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ABSTRACT Recently, researchers have shown an increased interest in considering plants as a model of
inspiration for designing new robot locomotions. Growing robots, that imitate the biological growth pre-
sented by plants, have proved irresistible in unpredictable and distal environments due to their morphological
adaptation and tip-extension capabilities. However, as a result of the irreversible growing process exhibited
by growing robots, classical control schemes could fail in obtaining feasible solutions that respect the
permanent growth constraint. Thus, in this article, a Nonlinear Model Predictive Control (NMPC) scheme is
proposed to guarantee the robot’s performance towards point stabilization while respecting the constraints
imposed by the growing process and the control limits. The proposed NMPC-based growth control has
applied to the kinematic model of the recently proposed plant-inspired robots in the literature, namely,
vine-like growing robots. Numerical simulations have been performed to show the effectiveness of the
proposed NMPC-based growth control in terms of point stabilization, disturbance rejection, and obstacle
avoidance and encouraging results were obtained. Finally, the robustness of the proposed NMPC-based
growth control is analyzed against various input disturbances using Monte-Carlo simulations that could
guide the tuning process of the NMPC.

INDEX TERMS Growing robots, obstacle avoidance, model predictive control, soft robots.

I. INTRODUCTION
Motivated by the morphological adaptation capacity shown
by snakes, elephant trunks, and octopus tentacles, soft con-
tinuum robots have demonstrated the potential to facili-
tate manoeuvring in tight and restricted environments [27].
As compared to rigid robots, continuum robots have curvi-
linear structures with regularly bending backbones that make
them extremely versatile to the surroundings [22], [29]. How-
ever, continuum robots are commonly designed to have small
lengths that restrain their applicability in the navigation of
distant environments [16].

Investigating the growing process exhibited by plants, new
mobility by growth approach has been recently proposed to
come up with growing robots. These kinds of robots emulate
biological growth by incrementally expanding either their
lengths, volumes, or knowledge [5]. Soft growing robots
can reach narrow spaces searching for victims or can serve
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as channels to transfer air or water for them in emergency
scenarios [25]. Earlier studies have reported the realization of
long flexible robots in congested environments. For instance,
Tsukagoshi et al. [25] have proposed multiple degrees of
freedom growing robot, called ‘‘Active Hose,’’ that used for
rescue and searching scenarios. This robot has designed to
be flexible with the capability of expanding its length by
connecting small flexible units of two degrees of freedom in
series. A flexible long cable with a ciliary vibration mecha-
nism has developed by Isaki et al. [14] to achieve navigation
in narrow spaces. Expandable soft robots have also been pro-
posed, such as ‘‘Slime Scope’’ [19] that was a pneumatically
driven expendable arm with a camera attached to its tip used
for search and rescue people in the rubble environments.
Tsukagoshi et al. [24] have developed a flexible hose-like
robot that was able to steer in narrow environments bymanual
control.

Lately, vine-like growing robots, which mimic the grow-
ing process displayed by plants, have proved magnificent
performance towards undertaking investigation and rescue
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missions [21], [28]. Hawkes et al. [13] have developed
a novel growing robot using the concept of tip eversion
mechanism [2]. These vine-like robots made of thin-walled
polyethene tubing that can expand up to several tens of meters
while navigating challenging environments either through
teleoperation [8] or guided by obstacles [9], [10]. A steerable
vine robot version is developed by Greer et al. [11] by inflat-
ing multiple series of pneumatic artificial muscles placed
around the robot’s spine. The increased length-to-diameter
ratios, the lengthening capability, and the flexible structures
allow vine-like robots to penetrate cluttered environments as
evaluated in [4].

Although the potential of vine growing robots in unstruc-
tured and congested environments, there is still a notable
paucity towards feedback controlling their growth in spatial
environments. This in particular is due to the challenges that
exist in vine robots in terms of their coupled dynamics and
the lack of practically deploying sensors on their lengthy
bodies. In general, controlling soft continuum robots in joint
and task spaces has been addressed in the literature. For
instance, dynamic control of planar multi-link soft contin-
uum robot is proposed in [6] considering interaction with the
environment. The curvature of each segment is selected as
the controlling variables for the robot to achieve the target
while assuming the robot’s length is assumed to be inexten-
sible. Seleem et al. [23] have developed a computed torque
control based on the derived dynamics for multi-section spa-
tial continuum robot. The physical constraints of sections’
lengths have been considered in the control loop as saturation
blocks, which potentially could lead to non-linearity and
under-utilization of the control scheme.

There have been many attempts towards controlling the
growth of vine-robots, either in the joint or in the task
space. For instance, in [21] a stimulus oriented control that
imitates the plant root behaviour is employed to control
the movement of the root-like plant-inspired robots based
on the tactile information received from the sensor embed-
ded on the robot’s root.Due to the relatively slow-growing
process reported in root-like robots, considering irreversible
constraints is not crucial in the control process. An optimal
control problem is formulated in [20] to control the tip of
a plant-inspired root to minimize the energy spent by the
root while penetrating the soil environment.The proposed
control approach assumed planar robot’s dynamics where the
robot’s length and curvature are the controlling variables.
In [7], a Proportional-Derivative (PD) controller with gravity
compensation is presented to the derived dynamics model
of vine robots to ensure the performance in terms of tra-
jectory following in the robot’s joint space. Although the
success of these attempts of conventional control schemes,
handling the irreversible growing process exhibited by grow-
ing vine-robots by such schemes could be challenging since
once the robot has grown to a certain length, it can not be
retracted back to lower length values.

In this article, inspired by the significant improvement
achieved by applying Model Predictive Control (MPC) [3] in

controlling of planar redundant manipulators [26], we devel-
oped a Nonlinear MPC scheme to control the growth of
vine-like growing robots in task-space. Meanwhile, consid-
ering the irreversible growing process and the actuator limits
in the control loop. MPC is a class of optimal control that
has long been used for large multiple-input, multiple-output
control problems in the control of the chemical processes.
The key idea is that we minimize an objective function over
a finite time prediction horizon subject to the dynamics of
our robot model represented as an equality constraint [17].
Meanwhile, other constraints such as the irreversible growing
process and the limits of the actuator of vine robots could
be described as inequality constraints during the prediction
horizon as well. Hence, an optimization problem is solved at
each time step to find the optimal control sequence suitable
for deriving the robot model to the required position in spatial
space while considering the system’s constraints. Since this
optimization problem is solved at each time step before apply-
ing any control inputs to the process, MPC-based control
schemes has the potential to succeed in controlling growing
robots compared to other conventional control approachmen-
tioned in the literature.

The key challenge of applying the MPC control scheme
in growing robots is the coupled nonlinear dynamics that
complex the prediction model that should be incorporated
in the control scheme. The nonlinear MPC control approach
has been proposed in hydraulic systems as in [12] with
nonlinear dynamics have been incorporated in the prediction
model. Although dynamics model implies a better repre-
sentation of the real system, it requires high computations.
Thus, in this article, the contributions consist of the following
aspects. (1) Application of NMPC-based growth control in
plant-inspired vine growing robots to control its spatial move-
ments in task-space considering the irreversible constraints
exhibited by the robot’s growing process. (2) Incorporation of
the robot’s kinematics model as the NMPC prediction model
to reduce the required computational cost while achiev-
ing significant performance assuming the relatively slow
movements of vine-robots while navigating the working
environment. (3) Proposing a Monte-Carlo simulation-based
approach to guarantee the robustness of the proposed NMPC
while guiding the process of parameter tuning.

After introducing the kinematic model of growing robots
in Section II, the proposed Nonlinear Model Predictive
Control (NMPC) for growth control of vine robots is dis-
cussed in Section III: first, the robot model is introduced;
then, the objective function and the controller design are
summarized. After simulation validations of the proposed
NMPC-based growth control in Section IV, a final conclusion
is drawn in Section V.

II. KINEMATICS MODEL OF VINE ROBOT
In this research, the ‘‘vine robot" developed in [4] is under
discussion, where this kind of robots can elongate their tips up
to tens of meters via eversion mechanism [11]. Air pressure is
applied to its core tube as depicted in Figure 1 to facilitate tip
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FIGURE 1. Working principal of the growing vine robot.

extension, while steering is achieved by applying air pressure
through one or two of the serial Pneumatic Actuator Mus-
cles (sPAM) that are placed around the robot circumference.
A camera or other sensing device could be added to its tip to
facilitate the navigation capability of the robot.

A. DIRECT KINEMATICS
The constant-curvature model [15] that is commonly applied
in modeling continuum-like robots is assumed here to find
the forward kinematics of the vine growing robot. The distal
tip pose Tbr with respect to its base is derived in terms of
the robot configuration parameters q ∈ IR3 including its
length s, the bending angle θ and the plane angle φ as shown
in Figure 2. Thus, Tbr is obtained as

Tbr =


cos2 φ(cos θ − 1)+ 1 sinφ cosφ(cos θ − 1)
sinφ cosφ(cos θ − 1) cos2 φ(1− cos θ )+ cos θ

cosφ sin θ sinφ sin θ
0 0

− cosφ sin θ
s cosφ(cos θ − 1)

θ

− sinφ sin θ
s sinφ(cos θ − 1)

θ

cos θ
s sin θ
θ

0 1


(1)

The robot tip position p = [x, y, z]T ∈ R3 in Cartesian
space could be extracted from Eq. (1) as,

x =
s cosφ(cos θ − 1)

θ
,

y =
s sinφ(cos θ − 1)

θ
,

z =
s sin θ
θ

(2)

Although the actual actuation space of the vine-robot is the
sPAMs lengths l = [s, l1, l2, l3], using the shape space gener-
alizes the control problem to suit any kind of continuum-like
robots with constant curvature model.

FIGURE 2. Schematic of vine growing robot with its configuration
parameters.

B. DIFFERENTIAL KINEMATICS
The growing robot tip velocity, ṗ ∈ R3, is related to the time
derivatives of the robot configuration parameters q̇ as follows,

ṗ = J(q) q̇ (3)

where the Jacobian matrix, J(q) ∈ R3×3, is computed analyt-
ically as follows,

Jq(q) =
∂p
∂q
=

∂p
∂(s, κ, φ)

(4)

where p is the robot tip Cartesian position mentioned in
Eq. (2).

III. NONLINEAR MODEL PREDICTIVE GROWTH CONTROL
In this section, we present the NMPC-based growth control
scheme proposed to control in closed-loop the growth of
the vine robot. The NMPC aims to consider the irreversible
growth constraint and the input constraints exhibited by vine
robots while achieving the control objectives: point stabiliza-
tion, obstacle avoidance, and trajectory tracking in task-space
that will be discussed.

A. MODEL DESCRIPTION
To involve the irreversible growth constraint exhibited by vine
robots, the state x = [p q]T ∈ R6 has been selected to
combine both the robot tip position p in Cartesian space and
its joint variables q. Hence, the non-linear model representing
the movement kinematics of vine robots is described as

ẋ =


ẋ
ẏ
ż
ṡ
θ̇

φ̇

 = f (x,u) =
[
J(q)
I3

]
u (5)

where J(q) ∈ R3×3 is the robot Jacobian obtained in Eq. (3)
while u = q̇ ∈ R3 is the velocity in the robot’s configuration
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space representing the manipulated variables. The vine robot
state x is the controlled variable and is assumed to be fully
observable. Although the full observability assumption could
be challenging in real applications of vine robots, this step
aims to prove the applicability of MPC in controlling the
growth of such robots. In future work, state estimation could
be incorporated to relax this assumption. The irreversible
growing process shown by vine robots is represented as an
inequality constraint imposed on its growing velocity and its
length, i.e., [

0
0

]
≤

[
ṡ(t)
s(t)

]
≤

[
ṡmax
smax

]
, ∀t ≥ 0 (6)

B. CONTROL OBJECTIVE
The key aim of the proposed MPC-based growth control is to
guarantee the growing robot stabilization performance over a
desired reference state xr = [xr , yr , zr , sr , θr , φr ]T defined
in task and joint space. The controller should also consider
the constraint imposed physically by the irreversible robot’s
growth while searching for optimal control actions. Thus,
the cost function J is chosen in such a way to evaluate the
tracking performance and the control action over a prediction
horizon N as follows

J (k) =
N∑
j=1

eT(k+j)Qe(k+j) +
N∑
j=1

1uT(k+j−1) R1u(k+j−1) (7)

where e = x− xr denotes the tracking error, while 1u indi-
cates the predicted control increment. The matrices Q ≥ 0
and R ≥ 0 are the weighting matrices that are assumed to be
constant over the prediction horizon N .

C. CONTROLLER DESIGN
The MPC strategy that is proposed to control the growth of
vine-robots is shown in Figure 3. The manipulated variables
(u = q̇) is the velocity in configuration space that used to
either elongate or steer the vine robot. The aim is to bring the
robot state x(t) to the reference input xr in the case of point
stabilization and the reference trajectory xr (t) in the case of
trajectory tracking for all instance t . Meanwhile, the growth
and the control input constraints mentioned earlier have to be
considered.

In conventional MPC, a discrete-time linear model of the
plant under control is usually employed as the prediction
model. However, as depicted from Eq. (5), the kinematic
model of vine robots is nonlinear and continuous since it
depends on the robot’s configuration q. Thus, in the pro-
posed NMPC-based growth control, the prediction model is
a discrete version of the robot’s kinematics model that is
obtained using Euler discretization at each sample k along
the predication horizon,

x(k + 1) = x(k)+1T
[
J(q(k))
I3

]
u(k) (8)

where 1T denotes the sampling time. Thus, by using this
prediction model, the NMPC predicts the robot’s state xp

FIGURE 3. Block diagram of the proposed Model-predictive control (MPC)
strategy used to control the growth of the vine robot.

along the prediction horizon while applying all admissible
control inputs ū as highlighted in Figure 3.

IV. RESULTS AND DISCUSSION
In this section, we present simulation experiments conducted
to evaluate the proposed NMPC-based growth controller
while considering the locomotion and input constraints of
vine-like robots. The NMPC-based growth controller is built
using CasADi framework [1]. The MATLAB/SIMULINK is
used with ode45 solver to simulate the vine robot model in
(1) with the proposed NMPC-based growth control. First,
we explain the experiment scenarios that are accompanied by
the experimental results that confirm the capabilities of the
proposed NMPC scheme.

A. POINT STABILIZATION RESULTS
As mentioned earlier, one of the applications of vine-like
robots is to serve as a conduit to deliver essentials to people
in disaster scenarios. Thus, in the first simulation experiment,
starting from an initial state x0 = [0, 0, 0.4, 0.4, 0, 0]T ,
the proposed NMPC-based growth controller is utilized to
stabilize the tip of the vine-like robot within a set of prede-
fined goal states in the space, xd ∈ R6. These states could
represent potential locations for the robot to visit with the
environment. The sampling time has chosen to be Ts = 0.1 s
with a prediction horizon N = 10. The state and the input
weighting matrices in (7) are chosen to be diagonal, where
Q = diag(1, 1, 1, 0, 0, 0) while R = diag(0.5, 0.5, 0.5).
The first three elements in the robot’s state are con-

strained between [−4, 4] defining the reachable space in
the environment, while the other remaining three-state
elements are constrained according to the robot’s con-
figuration limits highlighted earlier in the kinematics
section.

−4 ≤

x(m)y(m)
z(m)

 ≤ 4,

 0
−π

−π

 ≤
 s(m)
θ (rad)
φ(rad)

 ≤
10π
π

 (9)

On the other side, the input inequality constraints that respect
the irreversible nature of the growing vine-like robot and the
actuator limits are chosen as follows

0

−
π

10
−
π

10

 ≤
 ṡ(m/s)
θ̇ (rad/s)
φ̇(rad/s)

 ≤


0.1
π

10
π

10

 (10)
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FIGURE 4. Results of point stabilization simulation scenarios to evaluate
the the proposed NMPC-based growth control.

Figure 4 highlights the tracking performance of the pro-
posed NMPC-based growth controller during the point stabi-
lization scenario. During the first 25 seconds, the controller
stabilizes the robot’s tip at (1, 1, 1) meters from its base.
Satisfactory results in terms of rising time ( 20 s) are obtained
to reach the goal with the shown actuated inputs. The z
position of the goal is doubled during the second 25 seconds.
This requires the robot to increase its length of s. According
to the vine robots kinematics, increasing the robot length to
reach a new z position would affect the other two coordinates.
That’s why while achieving this new goal, both x and y
position have been slightly affected as illustrated in Figure 4.
To tackle this issue and bring the robot’s tip back, the NMPC
has actuated the curvature angle θ in the positive direction
while simultaneously increasing the robot length s. After a
while, only the robot length is increased to compensate for
the changed x and y positions. Finally, after 50 seconds of the
simulation time, the robot is required to reach a new z goal
that is lower than the previous one. This requires the robot
to shrink its length. However, due to the irreversible growing
process, the robot is constrained having no ability to shrink its
grown length. Thus, the NMPC decreased the robot curvature

FIGURE 5. (a) The path generated by the proposed NMPC to reach a
predefined goal of (1, 1, 1) meters while avoiding an obstacle with a
known location. (b) The corresponding actuator inputs generated from
the NMPC and applied to the vine-like robot.

hoping to reach the new desired goal. Although that helped
in obtaining a reasonable error in the z coordinate, the other
two coordinates have been significantly affected. In all stages,
the NMPC satisfies the state and input saturation constraints
of the vine-like robot.

B. OBSTACLE AVOIDANCE
In the second simulation scenario, the proposed NMPC is
evaluated against avoiding obstacles the could exist in the
environment. Thus, a static point obstacle is located at xo =
[xo, yo, zo]T within the robot pathway from a starting point
x0 to the end goal xg = [1, 1, 1]T meters away from its base.
The prediction horizon at this stage is chosen as N = 30,
while the sampling time is T = 0.1 s. To avoid that obstacle,
a new non-linear inequality constraint has been introduced
to the optimization problem to retain the Euclidean distance
between the robot’s tip (x, y, z) and the obstacle’s position
beyond a certain safe distance (rt + ro) as follows,

−∞ ≤ dr,o + (rt + ro) ≤ 0 (11)
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FIGURE 6. (a) The trajectory tracking performance of the proposed NMPC
(b) The corresponding state tracking in x , y and z coordinates.

where dr,o =
√
(x − xo)2 + (y− yo)2 + (z− zo)2 is the dis-

tance between the robot’s tip and the obstacle, rt = 0.1
m and ro = 0.1 m are the robot’s tip and the obstacle
radii respectively. As depicted in Figure 5, the NMPC has
succeeded in planning a safe path for the vine robot to avoid
the obstacle. The corresponding actuation is shown that the
robot has to alter its curvature and bending angle during the
navigation to avoid that obstacle. It is worth to mention that
this approach in avoiding obstacles could not guarantee that
the whole body of the vine robot will avoid that obstacle
since it is only the tip position that is considered in Eq. (11).
However, this could be tackled in future work by dividing
the robot’s body into segments that their position could be
anticipated from the robot shape parameters. Then, one more
constraint could be added to ensure that these segments are
away from that obstacle as well.

C. TRAJECTORY TRACKING
A spiral reference trajectory has been considered to assess
the proposed NMPC-based growth controller performance
against trajectory tracking. This spiral movement could be
useful if the robot is required to wrap around a pillar for
instance to reach its top. Particularly, the xref , yref and zref
coordinates of the reference state xref has been chosen as:

xref = cos(0.25t)

FIGURE 7. The robot trajectory versus the reference trajectory in the case
of work-space constraints.

yref = sin(0.25t)

zref = 2+ 0.2t (12)

The robot starts from an initial state x0 = [0, 0, 0.9, 0.9,
0, 0]T . The controller time step is chosen to be t = 0.1 sec-
onds while the prediction horizon is N = 20 with a total
simulation time of 20 seconds. The state and input weighting
matrices have been chosen as Q = diag(10, 10, 1, 0, 0, 0)
and R = diag(0.1, 0.1, 0.1) respectively. Figure 6 shows the
NMPC performance in terms of the difference between the
actual and the reference trajectories. The obtained RootMean
Square (RMS) errors between the reference and the actual
robot trajectory are (0.19, 0.193, 0.11) meters respectively in
x,y and z directions. As noted in Figure 6, the errors in x and
y coordinates are increasing with time. This is because the z
coordinate is linearly increasing with time, this requires the
robot’s length to be increased which subsequently affects the
actual x and y tip positions.We believe that properly designed
weighting Q and R matrices would tackle this issue. In Fig-
ure 7, we imposed an inequality constraint on the robot’s state
y as a work-space limitation. The proposed NMPC shows sat-
isfactory tracking performance while respecting the imposed
constraint beside the other robot’s locomotion constraints.

To compare our proposed NMPC-based growth control
with attempts found in the literature, we implemented two
Jacobian-based trajectory tracking controllers. In the first
controller, the irreversible growing process and the limits of
the actuator haven’t considered while in the second controller
these constraints have been considered as saturation blocks.
In Jacobian-based trajectory tracking the control action of
such a controller is calculated as:

u = JT (q)Ke (13)

where e = xref − x is the error between the reference trajec-
tory and the feedback state of the robot while K is a positive
definite diagonal gain matrix chosen as K = I . As shown
in Figure 8(a), the performance of the Jacobian-based con-
troller while not considering the process constraints is satis-
factory and close to what our proposed NMPC-based growth
control achieved. However, if the process constraints are
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FIGURE 8. Performance of the Jacobian-based Kinematics control while
(a) not considering the irreversible growing and process constraints, and
while (b) considering these constraints.

considered the Jacobian-based control will fail to follow
the reference trajectory as highlighted in 8(b). This shows
how our proposed trajectory tracking based on the proposed
NMPC controller outperforms the Jacobian-based controller
when the irreversible process and actuator constraints are
considered. This is due to the capability possessed by the
MPC controllers to anticipate the future state of the process
and plan accordingly while considering any process con-
straints.

D. ROBUSTNESS ANALYSIS
One of the key factors that ensure the robustness of the MPC
control system is to have insignificant levels of discrepancies
between the prediction model and the real system under con-
trol. Having a nonlinear kinematics model as the prediction
model in our proposed NMPC-based growth control of vine
robots plays a crucial rule in satisfying such condition. In fact,
the system behaviour could be anticipated at each time step
in the future relying on the nonlinear prediction model that
acts as a replica to the vine robot model under control.

In this experiment, we need to assess the robustness of
the proposed NMPC-based growth control over a wide range
of input disturbances. Monte Carlo simulations are utilized
to evaluate the robustness in terms of tracking performance
concerning variation in disturbed model uncertainties. This
approach would evaluate the NMPC controller with no need
to simulate each parameter variation separately, which could
take up significant time.

Thus, 150 values of the variances σṡ, σθ̇ and σφ̇ are ran-
domly selected within an allowable uniform distributions

FIGURE 9. (Top) The RMSE results of the conducted Monte Carlo
15 simulation scenarios at various weighting matrices with the
corresponding disturbance values (bottom).

[0.1, 0.3] m/s, [2, 10] rad/s, and [2, 10] rad/s. These model
uncertainties could represent the variation of wind speed
effect on the NMPC performance in each control coordi-
nate. The NMPC-based growth control is assessed through
the tracking performance of the trajectory proposed in Sub-
section IV-C by calculating the RMSE at each simulation
scenario. In the first set of analysis, the weighting matrices
were chosen as Q1 = diag(10, 10, 1, 0, 0, 0) and R1 =

diag(0.1, 0.1, 0.1). Due to limited space, Figure 9 shows the
results of 15 scenarios that have been selected and sorted
according to the RMSE values. We can interpret that the
RMSE has not significantly changed during the various sim-
ulated scenarios with the chosen disturbances.

Subsequently, to show the effect of the weighting matri-
ces on the robustness performance, three more Monte
Carlo simulations have been conducted with the same cho-
sen disturbances but with different values of Q and R
as highlighted in Figure 9. These matrices are chosen as
follows,

Q2 = diag(10, 10, 10, 0, 0, 0), R2 = diag(0.1, 0.1, 0.1)

Q3 = diag(10, 10, 1, 0, 0, 0), R3 = diag(1, 0.1, 0.1)

Q4 = diag(10, 10, 1, 0, 0, 0), R4 = diag(0.05, 0.05, 0.05)

As shown in Figure 9, simulations with matrices Q4 and R4
introduces the lowest RMSE, which implies increased states
weights compared to the weights of the control inputs. On the
other hand, Q2,Q3 and R2,R3 have the worst performance
compared to others. As noted, these results could suggest the
direction of choosing the optimal weightingmatrices that give
the best performance.

V. CONCLUSION
In this article, a Nonlinear Model Predictive Control (NMPC)
scheme is presented, which is capable of automatically driv-
ing the tip of the vine growing robot to a spatial target
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position in the environment. The proposed NMPC-based
growth control has succeeded to control the vine robot in
a closed-loop while respecting the irreversible growing and
actuation constraints. The nonlinear kinematics model of the
vine robot is incorporated as the controlled plant where a
discrete version has been used as the controller prediction
model. The proposed NMPC growth control is simulated
over different scenarios ranging from the point stabilization,
trajectory following, and obstacle avoidance with satisfactory
performance results. Besides, a robustness analysis has been
conducted based on Monte-Carlo simulations to evaluate the
vine robot growth under various disturbance conditions as
well as to guide the direction of choosing the weighting
matrices in the control problem in such a way to maximize
the tracking performance. In future work, building a Moving
Horizon Estimation (MHE) [18] is promising to relax the
assumption of full state observability that has been assumed
in this research. Also, our work would be possibly extended
to a case wherein the dynamics model of vine growing robots
is used instead of the kinematics model either a prediction
model or as the model of the process under control.
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