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Abstract—Decentralized detection is one of the key tasks
that a wireless sensor network (WSN) is faced to accomplish.
Among several decision criteria, the Rao test is able to cope
with an unknown (but parametrically-specified) sensing model,
while keeping computational simplicity. To this end, the Rao test
is employed in this paper to fuse multivariate data measured
by a set of sensor nodes, each observing the target (or the
desired) event via a non-linear mapping function. In order to
meet stringent energy/bandwidth requirements, sensors quantize
their vector-valued observations into one or few bits and send
them over error-prone (to model low-power communications)
reporting channels to a fusion center (FC). Therein, a global
(better) decision is taken via the proposed test. Its closed form
and asymptotic (large-size WSN) performance are obtained, and
the latter leveraged to optimize quantizers. The appeal of the
proposed approach is confirmed via simulations.

Index Terms—Data fusion, decentralized detection, generalized
likelihood ratio test (GLRT), Internet of Things (IoT), Rao test,
threshold optimization, WSNs.

I. INTRODUCTION

A. Motivation

DECENTRALIZED detection with wireless sensor net-
works (WSNs) has become a deeply researched area

in the last decades [1]–[3]. Due to energy and bandwidth
limitations, each node, rather than sending its observed mea-
surements, compresses them into one-bit of information about
the estimated hypothesis to a fusion center (FC), which is in
charge of taking a global decision about either the occurrence
of a phenomenon of interest (hypothesis H1, representing e.g.
an anomaly) or the null hypothesis H0. The optimal decision
test (under Bayesian and Neyman-Pearson frameworks) at
each sensor is well known to be a one-bit quantization of
the local likelihood ratio test (LRT) [1]. However, in most
practical cases, the LRT at the generic sensor node cannot
be evaluated due to an incompletely-specified sensing model.
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Besides, even when the nodes can compute their local LRT,
the search for local quantization thresholds is well known to
be an exponentially complex problem [4].

In such scenarios, the raw measurement (vector) is di-
rectly (compressed and) quantized into one-bit of information.
Hence, to cope with the presence of unknown parameters,
the FC is demanded to solve a composite hypothesis testing
problem to capitalize the spatial diversity provided by the
WSN (encoded into the received bits) [5], [6]. The above task
both requires high performance and acceptable complexity, in
order to reduce the processing power of the FC. Indeed, the
latter may be also battery-powered and represent the cluster
head (intermediate node) of a hierarchical fusion architecture
[7], [8].

B. Related Works
As previously mentioned, the sensing model statistics of the

desired signal may be practically not available in nodes. Such
challenging situation has a direct implication on (a) the design
of the fusion rules at the FC, which in turn depend on (b) the
type of local sensor processing.

On one hand, there is a corpus of literature dealing with the
design of simple fusion approaches, which practically neglect
the dependence with respect to (w.r.t) the unknown signal,
such as the well-known counting rule [9], [10] (which enjoys
remarkable robustness [11] and invariance [12] properties)
or channel-aware (but relying on ideal sensor assumption)
decision statistics [13], [14]. On the other hand, in some
particular scenarios [15] the uniformly most powerful test is
independent of the unknown parameters; thus, they do not need
to be estimated.

Nonetheless, when neglecting the dependence on unknown
parameters at design phase leads to unacceptable performance
degradation, the generalized likelihood ratio test (GLRT) is
usually capitalized as the building rationale to design the
fusion rule. Accordingly, GLRT-based fusion of quantized data
was studied in [16], [17] and [18] for detecting a source
with unknown location by passive/active methods, and fusing
conditionally-dependent decisions, respectively. Additionally,
the GLRT has been leveraged in [6] to detect an unknown
deterministic signal through a WSN reporting one-bit quan-
tized measurements via noisy communication channels; this
fusion rule has been then extended to cope with multi-
bit measurements in [19]. Recent interesting applications of
the GLRT also include distributed detection of arbitrarily-
permuted one-bit quantized data [20], sparse signals [21] and
one-bit quantized data in a sequential setup [22].



IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. *, NO. *, MONTH 2020 2

Conversely, the Rao test [23] does not require maximum
likelihood estimates under the alternative hypothesis (H1).
Hence, it represents a simpler detection method for tackling
composite hypothesis testing, while asymptotically yielding
the same performance as the GLRT. Accordingly, several
works appeared leveraging Rao test in WSN-based detection
[5], [24]–[28] and, in general, score tests [29], [30] (due to
analogous advantages). For example, Ciuonzo et al. [5] have
proposed a Rao fusion rule based on one-bit quantization of
scalar measurements, whereas a corresponding generalization
to multi-bit case has been devised in [24]. Recently, its
simplicity has been exploited to detect an uncooperative target
(e.g. with also unknown location) at the FC, by developing a
generalized version of the test (i.e. the supremum of a family
of target-location-dependent Rao statistics) for the one-bit [25]
and multi-bit cases [26]. The uncooperative-target case has
been recently analyzed also in an online setup with a sequential
version of the above fusion (one-bit) rule [27]. Furthermore,
[28], [31] have applied the Rao test to collision-aware report-
ing for fusion design. Finally, locally most-powerful tests have
been applied to decentralized detection of sparse signals in
(generalized) Gaussian noise [29], [30].

It is worth noticing that all the above works have dealt
only with (single- or multi-level) quantized versions of a
scalar measurement (xk) at each sensor [5], [6], [24]–[27].
Differently, when each sensor node has available a vector
of measurements (xk), it has been suggested in [32], [33]
(for estimation and detection tasks, respectively) to compress
its observations using a linear precoder. By using a linear
precoder, the vector-valued observation of the kth node, xk,
is converted to a scalar ckTxk before transmission, where
ck is a compression vector. However, in the work [33], no
quantization issues were taken into account and a GLRT fusion
rule was designed based on real-valued (infinite-bandwidth)
compressed measurements. On the other hand, Fang et Li
[32] considered also one-bit quantization of the resulting
scalar measurement for estimation purposes. In the latter case,
the combined compression-quantization strategy is referred
to as hyperplane-based quantizer, because of its geometrical
interpretation. It is worth noticing that in the above corpus
of literature only linear sensing models have been considered.
The above considerations are condensed within Tab. I, which
categorizes related works on decentralized detection with
unknown parameters (viz. composite hypotheses) along the
main distinctive features so as to highlight the novelty of our
work.

Accordingly, the design of (detection) fusion rules (a) in
the vector case, (b) based on a non-linear sensing model and
(c) with both compression & quantization (hyperplane-based
quantizers) appears unexplored, to the best of our knowledge.

C. Summary of Contributions and Manuscript Organization
The contributions of this paper are summarized as follows:
• We study distributed detection by sensor fusion of

data from network nodes for (i) a general (e.g. non-
linear) vector measurement model, (ii) sensors employing
hyperplane-based quantizers, (iii) imperfect communi-
cation channels with non-identical per-sensor bit error

probabilities and (iv) no knowledge of the desired vector
signal determining the hypothesis. As a byproduct of our
study, the linear scalar and vector valued measurement
models are investigated as special cases.

• After investigating the GLRT for the above general
model, we explicitly derive the Rao test as a computa-
tionally simpler alternative, namely having the appeal of
being in closed-form. The corresponding Rao fusion rule
comprises the scalar counterpart in [5] as a special case
and represents an appealing method for decision fusion
from multimodal (vector-valued) sensors with limited
bandwidth and energy requirements.

• We provide the asymptotic performance of Rao (viz.
GLRT) fusion rule with respect to the number of
sensors. Leveraging its explicit expression, we pursue
an asymptotically-optimal design for hyperplane-based
quantizers (e.g. the design of both the compression vector
ck and the quantizer threshold τk) which aims at maxi-
mizing the corresponding non-centrality parameter [23].
It is shown that, while an explicit optimized expression
can be obtained for the optimal τ?k (in general, depending
on the particular ck chosen), the optimal compression
vector c?k depends on the unknown vector signal θ.
Hence, we resort to different sub-optimal, but reasonable,
heuristics for its design.

• The above results for one-bit hyperplane-based quantizers
are then extended to the case of multi-bit quantization
for each sensor, following the assumptions in [34]. The
corresponding multi-bit Rao fusion rule retains the same
implementation simplicity, while generalized heuristic
choices are carried out for compression matrix design.

• The Rao test is compared to the GLRT through simula-
tions showing that, other than sharing the same asymp-
totic distribution, it achieves practically the same per-
formance for a finite number of sensors. To make the
comparison complete, also (upper-bound) baselines are
here considered. Finally, performance trends w.r.t. rele-
vant WSN parameters are investigated.

The paper is organized as follows: Sec. II describes the
measurement and communication channel models used, along
with the quantization method employed. The GLRT and Rao
fusion rules are formulated in Sec. III, while the parameter
design of local sensors is discussed in Sec. IV. The one-bit
quantizers and the related Rao test are extended to the general
multi-bit case in Sec. V. Simulation results for validation
of our approach are given in Sec. VI. Finally, Sec. VII
draws conclusions and suggests further avenues of research.
Notation: Lower-case (resp. upper-case) bold letters denote
vectors (resp. matrices), with ak (resp. an,m) representing the
kth element (resp. (n,m)th element) of a (resp. A); upper-
case calligraphic letters, e.g. A, denote finite sets; E{·}, (·)T ,
tr (·), (·)†, 〈·, ·〉 and ‖·‖ denote expectation, transpose, matrix
trace, Hermitian, inner product and vector Euclidean norm
operators, respectively; 0N (resp. 1N ) denotes the null (resp.
ones) vector of length N ; In denotes the identity matrix of
size n; P (·) and p(·) are used to denote probability mass
functions (PMF) and probability density functions (PDF);
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TABLE I
CATEGORIZATION OF CLOSELY-RELATED WORKS ON DECENTRALIZED DETECTION WITH UNKNOWN PARAMETERS.

LEGEND:
VM (VECTOR MEASUREMENT): # (SCALAR MEASUREMENT);  (VECTOR MEASUREMENT);

VP (VECTOR PARAMETER): # (SCALAR PARAMETER);  (VECTOR PARAMETER);
NLM (NON-LINEAR MODEL): # (LINEAR MODEL); G# (NON-LINEAR MODEL WITH LINEAR DEPENDENCE IN THE UNKNOWN PARAMETERS);

 (NON-LINEAR MODEL);
Q (QUANTIZATION): # (NO QUANTIZATION); G# (ONE-BIT QUANTIZATION);  (MULTI-BIT QUANTIZATION);

RC (REPORTING CHANNELS): # (IDEAL);  (NOISY);
FUSION RULE: GLR (GENERALIZED LIKELIHOOD RATIO); LOD (LOCALLY-OPTIMUM DETECTION).

Paper VM VP NLM Q RC Fusion Rule
Fang et al., 2013 [6] # # # G# # GLR
Fang et al., 2014 [33]   # # # GLR
Ciuonzo et al., 2013 [5] # # # G#  Rao
Ciuonzo et al., 2017 [25] # # G# G#  Rao
Hu et al., 2018 [27] # # G# G#  GLR/Rao
Cheng et al., 2019 [24] # # #   Rao
Wang et al., 2019 [29] # # #  # LoD
Wang et al., 2019 [30] # # #  # LoD
Hu et al., 2020 [17] #     GLR
Cheng et al., 2020 [26] # # G#   GLR/Rao
This paper      GLR/Rao

N (µ,Σ) denotes a normal distribution with mean vector
µ and covariance matrix Σ; Q(·) is used to denote the
complementary cumulative distribution function (CCDF) of
standard normal distribution; U(a, b) denotes a uniform PDF
with support [a, b]; χ2

k (resp. χ
′2
k (ξ)) denotes a chi-square

(resp. a non-central chi-square) distribution with k degrees of
freedom (resp. and non-centrality parameter ξ); u (·) ∈ {0, 1}
denotes the Heaviside (unit) step function; finally, the symbols
∼ and a∼ mean “distributed as” and “asymptotically distributed
as”.

II. SYSTEM MODEL

In this work we adopt the system model shown in Fig. 1,
which is elaborated throughout this section. Specifically, we
first describe the non-linear measurement model (Sec. II-A)
considered. Then, we focus on sensors’ compression & quan-
tization method, ending with the communication model em-
ployed (Sec. II-B). Finally, we formulate rigorously the testing
problem considered (Sec. II-C).

A. Measurement Model

We consider a binary hypothesis testing problem in which a
collection of sensor nodes k ∈ K , {1, ...,K} collaborate to
reveal an anomalous event, summarized through the unknown
deterministic vector parameter θ ∈ Rp. In the rest of the paper,
we make the assumption K ≥ p, i.e. there are enough sensors
to (implicitly) estimate the unknown vector θ.

More specifically, we assume that the normal behaviour is
represented by θ = θ0, while any deviation θ 6= θ0 denotes
an anomaly. The present model encompasses many tasks of
interest, such as revealing (in a decentralized fashion) the
presence of an unknown target (i.e. θ0 = 0p).

Phenomenon of Interest
(POI) 
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Fig. 1. The system model used in this paper. Each sensor compresses its
measurement vector via a hyperplane-based quantizer. Each bit is then sent
through a binary symmetric channel and received by the FC.

The measurement model at kth sensor is summarized as
follows: {

H0 : xk = gk(θ0) +wk,

H1 : xk = gk(θ) +wk, k ∈ K;
(1)

where xk ∈ Rm denotes the kth node measurement vector,
gk (·) : Rp → Rm is a known functional (possibly non-linear)
mapping describing the input-output relationship between the
(unknown) parameter vector and the measurement vector for
the kth node. Furthermore, wk ∈ Rm denotes the noise
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vector experienced by kth sensor, modelled as a multivariate
zero-mean Gaussian, that is wk ∼ N (0m,Σk); the random
variables (RVs) wks are here assumed mutually independent.
Finally, aiming at keeping a compact notation, we collect all
the measurements in the vector x ,

[
xT1 ...x

T
K

]T ∈ RmK×1.
Remarkably, the model in Eq. (1) comprises many special

cases of interest, as detailed hereinafter.
1) The scalar linear (SL) measurement model: If we just

consider a linear model and a scalar-valued parameter to be
detected (θ0 = 0), we obtain{

H0 : xk = wk,

H1 : xk = hkθ + wk, k ∈ K
(2)

where θ is the unknown scalar parameter, hk is the observation
coefficient and wk ∼ N (0, σ2

k). Such a model was extensively
analyzed in decentralized estimation studies [34]–[37] and,
recently, in (decentralized) composite hypothesis testing [5],
[6], [19], [24].

2) The vector linear (VL) measurement model: Such model
is the vector counterpart of Eq. (2) (i.e. θ0 = 0p) and can be
summarized as follows:{

H0 : xk = wk,

H1 : xk = Hkθ +wk, k ∈ K
(3)

where θ is the unknown vector parameter, Hk ∈ Rm×p is a
known observation matrix and wk denotes the noise vector.
This problem was considered in decentralized estimation in
[32], [34] while a (composite) hypothesis testing was actually
considered only in [33] for the special caseHk = Ip, adopting
(a) a GLRT design as the relevant fusion rule and (b) assuming
perfect measurement reporting at the FC (i.e. no quantization).

B. Compression, Quantization and Reporting

In this paper, we will consider a hyperplane-based quantizer,
as proposed in [32], [34]. More specifically, to meet stringent
bandwidth and power budgets in WSNs, the kth sensor quan-
tizes its observation vector xk into one bit (bk) as [32]:

bk , u
(
cTk xk − τk

)
, (4)

where ck ∈ Rm is a compression vector used by the kth node
to obtain a real-valued scalar and τk denotes the kth sensor
quantizer threshold (both known at the FC), determining the
binary value of the corresponding bit bk. Hyperplane-based
quantizers restrict the partition region to be a half-space whose
border is a hyperplane defined by a compression vector ck and
a quantization threshold τk. Their appeal lies in their ease of
implementation, which is highly-desirable on low-cost sensor
devices.

Remark: for the SL model, the expression in Eq. (4) spe-
cializes into bk , u (ck xk − τk). Accordingly, the presence
of the scaling term ck is redundant in the quantization of the
SL model and kept only for notational consistency in what
follows.

Similarly as in [5], [6], [25], we assume that the one-bit
quantized measurement bk is sent over a binary symmetric

channel (BSC) and the FC observes an error-prone yk, that is

yk =

{
bk with probability 1− εk
(1− bk) with probability εk

(5)

where εk denotes the (known) bit error probability (BEP) expe-
rienced by the node k’s link to the FC. Finally, we collect the
received data from nodes at the FC as y ,

[
y1 · · · yK

]T
.

C. Problem Statement

We highlight that the hypothesis testing described in Eq. (1)
represents a two-sided test [23], where {H0,H1} corresponds
to {θ = θ0,θ 6= θ0} and, additionally, the vector parameter
θ is unknown. The above task is further complicated by (i)
the presence of a possibly non-linear mapping gk(·) in the
sensing process, (ii) the loss of information (an additional non-
linearity) due to compression & quantization (based on ck’s
and τk’s) and (iii) the non-ideality of the reporting channels.

Accordingly, the problem considered here is (a) the deriva-
tion of a (computationally) simple test (resorting to a decision
statistic Λ, which is compared to a decision threshold γ) on
the basis of y and (b) the corresponding quantizer design
(consisting in a globally-optimal choice of ck’s and τk’s)
for each sensor. We remark that the quantizer design in
(b) is peculiar to our problem, as the objective typically
used in vector quantization corresponds to minimizing the
reconstruction error between xk and its quantized counterpart.
Differently, in this paper, the ultimate goal of the WSN is to
decide reliably for the actual hypothesis (either H0 or H1)
in force without necessarily being able to recover the set of
sensors’ measurements.

Finally, the performance will be evaluated in terms of the
well-known system (global) probabilities of detection PD0

,
Pr{Λ > γ|H1} and false-alarm PF0

, Pr{Λ > γ|H0}.

III. FUSION RULES DESIGN

This section deals with fusion rules design. Specifically,
after obtaining the explicit likelihood function for the hy-
pothesis testing problem at hand (Sec. III-A), the implicit
GLRT expression (Sec. III-B) and the explicit Rao test form
(Sec. III-C) are obtained, highlighting their specialization to
SL/VL models.

A. Likelihood Function

Before proceeding with the design of the considered fusion
rules, we compute the explicit (log-) likelihood of the received
vector y as a function of θ. We remark that simply setting
θ = θ0 provides the (log-) probability mass function (PMF)
under H0.

More specifically, by exploiting the independence among
nodes’ data conditioned on each hypothesis, it can be readily
shown that the PMF factorizes as P (y;θ) =

∏K
k=1 P (yk;θ).

Then, the contribution of the kth node, through the term
P (yk;θ), is given in closed form as:

P (yk;θ) = [ψk (θ)]
yk [1− ψk (θ)]

1−yk , (6)
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where ψk (θ) , P (yk = 1;θ) denotes the received bit prob-
ability. The latter term is explicitly given by:

ψk (θ) = Q

τk − cTk gk (θ)√
cTkΣkck

 (1− 2εk) + εk (7)

Indeed, the useful (scalar) signal cTk gk(θ) is affected by an
equivalent noise vk , (cTkwk) arising from a linear operation
of wk. As a result, it holds vk ∼ N (0, cTkΣkck).

Because of bits’ mutual independence, the log-PMF is easily
obtained as:

lnP (y;θ) =

K∑
k=1

yk lnψk (θ) + (1− yk) ln [1− ψk (θ)] (8)

In the following, we investigate the fusion rules based on
GLRT and Rao test.

B. GLRT

A common approach to handle detection in the presence
of unknown parameters (viz. composite hypothesis testing)
resorts to the GLRT [23]. If the GLRT is adopted as the fusion
rule at the FC, the implicit expression will be given by:

ΛG , 2 ln
max
θ

P (y;θ)

P (y;θ0)
. (9)

The evaluation of the above statistic relies on the log-PMF
form provided in Eq. (8) and is complicated by the opti-
mization at the numerator. It is proved that the log-likelihood
function is concave in θ for some relevant cases [32], [35],
hence there is only a (unique) global maximum. Still, although
computationally-efficient search algorithms can be used to find
the global maximum, a closed form for Eq. (9) cannot be
obtained.

C. Rao Test

An attractive alternative which avoids cumbersome opti-
mization is given by the well-known Rao test [23], as it does
not require maximization in the numerator of Eq. (9). The
implicit expression for Rao test is given by [23]:

ΛR , δT (y;θ)
∣∣
θ=θ0

I−1 (θ0) δ (y;θ)|θ=θ0 (10)

where δ (y;θ) , ∂ lnP (y;θ)
∂θ is the score function and I (θ) ,

E
{
δ(y;θ) δ(y;θ)T

}
denotes the Fisher information matrix

(FIM) as a function of the unknown parameter θ.
In what follows, we obtain the closed-form Rao statistic for

the general measurement model in Eq. (1). To this end, we
need to evaluate the closed-form expressions of the score vec-
tor δ(y;θ) and the FIM I(θ). The following two propositions
will help accomplishing the above task.

Proposition 1: The explicit form of the score vector is:

δ (y;θ) =

K∑
k=1

qk (θ) [yk − ψk (θ)]JTk (θ) ck (11)

where
Jk (θ) ,

∂gk (θ)

∂θT
(12)

denotes the Jacobian matrix of gk (θ), whereas qk (θ) is
defined as

qk (θ) ,
ζk pvk

(
τk − cTk gk (θ)

)
ψk (θ) (1− ψk (θ))

. (13)

In the above equation, ζk , (1− 2εk) and pvk (·) denotes the
PDF of vk.

Proof: See Appendix A.
Proposition 2: The closed form of the FIM is:

I (θ) =

K∑
k=1

{
qk (θ)

2
ψk(θ) [1− ψk(θ)]×

JTk (θ) ckc
T
k Jk (θ)

}
, (14)

where Jk (θ) and qk (θ) retain the same definitions as in
Eqs. (12) and (13), respectively.

Proof: See Appendix B.
Therefore, combination of the results in Eqs. (11) and (14)

provides the explicit form of the Rao statistic in Eq. (15), at
top of next page. The algorithmic procedure required for Rao
test implementation is also summarized in Algo. 1.

Algorithm 1 Rao test: fusion rule evaluation at the FC.
Init Parameters: compression vectors c1, . . . , cK ;

quantization thresholds τ1, . . . , τK ;
Input: received bits y1, . . . , yK .
Output: the estimated hypothesis Ĥ.

1: for k = 1, . . . ,K do
2: Compute ψk (θ) and qk (θ) as Eqs. (7) and (13),

respectively;
3: end for
4: Compute the score vector δ (y;θ) as Eq. (11);
5: Compute the FIM I (θ) as Eq. (14);
6: Evaluate Rao statistic ΛR as Eq. (15);

7: Declare the estimated hypothesis as ΛR

Ĥ=H1

≷
Ĥ=H0

γ;

Complexity requirements: it is not difficult to show that
the computational complexity involved for implementing the
Rao test at the FC is O

(
K p+ p2

)
, i.e. a linear scaling in the

number of sensors, and a quadratic scaling in the size of the
unknown vector θ. This contrasts with the GLRT complexity,
whose grid-based implementation scales as O (KNp

θ ), where
Nθ is the size of the per-dimension quantization grid applied
to the vector θ. This incurs in a linear scaling in the number
of sensors, but an exponential scaling in the size of the
unknown vector. We recall that the above complexity measures
have been calculated under the assumptions that all the pre-
computations not depending on y have been already performed
and stored in memory at the FC (e.g. I−1(θ0) for Rao test).
Still, for completeness, the above complexity terms are also
reported (separately) since they are needed upon a change of
the pairs {ck, τk}Kk=1. The overall summary of complexity for
both the fusion rules is reported in Tab. II.

In what follows, we discuss how the general Rao statistic
obtained herein specializes in the (i) SL and (ii) VL models,
respectively. Still, we highlight the appeal of Rao test (closed-
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TABLE II
COMPUTATIONAL COMPLEXITY OF BOTH FUSION RULES: K IS THE

NUMBER OF SENSORS AT THE FC; m IS THE SIZE OF THE MEASUREMENT
SPACE; p IS THE SIZE OF THE PARAMETER VECTOR; Nθ DENOTES THE
NUMBER OF BINS USED FOR DISCRETIZING EACH DIMENSION OF THE

VECTOR θ.

Fusion Complexity

Rule for each y change of {ck, τk}Kk=1

GLR O(KNp
θ ) O

(
K(m2 +mNp

θ )
)

Rao O(Kp+ p2) O(K(m2 +mp+ p2) + p3)

form) implementation even in the general non-linear case, as
only the terms gk(θ) and Jk(θ) (evaluated at θ0) are required.

1) Rao Fusion Rule for SL model: In case the measurement
model corresponds to the SL model described in Eq. (2), the
Rao statistic is simplified as follows. Specifically, we obtain
δ(y;θ) → δ(y; θ) and I(θ) → I(θ) (i.e. both the score
function and the FIM become scalar-valued, since θ is scalar),
with the corresponding simplified forms:

δ (y; θ) =

K∑
k=1

qk (θ) [yk − ψk (θ)]hk ck (16)

I(θ) =

K∑
k=1

qk (θ)
2
ψk (θ) [1− ψk (θ)]h2

k c
2
k (17)

Similarly, the auxiliary quantities employed in
Eqs. (16) and (17) are equal to ψk (θ) =

Q
(
τk−ck hk θ
|ck|σk

)
(1− 2εk) + εk and qk (θ) =

[ζk pvk (τk − ck hk θ)] / [ψk (θ) (1− ψk (θ))], respectively.
Finally, the substitution θ = θ0 = 0 in Eqs. (16) and (17)
provides the explicit Rao statistic for SL model.

We recall that a fusion rule based on the Rao test for the
SL model case (Eq. (2)) has been studied in [38]. Similarly,
the GLRT for the same measurement model has been tackled
in [6].

2) Rao Fusion Rule for VL model: Differently, when the
sensing phase adheres to the VL measurement model described
in Eq. (3), the following simplified expressions hold, as the VL
model is a special instance of the general case when gk (θ) =
Hkθ and θ0 = 0:

δ(y;θ) =

K∑
k=1

qk (θ) [yk − ψk (θ)] zk (18)

I(θ) =

K∑
k=1

qk (θ)
2
ψk (θ) [1− ψk (θ)] zkz

T
k (19)

where we have defined zk , HT
k ck. Similarly, the aux-

iliary quantities employed in Eqs. (18) and (19) equal to

ψk (θ) = Q
(

τk−zT
k θ√

cTk Σkck

)
(1− 2εk) + εk and qk (θ) =[

ζk pvk
(
τk − zTk θ

)]
/ [ψk (θ) (1− ψk (θ))], respectively. Fi-

nally, the substitution θ = θ0 = 0p in Eqs. (18) and (19)
provides the explicit Rao statistic for VL model.

From the general Rao test expression in Eq. (15), we
observe that its implementation (and, consequently, its per-

formance) depends on the specific choice of the quantizer
parameters (τk, ck), k = 1, . . . ,K. Accordingly, these can be
designed to optimize performance.

IV. DESIGN OF SENSORS’ PARAMETERS

The focus of this section is the design of the parameters
for the hyperplane-based sensors quantizers considered in this
work. Specifically, we first asymptotically characterize the
performance of both GLRT and Rao test for the considered
general model (Sec. IV-A). Then, based on the above charac-
terization, we design thresholds (Sec. IV-B) and compression
vectors (Sec. IV-C) for all the sensors.

A. Asymptotic Performance Characterization

We know from the classical hypothesis testing literature that
the asymptotic performance, in weak-signal condition, of Rao
test and GLRT is given by [23]:

ΛR, ΛG
a∼

{
χ2
p under H0

χ
′2
p (λ) under H1

(20)

where λ denotes the non-centrality parameter:

λ , (θ1 − θ0)
T
I (θ0) (θ1 − θ0) (21)

with θ1 being the true value under H1. Clearly, the perfor-
mance of both Rao test and GLRT increases monotonically
with λ. The explicit form for λ (readily obtained by exploiting
FIM expression in Eq. (14)) is:

λ =

K∑
k=1

{
qk (θ0, τk, ck)

2
ψk(θ0, τk, ck) ×

[1− ψk(θ0, τk, ck)] 〈ck,Jk(θ0)(θ1 − θ0)〉2
}

(22)

with a slight abuse of notation for qk(θ, τk, ck) and
ψk(θ, τk, ck), to stress their dependence on (τk, ck). The
above expression underlines dependence of detection per-
formance with respect to the nodes’ parameters– i.e. local
thresholds (τk) and compression vectors (ck)– whose design
is discussed in the sequel.

Before proceeding, we report for completeness the special-
ized forms of the non-centrality parameter λ in the cases of
(i) SL and (ii) VL measurement models. Specifically, in the
SL measurement model [5], [6], we have

(SL) λ =

K∑
k=1

{
qk (0, τk, ck)

2
ψk(0, τk, ck)×

[1− ψk(0, τk, ck)] c2k h
2
k θ

2
1

}
(23)

while in the VL measurement model, we obtain

(VL) λ =

K∑
k=1

{
qk (0p, τk, ck)

2
ψk(0p, τk, ck) ×

[1− ψk(0p, τk, ck)] 〈ck, Hkθ1〉2
}

(24)
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ΛR =

{
K∑
k=1

cTk Jk(θ0) qk(θ0) [yk − ψk(θ0)]

}
I(θ0)−1

{
K∑
k=1

qk(θ0) [yk − ψk(θ0)]Jk(θ0)T ck

}
(15)

The objective of next subsections is to design thresholds τk
and compression vectors ck so as to optimize the asymptotic
performance of GLRT and Rao test, that is:

{τ?k , c?k}Kk=1 = arg max
{ck,τk}Kk=1

λ
(
{τk, ck}Kk=1

)
(25)

To this end, we rewrite the non-centrality parameter objective
in Eq. (22) as follows:

λ
(
{τk, ck}Kk=1

)
=

K∑
k=1

κk (τk, ck) βk(ck) (26)

where we have defined κk (τk, ck) ,
qk (θ0, τk, ck)

2
ψk(θ0, τk, ck) [1 − ψk(θ0, τk, ck)] and

βk(ck) , 〈ck,Jk(θ0)(θ1 − θ0)〉2, respectively.
Remarkably, the additive form of the non-centrality parame-

ter λ allows each sensor to be optimized independently. Addi-
tionally, all the involved terms are non-negative. Accordingly,
we first obtain each quantizer threshold by maximizing the per-
sensor contribution κk (τk, ck) so as to obtain an optimized
τ?k (ck) (i.e. being function of the compression vectors). Once
obtained the τ?k (ck), subsequently, we will focus on each ck
design.

B. Design of local quantizers’ thresholds {τk}Kk=1

As previously discussed, we concentrate herein on op-
timized local thresholds τk. More specifically, each τk is
obtained as the solution of the following optimization:

τ?k (ck) , arg max
τk

κk(τk, ck) . (27)

To obtain a solution for the aforementioned problem, we first
rewrite κk(τk, ck) exploiting the definitions of ψk(θ0, τk, ck)
and qk(θ0, τk, ck) (Eqs. (7) and (13), respectively). Hence,
after some manipulations, we obtain:

κk(τk, ck) =
ζ2
k p

2
vk

(
τk − cTk gk(θ0)

)
ψk(θ0, τk, ck) [1− ψk(θ0, τk, ck)]

(28)

=
p2
vk

(
τk − cTk gk(θ0)

)
Q
(
τk−cTk gk(θ0)√

cTk Σkck

)[
1−Q

(
τk−cTk gk(θ0)√

cTk Σkck

)]
+ ∆k

where ∆k , [εk(1 − εk)]/(1 − 2εk)2. Then, since vk ∼
N (0, cTkΣkck), it follows from known results in the literature
of (scalar) quantized estimation and detection [25], [38],
[39] that τ?k (ck) = cTk gk(θ0) corresponds to the optimum
threshold. This property also applies independently on the
specific value of the BEP εk.

Substituting the optimal value τ?k (ck) within Eq. (28) pro-
vides the (threshold-)optimized objective κk(τ?k , ck), whose
explicit expression is:

κk(τ?k , ck) =
p2
vk

(0)

Q (0) [1−Q (0)] + ∆k
(29)

Furthermore, by observing that Q(0) = 1/2 and pvk(0) =

1/
√

2πcTkΣkck, respectively, the function κk(τ?k , ck) can be
simplified as:

κk(τ?k , ck) =
2 ζ2

k

π
(
cTkΣkck

) (30)

We conclude the section with a mention on SL and VL mea-
surement models. First, since in scalar and vector cases θ0 = 0
and θ0 = 0p hold, respectively, it is not difficult to show that
such result implies τ?k = 0 in both SL (thus confirming the
results in [5], [6]) and VL measurement models. The optimized
objective in Eq. (30) then specializes into κk(τ?k , ck) =

2 ζ2k
π c2k σ

2
k

for the SL model, while retains the same form as Eq. (30) for
the VL model.

C. Design of compression vectors {ck}Kk=1

Once the thresholds τk have been optimized, the non-
centrality parameter λ(·) becomes:

λ
(
{τ?k , ck}

K
k=1

)
=

K∑
k=1

κk (τ?k , ck) βk(ck) (31)

=

K∑
k=1

2 ζ2
k

π

cTk Jk(θ0)(θ1 − θ0)(θ1 − θ0)TJk(θ0) ck
cTkΣkck

(32)

The τk-optimal non-centrality parameter in Eq. (22) special-
izes, for the SL model, in:

(SL) λ
(
{τ?k , ck}

K
k=1

)
=

2

π

K∑
k=1

ζ2
k

h2
k θ

2
1

σ2
k

(33)

From the above equation, it is apparent that a scalar scaling
of the measurement would not alter asymptotic performance.
On the other hand, in the case of a VL model, τk-optimal
non-centrality parameter simplifies to

(VL) λ
(
{τ?k , ck}

K
k=1

)
=

2

π

K∑
k=1

ζ2
k

cTk Hk θ1θ
T
1 H

T
k ck

cTkΣkck

(34)

Thus, in the general case, each optimal compression vector c?k
would be the solution of the following optimization problem
(discarding irrelevant terms)

max
ck

〈ck,Jk(θ0) (θ1 − θ0)〉2

cTkΣkck
. (35)

After defining c̄k , Σ
1/2
k ck the above optimization can be

rewritten as:

max
c̄k

〈
c̄k, Σ

−1/2
k Jk(θ0) (θ1 − θ0)

〉2

c̄Tk c̄k
. (36)
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Then, using Cauchy-Schwarz inequality, we have:〈
c̄k, Σ

−1/2
k Jk(θ0) (θ1 − θ0)

〉2

c̄Tk c̄k
≤
∥∥∥Σ−1/2

k Jk(θ0) (θ1 − θ0)
∥∥∥2

.

(37)
The equality in (37) is achieved when c̄k = c̄?k ,
αΣ
−1/2
k Jk(θ0) (θ1 − θ0), with α ∈ R \ {0}.

Finally, (i) substituting back the expression of c̄?k into ck
and (ii) choosing ck such that ‖ck‖2 = 1, provide the optimal
solution in explicit form:

c?k =
Σ−1
k Jk(θ0) (θ1 − θ0)∥∥Σ−1
k Jk(θ0) (θ1 − θ0)

∥∥ (38)

Unfortunately, since the true value of θ1 is not known at
the FC, the optimal compression vector c?k cannot be imple-
mented.1 We recall that this is also the case for the (simpler)
VL measurement model, whose corresponding explicit solu-
tion is c?k = Σ−1

k Hk θ1/
∥∥Σ−1

k Hk θ1

∥∥. Therefore, the need
for sub-optimal design approaches arises. Herein, four differ-
ent heuristic alternatives are explored, described hereinafter.
Random precoding (RND) corresponds to the naivest precod-
ing approach, as adopted in [33] for decentralized detection in
the no-quantization case. Specifically, the compression vectors
are chosen such that ck ∼ N (0m, Im) and then normalized
as ck/ ‖ck‖.
Uniform precoding (UNF) hypothesizes that the vector θ1

deviates from the nominal θ0 with an equal-sized contribution
on each component (i.e. θ1 = θ0 + 1p), namely

ck =
Σ−1
k Jk(θ0)1p∥∥Σ−1
k Jk(θ0)1p

∥∥ (39)

Random subspace precoding (RSP) consists in consider-
ing the singular value decomposition of the matrix Ψ ,
Σ−1
k Jk(θ0), namely Ψ = UΨΛΨV

T
Ψ , and randomly sampling

one of the columns of UΨ. By doing so, the RSP compression
vector ck will be guaranteed to lie within the same subspace
as the optimal c?k.
Top(-direction) subspace precoding (TSP) similarly consid-
ers the singular value decomposition of the matrix Ψ, namely
Ψ = UΨΛΨV

T
Ψ , but rather uses the column of UΨ associated

to the highest singular value. In this way, the compression
vector will be guaranteed to lie within the same subspace as
the optimal c?k and be aligned along the direction with the
highest sensitivity with respect to deviations of (θ1 − θ0).

Remarks: clearly, the RND approach does not capitalize any
knowledge of the sensing subspace, while the sensing model
is partially capitalized by UNF precoding. Conversely, RSP
and TSP are likely to better capitalize the whole subspace
information deriving from the sensing model. Finally, we stress
that we do not consider sign-assisted precoding [33] in our
analysis, which leverages the clairvoyant knowledge of the
sign of (θ1−θ0) but works effectively only under the condition

1We recall that, in case of simpler (linear) gk mapping and analog
transmission, the ML estimate of θ1 could be obtained in closed form at the
FC. Hence, when multiple samples are collected by the WSN, the running
estimate of θ1 could be exploited to implement Eq. (38) at FC side. However,
this procedure would require the additional (per-sample) feedback from the
FC to the sensors to transmit the updated ck [40].

Ψ = Σ−1
k Jk(θ0) = Ip. Indeed, in general (Ψ 6= Ip), the sign

information on (θ1−θ0) does not bring any useful information
about the sign of ck.

D. Implementation aspects of the proposed design
In this section, we discuss how the previously-derived

optimized quantizer design can be implemented in practice.
First of all, we highlight that all the four compression heuris-
tics considered have a sole per-sensor dependence, namely
ck depends only on the parameters associated to sensor k.
Additionally, each compression vector ck does not depend on
the specific BEP condition, i.e. εk. Such properties originate
from the peculiar form of the optimal c?k, see Eq. (38). Such
remarkable properties also apply to the optimized thresh-
olds, because of the functional form τ?k (ck) = cTk gk(θ0).
Accordingly, each pair (ck, τ

?
k ) can be calculated by both

the kth sensor and the FC, without additional information
exchange. The only pre-requisite is that kth sensor should
know the statistical characterization pertaining to its sensing
model (namely, {Σk, gk(θ0),Jk(θ0)}), whereas the statistical
characterization pertaining to the sensing models of all the
sensors (namely, {Σk, gk(θ0),Jk(θ0)}Kk=1) should be avail-
able at the FC. The procedures for (optimized) quantizer
processing at the kth sensor and the computation of all sensors’
quantizers parameters at the FC are reported in Algos. 2 and 3,
respectively. Clearly, a corresponding information exchange
(with additional overhead) between the sensors and the FC is
required only upon a (statistical) change of the sensing model.

Algorithm 2 Optimized quantizer processing at kth sensor.
Sensing Model Params: {Σk, gk(θ0),Jk(θ0)}
Input: vector measurement xk;
Output: the bit bk sent to the FC.

1: Select ck according to the heuristic selected (e.g. RND);
2: Set τ?k (ck) = cTk gk(θ0);
3: Quantize the measurement as bk = u

(
cTk xk − τ?k

)
;

Algorithm 3 Optimized parameters computation at the FC.

Input: {Σk, gk(θ0),Jk(θ0)}Kk=1

Output: heuristic compression vectors c1, . . . , cK ;
opt. quantization thresholds τ?1 , . . . , τ

?
K ;

1: for k = 1, . . . ,K do
2: Select ck according to the same sensor heuristic;
3: Set τ?k (ck) = cTk gk(θ0);
4: end for

Furthermore, we observe that for RND and RSP precoding
additional coordination between the sensors and the FC is
required, since they rely on a random generation process for
sampling the unscaled ck and the chosen column of UΨ,
respectively (cf. Sec. IV-C). However, in the above case, it only
suffices that the FC will have a twin pseudo-random generator
(with the same initial seed) as each sensor.

V. ENABLING MULTI-BIT QUANTIZATION

In this section, we extend the findings obtained in the
previous sections to the multi-bit quantizer. More specifically,
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hereinafter we assume that kth sensor quantizes its measure-
ment vector into mk ≤ m bits, whose expressions are as
follows [35]:

bk,i , u
(
cTk,i xk − τk,i

)
i = 1, . . . ,mk (40)

In the above equation bk,i denotes the ith bit obtained from
quantization of measurement vector xk via a hyperplane-based
quantizer having ck,i and τk,i as the corresponding compres-
sion vector and quantization threshold, respectively. The above
set of quantizers can be also rewritten in the compact form
bk = u

(
CT
k xk − τk

)
, where bk ,

[
bk,1 . . . bk,mk

]T ∈
{0, 1}mk , Ck ,

[
ck,1 · · · ck,mk

]
∈ Rm×mk , τk ,[

τk,1 · · · τk,mk

]
∈ Rmk , and by interpreting the (vector)

unit-step function u(·) in an elementwise fashion.
For simplicity, we will enforce statistical independence

among the bits of the same sensor. For bk,i and bk,j to be
independent, it suffices cTk,ixk and cTk,jxk to be uncorrelated,
since the noise vector is Gaussian-distributed. In other terms,
the sufficient condition is written in a compact form as:

E
(
CT
k wkw

T
kCk

)
= CT

k ΣkCk = c Imk
(41)

where c is a constant, herein chosen to unity without loss of
generality. The above condition can be met by choosing the
compression matrix for kth sensor as Ck = Σ

−1/2
k Uk where

Uk ,
[
υk,1 · · · υk,mk

]
denotes a slice of a unitary basis,

that is U †kUk = Imk
. We highlight that the above choice

corresponds to enforcing a lattice-type structure to the vector
quantizers considered herein.

Remarks: for the multi-bit case, we make the assumption∑K
k=1mk > p, i.e. there are enough independent WSN

measurements to (implicitly) estimate the unknown vector θ.
Before proceeding, we denote the received vector from kth

sensor by yk ,
[
yk,1 . . . yk,mk

]T
with the same com-

munication channel impact discussed in Eq. (5). Accordingly,
the overall transmitted and received vectors are defined as
b ,

[
bT1 . . . bTK

]T
and y ,

[
yT1 . . . yTK

]T
(both

∈ {0, 1}
∑K

k=1mk ), respectively.
In what follows, we first derive both the fusion rules for

the multi-bit case with reference to the non-linear sensing
model in Eq. (1) (Sec. V-A). Secondly, we provide their
corresponding asymptotic characterization in the above case
(Sec. V-B). Finally, we deal with the design of multi-bit
quantizers (Sec. V-C).

A. Multi-bit Fusion Rules

We first focus on obtaining the likelihood function
Pmb(y;θ) for the multi-bit quantization case. It is not difficult
to show that, in such case, the explicit expression generalizes
as follows:

Pmb(y;θ) =

K∏
k=1

mk∏
i=1

[ψk,i (θ)]yk.i [1− ψk,i (θ)](1−yk,i) (42)

where

ψk,i (θ) = Q
(
τk,i −

[
Σ
−1/2
k υk,i

]T
gk (θ)

)
(1− 2εk) + εk

(43)

The above result follows from vk,i ,
(
Σ
−1/2
k υk,i

)T
wk being

a zero-mean unit-variance Gaussian RV. First, we observe that
the GLR statistic can be obtained by substituting Eq. (42)
into the general expression provided in Eq. (9). Hence, it is
not reported for brevity. Clearly, the GLR statistic retains the
same difficulties as the one-bit case.

On the other hand, we show in what follows that Rao
test admits a closed-form even in this setup. This result is
accomplished by capitalizing the explicit expressions of the
score vector and the FIM, which are reported in the following
two propositions.

Proposition 3: The closed-form multi-bit score vector is:

δmb (y;θ) = (44)
K∑
k=1

mk∑
i=1

{
qk,i (θ) [yk,i − ψk,i (θ)]JTk (θ) Σ

−1/2
k υk,i

}
where

qk,i (θ) ,
ζk pvk,i

(
τk,i −

[
Σ
−1/2
k υk,i

]T
gk (θ)

)
ψk,i (θ) (1− ψk,i (θ))

(45)

Proof: The proof is similar to that contained in Ap-
pendix A and thus not reported for brevity.

Proposition 4: The explicit form of the FIM with multi-bit
sensors:

Imb (θ) =

K∑
k=1

mk∑
i=1

{
qk,i (θ)

2
ψk,i(θ) [1− ψk,i(θ)] (46)

JTk (θ) Σ
−1/2
k υk,i υ

T
k,i Σ

−1/2
k Jk (θ)

}
Proof: The derivation follows on from the proof contained

in Appendix B. Hence, it is omitted for brevity.
Complexity requirements: The computational complexity
of multi-bit Rao test is O

(∑K
k=1mk p+ p2

)
, i.e. a linear

scaling in the number of sensors and bit resolution, and
a quadratic scaling in the size of the unknown vector θ.
Conversely, GLRT complexity (based on grid-implementation)
scales as O

(
(
∑K
k=1mk)Np

θ

)
, where Nθ is the size of the

per-dimension quantization grid applied to the vector θ. This
incurs in a linear scaling in the number of sensors and their
bit resolution, but an exponential scaling in the size of the
unknown vector. The complexity summary for both the multi-
bit fusion rules is reported in Tab. III. As in the one-bit case,
the aforementioned table reports also the corresponding com-
plexity measures associated to pre-computations and needed
upon a change of the pairs

{
{ck,i, τk,i}mk

i=1

}K
k=1

.
We now report the specialization of the multi-bit Rao fusion

rule to the VL model. Indeed, we recall that, for the SL
model, there is only one measurement dimension (m = 1).
Nonetheless, we recall the general appeal of multi-bit Rao test
(closed-form) implementation in the general non-linear case,
as no additional terms are required even when varying the bit
resolution (e.g. gk(θ) and Jk(θ), evaluated at θ0, are solely
required also in this case).

Multi-bit Rao Fusion Rule for VL model: For the VL
measurement model in Eq. (3), the score vector and the FIM
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TABLE III
COMPUTATIONAL COMPLEXITY OF MULTI-BIT FUSION RULES: mk IS THE
NUMBER OF BITS SENT FROM kTH SENSOR TO THE FC; m IS THE SIZE OF
THE MEASUREMENT SPACE; p IS THE SIZE OF THE PARAMETER VECTOR;
Nθ DENOTES THE NUMBER OF BINS USED FOR DISCRETIZING EACH

DIMENSION OF THE VECTOR θ.

Fusion Complexity

Rule for each y change of {ck, τk}Kk=1

GLR O(
∑K
k=1mk N

p
θ ) O(

∑K
k=1mk (m2 +mNp

θ ))

Rao O(
∑K
k=1mkp+ p2) O(

∑K
k=1mk(m2 +mp+ p2) + p3)

reduce to

δmb (y;θ) =

K∑
k=1

mk∑
i=1

{qk,i (θ) [yk,i − ψk,i (θ)]

HT
k Σ
−1/2
k υk,i

} (47)

and

Imb (θ) =

K∑
k=1

mk∑
i=1

{
qk,i (θ)

2
ψk,i(θ) [1− ψk,i(θ)] (48)

HT
k Σ

−1/2
k υk,i υ

T
k,i Σ

−1/2
k Hk

}
respectively. Differently, ψk,i (θ) simplifies into

ψk,i (θ) = Q
(
τk,i − υTk,i Σ

−1/2
k Hk θ

)
(1− 2εk) + εk (49)

Finally, the simplified qk,i (θ) is evaluated as:

qk,i (θ) ,
ζk pvk,i

(
τk,i − υTk,iΣ

−1/2
k Hk θ

)
ψk,i (θ) (1− ψk,i (θ))

(50)

B. Asymptotic Characterization of Multi-bit Fusion Rules

Clearly, GLRT and Rao test retain the same asymptotic
performance reported in Eq. (20), with the (multi-bit) non-
centrality parameter λmb now given by2:

λmb =

K∑
k=1

mk∑
i=1

{
qk,i (θ0, τk,i,υk,i)

2
ψk,i(θ0, τk,i,υk,i) ×

[1− ψk,i(θ0, τk,i,υk,i)]
〈
υk,i,Σ

−1/2
k Jk(θ0)(θ1 − θ0)

〉2
}

(51)

Generalizing the one-bit case, detection performance now
depends on 2mk different parameters per-node, i.e. the local
thresholds (τk,i, i = 1, . . . ,mk) and the compression vectors
(υk,i, i = 1, . . . ,mk). Their proposed design is reported
hereinafter. Finally, we observe that for the special VL mea-
surement model, the explicit form of λmb is obtained (i) by
exploiting Eqs. (49) and (50) into (51) and (ii) by replacing
Jk(θ0)(θ1 − θ0) with Hk θ1.

The objective of next subsection is to design thresholds τk,i
and (intra-sensor orthogonal) compression vectors υk,i so as

2In the mentioned expression, we have made a slight abuse of notation for
both the terms qk,i(θ, τk,i,υk,i) and ψk,i(θ, τk,i,υk,i), so as to stress also
their dependence on the parameters (τk,i,υk,i).

to optimize the non-centrality parameter λmb (monotonically
related to the asymptotic performance of GLRT and Rao test),
that is:

{τ ?k ,U?
k}Kk=1 = arg max

{τk,Uk}Kk=1

λmb

(
{τk,Uk}Kk=1

)
(52)

To exploit the structural properties of the non-centrality pa-
rameter, the objective in Eq. (51) is rewritten, analogously to
one-bit case, as

λmb

(
{τk, Uk}Kk=1

)
=

K∑
k=1

mk∑
i=1

κk,i (τk,i,υk,i) βk,i(υk,i)

(53)
where the definitions κk,i (τk,i,υk,i) ,
qk,i (θ0, τk,i,υk,i)

2
ψk,i(θ0, τk,i,υk,i) [1 − ψk(θ0, τk,i,υk,i)]

and βk,i(υk,i) ,
〈
υk,i,Σ

−1/2
k Jk(θ0)(θ1 − θ0)

〉2

have been
employed.

The above form of the non-centrality parameter λmb allows
(since all the involved terms are non-negative) first to obtain
each quantizer threshold by maximizing the per-sensor per-
bit contribution κk,i (τk,i,υk,i) so as to obtain an optimized
τ?k,i(υk,i) (i.e. being function of the corresponding compres-
sion vector only). Once τ?k,i(υk,i) is obtained, we will address
the design of υk,i’s.

C. Design of Sensors’ Multi-bit Quantizers

Hereinafter, based on the discussion in Sec. IV-B, the
quantization thresholds τk,i’s are given by τ?k,i(υk,i) ,
arg max

τk,i

κk,i(τk,i,υk,i). The above objective is expressed in

closed-form as:

κk,i(τk,i,υk,i) = (54)

p2
vk,i

(
τk,i − υTk,i ḡk(θ0)

)
Q
(
τk,i − υTk,iḡk(θ0)

) [
1−Q

(
τk,i − υTk,iḡk(θ0)

)]
+ ∆k

where ḡk(θ0) , Σ
−1/2
k gk(θ0). Then, exploiting simi-

lar results as one-bit case, it follows that τ?k,i(υk,i) =

υTk,i Σ
−1/2
k gk(θ0) corresponds to the optimum threshold. We

remark that, even in the multi-bit case, the optimum threshold
does not depend on the BEP value εk.

Substituting the optimal value τ?k,i(υk,i) within
Eq. (54) provides the (threshold-)optimized expression
κk,i(τ

?
k (υk,i),υk,i), whose explicit form is:

κk,i(τ
?
k (υk,i),υk,i) =

p2
vk,i

(0)

Q (0) [1−Q (0)] + ∆k
=

2ζ2
k

π
(55)

Once we have optimized the thresholds τk,i, the non-centrality
parameter λmb(·) assumes the following expression:

λmb

(
{τ ?k (Uk) , Uk}Kk=1

)
=

K∑
k=1

mk∑
i=1

κk,i
(
τ?k,i(υk,i), υk,i

)
βk,i(υk,i) =

K∑
k=1

2 ζ2
k

π

mk∑
i=1

〈
υk,i, Σ

−1/2
k Jk(θ0)(θ1 − θ0)

〉2

(56)
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Clearly, the unavailability of the true value of θ1 leads to the
same impracticability in the design of the optimal compression
matrix U?

k as in the one-bit case. Correspondingly, these
technical issues also hold for the (simpler) VL model.

Specifically, each sensor term
∑mk

i=1 〈υk,i, γk〉
2

=
γTk (UkU

T
k )γk in Eq. (56) is a symmetric bilinear form, where

γk , Σ
−1/2
k Jk(θ0)(θ1 − θ0). By leveraging noteworthy

properties of bilinear forms, it is known that such term is
maximized when γk is aligned toward the eigenvector corre-
sponding to the largest eigenvalue of UkUT

k . However, since
Uk is a slice of a unitary basis, this is tantamount to achieve
the displacement of γk within the subspace generated by Uk
(as all the columns contribute equally in terms of energy).
Accordingly, the (clairvoyant) matrix U?

k should be designed
such that its generated subspace “covers” all the components
of the vector γk (which depends on the unknown θ1).

Accordingly, as in the case of one-bit quantization, the need
for sub-optimal design approaches arises. Herein, three differ-
ent heuristic alternatives are explored, described hereinafter
and based on generalization of one-bit heuristics proposed
in Sec. IV-C. We recall that these heuristics retain the same
implementation requirements as the one-bit case in Sec. IV-D.
(Orthogonal) Random precoding (RND) corresponds to the
naivest precoding approach, as adopted in [33] for decentral-
ized detection in the no-quantization case. Specifically, the
compression vectors are chosen such that ck ∼ N (0m, Im)
and then normalized as ck/ ‖ck‖.
(Orthogonal) Random subspace precoding (RSP) consists
in considering the singular value decomposition of the matrix
Ψ , Σ−1

k Jk(θ0), namely Ψ = UΨΛΨV
T

Ψ , and randomly
sampling mk ≤ p columns from UΨ. By doing so, the
orthogonal compression matrix will be guaranteed to generate
part of the subspace where the γk always lies. In view of the
aforementioned assumptions, the above method can be used
only for mk ≤ p.
(Orthogonal) Top(-directions) subspace precoding (TSP)
similarly considers the singular value decomposition of the
matrix Ψ, namely Ψ = UΨΛΨV

T
Ψ , but rather uses the

columns of UΨ associated to the mk highest singular val-
ues. In this way, the orthogonal compression matrix will be
guaranteed to generate part of the subspace where the vector
γk always lies, while picking the mk directions corresponding
the highest sensitivity with respect to deviations of (θ1−θ0).
Similarly as TSP, the above method can be used only for
mk ≤ p.
Remarks: we stress that we do not consider sign-assisted
precoding [33] and UNF precoding in the multi-bit case.
Indeed, the former retains the same implementation problems
as in the one-bit case, while for the latter there is no trival
extension of uniform-direction concept.

VI. SIMULATION RESULTS

A. Setup and upper-bounds definition

In this section, we numerically investigate the proposed
fusion schemes for the VL model described in Eq. (3), with
parameters m = 8 (size of the observation vector) and p = 3

(size of the unknown vector signal). To this end, we consider
a WSN scenario with K = 15 sensors.

To reproduce a heterogeneous scenario, the noise covari-
ance Σk of each sensor is randomly generated following
an exponentially-correlated Gaussian model, namely Σk =
(σ2

cMc,k + σ2
nIN ), where σ2

c = (9/10) is the clutter power
and σ2

n = (1/10) is the thermal noise power. Additionally,
the (r, s)th element of Mc,k is given by (%k)|r−s|, where
%k ∼ U(0.7, 0.9). Initially, we assume ideal BEP channels
(Pe,k = 0 , k ∈ K) between sensors and the FC.

In the simulated scenarios, when the hypothesis H1 holds,
the vector parameter is sampled as θ ∼ N (03, I3) at each run
and scaled such to ensure the desired sensing SNR (assumed
to be the same for all the sensors). The latter is defined as
SNR , ‖θ‖2

tr(Σk)/m . The results are based on 105 Monte Carlo
runs.

For the sake of completeness, to assess the quantization
and reporting effects, we consider the following upper bound.
Specifically, we consider a GLRT/Rao test having all the
measurements x1, . . . ,xK ideally available at the FC.3 Its
explicit expression for the VL model is (we do not report
the proof for sake of brevity, since it can be found in [23]):

Λub,vl = (57)(
K∑
k=1

xTkΣ−1
k Hk

)(
K∑
k=1

HT
k Σ−1

k Hk

)−1( K∑
k=1

HT
k Σ−1

k xk

)
We remark that in the general measurement case described by
Eq. (1), two different upper bounds (either based on GLRT or
Rao test) should be considered.4

B. Results and Discussion

The present subsection investigates the performance of GLR
and Rao tests by analyzing their trends with relevant WSN
parameters, including (i) the different compression heuristics,
(ii) the sensing SNR, (iii) the quantization resolution mk and
(iv) the degree of channel impairments.
Receiver Operating Characteristic (ROC) analysis: Ini-
tially, in Fig. 2, we compare the ROCs of GLR and Rao tests
for the specified VL model, focusing on the single-bit case
(mk = 1) and a moderate sensing SNR = 5dB. Regarding
the optimization of hyperplane-based quantizers, we consider
τk = 0 and investigate the four heuristic approaches for the
design of the compression vectors ck’s. First, results highlight
no significant performance difference between GLR and Rao
tests over all the (PF0 , PD0) plane. This observation applies
to all the compression vector choices considered. Additionally,
it is apparent the better performance of both RSP and TSP,
due to their specialization on the subspace where the vector
signal θ lies. In particular, the latter outperforms the former

3Indeed, in this special case, Rao test and GLRT are statistically equivalent
[23].

4Specifically, GLR expression is Λub
G ,∑K

k=1

{
2xTk Σ−1

k gk(θ̂)− gk(θ̂)T Σ−1
k gk(θ̂)

}
where θ̂ denotes

the usual ML estimate. Differently, Rao statistic is given as
Λub
R , v(x;θ0)T

{∑K
k=1 Jk(θ0)T Σ−1

k Jk(θ0)
}
v(x;θ0) where

v(x;θ0) ,
∑K
k=1 Jk(θ0)T Σ−1

k (xk − gk(θ0)).
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Fig. 2. PD0 vs. PF0 for GLR (◦ markers) and Rao (× markers) tests.
Random (RND), uniform (UNF), random subspace (RSP) and top subspace
(TSP) precoding approaches are compared. WSN with K = 15 sensors,
m = 8 and p = 3, and the sensing SNR = 5 dB. One bit-quantization
(mk = 1) and ideal BSCs are considered (Pe,k = 0).

due to the alignment with the highest principal direction of
the sensing subspace Σ−1

k Hk.
Detection rate vs. sensing SNR: We then compare the per-
formance of GLR and Rao tests by considering the detection
rate PD0 and its improvement with the sensing SNR, focusing
on the four compression heuristics adopted. Herein, the false-
alarm rate is set5 to PF0

= 0.01. The corresponding results
are shown in Fig. 3. Additionally, we assess the possible
benefits of multi-bit quantization, namely when moving from
mk = 1 (bottom plot) to mk = 2 (top plot). Also in this case
the quantizer thresholds are optimally (from an asymptotic
viewpoint) chosen as τ?k = 0. For the sake of complete
comparison, also the PD0

performance of the upper bound
described in Eq. (57) is reported. Results show that (i) all
compression methods and (ii) both rules benefit from (sensing)
SNR increase, with GLR performing slightly better. However,
the Rao test is far more efficient than the GLRT from the
viewpoint of computation burden and complexity. The relative
trend among the four compression methods is retained for the
whole SNR range considered. When moving from mk = 1 to
mk = 2, there is a relative shift of all methods toward the
performance of the upper bound. Still, the latter performance
cannot be approached due to the fact that the upper bound has
available m-dimensional and full-precision (viz. unquantized)
information for performing the fusion process.
Detection rate vs. quantization resolution: Subsequently, we
focus on the effect of increasing quantization resolution on
detection performance in Fig. 4. To this end, we report PD0

5When a given false-alarm rate αFA needs to be ensured, we generate
NF0

= 102/αFA runs according to the hypothesis H0. For each run, the
corresponding statistic Λ is calculated. Then, all the samples of the decision
statistic are sorted increasingly to obtain an empirical CDF of the random
variable Λ|H0, defined as Pr(Λ < γ |H0). Accordingly, the desired γ is
chosen as γ : Pr(Λ < γ |H0) = (1− αFA). This corresponds to choosing
γ from the empirical CDF as the value corresponding to the index closest to
NF0

(1− αFA).
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Fig. 3. PD0
vs. SNR [dB] for GLR (◦ markers) and Rao (× markers) tests,

subject to PF0
= 0.01. Top and bottom plots refer to two-bit (mk = 2) and

one-bit quantization (mk = 1), respectively. Random (RND), Uniform (UNF),
Random Subspace (RSP) and Top Subspace (TSP) precoding approaches are
compared. WSN with K = 15 sensors, m = 8 and p = 3. Ideal BSCs are
considered (Pe,k = 0).

vs. mk for both the fusion rules, setting the false-alarm rate
to PF0

= 0.01. The effect of RND, RSP and TSP compres-
sions strategies is investigated herein (recall that UNF is only
defined for mk = 1). To appreciate such effect in different
conditions, we report performance corresponding to moderate
and low SNR values, corresponding to SNR = 5 dB and
SNR = −3 dB, reported in top and bottom plots, respectively.
Results in both plots highlight the clear benefit of using both
Rao and GLR tests which leverage multi-bit quantization.
Specifically, in the moderate SNR case, three bits are sufficient
for RSP and TSP to achieve ideal performance, whereas more
bits are needed by RND to achieve the same (ideal) detection
rate. Differently, in the low SNR case, although beneficial,
the performance gain with mk is not able to reach ideal
(and also the upper bound) performance. We recall that RND
compression is also defined for p < mk < m, as opposed to
RSP and TSP.

Detection rate vs. BEP: Finally, we assess the performance of
both GLR and Rao fusion rules with respect to communication
channel impairments (i.e. Pe,k 6= 0). To this end, in Fig. 5
we show PD0

vs. Pe (we assume the same BEP for all the
sensors, namely Pe,k = Pe ,∀k ∈ K) for both the fusion rules
and the four compression methods investigated. For the sake of
completeness, we consider mk = 2 (bottom) and mk = 3 (top)
quantization bit cases, so as to appreciate the effects of channel
errors on different resolutions. As in the previous analyses,
we consider a false-alarm rate equal to PF0

= 0.01. Results
highlight that channel-errors may degrade system detection
performance (independently on the rule implemented at the
FC), e.g. considering mk = 3 and RSP/TSP precoders there
is detection loss of ≈ 20% when there is Pe = 0.1. However,
the gains due to multi-bit quantization are still apparent even
when Pe 6= 0. For instance, when Pe = 0.1 and TSP precoding
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Fig. 4. PD0
vs. mk for GLR (◦ markers) and Rao (× markers) tests, subject

to PF0
= 0.01. Top and bottom plots refer to SNR = 5dB (moderate SNR)

and SNR = −3dB (low SNR), respectively. Random (RND), uniform (UNF),
random subspace (RSP) and top subspace (TSP) precoding approaches are
compared. Shaded area indicates number of quantization bits ≤ of the signal
subspace size. WSN with K = 15 sensors, m = 8 and p = 3. Ideal BSCs
are considered (Pe,k = 0).
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Fig. 5. PD0 vs. Pe for GLR (◦ markers) and Rao (× markers) tests,
subject to PF0

= 0.01. Top and bottom plots refer to three-bit (mk = 3)
and two-bit quantization (mk = 2), respectively. Random (RND), random
subspace (RSP) and top subspace (TSP) precoding approaches are compared.
To assess the gain due to finer quantization, in light grey we also report
the corresponding GLR and Rao performance when only one-bit quantization
(with TSP precoding) is used. A WSN with K = 15 sensors, m = 8 and
p = 3, and sensing SNR = 5 dB is considered.

is adopted, the detection rate with three-bit (resp. two-bit)
quantization improves over one-bit counterparts by ≈ 60%
(resp. ≈ 40%).

VII. CONCLUSIONS AND FURTHER DIRECTIONS

In this paper, we considered decentralized detection of
an unknown vector θ by sensor fusion of data from nodes
associated to a non-linear vector measurement model. These

sensors were assumed to employ hyperplane-based quantizers
and to be affected by impaired communication channels. The
Rao fusion rule was derived and proposed herein as a simpler
(and thus attractive) alternative to GLRT, since it is in closed
form (even under such general model) and obviates the need
for cumbersome ML estimation.

Additionally, we provided the explicit expression of the
asymptotic (weak-signal) performance of Rao (viz. GLRT)
fusion rule, here exploited to optimize the system detection
performance (namely, the non-centrality parameter) by tuning
the parameters (τk, ck) of each sensor quantizer. It was shown
that, while an optimized expression for kth threshold can be
obtained explicitly as τ?k = cTk gk(θ0), the optimal c?k depends
in turn on the unknown vector signal θ. Hence, we resorted
to four reasonable heuristics for its design (i.e. RND, UNF,
RSP and TSP). It was shown through simulations that the
Rao test, in addition to being asymptotically equivalent to
the GLRT, achieves similar performance trends in the case
of a finite number of sensors (but with considerable less
computational burden). Additionally, we observed that RSP
and TSP precoders outperform RND (and UNF in the single
bit case), due to the knowledge of the subspace where the
(unknown) vector signal lies.

Furthermore, our study also demonstrated the advantage
of multi-bit quantization against one-bit quantization, as well
as its practical feasibility, by deriving a Rao test for this
generalized setup. According to the results, even a few (two
or three) quantization bits are sufficient to provide relevant
performance gains in a WSN with perfect reporting channels.
Differently, the presence of errors on the reporting phase
increases the performance gap with the upper bound (i.e. the
fully-precision, unquantized benchmark).

Future directions will include design of Rao test for alterna-
tive, (even) more general and realistic measurement & channel
models: (a) sensing models enjoying sparsity [21]; (b) energy-
efficient censoring sensors [41]; (c) time-correlated reporting
channels [42]; (d) design of online precoders ck’s [40]; (e)
unknown random signal parameters [43]; (f ) incompletely-
specified noise PDFs.

APPENDIX A
PROOF OF PROPOSITION 1 (SCORE VECTOR)

Capitalizing the independence among nodes’ data, we obtain
the following simplified form of the score function:

δ (y;θ) =

K∑
k=1

∂ lnP (yk;θ)

∂θ
(58)

Then, by defining ak , cTk gk (θ), kth sensor contribution to
score vector can be expressed as:

∂ lnP (yk;θ)

∂θ
=
∂ lnP (yk;θ)

∂ak

∂ak
∂θ

(59)

Furthermore, exploiting Eqs. (7) and (8), it provides:

∂ lnP (yk;θ)

∂ak
=

(yk − ψk (θ)) ζk pvk
(
τk − cTk gk (θ)

)
ψk (θ) (1− ψk (θ))

(60)
where we have defined ζk , (1− 2εk).
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Finally, by noting that ∂ak
∂θ = JTk (θ) ck and exploiting

Eq. (60), provides the desired result in Eq. (11).

APPENDIX B
PROOF OF PROPOSITION 2 (FIM)

We start from FIM general definition [44]:

I (θ) , E
{
δ(y;θ) δ(y;θ)T

}
(61)

Then, exploiting independence among the received bits, we
obtain the simplified (additive) form:

I (θ) =

K∑
k=1

E

{
∂ lnP (yk;θ)

∂θ

(
∂ lnP (yk;θ)

∂θ

)T}
, (62)

Each of the K terms in the above equation can be obtained
by resorting to Eq. (60), which thus gives the intermediate
expression:

I (θ) =

K∑
k=1

{
Eyk

{
(ψk (θ)− yk)

2

ψ2
k (θ) (1− ψk (θ))

2

}
ζ2
k p

2
vk

(
τk − cTk gk (θ)

)
JTk (θ) ckc

T
k Jk (θ)

}
.

(63)

On the other hand, the expectation in Eq. (63) is simply
computed as:

Eyk

{
(ψk (θ)− yk)

2

ψ2
k (θ) (1− ψk (θ))

2

}
=

1

ψk (θ) (1− ψk (θ))
(64)

Replacing the above result in Eq. (63) gives the final result in
(14). This concludes the proof.
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