Modeling, Identification and Control, Vol. 41, No. 4, 2020, pp. 297-311, ISSN 18901328

Co-simulation as a Fundamental Technology for
Twin Ships

L.I. Hatledal! R. Skulstad® G. Li' A. Styve? H. Zhang'

! Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Lars-
grdsvegen 2, 6009 Alesund, Norway. Norway. E-mail: {laht,robert.skulstad,guoyuan.li,hozh} @ntnu.no

2 Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Larsgrdsvegen 2, 6009
Alesund, Norway. E-mail: asty@ntnu.no

Abstract

The concept of digital twins, characterized by the high fidelity with which they mimic their physical
counterpart, provide potential benefits for the next generation of advanced ships. It allows analysis of data
and monitoring of marine systems to avoid problems before they occur, and plan for the future by using
simulations. However, issues related to integration of heterogeneous systems and hardware, memory, and
CPU utilization makes implementing such a digital twin in a monolithic or centralized manner undesirable.
Co-simulation addresses this problem, allowing different sub-systems to be modelled independently, but
simulated together. This paper presents the ongoing work towards realizing a digital twin of the Gunnerus
research vessel by applying co-simulation and related standards. The paper does not present a complete,
ready-to-use digital twin. Rather it presents the preliminary results, procedure, and enabling technologies
used towards realizing one. In order to accommodate this goal, a novel co-simulation solution, developed in
cooperation by members of the Norwegian maritime industry, is presented. Furthermore, a maneuvering
case-study is carried out, utilizing pre-recorded sensor data obtained from the Gunnerus. Through a
comparative study with the real maneuver in terms of speed, course, and power consumption, the proposed

approach is verified in simulation.

Keywords: Co-simulation, Digital twin, FMI, SSP, R/V Gunnerus

1 Introduction

There is a strong demand for innovation and efficiency
within operations, life cycle services, and design of ma-
rine systems. Modern marine vessels operate increas-
ingly autonomously through strongly interacting sub-
systems. These systems are dedicated to a specific,
primary objective of the vessel or may be part of the
general essential ship operations. The sub-systems ex-
change data and make coordinated operational deci-
sions, ideally without any user interaction. The task
of designing, operating, and integrating life cycle ser-
vices for such vessels is a complex engineering task
that requires an efficient development approach, which

doi:10.4173/mic.2020.4.2

must consider the mutual interaction between the in-
herent multi-disciplinary on-board sub-systems. Digi-
talization thus has become a key aspect of making the
maritime industry more innovative, efficient, and fit
for future operations Sanchez-Gonzalez et al. (2019);
Sullivan et al. (2020).

A digital twin can be defined as a virtual repre-
sentation of a physical asset enabled through data
and simulators for real-time prediction, optimization,
monitoring, controlling, and improved decision mak-
ing Rasheed et al. (2020). The digital twin should be
able to take advantage of all digital information avail-
able for an asset, such as the system and data infor-
mation models, 3D models, mathematical models, de-

(© 2020 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2020.4.2

Modeling, Identification and Control

FMI/FMU hnM"

simulation

h ..'. .

Figure 1: A plausible development procedure of digital
twins system for marine industry.

Machlne
learning

pendability models, condition and performance indica-
tors, and data analytics.

The maritime industry will benefit from digital twin
technology Perabo et al. (2020). These proxies of the
physical world will help maritime companies in devel-
oping enhancements to existing products, operations,
and services, and can even help drive the innovation
of new businesses. Additional benefits for the mar-
itime industry as a whole is highlighted in Bekker
(2018). The eventual goal of this research is to de-
velop digital twins of maritime systems and operations,
not only allowing configuration of systems and verifi-
cation of operational performance, but also to provide
early warning, life cycle service support, and system
behaviour prediction. As illustrated in Fig. 1, the use
of co-simulation together with data related optimiza-
tion, like data purification, and machine learning meth-
ods will be seamlessly combined from the design phase
to maintenance phase to achieve heterogeneous sim-
ulation, data analytics and behavioural prediction of
maritime systems.

As stated in Schleich et al. (2017), the scientific lit-
erature has reported that challenges persist in the vi-
sion of the implementation of the digital twin, such as
insufficient synchronization between the physical and
the digital world to establish closed loops, a lack of
high-fidelity models for simulation and virtual testing
at multiple scales, lacking uncertainty quantification
for such models, difficulties related to the prediction of
complex systems, and challenges related to the gather-
ing and processing of large data sets. Overcoming these
limitations will require a sound conceptual framework
and comprehensive reference models. An open plat-
form would ensure that all companies in the surround-
ing maritime cluster could potentially benefit from and
contribute to it. The platform should allow companies
to benefit from each other’s models and data without
necessarily exposing their intellectual property Durling

298

et al. (2017).

In this paper we seek to promote an open-source
framework that can leverage the possibilities provided
by a digital twin in order to support ongoing work in
the Knowledge-building Project for Industry (KPN)
Digital Twins for Vessel Life Cycle Service (Twin-
Ship) 1. In order to establish such an open framework
for digital twins that enables users to easily develop, in-
tegrate, and combine their own components into a com-
plete system, e.g. for the purpose of maritime industry
design, operation, service, and maintenance, it is essen-
tial to realize effective co-simulation mechanisms and
related auxiliary tools. To support the KPN project,
DNV GL, Kongsberg Maritime (formerly Rolls-Royce
Marine), SINTEF Ocean, and NTNU initiated a Joint
Industrial Initiative (JIP) nicknamed the Open Simula-
tion Platform (OSP) Open Simulation Platform (2020)
in 2019. The purpose of the OSP is to lay the foun-
dation for an ecosystem where the maritime industry
can perform co-simulation and share simulation mod-
els in an efficient and secure way. The ultimate goal of
the OSP is to facilitate building of digital twin systems
and vessels, making it easier to solve challenges related
to designing, building, integrating, commissioning, and
operating complex integrated systems. Thus it will en-
able the realization of complex cyber-physical-systems
(CPS) like the vessel model illustrated in Figure 2,
where the complete vessel model is an aggregation of
several independent sub-models that connect through
a standardized co-simulation interface.

In this work, we make use of the NTNU owned re-
search vessel (R/V) Gunnerus, as shown in Fig. 1, as
the test-bed to demonstrate a sound conceptual frame-
work that uses co-simulation as a fundamental technol-
ogy towards realizing a digital twin for ship maneuver-
ing. The contributions of the paper include:

1. Employment of a novel co-simulation library as a
platform for digital twins.

2. Utilization of a freely available tool-box of marine
black-box models, provided by the OSP, in order
to accelerate modeling of the Gunnerus.

3. Real-life application of FMU-proxy — enabling co-
simulation of otherwise incompatible simulation
models.

4. Demonstration of the System Structure and Pa-
rameterization (SSP) standard for defining the
structure, connections, and the parameterization
of the full system to be simulated. Addition-
ally, we demonstrate that components other than

lhttps://org.ntnu.no/intelligentsystemslab/project/
twinship.html

https://org.ntnu.no/intelligentsystemslab/project/twinship.html
https://org.ntnu.no/intelligentsystemslab/project/twinship.html

Hatledal et.al., “Co-simulation as a Fundamental Technology for Twin Ships”

Figure 2: The vessel model depicted in the figure is an aggregate of several different sub-components. Vessel
sub-component figures courtesy of the Virtual Prototyping of Maritime Systems and Operations project
(Research Council of Norway, grant nr. 225322).

Table 1: Open source co-simulation master tools supporting FMI.

FMI support

[oF] ME
Name v1.0 | v2.0 | v1.0 | v2.0 | SSP | Distributed | API | CLI | GUI Version License
Coral v v v v v 0.10.0 (Dec. 2018) | MPLv2
DACCOSIM v v v 2.4.0 (Feb. 2020) AGPL
FMI Go! v v v v Ve v v 0.5.0 (Nov. 2019) MIT
Maestro v v Vb v 1.0.10 (Apr. 2020) | GPLv3
MasterSim v v v v v 0.8.2 (Dec. 2019) LGPLv3
Ptolemy II v v v v v v 11.0.1 (Jun. 2018) MIT
FMPy v v v v Ve v v v 0.2.17 (Feb. 2020) BSD
OMSimulator v v v v v v 2.0.1 (Jan. 2019) GPLv3
2 Draft version
PHTTP API

Functional Mock-up Units (FMUs), such as FMU-
proxy, may be used within the context of SSP.

5. Implementation of a preliminary digital-twin
model of the Gunnerus, together with subsequent
simulation results comparing the power consump-
tion of the model and its real-life counterpart.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some related work for co-simulation
and digital twin platforms. An introduction to the
employed co-simulation framework is given in Section
3. The following section provide some implementation
notes on the work towards realizing a digital twin of the
Gunnerus. Section 5 introduces the case-study, with
results and discussions following in Section 6. Finally,
some concluding remarks are provided in Section 7.

2 Related work

This section presents an overview of co-simulation tech-
nology and related tools, as well as a brief overview of

digital twin platforms. Co-simulation as a technology
was born out of the idea that no one simulation tool is
suitable for all purposes, and complex heterogeneous
models may require components from several differ-
ent domains, perhaps developed in separate, domain-
specific tools. In a co-simulation, different sub-systems
are modeled separately and composed into a global
simulation where each model is being executed inde-
pendently, sharing information only at discrete time-
points. A comprehensive state-of-the-art survey on this
topic is given in Gomes et al. (2018). Compared to
more traditional monolithic simulations, co-simulation
encourages re-usability, model sharing, and fusion of
simulation domains. Thus it is in line with the OSP’s
vision of establishing an eco-system for model sharing
within the maritime industry.

Two noteworthy standards for co-simulation exist.
The High Level Architecture (HLA) Dahmann et al.
(1997) mainly for discrete event co-simulation and the
Functional Mock-up Interface (FMI) Blochwitz et al.
(2012) for continuous time co-simulation. This work
primarily addresses the latter, due to the high number

299

Modeling, Identification and Control

of supporting tools and the ease with which models
can be created and shared. Moreover, a recent survey
showed that experts consider the FMI standard as the
most promising standard for continuous time, discrete
event and hybrid co-simulation Schweiger et al. (2019).
Some efforts have also been devoted towards combining
the two standards as demonstrated in Yilmaz et al.
(2014); Falcone and Garro (2019).

The FMI, currently at version 2.x, is a tool-
independent standard that aims to improve the ex-
change of simulation models between suppliers and
original equipment manufacturers. The standard sup-
ports both model exchange (ME) and co-simulation
(CS) of dynamic models. The key difference between
these two variants is that CS models embed a solver,
making it easier to deploy at the cost of flexibility. An
FMU is a model which implements the FMI standard.
It is distributed as a zip-file with the extension .fmu.
This archive contains:

e An XML-file that contains meta-data about the
model, named modelDescription.zml.

e C-code implementing a set of functions defined by
the FMI standard.

e Other optional resources required by the model
implementation.

Since the inception of the FMI standard, a myriad of li-
braries and software tools have been created or adapted
to support it. At the time of writing, the official FMI
web page lists over 140 tools, which clearly shows that
the standard is being adopted in force. Examples of
FMI based co-simulation applied within the maritime
domain can be found in Bulian and Cercos-Pita (2018);
Hassani et al. (2016); Chu et al. (2018, 2019). Although
this standard has reached acceptance in industry, it
provides only limited support for simulating systems
that mix continuous and discrete behavior, which are
typical for CPS Cremona et al. (2018). A future ver-
sion of the standard (FMI 3.0) will introduce clocks
for synchronization of variables changes across FMUs,
allowing co-simulation with events.

The Distributed co-simulation protocol
(DCP) Krammer et al. (2018) is a standard for
real-time and non-real-time system integration and
simulation, which the Modelica Association has
adopted as a Modelica Association Project. The
DCP is compatible with FMI, and just like FMI, it
leaves the design of the master out of scope from the
specification.

FMU-proxy Hatledal et al. (2019a,b) is an open-
source framework that enables language and plat-
form independent access to FMUs. In short, FMU-
proxy provides remote procedure call (RPC) mapping

300

to the FMI 2.0 for co-simulation interface. This is
achieved by wrapping one or more FMU in a server pro-
gram supporting multiple schema-based and language-
independent RPC systems over several network pro-
tocols. The use of schema-based RPCs allows users to
easily auto-generate client/server code for a wide range
of common programming languages. The framework is
independent of the master algorithm, and can therefore
be re-used in different software projects.

The System Structure and Parameterization
(SSP) Kohler et al. (2016) is a tool-independent
standard to define complete systems consisting of
one or more components (such as FMUs) including
their parameterization, which can be transferred
between simulation tools. Version 1.0 of the standard
was released in March 2019. The SSP standard is
closely aligned with the FMI standard, using the same
definition of units and variable types. While FMI is
the only model format explicitly mentioned in the
standard, a component, which is a blueprint for a
model in this context, does not necessarily need to
be an FMU. This allows other model formats to be
referenced within a SSP archive, such as FMU-proxy
or DCP.

Table. 1 provides an overview of open-source tools
that are able to orchestrate and run systems of
FMUs Gémez et al. (2019); Liu et al. (2001); Nico-
lai (2017); Lacoursiere and Héardin (2017); Ochel et al.
(2019); Thule et al. (2019); Catia-Systems (2019); Sad-

jina et al. (2019). This excludes low-level libraries like

the FMI Library JModelica (2017), JavaFMI Galtier
et al. (2017), and similar, which only handle load-
ing of individual FMUs. Although a number of ex-
isting co-simulation master tools exist and usage of co-
simulation to facilitate the digital twin has been pre-
sented in, e.g., Yun et al. (2017); Jung et al. (2018);
Scheifele et al. (2019); Negri et al. (2019), the OSP
partners decided to develop their own alternative, in-
troduced in the following section, due to requirements
related to the licensing model, performance, implemen-
tation language, maritime ontology, distributed model
execution and support for key technologies like FMI
1.0 & 2.0, DCP, and SSP. None of the tools listed sup-
port DCP and only FMPy, FMIGo! and OMSimula-
tor support SSP. However, the SSP draft version used
by FMPy and FMIGo! is outdated and incompati-
ble with the 1.0 version. Due to the inner workings of
some of the models involved, not all models can co-exist
within the same process. To overcome this, distributed
model execution is required. Neither, FMPy nor OM-
Simulator supports this. In this way there is sufficient
reasoning behind developing an alternate solution that
among other things supports SSP 1.0, enables optional
distributed execution of FMUs, and which plans to sup-

Hatledal et.al., “Co-simulation as a Fundamental Technology for Twin Ships”

in

Visualization
—

Co-simulation
Master Algorithm

HEOED

=

Digital Twi
components

Standardized co-simulation interface - FMI

h Sensor oo
data
4
v

Monitoring u)
& Control r v 3
system z

Remote

Test tools Interface

Scenario
management
Automated testing

HIL!setup

Figure 3: The OSP architecture, with the scope lib-
costm highlighted. Figure courtesy of the
Open Simulation platform.

port the DCP standard in the future. However, a sig-
nificant reason for developing yet another co-simulation
platform is to maintain control over the software, which
allows the collaborators to decide on issues regarding
licensing, which features to support and so on.

3 Co-simulation environment

This section introduces the co-simulation environment
employed for this research, termed the OSP. The OSP
is a collection of software packages developed in col-
laboration by DNV-GL, SINTEF Ocean, Kongsberg
Maritime, and NTNU to facilitate co-simulations and
building of digital twin systems and vessels. One of
the fundamental deliverables of the OSP is a software
library for orchestrating and performing co-simulation
named libcosim, which is described further below.

3.1 libcosim

libcosim is a cross-platform C/C++ library enabling
co-simulations to be orchestrated and run. The scope
of libcosim within the context of the overall vision of
the OSP is illustrated by the framed region in Fig. 3.
The OSP will create the foundation for an ecosystem
where the maritime industry can perform co-simulation
and share simulation models in an efficient and secure
way to facilitate building of digital twin systems and
vessels. libcosim is the cornerstone of the system, en-
abling users to easily integrate and combine their own
components into a complete system, e.g. for the pur-
pose of maritime industry design, operation, service,
and maintenance. The co-simulation interface is based
on the FMI, with both FMI 1.0 and 2.0 for CS be-
ing supported. ME models are not directly supported,
however such models may be converted to CS using
some appropriate stand-alone tool. Additionally, dis-
tributed execution of FMUs is supported through inte-
gration with FMU-proxy. Support for the DCP is also

planned, which will enable hard real-time integration
of hardware devices.

The libcosim is written in modern C++, making
heavy use of features found in C++11 and above. In or-
der to more easily support integration with other tools,
a separate C library is maintained that provides access
to most of the functions found in the C-++ library.
The library is loosely based on Coral with some ele-
ments added from CyberSea developed by DNV-GL.
Both of whom were developed by collaborating part-
ners. Compared to similar co-simulation libraries and
frameworks, libcosim is mostly concerned with estab-
lishing a solid API that can be embedded in higher-
level applications developed by end-users. For conve-
nience, a CLI, which makes the software accessible to
non-developers and that simplifies the realization of a
number of use-cases, has been developed.

Some of the features of libcosim are:

e Integration with Conan dependency manager—
making building and distributing the software eas-
ier.

o A separate C-API for easier integration with other
applications.

e Support for both version 1.0 & 2.0 of the FMI
standard for CS.

e Basic support for version 1.0 of the SSP standard,
which allows complete simulation systems to be
represented in a standardized way.

e Bulk read/write and caching of variable data for
efficient access.

e FMU-proxy integration, enabling (optional) dis-
tributed execution of FMUs. This in turn enables
models to be run regardless of platform, license
and software dependencies.

e An extensible design, where master algorithms,
slaves, observers, and manipulators are pluggable—
allowing library users more control over the simu-
lation.

e The ability to specify events, inline or through
configurations files, to occur at specified trigger
points, through so-called scenarios.

The design of libcosim is centralized, with all data
flowing through the master. This makes for a less com-
plicated, easier to maintain, easier to debug, and more
flexible design compared to similar co-simulation en-
gines such as Coral, where data flows directly between
slaves. For instance, entities that want to observe or
manipulate the simulation can do so directly as all data

301

Modeling, Identification and Control

Listing 1: Specifying FMU-proxy sources using libcosim & SSP. Components can be loaded from either an URL,
the file system, or using the guide of an already-loaded FMU.

<ssd:Component name="modell”
<ssd:Component name="model2”
<ssd:Component name="model3”

source="fmu—proxy://localhost:90907? file=Component.fmu”>
source="fmu—proxy://localhost:90907?guid=85bb6608 —13d0—46b8—9bge” >
source="fmu—proxy://localhost:9090?url=http://example.com/Component.fmu”

is obtainable from a single source. Pure distributed co-
simulation masters such as Coral and FMI Go! dictate
that all slaves are to be run distributed, whereas lib-
cosim makes this entirely optional. Support for this is
currently implemented through integration with FMU-
proxy, which communicates with remote FMUs us-
ing Thrift over TCP/IP. Listing. 1 shows how FMU-
proxy components are configured using SSP. A plug-in
based system is used to resolve component URIs, al-
lowing custom component sources like FMU-proxy to
be added with ease. The support for SSP is not fea-
ture complete, but includes the ability to apply linear
transformations to connections and multiple parameter
sets, both defined inline and as external files.

A crucial part of any co-simulation tool is the avail-
able master algorithms. Currently, the library only
ships with a single algorithm. A fixed-step algorithm
that supports individual FMUs to run at separate step-
sizes. However, the API facilitates the creation of addi-
tional master algorithms, and as time passes, hopefully
more algorithms will be added.

C++ can be a challenging language to learn. Espe-
cially compared to higher-level languages like Python
or Java. For instance Java has fewer features to learn,
is garbage-collected and comes with a richer stan-
dard library. Additionally, the tooling, in the form
of integrated development environments (IDEs), build
systems, and package managers, is state-of-the-art.
Therefore, and in order to aid developers that would
rater develop in Java, NTNU has developed cosim4j,
a Java wrapper for libcosim introduced in more detail
below.

3.2 cosimdj

cosim4j is a Java wrapper for libcosim. The goal
of the Java API is to be generally easier to use
and provide more high-level features than its na-
tive counterpart. It uses the Java Native Inter-
face to efficiently interact with the native library.
To make the library accessible, it is made avail-
able as a Maven artifact at https://bintray.com/
open-simulation-platform/maven/cosimé4j. Fur-
thermore, the artifact include pre-built native binaries
for Linux and Windows, which means that no prior
installation of libcosim is required.

302

Models Services

Classification

libcosim

Master
algorithm
Scenario
management development
APP/ Tools <
_

Design/ sales
Training
N e —

Figure 4: Proposed structure for digital twin imple-
mentation.

.y

4 Implementation

Inspired by the overall vision of the OSP in Fig.3, a
plausible digital twin framework based on libcosim is
proposed, as shown in Fig. 4. In the following, im-
plementation details for the proposed framework are
provided.

The workflow used towards realizing a digital twin
model of the Gunnerus, or digital twins in general, is
as follows.

1. Establish the purpose of the model. What should
it communicate?

2. Any existing models related to the vessel are col-
lected.

3. Any missing pieces of the puzzle are mapped
and consequently implemented using the appro-
priate software, e.g. FMI4j, PythonFMU or some
domain-specific tool, and exported as FMUs.

4. Define the structure of the simulation using the
standardized SSP format.

5. Run the simulation using an appropriate tool.

Currently, cosim4j is used to run the simulation.
The configuration of the system to be simulated is done
using SSP. Much as FMI allows us to decouple from the
modeling tools, SSP allows us to decouple from the
co-simulation master. However, as some of the models
currently in use by the digital twin dictate that the full
simulation may not run within a single process, the SSP

https://bintray.com/open-simulation-platform/maven/cosim4j
https://bintray.com/open-simulation-platform/maven/cosim4j

Hatledal et.al., “Co-simulation as a Fundamental Technology for Twin Ships”

implementation should support components that can
run in separate processes such as FMU-proxy or DCP.
An alternative approach to solve this issue, is to run all
models in a distributed fashion like e.g. FMIGo! does.
However, selective distributed execution, as found in
the proposed implementation, has some benefits like
easier debugging and less communication overhead in
the general case.

As it stands, a complete public overview of avail-
able tools that supports SSP is lacking, and imple-
mentations, as they become available, will most likely
only support FMUs loaded from the file-system—the
basic requirement of such an implementation. Using
SSP, the structure of a simulation is defined in an
XML configuration file. At least one configuration file
named SystemStructure.ssd must be present. How-
ever, additional configurations may optionally be de-
fined, allowing a single SSP archive to contain multiple
simulation configurations. Simply explained, an .ssd
defines which models make up a simulation (compo-
nents), which variables are exposed (connectors), how
they are connected (connections), and how they are pa-
rameterized (parameter-sets). Annotations are used to
define tool-specific features. The .ssd files are packed,
together with any resources required, like FMUs, in a
zip archive with an .ssp extension. While SSP makes
it easier to configure systems that can be simulated
in a standardized way, it may still be challenging to
manually create valid SSP archives due to the shear
amount of XML that might have to be written and the
packaging of files that goes into the archive. To ease
this process, NTNU has developed SSPgen Hatledal
(2020)—a domain specific language for generating self
validating SSP archives. Aside from getting the SSP
archive validated prior to simulation, SSPgen drasti-
cally reduces the amount of code required.

Also embedded in the workflow for realizing the dig-
italization of the Gunnerus is the use of a set of in-
house developed open-source tools for creating FMI
2.0-compatible models in Java (FMI4j) and Python
(PythonFMU). Their ease of use makes them ideal
for rapid prototyping. FMI4j is an open-source cross-
platform Java framework for importing and exporting
FMUs. Initially created with FMI import in mind, it
has been updated to enable Java code to be exported
as FMUs in order to support the work addressed in
this paper. Compared to the similar JavaFMI package,
FMI4j relies on the Java Native Interface rather than a
message passing system making it significantly faster.
A Gradle plugin and an easy-to-use CLI that exports
conforming Java code as cross-platform FMUs is pro-
vided. Listing. 2 shows the minimal required code to
write FMI 2.0 compatible models in Java using FMI4j.
PythonFMU Hatledal et al. (2020) is a lightweight,

open-source, and cross-platform Python 3.x framework
for building FMUs readily available through the pip
package manager. It has been specifically designed to
enable data scientists in the team to contribute with
models as the work progresses. Listing. 3 shows the
minimal required code to write FMI 2.0 compatible
models in Python using PythonFMU.

Listing 2: Writing slaves in Java using FMI4j.

public class JavaSlave extends Fmi2Slave {

@ScalarVariable(causality=output)
private double realOut;

public JavaSlave (Map<String ,
super (args);

Object> args) {

@Override

public void doStep(double t,
realOut = ...

}

double dt) {

Listing 3: Writing slaves in Python using PythonFMU.

class PythonSlave (Fmi2Slave):
def __init__(self, xxkwargs):
super (). ——init__ (*xkwargs)

self.realOut = 0.0
self .register_variable (Real(”realOut”
causality=output))
def do_step(self, t, dt):
self.realOut = ...
return True

When designing co-simulations, there might be is-
sues related to causality when two models, which the-
oretically would be a good match for coupling, have
inputs and outputs flowing in the wrong direction com-
pared to each other. Thus, declaring causalities when
writing models like shown in Listing. 2 and 3 must be
done with great care and in collaboration with other
model developers.

5 Case study

Here, the configuration of a case study utilizing the
Gunnerus is presented. Its purpose is to test possible
applications of digital twin for ship maneuvering and
on-board decision support.

The Gunnerus, as seen in Fig. 5, is equipped with
the latest technology for a variety of research activ-
ities within biology, technology, geology, archaeology,
oceanography, and fisheries research. In addition to
research, the ship is used for educational purposes and
is an important platform for marine courses at all lev-
els and disciplines. Some main dimensions of the vessel
are given in Table 2.

303

Modeling, Identification and Control

Photo; Fredrik Skoglund

Figure 5: Starboard view of the R/V Gunnerus.

Table 2: Main dimensions of the Gunnerus.

Parameter Value
Length overall (Loa) 36.25 m
Length between pp (Lpp) 33.90 m
Waterline length (Lwl) 29.90 m
Breadth middle (Bm) 9.60 m
Breadth extreme (B) 9.90 m
Depth mld. Main deck (Dm) | 4.20 m
Draught, mld (dm) 2.70 m
Deadweight 165 t

In this preliminary work, pre-recorded data from the
Gunnerus in the form of comma-separated values files
are used, as neither the infrastructure for establishing a
live link to the vessel nor the means to access recorded
data from the cloud are ready. The pre-recorded data
from the Gunnerus is wrapped in an FMU, hiding this
particular implementation detail and making it possi-
ble to add a cloud-connected drop-in-replacement in
the future. For this, the plan is to leverage the Cog-
nite? cloud platform for data cleaning, analytics, and
contextualisation.

One of the deliverables of the OSP is a set of free-of-
charge reference models, including models of the most
common marine systems and ship dynamics compo-
nents. The case-study makes use of a number of these
models to realize the digital twin. The point of this
case study is not to go into detail about how these
models are implemented, which in general are black-
boxes that could hide proprietary information. Rather,
the point is to showcase how co-simulation technology,
open-source software, open standards and a library of
readily available marine models can be used to develop
a digital twin scenario.

The following list briefly describes each of the FMUs
used to create the digital Gunnerus.

%https://www.cognite.com/

304

»

VesselModel
Observer

A 4

VesselModel

N

La AzimuthO

! !

ThrusterDrivel

Azimuthl o

ThrusterDrive0

\/

PowerPlant

HeadingController 2_‘
|_f SpeedController J

Gunnerus

Figure 6: Diagram showing the logical relationship of
the involved components.

1. Gunnerus - This model contains previously
recorded sensor data measured during operation
of the Gunnerus. The time-series data is sampled
at 1Hz and includes information such as:

e Heading angle and percent-wise commanded
RPM of the tunnel-thruster in the bow as
well as the two azimuth thrusters in the aft.

e Longitude and latitude.

e Surge, sway, and heave.

e Yaw, pitch, and roll.

e Wind direction and speed.

e Positional and rotational velocities.

The FMU implements linear interpolation of the
recorded data, which is convenient given the low
sample rate of the sensor data relative to the
simulation, which runs at 20 Hz. In this work,
the model acts as a stand-in for what eventually
should become a stream of data originating from
the real asset.

2. VesselModel - This model computes the vessel
hydrodynamics such as the radiation forces, mass,
and restoring forces as well as manoeuvring forces
(resistance and cross flow drag as well as semi-
empirical corrections). The equations of motions
are solved by this model, summing up all the ex-
ternal forces acting on the vessel. SINTEF Ocean
originally implemented the VesselModel to model

https://www.cognite.com/

Hatledal et.al., “Co-simulation as a Fundamental Technology for Twin Ships”

Table 3: FMUs involved in the case study.

Component Tool Vendor FMI version OC:H; %f:;;i?giii:;s
HeadingController FM14j NTNU 2.0 False
SpeedController FMI4;j NTNU 2.0 False
Gunnerus FM14j NTNU 2.0 False
VesselModelObserver | FMI4;j NTNU 2.0 False
ThrusterDrive® 20sim SINTEF Ocean 1.0 True
PowerPlant® 20sim SINTEF Ocean 1.0 True
VesselModel” VeSim SINTEF Ocean 1.0 True?
PMAzimuth® VeSim | Kongsberg Maritime 1.0 True’

& OSP reference model.

b Additionally, only one instance of any model generated by this tool may be instantiated within the

Same process.

the Gunnerus as part of the SimVal Hassani et al.
(2015) project. It was later updated to better ap-
proximate an elongated Gunnerus vessel as part of
the MAROFF KPN: Digital Twins for Vessel Life
Cycle Service (TwinShip). While the model was
validated during the SimVal project, it has yet to
be validated against the elongated version of the
vessel.

. VesselModelObserver - A simple model that
computes the direction of travel and speed over
ground of the VesselModel based on its current
and previous position.

. SpeedController - A general-purpose
proportional-integral-derivative ~ (PID) con-
troller. It is used to regulate the force required
by the ThrusterDrives so that the speed of the
VesselModel and the Gunnerus are aligned.

. HeadingController - A special-purpose PID
controller where the input data used to compute
the controller error is treated as angles in the range
[—180°, 180°]. This unwinds any input angles that
lie outside of the specified range.

. PMAzimuth - The hydrodynamic model of the
azimuth thrusters without actuator/motor, im-
plemented by Kongsberg Maritime using VeSim
as part of the ViProMa project. Given a cer-
tain RPM command (issued by the ThrusterDrive
FMU), location on the hull, azimuth angle, vessel
speed, and the loss factor, the model will output
the 3DOF (surge, sway, heave) force generated.

. ThrusterDrive - A drive that converts force
commands from the SpeedController into RPMs
for the PMA zimuth.

8. PowerPlant - A marine power plant with two
equally large gensets, including auxiliary load and
circuit breakers.

Fig. 6 shows the logical relationship of the different
FMUs, with additional information about the FMUs
being provided in Table 3. As illustrated by Fig. 7, the
system is far from trivial with a total of 48 variable
connections between the models involved. Note that,
instances of the ThrusterDrive and PowerPlant mod-
els generated by 20Sim, using an early version of their
FMI exporter, cannot co-exist within the same pro-
cess. This is also true for VeSim Fathi (2013) generated
FMUs like the VesselModel and PMAzimuth. More-
over, these models cannot co-exist within the same pro-
cess as any other models generated by this tool due to
shared library symbol conflicts. To overcome this chal-
lenge, execution of the various model instances that
cannot co-exist within the same process are split across
multiple processes. This is easily solvable using FMU-
proxy. Running two instances of FMU-proxy provides
two additional processes, which is sufficient for this sce-
nario to run. The distribution of FMUs across the
available processes can be seen in Table 4.

To realize the simulation, cosim4j is used. The case
study presented in this paper is challenging to execute
due to the fact that some of the FMUs cannot co-exist
within the same process. This makes it impossible to
run in non-distributed co-simulation software. This

Table 4: Distribution of FMUs across processes.

Process FMUs
PowerPlant, Gunnerus,
libcosim VesselModel, VesselModelObserver,
SppedController, HeadingController
fmu-prozyl | PMAzimuth, ThrusterDrive
fmu-prozy2 | PMAzimuth, ThrusterDrive

305

Modeling, Identification and Control

HeadingController

setPoint f additionalBodyForce[0].force.heave

processOutput | additionalBodyForce[0] force.surge

additionalBodyForce[0].force.sway

SpeedController

setPoint| ce

processOutpu | ety : :

additionalBodyForce(1].force.heade
! vy

additiona

S
dyForcel1]forcé sysfe
admuonarsodymme[u/(moe<

K 7/

-—fwxnd,t}uemon

W/ soeedoverGround
W trueCourse

d_in.e
q_ine
ThrustCom

Shaft.e

LT
LT
p2.f1]
p2.f(2]

o ,,./f o
1 & ,’{/z}mgp
% ot sway
M‘}W/L/Ut\u;y
/Mmm?y?mu
./mAnpuUJuuﬂ

B output_torque

input_act_revs

input_act_angle
input_cg_x_rel_ap

input_cg_y_rel_cl

input_cg_z_rel_bl

input_cg_surge_vel

input_cg_sway_vel

input_yaw_vel

VesselModel VesselModelObserver

g_x_rel_ap position.north

—Jp trueHeading

_rel_cl

W b el bl
-

position.east

\iPMatierrfied.north

[ésrh:\hr\m jon.ned.east
cgShibMotion.linearVelocity.surge
\ \\‘.u%mhrvm\\m linearVelocity.sway
‘\\c RhipMotdn.angularVelocity.yaw

B inf
B oinf
D shaftf
A

PowerPlant

| e

-Te2
= output_force_heave
B o2

output_force_surge
B 22 ! “

\ N AN\
input_cg\\re|_qp\ output_force_sway

input_cg_¥ kel c\, \ output_x_rel_ap

input_cg_z rc\\bi\\ output_y_rel_cl

output_z_rel_bl

B output_torque

input_cg_surge \rut\

input_cg_sway_ve\

input_yaw_vel

Figure 7: FMU connection graph.

challenge can be solved by means of FMU-proxy, which
allows FMUs to be selectively chosen for distributed
execution. This enables other parts of the simulation
to run within the main application process, which pro-
vides the benefit of faster execution times and easier
debugging. As noted, when taking the requirements
for distributed model execution and the use of SSP 1.0
for creating a standardized system representation, lib-
cosim is currently the only library that is applicable of
the libraries presented in Section 2.

The idea of the case study is to compare the power
consumption of the real vessel and the preliminary dig-
ital twin, using data collected from the Gunnerus while
performing experiments in the open sea near the city of
Trondheim. This is done by feeding the speed and true
heading of the real vessel into a set of controllers used
to regulate the motion of the twin. To simplify the case
study, the equipped thunnel-thruster is not utilized and
the command signals to both azimuth thrusters in the
aft are equal. Ideally, the power consumption should
be comparable, which would indicate a good model fit.
However, environmental effects such as current, which
are very difficult to measure, could introduce discrep-
ancies between the real and simulated vessel. Yet, the
Gunnerus is able to measure and record both wind di-
rection and speed, which are being fed into the model.
These measurements are illustrated in Fig. 8. The case
study can be run both with and without 3D visualisa-

306

tion enabled. When it is enabled, the simulation is
interactive and can be paused/resumed and real-time
simulation can be toggled on/off. With real-time on,
the execution will try to run in real-time. When suc-
cessful, the real-time-index (RTT) of the simulation will
stay close to 1.0. The other option is to run the sim-
ulation as fast as possible. In this preliminary work,
it is not necessary to run in real-time as pre-recorded
data is used. The case study runs with an RTI of about
30 using a 7th generation Intel i7-8700 CPU on Win-
dows 10. This means that the current models should
not be a potential bottleneck once online data becomes
available.

6 Results and Discussion

In the following, the simulation results from the case-
study are shown. The simulation lasts for approx. 33
minutes, in which the Gunnerus is performing maneu-
vers in the open sea outside the city of Trondheim.
Fig. 9 shows the position and heading of the real and
simulation vessel during the case study. Furthermore,
the wind direction and normalized magnitude are also
shown. To see the actual magnitude of the measured
wind speeds, refer to Fig. 8. A comparison of the course
of the two vessels is shown in Fig. 10. As can be seen,
they are aligning quite well during the entire simula-

Hatledal et.al., “Co-simulation as a Fundamental Technology for Twin Ships”

Wind

Wind speed
—= Wind direction

Speed [m/s]
(2]

3 I I I I I I I I I |
0 200 400 600 800 1000 1200 1400 1600 1800 200C

Time [s]

Figure 8: Wind speed and direction measurements ob-
tained from the Gunnerus. The arrow indi-
cates the wind direction according to north.

tion. However, the heading controller is a bit aggres-
sive, leading to some oscillations around the set-point,
which the authors have not been able to eliminate with-
out sacrificing accuracy over time. The effect of this
would be that the power consumption of the twin ves-
sel is increased to some extent. Furthermore, a com-
parison of the surge speed is shown in Fig. 11. As
seen in Fig. 12, speed transients for the twin relates to
changes in course made by the Gunnerus. The power
consumption is shown in Fig. 13. Interestingly, the
power consumption calculated from the twin is showing
higher correlation with the speed than that of the real
vessel. After approximately 1100s, the power measure-
ment for the real vessel is actually reduced as the speed
increases. This could indicate that the vessel is affected
by external forces that the model is not aware of, such
as current. Therefore, this discrepancy does not nec-
essarily indicate a weakness in the model, but actually
provides potentially valuable information regarding ex-
ternal environmental forces acting on the real hull.

From these results, it is clear that some of the under-
lying models could be more accurately tuned to bet-
ter reflect the current vessel design. As noted, the
employed hull model used has not been thoroughly
validated after the Gunnerus underwent an elonga-
tion. Doing so might improve the observed difference
in terms of overall power consumption.

In order to improve the usability of the digital twin,
the offline approach of using pre-recorded operational
data should be discarded in favour of a cloud-connected
solution with live access to the real asset. This will en-
able stakeholders and crew members to benefit from
the insights provided by the model. This is perhaps
the most challenging part, as it requires significant up-

NE plot
8500 P

Twin
8000 |- Ref
~_= Wind direction

7500 [

7000 [

6500 -

6000 -

North [m]

5500 -

5000 -

4500

4000

9000 10000 11000

3500 3 .

I
5000 6000 7000 8000

East [m]
Figure 9: North-east plot showing the trajectory and
heading of the vessels during the experiment.
The blue arrow indicates the wind direction
according to north and normalized magni-
tude of the speed.

grading of the vessel’s infrastructure. Today, data from
the vessel is buffered on board and transmitted in bulk
at intervals measured in minutes. One pragmatic so-
lution to this could be to run the model on board.
Implementation-wise, going from pre-recorded data to
live data is only a matter of performing a drop-in re-
placement of the FMU that emits sensor data from the
vessel. The simulation structure would not have to
be updated as the replacement would share the same
model interface. However, using a model connected
to a real asset would imply that the simulation would
have to be performed in real-time. This mode is sup-
ported by libcosim and the models used in the simu-
lation are all lightweight enough for the simulation to
achieve real-time execution speeds.

7 Conclusion

This paper presents the preliminary results, procedure,
and enabling technologies related to our ongoing work
to establish a fully operational digital twin of R/V
Gunnerus. Co-simulation allows the CPS that the ves-
sel represents to be simulated using models from dif-
ferent vendors and tools. This is absolutely crucial for
an aggregate model in the maritime domain, as many
different vendors and domain-specific tools are usually
involved. Not only does the use of co-simulation allow
building of aggregate systems from different vendors,
it also allows the simulation to be performed in freely
available open-source tools. Furthermore, it makes it
possible to decorate the system with models imple-
mented in the tools that best fit the objective.

307

Modeling, Identification and Control

Ship course

Twin

Course [deg]

0

0 200 400 600 800 1000 1200 1400 1600 1800 200C
Time [s]

Figure 10: Course of the vessels. Revisit Fig. 9 for an
alternative representation.

Surge speed
6 T T T T T
Twin
Ref
55 %‘M 7
7 5 1
E
°
9]
(]
Q.
0 451 4
ar J
35

0 200 400 600 800 1000 1200 1400 1600 1800 200C
Time [s]

Figure 11: Speed of the vessels.

Using the presented simulation framework, model li-
brary and tools presented in this paper, NTNU will
continue its work towards realizing a digital twin of the
Gunnerus, gradually improving its accuracy. Contin-
ued development of use-cases will provide meaningful
on-board decision support for the crew on-board the
Gunnerus. A plausible next step would be to expand
on the presented case study by applying a force correc-
tion to the hull model in order to offset any differences
in position and/or yaw. The amount of force required
for this correction could be used as an estimation of en-
vironmental forces being applied to the real hull. Being
able to quantity these forces would provide substantial
support for the crew.

308

Ship course vs. speed

300 6
Course
Speed)
Il
250 [l Ny | Y| ,
A N WINN e[‘ " 155
/ —
200 ‘ /\/4_/
o~
E fl J‘MUM% i 5 o
2 Jip =
h=) [i
@ 150 |- ~ 3
2 / [
=] | [}
o ‘ | Q.
/ / 1
© [BREY N 45 0
100 P, “
] (|
/ \
a ‘ 14
SR |
|
|

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [s]

Figure 12: Twin surge speed with respect to course
changes by the Gunnerus.

Power consumption - Azimuths

©

o

o
1

Twin

~
o
o

Power [kW]
B ul (2]
o o o
o o o

w

o

o
T

200

100 -

0 I
0 200 400 600 800 1000 1200 1400 1600 1800 200C

Time [s]

Figure 13: Power consumption comparison. The power
output shown is the sum of the two az-
imuths.

Acknowledgement

This work was supported in part by the Project “Dig-
ital Twins for Vessel Life Cycle Service”, under Grant
280703 from Research Council of Norway, and in part
by the Project “SFI Offshore Mechatronics”, under
Grant 237896 from Research Council of Norway.

The authors would like to thank the members of the
Open Simulation Platform for their work related to the
employed co-simulation library. A special thanks goes
to Stian Skjong and Martin Rindary at SINTEF Ocean
for their contribution in terms of models and invaluable
insights regarding their usage.

Hatledal et.al., “Co-simulation as a Fundamental Technology for Twin Ships”

References

Bekker, A. Exploring the blue skies potential of
digital twin technology for a polar supply and re-
search vessel. In Proceedings of the 13th Inter-
national Marine Design Conference Marine Design
XIII (IMDC 2018), volume 1. pages 135-146, 2018.
doi:10.1201/9780429440533-11.

Blochwitz, T., Otter, M., Akesson, J., Arnold, M.,
Clauss, C., Elmqvist, H., Friedrich, M., Junghanns,
A., Mauss, J., Neumerkel, D., et al. Functional
mockup interface 2.0: The standard for tool inde-
pendent exchange of simulation models. In Proceed-
ings of the 9th International MODELICA Confer-
ence; September 3-5; 2012; Munich; Germany, 076.
Linkoping University Electronic Press, pages 173—
184, 2012. doi:10.3384/ecpl12076173.

Bulian, G. and Cercos-Pita, J. L. Co-
simulation of ship motions and sloshing in
tanks. Ocean FEngineering, 2018. 152:353-376.

doi:10.1016/j.0ceaneng.2018.01.028.

Catia-Systems. Fmpy. 2019. URL https://
github.com/CATIA-Systems/FMPy. (Date accessed
10-December-2020).

Chu, Y., Hatledal, L. 1., Asgy, V., Ehlers, S., and
Zhang, H. An object-oriented modeling approach
to virtual prototyping of marine operation systems
based on functional mock-up interface co-simulation.
Journal of Offshore Mechanics and Arctic Engineer-
ing, 2018. 140(2). doi:10.1115/1.4038346.

Chu, Y., Pedersen, B. S., and Zhang, H. Virtual pro-
totyping for maritime winch design and operations
based on functional mock-up interface co-simulation.
Ships and Offshore Structures, 2019. 14(supl):261-
269. doi:10.1080/17445302.2019.1577597.

Cremona, F., Lee, E., Lohstroh, M., Masin, M., Bro-
man, D., and Tripakis, S. Hybrid co-simulation: It’s
about time. In 21st ACM/IEEE International Con-
ference on Model Driven Engineering Languages and
Systems, MODELS 2018, 14 October 2018 through
19 October 2018. Association for Computing Ma-
chinery, Inc, 2018. doi:10.1145/3239372.3242896.

Dahmann, J. S., Fujimoto, R. M., and Weatherly,
R. M. The department of defense high level ar-
chitecture. In Proceedings of the 29th confer-
ence on Winter simulation. pages 142-149, 1997.
doi:10.1145/268437.268465.

Durling, E., Palmkvist, E., and Henningsson, M. Fmi
and ip protection of models: A survey of use cases
and support in the standard. In Proceedings of

the 12th International Modelica Conference, Prague,
Czech Republic, May 15-17, 2017, 132. Linkoping
University Electronic Press, pages 329-335, 2017.
doi:10.3384 /ecp17132329.

Falcone, A. and Garro, A. Distributed co-simulation
of complex engineered systems by combining the
high level architecture and functional mock-up in-
terface. Simulation Modelling Practice and Theory,
2019. 97:101967. doi:10.1016/j.simpat.2019.101967.

Fathi, D. Marintek vessel simulator (vesim), user man-
ual. MARINTEK. Report, 2013.

Galtier, V., Tanotto, M., Caujolle, M., Tavella, J.-
P., Gémez, J. E., Cabrera, J. J. H., Reinbold,
V., and Kremers, E. Experimenting with ma-
tryoshka co-simulation: Building parallel and hier-
archical fmus. In Proceedings of the 12th Inter-
national Modelica Conference, Prague, Czech Re-
public, May 15-17, 2017. pages 663-671, 2017.
doi:10.3384 /ecp17132663.

Gomes, C., Thule, C., Broman, D., Larsen, P. G.,
and Vangheluwe, H. Co-simulation: a survey.
ACM Computing Surveys (CSUR), 2018. 51(3):1-
33. doi:10.1145/3179993.

Gomez, J. E., Cabrera, J. J. H., Tavella, J.-P., Vialle,
S., Kremers, E., and Frayssinet, L. Daccosim ng:
co-simulation made simpler and faster. In Pro-
ceedings of the 13th International Modelica Con-
ference, Regensburg, Germany, March 4-6, 2019,
157. Linkoping University Electronic Press, 2019.
doi:10.3384 /ecpl19157785.

Hassani, V., Rindargy, M., Kyllingstad, L. T., Nielsen,
J. B., Sadjina, S. S., Skjong, S., Fathi, D., Johnsen,
T., Esoy, V., and Pedersen, E. Virtual prototyp-
ing of maritime systems and operations. In ASMFE
2016 35th International Conference on Ocean, Off-
shore and Arctic Engineering. American Society
of Mechanical Engineers, pages V007T06A018—
V007T06A018, 2016. doi:10.1007/s00773-017-0514-
2.

Hassani, V., Ross, A., Selvik, @., Fathi, D., Sprenger,
F., and Berg, T. E. Time domain simulation
model for research vessel gunnerus. In ASME
2015 34th International Conference on Ocean, Off-
shore and Arctic Engineering. American Society
of Mechanical Engineers Digital Collection, 2015.
doi:10.1115/OMAE2015-41786.

Hatledal, L. I. sspgen. 2020. URL https://
github.com/NTNU-IHB/sspgen. (Date accessed 10-
December-2020).

309

http://dx.doi.org/10.1201/9780429440533-11
http://dx.doi.org/10.3384/ecp12076173
http://dx.doi.org/10.1016/j.oceaneng.2018.01.028
https://github.com/CATIA-Systems/FMPy
https://github.com/CATIA-Systems/FMPy
http://dx.doi.org/10.1115/1.4038346
http://dx.doi.org/10.1080/17445302.2019.1577597
http://dx.doi.org/10.1145/3239372.3242896
http://dx.doi.org/10.1145/268437.268465
http://dx.doi.org/10.3384/ecp17132329
http://dx.doi.org/10.1016/j.simpat.2019.101967
http://dx.doi.org/10.3384/ecp17132663
http://dx.doi.org/10.1145/3179993
http://dx.doi.org/10.3384/ecp19157785
http://dx.doi.org/10.1007/s00773-017-0514-2
http://dx.doi.org/10.1007/s00773-017-0514-2
http://dx.doi.org/10.1115/OMAE2015-41786
https://github.com/NTNU-IHB/sspgen
https://github.com/NTNU-IHB/sspgen

Modeling, Identification and Control

Hatledal, L. 1., Collonval, F., and Zhang, H. Enabling
python driven co-simulation models with pythonfmu.
In ECMS. pages 235-239, 2020. doi:10.7148/2020-
0235.

Hatledal, L. I., Styve, A., Hovland, G., and Zhang, H.
A language and platform independent co-simulation
framework based on the functional mock-up in-
terface. IEEE Access, 2019a. 7:109328-109339.
doi:10.1109/ACCESS.2019.2933275.

Hatledal, L. I., Zhang, H., Styve, A., and Hov-
land, G. Fmu-proxy: A framework for dis-
tributed access to functional mock-up units. In
Proceedings of the 13th International Modelica Con-
ference, Regensburg, Germany, March 4-6, 2019,
157. Linkoping University Electronic Press, 2019b.
doi:10.3384 /ecp1915779.

JModelica.
jmodelica.org/FMILibrary.
December-2020).

Fmi library. 2017. URL http://wuw.
(Date accessed 10-

Jung, T., Shah, P., and Weyrich, M. Dynamic co-
simulation of internet-of-things-components using a
multi-agent-system. Procedia CIRP, 2018. 72:874—
879. doi:10.1016/j.procir.2018.03.084.

Kohler, J., Heinkel, H.-M., Mai, P., Krasser, J.,
Deppe, M., and Nagasawa, M. Modelica-association-
project system structure and parameterization—early
insights. In The First Japanese Modelica Confer-
ences, May 23-24, Tokyo, Japan, 124. Linkoping
University Electronic Press, pages 35-42, 2016.
doi:10.3384 /ecp1612435.

Krammer, M., Benedikt, M., Blochwitz, T., Alekeish,
K., Amringer, N., Kater, C., Materne, S., Ru-
valcaba, R., Schuch, K., Zehetner, J., et al.
The distributed co-simulation protocol for the in-
tegration of real-time systems and simulation en-
vironments. In Proceedings of the 50th Com-
puter Simulation Conference. Society for Com-

puter Simulation International, page 1, 2018.
doi:10.22360/summersim.2018.scsc.001.
Lacoursiére, C. and Hardin, T. Fmi go! a simula-

tion runtime environment with a client server archi-
tecture over multiple protocols. In Proceedings of
the 12th International Modelica Conference, Prague,
Czech Republic, May 15-17, 2017, 132. Linkoping
University Electronic Press, pages 653-662, 2017.
doi:10.3384 /ecp17132653.

Liu, H., Liu, X., and Lee, E. A. Modeling dis-
tributed hybrid systems in ptolemy ii. In Proceed-
ings of the 2001 American Control Conference. (Cat.

310

No. 01CHS87148), volume 6. IEEE, pages 49844985,
2001. doi:10.1109/ACC.2001.945773.

Negri, E., Fumagalli, L., Cimino, C., and Macchi, M.
Fmu-supported simulation for cps digital twin. In In-
ternational Conference on Changeable, Agile, Recon-
figurable and Virtual Production, volume 28. pages
201-206, 2019. doi:10.1016/j.promfg.2018.12.033.

Nicolai, A. Mastersim - a simulation mas-
ter for functional mockup units. 2017. URL
https://bauklimatik-dresden.de/mastersim/
index.php?ala=en. (Date accessed 10-December-
2020).

Ochel, L., Braun, R., Thiele, B., Asghar, A., Buffoni,
L., Eek, M., Fritzson, P., Fritzson, D., Horkeby, S.,
Héllquist, R., et al. Omsimulator-integrated fmi and
tlm-based co-simulation with composite model edit-
ing and ssp. In Proceedings of the 13th Interna-
tional Modelica Conference, Regensburg, Germany,
March 4-6, 2019, 157. Linkoping University Elec-
tronic Press, 2019. doi:10.3384/ecp1915769.

Open Simulation Platform. Open simulation platform
- joint industry project for the maritime industry.
2020. URL https://opensimulationplatform.
com/. (Date accessed 10-December-2020).

Perabo, F., Park, D., Zadeh, M. K., Smogeli, O.,
and Jamt, L. Digital twin modelling of ship
power and propulsion systems: Application of
the open simulation platform (osp). In 2020
IEEE 29th International Symposium on Industrial
Electronics (ISIE). IEEE, pages 1265-1270, 2020.
doi:10.1109/ISIE45063.2020.9152218.

Rasheed, A., San, O., and Kvamsdal, T. Digital twin:
Values, challenges and enablers from a modeling
perspective. IEEE Access, 2020. 8:21980-22012.
doi:10.1109/ACCESS.2020.2970143.

Sadjina, S., Kyllingstad, L. T., Rindargy, M., Skjong,
S., Hsgy, V., and Pedersen, E. Distributed co-
simulation of maritime systems and operations.
Journal of Offshore Mechanics and Arctic Engineer-
ing, 2019. 141(1). doi:10.1115/1.4040473.

Sanchez-Gonzalez, P.-L., Diaz-Gutiérrez, D., Leo,
T. J., and Nunez-Rivas, L. R. Toward digitalization
of maritime transport? Sensors, 2019. 19(4):926.
doi:10.3390/s19040926.

Scheifele, C., Verl, A., and Riedel, O. Real-time co-
simulation for the virtual commissioning of produc-
tion systems. Procedia CIRP, 2019. 79:397-402.
doi:10.1016/j.procir.2019.02.104.

http://dx.doi.org/10.7148/2020-0235
http://dx.doi.org/10.7148/2020-0235
http://dx.doi.org/10.1109/ACCESS.2019.2933275
http://dx.doi.org/10.3384/ecp1915779
http://www.jmodelica.org/FMILibrary
http://www.jmodelica.org/FMILibrary
http://dx.doi.org/10.1016/j.procir.2018.03.084
http://dx.doi.org/10.3384/ecp1612435
http://dx.doi.org/10.22360/summersim.2018.scsc.001
http://dx.doi.org/10.3384/ecp17132653
http://dx.doi.org/10.1109/ACC.2001.945773.
http://dx.doi.org/10.1016/j.promfg.2018.12.033
https://bauklimatik-dresden.de/mastersim/index.php?aLa=en
https://bauklimatik-dresden.de/mastersim/index.php?aLa=en
http://dx.doi.org/10.3384/ecp1915769
https://opensimulationplatform.com/
https://opensimulationplatform.com/
http://dx.doi.org/10.1109/ISIE45063.2020.9152218
http://dx.doi.org/10.1109/ACCESS.2020.2970143
http://dx.doi.org/10.1115/1.4040473
http://dx.doi.org/10.3390/s19040926
http://dx.doi.org/10.1016/j.procir.2019.02.104

Hatledal et.al., “Co-simulation as a Fundamental Technology for Twin Ships”

Schleich, B., Anwer, N., Mathieu, L., and Wartzack,
S. Shaping the digital twin for design and
production engineering. CIRP Annals - Man-
ufacturing Technology, 2017. 66(1):141-144.
doi:10.1016/J.CIRP.2017.04.040.

Schweiger, G., Gomes, C., Engel, G., Hafner, I,
Schoeggl, J., Posch, A., and Nouidui, T. An em-
pirical survey on co-simulation: Promising stan-
dards, challenges and research needs. Simulation
modelling practice and theory, 2019. 95:148-163.
doi:10.1016/j.simpat.2019.05.001.

Sullivan, B. P., Desali, S., Sole, J., Rossi, M., Ramundo,
L., and Terzi, S. Maritime 4.0-opportunities in digi-
talization and advanced manufacturing for vessel de-
velopment. Procedia Manufacturing, 2020. 42:246—
253. doi:10.1016/j.promfg.2020.02.078.

Thule, C., Lausdahl, K., Gomes, C., Meisl,

Ot

G., and Larsen, P. G. Maestro: The into-
cps co-simulation framework. Simulation Mod-
elling Practice and Theory, 2019. 92:45-61.
doi:10.1016/j.simpat.2018.12.005.

Yilmaz, F., Durak, U., Taylan, K., and Oguztiiziin,

H. Adapting functional mockup units for hla-
compliant distributed simulation. In Proceedings
of the 10 th International Modelica Conference;
March 10-12; 2014; Lund; Sweden, 096. Linkoping
University Electronic Press, pages 247-257, 2014.
doi:10.3384 /ecp14096247.

Yun, S., Park, J.-H., and Kim, W.-T. Data-centric

middleware based digital twin platform for depend-
able cyber-physical systems. In 2017 Ninth In-
ternational Conference on Ubiquitous and Future
Networks (ICUFN). IEEE, pages 922-926, 2017.
doi:10.1109/ICUFN.2017.7993933.

311

http://dx.doi.org/10.1016/J.CIRP.2017.04.040
http://dx.doi.org/10.1016/j.simpat.2019.05.001
http://dx.doi.org/10.1016/j.promfg.2020.02.078
http://dx.doi.org/10.1016/j.simpat.2018.12.005
http://dx.doi.org/10.3384/ecp14096247
http://dx.doi.org/10.1109/ICUFN.2017.7993933
http://creativecommons.org/licenses/by/3.0

	Introduction
	Related work
	Co-simulation environment
	libcosim
	cosim4j

	Implementation
	Case study
	Results and Discussion
	Conclusion

