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Abstract—The use of slotless machines has acquired grow-
ing interest when features such as low vibrations and noise,
along with low losses at high speed, are required. However, a
careful assessment of the iron losses in the stator core will be
relevant already in the design or pre-design phase. Standard
methodologies for the iron losses estimation are typically FE
analysis with constant coefficients (dummy model), which can
lead to weak extrapolations with huge errors. In this paper,
an analytical method for iron losses prediction is derived. It is
based on the extension of the field solution in the stator iron
core, where an accurate 2-D field solution of the slotless machine
topology is found. The analytical solution is combined with a
variable coefficient loss model, which can be efficiently computed
by vectorized post-processing. The case study proves that the
approach can predict all of the loss phenomena over a wide
operating range with improved precision.

Index Terms—Slotless machine, analytical method, Laplace’s
equation, magnetic field, stator core, iron losses, rotational losses.

I. INTRODUCTION

Slotless machines eliminate the slotting effect and related
additional losses, as well as the cogging torque. It is an attrac-
tive topology for machines operating in ultra-high speeds. As
of today, different works have been dealing with analytical
modeling of slotless machines [1]–[5]. The analytical field
solution has been utilized to proposed an iron loss estimate
method based on constant coefficients [6]. Moreover, an ex-
tended method has been formulated with a two-component
iron loss calculation in a soft magnetic composite stator core
[3]. The finite iron permeability was also considered, as for
SMC material assuming infinite iron permeability would lead
to a non-negligible discrepancy with respect to a real case.

In a general instance, the iron losses evaluation can be
divided into two main steps. The first step is the estimation
of the flux density in the iron parts carrying a time-varying
magnetic field. To this end, the generalized field solution
considering different magnet patterns will be used for a general
evaluation of the flux density in the stator core. The second
step is to fit the post-processing of the estimated magnetic
field to a suitable model defining the losses in the iron
material. The latter point has been object of several other
works. Time-based and frequency-based iron loss models are
used interchangeably, albeit giving different results [7], [8]
(with a variation within the accuracy of the outcome). Several
iron loss models, based on variable loss coefficients ( [9]–
[11]), showed the effective achievement of a better fitting to

experimental data. A further improvement in the iron loss
estimate in rotating electrical machines, may be given by the
inclusion of the rotational effect; in reference [7] the rotational
effect is applied to a case study. The proposed methodology
implements some of the above mentioned contributions for the
sake of testing its flexibility and adaptability to the most used
iron loss models.

The remainder of the paper is organized as follows. Section
II describes the problem formulation. Then, Section III derives
the analytical formulation of the magnetic field in the stator
core. The loss estimation results are presented in Section IV.
Finally, Section V concludes the paper.

II. ANALYTICAL MODEL DEFINITION AND ASSUMPTIONS

The slotless SPM has a simple 2-D geometry, composed of
coaxial annular sections with smooth boundaries ( Fig. 1). As a
result, a very accurate and computationally efficient analytical
field solution can be formulated ( [4], [12], [13])
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Fig. 1. Domains on a sample inrunner geometry with only one phase.

The field problem definition is based on the following
fundamental assumptions (to be applied to Fig. 1):
• The 3-D end-effects are neglected, i.e., the magnetic

vector potential is treated as a scalar quantity lying
orthogonal to the 2-D plane in all domains;

• The magnetic permeability of rotor and stator core (re-
gions I and V, respectively) is assumed to be infinite;

• The formulation of the field from the stator current
assumes the relative permeability permanent magnets to
be equal to unity;



• For any magnets pattern, in region II the magnetization
distribution is defined for modeling the field from the
magnets array;

• The stator winding is assumed to carry a three-phase
balanced and symmetric sinusoidal current;

III. FIELD EVALUATION IN THE STATOR CORE

In this section, the field solution in the stator iron core
is described from its different contributions, i.e., the stator
currents and the permanent magnets, respectively. Different
magnet patterns can be considered. The field solution in the
winding region from the two different sources is first described
and then extended in the stator core region by means of
suitable interface conditions.

A. 3.1 Stator Currents Contribution

In a cylindrical coordinate system (r,ϑ,z) the formulation of
the problem in the stator core region obeys to the following
Laplace’s equation:

∇2A =
1

r

∂

∂

[
r
∂Az
∂r

]
+

1

r2
∂2Az
∂θ2

= 0 (1)

where A is the magnetic vector potential, and Az its only
scalar component. Using the method of separation of variables
along with the Fourier series expansion to account for all the
harmonics introduced by the source of the field, the solution
to (1) can be expressed as:

Az,J(r, θs, t) =
∞∑

kp=5p,11p,...

(
V +
kp
rkp + V −kpr

−kp
)
cos(kpθs + ωt)

+

∞∑
km=1p,7p,...

(
V +
km
rkm + V −kmr

−km
)
cos(kmθs − ωt)

(2)

the coefficients V +
n and V −n are to be determined by enforcing

boundary conditions with the field solution in the winding
region at the radius Rs. The flux density of the 2-D problem
can be expressed as a function of the scalar magnetic potential
as it follows:

Bstr,J(r, θs) =
1

r

∂Az,J(r, θs)

∂θs
(3)

Bstθ,J(r, θs) = −
∂Az,J(r, θs)

∂r
(4)

By means of the latter expressions it is possible to set the
following boundary conditions, and given that they must hold
for each and every harmonic component and any angular
coordinate ϑ, only two unknowns (V +

n and V −n ) are to be
found :

Bstr,J
∣∣
r=Rse

=
1

r

∂Az,J
∂ϑs

∣∣∣∣
r=Rse

= 0 (5)(
Bstr,J =

1

r

∂Az,J
∂ϑs

= Bwr,J

)∣∣∣∣∣
r=Rs

(6)

Boundary condition (5) is nothing more than the magnetic
insulation applied to the outer boundary and justified by the

infinite iron permeability assumption; whereas (6) gives the
continuity of the radial flux density component on the interface
between stator winding and iron core. The flux density in the
winding region due to the stator currents Bwr,J is found and
expressed as explained in [4] and reported in the following
with the same notation:

Bwr,J(r, θs, t) = −
∞∑

kp=5p,11p,...

kp
r
wk(r, kp) cos(kpθs + ωt)

−
∞∑

km=1p,7p,...

km
r
wh(r, km) cos(kmθs − ωt)

(7)

The two constants V +
n and V −n are determined by substituting

(2) in the boundary conditions (5) and (6). The solution of the
linear system leads to the following expressions:

V −n =
RnsR

2n
so · w(Rs, n)
R2n
s −R2n

so

(8)

V +
n =

Rns · w(Rs, n)
R2n
so −R2n

s

(9)

Therefore, according to (3) and (4) the radial and circumfer-
ential component of the flux density in the stator core can be
expressed as it follows:

Bstr,J(θs, r, t) =

−
∞∑

kp=5p,11p,...

kp
(
V +
n r

kp−1 + V −n r
−kp−1

)
sin(kpθs + ωt)

−
∞∑

km=1p,7p,...

km
(
V +
n r

km−1 + V −n r
−km−1

)
sin(kmθs − ωt)

(10)

Bstθ,J(θs, r, t) =

−
∞∑

kp=5p,11p,...

kp
(
V +
n r

kp−1 − V −n r−kp−1
)
cos(kpθs + ωt)

−
∞∑

km=1p,7p,...

km
(
V +
n r

km−1 − V −n r−km−1
)
cos(kmθs − ωt)

(11)

B. Permannet Magnets Field Contribution

The magnet can be modeled by means of an equivalent
current density [4], which is very effective for torque compu-
tation. However, a magnetization distribution in the region of
the magnets is intuitive and a widely adopted course in the
literature [14]–[17]. The magnetization distribution adopted in
this paper can be expressed as a Fourier series along the radial
and circumferential direction as follows:

Mr =

∞∑
n=1p,3p,...

Mrn cos (nϑr) (12)

Mϑ =

∞∑
n=1p,3p,...

Mϑn sin (nϑr) (13)



where Mrn and Mϑn are the resulting Fourier series coeffi-
cients given by the sum of the contributions of all the magnets
belonging to the array to be studied. The implicit expression
of the aforementioned contributions is reported in Appendix
of [14]. Moreover, the angular coordinate ϑr is here referred
to the rotating coordinates system, differently from the stator
current field solution where ϑs is integral with the global
coordinates system. Once the source of the field problem is
modeled, the procedure described in [15] can be followed to
obtain the field solution due to permanent magnets in the
airgap and winding regions. The radial component can be
expressed as:

Bwr,m(r, ϑ) =

∞∑
n=1p,3p,...

KB(n)fBr(r, n) cos (nϑr) (14)

where the functions KB(n) and fBr(r, n) are written in the
following for the inrunner case:

KB(n) =

(Amzn − nAmzn + µ0Mϑn)

−2
(
Rr

Rm

)n+1

(Amzn + µ0Mϑn)

+
(
Rr

Rm

)2n
(Amzn + nAmzn + µ0Mϑn)

(µr + 1)

[(
Rr

Rs

)2n
− 1

]
+ (µr − 1)

[(
Rm

Rs

)2n
−
(
Rr

Rm

)2n]
(15)

with Amzn defined as:

Amzn =
µ0(Mϑn + nMrn)

(n2 − 1)
(16)

fBr(r, n) =

(
r

Rs

)n−1(
Rm
Rs

)n+1

+

(
Rm
r

)n+1

(17)

fBϑ(r, n) = −
(
r

Rs

)n−1(
Rm
Rs

)n+1

+

(
Rm
r

)n+1

(18)

in particular, KB(n) holds for any magnets pattern, as long
as Mrn and Mϑn in the expression are considering the con-
tribution of all the magnets belonging to the array. It must be
noticed that the case n = 1, i.e., the fundamental component
of a two poles machine, must be treated separately. However,
as the aim of the work is not to present an analytical model
which could be applied for any type of machine topology.
The aforementioned case, along with the outrunner case,
is not considered and hence, not treated in the following.
It is worthwhile pointing out that the generalized model,
considering the latter two cases, has been developed by the
authors and is fully applicable to the methodology described
in the following section. The magnetic potential in the stator
core is still governed by the Laplace’s equation (1), and the
solution keeps the same structure as the one shown in (2) but
now only considering the harmonic components introduced by
the magnets’ field:

Az,m(r, θ) =

∞∑
n=1p,3p,...

(
G+
n r

n +G−n r
−n) sin(nθr) (19)

The same boundary conditions as (5) and (6) can now be
applied to the magnets field solution as it follows:

Bstr,m
∣∣
r=Rse

=
1

r

∂Az,m
∂ϑs

∣∣∣∣
r=Rse

= 0 (20)

(
Bstr,m =

1

r

∂Az,m
∂ϑs

= Bwr,m

)∣∣∣∣∣
r=Rs

(21)

giving again a linear system of two equations in the two
variables G+

n and G−n , whose solution yields to the following
expressions:

G+
n =

2RnsRm

(
Rm
Rs

)n
KB(n)

n(R2n
s −R2n

so )

G−n = −
2R2n

soR
n
sRm

(
Rm
Rs

)n
KB(n)

n(R2n
s −R2n

so )

(22)

By plugging (19) into (3) and (4), the resulting radial and
circumferential components of the flux density in the stator
core due to only the permanent magnets can be written as it
follows:

Bstr,m(r, ϑ) =

∞∑
n=1p,3p,...

GS(n)fSr(r, n) cos (nϑr) (23)

Bstϑ,m(r, ϑ) = −
∞∑

n=1p,3p,...

GS(n)fSϑ(r, n) sin (nϑr) (24)

The structure of the latter two flux density expressions follows
the one adopted in [15] which appears to be optimized for
numerical implementation. The functions GS(n), fSr(r, n)
and fSr(ϑ, n) are reported in the following:

GS(n) =
2KB(n)((
Rs
Rso

)2n

− 1

)

fSr(r, n) =

(
r

Rso

)n−1(
Rm
Rso

)n+1

−
(
Rm
r

)n+1

fSϑ(r, n) =

(
r

Rso

)n−1(
Rm
Rso

)n+1

+

(
Rm
r

)n+1

(25)

C. Validation of the Field Solution Against FE Analysis

The following part of the work takes a single case-study as
a reference for the proposed methodology. Nevertheless, the
procedure in itself holds for any machine, i.e., the analytical
solution can be extended to other slotless topologies. The case-
study is an inrunner six-pole machine mounting a 2-segment
Halbach array (according to the notation adopted in [14]).



TABLE I
SPM MACHINE DATA (COURTESY OF ALVA INDUSTRIES)

Parameter Machine specification
Rr 27.6mm
Rm 35.6mm
Rw 37mm
Rs 40mm
Rso 48mm
Br 1.35T
µmag 1
Rmp 0.5
p 3
In 20 [Arms]
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Fig. 2. Comparison between FEA and analytical solution of the flux density
components due to PM in the middle of the stator core. a) Radial flux density,
Bst

r,m. b) Circumferential flux density, Bst
ϑ,m.

The analytical field solution, as obtained in the previous
subsections, is here benchmarked against FE analysis of the
same case-study described in I.

As shown in Fig. 2, the magnets field contribution finds
a perfect correspondence between FEA and the analytical
solution as written in eqs. (23) and (24). The latter validation
considers a point placed in the middle of the stator core for
the analytical solution and an arc at the same radius for the
FE solution.

The same comparison is shown in Fig. 3 for the field
contribution due to the stator currents. It can be noticed at
a glance, that the field contribution due to the sinusoidal
stator currents may not have a relevant impact in the iron
losses; nevertheless, the latter observation will be proved, and
criticized in the following loss analysis.

IV. ANALYTICAL-BASED IRON LOSS ESTIMATION

In the following, different iron loss models, taken from the
literature, are briefly introduced and adopted with the proposed
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Fig. 3. Comparison between FEA and analytical solution of the flux density
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a) Radial flux density, Bst

r,J . b) Circumferential flux density, Bst
ϑ,J .

methodology to test its flexibility. The developed method will
be presented as a post-processing procedure from the field
solution as obtained in the previous section, to estimate iron
losses in the laminated stator core.

A. Power Loss Models for Lamination Steel

In the iron losses evaluation for electric steel laminations,
Bertotti’s equations represent the most adopted and widely
accepted model for estimating iron losses. In the frequency do-
main, the different specific loss contributions can be summed
up in the following equation:

p = KeB
2f2︸ ︷︷ ︸

Pe

+KaB
1.5f1.5︸ ︷︷ ︸
pa

+KhB
αf︸ ︷︷ ︸

ph

(26)

where the three terms represent the eddy currents contri-
bution, the hysteresis contribution, and the anomalous loss
contribution, respectively. The different coefficients (Ke, Kh,
Ka, and α) are to be determined by properly fitting the
available experimental data.

When dealing with FEA element-based iron loss analysis,
the following time-based analytical formulations becomes
handier with the typical transient analysis [12], [13], [18], [19]:

p =
Ke

2π2

1

T

∫ T

0

∣∣∣∣dBdt
∣∣∣∣2 dt︸ ︷︷ ︸

pe

+
Ka

8.76

1

T

∫ T

0

∣∣∣∣dBdt
∣∣∣∣1.5 dt︸ ︷︷ ︸

pa

+
Kh

T
Bα︸ ︷︷ ︸

ph

(27)
Different versions of the above-written equations have also
been used. In [9], it was pointed out that the separation
between eddy currents and anomalous loss contribution is
questionable. Nevertheless, it is perceived that the adoption



of a good fitting model based on only hysteresis and eddy
currents contributions would inevitably include anomalous loss
phenomena, if any exists.

The adoption of constant loss coefficients may give reason-
able results when the fitting to experimental data is optimized
around the most probable, or rated operating condition. Thus,
it can be a reasonable model when fixed speed operation and
low load variation are expected. The physical phenomena gov-
erning iron losses in electrical steel laminations still represents
a wide-open research topic for its inherent complexity. In
fact, it is hard to imagine that a set of constant coefficients,
adopted with any of the two above mentioned models, could
extensively and accurately describe such phenomena in a wide
frequency and flux density range.

In [8], [10], [11], different loss models based on vari-
able loss coefficients (Kh(f,B) and Ke(f,B)) are proposed,
showing an improved fitting to experimental data compared to
standard models based on constant coefficients. Referring to
the models proposed in [9] and [10], two variable-coefficients-
based iron loss models and a constant-coefficients-based model
are developed and applied to the proposed analytical method.
The results are finally compared.

B. Rotational Loss Contribution

Another important aspect which is usually overlooked is
the effect of having a rotational magnetic field when it
comes to estimating iron losses. Although in some works,
the assumption of having a purely alternating magnetic field
is still considered [20]. It appears much more reasonable to
accept the rotational nature of the flux density, whereby, in
the iron region, the flux density variation is determined by
the simultaneous pulsation of two orthogonal flux density
components ( [8], [19], [21]).

In Fig. 1 of [19], the variation of the two orthogonal flux
density components is shown, for a slotted machine, in a tooth
and in the back iron. The rotational behaviour of the field
does not appear in the teeth. The latter may be one of the
reasons why in some works the assumption of an alternating
magnetic field may lead to reasonable results, as the loss
contribution from the teeth may be the most relevant one (
[22]). In this regard, considering slotless machines leads to
the obvious conclusion that the rotational loss contribution
has to be considered, being the flux density in the stator core
rotational, by nature.

As for the rotational loss contribution, it appears to be
widely accepted the rough procedure of summing up the alter-
nating loss contribution from the two orthogonal components.
However, it has been shown experimentally, in several in-
stances [7], [23]–[25], that the latter methodology may lead to
misleading iron loss estimate. Nonetheless, it is worth pointing
out that characterizing the loss behaviour of a lamination
specimen requires sophisticated pieces of equipment [24], [25]
which are not generally available in any research lab.

An analytical extrapolation of the data presented in Fig. 3 of
reference [23] will be used in the following to test the impact
of the rotational effect.

C. Stator Core Discretization Method for Iron Loss Analysis

As shown in the previous section, the field solution is known
as a continuous function, in the whole 2-D domain, dependent
on the radial and the angular position. Based on eqs. (26) or
(27), the integration of the flux density function along the
iron core surface is required for evaluating iron losses. As, in
a general instance, the flux density is raised to a non-integer
exponent, the analytical integration along the radial direction
becomes not feasible; thus, a numerical integration based on
the rectangular rule is proposed as an effective solution for the
method. In the 2-D problem, the numerical integration consists
in dividing the radial thickness of the iron core into smaller
radial sub-segments whereon the flux density is assumed to
be constant, namely, in each sub-segment, the flux density is
only dependent on the rotor position. The latter operation is
easily vectorizable and thus, computationally efficient.

Therefore, by using the loss model described in (26) the
peak flux density (B) becomes a matrix holding all the
harmonic components in each radial sub-segment. Whereas,
in eq. (27) the flux density is still a matrix containing the
time-varying function (value in each time instant) on each
sub-segment; thus, the differentiation can still be numerically
approximated and vectorized. In particular, it comes fairly
easy to apply this method to the load condition operation.
In fact, the magnets field variation with the rotor angular
coordinate represents the time variation with respect to the
static coordinate (ϑs), while for the stator current field, ϑs
can be set equal to zero and the angle variation is given by
ω · t. Moreover, the linearity of the problem does allow to add
up the two different contributions in the iron core.

D. Tested Iron Loss Models and Results

The different iron loss models are briefly described in the
following without mentioning any quantity which may relate to
the raw loss data for the secrecy of the data themselves, hoping
that the provided information will be enough for applying the
different models to any lamination loss data.

The loss analysis is carried out considering a rotational
speed of 10000[rpm]; the full-load condition is considered
in the first case. Where not explicitly specified, the losses
are computed as the mere sum of iron losses due to radial
and tangential components. The last case will consider the
rotational effect for comparison.

1) Constant Coefficients Model (CCM): The model uses
equation (26) for fitting all the available lamination loss data
to find a general equation to be applied to any frequency and
flux density value. The comparison of the experimental loss
data against the proposed fitting model produced a relative
error which is shown in Fig. 4

Being the iron loss computation in time domain applied with
the same algorithm both in FEA and to the analytical field
solution, the results are expected to be the same (as shown in
Table II). This being an indication of the losses to be expected,
all the different frequency-based iron loss analyses are hereby
applied only to the analytical model, considering only the no-
load operating condition.
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TABLE II
FEA VALIDATION OF IRON LOSS WITH CONSTANT COEFFICIENTS MODEL

Time Domain Frequency Domain
Full load No load No load

FEA 208.9W 208.75W //
ANALYTICAL 208.8W 208.73W 212W

2) Two-Component Loss Model With Variable Coefficients
(CAL2 [10]): The power loss density function as reported in
[10] is expressed as:

p = ke(f,B)f2B2︸ ︷︷ ︸
pe

+ kh(f,B)fB2︸ ︷︷ ︸
ph

(28)

where the dependency on the frequency of the coefficients kh
and ke is neglected by splitting the experimental data into two
frequency ranges whereon the only dependency on the flux
density is considered. In particular, the first range considers
all the loss curves in the range (10−100)Hz and a fifth-order
polynomial is used to express the flux density dependency of
the two coefficients, while in the second range (100−2000)Hz
a third-order polynomial was shown to be enough for giving
a good fit to the data.

A first comparison between Fig. 4 and Fig. 5 shows that
this type of model can be extensively used in the whole
experimental data range, without any need of re-fitting the
experimental data themselves when a different operating point
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(f,B) is to be considered for the loss computation.
3) Iron Loss Model With all Variable Coefficients (VAR-

COext): This model assumes the three components loss equa-
tion having all the coefficients as variable with flux density
and frequency, and it can be seen as an extension of what is
called VARCO in [10]:

p = ke(f,B)f2B2︸ ︷︷ ︸
pe

+ ka(f,B)f1.5B1.5︸ ︷︷ ︸
pa

+ kh(f,B)fBα(f,B)︸ ︷︷ ︸
ph

(29)
The method for finding the different coefficients follows ex-
tensively the procedure described in [9]; however, as the aim is
to have an equation with explicit dependency on the frequency
and flux density, the proposed representation of α(f,B) and
kh(f,B), which was based on some look-up tables in [9], was
here approximated by means of interpolating functions giving
a reasonable fit in the two different frequency ranges, which
in this case were (10 − 400)Hz and (400 − 2000)Hz. The
relative error with respect to the experimental data produced
by this loss model is represented in Fig. 6.

4) Rotational Field Effect Appllied to VARCOext Loss
Model (VARCOrot): With the aim of including the rotational
effect in the iron loss computation model, VARCOext was
chosen as a best-fit model for the iron losses calculation. The
rotational loss factor function (γ), can be expressed as:

γ =
Prot

P (Bmaj) + P (aBmaj)
(30)

where a is the ratio between minor axis (Bmin) and major
axis (Bmaj) component in the iron core flux density locus.
From the analytical field solution, it is easy to extract major
and minor axis components; therefore, the axis ratio can
be found over each radial sub-segment for each harmonic
component. Meaning that, yet again, an analytical function
γ(a,Bmaj) can be easily applied to the iron loss estimation
method as a correction for the results obtained with the
previous models based on summing the contribution of the two
orthogonal components. The experimental results presented
in Fig. 3 of reference [23] were conveniently extrapolated.
However, it is worth mentioning that the experimental data in
the same reference were obtained at 50 Hz fixed frequency,
meaning that, being the fundamental frequency of the proposed



operating point equal to 500 Hz, the correction function itself
may lead to misleading results for this very case.

TABLE III
COMPARISON OF FREQUENCY-BASED IRON LOSS MODELS (NO-LOAD)

CCM CAL2 VARCOext VARCOrot
Total Iron Losses 212W 169.81W 163.42W 155.75W
Deviation +36.11% +9.03% +4.92% 0%

In Table III, the results obtained with the four different
models are compared. While the difference between CCM,
CAL2 and VARCOext can be deduced by the different figures
showing the relative error produced by each model (Fig.
4,5,6), the loss reduction with the rotational effect included
(VARCOrot) can be explained by looking at Fig. 3 in reference
[23]. In fact, in the proposed case study, the main losses are
due to a fundamental flux density which is greater than 1 [T],
with an axis ratio having a maximum value of about 0.5 in
the proximity of the stator winding. This means that the loss
factor γ acts as a reduction factor for the iron losses computed
as a mere sum of the two orthogonal contributions.

V. CONCLUSION

In this paper, the analytical field solution in the stator iron
core of slotless machines is derived from Maxwell’s equations.
The field results were bench-marked against FEA to verify
their accuracy. The proposed method for post-processing the
field results and calculate the iron losses, is described. The
flexibility of the method was tested by using different iron loss
models, suggesting that the problem can be easily vectorized,
thus, leading to a computationally efficient procedure which
could be used already in a pre-design phase and/or optimiza-
tion procedure. The different loss models showed that having
a good fit to experimental loss data of a given specimen maybe
even more important than having a very accurate field solution
for evaluating iron losses. In this regard, some best-fit iron loss
models were proposed to overcome the latter issue. Finally,
the model has been assessed to give good correspondence
with FEA analysis using non-linear iron material under the
saturation region (typical design for slotless SPMs).
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