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Abstract To be able to recover a fixed-wing unmanned aerial vehicle (UAV) on a
small space like a boat deck or a glade in the forest, a steep and precise descent is
needed. One way to reduce the speed of the UAV during landing is by performing
a deep-stall landing manoeuvre, where the lift of the UAV is decreased until it is
unable to keep the UAV level, at the same time as the drag is increased to minimize
the speed of the UAV. However, this manoeuvre is highly non-linear and non-
trivial to perform with high precision. To solve this, an on-line non-linear model
predictive controller (NMPC) is implemented to guide the UAV in the landing
phase, receiving inputs from the autopilot and guiding the UAV using pitch and
throttle references. The UAV is guided along a custom path to a predefined deep-
stall landing start point and performs a guided deep-stall. The simulation results
show that the NMPC guides the UAV in a deep-stall landing with good precision
and low speed, and that the results depend on a correct prediction model for the
controller.
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1 INTRODUCTION

During the recent years, autonomous flight has received a lot of attention in re-
search (e.g. [1], [2], [3]) and the main challenges that arise are autonomous take-off,
navigation and landing. This paper focuses on autonomous landing of fixed-wing
unmanned aerial vehicles (UAVs), as this subgroup of UAVs generally has longer
range and endurance, which makes them preferable in many operations compared
to rotary-wing UAVs. Autonomous landing of UAVs has been studied before, see
e.g. [4], [5], [6] and, more recently [7] and [8]. However, to further increase the
usage of fixed-wing UAVs, autonomous landing without a runway is desired. This
is motivated by maritime operations, where a UAV should be able to land on a
ship deck, which normally has limited space. One solution to this problem is to
land the UAV in a net (e.g. [9], [10], [11]) though, while it simplifies the recovery
and enable landing on a ship, it yields significant structural loads on the UAV and
net, and requires infrastructure to support the net.

A decelerated landing of a UAV is achieved by increasing the angle of attack
until the air flow separates from the airfoil of the wing, called the stall angle,
and then beyond to reach a deep-stall [12]. A deep-stall is the state of the UAV
with a stable trim, with an angle of attack beyond the stall angle. More details
about the aerodynamics of deep-stall can be found in [13], [14], [15], [16], [17] and
[18]. Landing an aircraft with the use of a deep-stall has been investigated in the
literature: [19] presents a study of a manned aircraft deep-stall and [20] presents
experimental results from deep-stall landing with a UAV. In [21] a deep-stall land-
ing is considered as a promising way of retrieving a UAV after flight tests in the
field. In [22] linear-quadratic regulator trees are presented as a way of controlling a
UAV in deep-stall landing, with implementation, flight tests and promising results.
In [23] the navigation part of the deep-stall landing and the safety aspect are con-
sidered. In [24] a nonlinear model predictive controller for real-time autolanding in
deep-stall of a UAV is described, built on the work presented in [25]. The ACADO
framework is used for numerical optimization, just like in the current paper, but
the simulations are performed on the prediction model with no disturbances. In
[26] the longitudinal aerodynamic characteristics of a deep-stall are investigated.
In [27] a study on the use of flare for autonomous landing of a fixed-wing UAV is
presented, and [28] creates a trajectory for perched landing of a small fixed-wing
UAV.

To guide a fixed-wing UAV in a deep-stall landing, this paper suggests the
use of a nonlinear model predictive controller (NMPC). An MPC is an optimal
controller that provides control action rather than an explicit control law. Based
on a prediction model for the vehicle dynamics and the latest measurements or
estimates of the model’s state variables as well as disturbances, a control trajec-
tory for a given prediction horizon is calculated, optimizing a cost function. The
first control action from the trajectory predicted by the NMPC is used as input
to the UAV and the next measurement from the UAV is used as input for the
state estimator supporting the MPC. A linear MPC has a linear model and con-
straints, and a quadratic cost function. Nonlinear MPC is more computationally
demanding, as it requires solving a generic, possibly con-convex Nonlinear Pro-
gram, accurate computation of gradients and other numerical issues that prevents



Title Suppressed Due to Excessive Length 3

the problem to fall into the linear category [29]. Calculating an iterative solution
within a convergence criterion will be time consuming, while the alternative so-
lution would be to abort the calculations before convergence has been reached to
stay inside a time budget [30]. For more details about the NMPC, see [30] or [31].
MPC has had great success in the process and petroleum industry, but due to its
computationally costly nature, embedded MPC is not trivial [29]. A substantial
research work has been done for improving the online embedded MPC, including
improvements of the algorithms for solving the MPC faster (e.g. [32], [33], [34],
[35]), software for embedded numerical optimal control using different algorithms,
e.g. qpOASES [36], CVXGEN [37], HPMPC/MPMPI [32],[33] and environments
like ACADO [38], or Acados [39], [40] where code generation is an important fea-
ture (e.g. [34], [41], [42]).

In general, the control hierarchy of a UAV is divided into layers. Navigation,
guidance and control form different layers handling state estimation, reference
computation and control, respectively. Examples of control objective are path fol-
lowing or energy minimization [43], [44]. MPC is applicable to several layers of
UAV control. In path planning, MPC can plan and re-plan the UAV trajectory
over a long prediction horizon, and this plan can be used as an input reference
for a lower control layer. In the lower control layers it is critical to get feedback.
Depending on the computing power of the embedded computer, it can be possible
to solve the optimization problem on-board the UAV [45]. A viable alternative is
to perform the computations on a remote computer and send the control input to
the UAV over a radio communication link as long as delays are small.

As the models of UAVs are inherently non-linear, linear MPCs for UAVs are
typically linearized around the trim states ([46], [47] and [48]). For regular flight
conditions, the angle of attack α is usually much smaller than α0, where α0 is the
stall angle. At low α, the drag, lift and pitch moment of the UAV can be described
as linear functions of α. In stall conditions, however, the drag, lift and pitch mo-
ments are higly nonlinear functions of the angle of attack, and linear models are
not sufficient [44], [23]. Therefore, for transition into stall, linearization around
trim values are not useful and the full nonlinear prediction model is used.

Although there has been a substantial progress in computation time of NMPC
due to efficient cropping of algoritms and progress in embedded hardware [49],
an NMPC is nevertheless a control technique with high computational consump-
tion due to a high sampling frequency. In order to keep the computational power
consumption as low as possible, it is desirable to use the NMPC only when the
benefits from using it outweighs the costs. One way of minimizing the computa-
tion is to decouple lateral and longitudinal guidance and control. This has been
previously published in [48], where a longitudinal MPC controls the UAV directly
as an augmentation to a longitudinal autopilot and in [47], where an MPC using
a longitudinal model tracks a glide slope with the aim to land the UAV.

In [50], an NMPC is used in the lowest layer of a three-layered guidance,
navigation and control system. A path planner provides waypoints and sensor in-
formation to a navigation system, which converts the waypoint path references
to speed, flight path and course angle references for the NMPC. The flight con-
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trol system uses a genetic algorithm to solve the NMPC problem. This system
has elevator, aileron, throttle and rudder as output from the NMPC flight control
system. In [51] the same output as the previous paper is used, based on a 6-DoF
model of the UAV and an NMPC for attitude control. In [52], an NMPC uses a
6-DoF model of the UAV to control the aircraft in extreme manoeuvres, using a
reference trajectory for the position.

The opposite approach concerning abstraction level would be to plan a refer-
ence path in real time with the NMPC, and provide the autopilot with way points
and airspeed references to follow this path. In [53], an on-line MPC on the ground
station tracks a pre-planned flight path and communicates the control signals to
the autopilot through the payload computer, using a radio link. The MPC controls
both the attitude of an attached gimbal and the path, providing the autopilot with
waypoints and desired airspeed and the gimbal with pan and tilt commands.

If the objective of the relevant manoeuvre also requires control of the UAV
at lower level than the flight path, then waypoint and speed references are not
sufficient, and something between the full model and the waypoint solution is re-
quired. In [54] this is solved by creating a control system with a layered structure:
the goal is to fly a mid-sized fixed-wing UAV from a given point in the air to a
landing point on the ground. An on-line NMPC plans the whole horizon of the
landing path at each time step. This path consists of two different optimization
problems forming two different landing phases. The whole-horizon NMPC plans a
landing trajectory for the UAV, and the path is followed using a high-levelH2/H∞

cascaded with a low-level PD controller. A similar structure is also seen in [55] and
further detailed in [56], where a three-layer structure uses an attitude controller, a
path-following guidance module based on MPC and a reference trajectory on top,
which is followed by the guidance module. The MPC model is nonlinear, but the
proposed optimization algorithm proceeds with the linearisation of the prediction
model around a set of pre-computed control values, obtained by another guidance
algorithm, where an estimator is included to account for disturbances. The output
of the guidance layer is the flight path angle, bank angle and airspeed reference.
This approach yields a sufficiently low abstraction level to control the UAV into a
deep-stall, without controlling the attitude of the UAV. In [57] a high-level NMPC
for path following, speed stabilization and constraint handling is used, while the
low-level attitude and rates control is performed by the autopilot. In the present
paper, we will follow the same idea, and use the NMPC for path control, whereas
the low level attitude control and rates control is performed by the autopilot.

This paper focuses on on-board, on-line NMPC. To reduce the computation
time without compromising the result, we decouple the lateral and the longitudi-
nal guidance, performing the deep-stall NMPC guidance only in the longitudinal
plane. The lateral guidance will use a separate controller that is not based on
NMPC, and while it is included in the simulations it will not be the focus of this
paper. As a result, instead of a full 6-DoF prediction model, we use a 3-DoF pre-
diction model of the UAV for the NMPC calculations. The main contributions of
this paper are the implementation of a longitudinal NMPC in a custom software
package intended for an on-board payload computer in small fixed-wing UAVs,
and a path planner for safe deep-stall landing. The presented NMPC can guide
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the UAV in a deep-stall, driving the autopilot of the UAV with pitch and throttle
references from the NMPC. The autopilot provides low-level attitude control. This
paper makes a novel combination of NMPC and deep-stall landing. It continues
the work done by [25] and [58], where a simulated modified Aerosonde fixed-wing
UAV was guided in a deep-stall with an NMPC, and the work done by [59], where
a path planner is implemented for precision delivery with a small fixed-wing UAV.
In this present paper, the NMPC system is taken one step further than in [58]
towards flight testing. Where [58] uses lateral as well as longitudinal NMPC guid-
ance, we here present only longitudinal NMPC guidance combined with a lateral
line-of-sight-based guidance module in order to reduce computational complexity.
The emphasis is placed on migration towards actual flight testing and integration
with a realistic physical environment, including the autopilot software, whereas
[58] guides a näıve UAV-simulator using the same model as the controller and
testing it with software-in-the-loop (SITL) simulation. The updated MPC in this
paper uses code generation with an online active set strategy solver, compared to
the interior point method used in [58]

This paper is organized as follows: Section 2 presents a path planning procedure
for the landing, introduces the three manoeuvres involved in the plan and derives
an algorithm for the computation of a start point for the deep-stall phase of the
landing. Section 3 presents the real-time environment for the NMPC calculations
and the control system structure for the on-board flight control system, while
Section 4 explains the deep-stall NMPC implementation and the UAV model.
Section 5 presents the details of the SITL simulation and the simulation results.
In Section 6, the results are discussed and some suggestions for future work are
given, before the paper is concluded in Section 7.

2 Path Planner

To execute a safe deep-stall landing, a landing plan is composed. The main pur-
pose of the landing plan is to calculate a point for deep-stall landing initiation, to
guide the UAV to this point with the correct start state and to guide the UAV
in the deep-stall such that it lands at a defined target position with minimum
speed. Besides, the plan must consider when a deep-stall should be aborted. The
UAV’s lateral landing path is a truncated Dubins path, shown in Fig. 1: First, the
UAV aims for a geographical reference s and loiters around it with radius r until
it has the appropriate start altitude and start velocity for the deep-stall, and is
directed at the target, in point p. To minimize the ground speed in the landing, the
UAV aspires to always land against the average wind direction. However, the wind
changes with a change in the position of the UAV and time. Therefore, the wind
speed and direction are estimated utilizing on-board sensors or ground infrastruc-
ture before planning the landing path in Fig. 1. Further changes in the wind do
not affect the lateral landing plan but will be used by the NMPC calculations. In
the case of no wind, the landing direction should be decided by the geographical
landing conditions. After a short distance D with level flight, the NMPC takes
over the longitudinal guidance of the UAV. The NMPC first guides the UAV a
short distance in level to ensure the numerical algorithm is suitably initialized for
the NMPC before the nonlinear deep-stall operation is initiated. Once the UAV
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Fig. 1: The lateral path for the landing. Before longitudinal NMPC guidance is
initiated, the UAV is guided with line-of-sight-based lateral and longitudinal con-
trollers.

reaches the Deep-Stall Start point, it initiates the deep-stall mode and stays in
deep-stall until it touches the ground or until the predicted landing error is too
large, in which case the UAV aborts the landing. The landing is initiated when
the UAV receives the geographical coordinates of the landing target. Based on
the target coordinates, the wind velocity estimates and the UAV’s deep-stall path
angle, the start point of the deep-stall can be computed. Once the deep-stall start
point is known, the truncated Dubins path is trivial to calculate. This path is used
in [59] and described further in [60].

The landing plan consists of three manoeuvres: the Landing Preparation, the
Deep-Stall Landing and the Safety Abort. Each manoeuvre has a longitudinal and
a lateral path controller, guiding the UAV with desired roll, pitch and throttle
commands sent to the autopilot. The autopilot performs attitude and propulsion
control. The NMPC is only used for the longitudinal control in the Deep-Stall

Landing manoeuvre; the two other manoeuvres use a longitudinal cascaded LOS-
based controller. This controller consists of an altitude controller and a climb rate
and speed controller. At the point NMPC Start in Fig. 1, the manoeuvre Landing
Preparation ends and the manoeuvre Deep-Stall Landing initiates. The transition
between the two manoeuvres means that the algorithm for calculating desired
pitch and throttle commands changes. Any adverse effects of the switch between
the two guidance methods is minimized by proper initialization of the MPC to
achieve bumpless transfer, and the switch does not cause any stability issues in
itself since it is a single event. A reference line with a start point and an end point,
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both using geographical coordinates and altitude, is sent to the altitude controller.
It uses line-of-sight (LOS) guidance theory from [61] to produce a desired climb
rate, which together with the desired speed is sent to an underlying total energy
control-based controller in the autopilot. The output of the climb rate and speed
controller is desired throttle and pitch, the same as for the longitudinal NMPC
used for the deep-stall manoeuvre. The lateral LOS-guidance controller, which is
also based on [61], produces desired roll commands for the autopilot, by investi-
gating the lateral acceleration necessary to eradicate the cross-track error.

If the NMPC is unable to control the UAV in a safe deep-stall landing, the
landing must be aborted, and the Safety Abort manoeuvre will initiate. This ma-
noeuvre guides the UAV using LOS-based controllers with a waypoint interface to
the user. Reasons for aborting the deep-stall landing include an infeasible solution
from the model predictive controller or a too high predicted landing error at a
critical height above the ground. Just like in the point NMPC Start in Fig. 1, this
transition involves a change of algorithms to calculate desired pitch and throttle
commands, and of course a different desired waypoint. The effects of this switch
of guidance methods is not considered beyond getting the UAV to a safe height.
If the Safety Abort manoeuvre is initiated while the UAV is in a deep-stall, it is
in a state with critically low lift forces acting on the aircraft. One common way
of getting out of a deep-stall is to command sufficient use of throttle, requiring a
high-powered UAV and sufficient available throttle potential during the deep-stall.

2.1 Computation of Deep-Stall Start Point

The Deep-Stall Landing manoeuvre consists of an initial phase where the UAV
has level flight, and a deep-stall phase where the UAV has a high angle of attack
and a steep path angle, see Fig. 3. The relative path angle for a deep-stall, γDS

rel , is
model dependent and its value is known from experiments. In a deep-stall landing,
the conditions of a stable trim for are fulfilled for the pitch moment Cm [18]:

Cm = 0,
dCm

dα
≤ 0 (1)

allowing the UAV to passively reject minor longitudinal perturbations. A plot of
the pitch moment, drag coefficient and lift coefficient with respect to the angle of
attack is shown in Figure 2.

This also means that once the UAV enters the deep-stall, it is costly to change
its path angle. Ideally, the UAV should have been able to follow a dynamic path
angle in a deep-stall, as was shown in [25] and [58] with much simpler simulations
and no modelling error. However, since this may be difficult to achieve with a
more advanced simulation environment or in flight tests, the start point where
the UAV enters the deep-stall will strongly influence the target error. Indeed, if
the deep-stall starts too early, the UAV will be short of the target, and if it stalls
too late, it will land beyond the target. Additional to the predicted landing error,
disturbances may cause an error between the reference path angle and the path
angle of the UAV, which can in turn lead to a landing error. However, the same
effect that causes planned changes in the path angle of the UAV to be costly,
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Fig. 2: The drag coefficient, the lift coefficient and the pitch moment coefficient of
the UAV model used in this paper, with respect to the angle of attack.

means that disturbance inflicted changes in the path angle of the UAV demands
large disturbances.

The deep-stall occurs at a high angle of attack, α, as this typically gives a high
drag force and a low lift force. The angle of attack is the rotation about the body
y-axis between the body x-axis and the air velocity vector, and is thus defined as:

α = arctan

(

w − ww

u− uw

)

, (2)

see e.g. [44], where u and w are the longitudinal and down velocities in the
body frame and uw and ww are the corresponding components of the airspeed
vector in the body frame. The relationship between the angle of attack, the pitch
angle θ and the relative path angle is:

γr = θ − α, (3)

see e.g. [44]. A constant angle of attack will therefore be obtained if the relative
path angle γr is also constant, as the pitch angle is independent on wind. γr is
expressed as

γr = − arctan

(

V rel
z

V rel
g

)

, (4)
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where V rel
z is the relative down speed in the inertial frame and V rel

g is the
relative ground speed in the inertial frame. A constant γr will demand constant
relative ground speed and constant relative down speed, which means that the
absolute path angle γ of the deep-stall can, when the wind velocity, relative ground
speed and relative path angle is know, be expressed as:

γDS = − arctan

(

V rel
z + V wind

z

V rel
g + V wind

g

)

, (5)

V rel
z = −V rel

g tan
(

γDS
r

)

(6)

where V wind
g is the ground wind velocity in the inertial frame and V wind

z is the
down wind velocity in the inertial frame, and is dependent on the wind strength:
For a landing against the wind, a stronger wind and constant airspeed will lead
to steeper path angle. As the absolute path angle and the relative deep-stall path
angle are known, we can calculate where the deep-stall start point of Fig. 3 ought
to be placed.

However, the UAV will not transition from the steady flight to the deep-stall
phase instantaneously. Between these two phases there is a transition phase, which
is highly nonlinear and nontrivial to calculate or predict. With sufficiently precise
model parameters representing the UAV, including the autopilot, a path planner
could plan the whole landing offline with the UAV’s start altitude and start ve-
locity, and use the planned path to compute a start point. Yet simulations show a
considerable model mismatch between the NMPC’s model and the UAV’s model,
so a simpler approach has to be used. A guess for the transition start point is a
wind dependent distance d2 ahead of the deep-stall start point, given by:

d2 = ∆TV
rel
g , (7)

where ∆T is an empirical value and and V rel
g is the ground speed of the UAV

in level flight relative to the surrounding air masses. Once d2, the start height h
and the relative deep-stall angle γDS

r are known, we can compute the transition
start point. The UAV should initiate the deep-stall once the longitudinal angle
between the UAV and the target is steeper than a limit ∠lim, given by:

∠
lim
target = − arctan

(

h

d2 + d3

)

, (8)

d3 = −
h

tan (γDS)
(9)

After the UAV has initiated the deep-stall and started descending, it soon
reaches a stationary phase with a constant path angle and constant ground veloci-
ties. Then the predicted landing error e, meaning the distance between the landing
coordinates and the target coordinates, is calculated, and if the predicted landing
error is larger than a limit eMAX, the UAV aborts the landing. The distance d2 is
then updated with the predicted error, assuming perfect lateral guidance:
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Fig. 3: The longitudinal reference path for the deep-stall landing

dnew2 = dold2 + e (10)

The computation of the deep-stall start point is summarized in Algorithm 1.

Algorithm 1 Computation of deep-stall start point

Require: Airspeed, γDS
r , V wind

z , V wind
g

Compute V rel
z using (6)

Compute γDS using (5)
Compute a guess for d2 using (7)
Compute ∠

lim
target using (8)

while e ≥ eMAX do

Update d2 using (10)
end while

3 Real-time Integration and Control Structure

Testings of the NMPC formulation in a non-real time environment (CasADi, [62],
[63], [64]) in [25] and [58] have delivered satisfactory results. Tests in a real-time
environment and an implementation of the controller is considered here. The real-
time optimization environment selected for this work is the ACADO software
referred to previously. Promising results from simulations of this problem using
ACADO are presented in [24]. We use the automatic code generation feature pro-
vided by ACADO, which makes a stand-alone optimization package suited for
embedded use. The QP solver used is qpOASES, based on an online active set
strategy [65]. After successfully testing the NMPC with a simple simulator using
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Fig. 4: Control system structure for deep-stall manoeuvre.

our model and the Runge Kutta method, the controller is tested in a more ad-
vanced simulation environment.

The flight control system is implemented as described in [66] with minor up-
grades and revisions. It contains a Pixhawk autopilot using Ardupilot flight control
software onboard a small, stable fixed-wing UAV with aerodynamic properties
suited for a controlled deep-stall. The software onboard the embedded control
platform uses the LSTS toolchain [67] to organize the software. This toolchain
uses a GLUED based Linux operating system and runs a modular software called
DUNE that implements customized algorithms, communicates with a ground sta-
tion and can, in autonomous mode, command the autopilot. DUNE also facilitates
a modular guidance, navigation and control (GNC) system, which we exploit by
controlling our UAV in various modes for different purposes, with various con-
trollers within the different modes. The LSTS toolchain provides an Inter-Module
Communication (IMC) protocol and a graphical user interface (Neptus).

An overview of the modular control design for the Deep-Stall Landing ma-
noeuvre is shown in Fig 4. Implicitly, the autopilot provides all modules on the
experimental flight computer with state feedback. The UAV receives a landing
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command including the coordinates of the landing location, and the message is
processed by a top-level unit, the landing plan. This module assigns the NMPC
with the longitudinal path control, and the lateral path control to the LOS-based
lateral controller described in Section 2. Both controllers receive the geographical
coordinates of the landing location and the coordinates for the start point, which
the lateral controller uses to create a reference line for the LOS. The output of the
lateral path controller are roll (φ) commands, whereas the deep-stall manoeuvre
outputs pitch and throttle (θ, δt) commands. These commands are received by the
autopilot, which performs low-level attitude control of the UAV and commands
its control surfaces and propeller. The output from the guidance algorithms are
sent to an autopilot communication module that translates the references to a
MAVlink protocol messages (see [66] for more details).

4 NMPC Implementation

The discrete-time NMPC is formulated as follows:

min
x,u

N−1
∑

k=0

‖h (xk, uk)− ỹk‖
2
Wk

+ ‖hN (xN )− ỹN‖2WN
(11a)

s.t. x0 = x̂0, (11b)

xk+1 = F (xk, uk, zk) , for k = 0, ...,N − 1 (11c)

umin ≤ uk ≤ umax, for k = 0, ...,N − 1, (11d)

Cmin ≤ f (xk) ≤ Cmax, for k = 0, ...,N. (11e)

A time varying reference vector ỹk is provided to the NMPC scheme, as well
as the external input variables, zk =

[

uw ww ṗrefd

]

, where uw and ww are wind

velocity with respect to the inertial frame expressed in the body frame, and ṗrefd

is the desired down velocity in the inertial frame. The dynamics referred to in
(11c) are numerical discretizations of the longitudinal model for the fixed-wing,
unmanned aircraft described in [44], recalled here:
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(12)

The variables pn and pd are the position in the inertial landing direction and
down position of the UAV, u, w are the body frame velocities measured along the
longitudinal and vertical body frame axes, θ is the pitch angle, q is the pitch rate
along the body frame y-axis, M is the mass of the UAV while flying and Jy is the
moment of inertia about the body frame y-axis. The forces acting on the body
frame fx and fz are given by:
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[

fx
fz

]

= fg + fa + fp, (13a)

fg =

[

−Mg sin (θ)
Mg cos (θ)

]

, (13b)

fa =
1

2
ρVaS

[

CX(α) + CXq
(α) c

2Va
q + CXδe

(α)δe
CZ(α) + CZq

(α) c
2Va

q + CZδe
(α)δe

]

, (13c)

fp =
1

2
ρSpropCprop

[

(kmotorδt)
2 − V 2

a

0

]

(13d)

where CX (α), CXq
(α), CXδe

(α), CZ (α), CZq
(α) and CZδe

(α) are functions of
the aerodynamic drag and lift coefficients CD (α) and CL (α). The pitch moment
m is given by

m =
1

2
ρSc[Cm(α) + Cmq

c

2Va

q + Cmδe
δe], (14)

where the airspeed is:

Va =
√

u2
r + w2

r ,
[

ur

wr

]

=

[

u− uw

w − ww

]

, (15)

assuming perfect lateral guidance.

The control of the UAV in the longitudinal plane is based on manipulating
the throttle δt and the deflection of the elevator δe. However, our system structure
requires that pitch angle and throttle command references are sent to the autopilot,
see Fig. 4. Whereas the NMPC is intended to guide the UAV in the longitudinal
plane, the PID controller in the autopilot oversees the attitude control, using the
elevator deflection to control the pitch angle of the UAV. The relationship of the
autopilot between the desired pitch angle and the elevator command is given by a
PID controller. To account for this in the prediction model, we introduce δe as an
additional state instead of as an output of the controller, and an additional input
θd for the desired pitch:

δ̇e = −Kp

(

θ̇d − q
)

−Kd

(

θ̈d − q̇
)

−Ki (θd − θ) . (16)

We assume that θ̈d = 0. The NMPC scheme generates two inputs for the
autopilot, gathered in the control vector uk =

[

δ̇t θ̇d
]

. The cost function in (11a)
considers errors in h (xk, uk) with weighting Wk, and end term hN (xN ) with
weighting WN . The purpose of the NMPC is to produce outputs that can both
keep the UAV in level flight and in a precise deep-stall. We thus use the following
terms in the function h:
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h =

















ṗn
ρ
θ
δt
δ̇t
θ̇d

















, (17)

ρ̇ = ṗd − ṗrefd . (18)

The mismatch between the NMPC model and the actual UAV dynamics yield
an offset between the measured states and the references. Offsets can also result
from sensor biases. To remove the offset, we add the ρ term in h, which is the
integral of the deviation of the vertical speed in the inertial frame, ṗd, from the
desired vertical speed ṗrefd in the inertial frame. This term introduces integral
action in the NMPC scheme for the vertical speed, controlling the path angle of
the UAV. As there are many ways to achieve correct ṗn and ṗd, δt and θ are
included in h to aid the solver in the NMPC. The two last terms of h, δ̇t and
θ̇d, penalize large changes in the control variables δt and θd. The complete state
vector reads as:

xk =
[

pn pd u v θ q δe δt θd ρ
]T

(19)

In the Cruise phase of the Deep-Stall Landing manoeuvre, the reference vectors
are constant and defined as:

ỹk =
[

vcruisex + vwind
x , 0, αcruise, δcruiset , 0, 0

]T
, (20)

for k = 0, . . . , N , and

ṗrefd = −vcruisex tan
(

γcruise
r

)

+ vwind
z , (21)

= 0, (22)

as the relative path angle for cruise is zero. In the Deep-Stall phase, the reference
vectors are as:

ỹk =
[

vstallx + vwind
x , 0, αstall + γDS

r , δstallt , 0, 0
]T

, (23)

for k = 0, . . . , N . The parameters vcruisex and vstallx are decided by the user and
appropriate values are found through tuning, and αcruise and αstall are decided by
the definition of level flight and deep-stall. The input variable is defined as

ṗrefd = −vstallx tan
(

γDS
r

)

+ vwind
z . (24)

The initial state x̂0 of the NMPC (11b) at each time step comes from the autopilot.
Since the NMPC is an Earth-fixed longitudinal controller, the input from the
autopilot is translated to a longitudinal frame where the UAV moves against the
wind direction, as it was first estimated when the plan was made. The wind velocity
estimate is translated to body wind velocity before it is fed to the NMPC, and
translated to the Earth-fixed longitudinal frame for the references. The initial
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guess for the control variables δ̇t and θ̇d is zero. The box constraints Cmin and
Cmax in (11d) and (11e) are constant constraints given by:

−40o ≤ θ ≤ 40o

−10o ≤ α ≤ 80o

−40o ≤ δe ≤ 40o

0 ≤ δt ≤ 1

−35o ≤ θd ≤ 35o (25)

(26)

where f (xk) =
[

θ α δe δt θd
]

.

As the aim of this research is to deep-stall land a UAV with an on-line, on-
board NMPC, fast code is imperative and the code generation tool from ACADO
is used. To be able to use the NMPC in real-time, a Real-Time Iteration in the
form described in [49] is used, implementing a single linearization and QP solution
at each NMPC sampling time, together with a preparation-feedback split, see
Algorithm 2. The reference vector ỹk is dynamic and its value will change according

Algorithm 2 NMPC Implementation

NMPC Initializing
x0 = xmeasured

NMPC Preparation step
for each sampling period do

NMPC Feedback step
Apply u0

x0 = xmeasured

NMPC Preparation step
end for

to which phase of the landing the UAV is currently in.

5 SITL Simulation

In SITL simulation, the software of the autopilot is included in the simulations,
to allows testing of the interaction between the autopilot and the controller be-
fore a flight test. The SITL simulation uses the ArduPlane autopilot software
intended for SITL, the LSTS toolchain [67] with the DUNE unified navigation
environment, inter-module communication (IMC) protocol and Neptus user inter-
face, and JSBsim physical environment and flight dynamics simulator running a
modified Aerosonde UAV, with the experimental flight computer program running
on a laptop computer. See Fig. 4, where JSBsim simulates the UAV. The wind in
the simulator follows the Dryden wind turbulence model [68]. One realization of
the lateral path of the UAV is shown in Fig. 5. All constants for the model referred
to in (12) are found in [44], values for the Aerosonde. The lift, drag and pitch mo-
ment coefficients CD(α), CL(α) and Cm(α) are given by polynomial expressions
corresponding to the NACA 4415 airfoil [69]. More details about the model can
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Fig. 5: The lateral flight path of the UAV before and in the deep-stall, with 4 m/s
wind.

Table 1: Weighing parameters

penalized term value

ṗn 10.0

ρ 0.5

θ 1.0

δt 1.0

δ̇t 1.0

θ̇d 200

be found in [58].

The controller is tuned for low wind speeds, using the parameters given in
Table 1 and in Table 2. As the UAV follows the ground speed reference with a
bias, the actual ground speed is used for vstallx in (24). The start height for the
deep-stall is h = 200.0 m and the parameter ∆T = 5 s in (7). The NMPC step
length is ∆t = 0.05 s, the horizon length is N = 100 and the discretization type
is multiple shooting. One challenge in the simulations is the demand for a high
sampling frequency due to the short NMPC step length, combined with an NMPC
computation time that can be as high as 0.2 s in extreme cases. To overcome this
challenge simulation is not run real-time, but slowed down to 5 times real time,
although 2 times real time was adequate in many cases.
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Table 2: Reference values for SITL with Aerosonde

Reference Cruise Deep-Stall

vx 24.0 m/s 6.5 m/s

δt 0.62 0

γr 0o 35.7o

α 0o 44.0o

Table 3: Deep-stall landing results

Steady Wind 0 m/s 2 m/s 4 m/s

Longitudinal error
Mean value 6.2076 m 6.7386 m 3.6351 m

Standard deviation 3.0446 m 3.4994 m 3.4978 m

Lateral error
Mean value 0.0464 m 0.0688 m −0.2306 m

Standard deviation 1.6313 m 1.5748 m 2.2647 m

Landing speed
Mean value 9.6700 m/s 8.4749 m/s 7.4619 m/s

Standard deviation 0.0389 m/s 0.0282 m/s 0.0307 m/s

For each steady wind speed, the controller is first tuned to find d2, using
eMAX = 10.0. Then, using the autopilot’s wind estimates subject to light turbu-
lence, a larger error is tolerated and eMAX = 50.0. The results obtained for the
deep-stall landing for various steady wind speeds with a light turbulence are shown
in Fig. 6. For a small set of 10 simulations for each of three different wind speeds,
with a light turbulence, the landing average precisions and velocities are shown in
Table 3. To illustrate the disturbances a turbulence exerts on the NMPC, Fig. 7
contains data from one landing with known, constant wind and one landing with a
light turbulence and wind estimations received by the autopilot. Fig. 8 shows the
lateral error of simulations with different wind speeds and with same wind speed
with and without turbulence and wind estimation.

6 Discussion

The results from Table 3 give a good indication of the common precision and land-
ing speed, although there are few samples. For 2 m/s wind speed we see that the
UAV lands short of the target every time, which indicates that d2 was too large.
As the tuning of d2 accepts target errors up to 10 m with only steady, known
wind, the accepted error will be the expected mean value of all landing positions.
According to Table 3, the longitudinal error clearly outweighs the lateral error,
and future works could minimize this work further, for instance by tuning d2 fur-
ther. However, the current results mean that using the Aerosonde, which is not
particularly intended for deep-stalling, allows landing in spaces with a radius of
10 meters in the considered wind conditions. In Fig. 6, we see that except for
the position plots, which shows an increasingly steep path angle of the deep-stall
landing, all curves show the same behaviour for the three wind speeds, just shifted
in time. The time shift is necessary to achieve the steeper angle for higher wind
speeds, in order to achieve the constant relative path angle. The controller is tuned
to work with small wind speeds and light turbulence. The controller rejects light
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Fig. 6: Estimated variables of the UAV while controlled by an NMPC from cruise
to deep-stall, for steady wind equal to 0 m/s, 2 m/s and 4 m/s, with a light
turbulence.
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Fig. 7: Estimated variables of the UAV while controlled by an NMPC from cruise
to deep-stall, with 4 m/s wind and no or light turbulences.
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Fig. 8: Lateral error of the simulations

turbulence well. Simulations for poor wind estimates or high turbulence show that
the UAV states do not converge in the deep-stall, and the controller thus predicts
a too large target error, and is forced to abort the landing. The abortion of deep-
stall landing is a subject for future work.

The prediction model used in this controller is a simple model of the kine-
matics and dynamics of a UAV and of the forces and moments acting on it. The
model used by the simulator is not transparent, although it allows a lot of pa-
rameter specifications, and parameter identification has only been performed to
a very small degree. The simulator model contains more information about the
plane, which adds to the model mismatch between the prediction and simulation.
The autopilot creates another layer on top of the simulation model, as it per-
forms attitude control. The NMPC prediction model contains a very simple PID
controller for the pitch, tuned with the same gains as the PID controller of the
autopilot, but the autopilot controller is more complex with a roll compensation
and an airspeed scaler. The airspeed scaler includes division by the airspeed, and
could lead to an disproportional high gain in the controller for the low airspeeds
of a stall, especially if there are oscillations involved. Another limitation of this is
the use of decoupling between lateral and longitudinal control under for extreme
and highly nonlinear manoeuvres.

To be able to control a UAV real-time, it is necessary to use an real-time
iteration-based NMPC instead of e.g a sequential quadratic programming strategy.
However, as there is a considerable modelling error, the RTI does not necessarily
solve the problem to a sufficient convergence, even when it is warm-started with a
fairly accurate solution from the previous time step. To increase the success of the
NMPC, a high sampling frequency is used in this paper, which in turn demands
a fast NMPC. The computation time and power is an issue of real-time control
with an NMPC, and it is non-trivial to speed up the calculations. However, using
an interior point solver and parallelization will speed up the computation times.
5 times real time is not far from real time, so the prospects are optimistic. Addi-
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tionally, it will be wise to invest time in the modelling of the UAV, to ensure a
model that is as realistic as possible and demands a lower sampling frequency.

7 Conclusion

The NMPC presented in this paper is able to guide a simulated UAV in a deep-
stall landing to a target location with mean target error less than 10 m and mean
landing speed less than 10 m/s. The conclusion of this paper is that it is possible
to deep-stall land a fixed-wing UAV with an NMPC, but the results depend on a
correct prediction model for the controller. It is therefore advisable to invest time
in a precise model, as this will minimize problems.
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