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Abstract: Generally, building information modelling (BIM) models contain multiple dimensions of building
information, including building design data, construction information, and maintenance-related contents,
which are related with different engineering stakeholders. Efficient extraction of BIM data is a necessary
and vital step for various data analyses and applications, especially in large-scale BIM projects. In order
to extract BIM data, multiple query languages have been developed. However, the use of these query
languages for data extraction usually requires that engineers have good programming skills, flexibly master
query language(s), and fully understand the Industry Foundation Classes (IFC) express schema or the
ontology expression of the IFC schema (ifcOWL). These limitations have virtually increased the difficulties
of using query language(s) and raised the requirements on engineers’ essential knowledge reserves in
data extraction. In this paper, we develop a simple method for automatic SPARQL (SPARQL Protocol
and RDF Query Language) query generation to implement effective data extraction. Based on the users’
data requirements, we match users’ requirements with ifcOWL ontology concepts or instances, search the
connected relationships among query keywords based on semantic BIM data, and generate the user-desired
SPARQL query. We demonstrate through several case studies that our approach is effective and the
generated SPARQL queries are accurate.
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1. Introduction

Building information modelling (BIM) is a general digital building representation and information
processing platform, and it has been widely used in the architecture, engineering, and construction
(AEC) industry [1–4]. Currently, BIM interoperability research and applications have covered the
environmental [1,2,5,6], economic [7,8], and social domains [9] and their combinations [1,10–12]. For the
sharing and exchange of BIM data by various participants among different software applications,
the Industry Foundation Classes (IFC), an open international standard for BIM data, is being
continuously developed and updated [13,14]. Furthermore, the IFC standard aims to cover the
entire AEC industry, and the IFC schema has already become a common data expression schema for
presenting BIM instances and data [15–17].

BIM data generally stand as a whole project’s digitized description and data repository. BIM data
include multiple dimensions of building information, such as building element relationships and
properties, building structure, building space and geometry information, building plumbing, and so
on. Building models can be applied in different practical engineering tasks according to specific case
requirements. Different stakeholders desire requisite and sufficient building information from BIM
data for vendor-specific business processes. Correctly querying and extracting the required BIM
data from the IFC file(s) is a necessary step for various data analyses and engineering applications.
However, the IFC data model was initially designed for the sharing and exchange of product data,
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rather than for data query and analysis tasks. The main purpose of IFC is to maximize its ability
to represent basic concepts [18] and descriptive building information with relatively complicated
structures. All of these have made it difficult to query and manage IFC instance data. Additionally,
when integrating and processing multi-source data, the IFC meta model is not flexible enough [19].
Meanwhile, Zhong et al. [20] pointed out that semantic clarity cannot be achieved in current IFC
files when mapping entities and relationships, and this could result in invalid data exchange between
different applications. Thus, specific information extraction from BIM data based on the IFC schema is
still a challenge for different stakeholders and involves a mass of manual and repetitive operations.

Semantic web/ontology technologies can facilitate information sharing, integration, and linkage
and improve the collaborative ability of different application systems [21]. They seem to provide an
alternative method for solving issues related to IFC limitations. To promote the use of semantic web
technology in AEC industry, the BuildingSMART organization standardized an ifcOWL ontology
as a domain foundation ontology for the AEC industry domain [22]. Since then, the use of the
SPARQL (SPARQL Protocol and RDF Query Language) query language or SWRL (Semantic Web Rule
Language) for building data extraction has become a popular method [19,23–25]. In this kind of method,
SPARQL and SWRL queries are manually written by stakeholders, which requires stakeholders to
have good programming skills and fully understand the grammar/elements of the SPARQL (or SWRL)
language and ifcOWL schema. This raises the bar for SPARQL usage in AEC industry and limits
automated data processing to a certain extent. To solve this issue, we propose a simple approach
to automatically generate the SPARQL queries desired by engineers based on some simple search
keywords for BIM data extraction. Utilizing the path query function provided in the Stardog RDF
database management system, we search the shortest path that connects all query keywords in a BIM
instance and extract the structure of the shortest path to generate the SPARQL query. This method can
reduce the requirements of programming skills and knowledge reserves of AEC engineers when using
SPARQL to extract BIM data. Additionally, our method is based on BIM cases, so it can also be applied
in different IFC versions or semantically enriched BIM models.

Section 2 briefly introduces the related work about BIM data extraction. We also discuss the
potential contributions of our method in different application domains. The main research approach
and implementation procedures of our method are introduced in Section 3. Section 4 verifies our
approach in two case studies. Finally, we draw conclusions and discuss the benefits and limitations of
this method in Section 5.

2. Related Work

This section includes two research fields. The first one focuses on data extraction approaches
based on different data models. The second one concerns the relevant research on semantic BIM
data extraction.

2.1. Data Query Approaches Based on Different Data Models

To retrieve the subsets of BIM data according to different specific application scenarios,
some researchers have proposed concise, well-defined formal query languages to specify the required
information. These specific query languages can provide some effective direct access to the required
data from the BIM model. For example, the Building Information Model Query Language (BIMQL) is
a query language tailored to IFC building models [26] that is mainly used to retrieve instances and
attribute values; however, it lacks the expressiveness to extract and match arbitrary subgraphs [27].
To adequately treat geometric information, Daum et al. [28] introduced a topological and spatial
querying system using the Query Language for Building Information Models (QL4BIM), in which the
Boundary Representation (BRep) of the operands was used, and elements contained or intersecting
within other elements can be retrieved.

The other kind of query methods convert IFC instance models into different formats and use some
certain query languages based on specific formats. Ismail et al. [29] developed an approach to convert
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and store BIM models in a Neo4j graph database and then use the Cypher query language, specified in
the Neoj4 database, to query data. Krijnen et al. [27] proposed a novel, binary equivalent format with
traditional IFC that also provides more compact storage and less overhead than graph serialization in
the Resource Description Framework (RDF), and a SPARQL query engine can be implemented in this
format for data extraction.

Additionally, Nepal et al. [30] explored a process and methods for extracting and querying
construction-specific information from a BIM, in which custom 2D topological XQuery predicates were
created to implement a variety of spatial queries.

2.2. Semantic BIM Data Extraction

Some BIM models come from BIM design software; however, this kind of software cannot store
data in the RDF data format. Thus, converting the EXPRESS schema (used in IFC) into the ifcOWL
schema became a required step for the semantic processing of BIM data. BuildingSMART provides some
tools to implement this: the buildingSMART IfcDoc tool (https://github.com/buildingSMART/IfcDoc)
the UGent—Aalto IFC-to-RDF converter (https://github.com/pipauwel/IFCtoRDF), and the Walter
Terkaj EXPRESS-to-OWL converter (http://www.terkaj.com/tools/ExpressToOwl/ExpressToOwl.zip).
Certainly, there have been some other efforts for this kind of conversion [22,31–33]. These tools
and research have accelerated the application and development of semantic web technology in AEC
industry [20,24,34].

Nepal et al. [35] introduced a new approach that included ontology-based feature modeling,
automatic feature extraction (using XQuery query predicates), and query formulation and processing
(using a feature-based model and formal query specifications) to quickly extract the construction-specific
information from a given BIM model. Zhang et al. [36] designed an approach of ontology-based partial
BIM model extraction, in which a partial model extraction algorithm was achieved through Java.

More commonly, semantic BIM data are generally extracted through SPARQL or SWRL query
codes. For example, a shared ontology approach was developed to improve the finding and integration
of building information distributed in different knowledge bases, while SPARQL was used to search
for information from knowledge bases [37]. Beetz et al. [38] applied RDF(S) sub-graph retrieval for
a partial building view extraction and generated a graph pattern matching the query with SPARQL.
de Farias et al. [25] utilized SWRL to extract building data from semantic BIM data to create building
model views.

However, due to the complexity of the IFC schema, many queries and analysis tasks are still
laborious when using SPARQL in AEC industry, and many required properties and relationships,
such as product geometry quantities, spatial and topological relations, etc., are difficult to retrieve [19].
To solve these issues, Zhang et al. [19] developed SPARQL extensions for querying ifcOWL building
data, called BimSPARQL. In BimSPARQL, some new RDF vocabularies that can be used in SPARQL
queries were designed through a set of extension functions, and a module for geometry-related
functions was implemented to derive implicit BIM information [19]. Additionally, Liu et al. [39]
proposed an ontology-based semantic approach to extract construction-oriented quantity take-off

(QTO) information for the purpose of construction operation planning and to allow the use of the
building product ontology formalized from construction perspectives to semantically query (SPARQL
query) the needed QTO data in the BIM model.

As a method of data extraction, the SPARQL query language is also usually applied to the quality
and regulatory checking of BIM models [40]. For example, a system based on the Semantics of Business
Vocabulary and Business Rules (SBVR) and SPARQL was proposed to formalize the regulations [41].
This kind of regulation-checking application adopts SPARQL query programs as the representation of
different regulations, and then executes these SPARQL codes on the semantic BIM model to implement
regulations checking. This process is similar to BIM data extraction. The SPARQL filter conditions of
data extraction can be viewed as detailed regulations in rule compliance checking. The query results
can be either rule-compliant or rule-incompliant BIM data, depending on the SPARQL programming.

https://github.com/buildingSMART/IfcDoc
https://github.com/pipauwel/IFCtoRDF
http://www.terkaj.com/tools/ExpressToOwl/ExpressToOwl.zip
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That is, rule compliance checking and data extraction of BIM have the same processing flow, and the
differences are the origin and contents of the query filter conditions. For example, an ontology-based
framework was proposed to carry out environmental monitoring and compliance checking cross BIM
and different information systems, in which the regulation clauses were transformed into SPARQL
codes [42]. Additionally, a semantic BIM Reasoner (SBIM-Reasoner) was developed for IFC model
semantic validation, in which semantic technologies are used to build the semantic repository from the
input IFC model, and in the same way, validation regulations were designed as SPARQL queries [43].

In general, although SPARQL has widely been used for data extraction and related research in AEC
industry, SPARQL queries are typically generated/programmed manually [19,37–43]. To bridge this
gap, we develop herein an approach of automated SPARQL query generation for BIM data extraction.
This approach can be utilized in various applications, such as data extraction, rule compliance checking,
data retrieval in semantic enrichment of BIM models, and so on. In this paper, we only focus on
SPARQL generation according to query keywords provided by users/engineers, so natural language
processing (NLP) technologies (e.g., semantic parsing, syntactic structure, and dependency parsing)
and the engineering applications of data extraction are beyond the scope of this article.

3. Main Research Approach

3.1. Research Approach and Definitions

Some basic principles should be introduced firstly. RDF is a standard model that can facilitate data
merging on the Web, and the RDF model is a graph-based data model with a directed and labeled graph
data format [44]. SPARQL is a graph-based query language for RDF and can be used to query data
across different data sources [45]. A SPARQL query generally consists of two clauses: SELECT and
WHERE. The SELECT clause specifies the searched target(s) and the WHERE clause is a set of triples,
in which each triple can be a query filter condition. In a knowledge base, the assertion box (ABox)
and the terminological box (TBox) are generally used to describe two different types of statements:
the TBox describes the statements about conceptual entities and the ABox describes the statements
involving concrete entities [46]. In order to use semantic building data with semantic web technologies,
we need to convert the IFC data into the RDF data format (based on the ifcOWL schema), as described
in Section 2.2.

Additionally, we introduce the path concept, which is the connected relationships between two
specified nodes, including the linked nodes and properties. The common nodes in different paths are
frequently referred to. Figure 1 shows our definitions and assumptions about the length of a path and
the shortest path. The length of a path is the number of connected edges in a path. The shortest path
connecting the nodes “3” and “4” is the path of minimum length among all paths that include the
nodes “3” and “4”, shown in Figure 1c.

A SPARQL query is a sub-graph of the whole data model, so in our approach, we should firstly
acquire the structure of the SPARQL query desired in the BIM model, and then utilize the structure of
the SPARQL query to generate the required SPARQL query. Considering that not all civil engineers
have programming experience, we tried to avoid intricate programming, so we chose the Stardog 7
RDF graph data platform because Stardog 7 provides path queries that can traverse an RDF graph,
return all intermediate nodes on each path, and allow arbitrary SPARQL graph patterns to be used in
the query [47]. One can easily get a query path in the Stardog database without complex programming.
The path query syntax provided in the Stardog RDF database is shown in Figure 2, in which START
and END specify a start node and an end node, and VIA assigns a graph pattern to match each edge in
the path [47]. According to the query keywords provided by engineers/users, all paths that contain
different query keywords can be found through the Stardog 7 database. Based on the found paths,
simple programming is developed to find the common nodes in path files and to connect all query
keywords through the shortest path. The structure of the shortest path is the structure of the SPARQL
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query. After that, the nodes in the shortest path are replaced with SPARQL variables and the final
SPARQL query is generated.
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To formalize the query keywords, a query tabulation was designed to record the query requirements
and was then used as a query basis to produce the SPARQL query, listed in Table 1. The first line
of this tabulation is the query target(s), and the column below a target can be filled with query filter
conditions about the target(s). A query tabulation can be filled with several targets. When multiple
targets are extracted in a SPARQL query, a semicolon is used to separate targets, and a dot indicates
the dependency relation of targets. For example, wall.GlobalUniqueID means the GlobalUniqueID
of a wall, shown in Table 1b. Table 1b expresses that the targets are the GlobalUniqueIDs of walls
and walls with some query conditions. The number of filter conditions is not limited, and one can
increase or reduce the number of query conditions based on different requirements. It should be noted
that specific query targets and conditions are necessary and the basis for correct execution results in
our approach. It is best to fill in some query keywords according to the naming conventions, such as
names of instances/classes/properties in a certain BIM case, because different BIM cases may adopt
different instance naming conventions. For example, the “second floor” is marked as “Level 2” in the
first case and “Plan E2” in the second case used to verify our approach in this paper. Moreover, only
string-matching technology was adopted in this paper, rather than semantic NLP technologies, so,
when querying a window, one can fill in “window”, “windows”, “IFCWINDOW”, or “IfcWindow”
in the query tabulation as a query target. Based on string matching, the term closest to the query
target will be identified as a query keyword for following processing in a BIM case. Due to the lack
of semantic NLP technologies, when querying door information, one can fill in “doors”, “ifcdoor”,
or “door”, rather than “exit” or “gate” in the query tabulation, although “exit” and “gate” have similar
semantics to “door” to some extent in building models.
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Table 1. The format of query requirements.

(a)

Target: Window

Condition: Level 2
Condition:

(b)

Target: Wall; Wall.GlobalUniqueID

Condition: wall.Plan E2
Condition: wall. External
Condition: wall.TRUE

3.2. Implementation of the Proposed Approach

To implement our approach, we follow these operations:

1. Establish the BIM knowledge base. The IFC to RDF tool [48] is used to convert the IFC schema
into a semantic BIM model and store the RDF BIM data in the Stardog RDF database.

2. Create the Tbox and Abox based on the BIM knowledge base. Query keywords provided in a
query tabulation are matched with concepts or instances in the BIM knowledge base, and the
terms that are most similar to query keywords are used for the following processing.

An RDF model is a directed and labeled graph data model, and a SPARQL query is a sub-graph
of the data model. In order to generate a SPARQL query, we should firstly capture a data path that
connects all query keywords in the semantic BIM data model.

3. Acquire all paths related to the query keywords. We adopted the Stardog path query function
that can explore all unidirectional relationships of a query keyword and express the results in data
path(s). According to the query keywords, all paths containing the query keywords in the BIM
instance model are found and stored in csv files, including all paths that begin with keywords or
end with keywords. A path file includes all paths related with a query keyword. In the Stardog
RDF database, the “Run to File” function can store path information in a csv file.

4. Extract the structure of the SPARQL query. To generate effective query results and the
corresponding SPARQL query, the provided query keywords should have certain connected
relationships in a given BIM model. That means that all keywords should be covered in a
sub-graph of the BIM model. In other words, some paths that are gained in Step 3 should have
some common node(s). So, the searching the common node(s) in path files is a key step in
extracting the structure of the SPARQL query.

• When there are only two path csv files (meaning that there are only two query keywords:
one target and one query condition), the search task is simple; each node is iteratively
indexed from one path file and checked as to whether it exists in the other path file. Once a
common node is checked, this common node and the two sub-paths from the common node
to the corresponding keywords are recorded. The common node is viewed as a top node to
connect the two sub-paths, and then a path connecting the two query keywords is gained.
When all common nodes and connected paths are sought out, the shortest path(s) connected
two query keywords can be ascertained and stored in a new csv file, named the shortest-path
file. After that, the structure of a SPARQL query in the BIM model can be obtained based on
the structure and connected relationships of nodes in the shortest path.

• When multiple query keywords are provided and multiple path files are generated, the search
task should keep to the following search rules and steps:
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I. The target keyword(s) will be the important keyword(s) and its(/their) path file(s)
will be viewed as the important search target(s). A target keyword is viewed as a core
keyword when it has relationships with several other query keywords in the query
tabulation. The path file(s) of the core keyword(s) will be viewed as main target
file(s). The path files of related query keywords will be viewed as relevant-path files.

II. Utilizing the same search processing method as in the case of only two path files,
the nodes in every relevant-path file should be matched with nodes in the main target
file, and then the search results are stored in a shortest-path file. After processing all
relevant-path files, multiple shortest-path files can be obtained. This is considered
the first iteration.

III. For dealing with these shortest-path files, we similarly search the common node(s)
between two shortest-path files and merge the two paths through the common
node(s) into a new path in which the common node(s) should be only recorded once.
After that, new paths are stored in a new shortest-path file for the next iteration. In a
new iteration, the new shortest-path file and a shortest-path file (generated in the
first iteration) are processed and merged into a newer shortest-path file for the next
iteration. When all shortest-path files are merged into one file, the iterations are
finished. The shortest path in the final file that connects all query keywords is the
final result. The structure and connected relationships of nodes in the shortest path
is the structure of the desired SPARQL query. It is noted that there can be more than
one such shortest path in the final file; however, the structure of the shortest path is
generally the same.

5. Generate the SPARQL query. Once the structure of the SPARQL query is acquired, the SPARQL
query is created. Every two connected nodes and their relationship property in the shortest path
are converted into a query filter condition in the WHERE clause of SPARQL. If the nodes of the
path may be some given keywords or classes, these values can be kept in the WHERE clause
of SPARQL. The other endpoint nodes and all intermediate nodes are replaced with SPARQL
variables, such as ?a, ?b, or ?c. In the shortest path, the same node uses a uniform variable name
and different nodes use different variable names. The variable that replaces the target keyword is
used in the SELECT clause. If a target keyword is mapped with a class in the ifcOWL schema,
the target variable (in the SELECT clause) chooses the instance variable or a value variable that is
directly linked with this class in the shortest path. Then, the SPARQL query is generated.

The whole processing flow of our approach is illustrated in Figure 3.
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4. Case Studies

To validate the feasibility and effectiveness of the proposed approach, we tested it in the following
environment:

• Intel processor Xeon(R) E-2176M CPU 2.7 GHz, SSD 1024 GB, and 32 GB RAM memory;
• Microsoft 64-bit Windows 10 Operating System;
• Stardog triple store and API version 7;
• A wrapper library called pystardog (a Python virtualenv).

For case studies, we used two different cases to verify that our approach is simple, effective,
and accurate.

4.1. Case Study One: A Duplex Apartment Case

This is a public case with IFC file and equivalent RDF file (.ttl) available online [49], shown in
Figure 4 in the Solibri Model Viewer tool [50]. In this case, we used the case prefixes in the .ttl file as
our SPARQL prefixes. Table 2 lists the namespace Internationalized Resource Identifier (IRI) and the
related prefixes used in this case.

Table 2. The prefixes in this case.

Prefix Namespace IRI

Ifcowl http://www.buildingsmart-tech.org/ifcOWL/IFC2X3_TC1#
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When one tries to query window information for the second floor, the target in the query is
filled with “window” and the query condition is filled with “Level 2”, listed in Table 1a. In terms of
string matching, “Window” is the closest to “IfcWindow” because window instances in BIM models
generally have longer names than “IfcWindow”. We utilized “IfcWindow” and “Level 2” as the
path beginning and ending to search data paths in the semantic BIM case stored in the Stardog RDF
database. The results of Stardog path query and the corresponding path query codes are shown in
Figures 5 and 6. There were 356 paths ending in “IfcWindow”, and no path began with “IfcWindow”.
The results of Stardog path query were exported to a csv format file using the “Run to File” function in
Stardog. Similarly, we obtained 236 paths ending in “Level 2” and exported the results to a csv file.
The following step was to find the same node(s) in these two csv files and the shortest path connecting
these two keywords. Because there were only two path files in this case, searching common nodes
in the two path files was easy through different implementation methods. For example, csv files can
be opened in Excel software, and we can utilize the search function in Excel to find common nodes
between two path files. We could also achieve the searching operation in Python. When all common
nodes were found, the shortest path(s) connecting the two query keywords could also be identified,
shown in Figure 7. After that, we used SPARQL variables to replace the entity nodes.

When the endpoint nodes were specified keywords or instance classes, they were not replaced
with variables, illustrated in Figure 8. Every arc and the two corresponding connected nodes in
Figure 8 generated a triple in the WHERE clause, while the target in the SELECT clause was chosen
as the instance variable linked with the class of IfcWindow. The final SPARQL query is shown in
Figure 9. We then ran the SPARQL query in Stardog and gained 18 query results, also shown in
Figure 9. The query results were verified as correct by comparing the 18 window results with the
window information illustrated in Solibri Model Viewer software. This proved that our generated
SPARQL query was correct.

Figure 5. The results of Stardog path query of the keyword “IfcWindow”.
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Table 3. The prefixes in this Norwegian case.

Prefix Namespace IRI

Ifc http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#
inst http://linkedbuildingdata.net/ifc/resources20200811_130356/
list https://w3id.org/list#

express https://w3id.org/express#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
xsd http://www.w3.org/2001/XMLSchema#
owl http://www.w3.org/2002/07/owl#

Similarly, we implemented the path queries in Stardog using five different query keywords, shown
in Figure 11. When the results of a Stardog path query number more than 1000 paths, only 1000 results
are shown in the Stardog database. However, when the path queries are exported through “Run to
File”, all query results can be stored in a csv file. In this case, the core keyword was “wall”, related to
all other query keywords, and the closest term to “wall” was “IfcWall” in the BIM knowledge base,
so the path file of the keyword “IfcWall” was viewed as the main target.
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As the first iteration, we began to search the common node(s) between the path file for “IfcWall”
and the other path file, generating paths that connected the keyword “IfcWall” and the other query
keyword, and then stored the shortest path(s) into a shortest-path file. In the first iteration, we obtained
four shortest-path files. The next iteration was to search for common node(s) between pairs of
shortest-path files. Two paths were merged into a new path through the common node(s) and stored
in a new shortest-path file for the next iteration. For example, Zone I in Figure 12 shows the shortest
path connecting “IfcWall” and “Plan E2” obtained in the first iteration. The other shortest path in the
other path file was merged into this path, and then a new shortest path was generated, shown in the
combination of Zone I and Zone II in Figure 12. Nodes in the red dashed circle are common nodes
between these two shortest paths, which connect the two paths. However, ifc:IfcGloballyUniqueID
is a class, not a value. Actually, the GUID value of an instance has a same upper node as the node
“ifc:IfcGloballyUniqueID” of this instance. When finding the node of “ifc:IfcGloballyUniqueID” of an
instance, one also finds the position of the GUID value of an instance because they have a fixed
structure in the ifcOWL schema. So, we can add the fixed structure in the shortest path to find the
GUID value, shown in the red font in Zone II of Figure 12.
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In the third iteration, a path in the path file of the keyword “IsExternal” was joined into the new
shortest path through the common nodes(s) in the red dashed circle in Figure 12. The result of the third
iteration is shown in the combination of Zones I, II, and III in Figure 12. In the last iteration, the path in
the last shortest-path file was combined into the shortest path that was gained in the third iteration.
The greed and red dashed circles cover all common nodes in this iteration; however, the common
nodes were only added into the shortest path once. So, the whole of Figure 12 illustrates the final result
of the shortest path connecting the five query keywords in this semantic BIM case.

We used SPARQL variables to replace the node instances, shown in Figure 13. Figure 14 exhibits
the generated SPARQL query and the query results of SPARQL codes. When compared with the
external walls of the second floor in the Solibri Model Viewer tool, the query results from the generated
SPARQL query were found to be correct, which also proves that our approach is effective and correct.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18 

In the third iteration, a path in the path file of the keyword “IsExternal” was joined into the new 
shortest path through the common nodes(s) in the red dashed circle in Figure 12. The result of the 
third iteration is shown in the combination of Zones I, II, and III in Figure 12. In the last iteration, the 
path in the last shortest-path file was combined into the shortest path that was gained in the third 
iteration. The greed and red dashed circles cover all common nodes in this iteration; however, the 
common nodes were only added into the shortest path once. So, the whole of Figure 12 illustrates the 
final result of the shortest path connecting the five query keywords in this semantic BIM case. 

We used SPARQL variables to replace the node instances, shown in Figure 13. Figure 14 exhibits 
the generated SPARQL query and the query results of SPARQL codes. When compared with the 
external walls of the second floor in the Solibri Model Viewer tool, the query results from the 
generated SPARQL query were found to be correct, which also proves that our approach is effective 
and correct. 

 
Figure 13. The structure of the shortest path with query variables in this case. 

 
Figure 14. The generated SPARQL query and results of query codes run in this BIM case. 

Figure 13. The structure of the shortest path with query variables in this case.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18 

In the third iteration, a path in the path file of the keyword “IsExternal” was joined into the new 
shortest path through the common nodes(s) in the red dashed circle in Figure 12. The result of the 
third iteration is shown in the combination of Zones I, II, and III in Figure 12. In the last iteration, the 
path in the last shortest-path file was combined into the shortest path that was gained in the third 
iteration. The greed and red dashed circles cover all common nodes in this iteration; however, the 
common nodes were only added into the shortest path once. So, the whole of Figure 12 illustrates the 
final result of the shortest path connecting the five query keywords in this semantic BIM case. 

We used SPARQL variables to replace the node instances, shown in Figure 13. Figure 14 exhibits 
the generated SPARQL query and the query results of SPARQL codes. When compared with the 
external walls of the second floor in the Solibri Model Viewer tool, the query results from the 
generated SPARQL query were found to be correct, which also proves that our approach is effective 
and correct. 

 
Figure 13. The structure of the shortest path with query variables in this case. 

 
Figure 14. The generated SPARQL query and results of query codes run in this BIM case. Figure 14. The generated SPARQL query and results of query codes run in this BIM case.



Appl. Sci. 2020, 10, 8794 15 of 17

We implemented our approach using the Python programming language to automatically search
common nodes and generate the SPARQL query. We also manually executed our approach to generate
the SPARQL query, and only spent a couple of minutes on creating the final SPARQL query in the
second case. So, it is feasible for engineers of different stakeholders without SPARQL programming
skills to generate the required SPARQL query for BIM data extraction by using our approach.

5. Conclusions

The SPARQL query language is widely used in different data extraction or rule compliance
checking applications in AEC industry; however, SPARQL queries are generally programmed manually
by experts/engineers. To automate this process, in this paper, we proposed an approach for the
automatic generation of SPARQL codes without programming proficiency or full understanding of the
structure of the semantic BIM model. To allow engineers without SPARQL programming experience
to obtain the SPARQL queries they desire, we used the path query function provided by the Stardog
RDF database to achieve path finding in the semantic BIM model. By searching the common nodes in
different path files, the shortest path(s) containing all query keywords can be obtained. Because of
the numerous congeneric products/elements in a BIM model, the shortest path may not be unique,
but this does not affect the structure of the shortest path. By its structure information, the WHERE and
SELECT clauses in the SPARQL query can be produced. After two case studies, we verified that the
generated SPARQL queries are correct and our approach is effective. Additionally, our approach can
be flexibly used in different IFC versions or semantic/information enriched BIM models.

However, natural language processing technologies were not applied in this paper, so the query
keywords written by users are restricted to some extent. For example, it is best for the query keywords to be
similar to the terms in the BIM knowledge base because only string matching was adopted in our approach
to find the searched terms. Additionally, data extraction of the complex relationships among multiple targets
will produce a great many Stardog path query files in our approach, and it may be difficult to find the
shortest path to connect all keywords manually. At this time, a common node search program may be
required. The usage of the Stardog RDF database simplifies the exploration of the linked relationships (path)
among different query keywords. Certainly, the linked paths among query keywords may be identified
through programming or other tools. Meanwhile, our approach mainly depends on path exploration in the
explicit BIM model. Implicit data extraction needs further research in the future.
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