the whole tracking process,

only associating a total of four measurements incorrectly. This was

four measurements of the fishing boat's position associated with

Telemetron.

6.4.1 | Flight 4 with real and simulated objects

To further investigate the usefulness of taking an object's visual

features into account in the data association process we can com-

plicate the tracking scenario by adding simulated objects. This was

done by utilizing the telemetry data from flight 4, and designing the

equations of motion for simulated objects such that the objects

would have appeared in the camera's FOV if they were to be real

F IGURE 10 Distribution of the object features (size, intensity, and the first invariant Hu moment) for Boat 1 (blue) and Boat 2 (orange) for
all detections across flight test 4 [Color figure can be viewed at wileyonlinelibrary.com]
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objects. The pixel coordinates of an object position given in the NED

frame can be found by the pinhole camera model, that is, in our case

the inverse of Equation (14). The object is considered to be within

the camera's FOV if the resulting pixel values are within the camera's

image frame.

Two simulated objects were designed, and their visual features

were simulated based on the between‐ and in‐group variations seen

in Figure 10. The first simulated object was given a visual feature

vector with a mean value of 400 pixels in size, 2200 in intensity, and

0.185 for the first invariant moment. The second simulated object

was given a mean value of 1000 pixels in size, 2100 intensity, and

0.21 for the first invariant moment. Each simulated object detection

(every time one of the simulated objects was found to be located

within the camera's FOV) resulted in an object detection with their

mean feature values, in addition to white noise according to the

observed average intraclass variation in Figure 10. That is, Gaussian

white noise with a standard deviation of 160 pixels, 60 intensity, and

0.012 for the size, intensity, and first invariant moment. Gaussian

white noise with a standard deviation of h0.05 k (same tuning as Rk in

the filter) was also added to the position measurement of the si-

mulated objects.

Figures 13a, 14a, and 15a show flight 4 with two simulated

objects in addition to the real two boats in three different sce-

narios, tracking with γ = 1.0 (using only the physical distance). It

is observed that using this metric, a Kalman filter's identity (the

object the filter is initially tracking) is prone to change up to

F IGURE 11 Tracking results for test flight 4, using only the distance between the expected and measured position of an object for
recognition (data association) [Color figure can be viewed at wileyonlinelibrary.com]
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several times when tracking multiple objects in the vicinity of

each other. In fact, all of the presented scenarios have at least

two Kalman filters changing identity completely (hereby noted an

identity swap) when only the physical distance metric is used. All

scenarios also include some intermittent periods of interrupted

tracking, where a filter's track diverges from the object's actual

path for short periods of time due to several consecutive in-

correct associations. Figures 13b, 14b, and 15b show the same

three scenarios, but now tracking with γ = 0.5 (using both phy-

sical distance and object features). This effectively prevents all

identity swaps, and the intermittent periods of interrupted

tracking are mitigated to only a couple of incorrect associations

at a time, or avoided completely. Having as few incorrectly as-

sociated measurements as possible is crucial for the certainty and

accuracy of the filters' estimates, as the estimates become in-

creasingly more inaccurate and uncertain with the number of

incorrectly associated measurements. Hence, including object

features in the data association metric increased the performance

of the overall tracking system.

The simulated objects are not always moving in accordance

with the assumed constant velocity model. This can be seen from

the abrupt change in velocity for Boat 2 in Figure 15, and Boat 4

(Figures 14 and 15) which is moving with a constant acceleration.

Although the tracking system has a decreased accuracy in its es-

timates at the points where the velocity is not constant (con-

tinuously for Boat 4 and at the 550‐s mark in Figure 15 for Boat 2),

it is observed that the filter adapts to these changes when new

object position measurements are acquired. This indicates that it

F IGURE 12 Tracking results for test flight 4, using both the physical distance and the object features described in Section 3 for recognition
(data association) [Color figure can be viewed at wileyonlinelibrary.com]
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would be beneficial for the path planner module in the tracking

system to prioritize revisiting objects that are observed to not

move in accordance with the assumed motion model. Further, it

could be useful to assume a different motion model if the objects

are expected or observed to move in a nonstraight pattern.

6.5 | Filter consistency analysis

Figure 16 shows the autocorrelation for the Kalman filter in-

novation in the north and east positions for the tracking scenarios

in flight 1 (a), flight 2 (b), and flight 3 (c). The innovation is here

(a)

(b)

F IGURE 13 Tracking scenario 1 with two simulated objects (Boats 2 and 4) and two real objects (Boats 1 and 3). (a) Tracking scenario 1
using only the physical distance between measured and estimated positions for data association. (b) Tracking scenario 1 using both physical
distance and object features for data association [Color figure can be viewed at wileyonlinelibrary.com]
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defined as the difference between the current measurement and

the predicted measurements by the Kalman filter. The auto-

correlations in Figure 16 show that the innovations are (de-

creasingly) correlated in time, which means that the innovation in

the previous measurements is correlated with the current mea-

surement. This result also shows that the innovations are

consistently correlated in time throughout all of the tested

tracking scenarios.

Theoretically, correlation in the innovation of the filter is a

violation of the optimality conditions for the Kalman filter.

However, these results are expected, as an error or bias in the

estimate of the UAV's position and attitude for one image is likely

(a)

(b)

F IGURE 14 Tracking scenario 2 with two simulated objects (Boats 2 and 4) and two real objects (Boats 1 and 3). (a) Tracking scenario 2
using only the physical distance between measured and estimated positions for data association. (b) Tracking scenario 2 using both physical
distance and object features for data association [Color figure can be viewed at wileyonlinelibrary.com]
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to persist while the next image is captured. Furthermore, perfect

white measurement noise is required for the Kalman filter to be

optimal theoretically, but not to perform satisfactory. That is,

high accuracy in the filter's position and velocity estimates can

still be achieved as shown in all of the results in this study. Note

that the results in Figure 16 show that it will be beneficial to

observe the object from different UAV positions and attitudes

(included level flight) so that bias or errors in the UAV's esti-

mated navigation states will be averaged out as the object is

observed from different positions and poses.

(a)

(b)

F IGURE 15 Tracking scenario 3 with two simulated objects (Boats 2 and 4) and two real objects (Boats 1 and 3). (a) Tracking scenario 3
using only the physical distance between measured and estimated positions for data association. (b) Tracking scenario 3 using both physical
distance and object features for data association [Color figure can be viewed at wileyonlinelibrary.com]
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Another, more important characteristic of the Kalman filters'

tracking performance on the application level is the consistency of

the position estimates. That is, how confident is the filter in its

estimates, and if this confidence reflects the actual situation. A plot

of the 95% confidence ellipse of the filters' position estimates at

fixed intervals in time can be seen for flight tests 1–3 as green circles

in Figure 17. These results show that the filters' confidence in its

estimates seem to be justified, as the tracked boats measured posi-

tion (blue line) is within the 95% confidence interval at all times. This

indicates that the tuning parameters chosen for the tracking filter

are reasonable, albeit causing the filter to be overly pessimistic in its

confidence at times (e.g., as seen in Figure 17b). Considering the

application for the tracking system in this paper, it can be argued

that it is better to tune the tracking filter this way because it yields

less chance of the filter track to diverge from the boat's actual track.

On the other hand, it will expand the region that needs to be sear-

ched by the UAV to relocate an object. Although this is a trade‐off,
the UAV's cruising speed is so high that avoiding tracking filter di-

vergence was considered more important than restricting the search

region to relocate objects.

7 | CONCLUSION AND FUTURE WORK

In this paper, an automatic object detection, recognition, and tracking

algorithm has been developed. The algorithm is intended to be used in

an ocean surface object tracking system for UAVs, to enable UAVs to

perform multiobject tracking and situational awareness in real time.

The detection algorithm uses a combination of edge detection and

thresholding, together with dilatation/eroding and finding connected

components to perform real‐time automatic object detection from a

thermal camera's video stream. Using onboard navigation data to get

the UAV's and camera's attitude and altitude, the onboard computer is

able to georeference each object detection to measure the location of

detected objects in a local NED coordinate frame. Furthermore, the

tracking algorithm uses a Kalman filter and a constant velocity motion

model to perform object tracking based on the position measurements

found using the object detection algorithm. To decide whether an

object detection is a detection of an object already being tracked, or if

the measurement originated from a novel object which has not been

observed previously, the Kuhn–Munkres algorithm is applied for data

association. This is achieved using a measure of distance that is based

not only on the physical distance between an object's estimated po-

sition and the measured position, but also how similar the objects

appear in the thermal image.

The object detection algorithm developed in this paper was

found to consistently detect the objects of interest in a given thermal

image. However, these detection results would of course not be

expected if the UAVs were to fly over land (or a small island at sea),

as the algorithm largely depends on the thermal signatures of objects

to be located on a surface with a uniform emission of thermal ra-

diation. Hence, the detection algorithm in the presented tracking

system would have to be more sophisticated to be useful in less

uniform environments. In general, the algorithm should be able to

better filter out detections which are not of interest, either by using

a digital map to filter out detections of land, or by recognition to

filter out noninteresting objects.

The presented object detection, recognition, and tracking algo-

rithm was tested in four different UAV flight tests conducted over

sea from the shoreside just outside Trondheim. Given that the sys-

tem had at least 100 georeferenced measurements of the boat's

position, the position was estimated and tracked with an accuracy of

5–20m while the boat was in the camera's FOV. The estimated

speed and course would also converge to the object's true trajec-

tories (measured by GPS), given that the object was moving in ac-

cordance with the model and tuning in the Kalman filter. The results

show in most of the cases a drift in the boat's position estimate of

only 1–5m/min outside of the FOV of the camera. Analyzing the

innovation in the Kalman filter during tracking, it was found that

there was a correlation in the Kalman filter innovation given by

measurements related closely in time. Although this is a violation of

the theoretical optimality of the Kalman filter, the performance of

the filter was still satisfactory. However, correlation in the filter in-

novations show that it is advantageous to observe the tracked ob-

jects from several different positions and attitudes to average out

biases and get an accurate position estimate.

(a) (b) (c)

F IGURE 16 Autocorrelation for the Kalman filter innovation for the georeferenced position measurements decomposed in the north and
east directions for flights 1 (a), 2 (b), and 3 (c) [Color figure can be viewed at wileyonlinelibrary.com]
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The results indicate that the object's speed and course estimates

quickly converge after ≈100 georeferenced measurements, or

equivalently about 14 s within the FOV of the camera, to the mea-

sured (by GPS) speed and course. This seems to be given that the

boat is moving at a constant course and a speed consistent with the

choice of standard deviation for the Kalman filter's motion model

noise. For extremely slow‐moving objects the speed estimate still

converges, but the system does not necessarily estimate the correct

course. This could potentially be solved by using machine vision to

calculate a boat's orientation in the water to aid the course estimate.

Results also show that if the boat's speed is high, it is crucial to have

the object within the FOV of the camera for an extended period of

time (ideally around 100 consecutive georeferenced measurements),

since both the speed estimate and the course estimate need some

time to converge to the boat's actual speed and heading. This is given

that the filter was initialized with a speed and course of 0 m/s and 0°,

respectively. Hence, in cases with fast‐moving objects, the Kalman

filter either has to be initialized with a nonzero speed estimate in the

vicinity of the object's actual speed (gathered either from assumption

or, for instance, from an Automatic Identification System), or the

boat has to be observed for a longer period of time without the

object leaving the camera's FOV. In general, a controller which would

move the gimbal in such a manner that a detected object will remain

within the FOV for as long as possible might be useful in many cases.

The fourth and final flight test demonstrates the effectiveness and

usefulness of including visual appearance in the data association part

of the tracking process. The results indicate that the object feature

vector presented in this paper can be used for the tracking system to

distinguish between objects of the same type (e.g., two boats), which

can look similar but still differ in the chosen features (area, average

infrared radiation, and Hu's first invariant moment). This is further

demonstrated by the mixed experimental/simulated tracking sce-

narios presented, where considering object features in the associa-

tion process outperforms using only the physical distance. Taking the

object features into account, most incorrect associations are recti-

fied and all identity swaps are prevented. Although an identity swap

is not observed to cause the overall system to lose track of objects, it

is detrimental in applications where a complete history of an object's

movements is important. Significantly reducing the number of in-

correct associations increases the accuracy and certainty of the

Kalman filters' estimates, and improves the performance of the

overall tracking system.

For future work, a high priority is to make the object detection

algorithm able to self‐tune. That is, instead of setting the threshold Tg

F IGURE 17 Ninety‐five percent confidence ellipses for the position estimate (green circle) at equally spaced time instants for flights 1 (a), 2
(b), and 3 (c). GPS, Global Positioning System [Color figure can be viewed at wileyonlinelibrary.com]
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and the minimum object size manually, this should be set auto-

matically or dynamically. The minimum object size could be based on

the human operator's choice for what types of objects are of interest.

Furthermore, this could be further improved by adjusting the mini-

mum object size based on the UAV's altitude, as a boat of a given size

will appear smaller the higher the UAV is flying. The threshold Tg

could either be set online based on an initial calibration phase, or

potentially chosen to be dynamically set based on analysis of the

scene background.

From the results presented it is readily seen that, although suc-

cessful at tracking an object in general, a priority will be to include online

and real‐time adjustments of the Gaussian white noise variables found in

the motion model for the Kalman filter. This means adjusting the mea-

surement noise based on both the UAV's altitude and attitude (i.e., not

just altitude), as well as choosing the motion model noise based on what

type of object the UAV is tracking. The features used for recognition

could be useful also for such classification. This would make the tracking

process more efficient and better at estimating the true position and

velocity of the objects being tracked. Another useful addition to the

system would be to include the feature vector used for data association

in the Kalman filter, effectively allowing the filter to adapt to small

changes in all of the object features over time, as well as inherently

including the statistics for the variation of each feature in the data as-

sociation step.
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