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Abstract
In genetic association studies, detecting phenotype–
genotype association is a primary goal. We assume that
the relationship between the data—phenotype, genetic
markers and environmental covariates—can be mod-
eled by a generalized linear model. The number of
markers is allowed to be far greater than the number
of individuals of the study. A multivariate score statis-
tic is used to test each marker for association with a
phenotype. We assume that the test statistics asymptot-
ically follow a multivariate normal distribution under
the complete null hypothesis of no phenotype–genotype
association. We present the familywise error rate order k
approximation method to find a local significance level
(alternatively, an adjusted p-value) for each test such
that the familywise error rate is controlled. The special
case k = 1 gives the Šidák method. As a by-product, an
effective number of independent tests can be defined.
Furthermore, if environmental covariates and genetic
markers are uncorrelated, or no environmental covari-
ates are present, we show that covariances between score
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statistics depend on genetic markers alone. This not only
leads to more efficient calculations but also to a local
significance level that is determined only by the collec-
tion of markers used, independent of the phenotypes
and environmental covariates of the experiment at hand.

K E Y W O R D S

effective number of independent tests, FWER control, generalized
linear model, GWAS, intersection approximation, The HUNT Study

1 INTRODUCTION

A genetic marker is a DNA sequence at a known location on a chromosome. It may be a gene,
but can, as in the data referred to in this article, be a single base-pair—a single-nucleotide poly-
morphism (SNP). In genome-wide association (GWA) studies, the aim is to test for association
between genetic markers and a phenotype (an observable characteristic of an individual, e.g., a
numerical variable, such as maximum oxygen uptake, or a categorical variable, such as presence
of schizophrenia or bipolar disorder or absence of those diseases).

A large number of markers are tested, and multiple testing correction methods can be used
to control the familywise error rate (FWER)—the probability of making one or more Type I
errors—by specifying a local significance level (also known as genome-wide significance level) for
the individual tests. In this work we present the FWER order k approximation method for finding
a local significance level in multiple hypothesis testing (not to be confused with k-FWER control
of the probability of k or more false rejections).

We assume independent individual observations in a case–control, cohort, or cross-sectional
study. The phenotype of interest can be continuous or discrete. We consider biallelic genetic mark-
ers, giving three possible genetic variants, called genotypes. For each marker we assume the null
hypothesis of “no association between phenotype and genotype” and a two-sided alternative. We
model the data by a generalized linear regression model (GLM) with phenotype as response,
marker genotypes as explanatory variables of interest, and possibly nongenetic explanatory vari-
ables, referred to as environmental covariates. In particular, a confounder such as population
substructure (which may be associated with both phenotype and genotype) can be adjusted for
by including principal components of the marker genotype covariance matrix as covariates (Price
et al., 2006).The number of markers may be much greater than the number of data points, as the
complete GLM is not fitted.

We use a score statistic for each marker separately for testing the marker's contribution to the
model. The vector of score statistics asymptotically follows a multivariate normal distribution,
with covariances that can be estimated from data (Conneely & Boehnke, 2007; Schaid, Rowland,
Tines, Jacobson, & Poland, 2002; Seaman & Müller-Myhsok, 2005).

Let m be the number of markers. The FWER can be controlled at level 𝛼 by using an appro-
priate local p-value cutoff, 𝛼loc, for each of the m hypothesis tests. Inspired by the work of
Moskvina and Schmidt (2008) and Dickhaus and Stange (2013), we will use an approximation to
the m-dimensional asymptotic multivariate normal distribution of the score test statistics vector
to calculate 𝛼loc, or, alternatively to calculate FWER-adjusted p-values. In addition, 𝛼loc together
with 𝛼 can be used to define an effective number of independent tests.
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FWER order k approximation is more powerful than the Šidák method (which makes assump-
tions on the dependence structure among test statistics, allowing independence) and the Bonfer-
roni method (which is valid for all dependence structures). It is more computationally efficient
than the method of Conneely and Boehnke (2007), which is based on numerical integration
in m dimensions, for which current algorithms have limited precision and are computationally
intensive. The Westfall–Young permutation procedure is known to have asymptotically optimal
power for a broad class of problems, including block-dependent and sparse dependence structure
(Meinshausen, Maathuis, & Bühlmann, 2011). However, also this method is computationally
intensive, and to have a valid permutation test, the assumption of exchangeability needs to be
satisfied (Commenges, 2003). This assumption is in general not satisfied when environmental
covariates are present in the GLM, but approximate methods exist in the case of a normally dis-
tributed response. There is, to our knowledge, no such simple approximation available in the
general case, or in the special case of logistic regression. Finally, it should be mentioned that also
Bayesian methods exist that include covariates and multiple markers (see Wakefield, 2009, for the
logistic case).

We proceed (Section 2) to present the statistical background on the score test and derive
expressions for the score test covariance matrix, which is of importance for the subsequent work.
Next, our proposed method is presented in detail, together with characteristics of it (Section 3).
The method is evaluated and compared to other methods by using two genetic datasets (Aspenes
et al., 2011; Athanasiu et al., 2010; Djurovic et al., 2010; Loe, Rognmo, Saltin, & Wisløff, 2013),
by simulations to assess asymptotic normality and validity of FWER approximations, and by
using two artificial correlation structures (Section 4). Finally, a discussion and conclusion follow
(Section 5).

2 THE SCORE TEST IN GENERALIZED LINEAR MODELS
FOR MULTIPLE HYPOTHESES

2.1 Notation and data

We assume that a phenotype, m marker genotypes, and d environmental covariates are available
from n independent individuals. Let Y be an n-dimensional vector having the phenotype Yi of
individual i as its ith entry, i = 1, … , n. Let Xe be an n × d matrix of rank d having environmental
covariates (the first one being 1 to allow for an intercept in the model presented below) for individ-
ual i as its ith row, and let Xg be an n × m matrix having genetic covariates, or marker genotypes,
for individual i as its ith row, each column corresponding to a genetic marker. We allow m ≫ n.

We assume that the genetic data are from biallelic genetic markers with alleles a and A, and
use the coding 0, 1, 2 for the genotypes aa, aA, and AA, respectively, in the genetic covariate
matrix Xg (reflecting an additive genetic model), but other coding schemes are also possible (e.g.,
0, 1, 1 to reflect a model in which A is dominant over a). We denote the total design matrix
X = (Xe Xg), which has the total covariate vector for individual i as its ith row.

2.2 Testing statistical hypotheses with the score test

We assume that the relationship between the phenotype Y and covariates X can be modeled
by a GLM (McCullagh & Nelder, 1989) with an n-dimensional vector 𝜼 = Xe𝜷e + Xg𝜷g = X𝜷 of
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linear predictors, where 𝜷 = (𝜷T
e 𝜷T

g )T is a d + m-dimensional parameter vector. Let 𝜂i be the ith
entry of 𝜼, and let 𝝁 be the n-dimensional vector having 𝜇i = EYi as its ith entry. We assume
that the link function of the GLM is canonical, which implies that the log-likelihood for indi-
vidual i is li = (Yi𝜂i − b(𝜂i))∕𝜙 + c(Yi, 𝜙), where b and c are functions defining the exponential
family of the phenotypes and 𝜙 the dispersion parameter. In general, 𝜇i = b′(𝜂i) and 𝜎2

i = VarYi =
𝜙b′′(𝜂i). For Yi normally distributed, this reduces to 𝜎2

i = 𝜎2 = 𝜙, and for Yi Bernoulli distributed,
𝜎2

i = 𝜇i(1 − 𝜇i) with 𝜙 = 1.
As a starting point for a test statistic vector for testing whether components of 𝜷g are equal to

zero, we consider the full d + m-dimensional score vector

U =
n∑

i=1
∇𝜷 li =

1
𝜙

XT(Y − 𝝁),

which is asymptotically normal with mean 0 and covariance matrix

V = 1
𝜙2 XTΛX ,

where Λ is the diagonal matrix having 𝜎2
i as its ii entry.

Under the complete null hypothesis 𝜷g = 0, the 𝜷e parameters are still unknown and can be
considered nuisance parameters, so U cannot be used directly as a test statistic vector. Therefore,
we partition U into its environmental and genetic components, UT = (UT

e UT
g ), and replace 𝜷e

by its maximum likelihood estimate under the null hypothesis, which is determined by Ue = 0
(partial derivatives of log-likelihood equal to zero). In effect, 𝝁 is to be replaced by �̂�e, the fitted
values in a model with only environmental covariates Xe present, giving the statistic

Ug|e = 1
𝜙

XT
g (Y − �̂�e). (1)

Under the null hypothesis, Ug|e has the conditional distribution of Ug given Ue = 0, which is
asymptotically normal with mean 0 and covariance matrix

Vg|e = Vgg − VgeV−1
ee Veg = 1

𝜙2 XT
g
(
Λ − ΛXe(XT

e ΛXe)−1XT
e Λ

)
Xg, (2)

where Vee, Veg, Vge, and Vgg are the upper left d × d, upper right d × m, lower left m × d and lower
right m × m submatrices of V , respectively (see Smyth, 2003).

The covariance matrix Vg|e will be singular if m > n, and also asymptotic normality would
require m ≪ n. This will, however, not present any problems for the FWER control method we
present in the next section. We will not consider the complete null hypothesis, but the m indi-
vidual null hypotheses Hj ∶ 𝛽gj = 0 for each component 𝛽gj of 𝜷g, j = 1, … , m, against two-sided
alternatives. As test statistics, we use the standardized components of Ug|e,

Tj =
Ug|ej√

Vg|ejj
, (3)

where Ug|e j denotes the jth entry of Ug|e and Vg|e jk the jk entry of Vg|e. Under Hj, Tj is asymp-
totically standard normally distributed, and Hj will be rejected for large values of |Tj|. Under the



1094 HALLE et al.

complete null hypothesis, 𝜷g = 0, the vector T = (T1,T2,… ,Tm) is asymptotically multivariate
standard normally distributed with correlations

Cov(Tj,Tk) =
Vg|ejk√

Vg|ejjVg|ekk
. (4)

Note that the dispersion parameter 𝜙 is canceled from T and the covariances. However, the 𝜎2
i

of Λ will have to be estimated.

2.3 Special cases

2.3.1 No environmental covariates

If no environmental covariates except the intercept are present in the GLM, then Xe = 1, the
n-dimensional vector having all entries equal to 1, and Λ = 𝜎2I under the null hypothesis, where
I is the n × n identity matrix. Then (1) and (2) reduce to

Ug|e = 1
𝜙

XT
g

(
I − 1

n
11T

)
Y and Vg|e = 𝜎2

𝜙2 XT
g

(
I − 1

n
11T

)
Xg,

so by (3) and (4),

Tj =
xT

j (I −
1
n

11T)Y

𝜎

√
xT

j (I −
1
n

11T)xj

, (5)

Cov(Tj,Tk) =
xT

j (I −
1
n

11T)xk√
xT

j (I −
1
n

11T)xj

√
xT

k (I −
1
n

11T)xk

,

where xj is the jth column of Xg, j, k = 1, … , m. Hence, if 𝜎 is replaced by its estimate(
1
n

Y T(I − 1
n

11T)Y
)1∕2

, then Tj, the score test statistic for testing 𝛽gj = 0, becomes
√

n times the
sample correlation between xj and Y , and Cov(Tj,Tk) is the sample correlation between xj and xk.
Thus, for a GLM without adjustment for environmental covariates, correlations between score
test statistics can be estimated by genotype sample correlations, which also estimate twice the
composite linkage disequilibria if genotypes are coded 0, 1, 2 (Weir, 2008).

2.3.2 Uncorrelated environmental and genetic covariates

Assume that each pair of an environmental covariate and a genetic covariate has near zero sample
correlation, which should occur if each environmental covariate is uncorrelated with each genetic
covariate. Then

Vg|e ≈ trΛ
n𝜙2 XT

g

(
I − 1

n
11T

)
Xg
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(see Appendix), which is the same expression as in the case of no environmental covariates with
the exception that the common variance 𝜎2 of the responses is replaced by their average variance
trΛ∕n = 1

n

∑n
i=1 𝜎

2
i , where, under the null hypothesis, the 𝜎2

i are functions of the environmental
covariates.

In this case, the correlations (4), which we will use to compute local significance levels,
𝛼loc, do not depend on the environmental covariates, suggesting the possibility of a “standard”
𝛼loc for a given set of markers, since the vast majority of markers is presumably independent
of the covariates. Indeed, we repeated some of the calculations of 𝛼loc for the VO2-max data
(Section 4), omitting the environmental covariates, and got almost identical results. This is further
investigated by simulation in Section 4.5.

2.3.3 The normal model

For Yi normally distributed, Λ = 𝜎2I, where I is the n × n identity matrix. Then (1) and (2)
reduce to

Ug|e = 1
𝜎2 XT

g (I − H)Y and Vg|e = 1
𝜎2 XT

g (I − H)Xg, (6)

where H = Xe(XT
e Xe)−1XT

e is the idempotent matrix projecting onto the column space of Xe. Then
I − H is the idempotent matrix projecting onto the orthogonal complement of the column space
of Xe, and (I − H)Y are the residuals in the fitted linear model with only environmental covariates
present. Note that 𝜎2 enters into the test statistics Tj, and needs to be replaced by an estimate; we
have used 1

n
Y T(I − H)Y , the residual sum of squares of a fitted model with only environmental

covariates present (the null hypothesis), divided by n.

2.3.4 The logistic model

For Yi Bernoulli distributed, 𝜙 = 1 and the 𝜎2
i of Λ are estimated by �̂�ei(1 − �̂�ei), where �̂�ei are the

fitted values under the null hypothesis, with only environmental covariates. Inference about 𝜷g
is valid also if data are collected in a case–control study since the canonical (logit) link is used
(Agresti, 2002, pp. 170–171) .

In the special case of no environmental covariates, that is, Xe = 1, each score test statistic, Tj
(5), is equal to the Cochran–Armitage trend test (Armitage, 1955; Cochran, 1954) statistic,∑2

i=0 si(n0xi − n1yi)√
n0n1

(∑2
i=0 s2

i mi − 1
n

(∑2
i=0 simi

)2
) ,

where si are the possible values of the genetic covariates, n0 and n1 the number of 0 and 1 phe-
notypes Yi, respectively, xi the number of observations having phenotype 1 and genotype i at the
marker, yi the number of observations having phenotype 0 and genotype i, and mi = xi + yi. The
Cochran–Armitage test is used in disease–genotype association testing with scores (s0, s1, s2) =
(0, s, 1) (Sasieni, 1997; Slager & Schaid, 2001), for example, with s = 1

2
for an additive genetic

model.



1096 HALLE et al.

3 FAMILYWISE ERROR RATE CONTROL AND
APPROXIMATIONS

We now turn to the topic of how to control the FWER by intersection approximations.

3.1 Multiple hypothesis familywise error rate control

We have a collection of m null hypotheses, Hj ∶ 𝛽gj = 0 (no association between phenotype and
genotype at marker j), j = 1, … , m, against two-sided alternatives. We will present a method for
multiple testing correction that controls the FWER—the probability of making one or more Type I
errors. We adopt the notation of Moskvina and Schmidt (2008) and denote by Oj the event that
the null hypothesis Hj is not rejected, and by Ōj its complement. Then, if all m null hypotheses
are true,

FWER = P(Ō1 ∪ · · · ∪ Ōm) = 1 − P(O1 ∩ · · · ∩ Om). (7)

In our case, Oj is an event of the form |Tj| < c, where the test statistic Tj (3) is asymptotically
standard normally distributed. We will consider single-step multiple testing methods, and choose
the same cutoff c for each j. We denote the local significance level by 𝛼loc = 2Φ(−c) = P(Ōj) for all
j, the asymptotic probability of false rejection of Hj, where Φ is the univariate standard normal
cumulative distribution function. When the joint distribution of the test statistics is known under
the complete null hypothesis, or can be estimated, FWER control at the 𝛼 significance level can
be achieved by solving the inequality FWER ≤ 𝛼 for 𝛼loc, based on either the union or intersection
formulation of (7).

When the FWER is calculated under the complete null hypothesis, so-called weak FWER
control is achieved. However, in our situation, subset pivotality is satisfied, meaning that the dis-
tribution of any subvector (Tj)j∈J is identical under∩j∈JHj and under the complete null hypothesis
∩m

j=1Hj, for all subsets J ⊆ {1, 2,… ,m} (Westfall & Young, 1993, p. 42). In particular, a subvector
of Ug|e (1) and a submatrix of Vg|e (2) corresponding to J only involve genotypes of markers cor-
responding to J. Then strong FWER control is achieved, meaning that FWER ≤ 𝛼 regardless of
which null hypotheses are true (Westfall & Young, 1993; Westfall & Troendle, 2008).

In principle, step-down methods could be considered: After application of a method con-
trolling FWER, remove rejected hypotheses and redo the method, and repeat until no further
rejections occur (Goeman & Solari, 2010). However, in a GWAS framework, very few, if any,
rejections are expected; hence, in practice, the number of hypotheses will hardly change after
application of the method, and the second application will not have any effect.

When m is large, FWER (7) involves high-dimensional integrals over the acceptance or rejec-
tion regions, the evaluation of which are suggested by Conneely and Boehnke (2007). To avoid
these costly evaluations, we may instead control FWER by considering bounds based on (7). For
example, the Bonferroni method is based on the Boole inequality applied to the union formulation
of (7),

FWER = P(Ō1 ∪ · · · ∪ Ōm) ≤
m∑

j=1
P(Ōj) =

m∑
j=1

𝛼loc = m𝛼loc,

from which it is seen that 𝛼loc = 𝛼∕m guarantees FWER ≤ 𝛼.
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The focus in this work will be on the intersection formulation of (7). Background theory will
be given next and new application in Section 3.3.

3.2 Intersection approximations

Following Glaz and Johnson (1984), we define kth order product-type approximations to
P(O1 ∩ · · · ∩ Om) by

𝛾k = P(O1 ∩ · · · ∩ Ok)
m∏

j=k+1
P(Oj|Oj−k+1 ∩ · · · ∩ Oj−1)

=
∏m

j=k P(Oj−k+1 ∩ · · · ∩ Oj)∏m
j=k+1 P(Oj−k+1 ∩ · · · ∩ Oj−1)

, (8)

k = 1,… ,m, where probabilities are evaluated under the complete null hypothesis. This is similar
to the general product rule for the probability of an intersection of events applied to 𝛾m = P(O1 ∩
· · · ∩ Om), but with dimension of distributions limited to k. The idea is that the 𝛾k should constitute
increasingly better approximations of 𝛾m as k increases, and that calculation of 𝛾k is less costly
than calculation of 𝛾m when k < m.

The approximations depend on the order of the components of T = (T1,…Tm). To realize
most of the potential gains in test power due to correlation, we have used the order in which the
markers are positioned along the genome, assuming that the largest correlations occur between
close markers.

In our case, 𝛾1 =
∏m

j=1 P(|Tj| < c) = (1 − 𝛼loc)m and 𝛾m = P(|T1| < c, |T2| < c,… , |Tm| < c) =
1 − FWER. Since T is asymptotically multivariate normally distributed with mean 0 under the
complete null hypothesis, 𝛾1 ≤ 𝛾m asymptotically in n for any correlation structure (Šidák, 1967).
Choosing 𝛼loc such that FWER = 1 − 𝛾m ≤ 1 − 𝛾1 = 1 − (1 − 𝛼loc)m = 𝛼 keeps FWER at the 𝛼 level.
It is well known that the 𝛼loc found by this method, the Šidák method, is slightly larger than the
𝛼loc found by the Bonferroni method, thus the Šidák method will give slightly higher power.

For general k, if 𝛾k ≤ 𝛾m, then FWER = 1 − 𝛾m ≤ 1 − 𝛾k = 𝛼 can be used to control FWER by
solving the last equation for 𝛼loc (choosing the greatest solution if not unique; we have, however,
never observed a 𝛾k that is not monotonically decreasing in 𝛼loc). If 𝛾k ≤ 𝛾l, then continuity of 𝛾k
and of 𝛾l as functions of 𝛼loc implies that the 𝛼loc making 1 − 𝛾l = 𝛼 is no less than the 𝛼loc making
1 − 𝛾k = 𝛼, so that the power obtained by the lth approximation is no less than the power obtained
by the kth approximation.

The ideal property 𝛾1 ≤ 𝛾2 ≤ · · · ≤ 𝛾k ≤ 𝛾m for all 𝛼loc is ensured if |T| = (|T1|,… , |Tm|) is
monotonically sub-Markovian of order k (MSMk) with respect to (−∞, c)k for all c, 2 ≤ k ≤ m − 1,
as defined by Block, Costigan, and Sampson (1992). Examples of correlation structures making|T| satisfy the MSMk properties are given in Section 4.6. There is, however, for general correla-
tion structures no guarantee that 𝛾1 ≤ 𝛾2 ≤ · · · ≤ 𝛾m for all 𝛼loc, just as there is no guarantee that
a higher order Taylor expansion of a function is closer to the true value than a lower order expan-
sion at all points. The overall trend is nevertheless that the 𝛾k are increasing in k for the 𝛼loc we
consider. An assessment for covariance matrices estimated from real data is given in Section 4.3.
We did not find violations.

A summary of concepts of positive dependence, like MSM, was given by Dickhaus (2014,
pp. 58–61).
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3.3 Controlling FWER using kth order approximation for score tests

We recall that the vector T of score test statistics is under the complete null hypothesis asymp-
totically standard multivariate normal with covariances given by (4). We denote by Oj the event|Tj| < c of nonrejection of Hj, which has probability P(Oj) = 1 − 𝛼loc under the null hypothesis,
with 𝛼loc = 2Φ(−c). We will detail how to find 𝛼loc given by the second-order approximation, 𝛾2.
Let rj = Cov(Tj−1,Tj). Then, after some calculation of the bivariate normal integral over a square
having (±c,±c) as corners, we get

P(Oj−1 ∩ Oj) = 1 − 𝛼loc −
√

2
𝜋 ∫

c

−c
e−x2∕2 Φ

⎛⎜⎜⎜⎝
rjx − c√

1 − r2
j

⎞⎟⎟⎟⎠ dx,

giving

𝛾2 = P(O1 ∩ O2)
m∏

j=3
P(Oj|Oj−1) =

∏m
j=2 P(Oj−1 ∩ Oj)∏m

j=3 P(Oj−1)

=

∏m
j=2

(
1 − 𝛼loc −

√
2
𝜋
∫ c
−c e−x2∕2 Φ

(
rjx−c√

1−r2
j

)
dx

)
(1 − 𝛼loc)m−2

= (1 − 𝛼loc)
m∏

j=2

⎛⎜⎜⎜⎝1 −
√

2
𝜋

1
1 − 𝛼loc ∫

c

−c
e−x2∕2 Φ

⎛⎜⎜⎜⎝
rjx − c√

1 − r2
j

⎞⎟⎟⎟⎠ dx
⎞⎟⎟⎟⎠ . (9)

For a desired upper bound 𝛼 on FWER, the equation 1 − 𝛾2 = 𝛼 is solved with respect to 𝛼loc,
which can be done numerically using for example a bisection algorithm. Note that 𝛼loc enters into
c = −Φ−1(𝛼loc∕2).

We can control FWER by higher order approximations by solving the equation 1 − 𝛾k = 𝛼 for
𝛼loc in a similar way, which we will henceforth refer to as FWER order k approximation. By (8),
𝛾k can be written as a ratio of a product of k-dimensional and a product of k − 1-dimensional
multivariate normal integrals.

Good numerical methods for calculating multivariate normal integrals exist for small dimen-
sions (Genz & Bretz, 2009). We used the pmvnorm function of the R (R Core Team, 2015) package
mvtnorm (Genz et al., 2016), which can calculate multivariate normal probabilities with some
accuracy for dimensions up to 1,000. The Miwa algorithm (Miwa, Hayter, & Kuriki, 2003) of
pmvnorm can be used for small dimensions and is deterministic, whereas the default Genz–Bretz
algorithm (Genz, 1992; Genz, 1993; Genz & Bretz, 2002) includes simulations that lead to small
inaccuracies. We used standard R functions to compute second-order approximations (9) and
the Miwa algorithm to illustrate order 3 and 4 approximations (Section 4), and the Genz–Bretz
algorithm to obtain the “true” reference 𝛼loc for blocks of 800 or 1,000 markers (Sections 4.3
and 4.5) and for two constructed correlation structures of 100 test statistics (Section 4.6).

The procedure to find 𝛼loc does not depend on the exact form of the test statistic, only that
the vector (T1,… ,Tm) of test statistics is asymptotically standard multivariate normal under the
complete null hypothesis and |Tj| ≥ c leads to rejection. For example, (9) appeared in an allelic
test procedure by Moskvina and Schmidt (2008).
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In practice, instead of calculating 𝛼loc, it may be preferable to calculate FWER-adjusted
p-values: Replace 𝛼loc with p, the unadjusted p-value for an individual test, in the calculation
of 𝛾k (e.g., in (9) for k = 2). Then 1 − 𝛾k is an FWER-adjusted p-value for the test, in the sense
that if 1 − 𝛾k ≤ 𝛼 (rejection based on adjusted p-value), then p ≤ 𝛼loc (rejection based on local
significance level). See Section 4.3 for an example.

3.4 FWER control with independent blocks

A common assumption is independence of genotypes for markers from different chromo-
somes. Within a chromosome, genetic markers can belong to different haplotype blocks, being
highly correlated within a block and independent or nearly independent between blocks
(Gabriel et al., 2002).

Assume that the m markers to be tested, and {O1,… ,Om}, can be partitioned into b indepen-
dent blocks, {O1,… ,Om1}, {Om1+1,… ,Om2}, … , {Omb−1+1,… ,Om}, so that the events Oj1 and Oj2

are independent if they belong to different blocks. Let 𝛾 (l)k be the kth-order approximation given
by (8) for the intersection of the events belonging to the lth block, and let 𝛾k be the overall kth
order approximation. Then it is easy to verify that 𝛾k =

∏b
l=1 𝛾

(l)
k . We will calculate 𝛼loc based on

the overall approximation, which is what we recommend. It is, however, also possible to calculate
a different 𝛼loc per block (Stange, Loginova, & Dickhaus, 2016).

3.5 The effective number of independent tests

The concept of an effective number of independent tests, Meff, in multiple testing problems has
been described and discussed by many authors, including Nyholt (2004), Gao, Starmer, and Mar-
tin (2008), Moskvina and Schmidt (2008), Li and Ji (2005), Galwey (2009), and Chen and Liu
(2011). All except Moskvina and Schmidt (2008) first estimate Meff, and then use Meff in place of
m in the Šidák formula to calculate 𝛼loc = 1 − (1 − 𝛼)1∕Meff . (Alternatively, the Bonferroni formula
could also be used to calculate 𝛼loc = 𝛼∕Meff.)

These methods do not use the concept of FWER in the derivation of Meff, and there is no
mathematical justification that FWER is controlled, let alone that Meff is independent of 𝛼. All
methods start with the linkage disequilibrium or composite linkage disequilibrium matrix, and
there is no mention of any dependence of the Meff estimate on the test statistics used for the
hypothesis tests.

The method of Moskvina and Schmidt (2008), on the other hand, is based on an allelic test
and controls the FWER using second-order intersection approximations. The main output of their
method is 𝛼loc, as it is for our method. Solving for Meff in the above Šidák formula, we can define
Meff = ln(1 − 𝛼)∕ ln(1 − 𝛼loc) as a by-product. Note that Meff depends on both 𝛼loc and the FWER
threshold 𝛼.

3.6 The maxT permutation method

We will compare FWER order k approximation with the Westfall and Young (1993) maxT
permutation method, and therefore give a brief review of the latter.
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FWER, the probability that one or more of the m null hypotheses are falsely rejected, can be
formulated FWER = P(maxj|Tj| ≥ c) under the complete null hypothesis. In the maxT method,
the critical value c is found empirically by permutation of the response variable in order to gener-
ate a sample from the distribution of the maxj|Tj| statistic. If the FWER is to be controlled at the 𝛼
level and b permutations are made, c is estimated by the (1 − 𝛼)bth smallest value of the maxj|Tj|,
which is an estimate of the 1 − 𝛼 quantile of maxj|Tj|. The probability that the kth smallest value
of a random sample of size b is greater than the 1 − 𝛼 quantile is equal to the binomial cumula-
tive distribution function with parameters b and 1 − 𝛼 evaluated at k − 1, which can be used to
construct a confidence interval for c (Conover, 1980, p. 114; Thompson, 1936). To compare with
our approximation method, for which asymptotic normality is assumed, we used 𝛼loc = 2Φ(−c),
and a confidence interval for 𝛼loc is obtained by transforming the bounds of the above interval the
same way.

Success of the permutation method relies on exchangeability of the responses. In a GLM that
includes environmental covariates, this is in general not the case, since the expected values of the
responses are not equal under the null model. This is so even for the classical multiple regression
normal model (Commenges, 2003). In models without environmental covariates (only intercept),
however, the responses are exchangeable and the maxT method gives FWER control.

In the case that the responses follow a normal model, there exist several approximate permu-
tation methods. For our purposes, the Still–White method (see Winkler, Ridgway, Webster, Smith,
& Nichols, 2014) is appropriate (see also Hummel, Meister, & Mansmann, 2008, for a similar
approach). The original linear model is replaced by one in which the environmental covariates
(except the intercept) are removed, and the responses are replaced by the residuals when only
environmental covariates are fitted in the original model. Thus, H is replaced by 1

n
11T and Y by

(I − H)Y in (6). Because H1 = 1, the numerator of the test statistic (3) and the 𝜎2 estimate will
be unchanged. In the denominator, on the other hand, at a marker having genotype vector xg,
xT

g (I − H)xg will be replaced by xT
g (I −

1
m

11T)xg. The latter (total sum of squares of xg) is greater
than the former (residual sum of squares if xg is regressed on Xe). Hence, although the assump-
tions of a multiple regression model are not satisfied when using residuals as responses (they are
dependent and heteroscedastic), the score test statistic of the new model has, for all markers, an
absolute value that is less than or equal to that of the original model, with equality if and only if
the coefficient of determination when regressing the marker on the environmental covariates, is
zero. We expect the vast majority of the markers to be independent of the environmental covari-
ates, so that the loss of power will be small. In the new model, without environmental covariates,
the maxT method can be used.

We are not aware of any well-established approximate methods using permutations in pres-
ence of covariates in nonnormal GLMs, but recently Hemerik, Goeman, and Finos (2019)
presented a method based on flipping the sign of score contributions.

4 VALIDITY, POWER, AND EFFICIENCY OF THE FWER
APPROXIMATION

4.1 Datasets: TOP and VO2-max

In the case–control GWA study TOP, data were collected with the aim to detect SNPs associated
with schizophrenia or bipolar disorder (Athanasiu et al., 2010; Djurovic et al., 2010). The pre-
processed TOP data contained genetic information on 672,972 SNPs (Affymetrix Genome-Wide
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Human SNP Array 6.0), all with minor allele frequency (MAF) > 0.01, for 1148 cases and 420
controls. Our data included individuals sampled until March 2013, and therefore the sample size
is larger than in the cited papers.

However, in our analysis, the number of cases was reduced to 420 by drawing a random sam-
ple from the 1,148 because the normal approximation is in general poor for small tail probabilities
of test statistics based on unbalanced binary data. This is so even when the total number of obser-
vations is large, leading to tests exceeding their nominal size (Langaas & Bakke, 2014; see also
discussion in Section 4.4). The reduction of data in this case was done solely for the purpose of
demonstrating FWER approximation, and we would in general recommend that binary experi-
ments are designed to be balanced if normal approximation is to be used, or else use methods that
do not rely on normal approximation.

Some genotype data were missing from the TOP data, and mean imputation was done
for 0.04% of the genotypes. Genotype–phenotype association was assessed by fitting a logistic
regression without any environmental covariates, so that score test correlations equal genotype
correlations (Section 2.3.1).

The VO2-max data came from participants of the HUNT Study (Nord-Trøndelag Health Study,
ntnu.edu/hunt; Aspenes et al., 2011; Loe et al., 2013). A cross-sectional GWA study was performed
to find SNPs associated with maximum oxygen uptake. The preprocessed VO2-max data consisted
of 123,497 SNPs (Illumina Cardio-MetaboChip; Moore et al., 2012) with MAF > 0.01 for 2,802
individuals. The VO2-max data were analyzed using a normal linear regression model, including
age, sex, and physical activity score as covariates. Due to missing data, mean imputation was done
for 0.7% of the genotypes.

4.2 Relative power of methods

We computed 𝛼loc for the TOP and VO2-max data by FWER-order 1–3 approximation, controlling
FWER at the .05 level, assuming independence between chromosomes (Section 3.4). In addition,
the Bonferroni method and the maxT permutation method using 106 permutations were applied.
For the TOP data, which did not include environmental covariates, the maxT method was done
by permuting the binary response vector. The VO2-max data, assumed to follow a normal linear
regression model, included environmental covariates, so the maxT method was performed by
fitting the environmental covariates and then permuting the residuals (see Section 3.6).

For both sets, 𝛼loc controlling the FWER at level .05 was smallest for the Bonferroni method,
slightly larger for the order 1 approximation (Šidák), and further increasing, giving higher power,
through the order 2 and 3 approximations (Table 1), and greatest for maxT. At present, com-
putation of 𝛼loc using very high-order approximations, or, indeed the full multivariate normal
distribution, is unfeasible, both because it is time consuming and due to randomness in the
Genz–Bretz algorithm, making it difficult to solve for 𝛼loc (Section 3.3). However, in the next
section, FWER bounds are found using a specific 𝛼loc based on large independent blocks (instead
of solving for 𝛼loc given a specified FWER bound), in effect giving a comparison of FWER
approximations with the full multivariate normal distribution.

4.3 Validity and potential of FWER approximation

First, we will investigate monotonicity of the 𝛾k when k increases. Next, we will compare the
FWER approximation method with the full multivariate normal distribution, as announced in
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T A B L E 1 Local significance level 𝛼loc controlling FWER at level .05 calculated by the Bonferroni, the
FWER-order 1–3 approximation and the maxT permutation method for the TOP and VO2-max data, ratio
of 𝛼loc to Bonferroni 𝛼loc, effective number Meff of tests, and computing times

Computing time

Data Method 107𝜶loc Ratio 105Meff Total Read Setup (s)

TOP Bonferroni .743 1.00 6.90 13 min 13 min 25

Order 1 (Šidák) .762 1.03 6.73 13 min 13 min 25

Order 2 .864 1.16 5.93 18 min 13 min 28

Order 3 .880 1.18 5.83 31 hr 13 min 39

maxT 1.52 2.05 3.36 391 hr Confidence interval: [1.51,1.54]

VO2-max Bonferroni 4.05 1.00 1.27 3 min 2 min 30 s 7

Order 1 (Šidák) 4.15 1.03 1.23 3 min 2 min 30 s 7

Order 2 4.69 1.16 1.09 3 min 2 min 30 s 18

Order3 5.11 1.26 1.00 6 hr 2 min 30 s 29

maxT 6.69 1.65 0.77 224 hr Confidence interval: [6.63, 6.75]

Note: The “Total” column shows total CPU time, including time for reading data (response, environmental covariates,
and genetic markers) and imputation of markers (“Read”), and for calculating score test statistics and estimating the
necessary correlations between them (“Setup”). “Read” and “Setup” show actual elapsed time summed over computer
cores, and are thus upper bounds for CPU time. For maxT, 95% confidence intervals for 𝛼loc are shown instead of data
read/imputing and setup time.

Section 4.2. Finally, we will make a per chromosome comparison of FWER approximation, full
multivariate normal, and maxT.

As mentioned earlier, it is at present unfeasible to calculate 𝛼loc to achieve a given level of
FWER control when the order of the approximation is large. Instead, we will in all of this section
fix 𝛼loc = 1.52 × 10−7 for the TOP data and 𝛼loc = 6.69 × 10−7 for the VO2-max data, which were
the 𝛼loc controlling FWER at level .05 using the maxT permutation method for the complete data
(see Section 4.2), and then compare achieved FWER bounds. Alternatively, this can be viewed
as considering the two 𝛼loc unadjusted p-values and the FWER bounds FWER-adjusted p-values
(see end of Section 3.3).

In general, we expect (i) that 𝛾k ≤ 𝛾m for k ≤ m, where m is the number of genetic markers, so
that the approximations give conservative FWER control and (ii) that the 𝛾k are increasing in k,
meaning that the approximations give higher power for larger k.

The largest dimension that can be handled by thepmvnorm function (see Section 3.3) is 1,000.
We checked the two properties above by dividing the markers into blocks of 1,000 along each
chromosome for the VO2-max data and into blocks of 800 for the TOP data (for the estimated
covariance matrices for test statistics to be nonsingular, the number of markers cannot exceed
the number of observations). This resulted in 833 blocks of 800 markers, and 22 shorter blocks at
the end of the chromosomes, for TOP, and 113 blocks of 1,000 markers, and 22 shorter blocks, for
VO2-max. The upper FWER bounds, 1 − 𝛾k, given by order k = 1, 2, 3 approximation, and without
approximation using the Genz–Bretz algorithm, k = 800 (TOP) or k = 1000 (VO2-max), using the
values of 𝛼loc given above, were calculated for each separate block.

Both properties were satisfied for the TOP and the VO2-max data (Figure 1; for clarity, only
complete blocks of 800 or 1,000 markers are shown, not the 22 shorter blocks). This is a very strong
indication that properties (i) and (ii) hold for 1–3 order approximations for the complete datasets.
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F I G U R E 1 FWER bounds, 𝛼, for each of 833 blocks of 800 SNPs from the TOP data (top) and for each of
113 blocks of 1000 SNPs from the VO2-max data (bottom). For TOP, 𝛼loc = 1.52 × 10−7 was used, and for
VO2-max, 𝛼loc = 6.69 × 10−7. The upper horizontal line (dash-dotted) shows 𝛼 obtained by the FWER order 1
approximation (Šidák). The next curves (solid and dotted) show 𝛼 for order 2 and 3 approximations. The lower
dashed curve shows the FWER obtained by the complete multivariate normal distribution of the 800-dimensional
(TOP) or 1,000-dimensional (VO2-max) test statistic vector, having correlation structure given by (4). The two
enveloping curves (also dashed, only shown for VO2-max for clarity) indicate the estimated absolute error
reported by the pmvnorm function of the R (R Core Team, 2015) package mvtnorm (Genz et al., 2016)

We proceed to compare FWER approximation with the full multivariate normal distribution
and now assume multivariate normality. We first note that 𝛾m, the probability of making no Type
I errors when all null hypotheses are true, is greater than or equal to the product of the 855 mostly
800-dimensional multivariate normal 𝛾k referred to above for TOP. Similarly, 𝛾m for VO2-max is
greater than or equal to the product of the 135 mostly 1,000-dimensional 𝛾k. This follows from the
Gaussian correlation conjecture, which was famously proven by T. Royen in 2014 (Royen, 2014;
Latała & Matlak, 2017).

Calculating the products, we get FWER control bounds 1 − 𝛾m at least as good as 0.055 for
TOP and 0.050 for VO2-max. We assume that these bounds are very close to the true 1 − 𝛾m, an
assumption that is strengthened by the fact that they are very close to the targeted bound of 0.05
using the maxT method. Another fact pointing in the same direction is that order k approxi-
mation gives virtually identical results for each chromosome, whether calculated for the whole
chromosome or via multiplication over blocks of 800 or 1,000, which is the same as assum-
ing independence between blocks (Section 3.4), k = 2, 3. In comparison, using order k = 1, 2,
and 3 approximations for the blocks instead, the FWER bounds were 0.097, 0.086, and 0.082,
respectively, for the TOP data, and 0.079, 0.070, and 0.065 for the VO2-max data.

Finally, we did a similar analysis per chromosome, also including maxT bounds (Figure 2).
Again, the FWER bounds decreased as the order of the approximation increased, and even smaller
bounds were achieved using the full multivariate normal distribution (approximated by multiply-
ing over blocks of 800 or 1,000 markers) or maxT. Also, as expected, for fixed 𝛼loc, FWER control
depends heavily on the number of markers tested for at each chromosome (Figure 2). However,
in addition, chromosomes with general high correlation levels benefit more from methods tak-
ing the correlations into account than do chromosomes with lower correlations. For example,
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F I G U R E 2 FWER bounds, 𝛼, per chromosome for the TOP data (top) and for the VO2-max data (bottom).
For TOP, 𝛼loc = 1.52 × 10−7 was used, and for VO2-max, 𝛼loc = 6.69 × 10−7. Bounds for order 1, 2, and 3
approximations and bounds obtained by high-order calculations and by the maxT methods are shown (1, 2, 3, h

and t, respectively; use left vertical axis). Also shown are the number of markers tested at each chromosome (line;
use right vertical axis). As expected, FWER control depends on the number of markers, but also note that highly
correlated chromosomes, such as 6 for VO2-max benefit more from taking correlations into account than do less
correlated chromosomes, such as 9

F I G U R E 3 Mean absolute value of
correlations between markers of distance 1–100 on
chromosome 6 (upper curve) and 9 (lower curve) of
the VO2 data
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mean correlation between markers of a fixed distance is in general higher in the VO2-max data
for chromosome 6 than for chromosome 9 (Figure 3), and this fact is reflected in Figure 2.

4.4 Assessment of asymptotic normality

Our FWER order k method relies on asymptotic normality of the test statistic (3), and we have
performed a simulation study to assess this assumption on univariate data without environmental
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covariates, using the assumed distributions of the responses of our two datasets and using sample
sizes motivated by those sets. Normality will ensure that the Type I error probability is within the
nominal level, and our focus will be to check this rather than to assess normality directly.

To assess whether the Type I error probabilities were within nominal bounds, we studied
whether the proportion of rejections (p-value≤ 𝛼) in a large number of simulations under the null
hypothesis was less than or equal to 𝛼 for various 𝛼, with a particular interest in the very small 𝛼
used in GWA analysis.

In the TOP data available to us at the time of analyzing the data, there were 420 controls and
1,148 cases. We drew genotypes randomly with MAF = 0.05, assuming Hardy–Weinberg equi-
librium (giving genotype probabilities 0.0025, 0.0950, 0.9025), for the controls and cases, and
assuming the null hypothesis of no effect of genotype. Then the score test was performed and a
p-value calculated for the two-sided test of no association between the disease phenotype and the
genotype, assuming the univariate normal distribution of the test statistic.

This procedure was performed 109 times, and the proportion of p-values smaller than various
cutoffs 𝛼 in a range from 5 × 10−8 to 5 × 10−4 were recorded, and also 95% confidence intervals
for the true Type I error rate were calculated (using the common normal approximation method
for binomial probability) (Figure 4, panel a). There was a severe inflation of Type I errors, and
approximate normality may not be assumed in this case.

We repeated the simulations with a balanced dataset with 420 controls and 420 cases (Figure 4,
panel b). Approximate normality would lead to Type I error rates close to 𝛼, which was not
the case. However, the error rates were now consistently less than the nominal levels, so the
assumption of normality will lead to conservative FWER control.

The VO2-max data have a sample size of 2,802, and were analyzed using a multiple linear
regression model in Section 4.2. We repeated a similar procedure as described above for the TOP
data, but drew standard normal responses and performed the score test for a model with intercept
in addition to genotypes drawn randomly with MAF = 0.05. This (drawing both genotypes and
normal responses) was repeated 109 times (Figure 4, panel c). Type I error rates were now equal
to 𝛼. Decreasing the sample size to 1,401 also gave valid, but conservative p-values (panel d), and
thus conservative FWER control.

This simulation study, which is by no means exhaustive, indicates that we would trust
approximate normality of the score test statistic in the extreme tails when the responses are
normal. For binary responses we would only trust the (conservative) normality of the test
statistic in the extreme tails for balanced samples. The problem of nonnormality of score test
statistics for unbalanced case–control data has been investigated by Dey, Schmidt, Abecasis,
and Lee (2017).

4.5 Evaluation of effect of environmental covariates and further
comparisons with full multivariate normal and maxT

To further study the properties of the FWER approximation method, and in particular to evaluate
the effect of environmental covariates, a small simulation study was performed.

After removing duplicate neighboring SNPs from chromosome 1 of the preprocessed VO2-max
data so only one remained, the average neighbor correlation in a sliding window of width 1,000
ranged from 0.29 to 0.43. We chose the window having average neighbor correlation closest
to the average, 0.36, as marker genotypes in the simulation. The genetic covariate matrix thus
had dimension 2,802 (observations) times 1,000 (SNPs). The environmental covariates sex (xsex,
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(A) (B)

(C) (D)

F I G U R E 4 Nominal significance level versus Type I error rate assuming asymptotic normality of the score
test statistic for (a) an unbalanced binomial design (1,148 cases, 420 controls), (b) a balanced binomial design
(420 cases, 420 controls), (c) a normal model with sample size 2,802, and (d) a normal model with sample size
1,401. 95% confidence intervals for the Type I error probabilities are indicated

male = 0, female = 1), age (xage, range 19.2–84.4 years) and activity level (xact, range 0–15) from
the VO2-max data were used. These covariates were not very correlated with the 1,000 SNPs, with
average absolute value of correlations of 0.02, 0.02, 0.02, respectively, and maximal absolute value
of correlations 0.06, 0.20, 0.07, respectively. This means that we would assume that our FWER
approximation method would not require knowledge of these covariates (Section 2.3.2).

We started by simulating data from a core model Y = 171.3 − 32.5xsex − 0.9xage + 2.7xact + 𝜖,
where 𝜖 was drawn from the univariate normal distribution with mean 0 and SD 17.7. These
choices of parameter values were motivated from the multiple linear regression model null fit to
the VO2-max data. To find a local significance level that provides FWER error control at level .05,
we used the FWER order 2, 3, and 1,000 approximation method. We also used 10 independent
blocks of size 100 with FWER order 100 approximation (Section 3.4), and the maxT permuta-
tion method (5 × 105 permutations) using Still–White for handling covariates (Section 3.6). To
study the effect of including covariates in the methods for FWER control, we both fitted the
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multiple linear regressions with all covariates (sex, age, and activity level) and without covariates
(intercept only).

In a second set of simulations, four environmental variables x1, x2, x3, and x4 were created to
be correlated with four of the 1,000 SNPs, with correlations 0.50, 0.29, 0.45, 0.41, respectively. The
data were generated using Y = 171.3 − 32.5xsex − 0.9xage + 2.7xact + x1 + x2 + x3 + x4 + 𝜖, where 𝜖
was again drawn from the univariate normal distribution with mean 0 and SD 17.7. The same
methods for FWER control were studied, and in addition to fitting a model with all covariates,
a model without the correlated environmental covariates (only with sex, age, and activity level)
was fitted. Again, Still–White was used to handle covariates for the maxT method.

The simulations confirm the findings of Sections 4.2 and 4.3 for normal data (Table 2). In
addition, the simulations indicate that environmental covariates are of lesser importance for
determining local significance levels, whether they are correlated with a few of the genetic mark-
ers or not. This is not to say that environmental covariates are not important when performing
tests, only that they do not seem to be important for correlation structure between the test statis-
tics, at least not for normal data. For all simulations, the 95% confidence interval for the maxT
𝛼loc also covers the full multivariate normal solution.

4.6 Effect of correlation strength

For certain structured correlation matrices, theoretical results exist for the multivariate normal
integral for 𝛾m, including AR(1) and compound symmetry, which have off-diagonal ij entries 𝜌|i−j|
and 𝜌, respectively (Genz & Bretz, 2009). Figure 3 shows that the average mean absolute value
of correlation between markers of different distance is not constant (as is the case for compound
symmetry, which we would regard as an extreme hypothetical situation where our method, only
taking close neighbors into account, would be at disadvantage). Instead there is a decrease in the
mean absolute value of correlation between markers when distance between them increases, and
AR(1) is one possible way the correlation could decrease.

Consider m = 100 markers and a multivariate normal test statistic vector T. For the two cases
that the correlation structure of T is AR(1) or compound symmetry, we investigated the effect

T A B L E 2 Local significance level 𝛼loc controlling FWER at level .05 calculated by FWER order 2–3
approximation, by full multivariate normal assuming 10 independent blocks of 100 markers, by full
1,000-variate normal, and by the maxT permutation method, with 95% confidence interval for the latter,
using simulated data

105𝜶loc

Simulation 2 3 Blocks 1,000 maxT maxT Confidence interval
1 5.77 6.12 7.04 7.19 7.23 [7.15, 7.33]

2 5.77 6.12 7.05 7.20 7.29 [7.20, 7.37]

3 5.77 6.12 7.03 7.18 7.25 [7.15, 7.35]

4 5.77 6.12 7.04 7.21 7.26 [7.18, 7.36]

Note: Simulations 1 and 2 were done according to a model having sex, age, and activity level as covariates. In Simulation
1, all three covariates were included when calculating 𝛼loc; in Simulation 2, only the intercept. Simulations 3 and 4 were
done according to a model having four environmental covariates correlated with four genetic markers, in addition to sex,
age, and activity. In Simulation 3, all seven covariates were included when calculating 𝛼loc; in Simulation 4, only sex, age,
and activity. The Bonferroni 𝛼loc is 5 × 10−5 and the Šidák 𝛼loc is 5.13 × 10−5 for all simulations.
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of positive 𝜌 on 𝛼loc found by order 1–4 approximations to control FWER at the .05 level. Also,
the “true” 𝛼loc was calculated without approximation (based on the true joint distribution, that is
solving 1 − 𝛾100 = 0.05 for 𝛼loc).

The inverses of both kinds of matrices contain only negative off-diagonal entries, which
ensures a property called MTP2 (Karlin & Rinott, 1981) for the density of |T|, which implies that
the product-type approximations 𝛾k of Section 3.2 are nondecreasing in k (Glaz & Johnson, 1984),
making the 𝛼loc of the FWER order k approximations nondecreasing in k.

For AR(1), the effect of 𝜌 on 𝛼loc was small for 𝜌 < 0.4 (Figure 5), so in this case, there would be
no gain in using FWER approximation instead of Šidák. For larger 𝜌, FWER order 2 approximation
provides an improvement over Šidák. The improvements through order 3 and 4 up to the 𝛼loc
based on the true joint distribution, were smaller. Also for compound symmetry, order 2, 3, and
4 provide improvement over Šidák for larger 𝜌, but with this strong correlation structure, the 𝛼loc
of the true joint distribution is significantly larger.

In the extreme case 𝜌 = 1, for all k 𝛾k equals the probability of nonrejection of a single null
hypothesis; see (8). Hence, in this case all FWER approximations as well as using the true joint
distribution will yield an 𝛼loc equal to the significance level of the test (.05 in Figure 5).

4.7 Efficiency and computational details

The computations of Sections 4.2 and 4.3 are well suited for parallelization, as they can be per-
formed separately for each chromosome. For the maxT method, the permutations can addition-
ally be distributed among cores. The computations were done on a computing cluster consisting
of 42 computing nodes, most of them 2 × 10-core Intel Xeon E5-2630 v4 2.20 GHz Dell PE630
computers.

0.4 0.5 0.6 0.7 0.8 0.9 1.00.
00

0
0.

00
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00
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00
3
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00

4
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0.4 0.5 0.6 0.7 0.8 0.9 1.0
ρ

F I G U R E 5 Local significance level 𝛼loc controlling FWER at the .05 level as a function of the parameter 𝜌
of an AR(1) (left) and a compound symmetry (right) correlation matrix for 100 markers. The horizontal line
corresponds to Šidák correction (FWER order 1 approximation), then 𝛼loc is increasing with the order of the
approximation (order 2–4; the three curves in the middle). The uppermost curve shows 𝛼loc based on the true
joint distribution
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For order 2 approximation, the total CPU time (summed over all cores) was dominated by the
time for reading marker genotypes from files, meaning that the total time for analyzing GWAS
data using order 2 approximation is not much larger than using Bonferroni or Šidák correction
(Table 1). For order 3 approximation, where the Miwa algorithm was used (see Section 3.3), the
CPU time was a couple of orders of magnitudes larger, and for maxT with 106 permutations 3–4
orders of magnitudes larger.

When solving 1 − 𝛾k = 0.05 for 𝛼loc, k = 2, 3, the bisection function uniroot of R was used.
The argument tol was set to 10−14. As lower end-point of the search interval, 0.05∕672,972 was
used for TOP and 0.05∕123,497 for VO2-max (Bonferroni bounds), and as upper end-points 10−7

and 10−6, respectively. For order 2 approximations, uniroot needed four iterations for both
datasets. For order 3, five iterations were needed for TOP and six for VO2-max.

A problem that will arise in practice when doing order k approximation is correlations of
±1 between statistics involved in the k- and k − 1-dimensional integrals, leading to a singular
correlation matrix. In this case, a factor

P(Oj−k+1 ∩ · · · ∩ Oj)
P(Oj−k+1 ∩ · · · ∩ Oj−1)

= P(Oj|Oj−k+1 ∩ · · · ∩ Oj−1)

of 𝛾k (8) involving an offending statistic will be equal to 1, so the factor is simply set to 1.
Also for the simulation study of Section 4.4, parallelization was used. Each of the four

situations took between 380 and 570 CPU hours.

5 DISCUSSION AND CONCLUSION

The FWER order k approximation method offers FWER control when the vector of test statistics
is approximately multivariate normal and is well suited for GLMs when approximate normality
of the score test statistics is satisfied. We have applied it in a GWA study setting using score test
statistics. In particular, we recommend the order 2 approximation, which offers improvement
over Bonferroni or Šidák correction, without adding significantly to computing time. Further
improvements toward the true multivariate distribution are possible using higher order approxi-
mations. Currently, available algorithms are time-consuming. However, the research into better
and faster integration of multivariate normal densities is ongoing, and Botev (2017) provides an
interesting new approach, applicable for dimensions smaller than or equal to 100. We expect
improvements in algorithms and hardware to make higher order approximations feasible in the
future.

Conneely and Boehnke (2007) introduced a method to calculate Bonferroni–Holm-type
FWER adjusted p-values from score tests in GLMs with multiple responses (traits) and multiple
genetic models. The core of their method is the multivariate integral arising from (7), and their
correlation matrix between score statistics for one normal trait, or one nonnormal trait with-
out environmental covariates present, coincides with our correlation matrix (4). However, for a
nonnormal trait and environmental covariates present, the scaling of individual observations pro-
vided by the Λ matrix in (2) is not present in their method, and their correlation matrix differs
from ours.

The adjusted p-values of Conneely and Boehnke were calculated by numerical integration
using the pmvnorm function in the R package mvtnorm (see Section 3.3) for dimensions in
the order of hundreds. Larger dimensions, as observed in GWA studies, were not handled, but
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Conneely and Boehnke suggested to break the analysis up into independent blocks of hun-
dreds of tests each and calculate adjusted p-values for each block, and then adjust the blockwise
adjusted p-values by Šidák or Holm-type methods. We suggest that adjusted p-values or 𝛼loc can
instead be calculated by multiplying probabilities of the independent blocks, as we have done in
Section 4.3.

In the maxT method (Section 3.6) of Westfall and Young (1993), there is no general
way of including environmental covariates in a nonnormal GLM. The method is extremely
time-consuming for GWA studies and nondeterministic (see confidence intervals in Table 1).
When applicable (normal responses or no environmental covariates), however, maxT is expected
to give better power than low-order FWER approximations.

Parametric bootstrap is an alternative to the maxT method that can also be used in GWA stud-
ies (Seaman & Müller-Myhsok, 2005), and it does not depend on the exchangeability assumption.
However, the method is as time-consuming as maxT, and estimation of nuisance parameters
makes the control of FWER uncertain.

In conclusion, the FWER order k approximation method is a considerable generalization
of the intersection approximations by Moskvina and Schmidt (2008) and Dickhaus and Stange
(2013) and can be used to control FWER for GWA data modeled by GLMs when normality
of the test statistics is assumed (thus excluding unbalanced binomial designs); in particular,
phenotypes can be discrete or continuous, and environmental covariates can be included. The
method takes correlation structure of markers and test statistics into account and provides a local
significance level, 𝛼loc, for the individual tests, meaning that the null hypothesis of no associ-
ation between phenotype and genetic marker should be rejected if the (unadjusted) p-value of
a test is less than 𝛼loc. We have applied the method to GWA data and shown that it is a pow-
erful alternative to the Bonferroni and Šidák methods—methods that does not take correlation
structure into account—especially in situations where permutation methods cannot be used. We
found a substantial increase in 𝛼loc over Bonferroni and Šidák already at the inexpensive order 2
approximation.
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APPENDIX

Uncorrelated environmental and genetic covariates
Two n-dimensional vectors x1 and x2 of observations have zero sample correlation if their cen-
tered observations are orthogonal, 0 = (x1 − x11)T(x2 − x21) = xT

1 (I −
1
n

11T)x2. If X1 and X2 are
two matrices, then near zero sample correlation of each combination of a column of X1 and a
column of X2 can be written compactly as XT

1 (I −
1
n

11T)X2 ≈ O, or XT
1 X2 ≈ 1

n
XT

1 11TX2, where O
denotes a null matrix.

Assume now that all sample correlations of a column of Xg and a column of ΛXe are near
zero, XT

g (I −
1
n

11T)ΛXe ≈ O. In addition, we assume that all correlations of genetic first-order
multiplicative interactions and Λ1 are near zero, (xj◦xk)TΛ1 ≈ 1

n
(xj◦xk)T11TΛ1 = 1

n
(trΛ)xT

j xk for
all columns xj, xk of Xg, where ◦ denotes entrywise multiplication. Note that, under the null
hypothesis, Λ is a function of environmental covariates only.

Next, note that the statistic Ug|e (1) remains unchanged if the columns of XT
g are centered, that

is, XT
g is replaced by X ′T

g = XT
g (I −

1
n

11T). This is because 1T(Y − �̂�e) = 0, which follows from the
estimation equations, XT

e (Y − �̂�e) = 0, for �̂�e. Making this substitution, by the first assumption
above, (2) reduces to 𝜙2Vg|e = X ′T

g ΛX ′
g.

The jk entry of this matrix is (xj◦xk)TΛ1, where xj denotes the jth column of Xg
′. By the sec-

ond assumption above, this is approximately equal to 1
n
(trΛ)xT

j xk, so that 𝜙2Vg|e ≈ 1
n
(trΛ)X ′T

g X ′
g =

1
n
(trΛ)XT

g (I −
1
n

11T)Xg.


