
Modelling creep in clay using the framework of hyper-viscoplasticity 1 

 2 

GUSTAV GRIMSTAD*1, DAVOOD DADRASAJIRLOU* and SEYED ALI 3 

GHOREISHIAN AMIRI* 4 

*PoreLab, Department of Civil and Environmental Engineering, Norwegian University of 5 

Science and Technology (NTNU), Trondheim, Norway 6 

 7 

1 corresponding author, e-mail: gustav.grimstad@ntnu.no, address:  Department of Civil and 8 

Environmental Engineering, Høgskoleringen 7A, 7491 Trondheim, Norway 9 

 10 

Abstract: This paper addresses the derivation of creep models using the framework of hyper-11 

viscoplasticity. It demonstrates that the formulations widely used already can easily be 12 

obtained using the hyper-viscoplastic formalism. This means that existing formulations (i.e. 13 

of the flow potential) are thermodynamically sound. The key assumptions are that the free 14 

energy is only a function of elastic strains and that there is no dissipation under pure 15 

volumetric swelling (tension). The presented derivations, using the framework of hyper-16 

viscoplasticity, allows for further model development along the same lines, as presented here, 17 

with only minor modifications. 18 
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INTRODUCTION 23 

Only a few attempts have been made to formulate a hyper-viscoplastic model for creep and 24 

rate dependence of soft clays that comply with the critical state soil mechanics concept. There 25 

is still a need for showing the derivations of such a model in a complete formalistic manner. 26 

Attempts has been made, e.g. Aung et al. (2019), but still some clarifications are necessary to 27 

demonstrate a thermodynamic sound formulation. Therefore, this paper demonstrates how to 28 

establish the well-known empirically based formulation for creep in clay from a 29 

thermodynamic perspective. The result is in strong resemblance to the creep formulation 30 

widely used in geotechnics already. As found in Šuklje (1963), Janbu (1969) and others, for 31 

1D case, and extended to full stress space in e.g. Stolle et al. (1999), with the effect of fabric 32 

by Leoni et al. (2008). The presented derivation from the thermodynamic framework gives 33 

the same correction to the Stolle et al. (1999) formulation as suggested by Grimstad et al. 34 

(2008) to properly model the “dry side”, as further discussed in Grimstad et al. (2010). The 35 

notation used, follows the book of Houlsby and Puzrin (2006), with concepts/terminology 36 

discussed in e.g. Collins and Kelly (2002), Collins and Houlsby (1997), Darabi et al. (2018) 37 

and Osman et al. (2020). Small strains are assumed, so additive decomposition of elastic and 38 

viscoplastic strains holds. Cauchy stresses are hence then also used. Triaxial stress (p-q) 39 

space is utilized to simplify the derivation, but extension to full stress space is 40 

straightforward. This note makes use of the normal geotechnical sign convention, i.e. 41 

compression positive. The principles of hyper-viscoplasticity are briefly presented in the 42 

appendix. 43 

 44 

DERIVATION OF THE FLOW POTENTIAL 45 



The starting point of developing models, using the thermodynamic framework, is to establish 46 

the free energy function and the force potential. In terms of Helmholtz free energy, f, it can 47 

take the form of eq. (1), where the free energy is implicitly a function of the elastic strain 48 

only. 49 
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Where G is the shear stiffness, κ is elastic compressibility parameter (the bulk stiffness 51 

increases linearly with mean effective stress), pref is an arbitrary reference pressure, εv is the 52 

volumetric strain and εq is the deviatoric strain, energy conjugates to the mean effective 53 

stress, p, and deviatoric stress, q, respectively. Elastic strains are defined as total strains 54 

minus viscoplastic strains, εv − εv
vp and εq − εq

vp. Alternatively, the free energy, eq. (1), can be 55 

expressed in terms of Gibbs free energy, g: 56 
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This form of free energy results in true stress equals to dissipative stress (see appendix), thus, 58 

one can further concentrate only on the force potential. 59 

Consider the following force potential, z: 60 
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Where p0 is a state variable equivalent to the isotropic “pre-consolidation” stress, r is a 62 

reference rate, n is a number slightly larger than 1 but significantly less than 2. n = 2 would 63 

mean linear increase with strain rate. From experiments it is well documented that this has a 64 

logarithmic nature, see e.g. the early work of Buisman (1936), Šuklje (1963) or Bjerrum 65 

(1967): this implies a n between 1 and 2. M is the critical state line in p-q space. This force 66 



potential gives expectation of a behavior that scales the behavior of the Modified Cam-Clay 67 

model (MCCM) (Roscoe and Burland, 1968). In fact, with n = 1, the dissipation function of 68 

the MCCM is retrieved from this force potential in a form as discussed in e.g. Collins and 69 

Houlsby (1997), with the “shift” included in the dissipation function. 70 

The dissipation, d, equals, after differentiation: 71 
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See that d ≥ 0 holds for any strain rate. For pure volumetric unloading, it results in d = 0. It 73 

means under pure volumetric swelling, there is no dissipation, as all applied energy is spent 74 

in volume increase. One will see later that this happens only in the Origin of stress space, 75 

which is a realistic behavior in many cases (i.e. liquefaction). However, when using a free 76 

energy function as the one in eq. (1), such a state is actually impossible, as it will require 77 

infinite negative elastic volumetric strain to reach zero mean effective stress. 78 

The flow potential, w, is found from the difference between dissipation and force potential: 79 
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(note again that for n = 1 the dissipation is linear in strain rate, and w will then define the 81 

yield surface (y) in dissipative stress space (χ); generally y(χij, σij, p0) as w = y = 0). Which, in 82 

true stress space, will give the plastic potential function and yield surface. In this case, it will 83 

result in an associated flow rule as y = y(χij, p0). However, if e.g. M = M(σij), a non-associated 84 

flow rule will be predicted.  85 

The dissipative stresses are derived from the force potential as: 86 
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Rearranging the equation results in: 88 
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Zero shift stress (i.e. χ̅ij = σij) and assumption of maximum dissipation rate (i.e. χij = χ̅ij the 90 

Ziegler’s orthogonality assumption (Ziegler, 1983), see the appendix), results in the well-91 

known MCCM flow rule in the true stress space: 92 
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Rearranging and eliminating the viscoplastic strain rates give the flow potential as a function 94 

of dissipative stresses: 95 
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Where, one may identify the known equivalent stress measure, peq as: 97 
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Note that eq. (9) results in a family of similar ellipses with a “similarity center” at the origin 99 

of the true stress space. 100 



 101 

RESULTS AND DISCUSSION 102 

The derived flow potential, eq. (9), can be used directly for modelling creep in clay. 103 

However, the material parameters r and n does not give direct physical meaning. Therefore, it 104 

is more convenient to change them to engineering ones. By comparing eq. (9) with the 105 

formulation for the plastic multiplier found in e.g. Grimstad et al. (2010) (after integration), 106 

one gets: 107 

1
1

0 0
0 0

1

1

n
n

ref eq eqp pnw p p r
p n p

λ κ
µλ

λ κ
µ

−
+

−   −
= ⋅ ⋅ = ⋅ ⋅ ⋅   −    +



 (11) 108 

As a result, n and r relates to “classical” parameters through: 109 
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 and ref rλ =  (12) 110 

For typical values of λ − κ (= 0.09) and μ (= 0.0036) for soft clays (i.e. a creep number 111 

[(λ−κ)/μ] of 25), one observes that the number n is 1.04. Note that all these parameters are 112 

found from conventional laboratory tests.  113 

Further, see that the over consolidation ratio, OCR, is identified as: 114 
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Also, in practice, it is not convenient to use a reference rate as input parameter. Therefore, 116 

Grimstad et al. (2010), already defined this in terms of more conventional parameters 117 

through: 118 
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Where, τ is the reference time for which p0 (or OCR) is determined, typically 1 day for 120 

incrementally loaded oedometer tests. The last term is there to generalize the oedometer 121 

condition to general condition, where ηK0NC is the stress ratio, q/p, under 1D normal 122 

compression. This derivation shows that the creep formulation used in e.g. Grimstad et al. 123 

(2017) (with OCRmax → ∞) can be exactly derived in the framework of hyper-viscoplasticity. 124 

With a modified force potential, e.g. including the effect of fabric and Lode angle 125 

dependency, a more advance model could be retrieved following the same steps as above. 126 

Also, if a linear term is added to the force potential, it is quite straightforward to include a 127 

type of OCRmax parameter, ending up with a formulation with some similar characteristics as 128 

the one suggested in Grimstad and Degago (2010) and Grimstad et al. (2017), with OCRmax 129 

representing an inner limit surface corresponding to zero viscoplastic strain rate. 130 

To complete the scheme, the viscoplastic strain rates are calculated from the flow potential, 131 

giving the following viscoplastic strain rates: 132 

 
0

eq
vp

p eqv
refvp

q eq

q

w pw
pp p

w w pp
q q

λ κ
µχε

λ
ε

χ

−
∂ ∂   ∂ 

    ∂  ∂ ∂     = = = ⋅ ⋅      ∂ ∂ ∂          ∂ ∂ ∂    







 (15) 133 

The hardening rule of p0, eq. (16), takes the same form as for MCCM, where strains are 134 

considered rather than specific volume. 135 
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Finally, it is interesting to note that when there is a difference between the dissipative stress 137 

and the true stress (coming from a different choice of free energy function), it will result in a 138 

creep formulation where the “similarity center” is not in the origin of p-q space. As an 139 



example, eq. (17) gives the Gibbs free energy for a case where the “similarity center” will be 140 

in the center of the Cam-Clay ellipse. 141 
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The generalized stresses are found by differentiation. And when combined with the integral 143 

of eq. (16) from p0,ref to p0 , one obtains: 144 
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Here one identifies the “shift stress” p − χ̅p as p0/2. The force potential is now: 146 
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From this, the calculation of differentials and the transformation to a flow potential as a 148 

function of an equivalent stress measure is done once more, eq. (20) to (25): 149 
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Flow rule: 153 
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Using eq. (22) to transform eq. (21) gives: 155 
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Where: 157 

2
* 2

2
q

eq pp
M
χ

χ= +   (25) 158 

Which defines a family of ellipses with a similarity center at p0/2 in p-q stress space, as 159 

χij = χ̅ij (see Figure 1, Alt. 2). Note that this type has similar characteristics as the flow 160 

potential of Apriadi et al. (2013). The consequences of such a choice are prediction of rate 161 

dependent (creep) swelling under isotropic unloading for positive (compressive) mean stress 162 

(but negative χp), and a critical state line in p-q space (M) corresponding only to the reference 163 

rate. I.e. interpreted negative “cohesion” (interception of the M line with the q axis) for 164 

undrained test ran slower than the reference and a positive interpreted “cohesion” for tests ran 165 

faster than the reference. The differences between the two alternative options are summarized 166 

in Figure 1.  167 

 168 

CONCLUSIONS AND RECOMMENDATIONS 169 

The classical creep model formulation, widely used for clay, was successfully derived using 170 

the framework of hyper-viscoplasticity. The derived flow potential was compared to existing 171 

formulations and classical model parameters were identified. The consequences of the choice 172 

of free energy function and force potential to include the so-called shift stress are highlighted 173 



and compared to the alternative form. Further developments in constitutive modelling of 174 

clays using the framework of hyper-viscoplasticity can be done along the same lines, as 175 

presented here. This means inclusion of e.g. fabric, structure and Lode angle dependency is 176 

quite straightforward. For modelling of cyclic behavior of clay, it should be noted that 177 

including a plastic part of the free energy (with some similarities as in alt.2) is essential to 178 

define a kinematic hardening mechanism in a multisurface formulation as like e.g. 179 

Likitlersuang and Houlsby (2007). 180 
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NOTATION 186 

d  dissipation function 187 

f Helmholtz free energy function 188 

G Shear stiffness 189 

g Gibbs free energy function 190 

n  power number 191 

OCR Over Consolidation Ratio 192 

p  mean effective stress 193 

p0 isotropic pre-consolidation stress 194 



p0ref reference isotropic pre-consolidation stress 195 

peq equivalent effective stress 196 

pref reference pressure 197 

q  deviatoric stress 198 

r  reference rate 199 

w flow potential function 200 

y yield surface 201 

z  force potential function 202 

εv volumetric strain 203 

εq  deviatoric strain 204 

vp
ijε  viscoplastic strain tensor 205 

vp
vε  volumetric viscoplastic strain 206 

vp
qε  deviatoric viscoplastic strain 207 

ηK0NC stress ratio, q/p, given under 1D normal compression 208 

κ  elastic compressibility parameter (strain based) 209 

(λ – κ) plastic compressibility parameter (strain based) 210 

refλ  reference rate for viscoplastic multiplier 211 

M critical state line in p-q space 212 

μ creep number (strain based) 213 



σij true stress tensor 214 

τ reference time 215 

χij dissipative generalized stress tensor  216 

χp dissipative generalized mean stress 217 

χq dissipative generalized deviatoric stress 218 

χ̅ij generalized stress tensor  219 

χ̅p generalized mean stress 220 

χ̅q generalized deviatoric stress 221 

 222 

APPENDIX: THE PRINCIPLES OF HYPER-VISCOPLASTICITY [ADAPTED FROM 223 

THE BOOK OF Houlsby and Puzrin (2006)] 224 

First law of thermodynamics says that the change (with time) in internal energy, U̇, is equal 225 

to the sum of applied heat Q̇ and applied work Ẇ. 226 

U Q W= +   (26) 227 

For the case of mechanical behavior of materials, it is more natural to speak of specific 228 

internal energy, u̇ (energy per volume and time, kW/m3 = kPa/s). In this case the change in 229 

work, with time, (i.e. the power) is simply the stress times the strain rate: 230 

:W = σ ε

  (27) 231 

Where σ is the Cauchy stress tensor and ε̇ is the increment in the work conjugative strain 232 

tensor (i.e. the Almansi strain). However, in practice (for small strains) the increment of 233 



Almansi strain matches the engineering strain increment, calculated on the updated geometry. 234 

The specific change in heat is: 235 

Q = −∇⋅q  (28) 236 

Where q is the gradient of heat (heat flux). The second law of thermodynamics in terms of 237 

specific entropy, ṡ, can be written as: 238 

s
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Also called the Clausius-Duhem inequality (entropy increase). Where θ is the temperature. 240 

This can be rewritten as: 241 
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θ θ
∇ ⋅ ⋅∇

≥ − +
q q

  (30) 242 
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Where d is the dissipation. Since one can assume small temperature gradients in most 245 

geotechnical problems, eq. (31) can be rewritten to a more strict condition: 246 

0d ≥  (32) 247 

The specific internal energy can now be written as: 248 
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Which by using the assumption of small increments must be equal to: 250 
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Each term is identified as: 252 
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Selecting d as a homogenous function of degree n and using the Euler's theorem for 254 

homogeneous functions, one can write: 255 
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 (36) 256 

Where z is defined as the force potential. 257 

Eliminating d and u̇ between the equations (33), (34) and (36) results in the following 258 

requirement: 259 

( ) : 0vp− =χ χ ε  (37) 260 

The simplest choice is that: 261 

=χ χ  (38) 262 

Called Ziegler’s orthogonality assumption (alternatively, orthogonality between ( )−χ χ  and 263 

vpε  must be satisfied). The ingredients in hyper-viscoplasticity are hence the free energy 264 

function, the force potential and any potential hardening rules. The remaining formulations in 265 

more convenient variables follows through derivations/transformations. 266 

 267 
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Figures: 317 

 318 

Figure 1 Graphical representation of the two different presented options, alt. 1 without shift 319 

stress, alt. 2 with shift stress. 320 
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