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Minerals and metals are of uttermost importance in our society, and mineral resources on
and beneath the deep ocean floor represent a huge potential. Deciding whether mining from
the deep ocean floor is financially, environmentally and technologically feasible requires
information. Due to great depths and harsh conditions, this information is expensive and
time and resource consuming to obtain. It is therefore important to use every piece of data in
an optimum way. In this study, data retrieved from images and expert knowledge were used
to estimate minimum and maximum nodule abundances at image locations from an area in
the Clarion-Clipperton-Zone of the equatorial North East Pacific. From the minimum and
maximum values, box cores and the spatial correlation quantified through variogram, a
conditional expectation and associated uncertainty were obtained through the Gibbs sam-
pler. The conditional expectation and the uncertainty were used with the assumed certain
abundance data from the box cores in a kriging exercise to obtain better informed estimates
of the block by block abundance. The quality assessment of the estimations was done based
on distance criterion and on kriging quality indicators like the slope of regression and the
weight of the mean. From the original image locations, alternative image configurations were
tested, and it was shown that such alternatives produce better estimates, without extra costs.
Future improvements will focus on improving the estimation of the minimum and the
maximum values at image locations.

KEY WORDS: Ordinary kriging, Conditional expectation, Gibbs sampler, Variance of measurement
error, Resource classification.

berger and Stenqvist 2018; Teske 2019). Although
the remaining metal resources onshore seems to be

Society needs minerals. Minerals and metals
constitute important ingredients in everything from
cars, over toothpaste to mobile phones. To replace
petroleum-based energy production with renewable
energy and e-mobility requires significant amounts
of certain metals such as copper, nickel, cobalt and
rare earth elements (REEs) to name a few (Mén-
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abundant for, e.g., copper (Singer 2017), the uneven
global distribution of minerals and metals as well as
the growing ecological pressure on terrestrial de-
posits call for alternative sources due to high future
demand (Elshkaki et al. 2018).

The deep sea offers a great potential for min-
eral resources (Cathles 2011; Hannington et al. 2011;
Hannington 2013; Singer 2014; Ellefmo et al. 2019),
but there is still a significant amount of uncertainty
associated with any future mining of the deep sea.
The uncertainties are linked to social, legal, eco-
logical, technical and geological factors. Mineral
resources on the deep ocean floor can roughly be
categorized into seafloor massive sulfides, cobalt-
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rich ferromanganese crusts and manganese nodules
(Sharma 2017). These deposits contain significant
and varying amounts of copper, zinc, iron, gold, sil-
ver, manganese, cobalt, nickel and REEs. The de-
posits are situated on or beneath the seafloor at
depths ranging from 800 to 6000 meters.

According to increasing geological confidence,
an identified mineral resource can be classified as an
inferred, an indicated or a measured resource
(JORC 2012). The classification is performed by a
competent or qualified person, and it is dependent
on the amount, quality and characteristic of avail-
able geodata. The competent person must have at
least 5 years of experience relevant to both the style
of mineralization, the type of deposit and the per-
formed task. A task can be resource estimation and
classification or planning and execution of explo-
ration activities and presentations of the results.
Obtaining large amounts of high-quality data from
the deep ocean floor is expensive and time- and re-
source-intensive. It requires exploration cruises with
highly skilled scientists and operators and expensive
equipment. The necessary support vessel needs to be
fitted with accommodation, laboratories and systems
to handle launch and recovery of remotely operated
and autonomous underwater vehicles used in geo-
data collection and site inspections. It is of uttermost
importance that the time on site is spent efficiently
and that the collection of high-quality geodata is
maximized. The deep ocean floor is vast and under-
explored. Geodata utilization and uncertainty
quantification is therefore a key to prioritize explo-
ration efforts and do resource estimations, making
the right decision (Eidsvik et al. 2015). This means
exploiting all data for potential information.

This study focuses on resource estimation of
manganese nodules. Geodata necessary to estimate
the abundance of nodules have been collected tra-
ditionally with box cores. These squared cores cover
roughly an area of 1/4th square meter and are pu-
shed by gravity down into the mud on the ocean
floor. A mechanism closes the core to contain the
material on the ocean floor covered by the core. One
box core takes only one increment per launch and
recovery, and with water depths down to 6000 m,
such sampling is time consuming. Once the incre-
ment is recovered onboard the support vessel, it can
be processed and analyzed. A box core increment is
associated with low uncertainty where most of the
uncertainty is associated with the positioning and the
small area of the sampling site. To reduce the re-
quired amount of box core data, this study investi-
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gates the potential benefit of image data where it is
possible to estimate a minimum and maximum
nodule abundance based on a combination of expert
knowledge and information in the image. Abun-
dance expectations derived through such an ap-
proach are termed “‘soft’” and are proxies associated
with significant uncertainty. However, image data
are relatively cost efficient, and it is possible to
collect huge amount of image data from a large area
just during few dives. The question that arises is
therefore whether a large amount of uncertain data
(images) can replace a low amount of certain data
(box cores).

Initial tests were run by Ellefmo and Kuhn
(2018), but, in that study, it was possible to exploit a
direct correlation between the estimated abundance
from the images and real abundance measured by
the box cores. A similar recent study focused on
small nodules and exploited similar correlations
(Mucha and Wasilewska-Btaszczyk 2020). The cor-
relation approach, however, collapses once larger
nodules are included because the larger nodules are
covered with more sediments than the smaller ones
(Kuhn and Rathke 2017). Gazis et al. (2018) at-
tempted to use hydroacoustic data in combination
with optical imagery and artificial intelligence. They
managed to estimate the abundance by using
acoustic and optical data and a predictive random
forests machine learning model. Yoo et al. (2018)
used acoustic backscatter data and reported a good
correlation between backscatter intensities and
mean nodule abundances.

In the present study, the minimum and maxi-
mum abundances are merged with available box
core data into the kriging with inequalities algorithm
to calculate a conditional expectation at each image
location and associated uncertainty (cf. Chilés and
Delfiner 2012). The conditional expectations and
uncertainties are then plugged into an ordinary
kriging algorithm along with the available box core
data. This paper illustrates the methodology on a
case from the Clarion-Clipperton-Zone of the
equatorial North East Pacific. Resource estimation
quality indicators were used to assess the effect of
introducing the data retrieved from the images.
Different image configurations with images at their
original location, at random locations and along
transects covering the whole area of interest were
tested. No attempts were made to classify the re-
source since more work is needed to improve the
quantification of the minimum and maximum
abundance values from the images.
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Figure 1. General bathymetry of the working area (large figure) and location of the working area in the NE Pacific (small figure). The
exemplary data for this study were derived from the plateau area in the NE corner of the large figure.

BACKGROUND
Geological Background

The working area is located about 900 nautical
miles (~ 1.700 km) southwest of Manzanillo, Mex-
ico, in the equatorial NE Pacific Ocean (Fig. 1). The
seafloor depth of this area ranges between 4000 and
4300 m in general and consists of plateau-like areas,
numerous seamounts rising between a few hundred
to more than 2000 m above their surroundings as
well as NNW-SSE-oriented ridge and graben
structures (Fig. 1) (Kuhn et al. 2020). These ridge
and graben structures seem to be bounded by faults,
and some of those faults may still be active (Kuhn
et al. 2017a, b). The seafloor of the plateau-like areas
can be smooth and flat, and these are the regions,
which are of interest for Mn nodules exploration
(Kuhn et al. 2020). The near-surface sediments
consist of pelagic clay and siliceous ooze with trace

amounts of coarser-grained detrital and volcanic
material (Kuhn and Shipboard Scientific Party 2015)
and (Heller et al. 2018). The surface sediments
contain up to 0.6 wt.% organic carbon associated
with sedimentation rates of 0.35-0.5 cm/kyr (Mewes
et al. 2014; Kuhn et al. 2017a, b).

Manganese nodules mainly occur on the sedi-
ment surface or within the upper 10 cm of the sed-
iments in the abyssal plains of the working area.
They form concretions of different shape and size,
but the main shapes are spheroidal or ellipsoidal and
the main size class is, in the present case, bimodal
with mean values of the long nodule axes being
about 3 cm and 6 cm, respectively (Kuhn et al.
2020).

There are two principal processes leading to the
formation of manganese nodules in deep-sea abyssal
plains, namely hydrogenetic and diagenetic. Hydro-
genetic formation means direct precipitation of Fe
oxyhydroxides and Mn oxides from oxygen-rich



near-bottom seawater (Koschinsky and Hein 2003).
Diagenetic precipitation occurs within pore-space of
deep-sea sediments because of Mn oxide precipita-
tion from almost oxygen-free (suboxic) pore water
upon contact with oxic near-bottom water (Hein
et al. 2020). Both processes lead to the formation of
different layers around a nucleus forming the Mn
nodule. Their alternation is mainly controlled by
paleo-climatic conditions in the upper ocean.
Hydrogenetic precipitation enriches metals like Co
and rare earth elements in the nodules, whereas
copper and nickel are enriched mainly by diagenetic
processes (Kuhn et al. 2017b).

Mineral Resource Estimation and Classification

Geostatistics is a branch of spatial statistics, and
it is a framework to model a spatial or temporal
phenomenon. It is the preferred methodology used
in mineral resource estimation and classification
(Journel and Huijbregts 1978; Rossi and Deutsch
2013), but it has found extensive uses in environ-
mental studies, soil sciences to model nutrients,
meteorology and public health (Goovaerts 1997). It
is used to estimate values at unsampled locations
and the associated uncertainty, and it includes both
univariate and multivariate implementations. A
mineral resource can be classified as measured,
indicated or inferred dependent on the amount and
quality of available geodata (JORC 2012). The
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International Seabed Authority has published their
own code (ISA 2015) for publishing nodule estima-
tion results.

In a mining and mine planning context, mineral
resource estimation can be used for two purposes
(Blom et al. 2019): (1) short-term mine planning or
(2) long-term mine planning. In short-term mine
planning, the challenge is to estimate the most
accurate value in a block in order to decide whether
a block that is inside the ultimate pit or mining area
should be mined and deposited or mined and sent to
the processing plant. Minimizing conditional bias is
important in this case (Isaaks 2005), and any esti-
mate of global resource will be significantly
smoothed if the conditional bias is minimized.
Assuring a minimized conditional bias is achieved by
adjusting the kriging search neighborhood until the
slope of regression between the estimate and the
unknown true value is close to 1 (Armstrong 1998;
Isaaks 2005). In long-term mine planning, which is
the focus of this work, the challenge is not to find the
most accurate value of a specific block, but rather
render it possible to estimate some tonnage and
grade above some cutoff. The focus on minimizing
the conditional bias is not important in this case as
argued by Nowak and Leuangthong (2017). Further,
Armstrong (1998) warned about using a smoothed
block model for long-term mine planning. Kriging
quality indicators that can be used to assess the
performance of the estimation are summarized in
Table 1. Knobloch et al. (2017) used neural net-

Table 1. Kriging quality indicators.

Kriging quality indicators Explanation

Goal References

Lagrange multiplier

Parameter that makes sure that ordinary kriging is unbi- Low

Snowden (2017)

ased. It increases with increasing extrapolation, poor

data coverage and/or clustering
Mean distance

The average distance between the center of the blocks

Shorter the better Rossi and Deutsch (2013)

and the samples that are used in the estimation of the

blocks

Slope The slope in the regression between the estimate and the Close to 1 to
unknown value at a given location and estimate

Kriging standard deviation = The square root of the kriging variance that is minimized Low

Armstrong (1998)
minimize the

conditional bias

Rossi and Deutsch (2013)

when the optimal weights are calculated

Weight of mean (WoM)

It quantifies how much the estimation relies on the esti- Close to zero

Rivoirard (1987)

mated global mean (in the ordinary kriging imple-
mentation). The lower the weight of mean, the better
because the estimate is then controlled by the data, not

the global mean
Relative prediction error

Twice (1.96) the ratio between the kriging standard Low

Knobloch et al. (2017)

deviation and the estimate. Can be given as a per-

centage or a decimal number
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works and classical kriging to estimate nodule re-
sources and used the relative prediction error (RPE)
explained in Table 1 to classify the resource.

Mineral resource classification is a subjective
endeavor. The competent or qualified person (CP/
QP) assesses the data quality and the amount of
data, applies a fit for purpose estimation technique
and classifies the mineral resource according to some
criteria. Rossi and Deutsch (2013) discussed the use
of such criteria summarized in Table 1, and exam-
ples are given in Benndorf (2015) and Mucha and
Wasilewska-Btaszczyk (2020). Armstrong (1998)
argued against the use of the kriging variance as a
kriging quality indicator because it is reported to be
relatively insensitive to the data configuration. What
might add to the use of kriging variance is the co-use
of the Lagrange multiplier (Table 1) (Snowden
2017). Armstrong (1998) argued in favor of the
weight of mean and the slope, both explained briefly
in Table 1, especially when optimizing the search
neighborhood to minimize conditional bias. Another
option presented by Rossi and Deutsch (2013) is to
estimate through more than one kriging pass and
vary the requirements from pass to pass, normally
from more to fewer requirements. The differences
from kriging pass to kriging pass can materialize it-
self in different number of sectors in the search
neighborhood, different number of maximum con-
secutive empty sectors, the size of the neighborhood
and minimum number of samples inside the search
neighborhood. Such requirements can be combined
with requirements on the slope, the weight of mean
and the kriging variance in the final resource clas-
sification. In addition, conditional simulation repre-
sents an approach that provides a model of local and
global uncertainty and which can be used to assess
the probability of having a block grade above some
cutoff (Boucher and Dimitrakopoulos 2012). Con-
ditional simulation can also be used to quantify the
conditional bias (Isaaks 2005).

Using Auxiliary Information in Resource
Estimation

Auxiliary data are extra or secondary geodata
that have the potential to improve the estimation
precision and accuracy in geostatistics. Wackernagel
et al. (2002) presented approaches to take advantage
of auxiliary information including kriging with
external drifts where a primary variable typically at
borehole location is combined with a secondary

variable providing low(er) frequency/resolution
information about the variable(s) under study.
Abrahamsen and Benth (2001) presented a
methodology to estimate trend coefficients given
both exact data and inequality constraints. Omre
(1987) developed Bayesian kriging as a generalized
form of kriging with an external drift. Cokriging and
collocated cokriging is presented in Wackernagel
(2010) and Chiles and Delfiner (2012). Cokriging is
an approach used if the dataset consists of correlated
variables where one variable dominates the other in
terms of the number of data points or if the variables
must be estimated simultaneously due to relation-
ships between the variables. Collocated cokriging is
used if one of the variables is known at the target
points. Eidsvik and Ellefmo (2013) looked at the use
of uncertain auxiliary data in resource estimation.

DATA

“Hard data” for this study were collected using
a so-called box corer (Fig. 2). With this device, a
block of deep-sea sediment measuring 50 cm by
50 cm of seafloor area and 30-40 cm thickness was
sampled at 41 locations. The typical distance be-
tween neighboring sampling locations was between
2500 and 3000 m. See Figure 5. The Mn nodules
lying on top of the sediments or within the first
10 cm were collected manually from the box corer,
and the sum of their weight was measured immedi-
ately after recovery of the box core on board the
vessel. This way the so-called wet nodule abundance
in kg/m? was calculated. This nodule abundance and
the metal content of the nodules are the major
parameters that control the economic value of the
Mn nodule deposit (Knobloch et al. 2017). However,
taking box core samples is time consuming and thus
expensive. It takes about 4 h to sample one box core
increment in about 4200 m water depth. Thus, only
about six increments can be taken per day. Kuhn
et al. (2016) showed that the average spacing of box
corer increments should be in the range of about
1300 to 4700 m in order to reach the indicated re-
source level of a Mn nodule deposit given that box
cores are the only source of information.

Box core sites can be linked by video mapping
of the seafloor. For this study, the German video
sledge STROMER was used; it is equipped with
several high-resolution video and photo cameras
(Fig. 3). The sledge is permanently connected with a
surface vessel via a fiber optical cable during the
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Figure 2. Box corer used for sampling of seafloor sediments and nodules (left panel) as well as surface (upper right) and downcore profile
(lower right) of the sediment block sampled.

deployment. The vessel sailed with a speed of about
1 knot along pre-defined transects, with the STRO-
MER being towed behind the vessel and kept about
3 m above the seafloor. Images were taken auto-
matically every 5 or 10 s, and underwater positions
of the video sledge were calculated using a combi-
nation of hydroacoustic and inertial navigation sys-
tems. In total, 5504 images were taken and included
in this analysis. The accuracy of the positioning for
each picture is around 4 5 m (Rithlemann and
Shipboard Scientific Party 2018).

For the analysis of underwater images, BGR
together with the University of Bielefeld developed
an automated image analysis software called
“Mangan Analyzer.” The objective of this software
is to detect manganese nodules automatically and
reliably in many seafloor images. The core algorithm

for the analysis of seafloor images with special focus
on the estimation of manganese nodule coverage is
the so-called hyperbolic, self-organizing map
(HSOM) as a neural network approach (Schoning
et al. 2012). The process to map single nodules
within an image requires several steps including
illumination correction, feature transformation,
machine learning, quantification, and post-process-
ing (Fig. 4).

Figure 5 shows the box core and the image
locations. The area covered by the images followed a
slightly skewed distribution that varied between
0.6 m” and about 12 m? with a median area of 5.5 m*
and a mean area equal to 5.7 m?. This differed from
the 0.25 m?* covered by the box cores data, but both
images and box core data were, in this study, as-
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Figure 3. BGR video sled STROMER used for this study (Photo: S. Sturm).

sumed as point data compared to the 1 km? large
areas/blocks being estimated.

The area of each nodule in each image was
calculated, and the nodules were divided into dif-
ferent size classes. A mathematical relationship be-
tween the number of nodules per size class and their
weight was established based on box core stations,
and thus the total weight per image in kg/m?* can be
calculated. The number of nodules per size class and
not the measured nodule area was used as a basis for
this relationship because it turned out that nodules
were arbitrarily covered by sediments and that there
was only a weak statistical relationship between
coverage and abundance. It was assumed that some
part of every nodule was visible in the images. The
nodule abundance from images calculated this way
still was by factor of 1.1-3.7 lower than the nodule
abundance measured in box cores along the video

transects. Therefore, the abundance calculated from
images was considered minimum abundance only. In
this study, the maximum abundance was calculated
by multiplying the obtained minimum value by the
correction factor 2.21 and 3.71 for the northern and
the southern group of images in Figure 5, respec-
tively. These correction factors were the maximum
ratios between nodule abundance derived from box
core stations and the abundance from the image
analysis at the position of each box core station.
Summary statistics of the parameter under study is
given in Figure 6. There were 41 box cores with an
average abundance of 22.8 kg/m?, with minimum
and maximum values of 10.2 and 36.1 kg/m?,
respectively.

The minimum and maximum values estimated
from the 5504 images are given in Figures 7 and 8.
The lowest minimum value was 2.2 kg/m?, and the
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largest minimum value was 17.1 kg/m?. Corre-
sponding maximum values were 7.3 kg/m* and
57.3 kg/m?. The mean minimum and maximum val-
ues were 10 and 28.2 kg/m?, respectively. The max-
imum values varied more than the minimum values
due to the use of the two different multipliers (2.21
and 3.71). Figure 9 shows a scatterplot revealing the
two populations of minimum and maximum values
originating from the application of the two multi-
pliers. The sub-population characterized by the
lower slope of the two corresponds to the north-
ernmost (131STR) transect in Figure 5. This indi-
cates that the northernmost transect has a lower
maximum abundance for the same minimum abun-
dance and thereby a lower uncertainty due to a
smaller nodule size.

Given the minimum and the maximum values in
Figures 7 and 8, a pseudo-standard deviation of a
distribution satisfying the minimum and maximum
boundaries can be estimated from the range formula
(Hozo et al. 2005), thus:

Max — Min

Stdvpseudo = 4 (1 )

Feature Description

.

Figure 4. Working steps of the image processing software MANGAN ANALYZER.
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The pseudo-variance is the squared pseudo-s-
tandard deviation calculated from Eq. (1). The his-
togram of this pseudo-variance is given in Figure 10.
The mean was 24.1 (kg/m?)?, and the most probable
value (the mode) was close to 12 due to the posi-
tively skewed distribution. This value was used to
validate the quantified uncertainty at images loca-
tion.

There are studies that reported good correla-
tions between nodule abundance and areal charac-
teristics of nodules retrieved from images (e.g., Felix
1980; Lipton et al. 2016; Mucha and Wasilewska-
Btaszczyk 2020). For the area under study, it was
difficult to find such reliable correlations due to the
multimodal nodule size distribution in the area
(Kuhn et al. 2020). Figures 11 and 12 show the
relationship between the total nodule coverage in
area-% and the calculated minimum abundance in
kg/m®. Two distinctly different relationships can be
identified per transect. The reason is regional dif-
ferences in nodule size distribution, and to what
extent the nodules are covered by sediments. Gen-
erally speaking, larger-sized nodules (long nodule
axis > 4 cm diameter) are covered by sediments to a
higher degree, and if they dominate a location, they
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Figure 5. Base map showing the box core and original image location. Box core increments taken systematically at all squares. Color and
size of the squares indicate the abundance. Images were collected along the southeastern (102STR) and the northwestern (131STR)
transects. The univariate statistics show the number of samples and the nodule abundance given in kg/m* Number of samples consists of

5504 images and 41 core box increments.

may obliterate the relationship between areal nod-
ule coverage and nodule abundance (Kuhn and
Rathke 2017).

To study the effects of different data configu-
rations, tests were executed where the images have
been placed randomly in the area covering the box
core data + 1000 m and in transects. Images at a
random location (Fig. 13) represented an opera-
tionally unlikely scenario but can be used to assess
how good in terms of the kriging quality indicators
given in Table 1 an estimation can be. The scenario
with all the images distributed along transects

(Fig. 14) that covered the whole area was opera-
tionally a more realistic scenario that conceptually
can be compared to onshore in-fill drilling in
exploration.

The minimum and maximum values at images
points were kept although the image positions have
changed, and new conditional expectations and
variances of measurement errors at image locations
were estimated using the Gibbs sampler explained in
the next section. This is not realistic because new
minimum and maximum values should have been
estimated at the new locations. Therefore, a com-
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Mean: 22.8117
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Figure 6. Summary statistics and histogram showing
the characteristics of the abundances collected with
the box cores.

Nb Samples: 5504
Minimum: 2.1917
Maximum: 17.0875
Mean: 9.9709
Std. Dev.: 2.5010

Frequencies
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Figure 7. Summary statistics characterizing the
minimum abundances in kg/m? obtained from images.

parison between the estimates and the RPE ob-
tained with only box core data and those obtained
with images at random location or in transects was
not relevant. The slope, the weight of mean, the
distances and the kriging standard deviation that do
not depend on the prediction can, however, be
compared to assess the effects of different data
configurations.
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Nb Samples: 5504

Minimum: 7.2784
Maximum: 57.3337
Mean: 28.1924
Std. Dev.: 8.4185

0.15 |

.10
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o
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Max_Abund_wet_kg_qgm

Figure 8. Summary  statistics  characterizing the
maximum abundances in kg/m* obtained from images.

METHODOLOGY
Linear Geostatistics

The necessary theoretical framework for geo-
statistics was developed in the 1960s by Matheron
(1963) based on empirical work performed by the
South-African mining engineer Daniel Krige in
1951. Geostatistics and its application to mining has
been described several textbooks, including Journel
and Huijbregts (1978), Goovaerts (1997), Armstrong
(1998), Grunwald (2005), Buyong (2007) and Chiles
and Delfiner (2012). In his publication in 1963,
Matheron introduced the term and concept of the
regionalized variable and he defined it as “‘sensu
stricto, an actual variable, taking a definite value in
each point of space”. The regionalized variable Z(x)
at location x, can be described conceptually by a
structured component (m(xy)), a spatially correlated
random component &'(xy) and a spatially uncorre-
lated random component &” (xp), thus:

Z(x0) = m(xo) + &' (x0) + £"(xo) (2)

The structured component m(xg) is called the
drift (Matheron 1963), and it represents the mean of
the regionalized variable at location x,. The spatially
correlated random component comprises fluctua-
tions around this drift. Matheron (1963) termed
Eq. 2 the universal model of spatial variation. Geo-
statistics has a broad area of use and both the drift,
the spatially correlated fluctuations and the spatially
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Figure 9. Scatterplot showing two populations of minimum and maximum values.

Nb Samples: 5504

T Minimum: 0.99
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Mean: 24.14
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Figure 10. Summary statistics of the pseudo-variance (the pseudo-
standard deviation squared) calculated from the minimum and maximum

abundance values (kg/m?).

uncorrelated random component, are properties that
are specific and unique for the investigated phe-
nomenon whether it is geology, meteorology or so-
cial sciences.

The regionalized variable is normally so com-
plex that a deterministic formulation is not feasible.
A probabilistic framework is required (Hans
Wackernagel 2010). In most applications of geo-
statistics, this probabilistic framework is based on a
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Figure 11. Relationship between total nodule
coverage and calculated minimum abundance in
the southeastern transect (102STR). Two distinctly
different populations and relationships can be
identified. Legend indicates point density in the
scatter plot. Coverage varies between 6% and 57.5%
with average of 27.5%. Minimum abundance varies
from 2.2 to 15.5 with average of 9 kg/m”.
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Figure 12. Relationship between total nodule
coverage and calculated minimum abundance in
the northwestern transect (131STR). Two distinctly
different populations and relationships can be
identified. Legend indicates point density in the
scatter plot. Coverage varies between 7.1% and
59.2% with average of 33.2%. Minimum abundance
varies from 3.3 to 17.1 with average of 10.8 kg/m>.
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Figure 14. Images located in transects covering the area
of the box core data (black squares). Colors indicate the
conditional expectation at image location. Size of black
squares is proportional to abundance.

modeling of the spatial correlation using the vari-
ogram, y. The variogram quantifies the average
squared difference between realizations of the
regionalized variable, and it is used to find the
weights /; that minimize the estimation variance of
the linear estimator Z'(x), thus:

Z*(X) = Zil * Z(Xi) (3)

L

Z(x;) represents data at locations x; and /; are the
associated weights. Different geostatistical imple-
mentations make different assumptions on the
properties of the drift, m(xy). Ordinary kriging as-
sumes that the drift is unknown, but constant inside
the study area. By introducing the Lagrange multi-
plier u that ensures that the estimator Z (x) is
unbiased, the kriging system used to calculate the
optimal weights that minimized the estimation
variance can be expressed by Egs. 4 and 5 (Arm-
strong 1998):

N

Z),iy(xhxj)—k,u:?(x,-,V)? i:1,2,...,N (4)
=

i=1

sasenap The 7(x;x;) is the variogram value between the
L 23 data points at locations x; and x; that are used in the
perso| (ACEIECEECE NN - prediction of the volume or block V, and the 7(x;, V)
mems| LA EEE . @ w N . is the average variogram value between the data-
Suoroo) Wi x W W 13 points and the V. The kriging variance is given by
| ROl N B Eq. (6). The kriging standard deviation is the square
e | PRERMSERRRNN T ! root of this kriging variance.
785 790 795 800 805 810
X (km) W2 N
Figure 13. Images located randomly in the area of the a%( = ?(xb V) - ?(Va V) +u (6)
box core data (black squares). Colors indicate the J=1

conditional expectation at each image location. Size of
black squares is proportional to abundance.
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Gibbs Sampler

The Gibbs sampler is a variant of the Me-
tropolis—Hastings algorithm (Robert 2015); it is used
to sample from multivariate distributions by sam-
pling systematically from the conditional distribu-
tion at each sample location. The applications of the
Gibbs sampler vary widely from the use in meteo-
rology (Onibon et al. 2004), environmental studies
(Michalak 2008) to social sciences (Lynch 2007) and
specifically in psychology (Yildirim 2012) and geo-
sciences (Hansen et al. 2012). It was introduced to
Bayesian statistics with the work done by Gelfand
and Smith (1990).

In the present work, the datasets consist of hard
data represented by the box core analyses and soft
data represented by the images and the estimated
minimum and maximum values. The algorithm used
in this work comprises the following the workflow
implemented in the geostatistical software Isatis™:

1. Transform hard data and » minimum and n
maximum values defining the inequalities into
Gaussian space (N(0, 1)). Store the anamor-
phosis for back-transformation into original
data space and subsequently the calculation of
the conditional expectation and associated
uncertainty.

2. Calculate the experimental variogram of the
Gaussian hard data and fit a variogram model.

3. Initialize a vector of length n with values satis-
fying the minimum and the maximum limits at
each soft data location; x’ = x%,..., x,, t = 0.

4. For t = 0, 1, 2,... draw on random an index
i between 1 (one) and n.

5. Use simple kriging (the expectation is known)
to estimate a value (z;) and the kriging standard
deviation (o;) at location i from the hard data
and x%,...x%;, xt,,...,x%. This would be all hard
data and all soft data except the value at loca-
tion i. A unique neighborhood is used to ensure
that all data are included in the simple kriging
step.

6. Draw a value s from the conditional distribution
s ~ N(z;, ;) and assign it to location i.

7. Assign x"' = x4, xbxl,, s, xbg. ok

8. Back-transform x"*! to real data space.

9. Store the back-transformed version of x

10. Repeat steps 4-10 until convergence or the fixed
number of simulations has been reached.

11. Calculate the conditional expectation as the
arithmetic mean of the stored back-transformed

t+1.

values and the associated standard deviation at
each soft data location. The conditional expec-
tation is the expected abundance at the image
locations given the minimum and maximum
constraints, the box core data and the variogram
model quantifying the spatial correlation.

In our case, the early values are within bound-
aries because they have been sampled to satisfy the
minimum and maximum limits, but these early val-
ues might not be good representatives of the final
distribution. Three Gibbs sampler runs were exe-
cuted to check for consistency. The conditional
expectation and the associated standard deviation
were used as input with the hard data in kriging with
variance of measurement error following the work-
flow implemented in Isatis™.

Kriging with Variance of Measurement Error

Kriging with variance of measurement error is a
procedure that enables the incorporation of data
associated with different levels of uncertainty. The
ordinary kriging system as used in this study on
matrix form is given as

Mmoo Y2 . v 1 1 7(x1, V)
Y21 Y22 Jov 1 Z) 702, V)

YL YN2 B N 1 AN P(xn, V)
1 1 I 1

(7)

Including uncertain data, the extra nugget effect

(o,) associated with the (more) uncertain data is

added to the diagonal of the variance—covariance
matrix (Heuvelink et al. 2016):

Y11+ ox1 Y12 v 1 %l
721 Y22 + 0x2 v 1 A2
N1 N2 W T o 1| | iy
11 1 01l u

?(xla V)

?(xza V)

P(xn, V)

1
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Table 2. Variogram model for the original abundance data.

Sill Directional scale, N70E/N250E Directional scale, N160E/N340E
S1, nugget 3.8
S2, spherical 17 700 m 700 m
S3, spherical 17 3400 m 13,000 m
Total sill 37.8

Kang et al. (2017) used a similar approach in
their study when they introduce measurement errors
in the spatial prediction of soil moisture. Adding the
extra nugget effect as indicated by Eq. (8) can be
compared to have more data further away from the
target block because these points are associated with
a higher variogram value.

Kriging Parameterization
Variogram Model

An experimental variogram was estimated for
both the original abundance data and its Gaussian
transformation. Both were rotated N70E to account
for anisotropy. The sills and direction scales are gi-
ven in Table 2. A graphical representation of Ta-
ble 2 is shown in Figure 15. The variogram model of
the Gaussian transformed hard data is given in Ta-
ble 3. Given only 41 box core data, the anisotropy
can be questioned, but the identified directions
correspond well with the NNW-SSE trending ridge
and graben structures shown in Figure 1.

Block Size and Search Neighborhood

The block size was set to slightly smaller than
the distance between the hard data, i.e., block size of
1 km x 1 km. This is in accordance with recom-
mendations by Armstrong (1998) and Hekmat et al.
(2013), and it considered out of scope for this study
to optimize the block size and the search neighbor-
hood configuration. The search neighborhood used
in the kriging step was rotated according to the an-
isotropies with the long-axis-oriented N160E. The
short axis and long axis of the search ellipsoid were
set to 2900 m and 11,250 meters, respectively. This
corresponds roughly to the ratio between the
directional scales for variogram structure 3 in Ta-
ble 2. The search neighborhood was divided into

eight sectors, and the maximum number of consec-
utive empty sectors was set to 2. This ensured
interpolation rather than extrapolation. The opti-
mum number of samples per sector was set to 2
giving an optimum number of samples of 16. The
minimum number of samples was fixed to 3.

RESULTS
Conditional Expectations at Image Location

From Figures 16 and 17, it can be seen that the
difference between the maximum and the condi-
tional expectation was slightly larger than the dif-
ference between the conditional expectation and the
minimum. This means that the distribution at each
soft data point was slightly skewed with a tail toward
higher values.

Figures 18 and 19 show the conditional expec-
tation and the associated estimated variance,
respectively. It can be seen from Figure 18 that the
average conditional expectation was 17 kg/m”. The
variance of measurement error in Figure 19 at image
location was bimodal, and it shows an average value
of 9.2 (kg/m?)%. This is comparable to the pseudo-
variance in Figure 10 calculated from Eq. (1). The
two modes in Figure 19 represent the variance of
measurement error in the northern and the southern
transects with image points shown in Figure 5. The
variance of measurement error varied from 1 to 21.8
(kg/m?)?, which is 58% of the total sill of 38 (kg/m?)*
given in Table 2. The three independent Gibbs
sampler runs gave no significant differences in con-
ditional expectations and variance of measurement
errors.

Resource Estimation

Resource estimation results using box core data
only and box core data and images in different
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Figure 15. Variogram model for the original abundance data (in kg/m?).

configurations are given in Table 4. The estimated
value was higher if only box core data were used.
The kriging standard deviation was lower for the
estimation that included image data and improved
significantly in the alternative image configurations.
RPE was higher when images were included because
the estimated value on average was significantly

lower. The Lagrange multiplier was larger when
images were included in their original locations. This
indicates that the data points were clustered and/or
there were more cases of extrapolation. For this
search neighborhood, the slopes and the weight of
the mean were practically the same with or without
images. This would indicate the same conditional
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Table 3. Variogram model for the Gaussian transformed hard data.

Sill

Directional scale, N70E/N250E

Directional scale, N160E/N340E

S1, nugget 0.22
S2, spherical 0.33 1000 m 2500 m
S3, Spherical 0.45 2500 m 10,000 m
Total sill 1
Nb Samples: 5504
Minimum: 1.59 r T . Nb Samples: 5504
Maximum: 14.94 Minimum: 1.20
Mean: 7.01 Maximum: 34.51
Std. Dev.: 2.25 Mean: 11.21
Std. Dev.: 6.32
0.15 |
n 0.
3 3
§ 0.10 b
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Figure 16. Histogram showing the difference between
the conditional expectation and the minimum value at
each image location.

bias. The same parameters were significantly better
in the two alternative data configurations. At the
same time, the variance of the estimated block val-
ues was higher when the image data were included.
This is a result of more low-grade blocks.

The mean distance to data points included in
the estimation was naturally lower when the image
data were included and, from a pure data configu-
ration perspective, the estimates with image data
were therefore better. The same was the case if one
looks at the number of values inside the neighbor-
hood. This indicator was larger for the case where
the images were included. In other words, the esti-
mate was ‘“‘better informed.” Given the require-
ments on the data points inside the search
neighborhood and the sector division of the neigh-
borhood, the number of estimated blocks increases
as expected with the introduction of the image
points.

The slope that indicates the degree of condi-
tional unbiasedness shows similar results with and
without images, with an average slope of 0.76 with
images at the original locations and 0.78 without.

20
Max_CondExp

Figure 17. Histogram showing the difference between
the maximum value and the conditional expectation at
each image location.
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Minimum: 5.4079 T T T
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v ZU
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15
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Figure 18. Estimated conditional expectation at
image location.

The kriging standard deviation shows a small
improvement from 3.44 without to 3.32 with images.
The weight of mean shows significant improvements
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in the alternative image configurations, dropping
down to 0.07 for the operationally unlikely event of
having the images points spread at random across
the area. The more likely case where the images are
placed along transects covering the area of interest,

Nb Samples: 5504

Minimum: 1.01
Maximum: 21.79
Mean: 9.22

Std. Dev.: 4.31

Frequencies

10
CondExpvar

Figure 19. Estimated variance at image location.

also shows a significant improvement with a drop
down to 0.15 from 0.29.

Figures 20 and 21 show estimation results with
box core data only and with images in transects
covering the whole area. Comparing the results in
these figures, the results in Figure 21 appear more
noisy indicating that the estimation was to a greater
extent controlled by data rather than the global
model defined by the variogram. For the slope, the
standard deviation was lower when image data were
included because the slope was constantly higher.
Looking at the number of blocks that were esti-
mated, there was an increase from 215 blocks when
only box core data were used to 236 when data from
images in transects were included. This was a 10%
increase without compromising the estimation
quality, just using the available data. Assuming an
average abundance of 17.5 kg/m? and the block size
of 1km? the increase in unclassified resource
amounted to 367.500 tonnes of nodules.

DISCUSSION

How can we define a resource and how can the
inclusion of uncertain image data influence the re-

Table 4. Resource estimation using only box cores (hard data) and box core data and image data in different configurations.

Estimate Stdv Slope WoM Lagrange RPE Mean distance Data points in estimation
Box cores only
Number of blocks 215
Min 16.18 2.26 0.62 0.16 —3.84 0.18 2919 5.00
Max 30.17 3.95 0.92 0.42 - 1.17 0.44 4854 10.00
Mean 23.22 3.44 0.78 0.29 — 228 0.30 3954 7.40
Variance 8.34 0.06 0.00 0.00 0.36 0.00 115,443 1.02
Images and box cores, images at original location
Number of blocks 221
Min 12.97 2.04 0.59 0.15 —7.28 0.19 306 6.00
Max 29.54 3.93 0.92 0.44 —1.23 0.52 4741 14.00
Mean 20.89 3.32 0.76 0.29 —3.03 0.32 2983 9.49
Variance 10.66 0.18 0.00 0.00 0.90 0.00 1,019,208 4.66
Images and box cores, images in transects
Number of blocks 236
Min 12.11 1.61 0.76 0.10 —5.50 0.17 392 7.00
Max 23.01 3.04 0.93 0.25 - 1.23 0.42 1610 16.00
Mean 17.54 2.36 0.88 0.15 —2.01 0.27 1135 15.34
Variance 4.88 0.14 0.00 0.00 0.20 0.00 87,843 1.70
Images and box cores, images with random location
Number of blocks 327
Min 13.17 0.98 0.85 0.04 —3.16 0.12 244 11.00
Max 19.52 1.90 0.96 0.16 — 0.64 0.22 682 16.00
Mean 16.5 1.30 0.94 0.07 - 1.18 0.16 479 15.73
Variance 0.87 0.02 0.00 0.00 0.14 0.00 5547 1.01

The estimate and the RPE should not be compared
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Figure 20. Estimation and quality indicators with only box core data. From upper left and clockwise: the estimated value, the RPE, the
slope and the kriging standard deviation.

source classification? What parameter should we use
to inform the classification? How well suited is the
relative prediction error (RPE) as a kriging quality
indicator if it depends on the estimated value and
uncertain image data are incorporated? Answers to
these and other related and relevant questions must
be assessed and found by the competent person (CP)
who does the resource estimation and the resource
classification. The reporting codes must be read and
understood. Geological continuity is not necessarily
the same as continuity in kriging quality indicators
that are dependent on a series of assumption made
by the CP. In this work, a methodology was explored
where information was retrieved from images,
combined with expert knowledge and conditional
expectations at image points were calculated. Other
methodologies discussed here are available, some of
which could potentially have been used for the
presented purpose, e.g., kriging with inequalities
presented by Abrahamsen and Benth (2001).

None of the kriging indicators can alone be
used directly as a classification indicator. The La-
grange multiplier can be used to assess clustering

and the amount of extrapolation and can be, in co-
use with the kriging variance, an efficient indicator
of data configuration. Since the neighborhood was
defined using eight sectors and maximum two empty
consecutive sectors were allowed, there was little
extrapolation. The data coverage was good. Given
that the image data were densely organized along
rather short transects, we knew that there was clus-
tering because the image points were grouped close
together. This explains the higher Lagrange multi-
plier when the images were included. The kriging
variance was also the basic tool in developing con-
fidence intervals and was naturally dependent on the
block size. The larger the block size was, the lower
was the kriging variance. The selection of block sizes
is subjective, but it is often linked to some annual or
semi-annual production tonnages. Here, it was fixed
according to data density and it was detached from
any operational constraints.

Pure distance criteria can be effective, assuming
they are derived from the variogram model, but this
approach collapses when data of different quality
are combined. Slope and weight of mean were good
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Figure 21. Estimation and quality indicators with box core and image data. From upper left and clockwise: the estimated value, the RPE,
the slope and the kriging standard deviation.

indicators to use in assessing the degree of condi-
tional bias, but the relevance of conditional bias as a
criterion was dependent on the purpose of the esti-
mation. The kriged estimates that included the im-
age data were lower than estimates based only on
box core data. The reason is that the conditional
expectation was lower than the average abundance
from the box core data. This is something future
activities on predicting the minimum and maximum
abundances must focus on. The minimum and
maximum values influence naturally the conditional
expectations at image location and one could expect
that, given representative box core and image sam-
pling, the average conditional expectation should be
similar to the average abundance in the material
collected with the box cores. In the data presented
here, this was not the case; the conditional expec-
tations were lower. Looked from another perspec-
tive, box cores might not be able to capture the
variability of abundance in the area and the avail-
able box cores might seriously over-estimate the
abundance.

The degree of improvement when image re-
trieved information is incorporated is dependent on
the uncertainty associated with the conditional
expectations at image location. This uncertainty is
directly dependent of the defined minimum and
maximum values at image locations and the vari-
ogram model. There are interesting approaches that
can be exploited to improve the minimum and
maximum values. These include, for example, the
use of backscatter intensity or potentially links be-
tween bathymetric expressions. The area under
study shows a variable nodule size distribution. In
such a case, the simple correlations between cover-
age and abundance are no longer valid and other
approaches must be assessed. The reason for the
collapse was primarily because large nodules tend to
be covered with more sediments than smaller nod-
ules and it is very difficult to assess the amount of
sediment cover. A simple correlation approach fol-
lowed by ordinary kriging also failed to incorporate
the extra uncertainty associated with abundance that
was estimated from the correlation. The global extra
uncertainty derived from the correlation coefficient



can be built-in into the methodologies presented
here, but that would not be a location-dependent
uncertainty that was achieved with the min/max
approach presented here.

The areas covered by the images and the box
cores varied, and the support associated with each
data point was therefore not consistent. In this study,
all data were assumed point data compared to the
blocks that were estimated. An extension to what
has been tested in this study can be to calculate the
dispersion variance within the image areas similar to
the study of Castrignano et al. (2019). This disper-
sion variance would then affect the total variance of
measurement error associated with each image
point.

Nodules are formed through both hydrogenetic
and diagenetic processes with a dominance of the
diagenetic process in almost all nodules. However,
in small nodules, the hydrogenetic fraction seems to
be higher (Heller et al. 2018), and because hydro-
genetic process means direct precipitation from
near-bottom seawater it can only be realized under
reduced or no sedimentation. This might be the
reason why small sized nodules are located on the
seafloor with less sediment cover than the larger,
more diagenetically formed nodules.

Looking away from the fact that the soft data
are associated with higher uncertainty, the estimates
using the image data are better informed. The
average distance between the target block and the
data was smaller and the number of data points in-
volved in the estimation was larger. At the same
time, the slope, the weight of mean and the kriging
variance were practically the same for the original
data configuration with images along northern and
southern transects only covering parts of the area of
interest. The kriging quality parameters improve
significantly if other data configurations are used.
Here, tests were made distributing the images ran-
domly and along transects in the area of the box
cores. The former is an operationally unlikely sce-
nario, but running photo transects at different ori-
entations covering different parts of the study area is
more likely. Both configurations show significant
improvements in the kriging quality indicators while
having averages of number of points included in the
estimation close to the maximum of 16 stemming
from the definition of the search neighborhood.

It is out of scope for this study to assess and to
incorporate the effect of differences in support be-
tween the box cores and the images. The box cores
covered an area of about 0.25 m?, while the images
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were taken at different altitudes and they covered an
area between 0.6 m” to roughly 12 m? with median
area of 5.5 m* and mean area of 5.7 m% All these
supports were assessed as being point data com-
pared to the 1000 m* block area. Variograms cal-
culated from the minimum and maximum data (not
presented here) showed similar range structures, but
naturally both lower (for the minimum data) and
higher (for the maximum data) sills. This corre-
sponded well with the fact that the standard devia-
tions of the box core data, the minimum and
maximum data presented in Figures 6, 7 and 8, were
6.15, 2.5 and 8.4 kg/m?, respectively.

CONCLUSIONS

Conditional expectations and associated uncer-
tainty retrieved from images of manganese nodules
using the Gibbs sampler have been incorporated
with box core data. The difference in the soft and
hard data’s ability to quantify correctly the nodule
abundance is used in the calculation of the kriging
weights. Given the uncertainty in the image data and
their original location, the incorporation of the im-
age data does not improve the kriging quality indi-
cators, but it does not worsen it either. From a data
configuration point of view, the estimations with
images are better informed due to more and closer
data points being involved in the estimation. Also
given the restricted neighborhood with requirements
on the minimum number of data points, the number
of sectors and the maximum number of consecutive
empty sectors, more target blocks are estimated
when the image data are included. Another con-
clusion is that photo transects should be carried out
in different directions covering different parts of the
study area rather than following one direction over
already known box core locations. Future develop-
ments will focus on improving the estimates of the
minimum and the maximum values from the images.
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