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Abstract Finite-amplitude free-surface flow in a wedge container is investi-1

gated analytically. We study a motionless standing wave of pure potential-2

flow acceleration with maximal amplitude where its right-angle surface peak3

falls from rest. The nonlinear free-surface conditions are satisfied by a family4

of flows where the chosen initial acceleration field is governed by one single5

dipole plus its three image dipoles. Streamlines and isobars are plotted, with6

the free surface as the zero-pressure isobar. The key geometric parameters are7

tabulated for each case, supplied with force calculations for an upright wedge8

container. The present approach is assessed against established eigenfunctions9

for linearized standing waves in a wedge container. The present dipole flows10

constitute a much richer family of peaked free sloshing shapes than the classical11

Fourier modes of free oscillation.12

Keywords Free oscillations · Peaked surface · Standing waves · Wedge13

container14

1 Introduction15

The classical theory of water waves is a linear theory. Linearization of water16

waves abolishes limits on amplitude. This apparent liberty is, of course, un-17

physical, and questions concerning maximal amplitude are basic in the nonlin-18
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ear theory of water waves. Full nonlinearity is crucial in dealing with maximal19

wave amplitude, since no approximations will be fully adequate for a marginal20

state where the wave height reaches its maximum.21

The study of maximal wave height for nonlinear standing waves started22

with Rayleigh [1], who carried out a third-order asymptotic expansion. The23

concept of standing waves is basically linked to periodic oscillations in space24

and time. Within these theoretical constraints of double periodicity, the high-25

est standing waves will not break.26

Penney and Price [2] developed this theory of highly nonlinear standing27

waves, stimulating excellent experimental work [3–5]. The early theoretical28

work on maximum standing waves [2, 6] took periodicity in time as a con-29

straint. Fully nonlinear computations from initial conditions may lead to stand-30

ing waves that are not periodic in time, which was anticipated in [6], and31

demonstrated by Saffman and Yuen [7], applying the method developed by32

Longuet-Higgins and Cokelet [8]. After [7] a number of papers followed, where33

the evolution in time of fully nonlinear standing waves was simulated numer-34

ically [9–12]. These papers had a focus on periodic oscillations but confirmed35

that standing waves are not always periodic in time, even when they are ini-36

tiated in a way that would guarantee periodicity according to linear theory.37

Longuet-Higgins and Dommermuth [13] maintained spatial periodicity by38

initiating the motion by a sinusoidal pressure impulse on a horizontal surface.39

They achieved very high standing waves formed as slender jets, leading to40

surface breaking. Their work [13], in combination with [14], contributes to the41

theory of strongly nonlinear Cauchy-Poisson (CP) problems with an initial42

surface velocity given. In a recent paper [15], two categories of nonlinear CP43

problems are outlined. The first category is finite-amplitude surface deflections44

released from rest under gravity. The second category is wave initiation by a45

finite-amplitude pressure impulse on an initial horizontal surface, to which the46

paper by Longuet-Higgins and Dommermuth [13] belongs.47

We will now consider the first category of CP problems outlined in [15], by48

studying the early stage of pure acceleration flows released from rest. We will49

investigate stagnant peaked standing waves in a wedge container where the two50

walls makes a right angle. There is a classical linear theory of free oscillations51

for this geometry [16,17]. The nonlinear theory of free oscillations is not known,52

as the geometry with sloping walls does not allow strictly time-periodic waves53

of finite amplitude. Still, the highest possible elevations of free sloshing are of54

basic importance, and our present approach offers a way to investigate such55

shapes without looking at their underlying causality or nonlinear evolution in56

time.57

For the simpler case of a rectangular container, the analytical work by58

Grant [18] stands out, and we will follow it as far as the maximal elevation is59

concerned. His work from 1973 still gives the best agreement with the experi-60

mental surface profile of the highest standing waves found by Taylor [3]. This61

agreement inspires us to develop a similar theory for a wedge container. We62

will primarily consider dipole potentials, but also make a comparison with the63

classical Fourier potentials for linearized free sloshing [16,17].64
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2 Formulation of the basic theoretical model65

We will investigate a family of highest surface deflections with a long length66

scale in an open container. First, we will state the problem for general 2D67

container shapes, but in the present paper, we will focus on a wedge container.68

As an elementary model for maximal standing wave amplitude, we consider69

a situation where the fluid has come to rest with a deformed free surface. We70

will look at the situation just before or just after the instant t = 0, where71

the velocity field is assumed to be zero everywhere. We therefore consider72

an inviscid and incompressible fluid (liquid), which is initially at rest with the73

surface elevation given by y = η(x, 0). The fluid density ρ, and the gravitational74

acceleration g, are constant.75

The 2D fluid domain is represented in the x, y plane. There is a free surface76

subject to constant atmospheric pressure. Time is denoted by t. Cartesian77

coordinates x, y are introduced, where the y axis is directed upwards in the78

gravity field, and the horizontal x axis is parallel to the undisturbed free79

surface. The actual location of the undisturbed water level must be calculated80

indirectly by calculating the area of the fluid domain in 2D. The components of81

the velocity vector ~v are denoted by (u, v). The surface elevation with time is82

η(x, t), and in the present mathematical description, we measure the elevation83

with respect to the lowest point inside the container.84

No vorticity is generated within the inviscid fluid, which implies that the85

flow is irrotational according to Kelvin’s theorem86

∇× ~v = 0, (1)

as there is zero velocity initially. We take the time derivative of Kelvin’s con-87

straint (1) to give88

∇× ∂~v

∂t
= 0. (2)

The local acceleration is the total acceleration at t = 0+. The released flow at89

t = 0+ will therefore be an irrotational acceleration field, with the acceleration90

potential φ(x, y) so that ∂~v/∂t|t=0+ = ∇φ. The incompressible flow implies91

the validity of Laplace’s equation92

∇2φ = 0, (3)

in the entire fluid domain.93

We consider only one instant t = 0 in the present model, where the free94

surface is assumed to be at rest95

∂η

∂t

∣∣∣∣
t=0

= 0, (4)

implying that the entire fluid is at rest at t = 096

~v|t=0 = 0. (5)
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From conservation of momentum, Bernoulli’s equation follows97

p− patm
ρ

+ φ+ gy = 0, (6)

where the convective term has been removed for this motionless state. The at-98

mospheric pressure patm appears as an integration constant. We will disregard99

the reference pressure patm (which corresponds to making the transformation100

p− patm → p). With zero initial velocity, the initial (nonlinear) dynamic free-101

surface condition is102

φ+ gy = 0, y = η(x, 0). (7)

Our idealized model represents an instantaneous state of rest where the kinetic103

energy in the standing oscillation is converted to potential energy in the gravity104

field.105

2.1 Calculation of geometric parameters106

The container bottom is generally represented by f(x), and the initial free107

surface is given by y = η(x, 0). The fluid domain has the horizontal extension108

x1 < x < x3, where (x1, y1) is the left-hand waterline point, and (x3, y3) is109

the right-hand waterline point. The notation (x2, y2) is reserved for the peak110

point on the otherwise smooth surface between (x1, y1) and (x3, y3), see the111

sketch in Figure 1.112

The area of the 2D fluid domain is113

S =

∫ x3

x1

(η(x, 0)− f(x))dx. (8)

The centre of gravity (xc, yc) for the fluid domain is the same as its area centre,114

defined by the two integrals115

xc =
1

S

∫ x3

x1

x(η(x, 0)− f(x))dx, (9)

116

yc =
1

2S

∫ x3

x1

(η(x, 0)2 − f(x)2)dx, (10)

2.2 Forces exerted on the container117

The container has an impermeable bottom, which we represent as y = f(x).118

The function f(x) will later be specified as piecewise linear. The kinematic119

boundary condition implies120

~n · ∇φ = 0, y = f(x). (11)
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Here we introduce the unit normal vector ~n, directed from the boundary into121

the fluid domain. It is defined by122

~n =
−f ′~i+~j√
(f ′)2 + 1

, (12)

where f ′ = df/dx. The unit vectors in the x and y directions are denoted by123

~i and ~j, respectively. From the Bernoulli equation (6) the pressure p is124

p = −ρφ+ ρg(η(x, 0)− y), (13)

measured relative to the atmospheric pressure. Here we have applied the dy-125

namic condition (7).126

The force (per unit length in the perpendicular direction) d~F on a curve127

element ds along the bottom is given as128

d~F = −~np
√

1 + (f ′)2dx = (ρg(η(x, 0)− f(x))− ρφ)(f ′(x)~i−~j)dx, (14)

along the bottom defined by y = f(x). This force element d~F is the sum of a129

hydrostatic force and a dynamic force, d~F = d~Fstatic + d~Fdyn, where we have130

the formulas131

d~Fstatic = ρg(η(x, 0)− f(x))(f ′(x)~i−~j)dx, (15)
132

d~Fdyn = ρφ(−f ′(x)~i+~j)dx, (16)

where the integrated static force is simply the weight of the fluid133

~Fstatic = −~jρg
∫ x3

x1

(η(x, 0)− f(x))dx = −~jρgS. (17)

This line of action of this net force goes through the area center (xc, yc) defined134

by eqs. (9)-(10).135

2.3 On the initial surface peak136

It is advantageous to work with complex flow potentials, and introduce the137

complex variable138

z = x+ iy, (18)

where i is the imaginary unit.139

By definition, the zero-pressure isobar is the free surface, since we look for140

the stagnant free surface with the maximal deflection. According to eq. (24)141

the isobars are defined by142

φ+ y = −p = constant. (19)

The free surface is included in this definition as the isobar of zero pressure.143

The free-surface peak has an angle of π/2. This is because the free surface144
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represents an isoline for the real part of a complex function Φ − iz in the145

complex z plane146

Re(Φ− iz) = constant. (20)

In a domain without singularities, these isolines are usually smooth, perpendic-147

ular to the corresponding isolines for the imaginary part of the same complex148

function. The peaked free surface can therefore only appear at an extremal149

point for this complex function, so that we have150

d

dz
(Φ− iz) = 0, (21)

at the surface peak z = x2+iy2, where we pose the restriction that (d2/dx2)(Φ−151

iz) 6= 0. At a maximum where only the first derivative of the complex func-152

tion Φ − iz is zero, the isolines for the real part will meet in a right-angle153

cross. Thereby we have provided a simple argument for the surface peak to be154

right-angled in standing waves.155

2.4 A small-time expansion156

The flow for small time (t ≥ 0) can be described as follows157

(Φ, η, p) = (0, η0, p0) + t(Φ1, 0, p1) + t2(Φ2, η2, p2) + ... (22)

where an initially deformed free surface is released from rest under gravity.158

The complex velocity potential Φ, the surface elevation η (measured vertically159

with respect to a bottom level y = 0) and the pressure p are here Taylor160

expanded in time. We have omitted φ0 in the series of eq. (22) because this161

gravitational flow has no zeroth-order contribution. Moreover, there is no first-162

order elevation η1 because the surface particles accelerate from rest. We are163

studying only the leading-order contributions η0 = η(x, 0), Φ1 = ∂Φ/∂t|t=0164

and p0 = p(x, y, 0) in the present paper. The small-time expansion scheme is165

formulated for the general overview, and it will not be in further practical use.166

3 The mathematical model for a wedge container167

The length scaleH is basic for a dimensionless description, but we avoid stating168

it explicitly. We introduce gravitational dimensionless quantities, achieved in169

a simple way by putting g = 1. We work with a complex acceleration potential170

Φ = φ+ iψ, where its real part φ(x, y) is the flow potential and ψ(x, y) is the171

streamfunction. The potential Φ1 in the small-time expansion is thus written172

as Φ from now on.173

From the dynamic free-surface condition (7) we have the dimensionless174

free-surface condition valid for the initial flow175

φ+ y = 0, y = η(x, 0), (23)
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since the velocity is initially zero. The dimensionless Bernoulli equation is176

p+ φ+ y = 0, (24)

where the unit of dimensionless pressure p is ρgH.177

3.1 The upright wedge container with its dipole potential178

We want to develop a model for non-breaking surface flow with large length179

scale, since it is well-known that open containers are vulnerable to slow shak-180

ing that triggers the lowest eigenmode of free-standing waves. We may bear181

in mind a waiter who is carrying a soup with short and quick steps to avoid182

triggering the slow eigenmodes that are dangerous for spilling the soup. Even183

worse is a sudden stop, which sets the soup into instantaneous impulsive slosh-184

ing. Tyvand and Miloh [19] showed that effectively two-thirds of the liquid185

mass continues its steady forward motion after a sudden stop of the wedge186

container.187

Our model is relevant for a soup that has already been set into wave motion,188

and we want to know how large deformation of the free surface is allowed to189

have without breaking.190

For clarifying the physics of the maximal surface deflection, it is an ad-191

vantage that there are no length scales other than the scale set by the flow192

configuration itself at t = 0. We achieve this by considering a 2D wedge con-193

tainer, with two sloping container walls meeting at a right angle in the bottom194

point (x, y) = (0, 0). When this wedge container has an upright position, the195

two walls that meet at the origin are defined by196

y = f(x) = |x|, (25)

with no restriction on the horizontal coordinate (−∞ < x <∞). It is impor-197

tant that the fluid domain is in contact with both the container walls.198

The fluid domain inside the wedge will then set a length scale, and the199

potentials that produce this type of flow are multipole potentials with singu-200

larities outside the fluid domain. The dipole potential is the only multipole201

potential that is able to generate one localized surface peak of fluid inside a202

container, which is what we are looking for. We do not offer a mathematical203

proof that a single dipole located above the free surface is the only multipole204

that can generate a single peak, but it is a postulate that has been confirmed205

by various numerical tests.206

The direction of the single dipole may be arbitrary, within the restrictions207

for generating physically relevant flows. We will formulate the dipole potential208

with its images for satisfying the kinematic condition along the two walls209

y = ±x of the wedge. The complex version of the dipole position (X,Y ) is210

Z = X + iY, (26)

This is the position of the primary dipole that generates the flow, but there211

will be three additional image dipoles in the total flow potential.212
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Fig. 1 Illustration of the calculated geometric parameters for a stagnant peaked free surface
in an upright wedge container with two slope angles ±π/4, for a primary dipole with an
orientation perpendicular to the left-hand slope, located at (X,Y ) = (0, 2). The three image
dipoles are not included in the figure. A parallel dipole is located at the point (Y,X), the
two other (opposite) dipoles are located at the points (−Y,−X) and (−X,−Y ). This figure
will reappear with a different design as the second subfigure of Figure 3. The calculated
geometric parameters are: The coordinates of the left-hand waterline point (x1, y1). The
surface peak (x2, y2). The right-hand waterline point (x3, y3). The area centre (xc, yc). The
direction of gravity is marked. This figure extends the mathematical zero-pressure isobar
(the stagnant peaked surface shape) outside the fluid domain, where it goes in a closed loop
through the dipole point (X,Y ) = (0, 2).

We start our investigation with a dipole that is oriented in parallel with213

the right-hand slope y = x, so that its primary dipole has a complex potential214

of the form eiπ/4/(z−Z). The total complex potential for a dipole oriented in215

parallel with the right-hand slope is216

Φparallel(z) = A

(
eiπ/4

z − Z
+

eiπ/4

z − iZ∗
+
e5iπ/4

z + Z
+

e5iπ/4

z + iZ∗

)
, (27)

where we have introduced the complex conjugate Z∗ = X − iY . Moreover, A217

is a real-valued amplitude.218

Figure 1 shows the peaked surface shape for this potential (27), with the219

dipole located at the y axis, at the complex point Z = 2i. This figure illustrates220

the different geometric parameters that we will determine in each computed221

case. This is the (colored) area S of the fluid domain, and four points: 1) The222
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left-hand waterline point (x1, y1); 2) the surface peak (x2, y2); 3) the right-hand223

waterline point (x3, y3); 4) the centre of gravity (xc, yc), which is the same as224

the area centre. The length scale is set implicitly by the dipole position, and225

we have chosen the vertical dipole coordinate Y as two length units with the226

intention of achieving an area S about unity, which will result in geometric227

parameters of order one.228

Figure 1 shows only the primary dipole, located above the free surface.229

In total there are four dipoles. There is one image dipole oriented in parallel230

with the primary dipole, and two more image dipoles oriented in the opposite231

direction. All these four dipoles are parallel to the right-hand slope y = x,232

which means that their directions are perpendicular to the left-hand slope233

y = −x.234

Figure 2 (upper portion) shows the configuration of the upright wedge235

container, with all the four dipoles that are needed to satisfy the kinematic236

condition along the walls. An angle of direction α for the dipoles is introduced,237

where we define α = 0 for the reference case where the pair of dipoles are238

aligned with the right-hand slope, represented by the potential (27).239

In general, α is the angle between the direction of the primary dipole240

(located above the surface) and the right-hand slope of the container. This241

angle α is shown graphically in Figure 2 (upper portion), with the full set of242

four dipoles. This gives the complex potential243

Φ(z;α) = A

(
ei(π/4+α)

z − Z
+
ei(π/4−α)

z − iZ∗
+
ei(5π/4+α)

z + Z
+
ei(5π/4−α)

z + iZ∗

)
, (28)

by generalizing the formula (27) where α = 0.244

3.2 Force calculations245

The static force is simply the weight of the fluid in the container, as mentioned246

above. The formula eq. (16) for the dynamic force has the dimensionless version247

d~Fdyn = φ(−f ′~i+~j)dx, (29)

where the easy way to introduce dimensionless variables is to put g = 1 and248

ρ = 1. The unit for dimensionless force per length perpendicular to the x, y249

plane is then ρgH2. The corresponding unit for dimensionless torque per length250

is ρgH3.251

We will restrict our force calculations to the case of an upright wedge252

container where the function that specifies the bottom geometry is f(x) = |x|,253

where the formula for the dynamic force reduces to254

d~Fdyn = φ

(
−~i x
|x|

+~j

)
dx, y = |x|. (30)
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Fig. 2 The two coordinate systems (x, y) and (x̂, ŷ), with the respective coordinates (X,Y )

and (X̂, Ŷ ) of the primary dipole. The image dipoles are shown, with their coordinates. Both
coordinate systems have the origin in the lowest point of the container. The (x, y) system
is fixed in space with y axis vertical. The (x̂, ŷ) system is fixed with the container: its slope
angles are ±π/4 in the (x̂, ŷ) system. The dipole orientation angle α is defined in the (x̂, ŷ)
system: Each dipole makes an angle α with the right-hand slope of the container.
Upper figure describes an upright container, where the (x, y) and (x̂, ŷ) systems coincide.
Lower figure describes tilting of the container in the clockwise direction by an angle β, and
the set of dipoles are fixed with the container in its tilting.
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We will consider a vertical dipole in the point (X,Y ), which gives the total
potential

φ(x, y;X,Y ) = A

(
y − Y

(x−X)2 + (y − Y )2
+

x− Y
(x− Y )2 + (y −X)2

− y + Y

(x+X)2 + (y + Y )2
− x+ Y

(x+ Y )2 + (y +X)2

)
, (31)

written in real form.255

The dimensionless static force on the container walls is the dimensionless256

version of eq. (17)257

~Fstatic = −S~j. (32)

This static weight of fluid has a line of action through the area center. This258

weight sets a scale for the force. The initial dimensionless static torque with259

respect to the bottom tip of the container (in the origin) is260

Mstatic = Fstaticxc = −Sxc, (33)

defined positive in the counter-clockwise direction.261

The initial dynamic force on the upright wedge container is expressed by262

the two integrals263

F−dyn =

∫ 0

x1

φ(x,−x,X, Y )dx, F+
dyn =

∫ x3

0

φ(x, x,X, Y )dx, (34)

which will be evaluated and tabulated in Table 3. The total dynamic force in264

vector form is then265

~Fdyn = F−dyn(~i+~j) + F+
dyn(−~i+~j) (35)

The initial dynamic torque on the upright wedge container is266

Mdyn = −
∫ x3

x1

φ(x, |x|, X, Y )xdx (36)

defined positive in the counter-clockwise direction.267

3.3 Notations for the tilted wedge container268

In Figure 2, the upper portion illustrates the wedge container in its reference269

upright position. We will now prepare computations for the case where the270

wedge container is tilted an angle β in the clockwise direction, illustrated in271

the lower portion of Figure 2.272

The walls of the wedge will then make the angles π/4−β and π/4+β with273

the horizontal x axis. We will calculate the fluid area S inside the 2D container.274

We need to know the undisturbed water level η̄, given by the formula275

η̄ =

√
S(1− tan2 β)

1 + tan2 β
=
√
S cos(2β). (37)
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We introduce the coordinate system (x̂, ŷ), which is fixed with the wedge276

when it rotates. The dipole position (X̂, Ŷ ) and the dipole orientation are also277

related to a system that is fixed with the wedge container. This means that278

the orientation angle α for the dipole and its three images are measured with279

respect to the ŷ axis, as illustrated in Figure 2. The transformations between280

the two coordinate systems give the relationships281

ẑ = (x+ iy)eiβ = zeiβ , Ẑ = (X + iY )eiβ = Zeiβ . (38)

Still the y axis is directed upward in the gravity field.282

4 Numerical results for dipole potentials283

The mathematical solutions are established analytically, but we need to per-284

form routine numerical calculations for the isobars and the geometric param-285

eters. The first set of computations is illustrated in Figure 3 and its accompa-286

nying Table 1. Here we have an upright container (β = 0) with dipole direction287

along the right-hand slope (α = 0). Figure 3 consists of four subfigures, where288

we move the dipole a step length 0.5 between each displayed case. We choose289

to fix the vertical location of the dipole at Y = 2 in all our computations. The290

reason for this choice is that we want a fluid area of order 1, and we thought291

that a vertical displacement of the dipole above the bottom tip would place292

the free surface roughly halfway in between.293

In Figure 3, note how the position of dividing streamline (DS) changes with294

the gradual displacements of the dipole. The shape of the dividing streamline295

is almost a straight line for the first two subfigures (a-b), while it close to296

a circular arc for the last subfigure (d). These simple streamline shapes are297

dictated by the direction of the closest image dipole. The slope angles by298

which the surface meets the two boundaries are, in particular, worth noting.299

The fact, and in particular, that the right-hand slope is steeper than the left-300

hand slope. The right-angle surface peak is not symmetric, as it has a steeper301

right-hand slope than its left-hand slope. In Figure 3, the tendencies of steeper302

surface slopes on the right-hand side of the container relate to the direction303

of the dipole, which is perpendicular to the left-hand container boundary and304

parallel to the right-hand container boundary.305

In Figure 4, we maintain the same dipole direction relative to the two306

sloping walls of the container: the direction of the dipole is perpendicular to307

the left-hand boundary and parallel to the right-hand boundary. The container308

itself is tilted by an angle π/8 to make its left-hand slope steeper (with angle309

3π/8) and the right-hand slope less steep (with angle π/8). Figure 4 (a) and310

(b) have the peculiarity of lacking a dividing streamline, which means that311

the whole fluid packet starts sliding from left to right. This is because the312

dipole direction is almost horizontal, which piles up fluid along the left-hand313

boundary if the dipole is not too far away. There are six subfigures of Figure314

4, and the last ones give elongated shapes along the mild slope, and they315

have a dividing streamline. The portion of the fluid located above a dividing316
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streamline, will start sliding along the boundary in the opposite direction of317

gravity, which will not happen along the steepest slope unless it is pushed318

upwards by a heap of fluid on the right-hand side of the container, which is319

the case for the four last subfigures. Table 2 gives geometric parameters for320

the cases displayed in Figure 4.321

Figure 5 shows the physically simplest case of an upright wedge with a322

vertical dipole. Due to symmetry, we only show four cases where X ≤ 0.323

As before, we consistently choose the vertical dipole position Y = 2, and324

in Figure 5, we note how close the area is to one, which was our intention.325

Table 3 gives computations linked to Figure 5, and for this symmetric case,326

we have also computed the static and dynamic forces on the container. We327

choose not to go into details, but remark that the dynamic forces due to328

the instantaneous acceleration are remarkably large compared with the static329

forces on the displaced fluid packet.330

Figure 6 is our final example, where the container is again tilted by an331

angle β = π/8, as in Figure 4. The dipole direction is the same as in Figure332

5, with respect to the container walls, which means that the dipole makes an333

equal angle of π/4 with each of the two walls. The shapes of the fluid packets334

are similar to those of the previous tilted container in Figure 4, but there is335

less concentrated piling of fluid along the steep left-hand slope. There are less336

elongated fluid shapes along the mild right-hand slope. Table 4 gives geometric337

parameters for the cases displayed in Figure 6 with its five subfigures.338

Table 1 Dimensionless geometric parameters for dipole oriented along the right-hand slope
(α = 0) with an upright container (β = 0) and the position of the primary dipole at (X,Y ),
where Y = 2. Four cases are computed, with different horizontal positions of the dipole. This
table refers to the cases displayed in Figure 3. We tabulate the coordinates of four points.
These are the left-hand waterline point (x1, y1), the surface peak (x2, y2), the right-hand
waterline point (x3, x3) and the mass centre (area centre) (xc, yc). The flow amplitude A,
the area S of the fluid domain and the average water level η̄ are also tabulated.

Cases #1(a) #1(b) #1(c) #1(d)

(X, Y) (−0.5, 2) (0, 2) (0.5, 2) (1, 2)

A 0.6257 0.6579 0.6517 0.6103
(x1, y1) (−1.2743, 1.2743) (−1.0948, 1.0948) (−0.9699, 0.9699) (−0.8599, 0.8599)
(x2, y2) (−0.8375, 1.3675) (−0.3102, 1.3287) (0.2095, 1.3435) (0.7535, 1.3930)
(x3, y3) (0.4934, 0.4934) (0.6794, 0.6794) (0.8761, 0.8761) (1.1368, 1.1368)
(xc, yc) (−0.3661, 0.6596) (−0.1898, 0.7064) (−0.0120, 0.7309) (0.1584, 0.7391)
Area S 0.6489 1.0011 1.1609 1.1579

η̄ =
√
S 0.8055 1.0005 1.0774 1.0760

5 A symmetric Fourier potential339

The single dipole offers a natural way of generating a concentrated surface340

peak. A rich family of peaked shapes is prescribed by varying the direction341

of the single dipole above the surface. We, therefore, base the present work342
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Fig. 3 Streamlines and isobars for an upright wedge container with dipole parallel to the
right-hand slope (α = 0). Four subfigures are shown, with each dividing streamline (DS)
marked by a blue circle. The undisturbed water level is marked. The vertical dipole coor-
dinate is fixed at Y = 2, while its horizontal coordinate changes by a step of 0.5 between
each subfigure. The second subfigure was shown in Figure 1, with geometric parameters
explained. Each subfigure refers to Table 1, where the important geometric parameters are
tabulated.
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Fig. 4 Streamlines and isobars for a wedge container tilted by the angle β = π/8 where
the dipole is parallel to the right-hand slope (α = 0). Four subfigures are shown, with each
dividing streamline (DS) marked by a blue circle. The undisturbed water level is marked.
The vertical dipole coordinate is fixed at Y = 2, while its horizontal coordinate changes by
a step of 0.5 between each subfigure. Each subfigure refers to Table 2, where the important
geometric parameters are tabulated.
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Table 2 Dimensionless geometric parameters for dipole oriented along the right-hand slope
(α = 0) with a tilted container (β = π/8). Position of primary dipole (X,Y ), where Y = 2.
Six cases are computed, with different horizontal positions of the dipole. The set of tabulated
geometric parameters is the same as in Table 1. This table refers to the cases displayed in
Figure 4.

Cases #2(a) #2(b) #2(c) #2(d) #2(e) #2(f)

(X, Y) (0.5, 2) (1, 2) (1.5, 2) (2, 2) (2.5, 2) (3, 2)

A 0.7365 0.7828 0.8049 0.8099 0.7911 0.7385
(x1, y1) (−0.5492, 1.3258) (−0.4849, 1.1705) (−0.4449, 1.0742) (−0.4097, 0.9891) (−0.3692, 0.8913) (−0.3184, 0.7686)
(x2, y2) (−0.0200, 1.3774) (0.5015, 1.3512) (1.0046, 1.3483) (1.5151, 1.3599) (2.0437, 1.3875) (2.5950, 1.4374)
(x3, y3) (1.0799, 0.4473) (1.3595, 0.5631) (1.6660, 0.6901) (2.0165, 0.8353) (2.4121, 0.9991) (2.8516, 1.1812)
(xc, yc) (0.1368, 0.6668) (0.3229, 0.7019) (0.5100, 0.7194) (0.6970, 0.7289) (0.8781, 0.7262) (1.0205, 0.6969)
Area S 0.9520 1.2884 1.5080 1.6256 1.5982 1.3472
η̄ 0.8205 0.9545 1.0326 1.0721 1.06307 0.9760

Table 3 Dimensionless geometric and physical parameters for primary dipole oriented ver-
tically (α = π/4) with an upright container (β = 0). Position of primary dipole (X,Y ),
where Y = 2. Four cases are computed, with different horizontal positions of the dipole.
Due to symmetry, only cases where X ≤ 0 are represented. The set of tabulated geometric
parameters is the same as in Table 1. In addition, this table shows force calculations. This
table refers to the cases displayed in Figure 5.

Cases #3(a) #3(b) #3(c) #3(d)

(X, Y) (−0.75, 2) (−0.5, 2) (−0.25, 2) (0, 2)

A 0.5058 0.5240 0.5326 0.5350
(x1, y1) (−1.1940, 1.1940) (−1.0829, 1.0829) (−0.9901, 0.9901) (−0.9122, 0.9122)
(x2, y2) (−0.7788, 1.3740) (−0.5132, 1.3510) (−0.255, 1.3400) (0.0000, 1.3375)
(x3, y3) (0.7149, 0.7149) (0.7814, 0.7814) (0.8446, 0.8446) (0.9122, 0.9122)
(xc, yc) (−0.2346, 0.6975) (−0.1602, 0.7129) (−0.0808, 0.7186) (0.0000, 0.7201)
Area S 0.9566 1.0608 1.1116 1.1267

η̄ =
√
S 0.9780 1.0300 1.0543 1.0615

Weight S 0.9566 1.0608 1.1116 1.1267
Static torque |Sxc| 0.2244 0.1699 0.0898 0

Dynamic force (0.6495, 1.8312) (0.4348, 1.8693) (0.2182, 1.8857) (0, 1.8903)
Dynamic torque -0.5857 -0.3717 -0.1799 0

Table 4 Dimensionless geometric parameters for primary dipole oriented an angle α = π/4)
with respect to the right-hand slope. The container is rotated an angle β = π/8 in the
opposite direction so that the dipole makes an angle β = π/8 with the vertical direction.
Position of primary dipole (X,Y ), where Y = 2. Four cases are computed, with different
horizontal positions of the dipole. The set of tabulated geometric parameters is the same as
in Table 1. This table refers to the cases displayed in Figure 6.

Cases #4(a) #4(b) #4(c) #4(d) #4(e)

(X, Y) (0, 2) (0.5, 2) (1, 2) (1.5, 2) (2, 2)

A 0.491254 0.550059 0.576701 0.587333 0.580698
(x1, y1) (−0.5513, 1.3309) (−0.4535, 1.0949) (−0.3920, 0.9465) (−0.3419, 0.8253) (−0.2921, 0.7052)
(x2, y2) (−0.1965, 1.4013) (0.3378, 1.3414) (0.8425, 1.3187) (1.3499, 1.3148) (1.8616, 1.3300)
(x3, y3) (1.3301, 0.5509) (1.5430, 0.6391) (1.7695, 0.7330) (2.0433, 0.8464) (2.3636, 9790)
(xc, yc) (0.2125, 0.6510) (0.3727, 0.6806) (0.54753, 0.6817) (0.7296, 0.6757) (0.9076, 0.6614)
Area S 1.034169 1.288790 1.387205 1.379716 1.238313
η̄ 0.855142 0.954627 0.990405 0.987728 0.935745
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Fig. 5 Streamlines and isobars for an upright wedge container with vertical dipole, repre-
sented by α = π/4. Four subfigures are shown, with each dividing streamline (DS) marked
by a blue circle. The undisturbed water level is marked. The vertical dipole coordinate is
fixed at Y = 2, while its horizontal coordinate changes by a step of 0.25 between each
subfigure. Due to symmetry, only cases with X ≤ 0 are displayed. Each subfigure refers to
Table 3, where the important geometric parameters are tabulated.
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Fig. 6 Streamlines and isobars for a tilted wedge container with tilt angle β = π/8. The
two slope angles measured with respect to the +x axis are then π/8 and 5π/8. The dipole
makes an angle π/8 with the vertical y axis, and its direction makes the same angle π/4
with each of the container walls. Five subfigures are shown, with each dividing streamline
(DS) marked by a blue circle. The undisturbed water level is marked. The vertical dipole
coordinate is fixed at Y = 2, while its horizontal coordinate changes by a step of 0.5 between
each subfigure. Each subfigure refers to Table 4, where the important geometric parameters
are tabulated.
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on the single dipole, to which three image dipoles are added for satisfying the343

kinematic conditions along the two walls.344

However, there is no available analytical benchmarking for our finite-amplitude345

dipole solutions. The existing analytical solutions are the well-established346

Fourier solutions for linearized free oscillations in a wedge container (Lamb347

1932), summarized by Faltinsen and Timokha (2009). Only the case of an348

upright container with slope angles of ±π/4 has been solved.349

The symmetric spatial potential for free oscillation Fourier modes can be350

reinterpreted for our purpose as an acceleration potential, to be written as351

φ(x, y, 0) = A(cosh(kx) cos(ky) + cos(kx) cosh(ky)). (39)

Our finite-amplitude theory with the exact nonlinear dynamic condition (23)352

provides a maximal value for |A| corresponding to a peaked surface. The com-353

plex version of the potential (39) has the simple form354

Φ(z) = φ(x, y) + iψ(x, y) = A(cos(kz) + cosh(kz)). (40)

where ψ is the streamfunction.355

Figure 7 shows three peaked surface shapes generated by the symmetric356

Fourier potential (40), for the upright wedge and for two cases with increasing357

tilt angle β, for which the complex variable z must be replaced by zeiβ in eq.358

(40). For our purpose of calculating the peaked stagnant surface k is a free359

parameter used for setting the length scale. The particular value k = 1.1912360

and is chosen because it gives a peaked surface with the same average water361

level η = 1.0615 as in Figure 5 (d), which is the symmetric case among the362

dipole flows studied above.363

The upright wedge shown in Figure 7 (a) is repeated in Figure 8, where364

it is compared with a similar symmetric dipole solution. The cases of tilted365

wedges shown in Figure 7 (b) (β = 15◦) and Figure 7 (c) (β = 30◦) are based366

on the same symmetric Fourier potential (40), but we have not developed any367

comparable dipole solutions. We maintain the chosen wave number k = 1.1912368

in all three subfigures of Figure 7, and the amplitude A is adjusted in each case369

in order to achieve a peaked zero-pressure isobar, which is the free surface. We370

note that the area of fluid is kept almost constant as we tilt the container.371

It is interesting to compare the two tilted cases of Figure 7 with the previous372

Figures 4 and 6, where the tilt angle for a dipole solution is β = 22.5◦. Figure 7373

shows a more rigid pattern, with a straight dividing streamline hitting exactly374

at the origin. The dipole cases chosen in Figures 4 and 6 are qualitatively375

different: they all have curved streamlines, and they hit one of the sloping376

walls of the container.377

Figure 8 offers a visual comparison between the fully symmetric version378

of our dipole model and the symmetric Fourier potential, as we include in379

the figure (as black lines) the peaked surface and its neighboring isobar from380

the dipole model. The agreement between the dipole solution and the Fourier381

solution is good, considering that both these solutions obey the full nonlinear382

dynamic condition at the free surface. Figure 8 can be considered as comparing383
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a dipole flow with its Fourier expansion truncated after one term only, at the384

respective free surface released from rest under gravity, applying the exact385

dynamic condition. The comparable wavenumber eigenvalue for linearized free386

periodic oscillations at unit depth is k = 2.356 given by Faltinsen and Timokha387

(2009, p. 129). We note that this value for the wavenumber is about twice as388

large as the present value k = 1.1912 for the peaked free surface, and this389

discrepancy indicates the importance of nonlinearity at the peaked surface.390

We have now demonstrated good agreement with known Fourier potentials,391

and we have indicated how all dipole potentials can be Fourier expanded. Note392

that the peaked finite-amplitude shapes of Fourier potentials do not belong393

to the classical theory of free oscillations, which is a linearized theory. Even394

though our dipole potentials can be Fourier expanded, the dipoles offer a much395

more compact classification of peaked surface shapes. Moreover, the dipoles396

have the flexibility of the orientation angle for the dipole, different from the397

Fourier solutions.398

6 Discussion399

The idea of a stagnant peaked elevation for free oscillation of maximal ampli-400

tude was first presented by Grant [18], but earlier pioneering work [2] hints401

in the same direction. These models are restricted to rectangular containers,402

while our type of model for a wedge container was introduced in [15]. Grant’s403

work [18] on a rectangular container with infinite depth establishes an elemen-404

tary Fourier mode for infinite depth with dimensionless wavelength λ = 2π.405

The resulting dimensionless velocity potential is406

φ = A cos(x)ey (41)

Its induced peaked crest has the elevation ηmax = 1 and corresponding trough407

ηmin = −0.2785, occurring at the amplitude value A = −1/e = −0.36788. The408

ratio between wave amplitude (crest minus trough) and wavelength is409

ηmax − ηmin
λ

= 0.20348, (42)

valid for infinite depth, in agreement with Grant [18]. |ηmin| is the solution of410

the transcendental equation411

|ηmin|+ log |ηmin| = −1. (43)

The case of an infinite depth has no controversy concerning length scales. A412

stagnant peaked surface shape with simple horizontal periodicity sets its own413

length scale, as its wavelength is the only possible length scale.414

We have seen that the present model agrees well with the established work415

on the highest standing wave for a rectangular geometry with infinite depth.416

Even though the rectangular geometry is special in many respects, we take this417

agreement as a confirmation of the relevance of our model, where we investigate418
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Fig. 7 Peaked free surface based on the Fourier acceleration potential Φ(z;β) =
A(cos(kzeiβ) + cosh(kzeiβ)), where β is the tilt angle for the wedge container. The stream-
lines and the isobars are displayed for the instantaneous flow released from rest. Three cases
with different tilt angles are displayed. (a) β = 0. (b) β = 15◦. (c) β = 30◦. For all subplots,
k = 1.1912. The value of k was set to achieve the same average water level as that for the
symmetric dipole case #3(d).
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x
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Fig. 8 Peaked free surface based on the symmetric Fourier acceleration potential Φ(z; 0) =
A(cos(kz) + cosh(kz)), with zero tilt angle for the wedge container. The streamlines and
the isobars are displayed for the instantaneous flow released from rest. The amplitude A is
chosen to get the same average water level as that for the symmetric dipole case 3(d), which
is included by black dashed lines.

a family of stagnant standing wave shapes of maximal amplitude in a wedge419

container. The right-angle wedge shape is a simple non-rectangular geometry420

since the relevant class of acceleration field is a sum of four dipole potentials.421

The surface peak will always have a right angle, but the slope angles of its two422

sides may often be quite far from the value π/4 when the peak is symmetric,423

like a Fourier mode in a rectangular container.424

The triangular geometry of our container makes it much more difficult to425

classify the peaked surface shapes, compared with the rectangular geometry426

which we just discussed. The ratio between wave amplitude and wavelength427

proved to be useful for rectangular geometry, but it is no longer well-defined428

for the wedge container. As a substitute, we may introduce the following ratio429

defined as430

∆η

∆x
=
ηmax − ηmin
2(x3 − x1)

, (44)

which we may call the maximum relative wave height. Here ηmax = y2 is the431

elevation of the surface peak, and ηmin is the smaller value of η1 and η3. The432

horizontal distance x3 − x1 between the two waterline points is the substitute433

for half a wavelength. This ratio can be calculated for Figures 3-6, and we are434

interested in the maximal value of ∆η/∆x for each figure.435

We have calculated the highest value of this ratio for each of these figures.436

Figure 3 (a) gives ∆η/∆x = 0.2472. Figure 4 (a) gives ∆η/∆x = 0.2855.437

Figure 5 (a) gives ∆η/∆x = 0.1726. Figure 6 (a) gives ∆η/∆x = 0.2260.438

The fact that ∆η/∆x is often greater for the wedge than for the rect-439

angular container has interesting consequences, which we can give a popular440

interpretation by imagine a waiter carrying a bowl of soup. The waiter must441

avoid spilling the soup, and they must also avoid splashes from the soup as a442

result of surface-breaking. The great values of ∆η/∆x for the wedge container443
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show that it is much easier to achieve great non-breaking wave amplitude in444

a container with sloping walls than in a container with vertical walls. Vertical445

walls may deliver vertical splashes as upward wall jets, which will not arise446

from sloping walls. Sloping walls in a soup bowl thus reduces the danger of447

quick splashes delivered from the soup, compared with a rectangular container,448

partly because there is a higher amplitude threshold before surface-breaking449

takes place. The disadvantage is that there is a much greater danger of spilling450

the whole soup from a soup bowl when the walls are sloping.451

We have not attempted to optimize the maximal values of ∆η/∆x for a452

wedge container, but we have illustrated by examples that the relative ele-453

vation of non-breaking waves easily gets much higher values for a container454

with sloping walls than for a rectangular container. Our results indicate that455

it is very difficult (perhaps impossible) to establish a strictly time-periodic456

nonlinear standing wave in a non-rectangular container. Nonlinear standing457

waves should be periodic in both space and time, but with a non-rectangular458

geometry, periodicity in space is not an option. If we stick to a strict definition459

of the standing wave as periodic in space and time, we can perhaps not talk460

about standing waves in non-rectangular containers like our wedge container.461

Free oscillations and sloshing are concepts that we can use if standing waves462

are not adequate.463

7 Conclusions464

Free oscillations in open liquid containers is a topic of practical interest. If the465

oscillation amplitude exceeds a threshold value, some of the liquid mass may466

leave the container by either spilling or splashing. Spilling means that bulk467

fluid is set into motion out of the container. Splashing means that the surface468

breaks locally. A configuration at the threshold of splashing is a stagnant fluid469

elevation with a peaked surface and only gravitational potential energy. To470

our knowledge, stagnant peaked elevations have never been studied systemat-471

ically for non-rectangular containers. This is what we do in the present paper.472

We consider only the instant of a pure acceleration field in standing waves.473

Classical theory [2] as well as experiments [3–5] indicate that time-periodic474

standing waves with relatively high amplitude exist in rectangular containers,475

having a stagnant stage of maximal elevation.476

Decent scientific progress can be achieved when theory is developed in com-477

bination with basic experiments. This has been the case for standing waves,478

which have several advantages from an experimental point of view, compared479

with travelling waves. The difficult dilemmas of wave reflections, combined480

with the lack of nonlinear radiation conditions, do not exist for standing waves.481

Excellent experiments on standing waves in rectangular geometry have stim-482

ulated theoretical work on this topic.483

Time-periodic standing waves must be reversible, which implies the exis-484

tence of an instantaneous state of maximal elevation with zero kinetic energy485

and maximal potential energy. This gives an opportunity to describe quite486
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accurately the highest possible elevation as a state where the free surface has487

a peak. The difficulty is to pick the right flow potential for representing the488

peaked state of maximal elevation, and this potential is then an acceleration489

potential for the initial flow released from rest. The present work follows the490

general modeling by Tyvand [15], who selected Fourier potential for the high-491

est wave in rectangular containers, and dipole potentials for the highest wave492

in a wedge container.493

We have investigated a family of peaked free-surface shapes in an open494

container with a wedge shape made of two walls that are meeting at a right495

angle. This family of shapes may have been built by a slow shaking of the496

container, and the single peak is best represented by a single dipole. This497

primary dipole sets up three additional image dipoles in order to satisfy the498

two kinematic conditions along the walls of the wedge container. This sum499

of four dipoles gives exact acceleration fields for stagnant free-surface shapes,500

and we have combined it with the exact nonlinear dynamic condition.501

The knowledge of free nonlinear oscillations in containers with sloping walls502

is very limited. One obstacle to theoretical developments is that a Lagrangian503

type of description is needed to capture the finite motion of fluid particles504

along the sloping walls. We have omitted these difficulties by addressing the505

state of maximal wave height with peaked surface and zero kinetic energy. Not506

knowing whether these stagnant configurations with large deflections may arise507

in a time-periodic flow, it is nevertheless legal to release any surface shape from508

rest as a Cauchy-Poisson problem. It is not a surprise that maximal wave509

height cannot be defined uniquely. Even with our limitation of looking at510

single dipole flow, the position, and orientation of the primary dipole results511

in a variety of shapes from which it is difficult to select one as the highest512

standing wave. Precise criteria are not available for defining or selecting the513

highest wave. The only available benchmarking we were able to carry out,514

applied the classical Fourier eigenfunctions for free oscillations in an upright515

wedge container [16, 17]. Thereby, we illustrated the versatility of the dipole516

potential, indicating that the Fourier potentials for acceleration flows cannot517

give the full picture of admissible stagnant surface shapes close to surface518

breaking.519

In conclusion, we have only touched upon the difficulties in the open field520

of free nonlinear oscillations in containers with sloping walls.521
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