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On the stability bounds of Kalman filters for linear
deterministic discrete-time systems

Mark Haring, and Tor Arne Johansen, Senior Member, IEEE

Abstract— In this note, we prove input-to-state stability of the
estimation error of the discrete-time Kalman filter under suitable
assumptions. Input-to-state stability is an important prerequisite
for the use of many contemporary analysis tools for cascaded and
interconnected systems. In this way, this note provides a missing
link for the rigorous analysis of systems, of which the Kalman filter
is a subsystem, using these tools.

Index Terms— cascaded systems, input-to-state stability, inter-
connected systems, Kalman filter, Riccati difference equation.

I. INTRODUCTION

We begin this note by repeating the main point in [21], [22] that
the Kalman filter, being a stochastically optimal linear filter, can
perfectly well be derived using an entirely deterministic least-squares
approach, yielding identical solutions. Using a stochastic formulation,
the Kalman filter has been shown to produce a minimum-variance
state estimate assuming that the system is linear and that all distur-
bances are Gaussian, white and have known variances [14]. These
assumptions are restrictive and unlikely to hold for real-life systems.
They are almost farcical if a nonlinear system is transformed into a
state-affine time-varying system by a linearizing transformation, as
in [4], for example. One of the advantages of a deterministic least-
squares formulation is that almost all of these model assumptions can
be avoided [21]. As we point out in this note, without unnecessarily
restrictive assumptions, modern analysis tools based on input-to-state
stability (see [13] for a definition) can be applied to study cascaded
and interconnected systems of which the Kalman filter is a subsystem,
even if these systems are nonlinear or time-delayed. Examples of such
analysis tools are the Lyapunov-based theorems in [18] and the small-
gain theorems in [7].

The reason for writing this note is that, so far, input-to-state stabil-
ity of the estimation error of the Kalman filter has not been proved
for discrete-time systems. Being an essential prerequisite, we cannot
apply the above-mentioned analysis tools without each subsystem
being input-to-state stable. Although the stability of the discrete-
time Kalman filter is studied extensively in [8], [12], [16]1, we
cannot conclude input-to-state stability from the stochastic analyses
in these works. There are two main reasons for this. First, instead of
input-to-state stability, these works focus on asymptotic stability of
the estimation error by neglecting the influence of the disturbances.
Second, the derived bounds on the error covariance, that are essential
to the analyses, are based on the argument that the Kalman filter
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1As pointed out in [11], the analyses in [8], [12] contain an error. This
error has been corrected in [16].

produces a minimum-variance estimate2. This argument does not
have a direct deterministic equivalent. In [15], different bounds on
the error covariance are obtained using deterministic arguments.
However, the class of considered systems is somewhat smaller (see
Remark 4).

The main contribution of this note is a rigorous proof that the
estimation error of the Kalman filter is exponentially input-to-state
stable under appropriate assumptions. In order to prove this, we
derive deterministic bounds on the error covariance, which may be of
separate interest. For example, these bounds may be used to analyse
the extended Kalman filter [3], [12] and the arrival cost of the moving-
horizon estimator [19], [20], which exploit a similar Riccati difference
equation.

We use the following notations in this note. The sets of real
numbers, positive real numbers, natural numbers (nonnegative in-
tegers) and positive integers are denoted by R, R>0, N and N>0,
respectively. The identity matrix and the zero matrix are written as
I and 0, respectively. MT denotes the transpose of the matrix M.
The Euclidean norm is denoted by ‖ · ‖.

II. DETERMINISTIC KALMAN FILTER FORMULATION

Consider the following linear discrete-time system:

xk+1 = Akxk + bk + Gkwk

yk = Ckxk + dk + vk,
(1)

with state xk ∈ Rnx , output yk ∈ Rny , known vector signals
bk ∈ Rnx and dk ∈ Rny , and unknown deterministic disturbances
wk ∈ Rnw and vk ∈ Rny , where nx, ny, nw ∈ N>0 are the
corresponding dimensions and k ∈ N is the time index. We note that
the disturbances wk and vk may represent anything from model
mismatch to unknown external influences. Consider the quadratic
objective function:

N−1∑
i=0

w̄T
i Q−1i w̄i+

N∑
j=1

v̄Tj R−1j v̄j+(x̄0−x̂0)
TP−10 (x̄0−x̂0), (2)

and the constraints:

x̄i+1 = Aix̄i + bi + Giw̄i, ∀i ∈ {0, 1, . . . , N − 1},
yj = Cj x̄j + dj + v̄j , ∀j ∈ {1, 2, . . . , N},

(3)

for some N ∈ N. Here, x̄k for all k ∈ {0, 1, . . . , N}, w̄i for all i ∈
{0, 1, . . . , N − 1} and v̄j for all j ∈ {1, 2, . . . , N} are optimization
variables. We denote these variables by {x̄k}Nk=0, {w̄i}N−1j=0 and
{v̄j}Nj=1 for short. The matrices Qi and Rj for i ∈ {0, 1, . . . , N −
1} and j ∈ {1, 2, . . . , N} are chosen to be symmetric and positive
definite. They serve as weighting matrices for the constraints (3).
Note that the constraints (3) are the same as the system equations
(1). The last term of the objective function (2) is known as the arrival
cost [20]. It consists of the a priori estimate x̂0 of the initial state
of the system and the symmetric, positive definite weighting matrix
P0. The optimization problem

min
{x̄k}Nk=0

,{w̄i}
N−1
j=0 ,{v̄j}Nj=1

(2) subject to (3) (4)

is a weighted least-squares problem. Let the vector x̄N that corre-
sponds to the solution of the optimization problem (4) be denoted by
x̂N . The vector x̂N can be regarded as an estimate for the state xN of
system (1). With the help of dynamic programming [6], Pontryagin’s

2Noting that the Kalman filter produces a minimum-variance estimate, any
upper bound on the error covariance of a suboptimal filter (different from the
Kalman filter) is an upper bound on the error covariance of the Kalman filter.
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maximum principle [2] or feedback invariance [10], it can be shown
that x̂N is equal to the output of the recursion

x̂k+1 = Akx̂k + bk + Kk+1(yk+1

−Ck+1 (Akx̂k + bk)− dk+1)
(5)

for k = 0, 1, . . . , N − 1, with

Mk+1 = AkPkA
T
k + GkQkG

T
k ,

Kk+1 = Mk+1C
T
k+1(Ck+1Mk+1C

T
k+1 + Rk+1)

−1,

Pk+1 = (I−Kk+1Ck+1)Mk+1(I−Kk+1Ck+1)
T

+ Kk+1Rk+1K
T
k+1,

3

(6)

and initial conditions x̂0 and P0. In concurrence with [21], [22], we
note that the recursive formulas in (5) and (6) are the equations of the
Kalman filter, which is often derived using a stochastic formulation
(see [14] for example) instead of the deterministic formulation in this
note.

III. SUFFICIENT CONDITIONS FOR STABILITY

The remainder of this note is dedicated to showing that the
estimation error of the Kalman filter is exponentially input-to-state
stable under suitable assumptions (see Definition 5 for a definition
of exponential input-to-state stability). The following assumptions
are suitable in the sense that they provide sufficient conditions for
stability.

Assumption 1: There exist constants cA1, cA2, cG, cC ∈ R>0

such that

cA1I � AkA
T
k � cA2I, GkG

T
k � cGI, CT

kCk � cCI (7)

for all k ≥ 0.
Let the state transition matrix of the system be given by

Φ(k, k0) = Ak−1Ak−2 · · ·Ak0 , ∀k > k0, Φ(k0, k0) = I
(8)

for all k ≥ k0 ≥ 0. Consider the controllability Gramian

Wc(k, k0) =

k−1∑
i=k0

Φ(k, i+ 1)GiG
T
i ΦT (k, i+ 1) (9)

and the observability Gramian

Wo(k, k0) =

k∑
i=k0+1

ΦT (i, k0)C
T
i CiΦ(i, k0) (10)

for k ≥ k0 ≥ 0. We make the following assumptions with respect to
the controllability and observability of the system.

Assumption 2: System (1) is uniformly controllable. That is,
there exist constants cc ∈ R>0 and Nc ∈ N>0 such that

Wc(k +Nc, k) � ccI (11)

for all k ≥ 0.
Assumption 3: System (1) is uniformly observable. That is, there

exist constants co ∈ R>0 and No ∈ N>0 such that

Wo(k +No, k) � coΦT (k +No, k)Φ(k +No, k) (12)

for all k ≥ 0.
The presented assumptions are similar to those in [8], [12], [16].

We note that these assumptions may possibly be weakened by

3The formula for Pk+1 in (6) is equivalent to the more compact formula
Pk+1 = (I − Kk+1Ck+1)Mk+1. Compared to this compact form, the
formula in (6) often leads to a more robust implementation in case of
computational errors; see [5] for example.

allowing the state transition matrix to be singular [17], or by assuming
uniform detectability and uniform stabilizability instead of uniform
observability and uniform controllability [1], [9].

Remark 4: In [15], linear systems are considered for which Gk =
I for all k ≥ 0. We note that any system (1) for which Gk = I for
all k ≥ 0 is immediately uniformly controllably. In this work, we
consider a slightly larger class of systems by letting Gk differ from
the identity matrix.

In addition to the previous assumptions, without loss of generality,
we assume that the weighting matrices Qk and Rk+1 in (6) (and
(2)) are chosen such that

cQ1I � Qk � cQ2
I,

cR1I � Rk+1 � cR2
I

(13)

for all k ≥ 0 and some constants cQ1, cQ2, cR1, cR2 ∈ R>0.

IV. INPUT-TO-STATE STABILITY OF THE ESTIMATION
ERROR

Let the estimation error of the deterministic Kalman filter be given
by

ek = x̂k − xk. (14)

From (1) and (5), it follows that the dynamics of the estimation error
are governed by

ek+1 = (I−Kk+1Ck+1) (Akek −Gkwk) + Kk+1vk+1. (15)

In line with the definition of input-to-state stability in [13], we give
the following definition of exponential input-to-state stability.

Definition 5: The estimation error ek in (14) is said to
be exponentially input-to-state stable if there exist constants
ce, ρe, cw, cv ∈ R>0, with ρe < 1, such that

‖ek‖ ≤ max

{
ceρ

k−k0
e ‖ek0‖, cw max

k0≤i≤k−1
‖wi‖,

cv max
k0≤j≤k−1

‖vj+1‖
} (16)

for all k ≥ k0 ≥ 0.
We will use a Lyapunov approach to prove exponential input-to-state
stability of the estimation error using

Vk = eTkP−1k ek (17)

as a candidate function.

A. Bounds on the error covariance matrix

For Vk to be a Lyapunov function, we require that there exist
lower and upper bounds on the matrix Pk. We note that Pk is the
error covariance matrix in a stochastic setting; see [14]. Bounds on
Pk are provided in Lemmas 6 and 7. To prove the lower and upper
bounds on Pk in Lemmas 6 and 7, respectively, we frequently use
the equation

P−1k+1 = M−1k+1 + CT
k+1R

−1
k+1Ck+1, (18)

which follows directly from the last equation in (6) and the matrix
inversion lemma.4

Lemma 6: Under Assumptions 1 and 2, there exists a constant
cP1 ∈ R>0 such that

Pk � cP1I (19)

for all k ≥ Nc.

4The invertibility of Pk and Mk+1 for any k ≥ 0 follows from (6), the
bounds in (13) and Assumption 1, and from the positive definiteness of the
initial condition P0.
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Proof: Let Lk+1 be an arbitrary matrix. From (18), it follows
that(

Pk+1 + Lk+1L
T
k+1

)−1
=
((

M−1k+1 + CT
k+1R

−1
k+1Ck+1

)−1
+ Lk+1L

T
k+1

)−1
.

(20)
By applying the bounds in (13) and Assumption 1, we get the first
inequality in (21), with βc =

cC
cR1

. The three equalities in (21)
are obtained using the matrix inversion lemma (thrice). The last
inequality in (21) follows from Young’s inequality.5 It follows from
(21) that(

Pk+1 + Lk+1L
T
k+1

)−1
� 2

(
Mk+1 + αc,k+1Lk+1L

T
k+1

)−1
+ 2βcI,

6
(22)

with αc,k+1 = ‖I + βcL
T
k+1Lk+1‖−1. Using the expression for

Mk+1 in (6), we obtain from (22) that(
Pk+1 + Lk+1L

T
k+1

)−1
� 2βcI + 2A−Tk

(
Pk + A−1k

×
(
GkQkG

T
k + αc,k+1Lk+1L

T
k+1

)
A−Tk

)−1
A−1k .

(23)

Now, consider any k ≥ 0. Define in a recursive manner

LjL
T
j = A−1j

(
GjQjG

T
j + αc,j+1Lj+1L

T
j+1

)
A−Tj (24)

for j ∈ {k, k + 1, . . . , k + Nc − 1}, with Lk+NcL
T
k+Nc

= 0.
By substituting (24) in (23) and recursively applying the resulting
inequality, we obtain

P−1k+Nc
� 2NcΦ−T (k +Nc, k)

(
Pk + LkL

T
k

)−1
×Φ−1(k +Nc, k) + 2βc

Nc−1∑
i=0

2i

×Φ−T (k +Nc, k +Nc − i)Φ−1(k +Nc, k +Nc − i).

(25)

From (13), (9) and (24), it follows that

LkL
T
k � γcΦ

−1(k+Nc, k)Wc(k+Nc, k)Φ
−T (k+Nc, k), (26)

with γc = cQ1
∏k+Nc−1
j=k αc,j+1. Combining (25), (26) and the

bounds in Assumptions 1 and 2 gives

Pk+Nc �

(
2Nc

γccc
+ 2βc

Nc−1∑
i=0

(
2

cA1

)i)−1
I, (27)

which completes the proof of the lemma.
Lemma 7: Under Assumptions 1 and 3, there exists a constant

cP2 ∈ R>0 such that
Pk � cP2I (28)

for all k ≥ No.

5Note that, for any positive semidefinite matrices W and V, the in-
equality W � V implies sTWs ≤ sTVs for all real vectors s.
Define p(s) = (Mk+1 + Lk+1(I + βcLT

k+1Lk+1)
−1LT

k+1)
− 1

2 s and

q(s) = −βc(Mk+1 + Lk+1(I + βcLT
k+1Lk+1)

−1LT
k+1)

− 1
2 Lk+1(I +

βcLT
k+1Lk+1)

−1LT
k+1s. Noting that, for all real vectors s, we have

(p(s)+q(s))T (p(s)+q(s)) ≤ 2pT (s)p(s)+2qT (s)q(s) using Young’s
inequality, we obtain the last inequality in (21).

6Note that βcLk+1(I + βcLT
k+1Lk+1)

−1LT
k+1(Mk+1 + Lk+1(I +

βcLT
k+1Lk+1)

−1LT
k+1)

−1Lk+1(I + βcLT
k+1Lk+1)

−1LT
k+1 �

βcLk+1(I + βcLT
k+1Lk+1)

−1LT
k+1 � I leads to the inequality in

(22).

Proof: We prove Lemma 7 in a similar way to Lemma 6. Let
Yk+1 be an arbitrary matrix. From (6) and (18), we have that(

P−1k+1 + YT
k+1Yk+1

)−1
=

((
AkPkA

T
k + GkQkG

T
k

)−1
+ ZTk+1Zk+1

)−1
,

(29)

where the matrix Zk+1 is defined such that

ZTk+1Zk+1 = CT
k+1R

−1
k+1Ck+1 + YT

k+1Yk+1. (30)

The first inequality in (31) follows from (29) and the bounds in
(13) and Assumption 1, with βo = cGcQ2. The three subsequent
equalities in (31) are obtained using the matrix inversion lemma, after
which the last inequality in (31) follows from Young’s inequality. We
obtain from (31) that(

P−1k+1 + YT
k+1Yk+1

)−1
� 2Ak

(
P−1k + αo,k+1A

T
k ZTk+1Zk+1Ak

)−1
AT
k + 2βoI,

(32)
with αo,k+1 = ‖I+βoZk+1Z

T
k+1‖

−1. Now, considering any k ≥ 0,
define Yj such that

YT
j Yj = αo,j+1A

T
j ZTj+1Zj+1Aj (33)

for j ∈ {k, k + 1, . . . , k + No − 1} and YT
k+No

Yk+No = 0. We
recursively obtain from (32) and (33) that

Pk+No � 2NoΦ(k +No, k)
(
P−1k + YT

k Yk

)−1
×ΦT (k +No, k) + 2βo

No−1∑
i=0

2i

×Φ(k +No, k +No − i)ΦT (k +No, k +No − i).

(34)

From (13), (10), (30) and (33), it follows that

YT
k Yk � γoWo(k +No, k), (35)

with γo = 1
cR2

∏k+No−1
j=k αo,j+1. Combining (34), (35) and the

bounds in Assumptions 1 and 3 leads to

Pk+No �

(
2No

γoco
+ 2βo

No−1∑
i=0

(2cA2)
i

)
I. (36)

The lemma follows directly from (36).
The bounds on Pk in Lemmas 6 and 7 are independent of the

initial condition P0. We note that the P0 can be chosen such that
such that the bounds in Lemmas 6 and 7 hold for all k ≥ 0. It is
important to note that the lower bound in Lemma 6 and the upper
bound in Lemma 7 are derived independently of each other; the lower
bound on Pk does not depend on the observability of the system,
and the upper bound on Pk is independent of the controllability of
the system. By contrast, the bounds on Pk in [8], [12], [15], [16]
are not derived independently.

B. Main result
We are now ready to present our main result. The result in

Theorem 8 is obtained by a Lyapunov analysis using the candidate
function in (17) and the bounds on Pk in Section IV-A.

Theorem 8: Under Assumptions 1-3, there exist constants
ce, ρe, cw, cv ∈ R>0, with ρe < 1, such that

‖ek‖ ≤ max

{
ceρ

k−k0
e ‖ek0‖, cw max

k0≤i≤k−1
‖wi‖,

cv max
k0≤j≤k−1

‖vj+1‖
} (37)
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(
Pk+1 + Lk+1L

T
k+1

)−1
�
((

M−1k+1 + βcI
)−1

+ Lk+1L
T
k+1

)−1
=

(
1

βc
I− 1

β2c

(
Mk+1 +

1

βc
I

)−1
+ Lk+1L

T
k+1

)−1

=
1

β2c

(
1

βc
I + Lk+1L

T
k+1

)−1(
Mk+1 +

1

βc
I− 1

β2c

(
1

βc
I + Lk+1L

T
k+1

)−1)−1(
1

βc
I + Lk+1L

T
k+1

)−1
+

(
1

βc
I + Lk+1L

T
k+1

)−1
=

1

β2c

(
βcI− β2cLk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

)(
Mk+1 + Lk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

)−1
×
(
βcI− β2cLk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

)
+ βcI− β2cLk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

� 2β2cLk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

(
Mk+1 + Lk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

)−1
Lk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

+ 2

(
Mk+1 + Lk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

)−1
+ βcI− β2cLk+1

(
I + βcL

T
k+1Lk+1

)−1
LTk+1

(21)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
P−1k+1 + YT

k+1Yk+1

)−1
�
((

AkPkA
T
k + βoI

)−1
+ ZTk+1Zk+1

)−1
=

(
1

βo
I− 1

β2o
Ak

(
P−1k +

1

βo
AT
kAk

)−1
AT
k + ZTk+1Zk+1

)−1

=
1

β2o

(
1

βo
I + ZTk+1Zk+1

)−1
Ak

(
P−1k +

1

βo
AT
kAk −

1

β2o
AT
k

(
1

βo
I + ZTk+1Zk+1

)−1
Ak

)−1
AT
k

×
(

1

βo
I + ZTk+1Zk+1

)−1
+

(
1

βo
I + ZTk+1Zk+1

)−1
=

1

β2o

(
βoI− β2oZTk+1

(
I + βoZk+1Z

T
k+1

)−1
Zk+1

)
Ak

(
P−1k + AT

k ZTk+1

(
I + βoZk+1Z

T
k+1

)−1
Zk+1Ak

)−1
AT
k

×
(
βoI− β2oZTk+1

(
I + βoZk+1Z

T
k+1

)−1
Zk+1

)
+ βoI− β2oZTk+1

(
I + βoZk+1Z

T
k+1

)−1
Zk+1

� 2β2oZ
T
k+1

(
I + βoZk+1Z

T
k+1

)−1
Zk+1Ak

(
P−1k + AT

k ZTk+1

(
I + βoZk+1Z

T
k+1

)−1
Zk+1Ak

)−1
AT
k ZTk+1

×
(
I + βoZk+1Z

T
k+1

)−1
Zk+1 + 2Ak

(
P−1k + AT

k ZTk+1

(
I + βoZk+1Z

T
k+1

)−1
Zk+1Ak

)−1
AT
k + βoI

− β2oZTk+1

(
I + βoZk+1Z

T
k+1

)−1
Zk+1

(31)

for all k ≥ k0 ≥ max{Nc, No}.
Proof: Consider any k ≥ max{Nc, No}. Let Sk+1 be an

arbitrary matrix. We obtain the equality in (38) from (6), (15), (18)
and the matrix inversion lemma. Subsequently, the first inequality
in (38) follows from Young’s inequality. The second inequality is
obtained by applying the matrix inversion lemma, with αt,k+1 =

‖I + 1
cP1

STk+1Sk+1‖−1 (and the help of (18) and Lemma 6). The
third inequality in (38) follows from (6) and Young’s inequality,
where εt ∈ R>0 is an arbitrary constant. From (13) and (38), it
follows that

eTk+1P
−1
k+1ek+1 ≤ (1 + εt) eTkP−1k ek +

1 + εt
εtcQ1

‖wk‖2

+
2

cR1
‖vk+1‖2.

(39)

Also, by defining

SkS
T
k = A−1k

(
GkQkG

T
k + Sk+1S

T
k+1

)
A−T , (40)

we get that

eTk+1

(
Pk+1 + Sk+1S

T
k+1

)−1
ek+1 ≤

1 + εt
εtcQ1

‖wk‖2

+
(
1−

αt,k+1

2

)
(1 + εt) eTkP−1k ek +

2

cR1
‖vk+1‖2

+
αt,k+1

2
(1 + εt) eTk

(
Pk + SkS

T
k

)−1
ek.

(41)

By letting Sk+NcS
T
k+Nc

= 0, we obtain recursively from (41) that

eTk+Nc
P−1k+Nc

ek+Nc ≤ (1− γt) (1 + εt)
Nc eTkP−1k ek

+ γt (1 + εt)
Nc eTk

(
Pk + SkS

T
k

)−1
ek +

(1 + εt)
Nc

εtcQ1

×
k+Nc−1∑
i=k

‖wi‖2 +
2(1 + εt)

Nc−1

cR1

k+Nc−1∑
j=k

‖vj+1‖2

(42)
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eTk+1

(
Pk+1 + Sk+1S

T
k+1

)−1
ek+1 = (Akek −Gkwk)

T M−1k+1 (Akek −Gkwk) + vTk+1R
−1
k+1vk+1

− (Ck+1 (Akek −Gkwk)− vk+1)
T
(
Ck+1Mk+1C

T
k+1 + Rk+1

)−1
(Ck+1 (Akek −Gkwk)− vk+1)

−
(
M−1k+1 (Akek −Gkwk) + CT

k+1R
−1
k+1vk+1

)T
Sk+1

(
I + STk+1

(
M−1k+1 + CT

k+1R
−1
k+1Ck+1

)
Sk+1

)−1
STk+1

×
(
M−1k+1 (Akek −Gkwk) + CT

k+1R
−1
k+1vk+1

)
≤ (Akek −Gkwk)

T M−1k+1 (Akek −Gkwk) + 2vTk+1R
−1
k+1vk+1

− 1

2
(Akek −Gkwk)

T M−1k+1Sk+1

(
I + STk+1

(
M−1k+1 + CT

k+1R
−1
k+1Ck+1

)
Sk+1

)−1
STk+1M

−1
k+1 (Akek −Gkwk)

≤
(
1−

αt,k+1

2

)
(Akek −Gkwk)

T M−1k+1 (Akek −Gkwk)

+
αt,k+1

2
(Akek −Gkwk)

T
(
Mk+1 + Sk+1S

T
k+1

)−1
(Akek −Gkwk) + 2vTk+1R

−1
k+1vk+1

≤
(
1−

αt,k+1

2

)
(1 + εt) eTkP−1k ek +

αt,k+1

2
(1 + εt) eTk

(
Pk + A−1k

(
GkQkG

T
k + Sk+1S

T
k+1

)
A−Tk

)−1
ek

+
1 + εt
εt

wT
k Q−1k wk + 2vTk+1R

−1
k+1vk+1

(38)

with γt = 1
2Nc

∏k+Nc−1
i=k αt,i+1. The corresponding matrix SkS

T
k

can be computed in a recursive manner using (40). Using (13) and
(9), SkS

T
k can be bounded by

SkS
T
k � cQ1Φ

−1(k+Nc, k)Wc(k+Nc, k)Φ
−T (k+Nc, k). (43)

By applying the bounds in Assumptions 1 and 2, and in Lemma 7,
we subsequently obtain from (43) that

SkS
T
k �

cQ1cc

cNc
A2cP2

Pk. (44)

It follows from (17) and (39) that

Vk ≤ (1 + εt)
k−k0 Vk0 +

(1 + εt)
k−k0

εtcQ1

k−1∑
i=k0

‖wi‖2

+
2(1 + εt)

k−k0−1

cR1

k−1∑
j=k0

‖vj+1‖2
(45)

for all k ≥ k0 ≥ max{Nc, No}. Moreover, we get from (13), (17),
(42) and (44) that

Vk+Nc ≤ ηtVk +
(1 + εt)

Nc

εtcQ1

k+Nc−1∑
i=k

‖wi‖2

+
2(1 + εt)

Nc−1

cR1

k+Nc−1∑
j=k

‖vj+1‖2
(46)

for all k ≥ max{Nc, No}, where the constant ηt is given by ηt =(
1− γtcQ1cc

cQ1cc+c
Nc
A2
cP2

)
(1 + εt)

Nc . Without loss of generality, we

assume that εt is sufficiently small such that ηt < 1. Combining
(45) and (46) yields

Vk ≤

(
(1 + εt)

Nc

ηt

)Nc−1
Nc

η
k−k0
Nc

t Vk0

+
Nc(1 + εt)

Nc

εtcQ1(1− ηt)
max

k0≤i≤k−1
‖wi‖2

+
2Nc(1 + εt)

Nc−1

cR1(1− ηt)
max

k0≤j≤k−1
‖vj+1‖2

(47)

for all k ≥ k0 ≥ max{Nc, No}. We obtain from (17) and Lemmas 6
and 7 that

1

cP2
‖ek‖2 ≤ Vk ≤

1

cP1
‖ek‖2 (48)

for all k ≥ max{Nc, No}. The proof of the theorem follows from

(47) and (48), with ce =
√

3cP2
cP1

(
(1+εt)

Nc

ηt

)Nc−1
2Nc

, ρe = η
1

2Nc
t ,

cw =

√
3cP2Nc(1+εt)Nc

εtcQ1(1−ηt)
and cv =

√
6cP2Nc(1+εt)Nc−1

cR1(1−ηt)
.

Similar to the results in [8], [12], [16], Theorem 8 only provides a
bound on the estimation ek for k ≥ max{Nc, No}. Using Assump-
tion 1, it can be shown that the estimation error ek also remains
bounded for values of k smaller than max{Nc, No}, assuming
bounded disturbances. Yet, any such bound depends on the initial
condition P0. We note that, if P0 is chosen such that the bounds on
the error covariance matrix in Lemmas 6 and 7 hold for all k ≥ 0,
then (37) of Theorem 8 is satisfied for all k ≥ k0 ≥ 0 and the
estimation error is exponentially input-to-state stable as defined in
Definition 5.

V. CONCLUSION

In this note, we have proved exponential input-to-state stability of
the estimation error of the Kalman filter for deterministic discrete-
time linear systems under suitable conditions. Because input-to-state
stability is an important prerequisite for many contemporary analysis
tools for cascaded and interconnected systems, this note provides a
fundamental step in the analysis of systems of which the Kalman
filter is a subsystem. Future research will entail the overall analysis
of such systems.
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