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Abstract
We develop a theory of quantum harmonic analysis on lattices inR

2d . Convolutions of
a sequence with an operator and of two operators are defined over a lattice, and using
corresponding Fourier transforms of sequences and operators we develop a version
of harmonic analysis for these objects. We prove analogues of results from classical
harmonic analysis and the quantum harmonic analysis of Werner, including Taube-
rian theorems and a Wiener division lemma. Gabor multipliers from time-frequency
analysis are described as convolutions in this setting. The quantum harmonic analysis
is thus a conceptual framework for the study of Gabor multipliers, and several of the
results include results on Gabor multipliers as special cases.

Keywords Gabor multipliers · Tauberian theorems · Feichtinger’s algebra ·
Fourier–Wigner transform

Mathematics Subject Classification 47B38 · 47B10 · 35S05 · 42B05 · 43A32

1 Introduction

In time-frequency analysis, one studies a signal ψ ∈ L2(Rd) by considering various
time-frequency representations of ψ . An important class of time-frequency repre-
sentations is obtained by fixing ϕ ∈ L2(Rd) and considering the short-time Fourier
transform Vϕψ of ψ with window ϕ, which is the function on the time-frequency
plane R

2d given by

Vϕψ(z) = 〈ψ,π(z)ϕ〉L2 for z ∈ R
2d ,
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where π(z) : L2(Rd) → L2(Rd) is the time-frequency shift given by π(z)ϕ(t) =
e2π iω·tϕ(t − x) for z = (x, ω). The intuition is that Vϕψ(z) carries information about
the components of the signal ψ with frequency ω at time x .

A question going back to von Neumann [58] and Gabor [23] is the validity of
reconstruction formulas of the form

ψ =
∑

λ∈�

Vϕψ(λ)π(λ)ξ for any ψ ∈ L2(Rd), (1)

where � = AZ
2d for A ∈ GL(2d, R) is a lattice in R

2d and ϕ, ξ ∈ L2(Rd). It
is known that (1) is indeed true for certain windows ϕ, ξ and lattices �, and such
formulas naturally lead to the concept of Gabor multipliers. If ϕ, ξ ∈ L2(Rd) and
m = {m(λ)}λ∈� is a sequence of complex numbers, we define the Gabor multiplier
Gϕ,ξ

m : L2(Rd) → L2(Rd) by

Gϕ,ξ
m (ψ) =

∑

λ∈�

m(λ)Vϕψ(λ)π(λ)ξ.

Compared to (1) we see that Gϕ,ξ
m modifies the time-frequency content ofψ in a simple

way, namely by multiplying the samples of its time-frequency representation with a
mask m. Gabor multipliers have been studied in the mathematics literature by [5,9,
14,16,20,21,29,33] among others, and also in more application-oriented contributions
[1,50,56].

Gabor multipliers are the discrete analogues of the much-studied localization oper-
ators [2,9,10,32]. In [46] we showed that the quantum harmonic analysis developed
by Werner and coauthors [39,59] provides a conceptual framework for localization
operators, leading to new results and interesting reinterpretations of older results on
localization operators. The goal of this paper is therefore to develop a version of
quantum harmonic analysis for lattices to provide a similar conceptual framework for
Gabormultipliers. Hencewe continue the line of research into applications of quantum
harmonic analysis from [45–47].

With this aim we introduce two convolutions of operators and sequences in Sect. 4.
Following [18,40,59] we first define the translation of an operator S on L2(Rd) by
λ ∈ � to be the operator

αλ(S) = π(λ)Sπ(λ)∗.

If c ∈ 
1(�) and S is a trace class operator on L2(Rd), the convolution c��S is defined
to be the operator

c��S =
∑

λ∈�

c(λ)αλ(S).

Gabor multipliers are then given by convolutions

Gϕ,ξ
m = m��(ξ ⊗ ϕ),
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where ξ ⊗ϕ is the rank-one operator ξ ⊗ϕ(ψ) = 〈ψ, ϕ〉L2 ξ . Furthermore, we define
the convolution S��T of two trace class operators S and T to be the sequence over �

given by

S��T (λ) = tr(Sαλ(Ť )),

where Ť = PT P with P the parity operator Pψ(t) = ψ(−t) for ψ ∈ L2(Rd). In
Sect. 4we investigate the commutativity and associativity of these convolutions, extend
their domains and in Proposition 4.3 we establish a version of Young’s inequality for
convolutions of operators and sequences.

An important tool throughout the paper is a Banach spaceB of trace class operators,
consisting of operators with Weyl symbol in the so-called Feichtinger algebra [15].
The use of B allows us to obtain continuity results for the convolutions with respect to

p(�) and Schatten-p classes—an important example is Proposition 4.1 which states
that

‖S��T ‖
1(�) � ‖S‖B‖T ‖T
for S ∈ B and trace class T , where ‖ · ‖T is the trace class norm. While there are
other classes of operators that would ensure that S��T ∈ 
1(�), see for instance
the Schwartz operators [38], B has the advantage of being a Banach space, hence
allowing the use of tools such as Banach space adjoints. The space B has previously
been studied by [14,17,18] among others.

To complement the convolutions, we introduce Fourier transforms of sequences
and operators in Sect. 5. For a sequence c ∈ 
1(�) we use its symplectic Fourier
series

F�
σ (c)(z) =

∑

λ∈�

c(λ)e2π iσ(λ,z) for z ∈ R
2d ,

where σ(z, z′) = ω · x ′ − x · ω′ for z = (x, ω), z′ = (x ′, ω′). As a Fourier transform
for trace class operators S we use the Fourier–Wigner transform

FW (S)(z) = e−π i x ·ωtr(π(−z)S) for z = (x, ω) ∈ R
2d .

Equipped with both convolutions and Fourier transforms, we naturally ask whether
the Fourier transforms turn convolutions into products. We show in Theorem 5.3 for
z ∈ R

2d that

F�
σ (S��T )(z) = 1

|�|
∑

λ◦∈�◦
FW (S)(z + λ◦)FW (T )(z + λ◦), (2)

where �◦ is the adjoint lattice of � defined in Sect. 5, and in Propositions 5.4 and 5.5
we show that

FW (c��S)(z) = F�
σ (c)(z)FW (S)(z). (3)
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These results include as special cases the so-called fundamental identity of Gabor
analysis [19,36,52,57] and results on the spreading function of Gabor multipliers due
to [14]. Equations (2) and (3) hold for general classes of operators and sequences, and
we take care to give a precise interpretation of the objects and equalities in all cases.

A fruitful approach to Gabor multipliers due to Feichtinger [16] is to consider
the so-called Kohn–Nirenberg symbol of operators. The Kohn–Nirenberg symbol of
an operator S on L2(Rd) is a function on R

2d , and Feichtinger used this to reduce
questions about Gabor multipliers in the Hilbert–Schmidt operators to questions about
functions in L2(R2d). This approach has later been used in other papers on Gabor
multipliers [5,14,20]. As Gabor multipliers are examples of convolutions, we show
in Sect. 6 that this approach can be generalized and phrased in terms of our quantum
harmonic analysis, and that one of themain results of [16] finds a natural interpretation
as aWiener’s lemma in our setting—see Theorem 6.3, Corollary 6.3.1 and the remarks
following the corollary.

In Sect. 7 we show the extension of some deeper results of harmonic analysis on
R

d to our setting. We obtain an analogue of Wiener’s classical Tauberian theorem in
Theorem 7.3, similar to the results of Werner and coauthors [39,59] in the continuous
setting. As an example we have the following equivalent statements for S ∈ B :
(i) The set of zeros of F�

σ (S�� Š∗) contains no open subsets in R
2d/�◦.

(ii) If c��S = 0 for c ∈ 
1(�), then c = 0.
(iii) B′��S is weak*-dense in 
∞(�).

These results are related to earlier investigations of Gabor multipliers by Feichtinger
[16]. In particular, he showed that if S = ξ ⊗ϕ is a rank-one operator andF�

σ (S�� Š∗)
has no zeros, then any m ∈ 
∞(�) can be recovered from the Gabor multiplier Gϕ,ξ

m .
Since Gabor multipliers are given by convolutions, the equivalence (i) ⇐⇒ (ii)
shows that we can recover m ∈ 
1(�) from Gϕ,ξ

m under the weaker condition (i)—this
holds in particular for finite sequences m.

Finally, we apply our techniques to prove a version of Wiener’s division lemma
in Theorem 7.4. At the level of Weyl symbols this turns out to reproduce a result by
Gröchenig and Pauwels [31], but in our context it has the following interpretation:

IfFW (S) has compact support for some operator S, and the support is sufficiently
small compared to the density of �, then there exists a sequence m ∈ 
∞(�)

such that S = m�� A for some A ∈ B. If S belongs to the Schatten-p class of
compact operators, then m ∈ 
p(�).

The above result fits well into the common intuition that operators S with compactly
supported FW (S) (so-called underspread operators) can be approximated by Gabor
multipliers [14]—i.e. by operators c��T where T is a rank-one operator. The result
shows that if we allow T to be any operator in B, then any underspread operator S is
precisely of the form S = c��T for a sufficiently dense lattice �.

We end this introduction by emphasizing the hybrid nature of our setting. In [59],
Werner introduced quantum harmonic analysis of functions on R

2d and operators on
the Hilbert space L2(Rd). We are considering the discrete setting of sequences on
a lattice instead of functions on R

2d . If we had modified the Hilbert space L2(Rd)

accordingly, many of our results would follow by the arguments of [59], as already
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outlined in [39]. However, we keep the sameHilbert space L2(Rd) as in the continuous
setting. We are therefore mixing the discrete (lattices) and the continuous (L2(Rd)),
which leads to some extra intricacies.

2 Conventions

By a lattice � we mean a full-rank lattice in R
2d , i.e. � = AZ

2d for A ∈ GL(2d, R).
The volume of � = AZ

2d is |�| := det(A). For a lattice �, the Haar measure on
R
2d/� will always be normalized so that R

2d/� has total measure 1.
If X is aBanach space and X ′ its dual space, the action of y ∈ X ′ on x ∈ X is denoted

by the bracket 〈y, x〉X ′,X , where the bracket is antilinear in the second coordinate to
be compatible with the notation for inner products in Hilbert spaces. This means that
we are identifying the dual space X ′ with antilinear functionals on X . For two Banach
spaces X , Y we useL(X , Y ) to denote the Banach space of continuous linear operators
from X to Y , and if X = Y we simply write L(X). The notation P � Q means that
there is some C > 0 such that P ≤ C · Q.

3 Spaces of Operators and Functions

3.1 Time-Frequency Shifts and the Short-Time Fourier Transform

For z = (x, ω) ∈ R
2d we define the time-frequency shift operator π(z) by

(π(z)ψ)(t) = e2π iω·tψ(t − x) for ψ ∈ L2(Rd).

Hence π(z) can be written as the composition MωTx of a translation operator
(Txψ)(t) = ψ(t − x) and a modulation operator (Mωψ)(t) = e2π iω·tψ(t). The
time-frequency shifts π(z) are unitary operators on L2(Rd). For ψ, ϕ ∈ L2(Rd) we
can use the time-frequency shifts to define the short-time Fourier transform Vϕψ of
ψ with window ϕ by

Vϕψ(z) = 〈ψ,π(z)ϕ〉L2 for z ∈ R
2d .

The short-time Fourier transform satisfies an orthogonality condition, sometimes
called Moyal’s identity [22,27].

Lemma 3.1 [Moyal’s identity] If ψ1, ψ2, ϕ1, ϕ2 ∈ L2(Rd), then Vϕi ψ j ∈ L2(R2d)

for i, j ∈ {1, 2}, and the relation

〈
Vϕ1ψ1, Vϕ2ψ2

〉
L2 = 〈ψ1, ψ2〉L2 〈ϕ1, ϕ2〉L2

holds, where the leftmost inner product is in L2(R2d) and those on the right are in
L2(Rd).
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By replacing the inner product in the definition of Vϕψ by a duality bracket, one can
define the short-time Fourier transform for other classes of ψ, ϕ. The most general
case we need is that of a Schwartz function ϕ ∈ S(Rd) and a tempered distribution
ψ ∈ S ′(Rd); we define

Vψϕ(z) = 〈ψ,π(z)ϕ〉S ′,S for z ∈ R
2d .

3.2 Feichtinger’s Algebra

An appropriate space of functions for our purposes will be Feichtinger’s algebra
S0(Rd), first introduced by Feichtinger in [15]. To define S0(Rd), let ϕ0 denote the
L2-normalized Gaussian ϕ0(x) = 2d/4e−πx ·x for x ∈ R

d . Then S0(Rd) is the space
of all ψ ∈ S ′(Rd) such that

‖ψ‖S0 :=
∫

R2d
|Vϕ0ψ(z)| dz < ∞.

With the norm above, S0(Rd) is a Banach space of continuous functions and an algebra
under multiplication and convolution [15]. By [27, Thm. 11.3.6], the dual space of
S0(Rd) is the space S′

0(R
d) consisting of all ψ ∈ S ′(Rd) such that

‖ψ‖S′
0

:= sup
z∈R2d

|Vϕ0ψ(z)| dz < ∞,

where an element ψ ∈ S′
0(R

d) acts on φ ∈ S0(Rd) by

〈φ,ψ〉S′
0,S0

=
∫

R2d
Vϕ0φ(z)Vϕ0ψ(z) dz.

We get the following chain of continuous inclusions:

S(Rd) ↪→ S0(R
d) ↪→ L2(Rd) ↪→ S′

0(R
d) ↪→ S ′(Rd).

One important reason for using Feichtinger’s algebra is that it consists of continuous
functions, and that sampling them over a lattice produces a summable sequence [15,
Thm. 7C)].

Lemma 3.2 (Sampling Feichtinger’s algebra) Let � be a lattice in R
2d and f ∈

S0(R2d). Then f |� = { f (λ)}λ∈� ∈ 
1(�) with

‖ f |�‖
1 � ‖ f ‖S0 ,

where the implicit constant depends only on the lattice �.
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3.3 The Symplectic Fourier Transform

Wewill use the symplectic Fourier transform Fσ f of functions f ∈ L1(R2d), defined
by

Fσ f (z) =
∫

R2d
f (z′)e−2π iσ(z,z′) dz′,

where σ is the standard symplectic form σ(z, z′) = ω · x ′ − x ·ω′ for z = (x, ω), z′ =
(x ′, ω′).Fσ is a Banach space isomorphism S0(R2d) → S0(R2d), extends to a unitary
operator L2(R2d) → L2(R2d) and a Banach space isomorphism S′

0(R
2d) → S′

0(R
2d)

[18, Lem. 7.6.2]. In fact, Fσ is its own inverse, so that Fσ (Fσ ( f )) = f for f ∈
S′
0(R

2d) [11, Prop. 144].

3.4 Banach Spaces of Operators on L2(Rd)

The results of this paper concern operators on various function spaces, and we will
pick operators from two kinds of spaces: the Schatten-p classes T p for 1 ≤ p ≤ ∞
and a space B of operators defined using the Feichtinger algebra.

3.4.1 The Schatten Classes

Starting with the Schatten classes, we recall that any compact operator S on L2(Rd)

has a singular value decomposition [7, Remark 3.1], i.e. there exist two orthonormal
sets {ψn}n∈N and {φn}n∈N in L2(Rd) and a bounded sequence of positive numbers
{sn(S)}n∈N such that S may be expressed as

S =
∑

n∈N
sn(S)ψn ⊗ φn,

with convergence of the sum in the operator norm. Here ψ ⊗ φ for ψ, φ ∈ L2(Rd)

denotes the rank-one operator ψ ⊗ φ(ξ) = 〈ξ, φ〉L2 ψ .
For 1 ≤ p < ∞ we define the Schatten-p class T p of operators on L2(Rd) by

T p = {T compact : {sn(T )}n∈N ∈ 
p}.

To simplify the statement of some results, we also define T ∞ = L(L2) with ‖ · ‖T ∞
given by the operator norm. The Schatten-p class T p is a Banach space with the norm

‖S‖T p =
( ∑

n∈N
sn(S)p

)1/p

. Of particular interest is the space T := T 1; the so-called

trace class operators. Given an orthonormal basis {en}n∈N of L2(Rd), the trace defined
by

tr(S) =
∑

n∈N
〈Sen, en〉L2
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is a well-defined and bounded linear functional on T , and independent of the orthonor-
mal basis {en}n∈N used. The dual space of T is L(L2) [7, Thm. 3.13], and T ∈ L(L2)

defines a bounded antilinear functional on T by

〈T , S〉L(L2),T = tr(T S∗) for S ∈ T .

Another special case is the space of Hilbert–Schmidt operators HS := T 2, which
is a Hilbert space with inner product

〈S, T 〉HS = tr(ST ∗).

3.4.2 TheWeyl Transform and Operators with Symbol in S0(R2d)

The other class of operators we will use will be defined in terms of the Weyl transform.
We first need the cross-Wigner distribution W (ξ, η) of two functions ξ, η ∈ L2(Rd),
defined by

W (ξ, η)(x, ω) =
∫

Rd
ξ

(
x + t

2

)
η

(
x − t

2

)
e−2π iω·t dt for (x, ω) ∈ R

2d .

For f ∈ S′
0(R

2d), we define the Weyl transform L f of f to be the operator L f :
S0(Rd) → S′

0(R
d) given by

〈
L f η, ξ

〉
S′
0,S0

:= 〈 f , W (ξ, η)〉S′
0,S0

for any ξ, η ∈ S0(R
d).

f is called the Weyl symbol of the operator L f . By the kernel theorem for modu-
lation spaces [27, Thm. 14.4.1], the Weyl transform is a bijection from S′

0(R
2d) to

L(S0(Rd), S′
0(R

d)).

Notation In particular, any S ∈ L(S0(Rd), S′
0(R

d)) has a Weyl symbol, and we will
denote the Weyl symbol of S by aS . By definition, this means that LaS = S.

It is also well-known that the Weyl transform is a unitary mapping from L2(R2d) to
HS [49]. This means in particular that

〈S, T 〉HS = 〈aS, aT 〉L2 for S, T ∈ HS,

which often allows us to reduce statements about Hilbert–Schmidt operators to state-
ments about L2(R2d).

We then define B to be the Banach space of continuous operators S : S0(Rd) →
S′
0(R

d) such that aS ∈ S0(R2d), with norm

‖S‖B := ‖aS‖S0 .

B consists of trace class operators L2(Rd) and we have a norm-continuous inclusion
ι : B ↪→ T [25,30].
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Example 3.1 Ifφ,ψ ∈ L2(Rd), consider the rank-one operatorφ⊗ψ. ItsWeyl symbol
is the cross-Wigner distribution W (φ,ψ) [11, Cor. 207], and W (φ,ψ) ∈ S0(R2d) if
and only if φ,ψ ∈ S0(Rd) [11, Prop. 365]. The simplest examples of operators in B
are therefore φ ⊗ ψ for φ,ψ ∈ S0(Rd).

The dual space B′ can also be identified with a Banach space of operators. By
definition, τ : B → S0(R2d) given by τ(S) = aS is an isometric isomorphism. Hence
the Banach space adjoint τ ∗ : S′

0(R
2d) → B′ is also an isomorphism. Since the Weyl

transform is a bijection from S′
0(R

2d) to L(S0(Rd), S′
0(R

d)), we can identify B′ with
operators S0(Rd) → S′

0(R
d):

B′ τ∗←−→ S′
0(R

2d)
Weyl calculus←−−−−−→ L(S0(R

d), S′
0(R

d)).

In this paperwewill always consider elements ofB′ as operators S0(Rd) → S′
0(R

d)

using these identifications. SinceL(L2) is the dual space ofT , theBanach space adjoint
ι∗ : L(L2) → B′ is a weak*-to-weak*-continuous inclusion of L(L2) into B′.

Remark For more results on B and B′ we refer to [17,18]. In particular we mention
that we could have definedB using other pseudodifferential calculi, such as the Kohn–
Nirenberg calculus, and still get the same space B with an equivalent norm. We would
also like to point out that the statements of this section may naturally be rephrased
using the notion of Gelfand triples, see [18].

3.5 Translation of Operators

The idea of translating an operator S ∈ L(L2) by z ∈ R
2d using conjugation with

π(z) has been utilized both in physics [59] and time-frequency analysis [18,40]. More
precisely, we define for z ∈ R

2d and S ∈ B′ the translation of S by z to be the operator

αz(S) = π(z)Sπ(z)∗.

We will also need the operation S �→ Š = P S P , where P is the parity operator
(Pψ)(t) = ψ(−t) forψ ∈ L2(Rd). The main properties of these operations are listed
below, note in particular that part (i) supports the intuition that αz is a translation of
operators. See Lemmas 3.1 and 3.2 in [46] for the proofs.

Lemma 3.3 Let S ∈ B′.

(i) If aS is the Weyl symbol of S, then the Weyl symbol of αz(S) is Tz(aS).

(ii) αz(αz′(S)) = αz+z′(S).

(iii) The operations αz , ∗ and ˇ are isometries on B,B′ and T p for 1 ≤ p ≤ ∞.
(iv) (S∗)q= (Š)∗.

By the last part we can unambiguously write Š∗.
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4 Convolutions of Sequences and Operators

In [59], the convolution of a function f ∈ L1(R2d) and an operator S ∈ T was defined
by the operator-valued integral

f �S =
∫

R2d
f (z)αz(S) dz

and the convolution of two operators S, T ∈ T was defined to be the function

S�T (z) = tr(Sαz(Ť )) for z ∈ R
2d .

These definitions, along with a Fourier transform defined for operators, have been
shown to produce a theory of quantum harmonic analysis with non-trivial conse-
quences for topics such as quantum measurement theory [39] and time-frequency
analysis [46]. The setting where R

2d is replaced by some lattice � ⊂ R
2d is fre-

quently studied in time-frequency analysis, and our goal is therefore to develop a
theory of convolutions and Fourier transforms of operators in that setting.

For a sequence c ∈ 
1(�) and S ∈ T , we define the operator

c��S := S��c :=
∑

λ∈�

c(λ)αλ(S), (4)

and for operators S ∈ B and T ∈ T we define the sequence

S��T (λ) = S�T (λ) for λ ∈ �. (5)

Hence S��T is the sequence obtained by restricting the function S�T to �.

Remark Weuse the same notation �� for the convolution of an operator and a sequence
and for the convolution of two operators. The correct interpretation of �� will always
be clear from the context.

Since αλ is an isometry on T and B, c��S is well-defined with ‖c��S‖T ≤
‖c‖
1‖S‖T for S ∈ T and similarly ‖c��S‖B ≤ ‖c‖
1‖S‖B for S ∈ B. The fact that
S��T is a well-defined and summable sequence on � is less straightforward.

Proposition 4.1 If S ∈ B and T ∈ T , then S��T ∈ 
1(�) with ‖S��T ‖
1 �
‖S‖B‖T ‖T .

Proof By [46, Thm. 8.1] we know that S�T ∈ S0(R2d) with ‖S�T ‖S0 � ‖S‖B‖T ‖T .

Hence the result follows from Lemma 3.2 and S��T (λ) = S�T (λ). ��

4.1 Gabor Multipliers and Sampled Spectrograms

If we consider rank-one operators, these convolutions reproduce well-known objects
from time-frequency analysis. First consider the rank-one operator ξ1⊗ξ2 for ξ1, ξ2 ∈
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L2(Rd). The operators c��(ξ1 ⊗ ξ2) are well-known in time-frequency analysis as
Gabor multipliers [5,14,16,20]: it is simple to show that

αλ(ξ1 ⊗ ξ2) = (π(λ)ξ1) ⊗ (π(λ)ξ2),

so if c ∈ 
1(�) it follows from the definition (4) that c��(ξ1⊗ξ2) acts onψ ∈ L2(Rd)

by

c��(ξ1 ⊗ ξ2)ψ =
∑

λ∈�

c(λ)Vξ2ψ(λ)π(λ)ξ1, (6)

which is the definition of the Gabor multiplier Gξ2,ξ1
c used in time-frequency analysis

[20], i.e. Gξ2,ξ1
c = c��(ξ1 ⊗ ξ2).

Remark In this sense, operators of the form c��S are a generalization of Gabor mul-
tipliers. We mention that this is a different generalization from the multiple Gabor
multipliers introduced in [14].

Ifwepick another rank-one operator ϕ̌1⊗ϕ̌2 forϕ1, ϕ2 ∈ L2(Rd) (here ϕ̌(t) = ϕ(−t)),
one can calculate using the definition (5) that

(ξ1 ⊗ ξ2)��(ϕ̌1 ⊗ ϕ̌2)(λ) = Vϕ2ξ1(λ)Vϕ1ξ2(λ). (7)

In particular, if ϕ1 = ϕ2 = ϕ and ξ1 = ξ2 = ξ , then

(ξ ⊗ ξ)��(ϕ̌ ⊗ ϕ̌)(λ) = |Vϕξ(λ)|2. (8)

The function |Vϕξ(z)|2 is the so-called spectrogram of ξ with window ϕ, hence (ξ ⊗
ξ)��(ϕ̌ ⊗ ϕ̌) consists of samples of the spectrogram over �.

Finally, if S ∈ T is any operator, then one may calculate that

S��ϕ̌1 ⊗ ϕ̌2(λ) = 〈Sπ(λ)ϕ1, π(λ)ϕ2〉L2 , (9)

often called the lower symbol of S with respect to ϕ1, ϕ2 and � [16].

Remark In particular, Proposition 4.1 does not hold for all S ∈ T . By Remark 4.6 in
[5], there exists a function ψ ∈ L2(R) such that

∑

(m,n)∈Z2

(ψ ⊗ ψ)�Z2(ψ̌ ⊗ ψ̌)(m, n) =
∑

(m,n)∈Z2

|Vψψ(m, n)|2 = ∞.

Since ψ ⊗ ψ, ψ̌ ⊗ ψ̌ ∈ T , this shows that the assumption S ∈ B in Proposition 4.1
is necessary.
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4.2 Associativity and Commutativity of Convolutions

Since the convolution S�T of twooperators S, T ∈ T is commutative in the continuous
setting [59, Prop. 3.2], it follows from the definitions that the convolutions (4) and (5)
are commutative. It is also a straightforward consequence of the definitions that the
convolutions are bilinear.

In the original theory ofWerner [59], the associativity of the convolution operations
is of fundamental importance. Associativity still holds in some cases when moving
from R

2d to �, but we will later see in Corollary 7.2.2 that the convolution of three
operators over a lattice is not associative in general. In what follows, c ∗� d denotes
the usual convolution of sequences

c ∗� d(λ) =
∑

λ′∈�

c(λ′)d(λ − λ′).

Proposition 4.2 (Associativity) Let c, d ∈ 
1(�), S ∈ B and T ∈ T . Then

(i) c ∗� (S��T ) = (c��S)��T ,
(ii) (c ∗� d)��T = c��(d��T ).

Proof For the proof of (i), we write out the definitions of the convolutions and use the
commutativity S��T = T ��S to get

c ∗� (S��T )(λ) = c ∗� (T ��S)(λ)

=
∑

λ′∈�

c(λ′)tr(T αλ−λ′(Š))

= tr

(
T

∑

λ′∈�

c(λ′)αλ−λ′(Š)

)

= tr

(
T αλ

(
∑

λ′∈�

c(λ′)α−λ′(Š)

))
by Lemma 3.3

= tr

(
T αλ

(
P

∑

λ′∈�

c(λ′)αλ′(S)P

))

= T ��(c��S) by (4) and (5)

= (c��S)��T by commutativity.

We have used the easily checked relation α−λ′(Š) = Pαλ′(S)P . For the second part,
we find that

(c ∗� d)��T =
∑

λ∈�

(c ∗� d)(λ)αλ(T )

=
∑

λ∈�

∑

λ′∈�

c(λ′)d(λ − λ′)αλ(T )
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=
∑

λ′∈�

c(λ′)
∑

λ∈�

d(λ − λ′)αλ(T )

=
∑

λ′∈�

c(λ′)αλ′(d��T ) = c��(d��T ).

To pass to the last line we have used the relation αλ′(d��T ) = ∑
λ d(λ − λ′)αλ(T ),

which is easily verified. ��

Remark Part (i i) of this result along with the trivial estimate ‖c��T ‖T ≤ ‖c‖
1‖T ‖T
shows that T is a Banach module (see [24]) over 
1(�) if we define the action of
c ∈ 
1(�) on T ∈ T by c��T . The same proofs also show that this is true when T is
replaced by B or any Schatten class T p for 1 ≤ p ≤ ∞.

Example 4.1 Let ϕ, ξ ∈ L2(Rd) and c ∈ 
1(�), and define S = ξ ⊗ ξ and T = ϕ̌ ⊗ ϕ̌.
If we use (8) to simplify S��T and (9) to simplify (c��S)��T , the first part of the
result above becomes

c ∗� |Vϕξ |2(λ) = 〈(c��ξ ⊗ ξ)π(λ)ϕ, π(λ)ϕ〉L2 . (10)

In words, the convolution of a sequence c with samples of a spectrogram |Vϕξ |2 can
be described using the action of a Gabor multiplier c�(ξ ⊗ ξ). In applications of con-
volutional neural networks to audio processing, one often considers the spectrogram
of an audio signal as the input to the network. Convolutions of sequences with samples
of spectrograms therefore appear naturally in such networks, and the connection (10)
has been exploited in this context—see the proof of [13, Thm. 1].

4.3 Young’s Inequality

Theconvolutions in (4) and (5) canbedefined formore general sequences andoperators
by establishing a version ofYoung’s inequality [27, Thm. 1.2.1]. In the continuous case
such an inequality was established by Werner [59] using the L p-norms of functions
and Schatten-p-norms of operators. In the discrete case, it is not always possible to
use the Schatten-p-norms, since Proposition 4.1 requires S ∈ B. We will therefore
always require that one of the operators belongs to B.

A Young’s inequality for Schatten classes can then be established by first extending
the domains of the convolutions by duality. If S ∈ B and c ∈ 
∞(�), we define
c��S ∈ L(L2) by

〈c��S, R〉L(L2),T :=
〈
c, R�� Š∗〉


∞,
1
for any R ∈ T . (11)

and if S ∈ B and T ∈ L(L2) = T ∞ we define T ��S ∈ 
∞(�) by

〈T ��S, c〉
∞(�),
1(�) :=
〈
T , c�� Š∗〉

L(L2),T
for any c ∈ 
1(�). (12)
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It is a simple exercise to show that these definitions define elements of L(L2) and

∞(�) satisfying ‖c��S‖L(L2) � ‖c‖
∞‖S‖B and ‖T ��S‖
∞ ≤ ‖T ‖L(L2)‖S‖B,
and that they agree with (4) and (5) when c ∈ 
1(�) or T ∈ T . A standard (complex)
interpolation argument then gives the following result, since (
1(�), 
∞(�))θ =

p(�) and (T 1, T ∞)θ = T p with 1

p = 1 − θ [6]. For Gabor multipliers the second
part of this result is well-known [20, Thm. 5.4.1], and a weaker version of the first
part is known for p = 1, 2,∞ [20, Thm. 5.8.3].

Proposition 4.3 (Young’s inequality) Let S ∈ B and 1 ≤ p ≤ ∞.

(i) If T ∈ T p, then ‖T ��S‖
p � ‖T ‖T p‖S‖B.
(ii) If c ∈ 
p(�), then ‖c��S‖T p � ‖c‖
p‖S‖B.

Remark If 1 ∈ 
∞(�) is given by 1(λ) = 1 for any λ, then Feichtinger observed in
[16, Thm. 5.15] that φ ∈ S0(Rd) generates a so-called tight Gabor frame if and only if
the Gabor multiplier 1��(φ ⊗ φ) is the identity operator I in L(L2). A similar result
holds in the more general case: if S ∈ B, then 1��S∗S = I if and only if S generates
a tight Gabor g-frame, recently introduced in [54].

We may also use duality to define the convolution T ��S ∈ 
∞(�) of S ∈ B with
T ∈ B′ by

〈T ��S, c〉
∞,
1 :=
〈
T , c�� Š∗〉

B′,B
for any c ∈ 
1(�), (13)

which agrees with (12) when T ∈ L(L2) ⊂ B′ and satisfies ‖S��T ‖
∞ ≤
‖S‖B‖T ‖B′ . We end this section by showing that the space c0(�) of sequences van-
ishing at infinity corresponds to compact operators under convolutions with S ∈ B.
The second part of this statement is due to Feichtinger [16, Thm. 5.15] for the special
case of Gabor multipliers.

Proposition 4.4 Let S ∈ B. If T is a compact operator, then T ��S ∈ c0(�). If
c ∈ c0(�), then c��S is a compact operator on L2(Rd).

Proof By [46, Prop. 4.6], the function T �S belongs to the spaceC0(R
2d) of continuous

functions vanishing at infinity. Since T ��S is simply the restriction of T �S to �, it
follows that T ��S ∈ c0(�). For the second part, let cN be the sequence

cN (λ) =
{

c(λ) if |λ| < N

0 otherwise.

Then cN ��S = ∑
|λ|<N c(λ)αλ(S) is a compact operator for each N ∈ N, and by

Proposition 4.3 and the bilinearity of convolutions

‖c��S − cN ��S‖L(L2) ≤ ‖c − cN ‖
∞‖S‖B → 0 as N → ∞.

Hence c��S is the limit in the operator topology of compact operators, and is therefore
itself compact. ��
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5 Fourier Transforms

In [59], Werner observed that if one defines a Fourier transform of an operator S ∈ T
to be the function

FW (S)(z) := e−π i x ·ωtr(π(−z)S) for z = (x, ω) ∈ R
2d ,

then the formulas

FW ( f �S) = Fσ ( f )FW (S), Fσ (S�T ) = FW (S)FW (T ) (14)

hold for f ∈ L1(R2d) and S, T ∈ T . The transform FW , called the Fourier–Wigner
transform (or the Fourier-Weyl transform [59]) is an isomorphism FW : B →
S0(R2d), can be extended to a unitary map FW : HS → L2(R2d), and to an iso-
morphism FW : B′ → S′

0(R
2d) by defining FW (S) for S ∈ B′ by duality [18, Cor.

7.6.3]:

〈FW (S), f 〉S′
0,S0

:= 〈S, ρ( f )〉B′,B for any f ∈ S0(R
2d). (15)

Here ρ : S0(R2d) → B is the inverse of FW . In fact, FW and the Weyl transform are
related by a symplectic Fourier transform: for any S ∈ B′ we have

FW (S) = Fσ (aS),

where aS is the Weyl symbol of S. As an important special case, the Fourier–Wigner
transform of a rank-one operator φ ⊗ ψ is

FW (φ ⊗ ψ)(x, ω) = eπ i x ·ωVψφ(x, ω). (16)

Since we have defined convolutions of operators and sequences, it is natural to ask
whether a version of (14) holds in our setting. We start by defining a suitable Fourier
transform of sequences.

Symplectic Fourier Series

For the purposes of this paper, we identify the dual group R̂2d withR
2d by the bijection

R
2d � z �→ χz ∈ R̂2d , where χz is the symplectic character1 χz(z′) = e2π iσ(z,z′).

Given a lattice � ⊂ R
2d , it follows that the dual group of � is identified with R

2d/�◦

1 Phase space, which in this paper is R
2d , is more properly described by (the isomorphic) space R

d × R̂d .

The symplectic characters appear because they are the natural way of identifying the group R
d × R̂d with

its dual group.
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(see [12, Prop. 3.6.1]), where �◦ is the annihilator group

�◦ = {λ◦ ∈ R
2d : χλ◦(λ) = 1 for any λ ∈ �}

= {λ◦ ∈ R
2d : e2π iσ(λ◦,λ) = 1 for any λ ∈ �}.

The group�◦ is itself a lattice, namely the so-called adjoint lattice of� from [18,52].
Given this identification of the dual group of �, the Fourier transform of c ∈ 
1(�)

is the symplectic Fourier series

F�
σ (c)(ż) :=

∑

λ∈�

c(λ)e2π iσ(λ,z).

Here ż denotes the image of z ∈ R
2d under the natural quotient map R

2d → R
2d/�◦,

so F�
σ (c) is a function on R

2d/�◦. If we denote by A(R2d/�◦) the Banach space of
functions on R

2d/�◦ with symplectic Fourier coefficients in 
1(�), the Feichtinger
algebra has the following property [15, Thm. 7 B)].

Lemma 5.1 If � is a lattice, the periodization operator P� : S0(R2d) → A(R2d/�)

defined by

P�( f )(ż) = |�|
∑

λ∈�

f (z + λ) for z ∈ R
2d

is continuous and surjective.

Remark (i) Since |�◦| = 1
|�| [18, Lem. 7.7.4], we have

P�◦( f )(ż) = 1

|�|
∑

λ◦∈�

f (z + λ◦).

(ii) One may define Feichtinger’s algebra S0(G) for any locally compact abelian
group G [15]. In fact, all our function spaces besides L2(Rd) are examples of
Feichtinger’s algebra, since S0(�) = 
1(�) and S0(R2d/�◦) = A(R2d/�◦).

When we identify the dual group of � with R
2d/�◦, the Poisson summation formula

for functions in S0(R2d) takes the following form.

Theorem 5.2 (Poisson summation) Let � be a lattice in R
2d and assume that f ∈

S0(R2d). Then

1

|�|
∑

λ◦∈�◦
f (z + λ◦) =

∑

λ∈�

Fσ ( f )(λ)e2π iσ(λ,z) for z ∈ R
2d .

Proof This is [12, Thm. 3.6.3] with A = R
2d , B = �◦ and using (�◦)◦ = �. To get

equality for any z ∈ R
2d , we use that

∑
λ◦∈�◦ f (z +λ◦) defines a continuous function

on R
2d/�◦ by Lemma 5.1. ��



Journal of Fourier Analysis and Applications (2020) 26 :48 Page 17 of 37 48

Since F�
σ is a Fourier transform it extends to a unitary mapping F�

σ : 
2(�) →
L2(R2d/�◦) satisfying

F�
σ (c ∗� d) = F�

σ (c)F�
σ (d) (17)

for c ∈ 
1(�) and d ∈ 
2(�).

5.1 The Fourier Transform of S�3T

We now consider a version of (14) for sequences. The formula for F�
σ (S��T ) is a

simple consequence of the Poisson summation formula.

Theorem 5.3 Let S ∈ B and T ∈ T . Then

F�
σ (S��T )(ż) = 1

|�|
∑

λ◦∈�◦
FW (S)(z + λ◦)FW (T )(z + λ◦)

= P�◦(FW (S)FW (T ))(ż)

for any z ∈ R
2d .

Proof From [46, Thm. 8.2], we know that S�T ∈ S0(R2d). Hence Fσ (S�T ) =
FW (S)FW (T ) ∈ S0(R2d) since Fσ : S0(R2d) → S0(R2d) is an isomorphism. By
applying Poisson’s summation formula from Theorem 5.2 to f = FW (S)FW (T ), we
find that

1

|�|
∑

λ◦∈�◦
FW (S)(z + λ◦)FW (T )(z + λ◦) =

∑

λ∈�

Fσ (FW (S)FW (T ))(λ)e2π iσ(λ,z)

=
∑

λ∈�

S��T (λ)e2π iσ(λ,z),

where we used that Fσ is its own inverse to conclude that

Fσ (FW (S)FW (T ))(λ) = Fσ (Fσ (S�T ))(λ) = S�T (λ) = S��T (λ).

Since FW (S)FW (T ) ∈ S0(R2d), Theorem 5.2 says that the equation holds for any
z ∈ R

2d . ��
Remark Theorem 5.3 has also been proved and used in [44, Cor. A.3] in noncommu-
tative geometry, with stronger assumptions on S, T .

Theorem 5.3 has many interesting special cases. We will frequently refer to the fol-
lowing version, which follows since a short calculation using the definition of the
Fourier–Wigner transform shows that

FW (Š∗)(z) = FW (S)(z). (18)
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Corollary 5.3.1 Let S ∈ B. Then

F�
σ (S�� Š∗)(ż) = 1

|�|
∑

λ◦∈�◦
|FW (S)(z + λ◦)|2 for any z ∈ R

2d .

Corollary 5.3.2 Let S ∈ B and T ∈ T . Then

∑

λ∈�

S��T (λ) = 1

|�|
∑

λ◦∈�◦
FW (S)(λ◦)FW (T )(λ◦).

Proof This follows from Theorem 5.3 with z = 0. ��
Now assume that S and T are rank-one operators: S = ξ1 ⊗ ξ2 for ξ1, ξ2 ∈ S0(Rd)

and T = ϕ̌1 ⊗ ϕ̌2 for ϕ1, ϕ2 ∈ L2(Rd). By (7)

S��T (λ) = Vϕ2ξ1(λ)Vϕ1ξ2(λ),

and noting that T = Ť0
∗
for T0 = ϕ2 ⊗ ϕ1, we can use (16) and (18) to find

FW (S)(z) = eπ i x ·ωVξ2ξ1(z)

FW (T )(z) = e−π i x ·ωVϕ1ϕ2(z)

Hence Theorem 5.3 says that

F�
σ (Vϕ2ξ1Vϕ1ξ2|�)(ż) = 1

|�|
∑

λ◦∈�◦
Vξ2ξ1(z + λ◦)Vϕ1ϕ2(z + λ◦).

Furthermore, Corollary 5.3.2 gives

∑

λ∈�

Vϕ2ξ1(λ)Vϕ1ξ2(λ) = 1

|�|
∑

λ◦∈�◦
Vξ2ξ1(λ

◦)Vϕ1ϕ2(λ◦),

which is the fundamental identity of Gabor analysis [19,36,52,57].

5.2 The Fourier Transform of c�3S

When c ∈ 
1(�), we obtain the expected formula for FW (c��S).

Proposition 5.4 If c ∈ 
1(�) and S ∈ T , then

FW (c��S)(z) = F�
σ (c)(ż)FW (S)(z) for z ∈ R

2d .

Proof One easily verifies the formula

FW (αλ(S))(z) = e2π iσ(λ,z)FW (S)(z),
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showing that the Fourier transform of a translation is a modulation. Hence

FW (c��S)(z) =
∑

λ∈�

c(λ)FW (αλ(S))

=
∑

λ∈�

c(λ)e2π iσ(λ,z)FW (S)(z)

= FW (S)(z)
∑

λ∈�

c(λ)e2π iσ(λ,z).

To move FW inside the sum, we use that the sum
∑

λ∈� c(λ)αλ(S) converges abso-
lutely in T , and FW is continuous from T to L∞(R2d) by the Riemann–Lebesgue
lemma for FW [46, Prop. 6.6]. ��

5.2.1 Technical Intermezzo

Let A′(R2d/�◦) denote the dual space of A(R2d/�◦), consisting of distributions on
R
2d/�◦ with symplectic Fourier coefficients in 
∞(�). To understand the statement

in Proposition 5.4 when c ∈ 
∞(�), we need to ‘extend’ distributions in A′(R2d/�◦)
to distributions in S′

0(R
2d). When f ∈ A(R2d/�◦) this is achieved by

A(R2d/�◦) � f �→ f ◦ q ∈ S′
0(R

2d),

where q : R
2d → R

2d/�◦ is the natural quotient map. To extend this map to distri-
butions f ∈ A′(R2d/�◦), one can use Weil’s formula [26, (6.2.11)] to show that for
f ∈ A(R2d/�◦) and g ∈ S0(R2d) one has

〈 f ◦ q, g〉S′
0,S0

= 〈 f , P�◦ g〉A′(R2d/�◦),A(R2d ,�◦) .

This shows that the map f �→ f ◦ q agrees with the Banach space adjoint
P∗

�◦ : A′(R2d/�◦) → S′
0(R

2d) for f ∈ A(R2d/�◦). The natural way to extend
f ∈ A′(R2d/�◦) is therefore to consider P∗

�◦ f ∈ S′
0(R

2d), and by an abuse of
notation we will use f to also denote the extension P∗

�◦ f —by definition this means
that when f ∈ A′(R2d/�◦) is considered an element of S′

0(R
2d), it satisfies for

g ∈ S0(R2d)

〈 f , g〉S′
0,S0

= 〈 f , P�◦ g〉A′(R2d/�◦),A(R2d ,�◦) . (19)

We also remind the reader that for c ∈ 
∞(�) one defines F�
σ (c) as an element of

A′(R2d/�◦) by

〈
F�

σ (c), g
〉
A′(R2d/�◦),A(R2d/�◦) :=

〈
c, (F�

σ )−1(g)
〉


∞(�),
1(�)
, (20)

where (F�
σ )−1(g) are the symplectic Fourier coefficients of g. This is [35, Example

6.8] for the group G = R
2d/�◦. Finally, recall that we can multiply f ∈ S′

0(R
2d)
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with g ∈ S0(R2d) to obtain an element f g ∈ S′
0(R

2d) given by

〈 f g, h〉S′
0,S0

:= 〈 f , gh〉S′
0,S0

for h ∈ S0(R
2d). (21)

5.2.2 The Case c ∈ �∞(3)

The technical intermezzo allows us to make sense of the following generalization
of Proposition 5.4. Recall in particular that F�

σ (c) is shorthand for the distribution
P∗

�◦(F�
σ (c)) ∈ S′

0(R
2d).

Proposition 5.5 If c ∈ 
∞(�) and S ∈ B, then

FW (c��S) = F�
σ (c)FW (S) in S′

0(R
2d).

Proof For h ∈ S0(R2d), we get from (15), (11) and (20) (in that order)

〈FW (c��S), h〉S′
0,S0

= 〈c��S, ρ(h)〉B′,B

=
〈
c, ρ(h)�� Š∗〉


∞(�),
1(�)

=
〈
F�

σ (c),F�
σ (ρ(h)�� Š∗)

〉

A′(R2d/�◦),A(R2d/�◦)
.

By Theorem 5.3 we find using (18) that

F�
σ (ρ(h)�� Š∗) = P�◦(FW (S)h),

where we also used that ρ is the inverse of FW . On the other hand we find using (21)
and (19) that

〈
F�

σ (c)FW (S), h
〉
S′
0,S0

=
〈
F�

σ (c),FW (S)h
〉

S′
0,S0

=
〈
F�

σ (c), P�◦(FW (S)h)
〉

A′(R2d/�◦),A(R2d/�◦)

Hence
〈
F�

σ (c)FW (S), h
〉
S′
0,S0

= 〈FW (c��S), h〉S′
0,S0

, which implies the statement. ��
Remark For Gabor multipliers c��(ψ ⊗ ψ), Propositions 5.4 and 5.5 were proved in
[14, Lem. 14], and have been used in the theory of convolutional neural networks [13].

6 Riesz Sequences of Translated Operators inHS
Two of the useful properties of the Weyl transform f �→ L f are that it is a unitary
transformation from L2(R2d) to theHilbert–Schmidt operatorsHS , and that it respects
translations in the sense that

LTz f = αz(L f ) for f ∈ L2(R2d), z ∈ R
2d .



Journal of Fourier Analysis and Applications (2020) 26 :48 Page 21 of 37 48

As a consequence, statements concerning translates of functions in L2(R2d) can be
lifted to statements about translates of operators and convolutions �� in HS. This
approach was first used for Gabor multipliers in [16,20], and has later been explored
in other works [5,14]—we include these results for completeness, and because the
proofs and results find natural formulations and generalizations in the framework of
this paper.

For fixed S ∈ HS and lattice �, we will be interested in whether {αλ(S)}λ∈� is
a Riesz sequence in HS, i.e. whether there exist A, B > 0 such that for all finite
sequences c ∈ 
2(�)

A‖c‖2

2(�)

≤
∥∥∥∥∥
∑

λ∈�

c(λ)αλ(S)

∥∥∥∥∥

2

HS
≤ B‖c‖2


2(�)
. (22)

Since the Weyl transform is unitary and preserves translations, if we let aS be the
Weyl symbol of S, then (22) is clearly equivalent to the fact that {Tλ(aS)}λ∈� is a
Riesz sequence in L2(R2d), meaning that

A‖c‖2

2(�)

≤
∥∥∥∥∥
∑

λ∈�

c(λ)Tλ(aS)

∥∥∥∥∥

2

L2(R2d )

≤ B‖c‖2

2(�)

,

for finite c ∈ 
2(�). Following [5,14,16,20] we can use a result from [4] to give a char-
acterization ofwhen (22) holds in terms of an expression familiar fromCorollary 5.3.1.

Theorem 6.1 Let � be a lattice and S ∈ B. Then the following are equivalent.

(i) The function

F�
σ (S�� Š∗) = P�◦(|FW (S)|2)

has no zeros in R
2d/�◦.

(ii) {αλ(S)}λ∈� is a Riesz sequence in HS.

Proof The equality in (i) is Corollary 5.3.1. By the preceding discussion, {αλ(S)}λ∈�

is a Riesz sequence inHS if and only if {Tλ(aS)}λ∈� is a Riesz sequence in L2(R2d).
The result from [4] (see [5] for a statement for general lattices and symplectic Fourier
transform) says that {Tλ(aS)}λ∈� is a Riesz sequence if and only if there exist A, B > 0
such that

A ≤ 1

|�|
∑

λ◦∈�◦
|Fσ (aS)(z + λ◦)|2 ≤ B for any z ∈ R

2d .

Since the Weyl transform and Fourier–Wigner transform are related by Fσ (aS) =
FW (S), we we may restate this condition as

A ≤ 1

|�|
∑

λ◦∈�◦
|FW (S)(z + λ◦)|2 ≤ B for any z ∈ R

2d . (23)
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Note that the middle term is P�◦(|FW (S)|2)(ż), and since S ∈ B we know that
|FW (S)|2 ∈ S0(R2d). Therefore P�◦(|FW (S)|2) ∈ A(R2d/�◦) by Lemma 5.1, which
in particular means that P�◦(|FW (S)|2) is a continuous function on the compact space
R
2d/�◦. For a continuous function on a compact space, condition (23) is equivalent

to having no zeros. This completes the proof. ��
Remark (i) Since we assume S ∈ B, the first condition above is in fact equivalent to

{αλ(S)}λ∈� generating a frame sequence inHS, which is a weaker statement than
(2) above. The proof of this in [5] for Gabor multipliers works in our more general
setting.

(ii) As mentioned in the introduction, Feichtinger [16] used the Kohn–Nirenberg sym-
bol rather than the Weyl symbol. This makes no difference for our purposes—we
have opted for the Weyl symbol as it is related to FW by a symplectic Fourier
transform.

If {αλ(S)}λ∈� is a Riesz sequence in HS, the synthesis operator is the map DS :

2(�) → HS given by

DS(c) = c��S =
∑

λ∈�

c(λ)αλ(S),

and the sum
∑

λ∈� c(λ)αλ(S) converges unconditionally in HS for each c ∈ 
2(�)

[8, Cor. 3.2.5]. We also get by [8, Thm. 5.5.1] that

span{αλ(S) : λ ∈ �} = 
2(�)�S, (24)

where the closure is taken with respect to the norm inHS.

6.1 The Biorthogonal System and Best Approximation

AnyRiesz sequence has a so-called biorthogonal sequence and, by the theory of frames
of translates [8, Prop. 9.4.2], if the Riesz sequence is of the form {αλ(S)}λ∈� for some
S ∈ B, then the biorthogonal system has the same form. This means that there exists
S′ ∈ HS such that the biorthogonal system is

{αλ(S′)}λ∈�,

and biorthogonality means that

〈
αλ(S), αλ′(S′)

〉
HS = δλ,λ′ ,

where δλ,λ′ is the Kronecker delta. Now note that for T ∈ HS the definition (5) of
T ��S′ implies that

〈
T , αλ(S′)

〉
HS = T �� Š′∗(λ),
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so if we define R := Š′∗ we have

〈
T , αλ(S′)

〉
HS = T �� R(λ). (25)

With this observation we can formulate the standard properties of the biorthogonal
sequence using convolutions with R.

Lemma 6.2 Assume that {αλ(S)}λ∈� with S ∈ B is a Riesz sequence in HS. Let

V 2 := span{αλ(S) : λ ∈ �} = 
2(�)�S.

With R defined as above, we have that

(i) S�� R(λ) = δλ,0.

(ii) For any T ∈ V 2, T �� R ∈ 
2(�).
(iii) For any T ∈ V 2,

T = (T �� R)��S.

Proof This is simply a restatement of the properties of the biorthogonal sequence of a
Riesz sequence using the relation

〈
T , αλ(S′)

〉
HS = T �� R(λ)—with this observation,

parts (i), (i i) and (i i i) follow from [8, Thm. 3.6.2]. ��
Remark (i) If the convolution of three operators were associative, we could find

for any T ∈ HS (not just T ∈ V 2 as above) that T = (T �� R)��S, since
T ��(R��S) = T ��δλ,0 = T . However, we will soon see that the convolution of
three operators is not associative.

(ii) For T , R ∈ HS, we have strictly speaking not defined T �� R (since (5) has
stronger assumptions than simplyHS). However, it is clear by theCauchy Schwarz
inequality forHS that

|T �� R(λ)| = | 〈T , αλ(S′)
〉
HS | ≤ ‖T ‖HS‖S′‖HS ,

so we can define T �� R ∈ 
∞(�) by (5) also in this case.

We will now answer two natural questions. First, to what extent does R inherit the
nice properties of S—is it true that R ∈ B? Then, how is R related to S? The answer
is provided by the following theorem, first proved by Feichtinger [16, Thm. 5.17] for
Gabor multipliers, and the proof finds a natural formulation using our tools.

Theorem 6.3 Assume that S ∈ B and that {αλ(S)}λ∈� is a Riesz sequence in HS. If R
is defined as above, then R ∈ B and R = b�� Š∗ where b ∈ 
1(�) are the symplectic
Fourier coefficients of

1

F�
σ (S�� Š∗)

= 1

P�◦
(|FW (S)|2) .
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Proof By [8, Thm. 3.6.2], the generator S′ of the biorthogonal system belongs to V 2,
hence there exists some b′ ∈ 
2(�) such that S′ = b′��S. Since R = Š′∗, one easily
checks by the definitions of ˇ and ∗ that

R = (b′�S)ˇ∗ = b�� Š∗

if we define b(λ) = b′(−λ). By part (i) of Lemma 6.2 and the associativity of convo-
lutions, we have

b ∗� (Š∗��S) = (b�� Š∗)��S = R��S = δλ,0.

Taking the symplectic Fourier series of this equation using (17) and Corollary 5.3.1,
we find for a.e. ż ∈ R

2d/�◦

F�
σ (b)(ż)F�

σ (Š∗��S)(ż) = F�
σ (b)(ż)P�◦

(
|FW (S)|2

)
(ż) = 1,

hence

F�
σ (b)(ż) = 1

P�◦
(|FW (S)|2) ,

and by assumption on S (see Theorem 6.1 and its proof) the denominator is bounded
from below by a positive constant. Since S ∈ B, we know that |FW (S)|2 ∈ S0(R2d),
and therefore Lemma 5.1 implies that P�◦

(|FW (S)|2) ∈ A(R2d/�◦). By Wiener’s
lemma [51, Thm. 6.1.1], we get 1

P�◦(|FW (S)|2) ∈ A(R2d/�◦). In other words, b ∈

1(�). Since b ∈ 
1(�) and Š∗ ∈ B, it follows that R = b�� Š∗ ∈ B. ��

To prepare for the next result, fix S ∈ B and let

V ∞ = 
∞(�)��S,

hence V ∞ is the set of operators given as a convolution c��S for c ∈ 
∞(�). The
first part of the next result says that when {αλ(S)}λ∈� is a Riesz sequence, then the
Schatten-p class properties of c��S are precisely captured by the 
p properties of c.
This result appears to be a new result even for Gabor multipliers. We also determine
for any T ∈ HS the best approximation (in the norm ‖ · ‖HS ) of T by an operator
of the form c��S. See [16, Thm. 5.17] and [14, Thm. 19] for the statement for Gabor
multipliers.

Corollary 6.3.1 Assume that S ∈ B and that {αλ(S)}λ∈� is a Riesz sequence in HS,
and let R be as above.

(i) For any 1 ≤ p ≤ ∞ the map DS : 
p(�) → T p ∩ V ∞ given by

DS(c) = c��S
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is a Banach space isomorphism, with inverse CR : T p ∩ V ∞ → 
p(�) given by

CR(T ) = T �� R.

Hence V ∞ ∩ T p = 
p(�)��S and ‖c‖
p � ‖c��S‖T p � ‖c‖
p .
(ii) For any T ∈ HS, the best approximation in ‖ · ‖HS of T by an operator c��S

with c ∈ 
2(�) is given by

c = T �� R.

Equivalently, the symplectic Fourier series of c is given by

F�
σ (c) =

P�◦
[
FW (S)FW (T )

]

P�◦ |FW (S)|2 .

Proof (i) By Proposition 4.3 part (i) we get ‖CR(T )‖
p ≤ ‖T ‖T p‖R‖B, and by part
(i i) of the same propositionwe get ‖DS(c)‖T p � ‖c‖
p‖S‖B. Hence bothmaps in
the statement are continuous. It remains to show that the two maps are inverses of
each other, which will follow from the associativity of convolutions. First assume
that c ∈ 
p(�). Then

CR DS(c) = (c��S)�� R = c ∗� (S�� R) = c,

where we have used associativity and part (i) of Lemma 6.2. Then assume T ∈
V ∞ ∩ T p, so that T = c��S for c ∈ 
∞(�). We find

DSCR(c��S) = ((c��S)�� R)��S = (c ∗� (S�� R))��S = c��S.

Hence DS and CR are inverses. In particular V ∞ ∩ T p = 
p(�)��S as DS is
onto V ∞ ∩ T p, and V ∞ ∩ T p is closed in T p (hence a Banach space) since
DS : 
p(�) → T p has a left inverse CR and therefore has a closed range in T p.

(ii) We claim that the map T �→ (T �� R)��S is the orthogonal projection from HS
onto 
2(�)��S, which is a closed subset of HS = T 2 by part (i) (or (24)). If
T = c��S for some c ∈ 
2(�), then c = T �� R by part (i)—therefore T =
(T �� R)��S. Then assume that T ∈ (
2(�)��S)⊥. As we saw in (25), we can
write

T �� R(λ) = 〈
T , αλ(S′)

〉
HS . (26)

From the proof of Theorem 6.3, S′ = b′��S for some b′ ∈ 
2(�). One easily
checks that

αλ(S′) = αλ(b
′��S) = Tλb′��S,

where Tλb′(λ′) = b′(λ′ − λ). It follows that αλ(S′) ∈ 
2(�)��S for any λ ∈ �.

Hence if T ∈ (
2(�)��S)⊥, (26) shows that (T �� R)��S = 0. Finally, to obtain
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the equivalent expression recall from Theorem 6.3 that R = b�� Š∗ for b ∈ 
1(�).

Hence by associativity and commutativity of convolutions,

c = T �� R = b��(T �� Š∗).

It follows from (17) that we get

F�
σ (c) = F�

σ (b)F�
σ (T �� Š∗).

Wehave a known expression forF�
σ (b) fromTheorem6.3, and a known expression

forF�
σ (T �� Š∗) from Theorem 5.3—inserting these expressions into the equation

above yields the desired result.
��

The key to the results of this section is Wiener’s lemma, used in the proof of Theo-
rem 6.3. In fact, wemay interpret these results as a variation ofWiener’s lemma. To see
this, recall that V 2 = span{αλ(S) : λ ∈ �} = 
2(�)��S ⊂ HS. Then {αλ(S)}λ∈� is
a Riesz sequence if and only if the convolution map DS : 
2(�) → V 2 given by

DS(c) = c��S

has a bounded inverse [8, Thm. 3.6.6]. Corollary 6.3.1 therefore says the following:
if S ∈ B and the convolution map DS : 
2(�) → V 2 has a bounded inverse, then the
inverse is given by the convolution

CR(T ) = R��T

for some R ∈ B. The similarities with Wiener’s lemma are evident when we compare
this to the following formulation of Wiener’s lemma [28, Thm. 5.18]:

If b ∈ 
1(Z) and the convolution map 
2(Z) → 
2(Z) defined by

c �→ c ∗Z b

has a bounded inverse on 
2(Z), then the inverse is given by the convolution
map

c �→ c ∗Z b′

for some b′ ∈ 
1(Z).

7 Tauberian Theorems

In the continuous setting, where one considers functions on R
2d and the convolutions

briefly introduced at the beginning of Sect. 4, a version ofWiener’s Tauberian theorem
for operators was obtained by Kiukas et al. [39], building on earlier work by Werner
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[59]. This theorem consists of a long list of equivalent statements for T p and L p(R2d)

for p = 1, 2,∞, and as a starting point for our discussion we state a shortened version
for p = 2 below.

Theorem 7.1 Let S ∈ T . The following are equivalent.

(i) The span of {αz(S)}z∈R2d is dense in HS.
(ii) The set of zeros of FW (S) has Lebesgue measure 0 in R

2d .
(iii) The set of zeros of Fσ (S�Š∗) has Lebesgue measure 0 in R

2d .
(iv) If f �S = 0 for f ∈ L2(R2d), then f = 0.
(v) If T �S = 0 for T ∈ HS, then T = 0.

We wish to obtain versions of this theorem when R
2d is replaced by a lattice �,

functions on R
2d are replaced by sequences on � and we still consider operators

on L2(Rd). In this discrete setting, statements (3) and (4) in Theorem 7.1 are still
equivalent, mutatis mutandis, while the analogues of (1) and (5) can never be true.
First we show that the discrete version of statement (1) can never hold.

Proposition 7.2 Let � be any lattice in R
2d and let S ∈ HS. Then the linear span of

{αλ(S)}λ∈� is not dense in HS.

Proof As we have exploited on several occasions, the Weyl transform is unitary from
from L2(R2d) to HS and sends translations of operators using α to translations of
functions. It is therefore sufficient to show that {Tλ(aS)}λ∈� is not dense in L2(R2d),
where aS is the Weyl symbol of S. Let c := 2

|�| , and define �′ = cZ
2d . Con-

sider the lattice � × �′ in R
4d . Then we have that |� × �′| = |�| · c = 2 > 1.

By the density theorem for Gabor systems [3,27,34], this implies that the system
{π(λ, λ′)aS}(λ,λ′)∈�×�′ cannot be span a dense subset in L2(R2d), so in particular the
subsystem {π(λ, 0)aS}(λ,0)∈�×�′ = {TλaS}λ∈� cannot be complete. ��
This implies that we cannot hope to generalize part (5) of Theorem 7.1 to the discrete
setting.

Corollary 7.2.1 Let S ∈ B. There exists 0 �= T ∈ HS such that T ��S = 0.

Proof To obtain a contradiction, we assume that T ��S = 0 �⇒ T = 0 for T ∈ HS.
As we have seen in (25),

T ��S(λ) =
〈
T , αλ(Š∗)

〉

HS
.

Our assumption is therefore equivalent to

〈
T , αλ(Š∗)

〉

HS
= 0 for all λ ∈ � �⇒ T = 0,

which implies that the linear span of {αλ(Š∗)}λ∈� is dense inHS—a contradiction to
Proposition 7.2 applied to Š∗ ∈ B. ��
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Proposition 7.2 also allows us to construct counterexamples to the associativity of
convolutions of three operators.

Corollary 7.2.2 Assume that {αλ(S)}λ∈� is a Riesz sequence in HS for S ∈ B. Then
there exist R ∈ B and T ∈ HS such that

(T �� R)��S �= T ��(R��S).

Proof Choose R ∈ B as in Sect. 6.1, i.e. such that S�� R = δλ,0. Then use Proposi-
tion 7.2 to pick T ∈ HS that does not belong to the closed linear span of {αλ(S)}λ∈�

inHS. We get that

T ��(R��S) = T ��δλ,0 = T .

If we assumed associativity, we would get

T = (T �� R)��S,

where T �� R ∈ 
2(�) by Proposition 4.3. Hence we could express T = c��S for
c ∈ 
2(�), which would imply that T belongs to the closed linear span of {αλ(S)}λ∈�

by (24)—a contradiction. ��
On the positive side, we can use the techniques developed in Sect. 5 to prove the
following theorem, which shows that parts (3) and (4) of Theorem 7.1 have natural
analogues for sequences. For Gabor multipliers, Feichtinger was interested in the
question of recovering c from c��(ϕ⊗ϕ), and the continuity of the mapping c��(ϕ⊗
ϕ) �→ c. In this case he proved the equivalence (1)(i) ⇐⇒ (1)(iv) below [16, Thm.
5.17], and that this implies the final statement in part (1) [16, Prop. 5.22 and Prop.
5.23]. In part (3)we show that any c ∈ 
1(�) (in particular any finite sequence) can be
recovered from c��S under significantly weaker assumptions on S for a fixed lattice
�, but obtain no continuity statement.

Theorem 7.3 Let S ∈ B.

(1) The following are equivalent:

(i) F�
σ (S�� Š∗) has no zeros in R

2d/�◦.
(ii) If c��S = 0 for c ∈ 
∞(�), then c = 0.
(iii) B��S is dense in 
1(�).

(iv) {αλS}λ∈� is a Riesz sequence in HS.

If any of the statements above holds, c ∈ 
∞(�) is recovered from c��S by
c = (c��S)�� R for some R ∈ B. In particular, the map c��S �→ c is continuous
L(L2) → 
∞(�).

(2) The following are equivalent:

(i) F�
σ (S�� Š∗) is non-zero a.e. in R

2d/�◦.
(ii) If c��S = 0 for c ∈ 
2(�), then c = 0.
(iii) HS��S is dense in 
2(�).
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(3) The following are equivalent:

(i) The set of zeros of F�
σ (S�� Š∗) contains no open subsets in R

2d/�◦.
(ii) If c��S = 0 for c ∈ 
1(�), then c = 0.
(iii) B′��S is weak*-dense in 
∞(�).

Proof (1) The equivalence of (i) and (iv) was the content of Theorem 6.1. By Corol-
lary 6.3.1, (iv) implies that c �→ c��S is injective, hence (i) ⇐⇒ (iv) �⇒ (i i)
holds. Then assume that (i i) holds, and let ż ∈ R

2d/�◦—to show (i), we need to
show that F�

σ (S�� Š∗)(ż) �= 0, which by Corollary 5.3.1 is equivalent to showing
that there exists some λ◦ ∈ �◦ such that FW (S)(z + λ◦) �= 0.
Consider the distribution δż ∈ A′(R2d/�◦) defined by

〈δż, f 〉A′(R2d/�◦),A(R2d/�◦) = f (ż)

(recall that our duality brackets are antilinear in the second coordinate), and let
cż = {cż(λ)}λ∈� ∈ 
∞(�)be its symplectic Fourier coefficients, i.e.F�

σ (cż) = δż .
We know that cż��S ∈ B′ is non-zero by (i i), and Proposition 5.5 gives for any
f ∈ S0(R2d) that

〈
FW (cż��S), f

〉

S′
0,S0

= 〈
δżFW (S), f

〉
S′
0,S0

=
〈
δż ,FW (S) f

〉

S′
0,S0

=
〈
δż , P�◦

[
FW (S) f

]〉

A′(R2d /�◦),A(R2d /�◦)
by (19)

= P�◦
[
FW (S) f

]
(ż)

=
∑

λ◦∈�◦
FW (S)(z + λ◦) f (z + λ◦).

From this it is clear that ifFW (S)(z+λ◦) = 0 for all λ◦ ∈ �◦, thenFW (cż��S) =
0 and hence cż��S = 0 since FW : B′ → S0(R2d) is an isomorphism, which
cannot hold by (i i).
Before we prove (i i) ⇐⇒ (i i i), note that (i) is unchanged when S �→ Š∗ by
commutativity of the convolutions. Since (i) ⇐⇒ (i i), this means that (i i) is
equivalent to

(ii’) If c�� Š∗ = 0 for c ∈ 
∞(�), then c = 0.

To prove the equivalence of (i i ′) and (i i i), we will prove that the map DŠ∗ :

∞(�) → B′ given by DŠ∗(c) = c�� Š∗ is the Banach space adjoint of CS : B →

1(�) given by CS(T ) = T ��S. This amounts to proving that

〈
DŠ∗(c), T

〉
B′,B = 〈c, CS(T )〉
∞(�),
1(�) for T ∈ B, c ∈ 
∞(�).

By writing out the definitions of DŠ∗ and CS , we see that we need to show that

〈
c�� Š∗, T

〉

B′,B
= 〈c, T ��S〉
∞,
1 for T ∈ B, c ∈ 
∞(�),
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which is simply the definition of c�� Š∗ when c ∈ 
∞(�) from (11), hence true.
Since a bounded linear operator between Banach spaces has dense range if and
only if its Banach space adjoint is injective (see [53, Corollary to Thm. 4.12], part
(b)), this implies that (i i ′) is equivalent to (i i i). Finally, Corollary 6.3.1 implies
the final statement that c = (c��S)�� R.

(2) The equivalence (i i) ⇐⇒ (i i i) is proved as above . Assume that (i) holds, and
that c��S = 0 for some c ∈ 
2(�). By associativity of convolutions,

c ∗� (S�� Š∗) = 0.

Applying F�
σ to this, we find using (17) that

F�
σ (c)F�

σ (S�� Š∗) = 0.

By (i) this implies that F�
σ (c) = 0 in L2(R2d/�◦), hence c = 0.

Then assume that (i) does not hold, i.e. there is a subset U ⊂ R
2d/�◦ of positive

measure where F�
σ (S�� Š∗) vanishes. Pick c ∈ 
2(�) such that F�

σ (c) = χU ,

where χU is the characteristic function of U , which is possible since F�
σ :


2(�) → L2(R2d/�◦) is unitary and so in particular onto. Then by Proposi-
tion 5.5, for f ∈ S0(R2d),

〈FW (c��S), f 〉S′
0,S0

= 〈χUFW (S), f 〉S′
0,S0

=
〈
χU ,FW (S) f

〉

S′
0,S0

=
〈
χU , P�◦

[
FW (S) f

]〉

A′(R2d /�◦),A(R2d /�◦)
by (19)

=
∫

R2d /�◦ χU (ż)
∑

λ◦∈�◦
FW (S)(z + λ◦) f (z + λ◦)dż

= 0.

To see why the last integral is zero, note first that if ż /∈ U , then χU (ż) = 0. If
ż ∈ U , then we use that by Corollary 5.3.1,

F�
σ (S�� Š∗)(ż) = 1

|�|
∑

λ◦∈�◦
|FW (S)(z + λ◦)|2 for any z ∈ R

2d .

Hence the assumption F�
σ (S�� Š∗)(ż) = 0 for ż ∈ U implies that FW (S)(z +

λ◦) = 0 for any λ◦ ∈ �◦ when ż ∈ U . In conclusion we have shown that the
integrand above is zero, hence the integral is zero. Thismeans thatFW (c��S) = 0,
so c��S = 0, contradicting (i i) since c �= 0.

(3) Assume that (i) holds, and that c��S = 0 for some c ∈ 
1(�). By associativity,
we also have that c��(S�� Š∗) = 0, and by applying F�

σ we get from (17)

F�
σ (c)(ż)F�

σ (S�� Š∗)(ż) = 0 for any ż ∈ R
2d/�◦.
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Since c ∈ 
1(�), F�
σ (c) is a continuous function. So if c �= 0, there must exist an

open subset U ⊂ R
2d/�◦ such that F�

σ (c)(ż) �= 0 for ż ∈ U . But the equation
above then gives that Fσ (S�Š∗)(ż) = 0 for ż ∈ U ; a contradiction to (i). Hence
c = 0, and (i i) holds. Then assume that (i i) holds, and assume that there is an open
set U ⊂ R

2d/�◦ such that F�
σ (S�� Š∗)(ż) = 0 for any ż ∈ U . By Theorem 5.3,

this means that

∑

λ◦∈�◦
|FW (S)(z + λ◦)|2 = 0 when ż ∈ U ,

which is clearly equivalent to

FW (S)(z) = 0 whenever ż ∈ U .

Then find some non-zero c ∈ 
1(�) such that F�
σ (c) vanishes outside U , which

is possible by [51, Remark 5.1.4]. Using Proposition 5.4, we have

FW (c��S)(z) = F�
σ (c)(ż)FW (S)(z) for z ∈ R

2d .

If ż /∈ U , then F�
σ (c)(ż) = 0 by construction of c. Similarly, if ż ∈ U , then we

saw thatFW (S)(z) = 0. HenceFW (c��S)(z) = 0 for any z ∈ R
2d , which implies

that c��S = 0. But c �= 0, so this is impossible when we assume (i i), so there
cannot exist an open subset U ⊂ R

2d/�◦ such that F�
σ (c)(ż) �= 0 for ż ∈ U .

The equivalence (i i) ⇐⇒ (i i i) is proved as in part (1), with some minor
modifications. We note that (i) is unchanged when S �→ Š∗, so as (i) ⇐⇒ (i i)
we have that (i i) is equivalent to

(ii’) If c�� Š∗ = 0 for c ∈ 
1(�), then c = 0.

By simply writing out the definitions, one sees using (13) that the map CS : B′ →

∞(�) given byCS(T ) = T ��S is the Banach space adjoint of DŠ∗ : 
1(�) → B
given by DŠ∗(c) = c�� Š∗. The equivalence (i i ′) ⇐⇒ (i i i) therefore follows
from part (c) of [53, Corollary of Thm. 4.12]: a bounded linear operator between
Banach spaces is injective if and only if the range of its adjoint is weak*-dense.

��

Let us rewrite the statements of the theorem in the case that S is a rank-one operator
S = ϕ ⊗ ϕ for ϕ ∈ S0(Rd). By (8) we find that

S�� Š∗(λ) = |Vϕϕ(λ)|2,

and by (6) c��S is the Gabor multiplier

c��(ϕ ⊗ ϕ)ψ =
∑

λ∈�

c(λ)Vϕψ(λ)π(λ)ϕ.
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Hence the equivalences (i) ⇐⇒ (i i) provides a characterization using the symplectic
Fourier series of Vϕϕ|� of when the symbol c of a Gabor multiplier is uniquely
determined.

7.1 Underspread Operators and aWiener Division Lemma

For motivation, recall Wiener’s division lemma [51, Lem. 1.4.2]: if f , g ∈ L1(R2d)

satisfy that f̂ has compact support ( f̂ is the usual Fourier transform on R
2d ) and ĝ

does not vanish on supp( f̂ ), then

f = f ∗ h ∗ g

for some h ∈ L1(R2d) satisfying ĥ(z) = 1
ĝ(z) for z ∈ supp( f̂ ). The next result is a

version of this statement for the convolutions and Fourier transforms of operators and
sequences. At the level of Weyl symbols, this result is due to Gröchenig and Pauwels
[31] (see also the thesis of Pauwels [48]) using different techniques. We choose to
include a proof using the techniques of this paper to show how the the statement fits
our formalism. Note that apart from the function g—introduced to ensure A ∈ B—
Theorem 7.4 is obtained by replacing the convolutions and Fourier transforms in
Wiener’s division lemma by the convolutions and Fourier transforms of sequences
and operators.

Remark If �◦ = AZ
2d , we will pick the fundamental domain ��◦ = A[− 1

2 ,
1
2 )

2d

which means that any z ∈ R
2d can be written as z = z0 + λ◦ for z0 ∈ ��◦ , λ◦ ∈ �◦

in a unique way. This choice of fundamental domain implies that (1 − ε)��◦ =
A[− 1

2 + ε
2 ,

1
2 − ε

2 )
2d , so we may find g in the statement below by [43, Prop. 2.26].

Theorem 7.4 Assume that S ∈ B satisfies supp(FW (S)) ⊂ (1 − ε)��◦ for some
0 < ε < 1/2. Pick g ∈ C∞

c (R2d) such that g|(1−ε)��◦ ≡ 1 and supp(g) ⊂ ��◦ . If
T ∈ B satisfies FW (T )(z) �= 0 for z ∈ supp(g), then

S = (S��T )�� A,

where A ∈ B is given by FW (A) = g
FW (T )

.

Proof We first show that A ∈ B by showing FW (A) ∈ S0(R2d). The Wiener-Lévy
theorem [51, Thm. 1.3.1] gives h ∈ L1(R2d) such that ĥ(z) = 1/FW (T )(z) for
z ∈ supp(g), whereˆdenotes the usual Fourier transform. Therefore FW (A) = g · ĥ,
which belongs to S0(R2d) by [27, Prop. 12.1.7].

To show that S = (S��T )�� A, we will show that their Fourier–Wigner transforms
are equal. Using Proposition 5.4 and Theorem 5.3 we find that

FW ((S��T )�� A)(z) = F�
σ (S��T )(ż)FW (A)(z)

= FW (A)(z)
∑

λ◦∈�◦
FW (S)(z + λ◦)FW (T )(z + λ◦).

To show that this equals FW (S), we consider three cases.
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• If z ∈ (1 − ε)��◦ , then g(z) = 1 by construction and

FW (A)(z)
∑

λ◦∈�◦
FW (S)(z + λ◦)FW (T )(z + λ◦) = FW (A)(z)FW (S)(z)FW (T )(z)

= g(z)

FW (T )(z)
FW (S)(z)FW (T )(z)

= FW (S)(z),

where we used that the only summand contributing to the sum is λ◦ = 0 since
supp(FW (S)) ⊂ ��◦ and z ∈ ��◦ and ��◦ is a fundamental domain.

• If z ∈ ��◦ \ (1 − ε)��◦ , then FW (S)(z) = 0 and the same argument as above
gives

FW (A)(z)
∑

λ◦∈�◦
FW (S)(z + λ◦)FW (T )(z + λ◦) = FW (A)(z)

0︷ ︸︸ ︷
FW (S)(z)FW (T )(z)

= 0.

• If z /∈ ��◦ , thenFW (S)(z) = 0 since supp(FW (S)) ⊂ ��◦ andFW ((S��T )�� A)(z) =
0 since FW (A)(z) = g(z)

FW (T )(z) = 0 as supp(g) ⊂ ��◦ .

��
A similar argument using duality brackets shows that essentially the same result

even holds for S ∈ B′.

Theorem 7.5 Assume that S ∈ B′ satisfies supp(FW (S)) ⊂ (1 − 2ε)��◦ for some
0 < ε < 1/2. Pick g ∈ C∞

c (R2d) such that g|(1−ε)��◦ ≡ 1 and supp(g) ⊂ ��◦ . If
T ∈ B satisfies FW (T )(z) �= 0 for z ∈ supp(g), then

S = (S��T )�� A,

where A ∈ B is given by FW (A) = g
FW (T )

.

Proof We have already seen that A ∈ B. Let f ∈ S0(R2d). Then

〈FW [(S��T )�� A)] , f 〉S′
0,S0

= 〈(S��T )�� A), ρ( f )〉B′,B by (15)

=
〈
S��T , ρ( f )�� Ǎ∗〉


∞,
1
by (11)

=
〈
S, (ρ( f )�� Ǎ∗)��Ť ∗〉

B′,B
by (13)

=
〈
FW (S),FW

[
(ρ( f )�� Ǎ∗)��Ť ∗]〉

S′
0,S0

by (15)

=
〈
FW (S), b · FW

[
(ρ( f )�� Ǎ∗)��Ť ∗]〉

S′
0,S0
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In the last line we multiplied the right hand side by a bump function b ∈ C∞
c (R2d)

such that b|(1−2ε)��◦ ≡ 1 and supp(b) ⊂ (1−ε)��◦—this does not change anything
by the assumptions on the supports of FW (S) and b. We find using Theorem 5.3 and
Proposition 5.4 that

b · FW

[
(ρ( f )�� Ǎ∗)��Ť ∗] = b · F�

σ (ρ( f )�� Ǎ∗) · FW (T )

= b · FW (T )P�◦( f FW (A)) by (18).

We claim that this last function equals b · f : if z /∈ (1 − ε)��◦ , then b(z) = 0, so
b(z) f (z) = 0 and

b(z) · FW (T )(z)P�◦( f FW (A))(ż) = 0.

If z ∈ (1 − ε)��◦ , then g(z) = 1 and

b(z)FW (T )(z)P�◦( f FW (A))(ż) = b(z)FW (T )(z)
∑

λ◦∈�◦
f (z + λ◦)FW (A)(z + λ◦)

= b(z)FW (T )(z) f (z)FW (A)(z)

= b(z)FW (T )(z) f (z)
g(z)

FW (T )(z)

= b(z) f (z).

since FW (A) vanishes outside of ��◦ by construction. Hence we have shown that

〈FW [(S��T )�� A)] , f 〉S′
0,S0

= 〈FW (S), b · f 〉S′
0,S0

= 〈FW (S), f 〉S′
0,S0

for any f ∈ S0(R2d), which implies the result. ��
Operators S such that supp(FW (S)) ⊂ [− a

2 , a
2 ]d × [− b

2 ,
b
2 ]d where ab ≤ 1 are

called underspread, and provide realistic models of communication channels [14,31,
41,42,55]. We immediately obtain the following consequence.

Corollary 7.5.1 Any underspread operator S ∈ B′ can be expressed as a convolution
T = c�� A with c ∈ 
∞(�) and A ∈ B for a sufficiently dense lattice �. In particular,
S is bounded on L2(Rd).

It is known (see [14]) that for an operator S to be well-approximated by Gabor
multipliers—i.e. operators c��(ψ ⊗ ψ) for ψ ∈ L2(Rd)—S should be underspread.
The result above shows that any underspread operator S is given precisely by a convo-
lution S = c�� A if we allow A to be any operator inB, not just a rank-one operator. In
fact, A as constructed in the theorem will never be a rank-one operator, since FW (A)

has compact support—this is not possible for rank-one operators [37]. If S satisfies
S ∈ T p in addition to the assumptions of Theorem 7.5, then c = S�T ∈ 
p(�) by
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Proposition 4.3. Hence the p-summability of c in S = c�� A reflects the fact that
S ∈ T p.

Theorem 7.5 also implies that underspread operators S are determined by the
sequence S��T when T ∈ B is chosen appropriately. This was a major motiva-
tion for [31], since when T is a rank-one operator T = ϕ ⊗ ϕ, the sequence S��Ť is
the diagonal of the so-called channel matrix of S with respect to ϕ—see [31,48] for a
thorough discussion and motivation of these concepts. Finally, note that Theorem 7.5
gives a (partial) discrete analogue of part (5) of Theorem 7.1.
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