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Summary
This article addresses the problem of designing a sensor fault-tolerant controller
for an observation process where a primary, controlled system observes, through
a set of measurements, an exogenous system to estimate the state of this system.
We consider sensor faults captured by a change in a set of sensor parameters
affecting the measurements. Using this parametrization, we present a nonlin-
ear model predictive control (NMPC) scheme to control the observation process
and actively detect and estimate possible sensor faults, with adaptive controller
reconfiguration to optimize the use of the remaining sensing capabilities. A key
feature of the proposed scheme is the design of observability indices for the
NMPC stage cost to improve the observability of both the state of the exoge-
nous system and the sensor fault parameters. The effectiveness of the proposed
scheme is illustrated through numerical simulations.
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1 INTRODUCTION

The problem of controlled sensing consists of driving an observation process to improve the quality of a desired estimate
of some system. In this article, we consider the particular problem of estimating the state of an exogenous system in the
case where the observation process is subject to potential sensor faults, upon which the system seeks to detect and isolate
the faults and use the remaining sensing capabilities to maintain a high-quality estimate of the state of the exogenous
system.

Estimation of the state of an exogenous system captures a variety of engineering applications. A particular well-known
application is state estimation and possibly tracking of a moving target1-4 or objects such as icebergs.5 Biological and
ecological systems and networks have many applications of controlled observation processes, including predator-prey
systems with additional hunting and vegetation models,6,7 supervision of complex networks through a cognitive dynamic
system,8 the use of a set of driver nodes to monitor and infer the state of biochemical reaction system,9 environmen-
tal surveillance,10,11 and mobile measurement units for weather observations used in forecasting.12,13 In the problem of
simultaneous location and mapping,14-16 a robotic vehicle, in addition to locating its position, is tasked to observe an
exogenous system, that is, the map.
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Since the addressed problem lies at the intersection of controlled observations for state estimation and active fault
detection and accommodation, it is worth mentioning some approaches in the specific fields. The problem of controlling
an observation process concerns exploiting the degrees of freedom in an information-gathering system to increase the
quality of the collected information or measurements of some exogenous system. To this end, common approaches can
generally be categorized either as physical control of the sensors,5,13,17,18 or by active selection among a set of available
sensors at mobile or fixed locations.4,19 The problem addressed in this article belongs to the first class, that is, with phys-
ical control of the sensors providing measurements of the observed system. Note that this class of observation processes
are fundamentally different from the type of observation processes where the observed exogenous system or some sub-
system can somehow be perturbed by the controlled system to improve the state estimation, for instance, systems with
interconnected chemical reactors. Numerous information-optimization-based approaches have been proposed to opti-
mize the observation process,5,12,15,17,20,21 however, often resulting in linear approximations or some greedy heuristic for
solving the resulting optimization problems.

Sensor fault management involves detecting, isolating, and estimating the magnitude of a fault. This problem is most
often approached by a layered control structure,22 where a fault-diagnosis unit operates at a supervisory level whose
objective is to detect and isolate a fault, either by (i) a passive approach22,23 or by (ii) an active approach involving probing
by the controller.24-26 The latter approach is closely related to optimal experiment design and active learning.27 Passive
approaches attempt to diagnose faults by evaluating available historical data from the process. These approaches may
face the lack of sufficiently informative data for the fault diagnosis, causing difficulties in detecting certain types of faults
and thus slow diagnosis.28 Active approaches may enhance fault detectability and reduce the overall fault-diagnosis time.
However, continuous probing or excitations for detecting faults may severely deteriorate the controller performance. For
most applications, it is therefore desirable to balance excitations for improving the fault diagnosis with the primary control
objective by proper tuning of the controller.

This article builds upon and extends,29 and proposes a nonlinear model predictive control (NMPC) scheme for active
control of an observation process in order to estimate the state of an exogenous system while, at the same time, actively
detect, isolate and estimate possible sensor faults with adaptive controller reconfiguration to optimize the use of the
remaining sensing capability. We consider a class of systems where either or both of the controlled and exogenous systems
are nonlinear, and we impose a parametrization of the type of faults considered. A scalar index is designed to capture the
observability properties of such parameters combined with the state of the exogenous system. Then, an NMPC scheme is
designed to minimize this performance index and thereby drive the primary system to maintain the observability of both
the state of the exogenous system and the fault parameters.

Our approach is reminiscent of fault-tolerant MPC,30-34 yet the majority of sensor-fault tolerant NMPC formula-
tions are based on switching to a set of healthy sensors upon detection of a fault, and to a large extent limited to linear
systems.35,36 By contrast, we propose a nonlinear fault-tolerant NMPC (FTNMPC) approach with adaptive reconfigura-
tion, seeking to retain fault tolerance through the use of remaining sensing capabilities and not relying on mode switching
or a set of back-up, redundant sensors. Our main contribution is the design of an NMPC controller for simultaneously
controlling an observation process to monitor an exogenous system, while providing excitations of the controlled system
to actively detect and diagnose sensor faults. We propose a parameter estimation scheme for fault diagnosis that, through
the sensor fault-parametrization, enables the fault estimation to be added upon any existing, tailored state estimation
scheme for the exogenous system. A contribution is thus also the joint design of both a fault-tolerant controller and a
fault detection and estimation scheme.

The remainder of the article is structured as followed. In Section 2, we define the problem considered. Section 3
provides background on nonlinear observability and on design aspects of NMPC for controlled observation processes.
Section 4 presents the proposed NMPC scheme and the control architecture, with Section 4.4 describing the estimation
scheme for the fault parameters. Section 5 presents analysis of the closed-loop trajectories of the proposed scheme together
with underlying assumptions for performance guarantees. In Section 6, we then illustrate the proposed scheme on an
example with a single moving object. Concluding remarks in Section 7 ends the article.

2 PROBLEM STATEMENT

This section introduces the controlled observation process and the control objective. We consider dynamic observation
processes consisting of a primary, controlled system that observes, through a set of measurements, an exogenous system
to estimate the state of this system. The primary system is described by a continuous-time model
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ẋ(t) = f (t, x(t),u(t)), x(t0) = x0, t ≥ t0, (1)

where the input vector u(t) ∈ Rm is constrained as follows

u(t) ∈  (t), t ≥ t0, (2)

where the set-valued map  ∶ R ⇉ Rm denotes the time-varying input constraint set, and t0 and x0=x(t0) are initial time
and the initial state vector, respectively. Furthermore, let

ẋe(t) = g (t, xe(t),w(t)) , xe(t0) = xe,0, t ≥ t0, (3)

denote the model of the observed, exogenous system with state vector xe(t) ∈ Rne and initial condition xe,0 ∈ Rne , and
where w(t) ∈ Rnw denotes a disturbance vector.

The state vectors of the primary and exogenous systems are constrained as follows

x(t) ∈ (t), t ≥ t0, (4)

where the set-valued map  ∶ R → Rn denotes the time-varying state constraint set. State constraints for the primary
system (1) in an observation process may typically be related to physical barriers, obstacles, or areas in which the system
cannot enter, while input constraints are due to limitations in the available control actuation.

The primary system observes the exogenous system through the nominal observation model

ye(t) = hn(t, xe(t), x(t), v(t)), (5)

where ye(t) ∈ R
ny denotes the observations corrupted by noise v(t) ∈ Rnv .

Assumption 1. Either or both of the functions g (t, xe(t), w(t)) in (3) and hn(t, xe(t), x(t), v(t)) in (5) are nonlinear.

Note that as ye(t) depends on both the state of the primary system and the exogenous system, the primary system may
shape the quality of the measurements ye(t) ∈ R

ny by controlling its own state evolution.

Assumption 2. The state of the exogenous system is estimated with a given, available observer

ẋo(t) = fo(t, xo(t), x(t),u(t), ye(t)), xo(t) = xo,0, (6a)

x̂e(t) = ho(t, xo(t)), (6b)

where xo(t) ∈ Rno denotes the internal state of the observer, with initial condition xo,0 ∈ Rno , and x̂e(t) ∈ Rne is the estimate
of the state of the exogenous system.

Assumption 3. The state x(t) of the primary system (1) is available for all t≥t0.

Our objective is to design a control scheme that (i) favors closed-loop state and input trajectories for the primary system
(1) rendering the exogenous state xe(t) observable, (ii) sufficiently excites the primary system for sensor fault detection,
and (iii) adaptively reconfigures the controller upon a sensor fault in order to maintain high-quality estimates x̂e(t) of the
exogenous system.

3 BACKGROUND

In order to address the control problem presented in the previous section, we use an observability-based NMPC
approach where the system is steered to maintain a specific set of states and parameters observable when using a
varying observation model. Toward this goal, this section recalls some results from the literature on observability and
NMPC.
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3.1 Nonlinear observability

The property of observability concerns the capability of distinguishing different states of a system using known input and
output signals.37 A key property that will be exploited in the design of the proposed scheme is that the state observability
of a generic nonlinear system and observation model may depend on the current state and input of the system, and thus
by suitably controlling the system, it is possible to influence the observability of the state.

Consider a general system

ẑ(t) = fΦ(z(t),u(t)), (7a)

y(t) = hΦ(z(t)), (7b)

with z(t) ∈ Rnz and y(t) ∈ R
ny . The following algebraic test defines an observability rank condition for nonlinear

systems.37-39

Definition 1 (Observability rank condition). Let the r-length observation map of (7) be defined as

Φ (t, z(t),u(t)) ∶=
⎡⎢⎢⎢⎣

y(t)
ẏ(t)
⋮

y(r−1)(t)

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣
0

fΦ
hΦ
⋮r−1

fΦ
hΦ

⎤⎥⎥⎦ (8)

where fΦhΦ = fΦhΦ(z) = ẏ(t) denotes the Lie derivative of hΦ in the direction of f Φ, and where

i
fΦ

hΦ =
𝜕i−1

fΦ
hΦ

𝜕z
fΦ (9)

is the ith order Lie derivative, with 0
fΦ

hΦ = hΦ. Furthermore, let

O(z(t);u(t)) = 𝜕Φ(t, z(t),u(t))
𝜕z

=
[0

fΦ
hΦ

𝜕z
, … ,

r−1
fΦ

hΦ

𝜕z

]′

(10)

denote the rny×nz observability matrix of (7) given the input u(t). The observability rank condition for system (7) is said
to hold at a point (z0;u0) if

rank(O(z0;u0)) = nz. (11)

A system (7) satisfying the observability rank condition (11) at (z0;u0), is said to be locally weakly observable
at this specific state.37,40 Essentially, this implies that knowing the input and output signals of the system, it is
possible to instantaneously distinguish z0 from all other points z in a neighborhood of z0. The observability rank
condition is only a sufficient but not a necessary condition for local weak observability.37 Moreover, for nonlinear
systems there is no universal law for choosing the number of derivatives r−1 in the definition of Φ(t,z(t),u(t)) in
(8). Therefore, a common approach is to increase r until the matrix O(z;u) retains full rank for some considered
values of (z,u).

3.2 NMPC formulation

To design a sensor-fault tolerant NMPC scheme for controlled observation processes, we apply a multiobjective type
NMPC formulation.41 We consider a continuous-time framework, as it allows a compact derivation of an observabil-
ity stage cost, which will be made clear in the remainder of the article. By using NMPC to control the primary system
(1), we seek to exploit the predicted trajectory of the exogenous system by means of the model (3) and thereby opti-
mally control the primary system subject to the constraints (2) and (4). In the sampled-data NMPC approach, we solve



KNUDSEN et al. 5661

at each sampling instant ti ∈  ∶= {t0, t1,…} the finite horizon optimal-control problem (ti, x(ti), x̂e(ti)) defined as
follows:

min
ū(⋅)

JT(ti, x(ti), x̂e(ti), ū(⋅))

s.t. ẋ(𝜏) = f (𝜏, x(𝜏), ū(𝜏)), ∀𝜏 ∈ [ti, ti + T]
x(ti) = x(ti),
ẋe(𝜏) = g(𝜏, xe(𝜏), 0), ∀𝜏 ∈ [ti, ti + T]
xe(ti) = x̂e(ti),
ū(𝜏) ∈  (𝜏), ∀𝜏 ∈ [ti, ti + T]
x(𝜏) ∈ (𝜏), ∀𝜏 ∈ [ti, ti + T]
x(ti + T) ∈ T(ti + T) (12)

with

JT(ti, x(ti), x̂e(ti), ū(⋅)) ∶= ∫
ti+T

ti

l(𝜏, x(𝜏), xe(𝜏), ū(𝜏))d𝜏 + m(ti + T, x(ti + T), xe(ti + T)). (13)

In (12), JT(⋅) is the finite horizon cost, corresponding to the performance index of the NMPC controller, com-
posed by the stage cost l ∶ R≥t0 × Rn × Rne × Rm → R and the terminal cost m ∶ R≥t0 × Rn × Rne → R,
which is defined over the time-varying terminal set T ∶ R≥t0 ⇉ Rn with T(t) ⊆ (t). The stage cost l(⋅) is further
decomposed as

l
(
𝜏, x(𝜏), xe(𝜏), ū(𝜏)

)
= ls

(
𝜏, x(𝜏), xe(𝜏), ū(𝜏)

)
+ lO

(
𝜏, x(𝜏), xe(𝜏), ū(𝜏)

)
, (14)

where the functions ls ∶ R≥t0 × Rn × Rne × Rm ⇉ R and lO ∶ R≥t0 × Rn × Rne × Rm → R denote a sta-
bilizing stage cost and an observability index or observability cost function, respectively. The bar over the input
and state variables is imposed to distinguish these internal NMPC controller variables from the real system
variables. The stage cost ls(⋅) in (14) may be any stabilizing stage cost,42 while a typical choice for obser-
vation processes is a tracking objective ||x(𝜏) − xe(𝜏)||Q for some positive definite matrix Q. Separation of the
NMPC stage cost (14) into a stabilizing term and a term for improving observability may be associated with
dual regulatory and economic NMPC,43,44 that is, an observability index may be regarded as an economic-type
stage cost.

Corresponding to the conventional receding horizon control policy, the solution ū∗(⋅; x(ti), x̂e(ti)) to the optimal control
problem (12) is applied to the system from time ti up until the next sampling instant ti+𝛿, defining the implicit NMPC
feedback control law

u(𝜏; x(ti), x̂e(ti)) ∶= ū∗(𝜏; x(ti), x̂e(ti)), 𝜏 ∈ [ti, ti + 𝛿), (15)

where 𝛿 is the sampling time which we assume constant. Observe that at the generic sample time ti, the finite horizon
optimization problem is (12) build using the estimate x̂e(ti) provided by the observer (6), resulting in an output feedback
NMPC controller.

The terminal cost m(⋅) and terminal set T(t) in (12) are important for the performance and the properties of NMPC
controllers.42 We address the design and required properties of these features in the closed-loop analysis in Section 5.
In Section 4, we hence focus on the design of the stage cost (14) and in particular the design of the observability
index lO(⋅).

3.3 Improved observability with NMPC

Our NMPC design-objective described in Section 2 involves an extended observation problem: observability of the exoge-
nous system and sufficient excitations for fault detection. Yet, these problems are closely related and seek to choose
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as next data point the one that maximizes an information quality measure of the observations. Several works have
studied the design of NMPC controllers for ensuring observable trajectories or minimizing some uncertainty measure
of either the state vector or a set of unknown parameters. Hovd and Bitmead45 augmented the quadratic stage cost
with a covariance-based cost term by adding the Riccati equation as constraints and linearizing the system along the
prediction horizon. Böhm et al.46 imposed a lower bound on the determinant of the observability matrix to enforce
a minimum level of observability, while17,29,47 formulated a stage cost that includes a scalar measure of the observ-
ability matrix. Larsson et al.48 and Telen et al.49 included a cost term based on the Fisher information matrix of
a set of unknown parameters, while Heirung et al.50 proposed a dual adaptive NMPC scheme combining probing
of the system to minimize the expected output error with controlling the nominal system. Marafioti et al.51 con-
structed a discrete-time constraint formulation with state-feedback that guarantees closed-loop persistently exciting
(PE) inputs with respect to the estimation of unknown parameters, while Chen et al.52 formulated an approximate
PE-NMPC by ensuring an increase of the lowest eigenvalue of the parameter estimate information matrix. Houska
et al.53 proposed an NMPC formulation incorporating an economic optimal experiment design criteria that minimizes
the predicted loss of control performance in the presence of measurement noise. To the best of our knowledge, design-
ing an NMPC scheme that actively excites the system both for ensuring state and parameter observability has not been
addressed.

4 AN NMPC SCHEME FOR FAULT TOLERANCE IN OBSERVATION
PROCESSES

In this section, we exploit the formulation of the NMPC scheme in Section 3.2 for our controller design-objective,
whereby we exploit the stage cost lO(⋅) in (14) as a means of incorporating a measure of observability of the
exogenous state and for active fault detection. Toward this design, we need a representation of the sensor faults
considered.

4.1 Fault representation

Sensor faults may appear and evolve in many different forms,28 challenging the way faults are repre-
sented for control and estimation purposes. As in general system identification, faults may be represented
by a parametric54 or a nonparametric approach.55 Extending an existing observation model with param-
eters to represent faults is relatively straight forward. In addition, parametric representations of faults
often yields models that are linear or affine in the parameters for which there are well-established (recur-
sive) estimation techniques. Consequently, we apply for our proposed NMPC scheme a parametric fault
representation.

Equation (5) denotes the observation model in the absence of sensor faults. Parametric fault modeling requires,
in general, one to represent the faults either as additive, bias, drifting-type faults, or as multiplicative faults.28,56

We confine the design of an FTNMPC scheme to multiplicative sensor faults, and define a time-varying diagonal
matrix Ψ(⋅) as

Ψ (𝜎(t)) =
⎡⎢⎢⎢⎣
𝜎1(t) 0 … 0

0 𝜎2(t) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜎ny(t)

⎤⎥⎥⎥⎦
, (16a)

with 𝜎(t) ∶= [𝜎1(t) , 𝜎2(t)… 𝜎ny (t)]
′ ∈ R

ny and the resulting output model

y(t) = Ψ (𝜎(t)) hn(xe(t), x(t)) + v(t). (16b)

The nominal, fault-free case hence corresponds to 𝜎(t) ∶= [1 , 1… , 1]′ ∈ R
ny . Sensor faults differ in how difficult they

are to detect.57 Complete sensor faults, that is, 𝜎j(t)=0, that results from loss of contact, broken wires, physical barriers
or other lockouts of the observations, may be fairly easy to detect. Partial sensor faults may originate from, for instance,
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partially interrupted measurements, stuck outputs, incoherent measurement sequences, and partial camera blockages.
The challenging detection problem with combinations of these types of faults, that is, faults that evolve both as abrupt
and incipient faults, may be alleviated by an active detection scheme.

4.2 Indices of observability

Our objective is to design a controller that favors closed-loop state and input trajectories that make the exoge-
nous state xe(t) observable and sufficiently excites the primary system for sensor fault detection. For this pur-
pose, we use the NMPC design described in Section 3.2, with a deterministic measure of observability based
on the observability rank condition in Definition 1. This section addresses the design of such measure of
observability.

4.3 Design of the nonlinear observability matrix

Depending on the system under consideration, the computation and resulting algebraic expressions of an observability
matrix that satisfies the observability rank condition in Definition 1, whenever it exists, may be highly complex. This is
due to a possible high value of the r−1 number of output time derivatives required to meet the rank condition. To retain
numerical tractability of the NMPC formulation, it is hence desirable to choose a design approach that requires as few as
possible output time derivatives.

This section compares two approaches for computation of the observability matrices together with associated lower
bounds on the value of r that are required to meet the associated observability rank condition. Specifically, we consider
the following two approaches: An augmented system approach, where the design of the observability matrix is carried out
considering an augmented vector of the exogenous state and sensor fault parameters, and a cascaded state and sensor-fault
parametric system constructed by considering estimation of xe(t) and 𝜎(t) by means of sequential estimation.39,58,59 A
particular motivation for considering the latter is that the parametrization for multiplicative sensor faults appears linearly
in (16b).

Proposition 1 (Augmented system). Consider the augmented system

ẑ(t) =
[

ẋe(t)
𝜎̇(t)

]
=
[

g (xe(t))
0

]
, (17a)

ye(t) = Ψ (𝜎(t)) hn (xe(t), x(t)) , (17b)

with z(t) = [xe(t) 𝜎(t)]′ ∈ R
ne+ny and Ψ (𝜎(t)) defined in (16a). To satisfy the observability rank condition (11) for (17) at a

point (z0;x0,u0) during d ∈ N ∶ 1 ≤ d < ny complete faults in the outputs (17b), the r−1 number of derivatives in the output
map (8) must be selected such that r ≥ 1 +

⌈
(ne)

ny−d

⌉
. □

Proof. The observability matrix for the augmented system (17) has the block structure

where diag
[j

ghn

]
denotes a diagonal matrix with the Lie derivative of hn in the direction of g. A single, complete fault

in a sensor j, that is, 𝜎j(t)≡0, will cause each row j+kny,k=0,1,… ,r, to be linearly dependent, since each of these rows
will have zero elements only except for the element in column ne+j. This reduces the maximum row rank of (18) with
r−1. During d ∈ N complete sensor faults such that 1≤d<ny, the maximum row rank of (18) will be rny−d(r−1). To retain
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rank(Oz(xe(t),𝜎(t);x(t),u(t))=ny+ne when evaluated at a point (z0;x0,u0) at time t0 during d ∈ N complete sensor faults,
we must have

rny − d(r − 1) ≥ ny + ne,

and hence choose r such that

r ≥
⌈

1 + ne

ny − d

⌉
≥ 1 +

⌈
ne

ny − d

⌉
. (19)

▪

Proposition 2 (Cascaded system). Consider the interconnection of the two systems

ẋe(t) = g(xe(t)), (20a)

ye(t) = Ψ(𝜎̂0) hn (xe(t), x(t)) , (20b)

with 𝜎̂0 = 𝜎̂(t0) being a parametric input, and the linear system

𝜎̇(t) = 0, (21a)

ye(t) = Ĉ0𝜎(t), (21b)

with Ĉ0 ∶= ∇𝜎 (Ψ(𝜎(t)) hn (xe(t), x(t)))|t=t0,xe(t0)=x̂e,0,x(t0)=x0,u(t0)=u0
evaluated at the current state and input of the primary sys-

tem and at a given estimate of the exogenous system. Moreover, consider the case with d ∈ N number of complete sensor
faults in the outputs (20b), with 1≤d<ny. To satisfy the observability rank condition (11) at a point (xe,0; x0,u0, 𝜎̂0) for (20)
and at a point (𝜎; x̂e,0, x0,u0) for (21), respectively, the r−1 number of derivatives in the output map (8) must be chosen
such that

1. r ≥ ⌈
ne

ny−d

⌉
for the system (20), and

2. r=1 for the system (21).

Proof. During d ∈ N complete sensor faults, rd number of rows of the rny×ne observability matrix Oxe(xe(t); x(t),u(t), 𝜎̂0)
of the system (20) with 𝜎̂0 = 𝜎̂(t0) as parametric input will have all elements equal to zero due to the multiplication with
𝜎̂0 for each row, leaving at most r(ny−d) independent rows. In order for Oxe (xe(t); x(t),u(t), 𝜎̂0) to have full rank when
evaluated at a point (xe,0; x0, 𝜎̂0), there must be at least as many independent rows as columns, hence there must be at
least r(ny−d)≥ne rows. This proves the lower bound (i).

The bound in (ii) follows immediately from the observability matrix of linear systems with 𝜎̇ = A𝜎 with A≡0, thereby
yielding O𝜎(𝜎(t); x̂e,0, x0) = Ĉ0 as an ny×ny matrix. ▪

Observability of a linear, time-invariant system (21) is well known to be equivalent with the standard, mul-
tivariable PE condition.60 Cascaded system considerations are common in design of adaptive observers, requiring
observability of the nominal system together with some PE requirement for the time-varying parameters.39,61-63

However, formulating a criteria for active fault detection based on the persistency of excitations condition is more
involved compared with using the rank observability criteria of (21).51 Even though the matrix O𝜎(⋅) of the linear
(parameter) system (21) will in general be nonlinear, its simple square form without requiring computation of Lie
derivatives provides an easier and more tractable way of active fault detection with NMPC compared with a PE
criteria.

It is worth noticing that Proposition 1 and 2 provide only lower bounds on the number of output time derivatives
required to meet the observability rank condition. Comparing Proposition 1 and 2, formulating an observability index
based on the rny×(ny+ne) observability matrix for (17) opposed to formulating separate observability indices based on
the rny×ne observability matrix for (20) and the ny×ny matrix for (21), generally increases the complexity of the algebraic
expressions due to the higher number of required output derivatives. This may cause a significant increase in numerical
complexity of the observability index and hence of the resulting optimization problems, particularly for systems with a
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high-dimensional exogenous state xe(t). Because of this, we focus in the remainder of the article on the approach with
the cascaded system (20) and (21) as described in Proposition 2.

4.3.1 Design of observability index

This section presents a design of the observability index lO(⋅) in (14) based on the cascaded state and sensor-fault paramet-
ric system formulated in Proposition 2. Specifically, the observability index in the NMPC stage cost (14) is decomposed in
two observability indices, one for xe(t) and one for 𝜎(t), as follows

lO(𝜏, x(𝜏), xe(𝜏), ū(𝜏)) ∶= lOxe
(x(𝜏), xe(𝜏), ū(𝜏); 𝜎̂0) + lO𝜎

(x(𝜏), xe(𝜏), ū(𝜏)). (22)

We denote by Oxe (xe(t); x(t),u(t), 𝜎̂0) the observability matrix for the exogenous system (3) with the output model (16),
and define the observability index for xe(t) as

lOxe
(x(𝜏), xe(𝜏), ū(𝜏); 𝜎̂0) =

kxe

det
(

Oxe

(
xe(𝜏); x(𝜏), ū(𝜏), 𝜎̂0

)′Oxe

(
xe(𝜏); x(𝜏), ū(𝜏), 𝜎̂0

))
+ 𝜖1

, (23)

with kxe ≥ 0, and where 𝜖1>0 is a small nonnegative smoothing parameter added for numerical robustness. The ne×ne
matrix Oxe (⋅)

′Oxe(⋅) in the denominator of (23) is positive definite if and only if Oxe(xe(𝜏); x(𝜏), ū(𝜏), 𝜎̂0) has rank ne when
evaluated along the predicted trajectories x(𝜏) and xe(𝜏) for a given parametric input 𝜎̂. If the system is unobservable at
some point along the predicted trajectory, the cost will saturate at the maximum value kxe

𝜖1
. The cost function (23) resembles

an inverse barrier function.64 However, contrary to conventional inverse barrier functions, we do not seek solutions at
the boundary of the feasible region. Consequently, the gain kxe can be fixed at a tuned value, and not iteratively reduced
to zero.

Similarly, as observability index for the linear system (21) with the output model (16) representing the sensor
fault-parameters, we use

lO𝜎
(x(𝜏), xe(𝜏), ū(𝜏)) = k𝜎

det
(

O𝜎

(
x(𝜏), xe(𝜏), ū(𝜏)

)′O𝜎

(
x(𝜏), xe(𝜏), ū(𝜏)

))
+ 𝜖2

, (24)

with

O𝜎

(
x(𝜏), xe(𝜏), ū(𝜏)

)
= diag

(
hn,1(𝜏), hn,2(𝜏),… , hn,ny(𝜏)

)
, (25a)

hn,i(𝜏) ∶ = hn,i(xe(𝜏), x(𝜏), ū(𝜏)), (25b)

as defined for (21), resulting in a diagonal matrix observability equal to Ĉ0 as defined in Proposition 2. k𝜎≥0 is a tunable
gain, and 𝜖2>0 a smoothing parameter. Observe that although O𝜎

(
x(𝜏), xe(𝜏), ū(𝜏)

)
is quadratic and hence allows direct

determinant evaluation, its determinant may be indefinite along the predicted trajectory. Imposing the index (24) by
means of O(⋅)′𝜎O𝜎(⋅), also referred to as the distortion matrix,65 yields the inverse quadratic of each individual output map
hn,i(𝜏), and assures a positive definite observability index lO𝜎

(⋅) for k𝜎>0.
We comment that there exist several alternative measures of observability, including the minimum singular value or

condition number of O(⋅), the trace of O(⋅)′O(⋅) and empirical local observability Gramians.66,67 The proposed criteria,
however, is generally easier to compute algebraically than the minimum singular value and the condition number. Fur-
thermore, log barrier functions or exact penalty functions may be considered for alternatives to the inverse barrier type
costs (23) and (24), see, for example, Boyd and Vandenberghe 64.

Remark 1. Even though additive faults can be considered from the formulation of the observability index (24), and indeed
would yield an observable linear system {𝜎̇ = 0, y(t) = C0 + 𝜎(t)} instead of (21), the corresponding observability matrix
O𝜎 in (24) would hence be a constant and not affect the optimal control-inputs ū∗(⋅; x(ti), x̂e(ti)) .
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Remark 2. In Section 4.1, we proposed a linear representation of the sensor faults, which is most commonly used for
fault parameters.28 The observability index (24), however, allows for nonlinear representations of sensor faults, though
increasing the complexity. Moreover, nonlinear fault representation changes the set of suitable parameter estimation
techniques.

Remark 3. The stabilizing cost ls(⋅) may for some systems be considered as an implicit part of the particular observa-
tion model of the exogenous system. Examples of the latter include systems with locally rather than globally supported
measuring devices,5 systems where the signal-to-noise ratio increases with a distance metric between the primary and
exogenous system,2 or systems where an exact globally defined observation model is unobtainable.

4.4 Sensor fault detection and estimation

Section 4.1 introduced a fault parametrization which was used in Section 4.2 to define an index of observability designed
to enhance the observability property of both the state of the exogenous system and the fault parameters. This section
proposes a method to augment an existing observer to estimate changes in the fault parameters. Specifically, using the
fault parametrization introduced in (16), this section discusses means of modifying the observer (6) to handle and account
for possible sensor faults and, as such perform state and parameter estimation [ 58, Ch. 9]. As stated in Assumption 2, we
assume that some observer scheme (6) is already available and implemented for estimation of xe(t), whose form depends
on the particular system (3) and the application. Consequently, we seek to construct a fault-detection and estimation
scheme that can be added to the already existing state estimation scheme.

There exist numerous techniques for fault diagnosis,28,68,69 with state estimation, parameter estimation and combina-
tions thereof as commonly applied methods. A goal for the control problem we consider is to handle complex evolving
sensor faults. To this end, we seek to detect, isolate and estimate the magnitude of both abrupt, step-wise faults, slowly
varying incipient faults, and combinations of these two. Irrespective of which estimation technique that is applied, the
fault parametrization should account for time variations of 𝜎(t) due to the occurrence of faults. To this end, the dynamics
of 𝜎(t) is often modeled as

𝜎̇(t) = w𝜎(t), (26)

for some unknown signal w𝜎(t) that determines the occurrence of the fault. A common approach to estimate the unknown
evolution of 𝜎(t) is to impose w𝜎(t) as zero-mean Gaussian noise with covariance Q𝜎 , thereby modeling 𝜎(t) as a random
walk.58,69,70

One possible approach for estimating 𝜎(t) is to augment the state xe(t) with 𝜎(t) as in (17) with the model (26), and
apply the chosen nonlinear estimation scheme for simultaneous state and parameter estimation. For the commonly
applied extended Kalman filter (EKF), this amounts to an augmented Kalman filter which is known to have convergence
issues particularly if the noise covariances are unknown.71-73 Dedicated observer schemes with a bank of observers may
also be applied.74

An alternative approach is to impose the estimation of the exogenous state and the sensor fault parameters by means
of an adaptive estimation approach. This can be obtained by modifying, if possible, an existing observer scheme (6) with
an appropriate parameter adaption law,39,62,75,76 or by separate parameter estimation and application of a sequential or
dual state and parameter estimation scheme.58,77-79

Parameter estimation techniques are particularly suited for estimating multiplicative faults [ 28, Ch. 11],.68,80 The
parametrization (16b) also facilitates linear parameter estimation, in particular recursive least squares (RLS) estimation,
with the associated benefit of exponential convergence if the regressor is PE.58 Consequently, to enable a simple addition
of a sensor fault diagnosis scheme to an existing observer (6), as well as to align with and benefit from the structure (22)
for excitations with respect to the fault parameters, we implement an RLS scheme for estimation of 𝜎(t) that interacts
with the observer (6) and the system as indicated in Figure 1.

4.4.1 Covariance-resetting mechanism

While the added white noise (26) ensures that the covariance matrix P𝜎 of the 𝜎(t) fault parameters is bounded away
from zero and thereby improves diagnosis of slowly developing faults, we modify the RLS scheme to improve its ability
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F I G U R E 1 Illustration of proposed FTNMPC scheme.
Primary system Exogenous systemNMPC

x (t)

u(t)

x̂ e(t)
Exogeneous state estimation

ye(t)

σ̂ (t)

RLS based sensor fault
detection and estimation

y(x̂ e(t))

to detect and estimate the magnitude of abrupt faults. To this end, we implement a covariance-resetting mechanism,81 in
which we reset P𝜎 to some multiple times the initial covariance, that is, P𝜎=kdP𝜎(0) with kd ∈ N, if and for each time one
the estimates 𝜎̂j(tk), j ∈  , satisfies the inequality

1 − 𝜎̂j(tk) > 1.5𝛾𝜎,j, j ∈  , (27)

where 𝛾𝜎,j is the standard deviation of the artificial noise in (26). With (27) as a type of abrupt-fault detection mechanism,
we implement a logical structure to ensure a delay in succeeding reset of P𝜎 .

Observe that the proposed scheme with sequential, interconnected estimation of 𝜎(t) and xe(t) is closely related to
(recursive) prediction error methods and approximate expectation maximization algorithms, see, for example, References
82 and [ 78, Ch. 11]. Moreover, note that we may extend the proposed fault-diagnosis scheme with parallel running filters
and additional parameters in (16) to detect and estimate additive (bias) in addition to multiplicative sensor faults, see [
28, Ch. 11].

4.5 Notes on numerical implementation

Figure 1 provides an overview of the proposed FTNMPC scheme, showing the connections between the NMPC con-
troller, the observer for the state of the exogenous system, the RLS-based sensor fault diagnosis unit, and the primary and
exogenous systems.

The design and numerical implementation of the observability indices in (23) and (24) are performed as follows:

1. Define the output equation as in (16b).
2. Compute the observability matrix Oxe

(
xe(𝜏); x(𝜏), ū(𝜏)

)
by computing consecutive Lie derivatives (9) of the out-

put equation (16b) in the direction of g(𝜏, xe(𝜏), 0). The algebraic expressions for the Lie derivatives required for
the definition of Oxe

(
xe(𝜏); x(𝜏), ū(𝜏)

)
are computed using a symbolic computation tool such as MATLAB symbolic

toolbox. O𝜎

(
x(𝜏), xe(𝜏), ū(𝜏)

)
can be computed directly as expressed in (25) without computation of Lie derivatives.

3. Using the observability matrix O𝜎(⋅) derived in Step 2, use a symbolic computation tool as in Step 2 to derive algebraic
expressions for the observability indices lOxe

(⋅) and l𝜎(⋅) as defined in (23) and (24), respectively.
4. Transfer the symbolic algebraic expressions of lOxe

(⋅) and l𝜎(⋅) to the chosen software for solving the optimal-control
problem (12), and impose as terms in the objective function (13).

The symbolic computations of lO(⋅) are all performed offline and prior to online implementation of the proposed
FTNMPC scheme. Symbolic computation of the Lie derivatives and the observability measure, either the proposed
determinant-based measure or other observability measures, is generally limited to relatively low-dimensional systems.
This includes, for instance, exogenous systems consisting of one or a few moving objects and a primary system with a
limited number of independent measurement devices observing the moving objects.

Upon derivation of lO(⋅) as described above, the solution to (12) of the proposed FTNMPC scheme can be obtained by
methods and associated software for solving standard constrained optimal-control problems, for example, by means of
a collocation method or multiple shooting, and solution of the corresponding nonlinear programming (NLP) problems
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by use of some suitable NLP solver. The final algebraic expressions for the observability measures (23) and (24) may
be strongly nonlinear and complex, thereby impeding efficient numerical solution of the NMPC optimization problem.
Some care and initial numerical experiments should therefore be performed during implementation of (12) to analyze
whether simpler algebraic expressions or extended constraint formulations may be imposed to alleviate the computations.
The type and size of the exogenous system as well as the observation model (5) may impact the choice of a suitable
numerical method for solving the optimal-control problem (12), see Nicholson et al.83 for an overview of available methods
and software. For scenarios where solving to optimality the resulting NLP upon discretization of (12) is computationally
prohibitive, additional measures to reduce the computation time are early termination of the NLP solver, applying a
heuristic optimization method,20 and using an improved computational platform.

5 CLOSED-LOOP ANALYSIS

The control scheme proposed in this article exploits an optimization-based controller to favor highly observable
closed-loop trajectories, despite possible sensor faults. We adopt a penalty approach to address the problem of loss of or
reduced observability of the exogenous system (3), and show the effectiveness of the proposed approach via numerical
simulation in Section 6. Below, a formal proof is introduced to guarantee existence and boundedness of the closed-loop
trajectory under certain assumptions, as well as recursive feasibility of the proposed NMPC scheme. To this end, this
section introduces some standard assumptions from the MPC literature and recalls an input-to-state-stability property of
NMPC controllers.44 In addition, we address the combination of the observability problem with the control problem of
stabilization.

Let 𝜁 ∈ R
n𝜁 denote a variable of the system that we wish to keep bounded, with the associated dynamical model

𝜁̇ = f𝜁 (t, 𝜁 ,u), 𝜁(t0) = 𝜁0, t ≥ t0, (28)

where 𝜁0=𝜁(t0) is the initial-state vector.
The selection of 𝜁 can vary depending to the application. As an example, we may choose 𝜁(t)=x(t) if we seek bound-

edness of the entire state of the primary system (1). Alternatively, 𝜁 may be chosen as a subset of x if, for instance, the
primary system consists of several subsystems observing the exogenous system and we seek boundedness only on some of
the states of the primary system. Depending on the selection of the vector 𝜁 , the state constraint set (t) and the terminal
constraint set T(t) result in constraints on the vector 𝜁 as follows

(t) = {z ∶ x ∈ (t)}, T(t) = {z ∶ x ∈ T(t)}.

Next, we state some standard assumptions from MPC literature.44

Assumption 4. The function f 𝜁 (⋅), introduced in (28), is locally Lipschitz continuous in 𝜁 , piecewise continuous in u and
t in the region of interest, and without loss of generality, f 𝜁 (t,0,0)=0, for all t≥t0. Moreover, f 𝜁 (⋅) is bounded for bounded
states, that is, the set

{||f𝜁 (t, 𝜁 ,u)|| ∶ t ≥ t0, 𝜁 ∈ ̂,u ∈  (t)} (29)

is bounded for any bounded set ̂ ⊂ n𝜁 .

Assumption 5 (Initial feasibility). The optimization problem (t0, x(t0), x̂e(t0)) admits a feasible solution.

Assumption 6 (Stabilizing stage cost).

(i) The state constraint set (t) and the terminal set 0 ∈ T(t) ⊆ (t) are closed, connected, and contain the origin
for all t≥t0. The input constraint set  (t) is such that 0 ∈  (t) for all t≥t0.

(ii) The stabilizing stage cost satisfies ls(t,0,0)=0 and there is a class-∞ function 𝛼 ∶ R≥0 → R≥0 such that
ls(t,x,xe,u)≥𝛼(||𝜁 ||) for all (t, x, xe,u) ∈ R≥t0 × Rn × Rne × Rm.

(iii) The function m(⋅) is positive semidefinite.
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(iv) For any given tuple (x, xe,u) ∈ Rn × Rne × Rm the functions l(t,x,xe,u) and m(t,x,xe,u) are uniformly bounded
over time.

(v) There exists a feasible auxiliary control law kaux ∶ R≥t0 × R
n𝜁 → Rm, defined over the terminal set T(⋅), such

that, for the closed-loop system (28) with u(t)=kaux(t,𝜁), with initial time and state pair (t̂, 𝜁 ) ∈ R≥t0+T ×T(t̂), the
state and input vectors satisfy 𝜁(t) ∈ T(t) and u(t) ∈  (t) , respectively, and the condition

m(t̂ + 𝛿, 𝜁(t̂ + 𝛿)) − m(t̂, 𝜁) ≤ −∫
t̂+𝛿

t̂
ls(t, 𝜁 , kaux(t, 𝜁))dt (30)

holds for any 𝛿>0.

Assumption 7 (Stabilizability). Consider the constrained system (28), (2), (4) and the open-loop MPC problem (12).
For all (t̃, x̃, x̃e) ∈ R≥t0 × Rn × Rne with (t̃, x̃, x̃e) feasible, there exists a control law uf (t) such that the closed-loop
system (28) with u(t)=uf (t), t0 = t̃, and 𝜁0 = 𝜁 has feasible state and input trajectories, that is, satisfying (2) and (4), and
the inequality

∫
t̃+T

t̃
ls(𝜏, 𝜁 ,uf )d𝜏 + m(t̃ + T, 𝜁(t̃ + T)) ≤ 𝛼c(||𝜁(t̃)||)

holds for a class-∞ function 𝛼c ∶ R≥0 → R≥0.

Assumption 3 on state feedback of x(t) makes it possible to choose 𝜁(t)=x(t), in which the design requirements given
in Assumption 6 ensure recursive feasibility of the open-loop MPC problem (12).

Proposition 3 (Recursive feasibility). Let 𝜁(t)=x(t), and hence T(t) = T(t) and (t) = (t). Suppose that Assumption
3 to 6 hold. Then (ti, x(ti), x̂e(ti)) is feasible for all subsequent sampling times ti, i≥1.

Proof. Assumption 6 ensures that the terminal set T(t) is positively invariant for the control law u(t)=kaux(t,x) for all
x ∈ T(t).84 State constraints and the terminal set in the open-loop MPC problem (12) are only enforced for the primary
system's state x(𝜏). Consequently, any estimation error of x̂e(t) and 𝜎̂(t) will not affect the feasibility of (12). Moreover,
the observability indices (23) and (24) in lO(⋅) are formulated such that the optimal cost J∗T(⋅) in (12) is finite due to
𝜖1,𝜖2>0, irrespective of any possible loss of observability due to sensor faults, and by the input sequence {ū∗(𝜏)}𝜏=t+T

𝜏=t being
bounded by the input constraints  (𝜏). Feasibility of (t0, x(t0), x̂e(t0)) hence implies feasibility of (ti, x(ti), x̂e(ti)) for
all i≥1.42,84 ▪

Next, we state the main result of this section.

Theorem 1 (Boundedness). Let Assumptions 3-7 hold. Then, the system (28) in closed-loop with (15), where l(⋅) is decom-
posed as in (14), is input-to-state stable (ISS) with respect to the observability stage cost, that is, there exists a class- function
𝛽(⋅) and a class- function 𝛾(⋅) such that for any initial state 𝜁(t0) ∈ (t0) and any bounded B defined as

B ∶= sup
𝜏≥t0

(||lO(𝜏, 𝜁(𝜏),u(𝜏))||), (31)

the solution 𝜁(t) exists and satisfies

||𝜁(t)|| ≤ 𝛽(||𝜁(t0)||, t − t0) + 𝛾(B), (32)

for all t≥t0.

Proof. The proof follows from the fact that a system in closed-loop with an stabilizing MPC controller is ISS with respect
to a bounded additive performance index,44 in this case represented by the observability stage cost (22). Notice that the
fact that 𝜖1,𝜖2>0, in the definitions (23) and (24), guarantees that the observability stage cost is always bounded. Thus, a
value B<+∞ always exists. ▪
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Theorem 1 has two main implications. For the case where the only purpose of the control scheme is to drive
the system through highly observable trajectories, the latter theorem provides a set of sufficient conditions to guar-
antee that the closed-loop trajectory of (28) with the proposed NMPC scheme exists, is feasible, and bounded. This
can be achieved with a suitable design of a terminal set, terminal cost, and (an arbitrarily small) stabilizing stage
cost. In particular, a terminal set T(t) that satisfies Assumption 6 can be designed by the approaches described in
Alessandretti et al.44,85, or other approaches such as those described in Amrit et al.86 and Maree and Imsland43 may be
adopted.

In addition, Theorem 1 provides a qualitative analysis of the behavior of the closed-loop system when combining
the observability control problem and the stabilization control problem. Imposing a significant weight to the stabilizing
stage cost, the proposed scheme renders closed-loop trajectories that seamlessly balance the observability objective with
the stabilization objective. In practice, the state trajectory will converge to a bounded region around of the desired state,
where the size of such region increases with the magnitude of the observability stage cost and is used to improve the
observability properties of the closed-loop trajectories.

Remark 4. If, for some observation process, it is desirable to impose joint state constraints on x(t) and xe(t), this can be
implemented in (12) by modifying the constraints sets (t) and T(t). Recursive feasibility is in general lost in such cases
unless soft-constraints are applied, or additional assumptions and requirements on the primary and exogenous systems,
the NMPC controller and the speed of the observer (6) are imposed. See Findeisen et al.87 and Kögel and Findeisen88 for
further directions.

Remark 5. The proposed penalty approach is designed to drive the primary system to undertake information-rich trajec-
tories of the exogenous system and for sensor fault detection. Provided that there exists a trajectory xo (t; x(ti),u(t)) of the
primary system (1) that renders the exogenous system (20) and the sensor fault parameters in (21) observable, and that the
ratios kxe∕𝜖1 in lOxe

(⋅) and k𝜎/𝜖2 in l𝜎(⋅) are set sufficiently high such that the optimal cost J∗T(⋅) along xo (t; x(ti),u(t)) , t ≥ t0
is strictly less than the cost along any unobservable trajectory xu (t; x(ti),u(t)) , t ≥ t0, the proposed scheme will seek to
steer the primary system along xo (t; x(ti),u(t)). Hence, observability is preserved by optimality of the solution to (12),
provided that such a trajectory exists. This, in contrast to conventional stabilizing output feedback NMPC for which
there is no mechanism that prevents the controller to steer the system through unobservable or poorly observable
states.

6 NUMERICAL SIMULATIONS

This section illustrates the effectiveness of the proposed scheme via numerical simulations. We consider the problem
of estimating the position of a moving object or target by controlling a mobile vehicle with remote, relative sensing
capabilities. The primary system is the mobile vehicle, which is modeled as a nonholonomic unicycle-type vehicle

ṗ(t) = v(t)
(

cos (𝜃(t))
sin (𝜃(t))

)
, (33a)

𝜃̇(t) = 𝜔(t), (33b)

where p(t)=[px(t),py(t)]′ is the position and 𝜃(t) the heading of the mobile vehicle, and where v(t) and 𝜔(t) are the linear
and angular velocities, respectively. The control inputs u(t) are the velocities v(t) and 𝜔(t) bounded by the box constraints

|v(t)| ≤ 2, |𝜔(t)| ≤ 𝜋. (34)

State constraints are not present in the current example, but could, for instance, be one or several physical obstacles that
the mobile vehicle must circumvent. The dynamics of the exogenous system (moving object) is described by the double
integrator

ṗe(t) = ue(t) + we(t), (35a)

u̇e(t) = wv(t), (35b)
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where pe(t)=[pex(t), pey(t)]′ is position and ue=[uex(t), uey(t)]′ the velocities of the moving object, and we(t) is a disturbance
vector with zero-mean Gaussian noise. We add wv(t) as a zero-mean Gaussian signal to represent slow-varying changes
in the velocity vector.

The nominal observation model measures the relative position of the moving object in the frame of the mobile vehi-
cle using the combination of range and direction measurements. These observations y(t)=[yb(t),yr(t)]′ are composed of
bearing measurements

yb(t) = 𝜎1(t) arctan
(pex(t) − px(t))(
pey(t) − py(t)

) + vb(t), (36a)

and range measurements

yr(t) = 𝜎2(t)||pe(t) − p(t)||2 + vr(t), (36b)

where v(t)=[vb(t)′,vr(t)]′ denotes measurement noise and 𝜎(t)=[𝜎1(t),𝜎2(t)]′ the sensor fault parameters. We assume that
the mobile vehicle has noise-free access to its own state.

For the stabilizing and terminal cost, as well as the terminal set in the NMPC formulation (12), we adopt the con-
troller design described in Alessandretti et al.85 with prediction horizon T=0.7 s and sampling time 0.1 s. We implement
a continuous-discrete EKF for the observer (6) to estimate the state of the moving object, see, for example, Simon,89 and
the RLS scheme outlined in Section 4.4 to estimate the sensor fault parameters 𝜎(t) in (36). We set the covariance matrix
Q𝜎 in (26) to be diagonal with variance 𝛾2

𝜎 = 0.01. The variance of the measurement noise v(t) in (36) is set to 0.05. As
described in Section 4.5, we use MATLAB symbolic toolbox to compute the algebraic expressions for lOxe

(⋅) and l𝜎(⋅),
with r=2 for computation of Oxe . Furthermore, we use the ACADO toolbox90 in MATLAB to solve the optimal-control
problem (12) in the NMPC scheme. All computation are performed on an Intel Core i7-4600 processor with 16 GB
of RAM.

To illustrate the proposed scheme's ability to detect and compensate for sensor faults, we simulate the following fault
scenario: After t=7 s, the bearing measurement starts to slowly degrade in a Sigmoidal fashion with 𝜎1(t) evolving as

𝜎1(t) = 1 − 1
1 + e−a(t−ta)

, (37)

with a=−0.2 and ta=29, causing a sudden steep drop ending in a complete sensor fault after t=13 s. At t=19 s,
the bearing measurement becomes again healthy, while at the same time the range measurement starts to degrade
with a pattern similar to (37) with a=−0.9 and ta=29, that is, with a slower degradation in performance than dur-
ing the fault in the bearing measurement. The range measurement fault stabilizes at a partial fault with value
𝜎2=0.15. The velocities of the moving object, unknown to the mobile vehicle (primary system), is set to uex(t)=0 and
uey(t) = 0.01 sin(0.02t).

In Figure 2, we show simulations with the gain k𝜎 in the observability index lO𝜎
(⋅) set to k𝜎=1 and k𝜎=0, respectively,

and the gain kxe = 103 in both simulations for the index lxe (⋅). For both simulations, the primary system (mobile vehi-
cle) switches between orbiting around the moving object and exhibiting small excitations around its current path at a
distant from the object. For k𝜎=1 in Figure 2A, the mobile vehicle is seen to exhibit a more unstructured or changing
motion compared with the motion of the mobile vehicle for k𝜎=0 in Figure 2B. This is a result of the nonzero observ-
ability index lO𝜎

(⋅) that excites the mobile vehicle to improve detection of sensor faults, in addition to the preservation
of observability of the moving object by means of the index lxe (⋅). The orbiting motion of the mobile vehicle is a charac-
teristic that has been observed for similar systems.29,85,91 To compare these results of the proposed scheme, we show in
Figure 3 the case with no observability indices in the objective function (13), and hence only the stabilizing stage cost
ls(⋅) that seeks to keep the mobile vehicle sufficiently close to the moving object for the observation process. Upon onset
of the slowly developing fault in the bearing measurement after t=7 s, the primary system quickly loses its ability to
estimate the position of the moving object as seen from Figure 3A. Furthermore, the system fails to identify the sensor
faults displayed by the high 𝜎j(t) estimation errors shown in Figure 3B. This demonstrates the importance of adapting
the NMPC controller to reduced sensing capabilities caused by sensor faults in order to maintain the observation pro-
cess. Average computation time of (12) for each iteration of the NMPC scheme was 0.18 s with the ACADO software
implementation.
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F I G U R E 2 The position of the mobile vehicle, and the actual and estimated position of the moving object. The position of the mobile
vehicle is shown with a red dotted line before the onset of the bearing fault, with a purple line during the partial bearing fault, an orange line
during the complete bearing fault, and with a black line during the range fault [Colour figure can be viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 3 Simulation results with no observability indices in the objective function (13) of the NMPC controller, showing, A,
positions of the mobile vehicle and moving object and B, estimation errors of the sensor fault parameters. [Colour figure can be viewed at
wileyonlinelibrary.com]

Time series of the estimation errors |𝜎j(t) − 𝜎̂j(t)| for j=1,2 are shown in Figure 4 and display a significant reduction
in estimation error with the added observability index lO𝜎

(⋅) for the sensor fault parameters. Comparing the parameter
estimation errors for the simulations with k𝜎=1 and k𝜎=0, it can be observed that the simultaneous onset of healthy
bearing and degrading range measurement at t=19 s is particularly challenging for the case with k𝜎=0, that is, with no
active detection of the sensor faults. After t=20 s, the error of 𝜎2(t) for k𝜎=1, cf. Figure 4b, increases again after being
effectively reduced from the onset of the bearing measurement fault at t=19 s; This is caused by an additional reset-
ting of the covariance P𝜎 . For the displayed simulation with k𝜎=1, the mean square error (MSE) for the estimation of
xe(t) is MSExe = 1.02 × 10−2, and MSE𝜎=1.01×10−2 for estimation of 𝜎(t). Correspondingly, MSExe = 1.67 × 10−2 and
MSE𝜎=5.90×10−2 for the case with k𝜎=0, that is, with significantly larger estimation errors. Adding a small gain for

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 4 Estimation errors (absolute values) for the sensor fault-parameters 𝜎(t) for simulations with k𝜎=1 and k𝜎=0. Black dotted
vertical lines indicate onset of the incipient bearing fault at t=7 s, complete bearing fault at t=13 s, and healthy bearing and slowly developing
range fault at t=19 s. [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Mean square errors (MSE) for estimation of the state xe(t) of the exogenous
system and the fault parameters 𝜎(t) for increasing values of k𝜎 and a fixed value kxe

= 103 k
𝝈

MSExe
MSE

𝝈

0 1.33×10−2 5.20×10−2

0.5 1.09×10−2 2.19×10−2

1 1.05×10−2 1.62×10−2

10 2.92×10−2 2.73×10−2

50 2.78×10−2 2.65×10−2

100 2.10×10−2 1.98×10−2

Note: The MSE values are average values from
four simulations of each given value of k𝜎 (row).

the observability index lO𝜎
(⋅) in the NMPC stage cost thereby leads to faster fault isolation and magnitude estimation

in the example, and improves the primary system's ability to quickly adapt the controller to maintain the observation
process.

The control performance of the proposed NMPC scheme depends on the relative difference in the gains kxe and
k𝜎 in the decomposed observability index (22). To elaborate on the impact of this gain tuning, we show in Table 1
estimation errors for simulations with increasing values of k𝜎 , keeping kxe fixed at the nominal value 103. Due to
stochastic variables in the example, the MSE values in the Table are computed as average values of four simulations
for each value of k𝜎 . The MSE values are effectively reduced for small values of k𝜎 , but eventually increases for higher
gains. At higher values of k𝜎 , the observability index lO𝜎

(⋅) for the sensor fault parameters thus deteriorates the obser-
vation process of the exogenous system, causing too high excitations of the primary system for improving the fault
detection capabilities. For the given example, a reasonable choice for the gain k𝜎 would thus be a value between 0.1
and 1.

Finally, in Figure 5 we show the observability indices lOxe
(⋅) and lO𝜎

(⋅) for the two simulations with k𝜎=1 and k𝜎=0,

respectively, shown in Figure 2. The saturation (limit) value for lOxe
(⋅) is set to kxe

𝜖1
= 106, that is, the resulting observability

stage cost when Oxe loses rank and xe(t) is rendered unobservable. Similarly, the saturation limit for lO𝜎
(⋅) is set to k𝜎

𝜖2
= 105

for the case with k𝜎=1. For both simulations, the observability indices lOxe
(⋅) and lO𝜎

(⋅) are far below their saturation limits,
showing that both the state of the exogenous system and the sensor fault parameters are observable during the entire

http://wileyonlinelibrary.com
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(A) (B)

F I G U R E 5 Time series of the two decomposed observability indices in (22) for the exogenous state for different values of k𝜎 . Saturation
(limit) value for lOxe

(⋅) is kxe
𝜖1

= 106, while for lO𝜎
(⋅) the value is k𝜎

𝜖2
= 105. Black dotted vertical lines indicate onset of incipient bearing fault at

t=7 s, complete bearing fault at t=13 s, and healthy bearing and onset of slowly developing range fault at t=19 s. Note that lO𝜎
(⋅) ≡ 0 for the

blue dashed line with k𝜎=0. [Colour figure can be viewed at wileyonlinelibrary.com]

simulation horizon. As a result, whether to add a small index lO𝜎
(⋅) to improve detectability of sensor faults is eventually

a control-design criterion, yielding improved sensing capabilities of the exogenous system while causing more exciting
trajectories for the primary system.

7 CONCLUSIONS

This article has presented a NMPC scheme for controlled observation processes with active sensor fault-detection and
estimation. The proposed scheme lends itself to adaptive FTNMPC and does not, compared with the majority of FTN-
MPC configurations in the literature, rely on switched controller reconfiguration set externally by a fault diagnosis unit.
Moreover, opposed to relying on a set of redundant healthy sensors that can be activated upon detection of a fault, the
controller adaptively adjusts the control inputs to the primary system to the new fault-parameter estimate and seeks to
maintain observability of the exogenous system by using the remaining sensing capabilities. Yet, the primary system's
final ability to retain an effective observation process of the exogenous system upon loss of a sensor depends on the par-
ticular system structure as well as sufficient nominal sensing capabilities of the primary system. The decomposition of
the observability index into separate terms for the state and fault parameters yields a tractable NMPC formulation that
may be regarded as an approximate active learning strategy for jointly improving state and parameter estimates. In addi-
tion to fault detection, the proposed scheme may also account for a known or predicted loss of sensing, for instance,
planned, time-limited drop-outs of a sensor due to physical barriers between the primary and exogenous systems. Finally,
an interesting extension of the proposed scheme is to model sensor faults by a nonparametric approach such as Gaussian
processes models.
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