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We show that a supercurrent carried by spinless singlet Cooper pairs can induce a spin accumulation in the
normal metal interlayer of a Josephson junction. This phenomenon occurs when a nonequilibrium spin-energy
mode is excited in the normal metal, for instance by an applied temperature gradient between ferromagnetic
electrodes. Without supercurrent, the spin accumulation vanishes in the Josephson junction. With supercurrent, a
spatially antisymmetric spin accumulation is generated that can be measured by tunneling to a polarized detector
electrode. We explain the physical origin of the induced spin accumulation by the combined effect of a Doppler
shift induced by a flow of singlet Cooper pairs, and the spin-energy mode excited in the normal metal. This effect
shows that spin control is possible even with singlet Cooper pairs in conventional superconductors, a finding
which could open new perspectives in superconducting spintronics.

Introduction.—. Using superconductors to achieve interest-
ing spin-dependent quantum effects is the central goal in the
growing field of superconducting spintronics [1, 2]. Despite
the fact that superconductivity is usually antagonistic to mag-
netism, a series of experiments have in recent years proven that
superconductors can be used to achieve phenomena such as
long-ranged and dissipationless spin currents [3, 4], large ther-
moelectric effects when combined with spin-polarized barriers
[5], spin Hall signals exceeding the normal-state value by three
orders of magnitude [6], and quantum phase batteries [7].
A key component of superconducting spintronics has tradi-

tionally been to find ways to generate polarized triplet Cooper
pairs which can transport spin without resistance. In contrast,
conventional superconductors described by Bardeen-Cooper-
Schrieffer theory [8] are condensates of singlet Cooper pairs.
While such condensates support supercurrents of charge, they
do not generate supercurrents of spin. It might therefore seem
like supercurrents in conventional superconductors do not have
much use in spintronics, where the aim is to control and detect
spin-polarized signals [9].

Here, we show that supercurrents carried by singlet Cooper
pairs can induce a spin accumulation in a normal metal despite
the fact that they have no spin. This phenomenon occurs
when a nonequilibrium spin-energy mode is excited in the
normal metal. We show that the induced spin accumulation
can be understood physically from the combined effect of a
Doppler shift induced by the supercurrent and the existence of
a spin-energy excitation in the normal metal. The fact that the
spin accumulation can be controlled by a superflow of spinless
Cooper pairs opens up for a different way in which conventional
superconductors can merge with spintronics.

Results.—. The proposed setup for measuring this effect
is shown in Fig. 1. Two thin normal metals are stacked on
top of each other, creating a four-terminal device. Two ferro-
magnetic leads with antiparallel magnetizations are attached to
opposite terminals, and superconducting leads are attached to
the remaining two terminals. When a supercurrent is passed
through the superconducting electrodes, a spin accumulation is
generated in the normal metal separating them. In the absence
of supercurrent, the spin accumulation vanishes in the region
between the superconductors. The length of each of the normal
metals is assumed to be 3ξ, where ξ is the coherence length
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FIG. 1: (Color online) Two superconducting electrodes (S) are de-
posited on top of a normal metal film (purple region). Far away from
the superconducting electrodes, two antiparallel ferromagnets are in
contact with the normal metal film. When a temperature gradient
is applied between the ferromagnets, a spin-energy mode is excited
throughout the normal metal. In the middle of the normal metal,
between the superconductors, there exists no spin accumulation in the
absence of a supercurrent. This corresponds to zero phase-gradient
across the Josephson junction, ∇ϕ = 0. When a supercurrent is
applied, ∇ϕ , 0, an antisymmetric spin accumulation is induced in
the normal metal between the superconductors.

of the superconductors, which then gives the distance between
opposite terminals. We assume that the system is in the dif-
fusive limit, with a short mean free path. On the other hand,
the spin flip scattering length is assumed to be longer than
the size of the system, so that the spin diffusion in the normal
metal is negligible. This is achievable, e.g., by using niobium
superconductors, which has a coherence length of ξ =10-15 nm
in the diffusive limit, and copper normal metals, in which the
spin diffusion length at low temperatures can be longer than
100 nm, even with a high concentration of impurities [10, 11].

The physical mechanism behind this result can then be
understood by the following simplified picture. Consider a
ferromagnet - normal metal - ferromagnet (FNF) spin valve,
with an antiparallel orientation of the magnetization in the
ferromagnets. We increase the temperature of the right F by a
certain amount ∆T relative to the temperature T0 of the left F.
The tunnelling amplitude of particles at the F-Nmetal interfaces
is higher when their spin is parallel to the magnetization than
if it is antiparallel. The former is therefore influenced by a
temperature increase in the F reservoir to a greater degree than
the latter, leading to a temperature difference between particles
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of opposite spin. The temperature on the right and left side of
the normal metal for spin j, T j

R and T j
L , respectively, are then

given as

T ↑R =T0 + ∆T, (1)

T ↓R =T0 + (1 − P)∆T, (2)

T ↑L =T0 + P∆T, (3)

T ↓L =T0, (4)

where the polarization P ∈ [0, 1] takes into account the spin
dependence of the tunnelling. For P = 0, both sides are given
the temperature of their respective reservoir, regardless of
spin. For P = 1, T ↓R and T ↑L are completely insulated from the
adjacent interface, and thus equilibrate to the temperature of
the reservoir at the opposite end. The temperature distribution
throughout the normal metal is simply given by

T j(x) = 1
2

(
T j
R + T j

L

)
+

(
T j
R − T j

L

) x
L
, (5)

where L is the distance between the ferromagnets and x ∈
(−L/2, L/2). The temperature difference Ts between spin up
and spin down electrons then becomes

Ts(x) = T ↑(x) − T ↓(x) = P∆T . (6)

In other words, a spin valve in the antiparallel configuration
gives a spatially constant temperature difference between elec-
trons of opposite spin.

When the superconducting leads are added to the spin valve
as shown in Fig. 1, the picture is modified. In a superconductor,
any temperature difference between spins of quasiparticles
with energies below the superconducting gap will decay with a
length scale of the superconducting coherence length, as these
particles convert into singlet Cooper pairs. The superconduct-
ing correlations induced in the normal metal via the proximity
effect therefore has a detrimental effect on Ts. The decay is
largest near the superconducting leads, where the supercon-
ducting correlations are greatest. In addition, heat transfer
between the superconducting leads (where both spin species
have the same temperature) and the normal metal reduces Ts

as well. Ts is therefore expected to have a transversal variation,
with a maximum at the center of the spin valve. However, a
nonuniform Ts is not enough to generate a spin accumulation.
A phase gradient parallel to ∇Ts is required as well. This is
illustrated in Fig. 2, which shows the quasiparticle energy band
of a superconductor with an applied spin temperature gradient.
For simplicity, we assume that the temperature on its left side is
so low that there are no right-moving quasiparticle excitations.
On its right side, a higher temperature is applied, along with
a Ts > 0, both of which reduce towards the left. When the
phase gradient ∇ϕ is zero, in Fig. 2a), there is indeed a higher
number of spin up quasiparticles excited than spin down. How-
ever, there are just as many hole-like excitations as there are
electron-like. There is therefore no net spin accumulated. In
contrast, when ∇ϕ > 0, a Doppler shift of the energy band is
created, reducing the gap for momentum k < 0, and vice versa,
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FIG. 2: Illustration of how a phase gradient in a superconductor
leads to a spin imbalance when there is a gradient in the temperature
difference between spin up and spin down particles, Ts = T↑ − T↓. a)
The energy band of the superconductor when there is no phase gradient.
b) The same energy band when ∇ϕ > 0. The resulting Doppler shift
leads to a net spin imbalance. We show here for simplicity an extreme
example of a case where ∇Ts < 0, in which there are only left moving
quasiparticle excitations.

as shown in Fig. 2b). This creates an imbalance between spin
up and spin down excitations, resulting in a net magnetization.
To summarize, the simplified analysis above implies the

generation of a spin accumulation in the system shown in
Fig. 1. The role of the singlet superconductors is twofold.
Firstly, they introduce a transversal variation to an otherwise
constant temperature difference between spin up and down
particles. Secondly, when a phase gradient is applied parallel
to ∇Ts, a net spin imbalance is produced. To prove this, we
have to consider both the superconducting correlations induced
in the normal metal due to the proximity effect as well as
the non-equilibrium population of quasiparticles caused by
the temperature gradient applied across the normal metal. A
suitable theoretical framework for this purpose is the Keldysh-
Usadel theory for non-equilibrium Green functions [12, 13].
In recent years, this formalism has been used to predict several
interesting phenomena in superconducting hybrid structures
driven out of equilibrium [19–21]. We consider the diffusive
regime of transport, where impurity scattering randomizes the
momentum of quasiparticles, in which case the Green function
matrix in the normal metal can be obtained by solving the
Usadel equation,

D∇ · ǧ∇ǧ + i [ερ̌4 , ǧ] = 0, (7)

where D is the diffusion constant and ε is the quasiparticle
energy. The Green function matrix has the structure

ǧ =

(
ĝR ĝK

0 ĝA

)
, (8)

in Keldysh space, where ĝX are 4 × 4 matrices in particle-hole
and spin space. Furthermore, we have ρ̌4 = diag (ρ̂4 , ρ̂4),
with ρ̂4 = diag (+1,+1,−1,−1). The retarded and advanced
Green functions, ĝR and ĝA, determine the band structure of
the system, and these components satisfy an equation which is
identical in form to Eq. (7). The quasiparticle excitations are
determined by the Keldysh Green function, ĝK . Without loss of
generality, thismatrix can be parametrized has ĝK = ĝR ĥ−ĥĝA,
where ĥ is a distribution function. Its matrix structure in
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FIG. 3: Numerical simulations of the spin accumulation, scaled by
µ0, in the presence of temperature gradient. The superconducting
terminals (top and bottom), and the left ferromagnet have a temperature
of Tl = 0.1Tc , whereas the right ferromagnet has a temperature of
Th = 0.5Tc . No magnetization is induced when ∆ϕ = 0.

particle-hole and spin space can be further parametrized as

ĥ =
∑
n

hn ρ̂n, (9)

where ρ̂0 = Î, ρ̂j = σ̂j , and ρ̂4+j = ρ̂4 ρ̂j for j ∈ {1, 2, 3}.
The matrix Î is the identity, and σ̂j = diag

(
σj, σ

∗
j

)
for Pauli

matrix σj . In the following, we assume that both ferromagnets
are aligned in the z direction, in which case the only relevant
distribution functions become h0, h3, h4 and h7. Insertion into
Eq. (7) gives,

amn∇2hn + bmn · ∇hn = 0, (10)

where amn = DTr
[
ρ̂m ρ̂n − ρ̂mĝR ρ̂nĝA

]
/4, and bmn =

∇amn + DTr
[
ρ̂n ρ̂mĝ

R∇ĝR − ρ̂m ρ̂nĝA∇ĝA
]
/4. The function

h0 is the energy mode, and gives the temperature distribution
of the system, with h0 = tanh ε

2kBT , where kB is the Boltzmann
constant, being the only nonzero component of ĥ in equilibrium.
h3 is a spin-energy mode, and expresses an effective tempera-
ture difference between spin up and down quasiparticles. The
charge mode h4 gives the quasiparticle charge distribution in
the system, and the spin mode h7 gives the spin accumulation,
through the relation

µs(r) = 4µ0

∫
dε h7(ε, r)ν(ε, r). (11)

In Eq. (11), we have neglected any triplet superconducting
correlations, as is the case in our system, whichwould otherwise
also give a contribution. Furthermore, ν(ε, r) is the local
density of states, and µ0 = gµBν0/8, where g is the Landé
g-factor, µB is the Bohr magneton and ν0 is the density of states
of the normal metal, at the Fermi level.
To describe the interfaces to the reservoirs, we use a gen-

eralization of the Kupriyanov-Lukichev tunnelling boundary
conditions, which take spin polarization into account [14, 15],

ζ n̂ · ǧ∇ǧ = [ǧ′, ǧ] + ζmr [{σ̌3, ǧ
′} , ǧ] + ζ1 [σ̌3ǧ

′σ̌3, ǧ] , (12)

FIG. 4: The effect of varying the temperature in the right ferromagnetic
reservoir. a) shows the maximum spin accumulation as a function of
the interface polarization P, and b) shows the distribution of the spin
accumulation along a coordinate y moving in a straight line between
the superconductors. The annotations denote different Th/Tc , and
max(µs) is the maximum spin accumulation located along y.

where n̂ is the interface normal, ζ expresses the in-
terface resistance, and ǧ′ is the reservoir Green func-
tion. The parameters ζmr = P/

(
1 +
√

1 − P2
)
and ζ1 =(

1 −
√

1 − P2
)
/
(
1 +
√

1 − P2
)
give the spin filtering at the

interface, for a given polarization P. For interfaces to the
ferromagnets, we set ζ = 3 and P = 0.6, whereas for the super-
conductors, we set ζ = 1 and P = 0. To generate a temperature
gradient in the normal metal, we set the temperature in the left
ferromagnetic reservoir, as well as in the two superconduct-
ing leads to be Tl = 0.1Tc , and the temperature in the right
ferromagnetic reservoir to be Th = 0.5Tc . The retarded and
advanced components of Eq. (7), and subsequently, Eq. (10),
are solved using the finite element method [16], and the result-
ing magnetization is computed using Eq. (11). The results are
shown in Fig. 3. It is seen that when the phase difference ∆ϕ
is zero, no magnetization is induced in the normal metal. In
stark contrast, an antisymmetric magnetization appears when
∆ϕ = π/2. Thus, a supercurrent carried by spinless Cooper
pairs induces a magnetization.
A magnetization can also be generated due to the presence

of the ferromagnets, which in proximity to a superconductor
can produce triplet superconducting correlations [17]. Another
source of triplet correlations are the spin filtering at the inter-
faces, which would polarize the supercurrent if it detours via
the ferromagnets on its way from one superconducting lead to
the other. However, for the present geometry, the ferromagnets
are located sufficiently far away from the superconducting leads
that these mechanisms can be disregarded. In other words, the
triplet superconducting correlations are completely negligible
in this system, and the magnetization is induced solely by the
interaction between the singlet (spin-0) Cooper pairs and the
nonequilibrium temperature distribution.

It is interesting to investigate how the induced magnetization
depends on the system parameters. In Fig. 4a) we show the
maximum spin accumulation as a function of the interface
polarization P, for a variety of different temperature gradients.
Polarizations up to 90% can be obtained e.g. by replacing the
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ferromagnetic reservoirs in Fig. 1 with normal reservoirs that
couple to the central normal metal via a ferromagnetic insulator
such as EuS [18]. It is seen that the magnetization increases
with P, and that this increase is steeper for higher Th. This
result is reasonable, as both parameters combined generate a
spin temperature difference Ts , in correspondence with Eq. (6).
Fig. 4b) shows the distribution of the spin accumulation along
a straight line between the superconducting leads. For a low
temperature difference Th − Tl , the largest spin accumulation
takes place about half way between the center of the system
and the superconductors. However, as Th increases these
maxima are eventually overtaken by a larger spin accumulation
at the superconductor interfaces. This is likely because of the
increasing temperature gradient between the right ferromagnet
and the superconductors, which leads to an increasing heat
exchange between the two. Since the temperature in the latter
is spin independent, this serves to mollify the spin temperature
difference Ts near the superconductors, and thus increase the
gradient in h3. This, in turn, leads to a higher spin accumulation
when a phase gradient is applied. We note, however, that these
results are obtained while assuming the superconductors act
as temperature reservoirs. A continued increase in Th will
likely invalidate this assumption, and lead to a saturation of
the induced spin accumulation. We also note that a spin-heat
accumulation, described by a finite h3 and Ts , should in general
also occur close to the interface on the ferromagnetic side [22].
Finally, we remark that it is also possible to generate a spin

dependent temperature difference by applying a voltage bias
between the ferromagnets, rather than a temperature gradient.

In this case, the largest average Ts in the system would be
obtained for a parallel alignment of the ferromagnets. A phase
gradient between the superconducting leads will then produce
a spin accumulation by the same mechanism as previously
described. However, in addition to providing a Ts , the injected
quasiparticles lead to a spin imbalance, and thus directly
contribute to the spin accumulation. This spin accumulation
is independent of the phase gradient, and will likely dominate
any measurement.

Conclusion.—. We have shown that a supercurrent carried
by spinless Cooper pairs can induce a spin accumulation in a
normal metal. This is possible when a spin-energy distribution
mode is excited in the normal metal out of equilibrium, which
allows a spin accumulation to arise due to the Doppler shift
caused by the supercurrent in the quasiparticle energies. Our
finding shows that spin control is possible even with singlet
Cooper pairs in conventional superconductors, which could
open interesting avenues for further research in superconducting
spintronics.
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