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Abstract.  A new method to increase the signal-to-noise ratio S/N of electron backscatter patterns 
(EBSPs) based upon principal component analysis (PCA) is presented.  The PCA denoising 
method is applied to ten scans of EBSPs from the same region of interest of a recrystallised 
nickel sample acquired with a decreasing S/N, achieved by reducing the exposure time while 
increasing the camera gain accordingly.  That PCA denoising increases S/N in EBSPs is 
demonstrated by comparing indexing success rates after both Hough and dictionary indexing 
(HI and DI) of the Ni patterns having undergone one of four processing routes: i) standard static 
and dynamic background corrections (standard corrections), ii) standard corrections and pattern 
averaging with the four closest neighbours, iii) standard corrections and PCA denoising, and 
iv) standard corrections and pattern averaging followed by PCA denoising.  Both pattern 
averaging and PCA denoising increases the indexing success rates for both indexing approaches 
for the studied Ni scans, with the former processing route providing the better success rates.  The 
best success rates are obtained after pattern averaging followed by PCA denoising.  The potential 
of PCA denoising to reveal additional pattern details compared to standard corrections and 
pattern averaging is demonstrated in a pattern from an orthoclase (KAlSi3O8) grain in a 
geological sample.  Software code, and the Ni data sets, are released alongside this article as part 
of KIKUCHIPY, an open-source software package dedicated to processing and analysis of EBSPs. 

1.  Introduction 
Electron backscatter diffraction (EBSD) in the scanning electron microscope (SEM) is a technique to 
characterise crystallographic features [1].  Data collection and indexing is reliable and automated 
through commercial systems.  However, in recent years, open-source software packages have emerged 
as alternatives that are free to use, reveal all parts of their algorithms, and can facilitate swifter 
implementation of new concepts.  An illustrative example is contributions to the indexing of electron 
backscatter patterns (EBSPs), such as dictionary indexing (DI) [2] available in the EMSOFT package, 
and the ASTROEBSD package [3].  While the latter package and commercial systems in general rely on 
extraction of Kikuchi bands in patterns using Hough-transform based indexing (HI), the DI approach 
compares dynamically simulated patterns to the full experimental patterns.  DI can therefore index  
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patterns in which extraction of bands is difficult due to a lower signal-to-noise ratio S/N [4, 5], which 
can result from highly deformed or fine-grained materials, or high EBSD camera gain and short exposure 
times. 

An area explored to a lesser extent in open-source software for EBSD analysis is to increase S/N 
before indexing, with pattern averaging within a kernel [5, 6] a recent example.  Another possibility is 
to use multivariate statistical analysis (MSA), which aims to help extract the most useful information 
within the data.  Previous applications of MSA to EBSPs have focussed on reducing the number of 
patterns to a set of significant component patterns [7-9], so-called dimensionality reduction, and then 
index only these patterns.  However, one can also reconstruct the full set of EBSPs from the component 
patterns considered to contain useful signal while discarding the component patterns considered to 
contain mostly noise, effectively increasing S/N. 

Here, we present the use of dimensionality reduction to increase S/N in EBSPs using principal 
component analysis (PCA) [10], so-called PCA denoising.  PCA and other MSA methods are available 
via the open-source, multi-dimensional data analysis package HYPERSPY [11], which itself depends 
upon SCIKIT-LEARN [12].  The PCA denoising approach is outlined. Indexing results from HI and DI of 
patterns from ten EBSD scans from the same region of interest (ROI) of a recrystallised nickel (Ni) 
sample, acquired with a decreasing S/N, are compared.  The patterns have undergone one of four 
processing routes: i) standard static and dynamic background corrections (standard corrections), 
ii) standard corrections and pattern averaging with the four closest neighbour patterns, as presented by 
Wright et al. [5], iii) standard corrections and PCA denoising, and iv) standard corrections and pattern 
averaging followed by PCA denoising.  Also, details revealed in a pattern from a grain of orthoclase 
(KAlSi3O8) in a geological EBSD data set after either PCA denoising or pattern averaging are compared 
to details in a dynamically simulated pattern best matching the experimental pattern.  The software code, 
and the Ni data sets, are released alongside this article as part of KIKUCHIPY [13], an open-source 
software package dedicated to processing and analysis of EBSPs. 
 
2.  Denoising of EBSPs with principal component analysis 
Briefly, a map of EBSPs as shown in Fig. 1a is a set of n observations (here n = nx  ny patterns) of a 
number of s variables (here s = sx  sy detector pixel intensities).  The goal of PCA is to decompose data 
in this format to a set of values of linearly uncorrelated, orthogonal variables called principal 
components (PCs), while retaining as much as possible of the variation in the data [10].  Before finding 
the PCs, the patterns are arranged into a matrix X of dimensions (n  s), as shown in Fig. 1b.  Each 
pattern ni in X is centred about their mean.  A singular value decomposition (SVD) X = UΣVT is 
performed where U and V are orthogonal matrices and Σ is a diagonal matrix, shown in Fig. 1c, with 
respective dimensions (n  p), (p  p), and (s  p), with p as the rank of X.  The PCs in VT is in our case 
a set of component factors p sorted in order of decreasing variance, describing the underlying intensity 
distributions on the detector.  The product UΣ, the component loadings p, is then the variation of their 
strength from one observation point to the next. 

Ideally, the first component corresponds to the crystallographic feature most prominent in the data, 
for example the largest grain, the next corresponds to the second largest feature, and so on, until the later 
components at some point contain only noise.  If this is the case we can increase S/N in the patterns by 
reconstructing our data matrix Xnew = UΣVT, keeping only the k ≤ p components considered to contain 
useful signal, as shown in Fig. 1d. 
 
3.  Methods 
 
3.1. Materials 
A recrystallised, polycrystalline sample of pure Ni was selected to demonstrate improved indexing 
results of patterns with a lower S/N.  As the final preparation steps the sample was electropolished with 
an A2 electrolyte followed by plasma cleaning.  To highlight the additional pattern details revealed by  
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Figure 1.  Processing steps to denoise (a, b) a data set of EBSPs X by first computing the (c) principal 
components p and then performing dimensionality reduction by reconstructing the data set Xnew keeping 
only k  p components containing useful signal. 
 
 
PCA denoising, a geological sample containing an orthoclase grain was studied.  As the final preparation 
step this sample was polished with a suspension of 40 nm amorphous silica particles for 15 minutes and 
then rinsed in ethanol. 
 
3.2. EBSD experiments 
All EBSD data sets were obtained with a NORDIF UF-1100 camera on a Hitachi SU-6600 FEG SEM 
operated at 20 kV.  The ten Ni data sets were collected consecutively from the same ROI with increasing 
camera gain and hence shorter exposure times listed in Table 1.  29,800 patterns with (60  60) pixels 
of 8 bit depth were collected for each scan in a (300  223.5) μm2 square grid with a 1.5 µm step size.  
The geological data set comprise 94,248 patterns with (240  240) pixels of 8 bit depth collected in a 
(308  306) μm2 square grid with a 5.0 µm step size and an 18.13 ms exposure time.  Note that only 
patterns from a single grain in this data set are studied in this work. 
 
 
Table 1.  Scan number, camera gain, exposure time t and indices k of the principal components used in 
dimensionality reduction for the Ni data sets. 
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3.3. Pattern processing 
All pattern processing was performed with KIKUCHIPY unless otherwise stated.  The slowly varying 
diffuse background was removed from all patterns following standard background corrections.  The 
correction procedure involves an initial subtraction of the raw pattern by a static background obtained 
by averaging multiple patterns collected over an area slightly larger than the ROI, followed by the 
subtraction by a dynamic (per pattern) background obtained by Gaussian blurring each pattern obtained 
after the first step. 

Pattern averaging with the four closest neighbours was performed as indicated in Fig. 1 in Ref. [5].  
Specifically, a (3  3) kernel, with all coefficients set to 1 except for 0 in the corners, was spatially 
correlated with the (nx  ny) patterns, followed by normalisation of each pattern's intensity by dividing 
by the sum of kernel coefficients, which in this case was 5.  Note that the implementation of neighbour 
pattern averaging in KIKUCHIPY allows for arbitrary 1D and 2D kernel sizes and coefficients, e.g., a 
Gaussian kernel. 

The p first component patterns and loadings of each EBSD data set were found by performing PCA 
as explained above in section 2.  After visual inspection, a number k ≤ p components, different for each 
data set, were chosen for dimensionality reduction.  The components chosen for the Ni EBSD data are 
listed in Table 1, while up to 500 components were chosen for the geological EBSD data. 
 
3.4. Indexing and indexing success rate 
EDAX TSL 7.2 data collection was used for HI on the Ni patterns stretched to (80  80) pixels with a 
(9  9) convolution mask, a 2° θ step size, and searching for a maximum of 9 peaks, as was done in 
Ref. [5].  EMSOFT 4.2 was used for DI, with creation of dynamically simulated master patterns for both 
Ni [14] and orthoclase (KAlSi3O8) [15] with a 20 keV incident electron beam, a sample tilt of 70°, Monte 
Carlo energy bins from 10 - 20 kV with a 1 kV step, and to a maximum penetration depth of 100 nm 
with a 1 nm step.  Simulated patterns were sampled from a uniform grid in orientation space with an 
average angular step of 1.4°, and the best matching orientation was further refined using a bound 
optimisation by quadratic approximation approach [16].  Pattern centres for both sets of EBSD data are 
given in Table 2.  Note that the camera was binned from (480  480) px to (60  60) px and 
(240  240) px for the Ni and geological data sets, respectively.  Before DI, both experimental and 
simulated patterns were processed in EMSOFT using a high-pass FFT filter with a maximum width of 
0.125 and adaptive histogram equalisation with 4 and 5 regions for the Ni data and orthoclase pattern, 
respectively. 
 
 
Table 2.  Pattern centres in TSL (x*, y*, z*) and EMSOFT 4.2 (xpc, ypc, L) conventions for the Ni and 
geological data sets. 
 
 
 
 
 
 

To assess the improvements to indexing results after PCA denoising and pattern averaging for the 
Ni data sets, each orientation in the scans was compared to orientations in the identical and adjacent 
points in a (3  3) kernel in scan 1, taken as the reference.  The reference scans for the DI and HI data 
were the DI and HI results at zero camera gain and standard background corrections, respectively.  If the 
orientation had a misorientation smaller than 5° to any of these points, it was considered to be 
successfully indexed.  This calculation of the indexing success rate using a reference kernel (ISRRK) [5], 
and the visualisation of orientation maps, were done with the open-source MATLAB texture toolbox 
MTEX [17] (note that a MATLAB license is required to run MTEX). 
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4. Results and discussion 
EBSPs, acquired from the same ROI in Ni scan number 1, 6 and 9 after only standard background 
corrections (here called standard patterns) and after PCA denoising (here called denoised patterns) using 
the components indicated in Table 1, are shown in Fig. 2a.  Also shown in the figure is a part of the 
orientation maps from scan 1 (left column), 6 (middle column) and 9 (right column) after Hough 
indexing of (b) standard patterns, (c) denoised patterns, (d) averaged patterns, and (e) averaged and 
denoised patterns, and (f) dictionary indexing of standard patterns, with their indexing success rates, 
ISRRK, in the upper right corner.  The signal-to-noise ratio in the original patterns decreases with 
increasing camera gain, however pattern averaging and PCA denoising retains some of the useful signal, 
as can be seen especially when comparing row (b) and (e) for scan 6 and 9.  Among the scans and 
processing routes presented in Fig. 2, dictionary indexing of standard patterns provides the best results, 
except for HI of patterns in scan 9 after averaging and denoising, with respective ISRRK of 69 % and 
86.1 %. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  (a) Standard and denoised EBSPs from the same, indicated position in Ni scan number 1 (left), 
6 (middle) and 9 (right) with orientation maps after HI of (b) standard patterns, (c) denoised patterns, 
(d) averaged patterns, and (e) averaged and denoised patterns, and (f) DI of standard patterns.  The 
colour designates the crystal direction parallel to the right according to the colour key indicated.  The 
ISRRK is shown in the top right corner of each map. 
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The indexing success rates of all Ni scans after Hough and dictionary indexing of standard, averaged, 
denoised, and averaged and denoised patterns are shown in Fig. 3 as a function of camera gain.  The DI 
ISRRK of averaged and denoised patterns are not shown because a negligible increase in the success rates 
was observed compared to DI of averaged patterns.  The HI and DI ISRRK of standard patterns decreases 
from 100 % for scan 1 with zero camera gain, to 1 % and 46 % respectively for scan 10 with maximum 
gain.  There are minor differences in the ISRRK between the two indexing approaches until scan 5 where 
it drops to 65 % for HI, however, PCA denoising raises it to 94 %.  PCA denoising also improves the 
DI ISRRK, with the largest improvement, from 46 % to 61 %, for scan 10.  Pattern averaging provides 
the better ISRRK compared to PCA denoising, however, combining the two drastically improves the 
results obtained from HI.  For scan 10, the HI ISRRK jumps from a success rate of 17.5 % for averaged 
patterns to a success rate of 61.3 % for averaged patterns followed by PCA denoising.  These results 
also show that HI might be sufficient in cases where patterns have a sufficient S/N.  Furthermore, DI is 
highly robust towards noise, and should therefore be used when indexing patterns with a low S/N 
resulting in insufficient extraction of Kikuchi bands, in line with previous studies [4, 5].  This is best 
highlighted for scan 10, where almost all averaged patterns were successfully indexed with DI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Comparison of the Hough and dictionary indexing success rates ISRRK of standard, averaged, 
denoised, and averaged and denoised patterns, as a function of camera gain. 
 
 

It is crucial to know how many principal components k to use for dimensionality reduction without 
loss of useful signal, as was discussed by Wilkinson et al. [8] and McAuliffe et al. [9].  The so-called 
scree plot of the explained variance as a function of the components sorted in order of decreasing 
variance is often used in multivariate statistical analysis to select this number [10].  Ideally, a significant 
change in the explained variance from a certain component to another can be identified, and thus the 
number of components to use.  However, the explained variance decreases smoothly for the PCA results 
from the scans studied in this work, as was also observed by Wilkinson et al. [8].  To further complicate 
the selection, it is observed in this work that for the scans acquired with higher camera gain, notably 
scan 5 - 10, the first few components with the highest explained variance contained only noise and no 
discernible useful signal.  These are the first few discarded components in Table 1.  This demonstrates 
the need to inspect each principal component when selecting which components to use for 
dimensionality reduction for denoising of EBSPs. 
  



EMAS 2019

IOP Conf. Series: Materials Science and Engineering 891 (2020) 012002

IOP Publishing

doi:10.1088/1757-899X/891/1/012002

7

To assess the number of components to use for dimensionality reduction for scan 9, the HI and DI 
ISRRK after denoising with different number of components were calculated as shown in Fig. 4.  20 data 
sets were reconstructed with components in the range from 44 to 944 (from 50 to 1,000 minus the six 
discarded components listed in Table 1) in steps of 50.  Interestingly, the trend in the ISRRK is different 
for HI and DI.  The HI ISRRK is highest at 47 % when using only 44 components and decreases slowly 
with more components.  The DI ISRRK is lowest at 63 % when using 44 components and increases to 
81 % with 244 components where it evens out.  No significant decrease is observed with more 
components.  An explanation for this trend in the DI ISRRK is that the earlier components contain mostly 
signal from larger, similar crystallographic features, like grains, with the mid-range components up to 
about 244 containing a mix of signal from smaller grains and noise, until the later components contain 
only noise.  An explanation for the decrease in the HI ISRRK is that even though more components with 
signal from smaller grains are added to patterns from these grains, no indexing solution is found for 
these patterns.  Instead, noise is added to patterns from larger grains, reducing the indexing success for 
these patterns.  It is clear from Fig. 4 that most of the useful signal in scan 9 is found in the first 
250 components, and thus the principal components up to k = 250, minus the first containing only noise, 
should be used for PCA denoising of this scan.  Parts of the results from EMSOFT's DI is an indexing 
success rate, which is different from the ISRRK, involving a computation of the smallest misorientation 
between the top matching orientation and the next nearest matches selected by the user.  If the smallest 
misorientation is smaller than a threshold value the indexing is considered to be a success.  This indexing 
success rate may be used to perform a search for the number of components to use for dimensionality 
reduction in cases where a reference scan is not available. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  HI and DI ISRRK as a function of number of principal components k used for dimensionality 
reduction in PCA denoising of scan 9. 
 
 

The ability of PCA denoising to reveal fine details in EBSPs is studied in patterns from an orthoclase 
grain in a geological EBSD data set.  A pattern from the grain after standard background corrections is 
shown in Fig. 5a.  The average of 365 patterns containing Kikuchi bands from the grain is shown in (b), 
while the pattern from the same position as the one in (a) after PCA denoising is shown in (c).  The best 
matching simulated pattern in (d) corresponds to the Euler angle triplet (261.1°, 36.0°, 272.3°).  All 
patterns (a-d) underwent high-pass FFT filtering and adaptive histogram equalisation in EMSOFT as final 
processing steps.  The dot product between the experimental and simulated patterns are shown in (a-c),  
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Figure 5.  Comparison of an experimental pattern from an orthoclase grain after (a) standard background 
corrections, (b) averaging with all patterns within the grain, and (c) PCA denoising to (d) the simulated 
pattern with the highest dot product.  The dot products are indicated, with the highest, 0.850, for the 
pattern in (c).  Cut outs indicated in (b), (c), and (d) are magnified in (e), (f), and (g), respectively, and 
highlight features revealed by PCA denoising. 
 
 
with the highest for the PCA denoised pattern.  This and the fine details in the contrast from overlapping 
Kikuchi bands highlighted in the cut outs (e-g) demonstrate that PCA denoising in this example better 
harnesses the oversampling of the orthoclase grain than pattern averaging.  Hansen et al. [18] found that 
Poisson-type noise, introduced into simulated patterns artificially and into experimental patterns by 
reducing the camera exposure time, can greatly inhibit the accuracy of geometrically necessary 
dislocation densities calculated from cross-correlation EBSD.  Increasing S/N in patterns via PCA 
denoising might improve results from this type of analysis. 

It should be noted that dictionary indexing is computationally intensive, mainly because each 
experimental pattern is compared to all patterns in the dictionary.  For new users, the steps needed to 
create the dictionary of dynamically simulated EBSD patterns [19] might be challenging compared to 
performing Hough indexing via commercial software.  However, it is our belief that these drawbacks 
are more than compensated for when considering the indexing results obtained after dictionary indexing 
of patterns of low S/N demonstrated in this work. 

The patterns denoised in this work were obtained from recrystallised Ni and a large orthoclase grain.  
For the former, noise was introduced by reducing the exposure time and increasing the camera gain.  
A study of how PCA denoising can improve the quality of noisy patterns caused by high deformation 
and/or a fine-grained microstructure, related to the size of the interaction volume, is a natural 
continuation of this work.  To improve upon the method of PCA denoising itself, a more robust selection 
of which principal components to keep for dimensionality reduction should be explored. 
 
5.  Conclusions 
A method to increase the signal-to-noise ratio S/N in EBSPs based upon principal component analysis 
followed by dimensionality reduction, so-called PCA denoising, was presented.  Applying PCA 
denoising to EBSD scans of Ni with a decreasing S/N demonstrated its ability to improve the indexing 
success rates after both Hough and dictionary indexing, effectively increasing the patterns' S/N.  By first 
averaging each pattern with its four closest neighbours and subsequently applying PCA denoising, the 
S/N was increased further, and for these patterns the indexing success rates for Hough indexing was 
actually better than for dictionary indexing of patterns having undergone only standard background  
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corrections.  That PCA denoising is able to reveal fine details in EBSPs not visible after standard 
background corrections or pattern averaging was also shown by visual comparison of a pattern after 
these three processing routes and a simulated pattern.  The choice of principal components to keep for 
dimensionality reduction was discussed, highlighting the need for a careful selection based upon the S/N 
in EBSPs and the number of expected crystallographic features in a scan.  Pattern processing before 
indexing was conducted with a new open-source software package for processing and analysis of 
EBSPs, named KIKUCHIPY.  In releasing this software package and the Ni data sets, we hope to make a 
useful contribution to the growing suite of open-source software for processing and analysis of EBSPs. 
 
6.  Data statement 
The Ni data sets can be downloaded from Zenodo (https://doi.org/10.5281/zenodo.3265037).  An up-to-
date copy of KIKUCHIPY is available from the GitHub repository 
(https://github.com/kikuchipy/kikuchipy). 
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