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Abstract—This paper presents an exact analytical solution to
the two-phase and three-phase short-circuit events of the doubly-
fed induction machine (DFIM). The contribution is intended to
strengthen the predictability of DFIMs under the design stage
or for control tuning purposes and reduce the computational
costs of large-scale transient stability studies of the interconnected
power system. In general, the approach enables to simplify and
improve the analysis DFIMs. The original analytical equations
are derived from first principles. A case study of a doubly-
fed induction generator (DFIG) is considered, where the "large
machine approximation" is shown to be valid as well. The
analytical equations are used to predict the torque transients
in different handpicked transient scenarios and assessed against
numerical simulations. Finally, the proposed analytical model
shows excellent agreement with the numerical results in the
SIMSEN environment.

Index Terms—Analytical modeling, doubly-fed induction gen-
erator (DFIG), induction machines, transient stability.

I. INTRODUCTION

The doubly-fed induction machine (DFIM) is applied in a
wide variety of power generation facilities. In general, there
are issues related to the mechanical design, the control design,
as well as to the interplay with the power grid [1], where
transients can be induced. The machine current and torque
transients are critical machine-related issues, as their maxi-
mum values determine the mechanical design. The DFIM must
withstand these stresses without any damages, e.g., mechanical
vibrations in the winding overhang of large DFIMs. As the
rotor frequency can vary in a range of -10%-10% of slip
(for hydro-generator applications) and up to a range of -30%-
30% of slip (for wind turbine applications), it is very likely
that the DFIM will experience vibration even during normal
operation. For instance, rotor harmonics [2] or even supply
induced harmonics [3] can lead to vibrations. Easy-to-use and
simplified analytical equations are needed to give a go/no-go
decision for DFIMs. In fact, a detailed analysis that would
require huge computational effort (up to several days for the
most complex 3D-FE models), namely, FE electro-magnetical
and mechanical calculation. So the biggest contribution of this
paper is a significant computation time reduction during the
electrical design phase of a large size DFIM.

From the grid perspective, the phenomena occurring during
a fault-ride through (FRT) event are much more relevant [4]–
[8]. In these cases, the grid owner normally requires that the
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Fig. 1. Equivalent scheme of the DFIG

machine can stay connected to the grid after such a transient
phenomenon. The current and torque amplitudes of these
phenomena are lower than for a terminal short-circuit fault so,
i.e., they do not significantly impact the mechanical design of
the generator (local ones are more severe). The grid faults are
normally simulated using numerical simulation software like
SIMSEN1, as the grid topology is different for every project.

Recently, simplified models have been proposed for the
DFIM under steady-state and transient operations [9], [10].
[11] presented a harmonics analysis of the double output
induction generator. The applications of transient models
include improvement of the DFIM controllers [12], as well
as reducing the computational cost of large-scale transient
stability studies [13]. This paper takes the transient domain
a step further. A complete set of transient equations of an
induction machine is presented in [14], whereas the well-
known expression for an induction machine (doubly fed or
not) can be found in [15]. The original contribution of this
study lies in the transient equation for DFIM applicable for
the "large machine assumption" [15], which can be derived
using the work done in [14] adapted for a DFIM. The exact
analytical equation for predicting the two-phase short-circuit
is presented. In addition, the analytical equations provide a
piece of frequency information, which is used to ensure that no
mechanical eigenmodes can be triggered by a severe transient
in the complete operating range of a DFIG.

The remainder of the paper is organized as follows. Section
II presents the modelling hypothesis and its analytical model.
The transient analytical equations of the DFIG is derived in
Section III. Then in Section IV, the equations are validated
against a numerical simulation model. Finally, Section V
concludes the paper.

1http://simsen.epfl.ch



II. THEORY FRAMEWORK AND BASIC ASSUMPTIONS

This section is dedicated to describe the assumptions under-
neath the short-circuit fault modelling problem of this paper.

A. Modelling Hypothesis

The following assumptions are given, which are common
in transient analysis of big electrical machines [15], [16].
The resistances are constant and at a given temperature [15].
The saturation of the main inductance is neglected [15]–
[17]. Saturation may exist prior to the faulty condition. These
quantities are governed by the saturation of the stator and
rotor leakage reactance, which can be integrated by reducing
the leakage reactances by 10-20% depending on the initial
saturation level of the machine [16]. The machine can be
considered in steady-state conditions with constant torque
before the short-circuit with constant speed during the short-
circuit.

The voltage-sourced inverter (VSI) is modelled with a
constant voltage source so that its influence is neglected during
the short-circuit [15]. The VSI is assumed to continue to
provide the same rotor voltage as before the transient, which is
not strictly realistic, as the semi-conductors cannot handle this
huge amount of current flowing easily during the transients.

In reality, there is a resistive crowbar going into operation,
when the machine and/or the VSI protection decides to fire it
[17]. This firing is done to limit the current in the VSI. But it
will take from 5-10ms to fire the crowbar, implying that the
first and most important current and torque peak will happen
without the impact of the crowbar. In the case of the firing
of the crowbar, the rotor voltage drops down to zero and is
replaced by the resistive crowbar.

In order to model the described case, the rotor resistance
can be adapted to reflect the crowbar resistance and the firing
of the crowbar is modelled by a rotor voltage step towards
zero [17]. The action of the crowbar is out of the scope of
this work, but all equations have been derived in a way that
it will be very easy to perform that last step.

The equivalent diagram of the DFIG presented in [15] is
recalled in Fig. 1.

B. Basis for the Analytical model

Table I presents the numerical values of the parameters of
the considered machine. From the equivalent diagram of Fig.
1, it follows that

Iµ = Is + I ′r. (1)

Moreover, one can easily deduce the voltage equations, yield-
ing

Us = RsIs + j(Xσ,s +Xh)Is +XhI
′
r (2)

U ′r
s

=
R′r
s
I ′r + j(X ′σ,r +Xh)I ′r +XhIs, (3)

TABLE I
PARAMETER VALUES OF THE CONSIDERED CASE MACHINE OF THIS PAPER

Description Parameter Value
Apparent power Sn 265.50 MVA
Rated voltage (rms) Un 18.00 kV
Rated current (rms) In 8515.70 A
Nominal frequency (stator) fn 50.00 Hz
Mechanical speed nn 158.51 r/min
Number of poles p 18.00
Base impedance Zn 1.22 Ω

Stator resistance Rs 4.5056 mΩ
rs 3.6920 × 10−3 p.u.

Rotor resistance R′r 1.9364 mΩ
r′r 1.5867 × 10−3 p.u.

Stator leakage reactance Xσ,s 0.1525 Ω
xσ,s 1.9387 p.u.

Rotor leakage reactance X′σ,r 0.1957 Ω
x′σ,r 0.1604 p.u.

Magnetizing reactance Xh 1.5886 Ω
xh 0.1249 p.u.

which have been published in [15]. They become in transient
mode replacing the time derivative by their Laplace-form,
written in pu

us = rsis +

(
d

dt
+ jωs

)
ψs (4)

ur = rrir +

(
d

dt
+ j∆ω

)
ψr (5)

where the ′-sign is omitted not to create confusion for the
transient equation (x′s and x′r) of the inductances. The slip is
taken into account into the definition of ∆ω = sωs, as it is
defined by

∆ω = ωs − ωmech = ωs − ωs(1− s) = sωs. (6)

The fluxes (stator with subscript s and rotor with subscript r)
are given by

ψs = xsis + xhir (7)
ψr = xhis + xrir (8)

with xs = xσs + xhs and xr = xσr + xhr. The voltage
equations are written in per unit (p.u.), in the stator reference
frame aligned with the stator voltage phasor.

III. FUNDAMENTAL DFIM TRANSIENT EQUATIONS

This section formulates the transient equations and relations
for the different parts of the investigated large DFIM. Subsec-
tion III-A describes the importance of the initial conditions in
terms of transient modelling. Then, Subsection III-B derives
the stator and the rotor currents in terms of the stator and
the rotor voltages in the Laplace domain. Subsection III-C
introduces direct transient relations between the stator and
rotor voltages and the fluxes in the DFIM. The steps to obtain
the transient formulation of the rotor current is described in
Subsection III-D. Further, the "large machine approximation"
is introduced in Subsection III-E. Moreover, the validity of
the simplification is explored. The transient torque harmonics
prediction is then explored in Subsection III-F. Finally, an



additional original contribution of this work is described in
Subsection III-G on the modelling of the two-phase short-
circuit.

A. Initial conditions

The principle of the derivation of the transient equations has
been taken from [15] and is different from the ones presented
in [14]. This contribution has also derived the complete set of
equations as done in [14].

In predicting the DFIM the transients, some initial condi-
tions (written with the subscript ’o’) are needed. The stator
voltage us, the speed n and the mechanical power pmec are
known. From these three parameters, one can deduce the initial
values of the stator current (is0), rotor (ir0) current and rotor
voltage (ur0). For the stator and rotor fluxes (used to calculate
the torque) their initial conditions are given by

us = rs · is0 + jωsψso (9)

ψso =
us − rs · iso

jωs
(10)

and

uro = rr · iro + j∆ωψro (11)

ψro =
uro − rr · iro

j∆ω
. (12)

where eqs. (11) and (12) are written in the stator reference
frame as stated in Section II.

B. Transient Equations for the Stator Current

The fundamental eqs. 4 and 5 can be made more compact by
replacing their time-derivative d/dt by the Laplace-operator p.

us = rsis + (p+ jωs)ψs (13)
ur = rrir + (p+ j∆ω)ψr. (14)

Then, the equation for the rotor flux, eq. (8), can be inserted
into eq. (14) as follows

ur = [rr + (p+ j∆ω)xr]ir + (p+ j∆ω)xhis, (15)

ir =
ur − (p+ j∆ω)xhis
rr[1 + (p+ j∆ω)Tr]

, (16)

where Tr = xr/rr. Eq. (16) for ir can then be combined into
eq. (13), yielding

us =
p2 + p[ Ts+Tr

T ′
s+T

′
r

+ j(ωs + ∆ω)]

xr(1/Tr + (p+ j∆ω))
is

+

1
Ts·T ′

r
[1 + j∆ωTr + jωsTs(1 + j∆ωT ′r)]

xr(1/Tr + (p+ j∆ω))
is

+
xh
xr

(p+ jωs)

1/Tr + (p+ j∆ω)
ur, (17)

∼=
(p+ 1/T ′s + jωs)(p+ 1/T ′r + j∆ω)

xr(1/Tr + (p+ j∆ω))
is

+
xh
xr

(p+ jωs)

1/Tr + (p+ j∆ω)
ur, (18)

where Ts = xs/rs, T ′s = x′s/rs with x′s = xσ,s + xhxσ,r/xr
and T ′r = x′r/rs with x′r = xσ,r+xhxσ,s/xs. The numerator of
eq. (17) is a second order polynom and its simplification using
the "large machine approximation" is detailed in Section III-E.
Eq. (17) is the exact equation of the stator current transfert
function, while eq. (18) is the simplified one using the "large
machine approximation".

Eq. (17) can be expressed in terms of the stator current,
yielding

is =
xr
xsx′r

p+ 1/Tr + j∆ω

(p+ 1/T ′s + jωs)(p+ 1/T ′r + j∆ω)
us

+
xh
xr

p+ jωs

(p+ 1/T ′s + jωs)(p+ 1/T ′r + j∆ω)
ur. (19)

The transient equation of the stator current can be found by
applying an inverse Laplace-transform to the equation. In fact,
it is not straightforward to find approximate equation for is0,
is1 and is2 (cf. Section III-F for the definition of these currents)
as ∆ω has a large amplitude variation and that the equations
are not linear in terms of ∆ω [17]. The prediction of the
current calculation can be found using the exact solution to
obtain the zeros of the numerator of eq. (17) as well as the
coefficients is0, is1 and is2.

C. Transient Equation for the Stator Flux

Rewriting the flux equations in matrix-form leads to[
ψs

ψr

]
=

(
xs xh
xh xr

)[
is
ir

]
. (20)

Inverting the matrix will provide equations of the currents in
terms of the fluxes. After inverting them, one obtains[

is
ir

]
=

1

xsxr − x2h

(
xr −xh
−xh xs

)[
ψs

ψr

]
, (21)

or

is =
1

x′s
ψs −

xh
x′sxr

ψr

is = αψs + βψr, (22)

and for the rotor flux

ir = − xh
x′sxr

ψs +
1

x′r
ψr

ir = γψs + δψr, (23)

where

x′s =
xsxr − x2h

xr
, (24)

and

x′r =
xsxr − x2h

xs
. (25)

Note that β = γ, but it was more convenient to define
two separate variables, i.e., to keep the "matrix thinking" in



deriving the equations. Applying these expressions into the
rotor voltage equation, eq. (14), leads to

ur = rrir + (p+ j∆ω)ψr

= rrγψs + (rrδ + (p+ j∆ω))ψr. (26)

The solution in terms of ψr is

ψr =
ur − rrγψs

rrδ + (p+ j∆ω)
. (27)

This result can be incorporated into the stator voltage equation,
eq. (13), yielding

us = rsis + (p+ jωs)ψs

=
((rsα+ (p+ jωs))(rrδ + (p+ j∆ω))− rsrrβγ)ψs + rsβur

rrδ + (p+ j∆ω)
.

(28)

This equation, eq. (27), in terms of ψs becomes

ψs =
(rrδ + (p+ j∆ω))us − rsβur

(rsα+ (p+ jωs))(rrδ + (p+ j∆ω))− rsrrβγ

=
(rrδ + (p+ j∆ω))

(rsα+ (p+ jωs))(rrδ + (p+ j∆ω))− rsrrβγ
us

− rsβ

(rsα+ (p+ jωs))(rrδ + (p+ j∆ω))− rsrrβγ
ur.

(29)

D. Transient Equation for the Rotor Current

The stator voltage equation, eq. (13), is solved to obtain is,
which will be inserted into the rotor voltage equation, eq. (15),
which will be solved to obtain the desired transfer function.
Solving for the stator voltage equation leads to

is =
us − (p+ jωs)xhir
rs(1 + (p+ jωs)Ts)

. (30)

The result of eq. (30) can then be inserted into the rotor voltage
equation, yielding

ur =rr(1 + (p+ j∆ω)Tr)ir + (p+ j∆ω)xhis

=
rrrs(1 + (p+ j∆ω)Tr)(1 + (p+ jωs)Ts)

rs(1 + (p+ jωs)Ts)
ir

− (p+ j∆ω)(p+ jωs)x
2
h

rs(1 + (p+ jωs)Ts)
ir

+
(p+ j∆ω)xh

rs(1 + (p+ jωs)Ts)
us. (31)

Solving eq. (31) in terms of ir leads to the needed expression.

E. Simplification of the Poles of the Transfer Function - the
Large Machine Approximation

Recalling the numerator of eq. (17) leads to

p2 + p[
Ts + Tr
T ′s + T ′r

+ j(ωs + ∆ω)]

+
1

Ts · T ′r
[1 + j∆ωTr + jωsTs(1 + j∆ωT ′r)] = 0. (32)

In the field of large electrical machines, the following inequal-
ities can be considered as fulfilled (refer to [15])

Tr > Ts >> T ′r >> T ′s >> 1/ωs (33)

or

ωs >> 1/T ′s > 1/T ′r >> 1/Ts > 1/Tr. (34)

The inequalities are also called the "large machine approx-
imation". On purpose, ∆ω was deliberately not used in the
inequalities as it can change in the range −0.1ωs to 0.1ωs.
This will help us to simplify the equation of the poles and
demonstrate that the poles (p1 and p2) can be expressed by

p1 = −1/T ′s − jωs, (35)
p2 = −1/T ′r − j∆ω, (36)

at leading order. Eq. (32) is quadratic in p, so that the exact
equation can be found for its solutions which will expressed
using the following notation

p1/2 = −1

2
ζ ± 1

2

√
η − ν (37)

defining the following constants

ζ = [
Ts + Tr
Ts · T ′r

+ j(ωs + ∆ω)] (38)

η = (
Ts + Tr
Ts · T ′r

+ j(ωs + ∆ω))2 (39)

ν =
4

TsT ′r
(1 + j∆ωTr + jωsTs(1 + j∆ωT ′r))

2. (40)

Let’s first expand the term η and simplify it applying the
inequalities

η =
Ts + Tr
Ts · T ′r

2

− (∆ω + ωs)
2 + 2j(∆ω + ωs)

Ts + Tr
Ts · T ′r

= −ω2
s [1 + 2

∆ω

ωs
+

∆ω2

ω2
s

− 1

ω2
s

(
Ts + Tr
Ts · T ′r

)2

− 2j
Ts + Tr
Ts · T ′r

(
∆ω

ω2
s

+
1

ωs
)]. (41)

As η is in the square root it is very interesting to simplify the
equation by taking −ω2

s in evidence. The minus sign was used
in order to get j after applying the square root. Neglecting the
terms in 1/ω2

s leads to

η ∼= −ω2
s [1 + 2

∆ω

ωs
+

1

ωs
· (−2j

Ts + Tr
Ts · T ′r

)]

∼= −ω2
s (1 + α

∆ω

ωs
+ β

1

ωs
). (42)

Continuing with the simplification of ν

ν = − 4

Ts · T ′r
(1 + j∆ωTr + jωsTs + jωsTsj∆ωT

′
r)

= −ω2
s (

4

ω2
sTsT

′
r

+ j
∆ω

ω2
s

Ts
4

Ts · T ′r
+ j

4

ωs · T ′r
+ 4j2

∆ω

ωs
).

(43)



Neglecting once again the terms in 1/ω2
s leads to

ν ∼= −ω2
s (−4

∆ω

ωs
+ j

4

ωs · T ′r
). (44)

Calculating the term in the square root, i.e., making η − ν
leads to

η − ν = −ω2
s (1 + 2

∆ω

ωs
+ β′

1

ωs
) (45)

where β′ is given by

β′ = −2j
Ts + Tr
Ts · T ′r

+
4j

T ′r
. (46)

The equation under the square root becomes then√
−ω2

s (1 + 2
∆ω

ωs
+ β′

1

ωs
) ∼= jωs(1−

∆ω

ωs
+
β′

2

1

ωs
)

= j(ωs −∆ω) + j
β′

2

= j(ωs −∆ω) +
Ts + Tr
Ts · T ′r

− 2

T ′r
. (47)

The first solution of the equation p1 becomes then

p1 = −1

2

Ts + Tr
Ts · T ′r

− j

2
(∆ω + ωs)−

1

2
j(ωs −∆ω)

−1

2

Ts + Tr
Ts · T ′r

+
1

T ′r

= −Ts + Tr
Ts · T ′r

+
1

T ′r
− jωs = − 1

T ′r
(
Ts + Tr
Ts

− 1)− jωs

= − Tr
Ts · T ′r

− jωs = − 1

T ′s
− jωs. (48)

For the second solution p2 one obtains

p2 = −1

2

Ts + Tr
Ts · T ′r

− 1

2
j(∆ω + ωs) +

1

2
j(ωs −∆ω)

+
1

2

Ts + Tr
Ts · T ′r

− 1

T ′r

= − 1

T ′r
− j∆ω. (49)

Fig. 2 shows the evolution if the real part and imaginary
part of p1 and p2 for different values of ∆ω. One can see that
at leading order, the poles behave like the simplified equations
predicts.

F. Torque Harmonics for a Three-Phase Short-Circuit, or
Three-Phase Faulty Synchronization

To exclude any excitation of a mechanical eigenmode of in
the stator or rotor of the generator, one needs to determine
the frequency of the torque harmonics. From eq. (30) one can
deduce that the stator current is given by

is = is0 + is1 exp(−t/T ′s) sin(ωst)

+ is2 exp(−t/T ′r) sin(∆ωt) (50)

Fig. 2. Evolution of the poles p1 and p2 in function of ∆ω

where is0, is1 and is2 are obtained from the corresponding
transfer function. Similarly, the stator flux is obtained by the
stator current, starting from eq. (29) and is given by

ψs = ψs0 + ψs1 exp(−t/T ′s) sin(ωst)

+ ψs2 exp(−t/T ′r) sin(∆ωt) (51)

where ψs0, ψs1, ψs2 are obtained from the corresponding
transfer function. The torque is given by

tem =
3

2
· p · Im{ψ∗s · is}. (52)

The interesting part on the torque harmonics is to check if
there could be any resonance between the mechanical system
and the foundation, i.e., it is not mandatory to calculate each
component but just its frequency dependence so that

tem ∼ sin(ωst)
2 + sin(ωst) + sin(∆ωt) sin(ωst) + sin(∆ωt)2

∼ cos(0 · t) + sin(ωst) + cos(2ωst) + cos((ωs ±∆ω)t)

+ cos(2∆ωt), (53)

where the sign ∼ means "is linearly proportional to". The
torque presents, therefore, the following frequencies during a
three-phase short-circuit or a three-phase faulty synchronisa-
tion

f1 = 2∆ω (54)
f2 = ωs ±∆ω (55)
f3 = ωs (56)
f4 = 2ωs. (57)

G. Modelling the Two-Phase Short-Circuit

Until now, there were no exact analytical equations for the
current or torque of a two-phase short-circuit in the dq-rotating
frame. Based on previous works on the DC-Decay tests (two-
phase short-circuit) in a synchronous machine [18], which
could be calculated exactly analytically, it has been decided
to search for an analytical equation for the voltage step in



the dq-frame, which is the only reference frame that would
lead to analytical equations for a rotating machine [18], [19].
The two-phase short-circuit is characterised by the following
equation

ua = ub. (58)

This equation means nothing else than, the fact that the two
voltages will be the same after the short-circuit. Supposing,
in addition, that the machine is star connected, leads to the
following equation

ua + ub + uc = 0

2ua + uc = 0. (59)

In order to obtain the voltages after the short-circuit, the
reaction of the voltage on phase c must be known or supposed
known after the short-circuit. Before the short-circuit the
voltage on this phase is given neither by the machine (through
the induced voltage) or by the grid. Just after the short-circuit
(a few milliseconds after), the currents in the machine will not
have any discontinuity (as the current, as well as the fluxes,
are state variables), so that the voltage in phase c will remain
the same. The grid voltage, as phase c, is not affected by the
short-circuit will also not change. As there is no change in
the voltage of phase c at the beginning of the short-circuit,
then there will be no other changes in this voltage during
the whole short-circuit. Mathematically speaking, the phase
voltage equation could be expressed as

ui = riii +
∑
j

dψij
dt

. (60)

To change the voltage ui one should change instantaneously
the flux ψik which is not possible as it is a continuous state-
variable. The current will not change instantaneously as the
current is a linear combination of fluxes. As a result,

uc = us, (61)

where us is the stator voltage phasor before the short-circuit.
In this case, it is interesting to keep Park’s reference frame
aligned with the stator voltage in order to get a real number.
Knowing this, the stator voltage in the abc-frame is known
before and after the short-circuit, where its given by

ua = −uc/2 (62)
ub = −uc/2 (63)

uc = uc. (64)

In order to obtain the voltage in the dq-frame, it is sufficient
to take Park’s transformation of this voltage. After some
trivial trigonometric operations, one obtains the voltage in the
rotating frame, yielding

ud = −u
2

sin(2ωst) (65)

uq = −u
2

(1 + cos(2ωst)), (66)
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Fig. 3. Air-gap torque (ASM) three-phases short-circuit.
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Fig. 4. Air-gap torque (ASM) two-phases short-circuit. The torque is constant
before the short-circuit as per modelling hypothesis.

which is an original contribution of this work. With these volt-
ages, it is straightforward to obtain the Laplace-transformation
of them to calculate the short-circuit currents.

To know the torque harmonics appearing during a 2-phase
short-circuit or faulty synchronisation, one only needs to apply
the technique described in section III-F using the voltage
equations (65) and (66).

IV. VALIDATION OF THE ANALYTICAL EQUATIONS

This section presents the validation of the analytical equa-
tions developed in Section III. The validation is done in the
SIMSEN software environment using the parameters defined
in Table I (handpicked case study). The software assumes
an equivalent diagram as per figure 1 and applies the same
hypothesis as the one defined in section II-A. The analytical
equations are compared to numerical solutions. Practically
speaking, one enters the same parameters (refer to Table I) and
initial conditions and compares the output. The limitations of
the validation depend on the modelling hypothesis II-A.
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Fig. 5. Air-gap torque (DFIM) three-phases short-circuit. The torque is
constant before the short-circuit as per modelling hypothesis.

The equivalent diagram parameters for the ASM (asyn-
chronous machine) and the DFIG (doubly-fed induction gener-
ator) were the same. The ASM is, therefore, a virtual machine,
while the DFIG can be considered as the real case. The ASM
case was only used to simplify the model to be validated in
the case of a two-phase short-circuit. The DFIG is operating
at rated operation (over-excited) before the short-circuit, while
the ASM is operating at the same equivalent operating point
(same active power) before the short-circuit for both the two-
phase and three-phase short-circuit. As the validation for the
two-phase short-circuit only depends on the stator voltage
equation, it has been decided to perform it only on the ASM,
i.e., the simplest case. Whereas given the premise that this case
is correct, then the validation for the DFIG case is implicit.
For the DFIG, it has been decided to validate the three-phase
short-circuit only to validate both cases implicitly. Figs. 3,
4 and 5 present the air-gap curves for the ASM machine in
three-phase and two-phase short-circuit and DFIG in the case
of a three-phase short-circuit. All curves agrees well with the
simulated curves in SIMSEN.

V. CONCLUSION

This paper proposes to simplify and improve the transient
analysis of double-fed induction machines (DFIMs) by a
detailed analytical model. The idea provides a precise fre-
quency indication of the torque harmonics and a quantitative
value for the torque amplitude. Moreover, the "large machine
approximation" is introduced to the analytical model, and it
is shown to be valid in the presented case study. Finally,
the transient behaviour of the DFIM under two-phase and
three-phase short-circuit scenarios show excellent agreement
with simulations. Analytically, the amplitude and the time
constants of the transient are governed by the parameter
values, which are sensitive to the modelling assumption taken
(FE-simulation, experiment, etc.). Nevertheless, the main goal
of the proposed approach is to provide a "go/no-go" decision
based on a frequency-based determination, where those effects

are marginal. In order to improve further, more detailed
parameter values, as well as complete power electronics and
control actions can be taken into account, if needed.
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