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Abstract
The Shallow Water Equations model the fluid dynamics of deep ocean flow,
and are used to simulate tides, tsunamis, and storm surges. Numerical
solutions using finite difference methods are computationally expensive
enough to mandate the use of large computing clusters, and the cost grows
not only with the amount of fluid, but also the duration of the simulated
event, and the resolution of the approximation. The benefits of increased
resolution are mostly connected to regions where complex fluid interactions
occur, and are not required globally for the entire simulation. In this paper, we
investigate the potential for conserving computational resources by applying
Adaptive Mesh Refinement to dynamically determined areas of the fluid
surface. We implement adaptive mesh refinement in a MacCormack finite
difference solver, develop a performance model to predict its behavior on
large-scale parallel platforms, and validate its predictions experimentally
on two computing clusters. We find that the solver itself has highly
favorable parallel scalability, and that the addition of refined areas introduces
a performance penalty due to load imbalance that is at most proportional to
the refinement degree raised to the third power.

1 Introduction
The Shallow Water Equations model the fluid dynamics of flow in the deep ocean, coastal
areas and rivers, and are used to simulate events such as tides, tsunami waves, and
storm surges [1]. They can be solved by numerical approximation using finite difference
methods, but the resulting computational workload is numerically intensive, and requires
the high performance computing resources of a computational cluster or supercomputer
in order to produce timely solutions for large problem sizes. Interesting effects in fluid
dynamics can often occur at different scales, e.g. a wave may be sufficiently described by
a coarse-grained simulation in the open sea, but develop complex, detailed interactions
with minor features of the terrain when it makes landfall. Adaptive mesh refinement can
combine coarse-grained and fine-grained solutions in particular areas of interest, thereby
allowing a numerical solver program to capture smaller details without requiring the same
resolution across the entire simulated domain. In a parallel computing context, variable
resolution in different parts of the domain is prone to producing load balancing issues, as
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it becomes difficult to distribute the additional time and memory requirements of refined
regions evenly among all participating processors.

In this paper, we contribute an analytic performance model to quantify the impact of
this effect, develop a performance proxy application that can isolate it experimentally, and
evaluate its significance on two modern computing platforms. We find that the application
is highly scalable, but that its performance is sensitive to situations where the simulated
fluid requires greater mesh refinement in small, localized regions of the domain.

The rest of this paper is structured as follows. Section 2 describes how we discretize
the Shallow Water Equations in our numerical solver program. Section 3 reviews adaptive
mesh refinement, and describes choices made in our implementation. Section 4 describes
how the solver program is parallelized for use on distributed-memory high performance
computing systems. Section 5 develops a performance model of the program. Section
6 discusses the results of our practical experiments, Section 7 summarizes related
approaches, and Section 8 concludes our study.

2 Discretization of the Shallow Water Equations
The Shallow Water Equations (SWE) are a set of partial differential equations, which
model a body of fluid as a two-dimensional map of fluid surface elevation relative to a
reference level. They are stated in Eqs. 1-3, where ρ is the fluid density, η is the fluid
column height, u and v are the fluid’s horizontal flow velocities in x and y directions, and
g is the constant acceleration due to gravity.
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We discretize the SWE using the MacCormack method, which is an explicit, two-step
predictor/corrector finite difference approximation [2]. The predictor step in Eq. 4 uses
forward differences in time and space, where u is a value at coordinate i at time t, and ∆x
is a spatial finite difference.
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The corrector step is given as Eq. 5, it averages values from the current time step and
the predictor step, using backward differences and half the spatial difference.
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Using Eqs. 4 and 5 as templates, we obtain the MacCormack scheme for the fluid
level of Eq. 1 as Eqs. 6 and 7, the velocity u of Eq. 2 as Eqs. 8 and 9, and the velocity v
of Eq. 3 with a similar substitution as for u.
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Figure 1: Five-point numerical stencil pattern of locations required to update variable ut+1
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In Eqs. 8 and 9, duy,x is written as a shorthand notation for the expression
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In our numerical solver program, ρη, ρηu and ρηv are represented as two-dimensional
arrays, each with three buffers to store the values of the present time step t, the predictor
step t +1, and the subsequent time step t + 1, respectively. Time integration proceeds
by evaluating predictor and corrector steps for all three variables, before swapping the
current time step buffers with their successors in the corrector step buffers, thus advancing
simulated time by ∆t. We model fluid in a rectangular area with Neumann boundary
conditions, to mimic an isolated, uniform tank where waves reflect from the boundaries.

3 Adaptive Mesh Refinement
Without further development, the numerical solution in Section 2 implies that updates to
each variable will depend on values from a common 5-point stencil pattern of neighboring
points [3], as illustrated in Fig. 1. In order to selectively refine the spatial and temporal
resolution in particular areas, we implement mesh refinement by overlaying a more refined
grid in the region of interest, as shown in Fig. 2a. The required 5-point stencil values
for point A are interpolated from the values at points B,C,D,E in the coarsely refined
grid. This refinement may be applied recursively to a region, creating a hierarchy of
successively refined grids, rooted in the original, most coarse-grained representation.
Note that this approach implies that a single position within the problem domain may be
represented multiple times in different memory locations for each resolution. Henceforth,
we refer to one instance of coordinates and time/space resolution as a point.

In order to maintain the Courant-Friedichs-Lewy condition [4] of the root solution,
solution of the spatially refined grids must also proceed at a proportionately refined rate
in time, as illustrated in Fig. 3. At each level, the border values of a refined sub-grid must
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(a) Point A in the refined, blue grid
is derived by spatial interpolation of
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Figure 2: Refinement and downsampling
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Figure 3: Recursive evolution of the solution in time for different levels of refinement. tl,i
is the time at the beginning of time step i in the reference system of a grid at level l.

first be interpolated from its parent in the grid hierarchy. Next, a refined solution can be
obtained by time integration of the refined grid, and finally, the results can substitute the
values of coinciding points in the parent grid, as shown in Fig. 2b.

The objective of mesh refinement is to conserve memory and computational resources
by only refining the grid structure in areas where additional precision is required, as
opposed to refining the entire problem domain. Due to the fluctuations of a moving fluid,
we can expect regions that are suitable candidates for grid refinement to move around
in the computational domain, reflecting the dynamic behavior of wavefronts, reflections,
interference patterns, and other events of particular interest. In order to account for this,
we implement adaptive mesh refinement by introducing a parametric regridding interval
that periodically triggers a reevaluation of the system state, and a quantitative criterion by
which domain areas can be identified as candidates for grid refinement. Regridding marks
all domain points that require refinement, clusters the marked points into rectangles, and
replaces the previous grid hierarchy with corresponding new sub-grids. We implement
the clustering step using the algorithm of Berger and Rigoutsos [5].

4 Program Parallelization
Since time step computation applies the numerical stencils independently to each grid
point, our only sequential dependency is that each time step must be completed before the
next can be started. This creates the common execution pattern known as synchronous
iterations [6], or bulk-synchronous parallelism [7], where computations in a time step
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Figure 4: Staged border exchange in a Cartesian grid. Grid cells are color-coded
according to the neighboring partition they originate from, grey cells represent border
padding that has not yet been updated by the exchange.
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(b) Communication stages with 4 ranks

Figure 5: Stages of execution for each rank, and communication between 4 parallel ranks.
Back edges indicate loops for each grid refinement level (xr), and for each time step (xT).

are parallel, while time integration synchronizes all participants. We implement the bulk-
synchronous pattern combining message passing and multithreading techniques [8], using
MPI for message passing, and OpenMP for multithreading. This combination allows us
to exploit the lower resource requirements of light-weight thread parallelism at the scale
of individual multi-core computing nodes, while message passing admits problems that
require multiple, networked nodes. We partition the domain across distributed memory
in a Cartesian topology, where nodes are ordered in a two-dimensional coordinate system
and have neighbors in four directions. When the two-dimensional arrays that represent
the state of the fluid are partitioned across distributed memory, the synchronization step
between time steps requires a number of message passing operations, because the value
of the computational stencil along the borders of one partition will depend on 1 or 2
values that are assigned to a neighboring compute node. We solve this by padding each
individual partition with an additional border of 1 domain point in each direction, and
explicitly copying its latest value from the neighboring partition during synchronization,
using a staged border exchange as illustrated in Fig. 4.



5 Performance Model
An outline of the control flow and communication pattern in our program is shown in Fig.
5. Its three main tasks are to integrate the solution in time (SWE), adapt mesh resolutions
accordingly (AMR), and exchange data with neighboring ranks (Rank borders). We adopt
the fundamental equation of modeling from Barker et al.[9] stated in Eq. 10 as a starting
point. Its overlap term is taken to be Toverlap = 0, as it is beyond the scope of this paper to
investigate the application’s potential for simultaneous computation and communication.

Ttotal = Tcompute +Tcommunicate (10)

Based on the overview in Fig. 5, we develop Eq. 10 into the application specific Eq. 11.

Ttotal = (Tintegrate +TAMR)+Texchange (11)

Integration Cost Tintegrate

Eq. 12 further partitions the total cost of integration into the cost of developing the SWE
for the interior points of the domain, and applying the boundary condition at its edges.

Tintegrate = TSWE +Tboundary (12)

We express the SWE cost in terms of a cost WSWE for each use of the numerical stencil,
and assume that it is constant for all points. The aggregate number of points is the sum of
all subgrid sizes, which we express using the product of the sides Xg,Yg for each subgrid
g, and we let G denote the set of all subgrids, as in Eq. 13.

TSWE = (∑
g∈G

Xg ·Yg) ·WSWE (13)

The boundary condition is only applied at the global root grid level, which gives it a
cost proportional to the domain circumference, and a cost WB per boundary point.

Tboundary = 2(X +Y ) ·WB (14)

Adaptive Mesh Refinement Cost TAMR

The AMR step of the control flow diagram in Fig. 5a includes recursive integration steps
for each level of refinement. For performance modeling purposes we account for this cost
in Eq. 13, which reduces the expression of AMR cost to the terms TR for regridding, TGB
for grid border handling, and TD for downsampling, as in Eq. 15.

TAMR = TR +TGB +TD (15)

Re-evaluations of the current grid decomposition are not generally required at every
solver iteration, which makes the total cost of regridding parametric in terms of a
regridding interval RI. The aggregate cost is accumulated over a full set of subgrids
as for the SWE solver cost, but we can restrict the set of subgrids to those that are parent
grids in the hierarchy at some time step, written as Gp in Eq. 16. WR denotes the time
required to evaluate a point with respect to a chosen refinement criterion.

TR =
∑g∈Gp(Xg ·Yg)

RI
·WR (16)



As with the global domain boundary, the cost of managing grid borders is proportional
to their circumference, and a cost WGB interpolating a boundary point. The total sum must,
however, be aggregated from all subgrids as in Eq. 17.

TGB = ∑
g∈G

2(Xg +Yg) ·WGB (17)

Downsampling only applies to the set Gc of subgrids that are children of a parent grid.
The subset of points in a child grid that coincide with points in its parent depends on the
degree of refinement r between their respective resolutions, as expressed in Eq. 18.

TD =
∑g∈Gc(2 ·Xg ·Yg)

r3 ·WD (18)

Communication Cost Texchange

The total cost of communication is proportional to transmitted data volume, and inversely
proportional to network bandwidth. The data volume at each rank is determined by the
circumference of its assigned grid partition, which can be expressed as Eq. 19.

Texchange = PRB ·WRB (19)

PRB is the number of grid points in a rank’s circumference, and WRB is the average time
to exchange one point. With the root grid partitioned in a Cartesian split, individual rank
circumferences differ by at most 1 point along each axis. This suggests that differences
in PRB must be marginal compared to its magnitude, so we expect Eq. 19 to estimate
Texchange for all ranks. When investigating weak scaling, the experimental setup purposely
increases the size of the global domain such that it creates equally sized partitions for each
participating rank, regardless of the degree of parallelism. In this setting, PRB will be a
constant by design, and WRB will depend on network connectivity between neighboring
ranks only. Thus, we expect Texchange to be a constant overhead for practical purposes.
With respect to parallel scalability, it should be noted that this assumption is inaccurate
for very low degrees of parallelism. Specifically, partitioning the global domain between
2 ranks creates only 1 border, 4 ranks share only 2 borders pairwise as illustrated in Fig.
5, etc. Beginning with 9 ranks in a 3× 3 Cartesian split, the completion of the border
exchange will be bound by at least 1 rank with neighbors in all cardinal directions. We
assume that further upscaling will be in increments which partition the domain similarly.

Derived Cost of an Additional Level of Refinement
Using our model expressions, we estimate the extra cost when the program decides to
add a level of refinement. Eq. 13 dominates execution time in the limiting case, as it
grows with the area of every subgrid in the computation. For simplicity, we estimate the
refinement cost in terms of additional points to evaluate, and dispense with the hardware-
dependent cost factors as they are constant at all levels in one run. The number of points
pL in a region at grid level L cannot exceed the number of points pL−1 obtained by refining
the resolution of its entire parent grid by a factor r.

pL ≤ r3 · pL−1

This is a recursive relation, so an additional level expands as

pL ≤ r3·2 · pL−2



Vilje Idun
Processor Intel Xeon E5-2670 Intel Xeon E5-2630 v2
Compiler ICC 18.0.1 ICC 19.0.5.281

MPI SGI MPT 2.14 Intel MPI 2018 5.288
OpenMP version 4.5 4.5
Sockets / node 2 2
Cores / socket 8 10

Memory / node 32GB 128GB

Table 1: Hardware configurations of the test platforms

or in general,
pL ≤ r3·L proot

The upper bound for the sum of points PL in all refinement levels is a geometric series:
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Accounting for arbitrarily many refinement degrees and levels, we find that
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Observing that an additional level of refinement can not reduce the computational
workload, we obtain the inequalities in Eq. 20 as lower and upper bounds of the factor
Pre f ine by which run time increases with an additional level of refinement.

1≤ Pre f ine ≤ r3 (20)

6 Experimental Results and Discussion
Our experiments are carried out on two computing clusters, Vilje and Idun. Vilje is
part of the Norwegian national infrastructure for scientific computing, and Idun is a
local computing resource operated by NTNU. The technical specifications of their node
architectures are summarized in Tab. 1.

Experimental Setup
We validate the performance model presented in Section 5 using the two fluid
configurations shown in Figs. 6 and 7. Fig. 6 shows a wave initialized at the edge of the
domain, which passes across it and hits the far side. Fig. 7 shows a wave initialized in the
middle of the domain, which collapses and splits in opposite directions. We present three
experiments using these waves, varying domain partitioning to produce specific effects.



(a) Initial state (b) State after crossing domain

Figure 6: Wave traverses the domain from the edge

(a) Initial state (b) State after split

Figure 7: Wave splits in the middle of the domain

Weak Scalability
Our first experiment obtains a baseline scalability result that provides context for later
variations. To keep the computational load directly proportional to the size of the
computing platform, we simulate the edge wave scenario, and only partition the domain
longitudinally to the wave. Each node simulates an equally sized rectangle with the same
balance between wavefront and placid fluid. We maintain an identical workload for p
nodes by setting global domain size to 512×512p points, and measure parallel efficiency
E(p), as a function of p:

E(p) =
S(p)

p
S(p) =

T1

Tp

where T1 and Tp are run time measurements using 1 and p nodes, respectively. The
optimal value of this metric is E(p) = 1, reflecting that simultaneous increases in system
size and workload maintain constant time. Fig. 8b shows the efficiency figures obtained
from both platforms, both in terms of total time spent on computation and communication,
and as measured by the cost of computation only. While there are minor variations from
the theoretical optimum of a completely level curve, these can be attributed to minor
fluctuations in run time conditions and timing accuracy. Noting that the curves span a
range of scales from 20 through 320 parallel processing cores on Idun, and 16 through
256 on Vilje, it is evident that with an evenly partitioned workload, program performance
scales practically linearly with system size across an order of magnitude difference.

Impact of Increasing Levels of Refinement
Our second experiment verifies the refinement cost bounds derived in Section 5. We
isolate the effect on computation time in a series of runs using 1 node only, thus
eliminating communication time. A series of edge wave scenarios capping the number of
refinement levels from 2 to 4 are carried out with a doubling of the resolution at each level,
i.e. a refinement degree r = 2, so that 1≤ Pre f ine ≤ 8. Fig. 9 shows that measurements of
the grid point growth caused by successive levels all lie within the predicted range.
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Figure 8: Weak scaling: Parallel efficiency relative to 1 node
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Figure 9: Problem size growth factors caused by successively adding levels of refinement

Impact of Load Balance
Our final experiment measures the effect of developing different refinement levels in
domain areas assigned to different nodes. The expected effect is that nodes with a greater
workload will complete each time step later than their neighbors, and since the next
time step will not proceed until all participants complete the previous one, collective
performance will be limited by the performance of the node with the highest load. We
examine the speedup metric in strong scaling mode, i.e. measuring a fixed size problem
over increasing node counts, so that upscaling reduces the subdomain size assigned to
each node. We partition the domain in rectangular sections along both directions, and
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measure run time for both the edge and middle wave scenarios. This creates a data-
dependent load imbalance centered around the wavefronts, because changes in fluid level
trigger regridding and refinement in the subdomains where they occur. The middle
wave produces better scalability characteristics than the edge wave, because the two
wavefronts of the former are distributed simultaneously across the domain, while the
single wavefront of the latter places additional workload only on the nodes that handle
the area it is presently traversing. Fig. 10 shows speedup relative to single-node time
when distributing 6553600-point domains on 2 through 16 nodes on the Vilje platform.
It is quite clear that the balance of the computational load has a substantial impact on the
efficiency of the computation, as the maximal speedup figures are down to 54% and 34%
of the optimal linear speedup, respectively. Part of this effect is due to Amdahl’s Law
[10] as we are operating in strong scaling mode, but the distinction between the two wave
patterns clearly demonstrates that the dynamic distribution of the fluid has a direct impact
on program performance. This suggests that adaptive mesh refinement should be applied
with an acute awareness of how the fluid interacts with domain conditions.

7 Related Work
Berger [11] compares the computation time between AMR, coarse, and fine solution for
four example problems. The article provides a formula for how often regridding should
be performed in order to minimize the cost of the algorithm, given as a balance between
the cost of integration and regridding. Cost estimates for integration and for regridding
are needed to use the formula. Jameson compares lower-order AMR schemes to higher-
order non-AMR schemes, and finds that the former are computationally more expensive
than the latter when the goal is to reduce the error of the solution to a certain amount [12].
As the integration part suffices to show that lower-order AMR schemes have a higher
computational cost than higher-order non-AMR schemes, the article omits analysis of
workload and computational costs of other AMR steps. Erduran et al. evaluate the
performance of finite volume solutions to the shallow water equations [13]. Kubatko
et al. study the performance of two finite element methods [1], and compare the cost to
finite difference methods. Sætra et al. implement the SWE using a finite-volume method
and AMR on the GPU [14], and measure accuracy and performance for some examples.

8 Conclusions and Future Work
In this paper, we have described the design and implementation of a numerical solver
with adaptive mesh refinement for the Shallow Water Equations. We have developed a
performance model of the program, made predictions about three important scalability
characteristics, and verified them experimentally on two high performance computing
platforms. Our empirical observations show that the application exhibits close to linear
scalability in weak scaling mode, given constant workload per node. We also derived
upper and lower bounds for the additional workload of adaptive mesh refinement, and
validated them experimentally. Finally, we observed that adaptive mesh refinement
creates a load balancing issue which depends on the distribution of fluid in the simulated
system, and found that it reduced parallel efficiency to 54% and 34% of the optimum
in two experiments designed to produce the effect. In summary, we have found that the
application is highly scalable, but that its continued efficiency at larger scales depends on
an even distribution of refined areas throughout the domain. A load balancing mechanism
to dynamically redistribute subgrids is an interesting direction for further research.
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