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A B S T R A C T

District heating is an under-researched part of the energy system, notwithstanding its enormous potential to
contribute to Greenhouse Gas emission reductions. Low-temperature district heating is a key technology for
energy-efficient urban heat supply as it supports an efficient utilization of low-grade waste-heat and renewable
heat sources. The low operating temperature for such grids facilitates the integration of seasonal thermal
energy storage, enabling a high degree of operational flexibility in the utilization of both uncontrollable and
controllable heat sources. Yet, an inherent challenge of optimizing the operation of low-temperature district
heating networks and its flexibility is the underlying uncertainty in heat demand. We develop a new stochastic
model to minimize the total operational cost of district heating networks with local waste heat utilization,
seasonal storage and uncertain demand. We consider in particular how demand side management and seasonal
storage can improve the operational flexibility and thereby reduce costs. We analyze different set-ups of a local
low-temperature district heating network under development in a new residential area in Trondheim, Norway.
We find up to 37% reductions in carbon dioxide emissions, 29% generation reduction in peak hours, and 10%
lower operational costs. These large values highlight the significance of flexibility options in low-temperature
district heating networks for cost-effective, large-scale deployment.
1. Introduction

Space heating (SH) and hot water (HW) production for buildings
account for approximately one fifth of global energy consumption [1].
Collective heating solutions have large potential to reduce the costs
and emissions related to heating. In Europe, about half of the building
heat demand could be met cost-efficiently by network heating systems
(e.g.,Connolly et al. [2]). District Heating (DH) is advantageous because
it enables economic utilization of energy sources that otherwise would
go to waste. However, today’s DH networks (DHNs) operate with high
temperatures, causing high heat losses and limiting the utilization
of low-temperature waste heat sources such as data centers, metro
stations or other sources often present in urban areas [3]. Modern low-
temperature DH, often referred to as 4th generation DH [4], will be
designed with lower distribution temperatures to reduce heat losses
and to enable efficient utilization of low-temperature waste heat and
renewable heat sources.

An important component in 4th generation DH systems is thermal
energy storage (TES). Incorporating TES in DH systems provides a wide
range of energetic, economic and environmental benefits such as peak
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shaving, reduction in needed generation capacity, improved network
flexibility management, and GHG emission reduction [5]. Short-term
TES in the form of large HW accumulation tanks is the most common
type of storage in DH systems [6]. This well-known and robust technol-
ogy has low installation cost, high reliability, and short response times,
and is generally easy to install and operate [5]. Seasonal TES based on
large numbers of coupled boreholes is a less applied technology that
is gaining popularity. Borehole TES has high losses during the first
years of operation; however, these losses decrease significantly over
time when the ground temperature stabilizes [7]. Seasonal borehole
TES systems have been implemented in DH systems utilizing heat
sources that have their largest generation in the summertime, such
as solar thermal [8]. Similarly, due to low demand, DH systems with
generation from municipal or industrial waste incineration often have
large amounts of excess heat in summer (e.g., Nordell et al. [9]), which
could be stored in a seasonal TES, and extracted during winter.

Integrating and utilizing several types of energy sources and TES in
a DHN increases its complexity and it is challenging to cost-efficiently
manage operation of the network. DH operators need tools to support
vailable online 7 January 2021
306-2619/© 2021 The Authors. Published by Elsevier Ltd. This is an open access ar

E-mail address: ruud.egging@ntnu.no (R. Egging-Bratseth).

https://doi.org/10.1016/j.apenergy.2020.116392
Received 30 June 2020; Received in revised form 26 November 2020; Accepted 19
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

December 2020

http://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:ruud.egging@ntnu.no
https://doi.org/10.1016/j.apenergy.2020.116392
https://doi.org/10.1016/j.apenergy.2020.116392
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2020.116392&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Applied Energy 285 (2021) 116392R. Egging-Bratseth et al.
their tactical planning and operation. This paper presents an opti-
mization method and benefits of optimally operating low-temperature
DHNs. After a brief literature review, we describe our mathematical
model developed for optimal scheduling and operation planning under
uncertainty, and analyze how flexibility options enabled by seasonal
storage and demand side management (DSM) affect operations and
reduce costs and GHG emissions.

To the best of our knowledge, only few papers propose optimization
models combining DSM and seasonal TES in DHNs. Similarly, few stud-
ies account for uncertainty in demand when modeling the operation
of DHNs. We address this gap with our model that seeks to minimize
the expected operational cost to meet uncertain demand considering
the costs for different heat production technologies, DSM techniques,
seasonal TES, and local waste heat.

2. Literature overview

Heat generation capacity and transportation network capacity in a
DHN should be able to meet peak demand and constitute the major
determinants of initial network investment cost. Peak generation often
has high operational cost and carbon emissions. As such, both invest-
ment and operational costs, as well as emissions, benefit from peak load
reduction. Therefore, the majority of DHN research focuses on ways to
reduce the peak load.

Security of supply and operational flexibility in DH systems can
in general be achieved by three means: (i) a diverse, appropriately
dimensioned portfolio of heat generation units (boilers), (ii) TES, and
(iii) DSM. The heat generation portfolio must have sufficient redundant
capacity to provide backup generation when needed, while diversifying
the boilers concerning fuel needs (e.g., biomass, natural gas and elec-
tricity), allows hedging against demand and price variations. TES can
be used to absorb surplus (waste) heat and to maximize the generation
from lowest cost boilers, to reduce generation from high cost boilers.
DSM can reduce the generation needs in peak periods by reducing
demand or shifting load to adjacent periods, often at a penalty.

Vandermeulen et al. [10] analyzed how different TES types can
help unlocking the flexibility in DHNs to facilitate renewable energy
sources (RES) integration in the broader energy system. Leśko et al.
[11] explored characteristics, such as size and location, for TES in a
DHN to maximize flexibility at the lowest cost. They concluded that
conventional HW tanks are the lowest cost solution. Verrilli et al.
[12] considered the problem of scheduling boilers, TES, and flexible
loads in DHNs using model predictive control. By optimizing operations
over a receding horizon, they adjust for changing weather predictions
and short-term uncertainty in demand. Knudsen and Petersen [13]
considered price-based demand response of residential heat pumps in
ultra-low temperature DHN, using model predictive control. Vivian
et al. [14] studied the use of storage capacity and adjustment of
the flow rate in a DHN in Verona, Italy, as a flexibility measure for
balancing generation needs. Zheng et al. [15] considered the thermal
inertia of DHNs as a flexibility source for scheduling combined heat and
power (CHP) plants, thereby improving the ability of integrating RES.
As an alternative to model-based optimization methods, Claessens et al.
[16] considered a reinforcement-learning type approach for operating
flexible thermostatically controlled loads in DHNs.

DSM for DHNs seeks to reduce the heat production and supply costs
through load management (e.g., [17,18]). Guelpa et al. [19] considered
peak reduction through DSM for the DH system in Turin, Italy. By
minimizing the maximum daily load and anticipating loads of the
buildings connected to the network, they reduced peak loads by about
5%. The potential reduction in energy costs by using DSM in an urban,
conventional DHN in Denmark was investigated by Cai et al. [20].
The authors allowed flexibility in space and HW supply, with no-cost
upward temperature adjustments in HW tanks above a lower bound,
while deviations outside an SH comfort zone were penalized. The re-
2

sults indicated a potential of 11% reduction in energy costs. Sweetnam
Table 1
Selected articles addressing DHN optimization.

Authors Det/Sto Components Objective

[12] Det DH/TES Min energy cost
[20] Det DH/DSM Min energy cost
[27] Det DH/TES Min total cost & CO2 emission
[19] Det DH/DSM Min thermal peak
[24] Sto DH Min operational cost
[11] Det DH/TES Min operational cost
[28] Det DH/EL/PV/CHP Min total cost
[29] Det DH Min operational cost

Our contribution Sto DH/DSM/TES Min operational cost

Table 2
Sets, indices and their representation in the optimization model.

Indices and Sets:

𝑒 ∈ 𝐸 Set of all heat production technologies.
𝐸𝐶 ⊂ 𝐸 Set of controllable heat technologies.
𝐸𝑈 ⊂ 𝐸 Set of uncontrollable heat technologies.
𝑔 ∈ 𝐺 = {𝑆𝐻,𝐷𝐻𝑊 } Set of demand types.
𝑖, 𝑗 ∈ 𝑁 Set of all nodes.
𝑁𝑃 ⊂ 𝑁 Set of heat central nodes.
𝑁𝐵 ⊂ 𝑁 Set of branching nodes.
𝑁𝐶 ⊂ 𝑁 Set of consumer nodes.
𝑡 ∈ 𝑇 𝑆 = {1, 2,… , 𝑡𝑆𝑙𝑎𝑠𝑡} Set of strategic time periods.
ℎ, ℎ′ ∈ 𝑇 𝑂 = {1, 2,… , 𝑡𝑂𝑙𝑎𝑠𝑡} Set of operational time periods.
𝑝 ∈ 𝑃 Set of all user profiles.
𝜔 ∈ 𝛺 Set of all operational scenarios

et al. [21] considered residential demand response on DHNs to improve
the load factor (the ratio of daily mean and maximum heat demand). A
higher load factor implies a flatter load profile, and thus lower network
investment costs. In a field trial in the United Kingdom, the authors
reported an increase in load factor from 29% to 44% and significant
network cost savings, however at the expense of a 3% demand increase.
Recent publications have reported experiments with demand shifting,
both in homes [22] and in commercial and office buildings [23].

Besides approaches based on optimization over a receding horizon,
e.g. Verrilli et al. [12] and Knudsen and Petersen [13], few references
address explicitly the inherent uncertainty in DH operations caused by
weather conditions or building occupants behavior. Hohmann et al.
[24] presented a two-stage stochastic optimization problem for op-
eration of DHNs with uncertain demand. The authors presented a
control-oriented approach to minimize expected operational cost in-
curred by hydraulic and thermal losses with respect to a uncertainty
in heat demand. No DSM or particular flexibility measures were con-
sidered, and all uncertainty resolved in the second stage. Other recent
publications address uncertainty related to CHP operation, e.g. uncer-
tainty in biomass supply [25] or wind generation [26], affecting the
dispatched heat production and delivery.

Table 1 summarizes components and methodology of related lit-
erature to the problem and approach we consider in this paper. The
reviewed literature indicates the lack of approaches that explicitly
consider uncertainty in scheduling and operational optimization and
flexibility measures in DHNs. This is particularly the case for low-
temperature DHNs with waste-heat sources and seasonal TES. In this
paper we aim to address this gap in the literature, by developing a
multi-stage optimization approach, considering load uncertainty, TES
and DSM.

3. Model formulation

To support the tactical-operational planning of a broad range of
DHNs, the model formulated here can account for the relevant char-
acteristics of DHNs, and handle different network layouts, production
technology mixes, loads with different profiles, DSM, and TES. The
objective is to minimize (expected) variable operating costs including
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Table 3
Parameters used in the optimization model.

Parameters:

𝐶𝑔ℎℎ′𝑝 Cost for unmet demand of type 𝑔 in the operational period from ℎ to ℎ′ for user profile 𝑝.
𝐶𝐴 Unit cost for adding heat to the TES.
𝐶𝐸
𝑒 CO2 emission cost for technology 𝑒.

𝐶𝐹
𝑒𝑡ℎ Unit fuel costs of technology 𝑒 in strategic period 𝑡 at operational period ℎ.

𝐶𝑇
𝑖𝑗 Pipeline transportation costs from node 𝑖 to node 𝑗.

𝐶𝑂𝑃 𝐶 Coefficient of performance (COP) for the centralized heat pump.
𝐶𝑂𝑃𝐷 COP for the decentralized heat pumps.
𝐷𝑔𝑖𝑡ℎ𝑝𝜔 Target demand for type 𝑔 at node 𝑖 in strat. period 𝑡, oper. period ℎ for profile 𝑝 in scenario 𝜔.
𝐿𝑔𝑖ℎℎ′𝑝 Minimum percentage of demand that must be satisfied.
𝑈𝑔𝑖ℎℎ′𝑝 Maximum percentage of demand that can be satisfied.
𝐹𝑀𝐴𝑋
𝑖𝑗 Capacity for the pipeline from node 𝑖 to 𝑗.

𝑂𝑒 CO2 emission factor for technology 𝑒.
𝑄−𝑀𝐴𝑋

𝑖𝑡 Capacity limit for adding heat to the TES at node 𝑖 in strategic period 𝑡.
𝑄+𝑀𝐴𝑋

𝑖𝑡 Capacity limit for withdrawing heat from the TES at node 𝑖 in strategic period 𝑡.
𝑆𝑀𝐴𝑋
𝑖 Total inventorya capacity limit for TES at node 𝑖.

𝑅𝑖𝑝 Percentage of demand at node 𝑖 from user profile 𝑝.
𝑋𝑒𝑖𝑡ℎ Uncontrollable heat supply by technology 𝑒 at node 𝑖 in strategic period 𝑡 in operational period ℎ.
𝑋𝑀𝐴𝑋

𝑒𝑖𝑡ℎ Production capacity for technology 𝑒 at node 𝑖 in strategic period 𝑡 in operational period ℎ.
𝜂𝑖𝑗 Efficiency ratio (1-loss rate) for heat flow from node 𝑖 to node 𝑗.
𝜂𝐴 Efficiency ratio for adding heat to the TES.
𝜂𝑆𝑡 Efficiency ratio for the stored heat in the TES from strategic period 𝑡 to 𝑡 + 1.

aInventory is the TES charge, the total amount of heat stored in seasonal storage.
missions costs and penalties for demand shifting and curtailment.
ecisions for every period in the planning horizon are: heat production

rom each controllable technology, heat additions to and withdrawals
rom TES respectively, and actual, deficit and surplus supply to each
onsumer. We consider operational decisions only, not investments.
ifferent types of consumers have different load profiles for SH and
W. These profiles can be uncertain, which is represented as different
emand values that may occur with known probabilities. We impose
structure of strategic periods with embedded operational periods.

o allow a linear model, we impose fixed operating temperatures for
ifferent parts of the grid, heat losses independent from ambient tem-
eratures, and disregard any start-up costs for dispatching generation
echnologies or connected to seasonal TES.

Table 2 summarizes sets and corresponding indices, Table 3 param-
ters and Table 4 variables used in the optimization model.

The objective is to minimize the total expected operational costs
n Eq. (1). The first term is the production costs for controllable
echnologies, the second term is the transportation cost, while the third
erm is the total deficit cost. The fourth term is the cost associated
ith TES operations, while the two last terms are the electricity cost

or heat pumps connected to DHW supply and uncontrollable technolo-
ies, respectively. All scenario-dependent terms are multiplied by the
robability of each scenario, 𝜋𝜔. Furthermore, the scenario-dependent
osts are summed over all scenarios 𝜔 ∈ 𝛺. The last term is not
cenario dependent; it represents the cost to lift the temperature of the
ncontrollable waste heat to the network operation temperature, and
s in fact a fixed cost.

min
∑

𝜔∈𝛺
𝜋𝜔

∑

𝑡∈𝑇𝑆

∑

ℎ,ℎ′∈𝑇𝑂
∧ℎ′≥ℎ

(

∑

𝑒∈𝐸

∑

𝑖∈𝑁
(𝐶𝐹

𝑒𝑡ℎ + 𝐶𝐸
𝑒 𝑂𝑒)𝑥𝑒𝑖𝑡ℎ𝜔

+
∑

𝑖∈𝑁

∑

𝑗∈𝑁
𝐶𝑇
𝑖𝑗𝑓𝑖𝑗𝑡ℎ𝜔 +

∑

𝑔∈𝐺

∑

𝑖∈𝑁𝐶

∑

𝑝∈𝑃
𝐶𝑔ℎℎ′𝑝𝑧𝑔𝑖𝑡ℎℎ′𝑝𝜔

+
∑

𝑖∈𝑁
𝐶𝐴𝑞−𝑖𝑡ℎ𝜔 +

∑

𝑖∈𝑁

∑

𝑝∈𝑃
𝐶𝑃
(𝐸𝐿),𝑡ℎ

𝑦(𝐷𝐻𝑊 ),𝑖𝑡ℎ𝑝𝜔

𝐶𝑂𝑃𝐷

)

+
∑

𝑖∈𝑁

∑

𝑡∈𝑇𝑆

∑

ℎ∈𝑇𝑂

𝐶𝑃
(𝐸𝐿),𝑡ℎ

𝑋𝑒𝑖𝑡ℎ

𝐶𝑂𝑃𝐶

(1)

CO2 emissions in (1) are in kg, emission cost in NOK/kg, emission
factor in kg CO2/kWh, while all other volumes and costs in kWh and
NOK/kWh, respectively. All variables are non-negative.

Demand constraints
Constraint (2) defines deficit loads as the difference in heat demand
3

and delivered heat over the operational periods. We impose this as an
inequality constraint as surplus deliveries of heat cause the right-hand
side to become negative.

𝑧𝑔𝑖𝑡ℎℎ′𝑝𝜔 ≥
ℎ′
∑

𝜏=ℎ
(𝑅𝑖𝑝𝐷𝑔𝑖𝑡𝜏𝑝𝜔 − 𝑦𝑔𝑖𝑡𝜏𝑝𝜔),

∀𝑔 ∈ 𝐺, 𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 𝑆 , (ℎ, ℎ′) ∈ 𝑇𝑂 ∧ ℎ′ ≥ ℎ, 𝑝 ∈ 𝑃 , 𝜔 ∈ 𝛺 (2)

Constraint (3) and (4) ensure that the delivered heat covers the mini-
mum requirements in the consecutive operational periods, but not more
than the maximum deliverable amount.
ℎ′
∑

𝜏=ℎ
𝑦𝑔𝑖𝑡𝜏𝑝𝜔 ≥ 𝐿𝑔𝑖ℎℎ′𝑝𝑅𝑖𝑝𝐷𝑔𝑖𝑡ℎ𝑝𝜔,

∀𝑔 ∈ 𝐺, 𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 𝑆 , (ℎ, ℎ′) ∈ 𝑇𝑂 ∧ ℎ′ ≥ ℎ, 𝑝 ∈ 𝑃 , 𝜔 ∈ 𝛺 (3)
ℎ′
∑

𝜏=ℎ
𝑦𝑔𝑖𝑡𝜏𝑝𝜔 ≤ 𝑈𝑔𝑖ℎℎ′𝑝𝑅𝑖𝑝𝐷𝑔𝑖𝑡ℎ𝑝𝜔,

∀𝑔 ∈ 𝐺, 𝑖 ∈ 𝑁𝐶 , 𝑡 ∈ 𝑇 𝑆 , (ℎ, ℎ′) ∈ 𝑇𝑂 ∧ ℎ′ ≥ ℎ, 𝑝 ∈ 𝑃 , 𝜔 ∈ 𝛺 (4)

Production capacity
Production from a controllable technology cannot exceed its capac-

ity.

𝑥𝑒𝑖𝑡ℎ𝜔 ≤ 𝑋𝑀𝐴𝑋
𝑒𝑖𝑡ℎ , ∀𝑒 ∈ 𝐸𝐶 , 𝑖 ∈ 𝑁𝑃 , 𝑡 ∈ 𝑇 𝑆 , ℎ ∈ 𝑇𝑂 , 𝜔 ∈ 𝛺 (5)

Nodal heat balance
The heat balance for each node 𝑖 is given in Constraint (6), with the

sum of heat sources and inflows on the left side and the sum of outflows
and sinks on the right. The sources are produced heat from controllable
and uncontrollable technologies, heat inflow from connected nodes
(corrected for heat losses) and heat withdrawn from TES. The sinks are
delivered heat, heat outflow to connected nodes and heat added to TES.
∑

𝑒∈𝐸𝐶

𝑥𝑒𝑖𝑡ℎ𝜔 +
∑

𝑒∈𝐸𝑈

𝑋𝑒𝑖𝑡ℎ +
∑

𝑗∈𝑁
𝜂𝑗𝑖𝑓𝑗𝑖𝑡ℎ𝜔 + 𝑞+𝑖𝑡ℎ𝜔

=
∑

𝑔∈𝐺

∑

𝑝∈𝑃
𝑦𝑔𝑖𝑡ℎ𝑝𝜔 +

∑

𝑗∈𝑁
𝑓𝑖𝑗𝑡ℎ𝜔 + 𝑞−𝑖𝑡ℎ𝜔,

∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 𝑆 , ℎ ∈ 𝑇𝑂 , 𝜔 ∈ 𝛺 (6)

Pipeline capacity limit
Constraint (7) ensures that transported heat respects the pipeline

capacities.

𝑓𝑖𝑗𝑡ℎ𝜔 ≤ 𝐹𝑀𝐴𝑋
𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝑁, 𝑡 ∈ 𝑇 𝑆 , ℎ ∈ 𝑇𝑂 , 𝜔 ∈ 𝛺 (7)
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Table 4
Optimization variables.

Variables:

𝑓𝑖𝑗𝑡ℎ𝜔 Heat amount transported from 𝑖 to 𝑗 in strategic period 𝑡 in operational period 𝑡 in scenario 𝜔.
𝑞−𝑖𝑡ℎ𝜔 Heat amount added to TES at node 𝑖 in strategic period 𝑡 in operational period ℎ in scenario 𝜔.
𝑞+𝑖𝑡ℎ𝜔 Heat amount withdrawn from TES at node 𝑖 in strategic period 𝑡 in operational period ℎ in scenario 𝜔.
𝑠𝑖𝑡ℎ𝜔 Heat inventory in TES at node 𝑖 in strategic period 𝑡 at the end of operational period ℎ in scenario 𝜔.
𝑥𝑒𝑖𝑡ℎ𝜔 Heat amount produced by technology 𝑒 at node 𝑖 in strat period 𝑡 in oper. period ℎ in scenario 𝜔.
𝑦𝑔𝑖𝑡ℎ𝑝𝜔 Delivered heat to demand type 𝑔 in node 𝑖 in strat period 𝑡, oper period ℎ for profile 𝑝, scenario 𝜔.
𝑧𝑔𝑖𝑡ℎℎ′𝑝𝜔 Deficit for demand type 𝑔 in node 𝑖 in strat period 𝑡, oper periods ℎ to ℎ′ for profile 𝑝 in scenario 𝜔.
Table 5
Heat generation capacities (kWh/h).
Month Waste incineration Bio boiler Electric boiler LPG NG

January 0 1 733 688 10 000 0
February 0 1 684 516 10 000 0
March 0 1 900 507 10 000 0
April 0 1 636 413 10 000 413
May 1 568 0 10 000 0 10 000
June 1 468 0 0 0 0
July 1 317 0 0 0 0
August 1 162 0 0 0 0
September 1 043 0 10 000 0 10 000
October 0 1 179 522 10 000 522
November 0 1 397 565 10 000 565
December 0 1 521 552 10 000 0

Production cost 0.02 0.32 0.37–0.55 0.75 0.34
Storage constraints
The initial storage level in an operational period depends on the

initial storage level and additions and withdrawals in the previous
operational period, with corrections for losses where appropriate. In
most operational periods, the previous operational period is within
the same strategic period, and in these cases, Constraint (8a) applies.
Constraint (8b) applies for the first operational period ℎ = 1 in the
first strategic period 𝑡 = 1 in the planning horizon. Constraint (8c)
applies for the first operational period in the other strategic periods.
Like constraint (8a), they determine the TES inventory at the start of
the operational period, but accounting for a heat loss between strategic
periods.

𝑠𝑖𝑡ℎ𝜔 = 𝑠𝑖𝑡(ℎ−1)𝜔 + 𝜂𝐴𝑞−𝑖𝑡ℎ𝜔 − 𝑞+𝑖𝑡ℎ𝜔 ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 𝑆 ⧵ {1}, ℎ ∈ 𝑇𝑂 , 𝜔 ∈ 𝛺

(8a)

𝑖,1,1,𝜔 = 𝜂𝐴𝑞−𝑖,1,1,𝜔 − 𝑞+𝑖,1,1,𝜔 ∀𝑖 ∈ 𝑁,𝜔 ∈ 𝛺 (8b)

𝑠𝑖𝑡,1,𝜔 = 𝜂𝑆𝑡 𝑠𝑖(𝑡−1)𝑡𝑂𝑙𝑎𝑠𝑡𝜔
+ 𝜂𝐴𝑞−𝑖𝑡,1,𝜔 − 𝑞+𝑖𝑡,1,𝜔 ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 𝑆 , 𝜔 ∈ 𝛺 (8c)

As the temperature from waste-heat streams used in low-temperat-
ure DH networks are low, adding waste heat to a TES may have the
adverse effect of decreasing the storage temperature. To prevent this,
Constraint(9) allows restricting the technologies that can store heat in
TES.
∑

𝑒∈𝐸𝑈

𝑋𝑒𝑖𝑡ℎ𝜔 ≥ 𝑞+𝑖𝑡ℎ, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 𝑆 , ℎ ∈ 𝑇𝑂 , 𝜔 ∈ 𝛺 (9)

Capacity constraint (10) limits the total amount of heat that can be
stored in a TES.

𝑠𝑖𝑡ℎ𝜔 ≤ 𝑆𝑀𝐴𝑋
𝑖 , ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 𝑆 ⧵ {𝑡𝑆𝑙𝑎𝑠𝑡}, ℎ ∈ 𝑇𝑂 ⧵ {𝑡𝑂𝑙𝑎𝑠𝑡}, 𝜔 ∈ 𝛺 (10)

Capacity constraints (11) and (12) ensure that heat additions and
withdrawals of heat to a TES respect capacity limits.

𝜂𝐴𝑞−𝑖𝑡ℎ𝜔 ≤ 𝑄−𝑀𝐴𝑋
𝑖𝑡 , ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 𝑆 , ℎ ∈ 𝑇𝑂 , 𝜔 ∈ 𝛺 (11)

𝑞+𝑖𝑡ℎ𝜔 ≤ 𝑄+𝑀𝐴𝑋
𝑖𝑡 , ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 𝑆 , ℎ ∈ 𝑇𝑂 , 𝜔 ∈ 𝛺 (12)

The continuous, stochastic optimization model represented
by Eq. (1)–(12) yields a, potentially very large, multi-stage, linear
4

stochastic programming problem.
4. Case study

Owing to the operational temperature requirements to supply old,
poorly insulated, buildings, the transition to low-temperature DHNs
will start in areas with new or renovated buildings with more moderate
space heating demand [30]. This study focuses on a new residential
area, Leangen, to be developed in the eastern part of Trondheim,
Norway. In Leangen, low-temperature waste heat is available from
a nearby indoor ice rink. The available waste heat will, however,
not be sufficient to cover the entire local load. Therefore, heat from
the primary, high-temperature DHN in Trondheim will be needed in
addition. The base heat supply for the primary DHN is a large waste
incineration plant south of Trondheim, with large amounts of excess
heat in the summertime. Although a seasonal TES is not foreseen in
current plans for Leangen, it would be a flexibility option to store
excess heat in summer, and supply this in winter months. The other
flexibility option we investigate in this paper is DSM, where we allow
both demand shifting and curtailment.

In the analysis we consider uncertainty in SH loads (but not in HW
loads). The local DHN is represented by one heat central node, five
branching nodes, and nineteen consumer nodes, as shown in Fig. 1. The
network includes a local waste heat source and may include a seasonal
TES, both of which are coupled to the heat central node. There are five
building types (with aggregated average demand shares in parenthe-
ses): apartments (82.8%), nursing home (9.1%), kindergarten (1.5%),
offices (4.3%) and stores (2.3%). The consumer types have different
demand patterns and are hence considered as different load profiles.
The local ice rink can cover approximately 22% of the expected heat
demand at Leangen, according to data for 2019. For additional heat
supply, the heat central node has a connection to the primary DHN
of Trondheim. This primary DHN has five heat sources: waste inciner-
ation, and four controllable boilers using electricity, biomass, natural
gas (NG), or liquefied petroleum gas (LPG).

We consider a planning horizon of one year. As strategic periods, we
consider months. This means that at the end of each month uncertain
information can become known. Each month is included as a represen-
tative day. As operational periods within each month, we include 24 h.
The uncertainty in operational periods concerns the SH demand, which
is further explained in the next section.

The monthly production capacities of the controllable heat sources

available to supply heat to Leangen, are scaled based on the actual
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Fig. 1. Architectural illustration of the Leangen area, with the modeled DHN overlaid, including: heat central (node 1 in blue), five branching nodes (nodes 2–6 in orange), and
19 consumer nodes (nodes 7–25 in green).
production mix from the Trondheim DHN in 2019, see Table 5. In the
period May–September, there is surplus heat from waste incineration
in Trondheim which is available for the Leangen DHN. This surplus
heat can cover all demand in the summer months (i.e., June, July, and
August) and provide base load in May and September. In other months,
heat from waste incineration is fully utilized within the Trondheim
DHN itself.

To illustrate the operation of DSM and TES, the capacity of peak
load technologies is defined as the difference between average and
minimum demand in the Leangen DHN. The electric boiler can be used
to meet peak loads from October to April. Both electric boiler and NG
may be used in May and September to cover peak load in scenarios with
very high demand. LPG capacities ensure that the model is feasible for
all demand scenarios. The bottom line of the table indicates the heat
production costs [NOK/kWh produced].1

More details for production costs [NOK/kWh produced] are shown
in Table 6. For each production technology, we list fuel costs and
carbon emission cost. The latter are based on the carbon emission
factors, multiplied by a CO2 fee of 0.5 NOK/kg. The waste heat from the
local ice rink does not incur fuel or emission cost, but its temperature
must be lifted several degrees to bring it to operating temperature for
the local DHN. This is done with dedicated heat pumps, that run on
electricity. Electricity prices vary hourly (see fuel cost in the row for
Electric boiler in Table 5).

The fuel costs are inferred from production technologies with capac-
ities close to the real capacities of the main DHN in Trondheim [31].
Fuel costs for waste incineration, bio boiler, LPG, and NG are con-
sidered constant for the entire planning horizon. Hourly electricity
costs are based on monthly and hourly averaged spot prices for power
in Trondheim for the years 2013–2019 [33]. This results in hourly
production cost for the electric boiler in the range from 0.3736 to
0.5529 NOK/kWh.

The low-temperature DHN at Leangen will be compact with a total
length of 1300 meters only. Thus, heat losses in the pipelines will be
small and the pumping work for heat transportation will be low. For
these reasons, we ignore transportation losses and costs. Additionally,
capacity limits on pipelines are ignored. The seasonal TES will be
placed in the vicinity the heat central. Due to a high number of

1 1 NOK is about 0.12 USD.
5

boreholes, and thus high thermal inertia in a seasonal TES, there are
only two operational modes during a year. During the summer (June–
August) it is only possible to add heat to the TES, and in the months
from September to May heat can only be withdrawn from the TES. The
operational costs and losses for adding heat to the TES are ignored.
The year-round efficiency of seasonal TES is approximately 60% [34].
We implement a monthly loss rate on the heat inventory in the TES of
5.5%.

A central heat pump is responsible for lifting the temperature of
local waste heat to the grid operating temperature. In addition, every
consumer node has a (decentral) heat pump to lift the temperature for
supplying HW. The coefficient of performance (COP) for the central
heat pump, which lifts the temperature from 35 ◦C to 40 ◦C, is set to 10,
while the COP for the decentralized heat pumps lifting the temperature
from 40 ◦C to 55 ◦C is set to 5. The power cost for the heat pumps is
the same as the production cost for the electric boiler.

We assume that HW storage tanks at consumer nodes can act as
buffers, allowing for an hourly heat supply deficit and surplus of up to
20% for each user profile; total HW demand during a day must be met
though. For SH, the hourly deficit and surplus vary dependent on the
user profiles. If curtailment is allowed, this is at most 2% for each day.

Demand scenarios
The HW demand profile over a day is rather independent from out-

door temperatures. Fig. 2 shows the aggregate profile for all consumers
combined.

From May to August, SH demand is low due to high outdoor temper-
atures, and can be met by cheap heat from waste incineration. There-
fore, uncertainty in this period is not considered. To reflect uncertainty,
we generate three different temperature scenarios (low, medium, and
high) for each of the eight months in the period September–April. Start-
ing point for the generation of temperature scenarios are the hourly
temperatures for a year in Trondheim collected from the building simu-
lation software SIMIEN [35]. Based on a K-means clustering algorithm,
we divide each month with uncertain SH demand in three consecutive
periods with the lowest, medium, and highest average temperature, c.f.,
Table 7.

For each period, we use the average hourly temperature over all
days in the period to define three temperature scenarios; low, medium,
and high, see Table 10 in Appendix.
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Table 6
Production costs for different production technologies. [31,32].
Production
technology

Fuel cost
[NOK/kWh]

Carbon emission factor
[kg/kWh]

Emission cost
[NOK/kWh]

Production cost
[NOK/kWh]

Waste incineration 0.0153 0.0112 0.0056 0.0209
Bio boiler 0.3140 0.0198 0.0099 0.3239
Electric boiler 0.3186–0.4979 0.1100 0.0550 0.3736–0.5529
LPG 0.6140 0.2740 0.1370 0.7510
NG 0.2200 0.2430 0.1215 0.3415
Table 7
Allocation of days to low, medium and high average temperature periods. Lowest
average temperature periods are marked blue, highest average temperature orange,
and medium average temperature green.

Day Sep Oct Nov Dec Jan Feb Mar Apr

1 13.8 3.0 −8.0 0.1 4.9 3.8 −0.1 −1.5
2 14.3 2.4 −5.8 −4.4 2.4 3.1 −1.3 −0.7
3 14.8 3.5 −3.8 3.6 2.6 0.6 −3.7 −2.4
4 16.8 4.9 −2.8 3.4 1.8 −7.4 −5.1 −0.2
5 15.8 6.0 −2.0 −0.6 0.3 −1.1 −4.4 5.8
6 13.2 6.2 −1.6 −1.9 −1.4 −2.5 −2.5 5.1
7 9.7 7.7 −0.4 −1.4 −0.3 −0.5 −2.8 8.3
8 11.4 5.7 3.6 0.5 −2.0 −3.7 −7.0 7.4
9 8.3 8.0 6.0 −2.5 −5.0 −8.7 −8.1 6.3
10 7.5 11.8 7.0 −0.3 −4.4 −5.1 −5.8 9.3
11 5.2 13.0 8.6 −6.2 −3.2 −4.1 −2.1 10.3
12 6.4 10.5 4.0 1.2 −16.2 −6.2 −3.3 7.0
13 7.0 9.9 1.6 −3.1 −10.9 −0.2 −1.7 3.7
14 12.3 9.4 2.1 2.4 −10.0 −13.1 −0.8 4.0
15 11.0 8.7 −0.7 3.0 −15.5 −11.3 0.7 2.8
16 10.5 5.3 1.2 6.3 −4.0 −3.0 1.2 2.3
17 4.5 7.0 2.6 2.2 −1.2 0.2 5.6 4.4
18 10.1 6.6 0.5 5.3 1.7 −4.5 2.8 0.8
19 8.6 4.2 7.7 4.7 4.1 −1.5 1.9 0.3
20 8.0 8.3 6.5 4.2 1.2 2.0 −0.4 1.5
21 9.9 7.4 4.4 −6.7 2.9 4.6 0.3 1.8
22 7.8 4.5 5.0 1.6 3.9 5.6 3.0 3.4
23 10.1 2.7 5.5 −5.5 0.8 1.2 1.6 4.0
24 12.7 3.8 −1.1 −11.0 −5.6 1.5 2.5 3.1
25 11.9 1.6 3.0 −14.6 −2.6 0.9 2.1 6.6
26 9.4 −0.9 0.9 −12.8 4.0 −2.0 1.0 5.5
27 9.1 0.4 0.0 −9.6 3.5 2.2 4.3 7.8
28 5.8 −1.8 −2.4 −8.3 0.7 2.7 4.0 4.7
29 9.6 1.0 −6.8 −3.8 1.9 3.4 2.1
30 8.7 2.0 −4.8 0.9 3.2 3.7 1.1
31 −0.2 −5.0 5.1 4.9

The probability for each scenario (see Table 10 in the Appendix)
equals the number of days in its underlying cluster divided by the total
number of days in the specific month. This procedure implies that the
represented uncertainty is asymmetric, with different probabilities for
6

the low and high demand scenarios, and that the medium scenario
values do not equal the averages.

Considering eight months with each three different outcomes, the
scenario tree represented in the case study contains 38 = 6, 561 different
scenarios in total.

5. Results

This section considers a Base Case without a TES or DSM, and case
variants featuring flexibility options from DSM and a seasonal TES. In
the Base Case, all demand must be met by production in the same hour.
The flexibility options allow shifts in production on different time scales
(within the day and between seasons) to avoid producing by the most
expensive generation technologies and make more effective use of the
cheaper ones.

We include a seasonal TES without capacity restrictions and investi-
gate DSM by allowing different combinations of deficit and curtailment
costs for SH demand. For HW demand we allow hourly deviations
of 20% to reflect the presence of HW tanks in the buildings. We
consider hourly deficit costs of 0.01 NOK/kWh (almost free) and 0.15
NOK/kWh. Surplus deliveries are not penalized. Curtailment costs are
either 0.10 NOK/kWh or 0.20 NOK/kWh for not delivered heat. Since
every curtailed kWh in a day is also a deficit in some hour of that
day, actual curtailment costs are the sum of the (direct) curtailment
costs and the hourly deficit costs. We implement cases wherein no
curtailment is allowed by setting curtailment cost to 10 NOK/kWh. The
cases with a seasonal TES allow higher production in summer months
from biomass-fueled technology Bio boiler. Cases are denoted by BC for
Base Case, and by Deficit Cost_Curtailment Cost for the other five.

To solve the data instances we use FICO® Xpress Optimization Suite
version 8.8.1 on an Intel® E5-2643v3 processor at 3.4 GHz and 512 GB
RAM. The computation time for each case is about 8 to 9 h.

Table 8 shows the aggregate results for the analyses. All case vari-
ants have about 10% lower expected costs, 29% lower peak generation
(maximum generation in the coldest winter hour) and 36%–38% lower
CO2 emissions than the Base Case, with not much variation between
them.
Fig. 2. Aggregate hourly HW demand profile for all representative days in a year.
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Table 8
Summarized results. All values are expected values. Measurement units vary to accommodate inspection.

Measurement
unit

Base
Case

Bio
_0.01_10

Bio
_0.15_10

Bio
_0.01_0.2

Bio
_0.15_0.2

Inputs
Deficit costs NOK/kWh 0.01 0.15 0.01 0.15
Curtailment costs NOK/kWh 10 10 0.2 0.2

Outputs
Total generation MWh 646.3 667.3 667.5 658.4 660.8
Maximum inventory MWh 80.7 81.9 73.9 75.2
CO2 emissions ton 27.4 17.6 17.5 17.1 17.3
Fuel costs kNOK 143.4 126.2 126.3 123.3 124.0
Deficit costs NOK 19.3 49.2 87.5 805.0
Curtailment costs NOK N.A. N.A. 1430.9 1021.3
Heat Pump Central kNOK 6.8 6.8 6.8 6.8 6.8
Heat Pump DHW kNOK 26.4 26.2 26.2 26.2 26.2
Total shifted kWh 3860 656 17500 10733
Total curtailed kWh 7155 5107
Peak generation kWh 3016 2141 2139 2141 2141
Total cost kNOK 176.6 159.2 159.3 157.8 158.8

Total cost rel to BC % −9.8% −9.8% −10.7% −10.1%
Total generation rel to BC % 3.2% 3.3% 1.9% 2.2%
Peak generation rel to BC % −29.0% −29.1% −29.0% −29.0%
CO2 emissions rel to BC % −35.9% −36.2% −37.5% −36.8%
Max inventory rel to prod % 15.4% 15.6% 14.3% 14.5%
Shifted rel to production % 0.6% 0.1% 2.7% 1.6%
Curtailed rel to production % 1.1% 0.8%
Fuel cost rel to total cost % 81% 79% 79% 78% 78%

Reported values are model results. To scale to full-year results these values should be multiplied by 30.5.
Fig. 3. Average heat generation by case (MWh).
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Fuel costs account for about 80% of the total costs. The electricity
osts for powering the heat pumps does not vary among the cases.
ince electricity prices vary during the day, this was not an obvious
utcome. Other operational characteristics drive the flexibility usage
or HW supply, and variations in HW supply are not responsible for
ny differences between the cases. Inventory usage of seasonal TES
s about 15% of total generation in all cases, and 10% higher in the
ases not allowing curtailment compared to the cases allowing it. The
mounts of shifted and curtailed hours are rather modest, with up to
.7% and 1.1% respectively, but not negligible. The deficit costs in
he no curtailment cases are much lower than in the cases that allow
urtailment. Naturally, allowing curtailment means that higher deficits
re possible too. For the cases that allow curtailment, the sum of deficit
nd curtailment cost is in the order of 1% of total costs.

Fig. 3 shows the total production for the six cases. In all cases, the
ce rink supplies 141.7 MWh waste heat, about 27% of total generation.
ompared to the Base Case, using storage increases production levels
ue to losses, while curtailing demand decreases generation levels.
7

otal controllable generation is 2.4% to 4.2% higher. t
Notably, cases Bio_0.01_0.1 & Bio_0.01_0.2 result in the exact same
perational decisions, generation, and curtailment (but naturally twice
s high curtailment costs for the latter case). Since the insights are the
ame, we ignore case Bio_0.01_0.1 in most of the following.

Fig. 4 shows the development over time of the average stored heat in
he seasonal TES. The built-up of inventory is the same for all four cases
ntil August. To avoid the implied cost from heat losses on the heat
nventory, only surplus waste heat is stored. This changes in August. In
ugust, the bio boiler can be used for additional storage. Additionally,

he colder months are approaching, and losses on stored inventory do
ot chip away too much on potential cost savings. By the end of August,
e observe two effects. First, in the cases that do not allow curtailment

and therefore use storage most), storage is filled to higher levels than
n the cases that do allow curtailment. Second, the inventory levels for
he cases with the low hourly deficit costs (0.01) are somewhat below
he inventory levels for the cases with the high hourly deficit costs
0.15). Starting September, the average withdrawal patterns, reflected
s the decrease in inventory levels in Fig. 4, are very similar, with

he largest withdrawals in the coldest months. Since these values are
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Fig. 4. Average inventory over time by case (MWh). Note that inventory drops at each transition to the next month due to heat loss (c.f., Constraints (8b)–(8a)).
Fig. 5. Controllable generation for selected scenarios (MWh). Vertical axis truncated for comparability.
averages over all 6561 scenarios and give rather general insight only,
we home in on detailed results next.

To illustrate the dynamics of the operations, we have lifted the
specific results from ten of the 6561 scenarios. These scenarios con-
sider combinations of low, medium, and high demand in the months
January, February and March. Here, letter combinations indicate the
variation using first letters. For instance, MMM means medium demand
in all three months, while HLM means high demand in January, low
demand in February, and medium demand in March.

Figs. 5 and 6 show production and CO2 emission levels respectively
for model average to the left, and all cases for the ten selected scenarios.
Notably, in the medium scenario (MMM, the fifth group of columns)
generation and CO2 emissions are lower than the respective model
average values. This is due to asymmetry in both uncertainty and in
costs. Structurally, the generation in the no curtailment cases (the two
right columns in each group) is highest, generation in the Base Case is
always lowest, and the generation in two cases allowing curtailment are
somewhat in the middle; the one with lowest deficit costs has somewhat
lower generation than the other.
8

The CO2 emission results have a different pattern. Here the cases
not allowing curtailment have lower CO2 emissions (in absolute terms)
in the moderately low demand scenarios, but a little higher in the
higher demand scenarios. This is due to the usage of storage. Storage
is filled considering all the demand scenarios and their probabilities
to occur. When a low demand scenario plays out, storage inventory
is relatively high in later months, and can be used to replace more
expensive, more polluting generation to meet demand. In contrast, in
high demand scenarios, inventory is relatively low in later months, and
therefore more costly and polluting peak generation is needed to meet
demand.

To zoom further into details of the results, as an example Fig. 7
shows the supply mix for the same ten selected scenarios just for
Case Bio_0.15_0.2. Consider April, which has the same demand in all
depicted scenarios. Because of this, in April it is due to the different
storage withdrawals in previous months that the supply mix in April is
different in different scenarios. In the six scenarios where at least one
of the three months of Jan, Feb or March had high demand, storage is
empty after March, and all the supply in April comes from production.
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Fig. 6. CO2 emissions (ton) for selected scenarios. Vertical axis are truncated for comparability.
.

In the other four scenarios (and in the model average) there is still
some stored heat available to meet the demand in April. Interestingly,
in the four scenarios where total supply in April from storage is highest,
the total supply in April is also highest. This indicates that in the
other six scenarios some curtailment occurs. We can conclude that
this curtailment is cheap enough to prevent using peak generation
technologies, but will be avoided if any stored heat is still available.

Next, Fig. 8 shows for Case Bio_0.15_0.2 the hourly and accumula-
tive deficits for each representative day. The accumulative deficit by
the last hour of the day, i.e., the end point of the line for each month,
reflects the curtailment. Here we see the following pattern. Early in the
day, deliveries are larger than demand and a supply surplus is built up.
In the morning, between 6 am and 9 am, hourly supply becomes smaller
than demand. Several (sometimes many) hours later, the accumulative
surplus becomes an accumulative deficit. Later in the day, some time
before the evening peak, deliveries become larger than demand again,
and accumulative deficits become smaller. In the evening peak some
deficits occur, and later in the evening some surpluses occur again.
Over the entire day, in months May-Sep, surpluses and deficits balance
each other out, and there is no curtailment. In all other months, over
the day the deficits outweigh the surpluses, resulting in curtailment.

For completeness, we report the Values of the Stochastic Solution
(VSS) for the reported cases. The VSS is a commonly used measure to
evaluate the gain of using a stochastic model considering uncertainty
(Recourse Solution, RS) compared to a deterministic model using the
expected inputs, the expected value solution (EVS). In two-stage models
this is done by fixing the first-stage variables in the stochastic model
on the deterministic solution values, and run the model to evaluate the
second stage optimal outcomes. This gives the so-called EEV.2 The VSS
is then the RS minus EEV. Since we have a multi-stage model with only
storage inventory levels linking consecutive periods, we have opted
to calculate the VSS by fixing inventory levels based on deterministic
model outcomes at the end of August, just before the first uncertainty
materializes in the stochastic problem. These values, and resulting VSS
values are shown in Table 9.

Table 9 shows that the inventory by the end of summer in the
stochastic model is always higher by about 10%–20%, but the overall
cost differences, and therefore the VSS values, are very low. There are
several reasons for this. The VSS tends to be low in problems with
many stages, and many scenarios, if scenarios have long deterministic
tails, and if the consequences of up and downward deviations are quite
symmetrical. Additionally, fixing only one value in a large stochastic

2 The Expected value of the Expected-Value solution.
9

Table 9
VSS with deterministic storage inventory at the end of August fixed in stochastic model

Cases Inventory [MWh] EEV SP VSS 𝛥

Determ Stoch

Bio_0.01_10 72.4 80.7 159 295 159 221 74 0.05%
Bio_0.15_10 74.6 81.9 159 368 159 312 56 0.03%
Bio_0.01_0.2 65.0 73.9 157 839 157 753 86 0.05%
Bio_0.15_0.2 63.4 75.2 158 860 158 791 69 0.04%

model allows it still a lot of freedom to optimize. Here, due to the
high loss rates, the benefit of extra storage is most significant if a very
cheap heat source can be used. Waste incineration is at capacity, so
any additional heat storage comes from the somewhat, but not very,
cheap Bio boiler. Therefore using stored heat is most beneficial, if it
prevents the usage of the most expensive technology, LPG, and if that
happens early winter, when losses have not compounded much yet. The
number of hours that LPG is needed in early winter are limited. So the
relative cost benefit of storage is modest. Still, considering the analyses
presented above, we believe that a stochastic approach, especially when
considering DSM as an additional flexibility option, is beneficial to
optimize operations and determine optimal storage inventory levels.

6. Conclusion

This paper has presented a stochastic multi-stage optimization
model for the tactical-operational planning of low-temperature District
Heating Networks considering Demand Side Management and seasonal
storage, and applied this to a case study for a new low-temperature
district heating network under development in Trondheim, Norway.
Through optimization and evaluation over an extensive number of
scenarios generated based on uncertainty in space heating demand,
we have compared the effect of varying deficit and curtailments costs
on the generation mix, carbon dioxide emissions, operational costs
and utilization of seasonal storage. Demand Side Management allows
shifting some supply within a day, and some curtailment. This reduces
the usage of peak generation technologies to some extent. Seasonal
storage allows shifting supply from cold months to warmer months,
which also reduces peak technology generation, and additionally a
better utilization of very cheap technologies such as waste incineration
with overcapacity in summer. For the case study, we found about
37% reduction in carbon dioxide emissions, 29% generation reduction
in peak hours, and 10% lower operational costs due to storage and
demand side management. Compared to a deterministic model, the
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Fig. 7. Monthly supply mix for selected scenarios in Bio_0.15_0.2 (MWh). Vertical axis truncated for comparability.
Fig. 8. Average hourly and accumulative deficits and surpluses (kWh) by representative day in case Bio_0.15_0.2.
tochastic model stores higher amounts of heat, but the overall differ-
nces in expected costs are low, mainly due the limited availability of
ery cheap heat sources in summer, the large number of stages, and
he very large number of scenarios.
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Appendix. Hourly temperature profiles

Demand for space heating depends very much on outdoor tem-
peratures. The lower the temperatures are compared to the desired
indoors temperature of about 21 ◦C, the higher the demand for space
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Table 10
Hourly temperatures and scenario probabilities. Yearly scenarios are combinations of monthly scenarios.

Month Jul Aug Sept Oct Nov Dec

Scen Low Med High Low Med High Low Med High Low Med High

Day average 13.83 13.67 8.55 9.30 14.07 1.85 4.90 8.56 −3.99 0.37 3.60 −6.81 −1.16 2.03
Probability 1.00 1.00 0.37 0.40 0.23 0.35 0.26 0.39 0.20 0.47 0.33 0.32 0.39 0.29
Hour 1 11.31 11.20 6.28 7.87 12.36 1.54 2.80 7.18 −5.03 0.49 2.51 −7.15 −1.95 2.93
Hour 2 10.49 10.50 5.77 7.48 11.64 1.16 2.06 6.89 −5.25 0.29 2.16 −7.39 −2.18 2.49
Hour 3 9.64 10.02 5.48 7.09 11.14 0.84 1.39 6.58 −5.58 −0.01 1.81 −7.62 −2.49 2.06
Hour 4 9.84 9.83 5.21 6.89 10.71 0.68 1.03 6.44 −5.72 −0.22 1.60 −7.85 −2.83 1.64
Hour 5 10.32 9.93 5.00 6.67 10.44 0.44 0.63 6.31 −5.93 −0.39 1.41 −7.96 −3.02 1.40
Hour 6 11.00 10.52 5.01 6.53 10.54 0.31 0.36 6.20 −6.15 −0.46 1.24 −8.12 −3.15 1.17
Hour 7 11.79 11.25 5.61 6.73 11.40 0.22 0.36 6.11 −6.25 −0.60 1.09 −8.27 −3.31 0.93
Hour 8 12.59 12.10 6.59 7.66 12.29 0.20 1.71 6.37 −6.37 −0.68 0.97 −8.35 −3.39 0.77
Hour 9 13.45 13.11 7.81 8.75 13.27 0.97 3.36 7.73 −6.00 −0.78 1.04 −8.38 −3.50 0.58
Hour 10 14.24 13.99 8.94 9.73 14.31 1.82 5.18 8.80 −4.37 −0.65 2.76 −8.48 −3.49 0.40
Hour 11 14.97 14.84 10.00 10.52 15.33 2.62 6.79 9.78 −3.13 0.53 4.50 −8.14 −1.29 0.78
Hour 12 15.66 15.59 10.94 11.22 16.00 3.20 7.94 10.77 −2.02 1.29 5.80 −5.78 0.05 2.80
Hour 13 16.20 16.18 11.46 11.85 16.41 3.58 8.76 11.24 −1.10 1.92 6.59 −4.61 0.55 3.67
Hour 14 16.58 16.65 11.99 12.19 17.19 3.95 9.53 11.51 −0.67 1.96 6.98 −4.21 0.60 3.61
Hour 15 16.80 16.94 12.24 12.24 17.53 3.93 9.83 11.37 −1.07 1.26 6.54 −5.57 0.63 2.74
Hour 16 16.89 17.05 12.17 12.09 17.61 3.56 9.55 10.93 −2.18 1.11 5.32 −5.68 0.35 2.68
Hour 17 16.84 16.97 11.81 11.63 17.43 2.92 8.71 10.25 −2.50 0.99 5.04 −5.81 0.56 2.59
Hour 18 16.65 16.65 11.14 10.97 17.04 2.65 7.40 9.78 −2.85 0.84 4.81 −5.92 0.83 2.49
Hour 19 16.19 16.12 10.29 10.32 16.26 2.38 6.74 9.41 −3.15 0.70 4.61 −6.04 0.56 2.42
Hour 20 15.61 15.45 9.67 9.88 15.44 2.09 6.08 9.03 −3.52 0.54 4.39 −6.18 0.29 2.31
Hour 21 15.00 14.68 9.00 9.43 14.61 1.77 5.35 8.71 −3.77 0.44 4.15 −6.32 0.00 2.24
Hour 22 14.30 13.84 8.26 8.97 13.77 1.55 4.73 8.40 −4.07 0.29 3.89 −6.44 −0.24 2.13
Hour 23 13.44 12.87 7.61 8.50 12.94 1.20 4.05 8.03 −4.37 0.14 3.69 −6.56 −0.55 2.02
Hour 24 12.19 11.89 6.95 8.01 12.07 0.92 3.36 7.70 −4.72 −0.01 3.41 −6.64 −0.78 1.90

Month Jan Feb Mar Apr May Jun

Scen Low Med High Low Med High Low Med High Low Med High

Day average −8.40 −2.14 1.47 −5.79 −0.56 0.80 −3.90 0.66 2.79 0.21 3.36 6.05 7.43 11.12
Probability 0.26 0.52 0.23 0.32 0.25 0.43 0.35 0.29 0.35 0.17 0.47 0.37 1.00 1.00
Hour 1 −7.40 −0.09 1.71 −5.73 −0.34 −0.78 −4.68 −0.82 0.23 −1.86 0.86 4.18 4.62 8.66
Hour 2 −7.86 −0.50 1.53 −6.22 −0.70 −1.18 −5.02 −1.24 −0.35 −2.32 0.20 3.62 3.83 7.71
Hour 3 −8.21 −0.81 1.36 −6.61 −1.06 −1.63 −5.26 −1.68 −0.80 −2.72 −0.17 3.30 3.05 6.78
Hour 4 −8.61 −1.13 1.17 −6.87 −1.33 −1.84 −5.45 −1.90 −1.03 −2.98 −0.44 3.02 3.14 7.11
Hour 5 −8.86 −1.26 1.07 −7.07 −1.59 −2.07 −5.66 −2.17 −1.29 −3.18 −0.39 2.79 3.61 7.60
Hour 6 −9.08 −1.41 0.99 −7.30 −1.67 −2.23 −5.73 −2.30 −1.41 −3.22 0.17 2.92 4.28 8.26
Hour 7 −9.31 −1.55 0.87 −7.46 −1.84 −2.36 −5.79 −2.24 −1.06 −2.66 0.92 3.66 5.13 9.05
Hour 8 −9.49 −1.66 0.81 −7.62 −1.99 −2.38 −5.65 −1.59 0.16 −1.84 1.86 4.60 6.05 9.90
Hour 9 −9.66 −1.74 0.76 −7.59 −2.06 −1.55 −4.81 −0.56 1.55 −0.88 3.00 5.53 7.00 10.67
Hour 10 −9.84 −1.42 0.70 −6.70 −1.53 0.06 −3.94 0.60 3.02 0.10 4.03 6.38 7.97 11.52
Hour 11 −9.03 −1.03 1.03 −5.72 −0.51 1.75 −3.15 1.66 4.35 1.10 4.94 7.19 8.84 12.30
Hour 12 −8.10 −1.19 2.33 −4.69 0.29 3.05 −2.60 2.58 5.48 2.12 5.72 7.91 9.51 12.89
Hour 13 −7.38 −1.35 2.86 −4.11 0.80 3.88 −2.11 3.26 6.37 2.76 6.31 8.41 10.10 13.43
Hour 14 −7.06 −2.51 3.01 −3.71 1.33 4.37 −1.73 3.73 6.95 3.22 6.60 8.86 10.52 13.85
Hour 15 −7.80 −2.67 2.31 −3.60 1.40 4.41 −1.65 3.93 7.21 3.54 6.83 9.15 10.76 14.11
Hour 16 −7.95 −2.83 2.14 −3.91 0.93 4.08 −1.77 3.82 7.15 3.64 6.86 9.23 10.83 14.20
Hour 17 −8.01 −2.99 1.97 −4.66 0.31 3.26 −2.22 3.34 6.66 3.40 6.64 9.03 10.76 14.11
Hour 18 −8.09 −3.14 1.80 −4.94 0.10 2.55 −2.81 2.64 5.85 2.92 6.14 8.58 10.41 13.85
Hour 19 −8.15 −3.30 1.61 −5.22 −0.10 2.18 −3.14 1.90 4.82 2.16 5.49 7.92 9.95 13.44
Hour 20 −8.26 −3.46 1.46 −5.34 −0.34 1.84 −3.49 1.44 4.09 1.34 4.71 7.18 9.29 12.86
Hour 21 −8.28 −3.62 1.27 −5.59 −0.57 1.48 −3.79 1.00 3.35 0.86 3.88 6.45 8.61 12.26
Hour 22 −8.33 −3.78 1.07 −5.96 −0.77 1.08 −4.09 0.58 2.61 0.36 3.03 5.80 7.78 11.62
Hour 23 −8.38 −3.94 0.91 −6.03 −1.01 0.78 −4.40 0.14 1.86 −0.12 2.14 5.09 6.65 10.98
Hour 24 −8.48 −4.10 0.60 −6.28 −1.26 0.45 −4.73 −0.30 1.10 −0.60 1.26 4.40 5.53 9.63
heating. Note that we assume space heating demand in months May–
September as well as hot water demand in all months to not be subject
to uncertainty.
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