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Privacy-Preserving Distributed Maximum Consensus
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Abstract—We propose a privacy-preserving distributed max-
imum consensus algorithm where the local state of the agents
and identity of the maximum state owner is kept private from
adversaries. To that end, we reformulate the maximum consensus
problem over a distributed network as a linear program. This
optimization problem is solved in a distributed manner using
the alternating direction method of multipliers (ADMM) and
perturbing the primal update step with Gaussian noise. We
define the privacy of an agent as the estimation error of its
local state at the adversary and obtain theoretical bounds on
the privacy loss for the proposed method. Further, we prove
that the proposed algorithm converges to the maximum value
at all agents. In addition to the analytical results, we illustrate
the convergence speed and privacy-accuracy trade-off through
numerical simulations.

I. INTRODUCTION

Consensus in a multi-agent system such as average con-

sensus and maximum/minimum consensus is required in dis-

tributed computing, optimization, control and robotics [1]–[3].

Consensus algorithms are based on local computation and

exchanging information with neighboring agents to reach a

network-wide agreement on the desired value. These algo-

rithms require the agents to share their local state with the

neighboring agents, which may result in loss of privacy. For

example, in smart grids where multiple generators must reach

a consensus on the cost while not revealing their information

about individual generation [4]. In the multi-agent rendezvous

problem, a group of agents agree to rendezvous at a particular

location but may not want to disclose their initial locations

[5]. In many instances the identity of agents that own the

consensus value needs to be private. For instance, the identity

of the leader in distributed control with leader-follower multi-

agent network [6] and the identity of the cluster head in sensor

networks [7] must be private to safeguard them from attacks.

Works in [8]–[10] propose privacy-preserving average con-

sensus algorithms where agents add noise to their state up-

dates and message-generating functions. In contrast to [8],

which considers differential privacy, [9] considers (α, β)-data-

privacy that captures the maximum disclosure probability and

estimation accuracy, whereas [10] assumes the privacy metric

to be the covariance of the maximum likelihood estimate of the

local states at the eavesdropper. Secure multiparty computation

based methods have been proposed in [11]–[13] for average

consensus with privacy guarantees. In [14] a deterministic

approach exploiting homomorphic cryptography to enforce

secrecy during interaction between nodes was proposed for

distributed consensus algorithms. It was shown in [15] that for
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a network with certain topological restrictions, average con-

sensus can be achieved and the agents’ local data is completely

unobservable from the data received at a given agent.

Although distributed maximum consensus has been investi-

gated under various settings [16]–[18], there is a lack of studies

on maximum consensus with privacy guarantees. Authors in

[19] proposed a differentially private maximum consensus

algorithm based on adding Laplacian noise to the initial states

and proved that exact consensus and differential privacy cannot

be guaranteed simultaneously. In [20] a privacy-preserving

maximum consensus algorithm was proposed where agents

broadcast random data before transmitting their actual states.

Though [20] characterizes the probability of maximum state

owner’s identity being revealed, it does not quantify the

privacy leakage of other agents.

In this paper, we characterize the privacy metric as the

covariance of a minimum mean square error (MMSE) estimate

of an agent’s state at the adversary. We propose a privacy-

preserving distributed maximum consensus algorithm in which

the adversary will not be able to infer exact local state

of the agents. We first transform the maximum consensus

problem into a simple linear program that is solved in a

distributed manner using the alternating direction method of

multipliers (ADMM). To endow privacy, every agent uses a

random initialization which is unknown to other agents and

the primal update step is perturbed with zero-mean Gaussian

noise whose variance decays at each message-sharing step. We

obtain theoretical bounds on the privacy leakage at the agents

and prove that the proposed algorithm converges. Further,

we illustrate the convergence and privacy-accuracy trade-off

through numerical simulations.

II. PROBLEM FORMULATION

We consider a connected network of L ∈ N agents modeled

as an undirected graph G(V , E) where the set of vertices

V = {1, . . . , L} corresponds to the agents and the edge set

E represents the communication links between the pairs of

agents. Agent i ∈ V can communicate with its neighbors

whose indices are in the set Ni with cardinality |Ni|. By

convention, Ni does not include the agent i itself.

Let ai denote the local state at agent i and a∗ indicate the

maximum value, i.e. a∗ = maxi ai. The maximum consensus

algorithm ensures that every agent attains consensus on the

maximum value among the agents by local computation and

exchanging information with their neighbors. The distributed

maximum consensus algorithm is given by

xi(k + 1) = max
j∈Ni

(xi(k), xj(k)), i ∈ V, (1)

with initial value chosen as xi(0) = ai. Further, there exists a

finite T such that xi(k) = a∗ for all k ≥ T and i = 1, . . . , L.
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It can be observed that every agent must share its local state

with the neighboring agents. However, in many applications

local states {ai}
L
i=1 must remain private. An adversary

can infer the local state of other agents using the data

received from its neighbors. Further, the identity of the agent

with maximum value a∗ will be revealed, which may be

undesirable. Therefore, the objective of this paper is to develop

a distributed maximum consensus algorithm that attains

maximum consensus and preserves the privacy of local state.

III. PRIVACY-PRESERVING DISTRIBUTED MAXIMUM

CONSENSUS

The maximum consensus algorithm (1) has a nonlinear

update step in contrast to the average consensus algorithms.

Hence, we cannot directly employ the perturbation-based

privacy-preserving approaches to maximum consensus as the

local states at the agents may diverge. However, we overcome

this problem by first reformulating the maximum consensus

as the following optimization problem:

a∗ = argmin.
x

x

s. t. x ≥ ai, i = 1, . . . , L.
(2)

Let xi denote the local value of x at agent i. In order to

solve (2) in a distributed manner, we next recast it as a linear

program given by

min.
{xi}

1

L

L
∑

i=1

xi

s.t. xi ≥ ai, i = 1, . . . , L

xi = xj , j ∈ Nj , ∀i ∈ V.

(3)

The equality constraints enforce local consensus across each

agent’s neighborhood. Now solving the maximum consensus

problem is equivalent to addressing the optimization problem

(3) since both (2) and (3) have an identical solution, i.e.

the solution of (3) x∗
i = a∗, for all i. Since the local

objective functions are affine and the agents’ local constraints

constitute the sensitive information, we cannot employ existing

distributed algorithms [21]–[24] to guarantee privacy.

By introducing the auxiliary local variables

Z = {{zji }j∈Ni
}Li=1 and using the indicator function,

defined as Ia(y) = 0, if y ≥ a and ∞ otherwise, to enforce

the inequality constraint, we rewrite the problem in (3) as

min.
{xi,yi,z

j

i
}

1

L

L
∑

i=1

xi +
1

L

L
∑

i=1

Iai
(yi)

s.t. xi = yi, i = 1, . . . , L

xi = zji , xj = zji , i 6= j, j ∈ Ni, ∀i ∈ V.

(4)

The auxiliary variables Z are used to obtain an equivalent

representation of the constraints in (3) and will be eliminated

eventually. As the objective function in (4) is separable, the ith
agent can independently compute the optimal x∗

i by relying

on the ADMM technique to solve (4) in a distributed manner

[25]. For this purpose, the augmented Lagrangian for (4) with

quadratic penalty for constraint violations is expressed as

Lρ({xi}
L
i=1, {yi}

L
i=1,Z,M) =

L
∑

i=1

(xi

L
+

1

L
Iai

(yi) + ui(xi − yi) +
ρy
2
(xi − yi)

2
)

+

L
∑

i=1

∑

j∈Ni

(

µj
i (xi − zji ) + λj

i (xj − zji )
)

+
ρz
2

L
∑

i=1

∑

j∈Ni

(

(xi − zji )
2 + (xj − zji )

2
)

, (5)

where M := {ui, {µ
j
i}j∈Ni

, {λj
i}j∈Ni

}Li=1 are the Lagrange

multipliers, and ρy and ρz are the penalty parameters

associated with first and second constraints in (4), respectively.

To solve the minimization problem (4) in a distributed

fashion, Lρ is minimized with respect to the primal variables

{xi}
L
i=1, {yi}

L
i=1, and auxiliary variables Z alternately with

the other two sets of variables fixed. Then, the Lagrange mul-

tipliers in M are updated via dual gradient-ascent iterations

[25]. It can be seen that the Lagrangian in (5) is separable

in xi and yi, and the penalty terms can be simplified as

ui(xi−yi)+
ρy

2 (xi−yi)
2 =

ρy

2 (xi−yi+ ũi)
2− ρy

2 ũ2
i , where

ũi = ui/ρy . By using the Karush-Kuhn-Tucker optimality

conditions for (4) and setting vi(k) = 2
∑

j∈Ni
λj
i (k), it

can be shown that the Lagrange multipliers {µj
i}j∈Ni

and

the auxiliary variables Z are eliminated [26]. Therefore, the

distributed ADMM algorithm to solve (4) reduces to the

following iterative updates at the ith agent

xi(k + 1) = argmin
xi

{

1

L
xi +

ρy
2
(xi − yi(k) + ũi(k))

2

+ vi(k)xi + ρz
∑

j∈Ni

(

xi −
xi(k) + xj(k)

2

)2
}

(6)

yi(k + 1) = argmin
yi

Iai
(yi)

L
+

ρy
2
(xi(k + 1)− yi + ũi(k))

2

(7)

ũi(k + 1) = ũi(k) + xi(k + 1)− yi(k + 1) (8)

vi(k + 1) = vi(k)+ρz
∑

j∈Ni

[xi(k + 1)−xj(k + 1)] (9)

where k is the iteration index and {yi(0)}
L
i=1, {ũi(0)}

L
i=1,

{vi(0)}
L
i=1 are set to zero.

Next, we derive closed-form solutions to address the sub-

problems in (6) and (7). We can see that (6) is an unconstrained

quadratic optimization problem. Thus, by computing the gra-

dient of the objective function in (6) and equating it to zero,

the optimal update at the ith node is obtained as

xi(k + 1) =
ρz

ρy + 2|Ni|ρz

∑

j∈Ni

(xi(k) + xj(k))

+
ρy

ρy + 2|Ni|ρz
[yi(k)− ui(k)]−

vi(k) + (1/L)

ρy + 2|Ni|ρz
. (10)

The second minimization step (7) in the algorithm, f̃(xi(k +
1)+ũi(k)) = argminyi

Iai
(yi)+

ρyL

2 (xi(k+1)−yi+ũi(k))
2,

is the proximal operator of the indicator function of a closed

nonempty convex set {yi ∈ R | yi ≥ ai}. It is known that

the proximal operator of the indicator function Iai
(yi) is the
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projection of xi(k + 1) + ũi(k) onto set {yi ∈ R | yi ≥ ai}.

Hence, the update step for yi is given by

yi(k + 1) = max(xi(k + 1) + ũi(k), ai). (11)

It is apparent from (9) and (10) that the agents need to

transmit xi(k) to their neighboring nodes to compute the

network-wide maximum of the local state. However, this

sharing process aids curious agents to infer the local data that

the agents want to keep private. To prevent the adversary from

knowing the private state, the messages shared by every agent

are perturbed before transmission. The ith agent chooses a ran-

dom initial point xi(0) with zero-mean Gaussian distribution

and variance σ2
x, i.e. xi(0) ∼ N (0, σ2

x). This random number

is kept secret and not shared with other agents.

Next, at the kth ADMM iteration, the ith agent generates a

random variable ni(k) with normal distribution N (0, σ2
n(k))

and E[ni(k)nj(l)] = 0 for k 6= l and i 6= j, where σ2
n(k)

is the variance of the perturbation noise ni(k) that decreases

with iteration index k, i.e., σ2
n(k+1) < σ2

n(k). The perturbed

message transmitted from ith agent to all its neighboring

agents j ∈ Ni is expressed as x̃i(k) = xi(k) + ni(k).
Therefore, the dual variable updated through message sharing

is given by

vi(k + 1) = vi(k)+ρz
∑

j∈Ni

[x̃i(k + 1)−x̃j(k + 1)]. (12)

Collating the steps in (10)–(12), the proposed privacy-

preserving distributed maximum consensus is summarized in

Algorithm 1. In the next section, we show that the proposed

algorithm with secret random initialization and message per-

turbation is privacy-preserving.

A. Privacy Guarantees

The information at the adversary at time k to estimate the

state of agent i is defined as

Xi(k) = {x̃i(1), x̃i(2), . . . , x̃i(k)}. (13)

We assume that the adversary has the knowledge of the net-

work, ADMM penalty, and perturbation noise variance. Hence,

Algorithm 1 is valid for any honest-but-curious adversary,

which can be an external eavesdropper or an agent in the net-

work. The adversary computes an MMSE estimate of the local

state ai given the information Xi(k). Let us denote âi(k) as the

MMSE estimate and Pi(k) as the estimator error covariance.

Similar to [10] and [27], the privacy measure of node i is

Pi(k) and the privacy of node i is breached if Pi(k) = 0.

Theorem 1. Algorithm 1 is privacy-preserving, i.e. Pi(k) >
0 with Pi(k) bounded as Pi(k) ≥ Qi(k) for k < ∞, i =
1, . . . , L, and Qi(k) is given by

Qi(k) =
Qi(k − 1)(σ2

i (k) + (1− γi(k))σ
2
i (k))

Qi(k − 1) + σ2
i (k) + (1− γi(k))σ2

i (k)
, (14)

where γi(k) = 1 if xi(k)+ ũi(k−1) ≤ ai and zero otherwise,

and σ2
i (k) =

(

ρy+2ρz|Ni|
2ρy

)2

σ2
n(k).

Proof. Since ũi(0) = vi(0) = 0 for all i, we express (8) and

(9) as vi(k) = ρz
∑k

l=1

∑

j∈Ni
(xi(l) − xj(l)) and ũi(k) =

Algorithm 1 Privacy-Preserving Maximum Consensus

1: At all agents i ∈ V , initialize xi(0) ∼ N (0, σ2
x), yi(0) =

0, ũi(0) = 0, vi(0) = 0
2: for i = 1, 2, . . . , L do

3: for k = 0, 1, . . . do

4: if k = 0 then

5: xi(1) =
ρz

ρy+2|Ni|ρz
xi(0) +

1
L(ρy+2|Ni|ρz)

6: else

7: Update xi(k + 1) as in (10)

8: end if

9: Update yi(k + 1) = max(xi(k + 1) + ũi(k), ai)
10: Update ũi(k + 1) = ũi(k) + xi(k + 1)− yi(k + 1)
11: Generate ni(k + 1) ∼ N (0, σ2

n(k + 1))
12: Share x̃i(k+1) = xi(k+1)+ni(k+1) with agents

in neighborhood Ni

13: Update dual variable

vi(k + 1) = vi(k)+ρz
∑

j∈Ni
[x̃i(k + 1)−x̃j(k + 1)]

14: end for

15: end for

∑k
l=1(xi(l) − yi(l)). Substituting the above expressions and

yi(k) = max(xi(k) + ũi(k − 1), ai) in (10), we obtain the

observation dynamics at the adversary as

x̃i(k + 1) = −αyx̃i(k) + 2αy max(xi(k) + ũi(k − 1), ai)

+ wi(k) + ni(k + 1), (15)

where αy =
ρy

ρy+2|Ni|ρz
, αz = ρz

ρy+2|Ni|ρz
, and wi(k) =

2αz

∑

j∈Ni
x̃j(k) +

∑k−1
l=1

(

αyyi(l) − αz

∑

j∈Ni
(x̃i(l) −

x̃j(l))
)

. Since the adversary has access to x̃i(l) for l =
1, . . . , k, the new data available at time k to estimate ai is

given by

x̃i(k + 1) =

{

xi(k) + ñi(k + 1), γi(k) = 0
ai + ñi(k + 1), γi(k) = 1

(16)

where γi(k) = 1 if xi(k)+ ũi(k− 1) ≤ 0 and zero otherwise,

and measurement noise ñi(k+1) =
ρy+2ρz|Ni|

2ρy
(wi(k)+ni(k+

1)) with variance Ri(k) = E[ñ2
i (k)]. Hence the observation

process at the adversary can be viewed as an stochastic event-

triggered estimation of parameter ai. This is equivalent to the

model considered in [28] and [29] for remote estimation with

open loop scheduling. From [28] and [29], an MMSE estimator

for ai for the model in (16) is given by

âi(k) = (1−Kf
i (k))âi(k − 1) + γi(k)K

f
i (k)x̃i(k), (17)

where filtering gain Kf
i (k) = Pi(k− 1)(Pi(k− 1)+Ri(k) +

(1 − γi(k))Ri(k))
−1 and Pi(k) = E[(âi(k) − ai)

2|Xi(k)] is

the estimation error covariance that follows Pi(k) = (1 −
Kf

i (k))Pi(k − 1). Assuming that the adversary has knowl-

edge of γi(k) and σ2
i (k)=

(

ρy+2ρz|Ni|
2ρy

)2

σ2
n(k) < Ri(k) =

E[ñ2
i (k)], from [28] and [29] we can lower bound the estima-

tion error at the adversary Pi(k) with Qi(k) > 0 that follows

Qi(k) =
Qi(k − 1)(σ2

i (k) + (1− γi(k))σ
2
i (k))

Qi(k − 1) + σ2
i (k) + (1− γi(k))σ2

i (k)

with Qi(0) = σ2
x and σ2

i (k) =
(

ρy+2ρz|Ni|
2ρy

)2

σ2
n(k), ∀i.
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Fig. 1. (a) Convergence to maximum value a
∗ = 2 for σ2

x
= σ

2
n
(1) = 10, (b) Privacy vs iteration index for perturbation noise variance σ

2
n
(1) = 10.

B. Convergence

The primal variable xi(k) is perturbed with random

variable ni(k) with normal distribution N (0, σ2
n(k)) and

E[ni(k)nj(l)] = 0 for k 6= l and i 6= j, with the variance

σ2
n(k) of the perturbation noise ni(k) decreasing with k.

Further, the objective function in (4) is convex. Hence, from

[30, Theorem 5], for any fixed number of iterations K, we have

E

[

1
T

2Lx̄(K)

L
− a∗

]

≤
ρz ‖x̄(0)‖

2
L−

2K
+
ρz ‖x̄(0)− a∗12L‖

2
L+

2K

+
ρzLσ

2
n(1)φ

2
max(L+)

K(1−D)φmin(L−)
, (18)

where 12L ∈ R
2L denotes the vector of ones, x̄(K) =

1
K

∑K
k=1 x̂(k), x̂(k) = [x1(k), y1(k), . . . , xL(k), yL(k)]

T,

‖x‖2
A

= x
T
Ax, L+ is the signless Laplacian matrix of the

network, L− is the signed Laplacian matrix, D =
σ2
n(k+1)
σ2
n(k)

is the noise decay factor with 0 < D < 1, and φmax(A) and

φmin(A) are the non-zero largest and smallest singular values

of matrix A, respectively. Hence from (18), the Algorithm 1

converges in mean to the maximum value a∗.

IV. SIMULATION RESULTS

For numerical results, we consider a network

with L = 5 agents and edge set E =
{(1, 2), (1, 5), (2, 3), (2, 4), (3, 4), (4, 5)}. The local state

values are chosen as a = [a1, . . . , aL]
T = [−2,−1, 0, 1, 2]T

and index of node with maximum value a∗ = 2 is

i = 5. For the ADMM penalty parameters we chose

ρy = ρz = 2. The consensus accuracy is defined as

ǫi(k) =
1
L

∑L
i=1

|xi(k)−a∗|2

(a∗)2 . The perturbation noise ni(k) is

chosen ni(k) ∼ N (0, σ2
n(1)/k), i.e., σ2

n(k) = σ2
n(1)/k. We

set initial point xi(0) ∼ N (0, σ2
x) with variance σ2

x = σ2
n(1).

Figure 1a illustrates the convergence of the proposed algo-

rithm with σ2
x = σ2

n(1) = 10. We can see that local updates

converge to the maximum value at same time guaranteeing

privacy. Figure 1b shows the privacy value defined as the

estimation error covariance Qi(k) at the adversary for i =
1, 2, . . . , L. It can be seen that node i = 5 has lower privacy

compared to other agents since it has a higher probability of

the event γL(k) = 1 and thus leading better estimation error

-10 -6 -2 2 6 10 14
10

-4

10
-3

10
-2

10
-1

10
0

Fig. 2. Accuracy as a function perturbation noise variance σ
2
n
(1) for K =

100 and K = 50 ADMM iterations.

at the adversary. Further, the plot shows that privacy depends

on the number of neighbors, and agents with same number

of neighbors have similar privacy leakage. This follows from

(14), where the privacy depends on the measurement noise

covariance, which is influenced by the number of neighbours.

Here Agents 1 and 3, with |N1| = |N3| = 2, and Agents 2 and

4, with |N2| = |N4| = 3, have same privacy guarantees. The

trade-off between privacy and consensus accuracy is shown

in Fig. 2. It can be seen that larger privacy leads to lower

accuracy. But, the accuracy and privacy can be controlled

through appropriate selection of stopping time K and the

initial perturbation noise covariance σ2
n(1).

V. CONCLUSION

We have developed a privacy-preserving distributed maxi-

mum consensus algorithm where the local state of the agents

and identity of the agent with maximum state is kept private

from the adversary. We showed that the maximum consensus

problem can be recast as a linear program, which is solved in

a privacy preserving manner using ADMM and perturbing the

primal update step with additive Gaussian noise of decreasing

variance. Considering the privacy metric as the estimation

error of the local state, we have obtained theoretical bounds

on the privacy leakage at the agents.
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