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Abstract
The duality principle for group representations developed in Dutkay et al. (J Funct
Anal 257:1133–1143, 2009), Han andLarson (Bull LondMath Soc 40:685–695, 2008)
exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated
incident but amore general phenomenon residing in the context of group representation
theory. There are two other well-known fundamental properties in Gabor analysis: the
biorthogonality and the fundamental identity of Gabor analysis. The main purpose
of this this paper is to show that these two fundamental properties remain to be true
for general projective unitary group representations. Moreover, we also present a
general duality theorem which shows that that muti-frame generators meet super-
frame generators through a dual commutant pair of group representations. Applying it
to the Gabor representations, we obtain that {π�(m, n)g1 ⊕· · ·⊕π�(m, n)gk}m,n∈Zd

is a frame for L2(R d) ⊕ · · · ⊕ L2(R d) if and only if ∪k
i=1{π�o(m, n)gi }m,n∈Zd is a

Riesz sequence, and ∪k
i=1{π�(m, n)gi }m,n∈Zd is a frame for L2(R d) if and only if

{π�o(m, n)g1 ⊕ · · · ⊕ π�o(m, n)gk}m,n∈Zd is a Riesz sequence, where π� and π�o is
a pair of Gabor representations restricted to a time–frequency lattice � and its adjoint
lattice �o in R

d × R
d .
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1 Introduction

In this paper we continue the investigation on the duality phenomenon for projective
unitary group representations. The purpose of this paper is two-fold: first we prove
that the Wexler–Raz biorthogonality and the Fundamental Identity in Gabor analysis
also reflect a general phenomenon for more general projective unitary representations
of any countable group. Secondly we establish a duality principle connecting the
multi-frame generators and super-frame generators, which is new even in the context
of Gabor analysis. We start by recalling some basic definitions, backgrounds and
fundamental theorems in Gabor analysis.

Frames were introduced by Duffin and Schaeffer in the context of nonharmonic
Fourier series, and nowadays they have applications in a wide range of areas including
sampling theory, operator theory, nonlinear sparse approximation, pseudo-differential
operators, wavelet theory, wireless communications, data transmission with erasures,
signal processing and quantum computing. Frames provide robust, basis-like (but
generally non-unique) representations of vectors in a Hilbert space. The potential
redundancy of frames often allows them to be more easily constructible and to possess
better properties than are achievable using bases. For example, redundant frames offer
more resilience to the effects of noise or to erasures of frame elements compared to
bases.

A frame for a Hilbert space H is a sequence {xn}n∈I in H with the property that
there exist positive constants A, B > 0 such that

A‖x‖2 ≤
∑

n∈I

|〈 x , xn 〉|2 ≤ B‖x‖2 (1.1)

holds for every x ∈ H . A tight frame refers to the case when A = B, and a Parseval
frame refers to the case when A = B = 1. In the case that (1.1) holds only for all
x ∈ span{xn}, then we say that {xn} is a frame sequence, i.e., it is a frame for its closed
linear span. If we only require the right-hand side of the inequality (1.1) to hold, then
{xn} is called a Bessel sequence. Similarly, a Riesz sequence is a sequence that is a
Riesz basis for its closed linear span.

Given a sequence {xn}n∈I in a Hilbert space H . The analysis operator � : H →
�2(I ) is defined by

�(x) =
∑

n∈I

〈 x , xn 〉en, x ∈ H ,

where {en}n∈I is the standard orthonormal basis for �2(I ) and the domain of � is the
set of all x ∈ H such that {〈 x , xn 〉}n∈I ∈ �2(I ). Clearly the domain of � is H if
{xn}n∈I is a frame sequence and the range of� is �2(I ) if {xn}n∈I is a Riesz sequence.

Gabor frames are a particular type of frames whose elements are simply gener-
ated by time–frequency shifts of a single window function or atom, and the structure
of Gabor frames makes them especially suitable for applications involving time-
dependent frequency content. Let � = A(Zd × Z

d) be a full-rank time–frequency
lattices, where A is a 2d × 2d invertible real matrix. The adjoint lattice of � is the full
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rank time–frequency lattice defined by

�o = {λo ∈ R
d × R

d : σ(λ, λo) ∈ Z,∀λ ∈ �},

where σ denotes the standard symplectic form onR
2d . AGabor (or Weyl-Heisenberg)

family is a collection of functions in L2(R d)

G(g,�) = {e2π i<�,x>g(x − κ) : λ = (�, κ) ∈ �},

where g ∈ L2(R d) is the generator of the Gabor family. A Gabor frame (with a
single generator) is a frame of the form G(g,�). Let E� and Tκ be the modulation
and translation unitary operators defined by E� f (x) = e2π i<�,x> f (x) and Tκ f (x) =
f (x − κ) for all f ∈ L2(R d). Then we have G(g,�) = {E�Tκ g : λ = (�, κ) ∈ �}.
Hence a Gabor frame is a frame induced by the Gabor representation π� of the abelian
group Z

d × Z
d defined by π�(m, n) → E�Tκ , where (�, κ) = A(m, n).

In Gabor analysis, there are several fundamental theorems: Probably the most well-
known one is the Density Theorem which tells us that a Gabor frame exists if and
only if the vol(�) ≤ 1, i.e., the density of � is greater than or equal to one (c.f.
[4,26,28,38]), where the density of � is 1

vol(�)
and vol(�) is the Lebesgue measure

of a fundamental domain of �, which is equal to |det(A)| if � = A(Zd × Z
d).

The other well-known theorems include the duality principle, the Wexler–Raz
biorthogonality and the Fundamental Identity of Gabor frames. The duality princi-
ple for Gabor frames was independently and essentially simultaneously discovered by
Daubechies et al. [8], Janssen [29], and Ron and Shen [39], and the techniques used
in these three articles to prove the duality principle are quite different from each other,
see [28] for a survey treating the duality principles from the perspective of harmonic
analysis.

We summarize here the four fundamental properties of Gabor representation in the
following theorem, see Sect. 2 for notation and definitions:

Theorem 1.1 Let � = AZ
2d be a lattice and �0 be its adjoint lattice. Then we have

(i) [Density theorem] There exists a function g ∈ L2(R d) such that {π�(m, n)g} is
a frame for L2(R d) if and only if |det(A)| ≤ 1.

(ii) [Duality principle] A Gabor family {π�(m, n)g} is a frame (resp. Parserval
frame) for L2(R d) if and only if {π�(0) (m, n)g} is a Riesz sequence (resp. orthog-
onal sequence).

(iii) [Wexler–Raz biorthogonality] If {π�(m, n)g} is a frame for L2(R d), then

〈π�0(m, n)g, S−1g〉 = |det A|δ(m,n),(0,0),

where S is the frame operator for {π�(m, n)g}
(iv) [Fundamental Identity of Gabor Analysis—Janssen representation] If f , g, h, k

are Bessel vectors for π�, then
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∑

m,n

〈 f , π�(m, n)g〉〈π�(m, n)h, k〉

= vol(�)−1
∑

m,n

〈 f , π�◦(m, n)k〉〈π�◦(m, n)h, g〉

i.e.

〈�π�,g( f ),�π�,h(k)〉 = vol(�)−1〈�π�◦ ,k( f ),�π�◦ ,h(g)〉,

where �π�,g (similarly for �π�◦ ,h etc.) is the analysis operator for {π�(m, n)g :
m, n ∈ Z

d}.
The Fundamental Identity of Gabor Analysis holds under weaker assumptions, see

[16]. These basic properties of Gabor frames establish an intrinsic connection between
the Gabor representations π� and π�0 , both are projective unitary representations of
the abelian groupZ

d ×Z
d . Onemightwonder if this holds aswell for general projective

representations of countable groups. Indeed, the density theorem for projective unitary
representations has been obtained in [19,20], and the duality principle for general
groups was also established in [27] and [12]. Let us summarize these results:

Theorem 1.2 Let π be a frame representation and (π, σ ) be a dual commutant pair
(see Definition 2.1) of projective unitary representations of G on a Hilbert space
H. Then {π(g)ξ}g∈G is a frame (respectively, a tight frame) for H if and only if
{σ(g)ξ}g∈G is a Riesz sequence (respectively, an orthogonal sequence).

One of the central problems concerning the duality principle is the existence prob-
lem of dual commutant pairs (π, σ ) for a group G and/or for a given representations
π . This turns out to be a very challenging problem due to the following result [12]:

Theorem 1.3 Let π = λ|P be a subrepresentation of the left regular representation λ

of an ICC (infinite conjugacy class) group G, where P is an orthogonal projection in
the commutant λ(G)′ of λ(G). Then the following are equivalent:

(i) λ(G)′ and Pλ(G)′ P are isomorphic von Neumann algebras.
(ii) There exists a group representation σ such that (π, σ ) form a dual commutant

pair.

For the free groups Fn with n-generators (n ≥ 2), it is a longstanding problem
whether all their group von Neumann algebras are ∗-isomorphic. It is well-known
[15,37] that either all the von Neumann algebras Pλ(Fn)

′ P ( 0 �= P ∈ λ(Fn)
′) are

∗-isomorphic, or no two of them are ∗-isomorphic. This implies that the classification
problem is also equivalent to the question whether there exists a proper projection P ∈
λ(Fn)

′ such that λ(Fn)
′ and Pλ(Fn)′ P are isomorphic von Neumann algebras.The

above Theorem 1.3 shows that the existence problem of dual commutant pairs for free
groups is also equivalent to the longstanding classification problem for free group von
Neumann algebras.

There are many groups admitting dual commutant pairs. For example, if G is either
an abelian group or an amenable ICC group, then for every projection 0 �= P ∈ λ(G)′,
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there exists a unitary representation σ of G such that (λ|P , σ ) is a dual commutant
pair, where λ|P is the subrepresentation of the left regular representation λ restricted
to range(P). On the other hand, there exists an ICC group (e.g., G = Z

2
� SL(2, Z)),

such that none of the nontrivial subrepresentations λ|P admits a dual commutant pair
(c.f. [7,12,15,34–37]). These examples demonstrate the complexity of the existence
problem, which remains widely open in general.

In this paper we first prove that theWexler–Raz biorthogonality and the Fundamen-
tal Identity in Gabor analysis remain to be true for more general projective unitary
representations of any countable group G. Secondly we shall establish the duality
principle connecting the multi-frame generators and super-frame generators, which is
new even in the context of Gabor analysis. In order to state our main results we recall
some necessary definitions, notations and terminologies related to frames and frame
representations.

1.1 Related results

We would like to mention that there is a more general duality principle in frame
theory [5,6,40]. However, it is usually very difficult (if at all possible) to use it to
derive duality principles for well-structured frames. In particular we are not able to
see how the general frame duality can be applied to obtain the duality principle for
groups in the setting of this paper and [12,27].

Extensions of the duality principle for Gabor frames have been obtained to finite
abelian groups [17] and to locally compact abelian groups [30] and to the setting of
superframes in [23,31]. In [31] Jakobsen and Luef have also established one of our
results, Corollary 3.3, using a completely different approach. Finally, [1] generalizes
the Gabor duality principle to the setting of equivalence bimodules for Morita equiv-
alent C∗-algebras which contains the one for Gabor frames for Heisenberg modules
over twisted group C∗-algebras [31].

Let us stress that the focus of this paper is on establishing a general duality principle
for arbitrary (discrete) groups building its connections with the theory of operator
algebras and group representations. In this context the duality principle for Gabor
frames is just a special case of a more general duality theory for arbitrary projective
unitary representations of discrete groups. Our approach via dual commutant pairs
does not allow us to deduce the relation between the frame and Riesz bounds like in
the Gabor case.

2 Background

Recall (cf. [41]) that a projective unitary representation π for a countable group G
is a mapping g → π(g) from G into the group U (H) of all the unitary operators on
a separable Hilbert space H such that π(g)π(h) = μ(g, h)π(gh) for all g, h ∈ G,
where μ(g, h) is a scalar-valued function on G × G taking values in the circle group
T. This function μ(g, h) is then called a multiplier or 2-cocycle of π . In this case we



   83 Page 6 of 19 Journal of Fourier Analysis and Applications            (2020) 26:83 

also say that π is a μ-projective unitary representation. It is clear from the definition
that we have

(i) μ(g1, g2g3)μ(g2, g3) = μ(g1g2, g3)μ(g1, g2) for all g1, g2, g3 ∈ G,
(ii) μ(g, e) = μ(e, g) = 1 for all g ∈ G, where e denotes the group unit of G.

Any function μ : G × G → T satisfying (i)–(ii) will be called a multiplier for G.
It follows from (i) and (i i) that we also have

(iii) μ(g, g−1) = μ(g−1, g) holds for all g ∈ G.

Similar to the group unitary representation case, the left and right regular projective
representations with a prescribed multiplier μ for G can be defined by

λgχh = μ(g, h)χgh, h ∈ G,

and

ρgχh = μ(h, g−1)χhg−1, h ∈ G,

where {χg : g ∈ G} is the standard orthonormal basis for �2(G). Clearly, λg and ρg

are unitary operators on �2(G). Moreover, λ is aμ-projective unitary representation of
G with multiplier μ and ρ is a projective unitary representation of G with multiplier
μ. The representations λ and ρ are called the left regular μ-projective representation
and the right regular μ-projective representation of G, respectively.

Given a projective unitary representation π of a countable group G on a Hilbert
space H , a vector ξ ∈ H is called a complete frame vector (resp. complete tight frame
vector, complete Parseval frame vector) for π if {π(g)ξ}g∈G (here we view this as a
sequence indexed by G) is a frame (resp. tight frame, Parseval frame) for the whole
Hilbert space H , and is just called a frame sequence vector (resp. tight frame sequence
vector, Parseval sequence frame vector) forπ if {π(g)ξ}g∈G is a frame sequence (resp.
tight frame sequence, Parseval frame sequence). Riesz sequence vector and Bessel
vector can be defined similarly. We will use Bπ to denote the set of all Bessel vectors
of π . A projective unitary representation that admits a complete frame vector is called
a frame representation.

For Gabor representations, π� and π�◦ are projective unitary representations of
the group Z

d × Z
d . Moreover, it is well-known that one of the two projective unitary

representationsπ� andπ�o for the group G = Z
d ×Z

d must be a frame representation
and the other admits a Riesz vector. So we can always assume that π� is a frame
representation of Z

d × Z
d and hence π�o admits a Riesz vector. Moreover, we also

have π�(G)′ = π�◦(G)′′, and both representations share the same Bessel vectors,
where π�(G)′ is the commutant of π(G). This leads to the following definition:

Definition 2.1 [12] Let π and σ be two projective unitary representations of a count-
able group G on the same Hilbert space H . We say that (π, σ ) is a commutant pair if
π(G)′ = σ(G)′′, and a dual commutant pair if they satisfy the following two additional
conditions:

(i) Bπ = Bσ .
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(ii) One of them admits a complete frame generator and the other one admits a Riesz
sequence generator.

Remark 2.1 We point out that it seems that the condition Bπ = Bσ in the above
definition may not be easy to verify. However, with the help of the parameterization
results established in [13,25], it may not as difficult as it looks like to verify this
condition. For example, assume that π and σ have finite cyclic multiplicity (the cyclic
multiplicity of π is the smallest cardinality k such that there exist vectors ξ1, . . . , ξk

such that span{π(g)ξi : g ∈ G, i = 1, . . . , k} = H). Then, by Theorem 2.10 in [13],
the condition Bπ = Bσ can be verified by checking only finitely many Bessel vectors.
In the case that π is a frame representation and ξ is a fixed frame vector, then from
the parameterization theorem in [25] we have that Bπ = {T ξ : T ∈ π(G)′′}. So if we
can verify that ξ ∈ Bσ , then we already have the inclusion:

Bπ = {T ξ : T ∈ π(G)′′} = {T ξ : T ∈ σ(G)′} ⊆ Bσ .

We conjecture that the conditions π(G)′ = σ(G)′′ and Bπ ⊆ Bσ automatically imply
that Bπ = Bσ .

For any projective representation π of a countable group G on a Hilbert space
H and x ∈ H , the analysis operator �x,π (or �x if π is well-understood from the
context) for x from D(�x )(⊆ H) to �2(G) is defined by

�x (y) =
∑

g∈G

〈y, π(g)x〉χg,

where D(�x ) = {y ∈ H : ∑
g∈G |〈y, π(g)x〉|2 < ∞} is the domain space of �x .

Clearly, Bπ ⊆ D(�x ) holds for every x ∈ H . In the case that Bπ is dense in H , we
have that �x is a densely defined and closable linear operator from Bπ to �2(G) (cf.
[18]). Moreover, x ∈ Bπ if and only if �x is a bounded linear operator on H , which
in turn is equivalent to the condition that D(�x ) = H . It is useful to note that �∗

η�ξ

commutes with π(G) if ξ, η ∈ Bπ . Thus, if ξ is a complete frame vector for π , then
η := S−1/2ξ is a complete Parseval frame vector for π , where S = �∗

ξ�ξ and is
called the frame operator for ξ (or Bessel operator if ξ is a Bessel vector).

It was proved in [19] that a complete Parseval frame vector η for π , T rπ(G)′(A) =
〈Aη, η〉 defines a faithful normal trace on π(G)′. In the case of the Gabor represen-
tation π� we have that T rπ(G)′(I ) = vol(�). Thus Theorem 3.1 may be viewed as
generalizations of the Wexler–Raz biorthogonality and the Fundamental Identity of
Gabor analysis for general frame representations.

3 Main results

We are now in the position to formulate the main theorems:

Theorem 3.1 Let π be a frame representation and (π, σ ) be a dual commutant pair
of projective unitary representations of G on H.
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(i) If {π(g)ξ} is a frame for H, then

〈σ(g)ξ, S−1ξ 〉 = T rπ(G)′(I )δg,e,

where S is the frame operator for {π(g)ξ}, e is the group unit of G and
T rπ(G)′(I ) = ||S−1/2ξ ||2.

(ii) If ξ, η, x, y are Bessel vectors for π , then

∑

g∈G

〈x, π(g)ξ 〉〈π(g)η, y〉 = 1

T rπ(G)′(I )

∑

g∈G

∑

g∈G

〈x, σ (g)(y)〉〈σ(g)η, ξ 〉.

i.e. 〈�ξ,π (x),�η,π (y)〉 = 1
T rπ(G)′ (I ) 〈�y,σ (x),�η,σ (ξ)〉.

Our second main theorem deals with the duality principle for multi-frame and
super-frame generators.

Definition 3.1 Let π be projective unitary representation of a countable group G on a
Hilbert space H and let ξ1, . . . , ξn ∈ H . We say that �ξ = (ξ1, . . . , ξn) is

(i) a multi-frame vector for π if {π(g)ξi : g ∈ G, i = 1, . . . , n} is a frame for H ,
and

(ii) a super-frame vector if each {π(g)ξi : g ∈ G} is a frame for H and �ξi (H) ⊥
�ξ j (H) for i �= j .

Parseval multi-frame vector and Parseval super-frame vector can be defined
similarly. We remark that the concept of super-frames was first introduced and sys-
tematically studied by Balan [2,3], Han and Larson [25] in the 1990’s, and since then
it has received some attention (c.f. [9–11,13,18,20–22,24] and the references therein).

Theorem 3.2 Let π be a frame representation and (π, σ ) be a dual commutant pair
of projective unitary representations of G on H, and �ξ = (ξ1, . . . , ξn) ∈ H . Then we
have

(i) �ξ is a super-frame vector for π if and only if {σ(g)ξ j : g ∈ G, j = 1, . . . , n} is
Riesz sequence in H.

(ii) �ξ is a multi-frame vector for π if and only if {σ(g)ξ1 ⊕ · · · ⊕ σ(g)ξn : g ∈ G}
is a Riesz sequence in H ⊕ · · · ⊕ H.

Since the Gabor representations π� and π�o form a dual commutant pair, we
immediately have the following consequences:

Corollary 3.3 Let � be a time–frequency lattice and �o be its dual lattice. Let
g1, . . . , gk ∈ L2(R d). Then

(i) {π�(m, n)g1 ⊕· · ·⊕π�(m, n)gk}m,n∈Zd is a frame for L2(R d)⊕· · ·⊕ L2(R d)

if and only if ∪k
i=1{π�o(m, n)gi }m,n∈Zd is a Riesz sequence in L2(R d).

(ii) ∪k
i=1{π�(m, n)gi }m,n∈Zd is a frame for L2(R d) if and only if {π�o(m, n)g1 ⊕

· · · ⊕ π�o(m, n)gk}m,n∈Zd is a Riesz sequence L2(R d) ⊕ · · · ⊕ L2(R d).
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4 Proof of Theorem 3.1

We refer to [14,32,33] for standard notions and basic properties about von Neumann
algebras. Note that [K ] denotes the closed subspace generated by a subset K of a
Hilbert space H . Theorem 1.2 and the following lemmas are needed in the proofs for
both Theorems 3.1 and 3.2.

Lemma 4.1 [19] Let π be a projective representation of a countable group G on a
Hilbert space H such that Bπ is dense in H. Then

π(G)′ = spanW OT {�∗
η�ξ : ξ, η ∈ Bπ },

where “W OT ” denotes the closure in the weak operator topology.

Lemma 4.2 [19] Let π be a projective representation of a countable group G on a
Hilbert space H such that Bπ is dense in H. If {π(g)ξi , g ∈ G, i = 1, . . . , n} is a
Parseval frame for H, then

T rπ(G)′(A) =
n∑

i=1

〈Aξi , ξi 〉

defines a faithful trace on π(G)′, i.e. T rπ(G)′(A∗ A) = 0 implies A = 0. Moreover,
this is independent of the choice of the Parseval multi-frame vector �ξ = (ξ1, . . . , ξn).

Lemma 4.3 Let π be a projective unitary representation π of a countable group G
on a Hilbert space H. Then π is a frame representation if and only if π is unitarily
equivalent to a subrepresentation of the left regular projective unitary representation
of G. Consequently, if π is a frame representation, then both π(G)′ and π(G)′′ are
finite von Neumann algebras.

Lemma 4.4 [19,25] Let π be a projective representation of a countable group G on a
Hilbert space H and {π(g)ξ}g∈G is a Parseval frame for H. Then

(i) {π(g)η}g∈G is a Parseval frame for H if and only if there is a unitary operator
U ∈ π(G)′′ such that η = Uξ ;

(ii) {π(g)η}g∈G is a frame for H if and only if there is an invertible operator U ∈
π(G)′′ such that η = Uξ ;

(iii) {π(g)η}g∈G is a Bessel sequence if and only if there is an operator U ∈ π(G)′′
such that η = Uξ , i.e., Bπ = π(G)′′ξ .

Proof of Theorem 3.1 Let (π, σ ) be a dual commutant pair of representations for G on
a Hilbert space H .

(i) Let {π(g)ξ} be a frame for H and let S be its frame operator. We set η =
S−1/2ξ . Then {π(g)η}g∈G is a Parserval frame for H . By Lemma 4.2we have that
T rπ(G)′(A) := 〈Aη, η〉 defines a faithful trace on w∗(σ (G)), where w∗(σ (G))
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is the von Neumann algebra generated by σ(G) and it is equal to π(G)′. Note
that S, σ (g) ∈ π(G)′. Thus we have

〈σ(g)η, η〉 = T rπ(G)′(σ (g)) = T rπ(G)′(S−1/2σ(g)S1/2)

= 〈S−1/2σ(g)S1/2η, η〉 = 〈σ(g)ξ, S−1ξ 〉.

However, by Theorem 1.2, {σ(g)η}g∈G is an orthogonal sequence. Thus we have
〈σ(g)ξ, S−1ξ 〉 = 0 for any g �= e. Observe that 〈σ(e)ξ, S−1ξ 〉 = ||S−1/2ξ ||2 =
T rπ(G)′(I ). So we get the biorthogonality relation:

〈σ(ξ), S−1ξ 〉 = T rπ(G)′(I )δg,e.

(ii) Let ϕ be a Parserval frame vector for π . Then by Theorem 1.2 we get that
{ 1√

T rπ(G)′ (I )
σ (g)ϕ}g∈G is an orthonormal basis for [π(G)′ϕ]. Since�∗

ξ,π�η,π ∈
π(G)′ = w∗(σ (G)), we get that �∗

ξ,π�η,πϕ ∈ [σ(G)ϕ]. This implies that

�∗
ξ,π�η,πϕ = (T rπ(G)′(I ))−1

∑

g∈G

cgσ(g)ϕ,

where cg = 〈�∗
ξ,π�η,πϕ, σ (g)ϕ〉.

By Lemma 4.4 there is an operator A ∈ w∗(π(G)) such that y = Aϕ. Thus we
have

�∗
ξ,π�η,π (y) = �∗

ξ,π�η,π (Aϕ) = A�∗
ξ,π�η,π (ϕ)

= (T rπ(G)′(I ))−1
∑

g∈G

cg Aσ(g)ϕ

= (T rπ(G)′(I ))−1
∑

g∈G

cgσ(g)Aϕ

= (T rπ(G)′(I ))−1
∑

g∈G

cgσ(g)y

Therefore we get

〈�ξ,π (x),�η,π (y)〉 = 〈x, �∗
ξ,π�η,π (y)〉 = (T rπ(G)′(I ))−1

∑

g∈G

cg〈x, σ (g)y〉.

Now we compute cg:

cg = 〈�∗
ξ,π�η,πϕ, σ (g)ϕ〉 = 〈�η,π (ϕ),�ξ,π (σ (g)ϕ)〉

=
∑

h∈G

〈ϕ, π(h)η〉 · 〈σ(g)ϕ, π(h)ξ 〉
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=
∑

h∈G

〈ϕ, π(h)η〉 · 〈π(h)ξ, σ (g)ϕ〉

=
∑

h∈G

〈π(h−1)ϕ, η〉 · 〈σ(g−1)ξ, π(h−1)ϕ〉

=
∑

h∈G

〈σ(g−1)ξ, π(h−1)ϕ〉 · 〈π(h−1)ϕ, η〉

=
∑

h∈G

〈σ(g−1)ξ, π(h)ϕ〉 · 〈π(h)ϕ, η〉

= 〈σ(g−1)ξ, η〉 = 〈ξ, σ (g)η〉,

where we used the fact that σ(g) and π(h) commute for all g, h ∈ G, and that
{π(h)ϕ}h∈G is a Parserval frame H .

Finally, we have

〈�ξ,π (x),�η,π (y)〉 = 〈x, �∗
ξ,π�η,π (y)〉

= (T rπ(G)′(I ))−1
∑

g∈G

cg〈x, σ (g)y〉

= (T rπ(G)′(I ))−1
∑

g∈G

〈σ(g)η, ξ 〉, 〈x, σ (g)y〉

= (T rπ(G)′(I ))−1〈�y,σ (x),�η,σ (ξ)〉.

This completes the proof. ��

5 Proof of Theorem 3.2

The proof of Theorem 3.2 is much more subtle and involved. While Theorem 1.2 will
be needed, it is not a direct consequence of the theorem. For the sake of clarity we
divide the proof into two theorems with one of them concerning the duality for multi-
frame generators and the other one dealingwith the duality for super-frame generators.
We need a series of lemmas for both cases. In what follows we use H (k) to denote the
orthogonal direct sum of a Hilbert space H and π(k) to denote the k-fold direct sum
of the representation π of G on H (k). So for any vector �ξ = (ξ1, . . . , ξk) ∈ H (k), we
have π(k)(g)�ξ = (π(g)ξ1, . . . , π(g)ξk) = π(g)ξ1 ⊕ · · · ⊕ π(g)ξk . We will use the
following notations: Let π be a projective unitary representation of G on a Hilbert
space H .

(i) For any ξ ∈ H , �ξ,π : H → �2(G) is the analysis operator for the sequence
{π(g)ξ}G .

(ii) For ξ = (ξ1, . . . , ξk) ∈ H (k), ��ξ,π : H → (�2(G))(k) is the analysis operator

for the sequence ∪k
i=1{π(g)ξi }g∈G defined by

��ξ,π (x) = �ξ1,π (x) ⊕ · · · ⊕ �ξk ,π (x).
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(iii) For ξ = (ξ1, . . . , ξk) ∈ H (k), ��ξ,π(k) : H (k) → (�2(G))(k) is the analysis

operator for the sequence {π(k)(g)�ξ}g∈G .

Clearly��ξ,π can be viewed as the restriction of��ξ ,π(k) to the subspace {x⊕· · ·⊕x :
x ∈ H} of H (k).

Lemma 5.1 Let π be a projective unitary representation of a countable group G on
a Hilbert space H such that π(G)′ is finite. Assume that ∪k

i=1{π(g)ξi }g∈G is a frame
for H. If A ∈ π(G)′ such that ξi = Aηi and each ηi is a Bessel vector for π , then A
is invertible and ∪k

i=1{π(g)ηi }g∈G is also a frame for H.

Proof Let D and C be the frame bounds for ∪k
i=1{π(g)ξi }g∈G and ∪k

i=1{π(g)ηi }g∈G ,
respectively. Then for every x ∈ H we

D||x ||2 ≤
k∑

i=1

∑

g∈G

|〈x, π(g)ξi 〉|2

=
k∑

i=1

∑

g∈G

|〈x, π(g)Aηi 〉|2

=
k∑

i=1

∑

g∈G

|〈A∗x, π(g)ηi 〉|2

≤ C ||A∗x ||2,

This implies that A∗ is bounded from below. Since A∗ ∈ π(G)′ and π(G)′ is a finite
von Neumann algebra, it follows that A∗ must be invertible. Hence A is invertible. ��
Lemma 5.2 [18,19] Let π be a projective unitary representations of a countable group
G on a Hilbert space H. If x ∈ Bπ , then there exists a vector ξ ∈ M := span{π(g)x :
g ∈ G} such that {π(g)ξ}g∈G is a Parseval frame for M. Moreover, �ξ(H) = �x (H).

Lemma 5.3 Assume that (π, σ) is a commutant pair of projective representations of a
countable group G on a Hilbert space H and π(G)′ is finite. If ∪k

i=1{π(g)ξi }g∈G is a
frame for H, then

{σ(g)ξ1 ⊕ · · · ⊕ σ(g)ξk}g∈G

is frame sequence in H (k).

Proof Let

M = span{σ(g)ξ1 ⊕ · · · ⊕ σ(g)ξk}g∈G .

Then M is σ (k)-invariant. Note that

w∗(σ (k)(G)) = {A ⊕ · · · ⊕ A : A ∈ w∗(σ (G))}.



Journal of Fourier Analysis and Applications            (2020) 26:83 Page 13 of 19    83 

So we have that

w∗(σ (k)(G)|M ) = {A(k)|M : A ∈ w∗(σ (G))}.

Since �ξ = (ξ1, . . . , ξk) is a Bessel vector for σ (k), by Lemma 5.2 we get that there
exists a vector �η = (η1, . . . , ηk) ∈ M such that

{σ (k)(g)�η}g∈G

is a Parseval frame for M . Now by Lemma 4.4 there exists an operator T in
w∗(σ (k)(G)|M ) such that T �η = �ξ . Write T = A(k)|M for some A ∈ w∗(σ (G)).
Then we get that Aηi = ξi for i = 1, . . . , k and A ∈ π(G)′. Thus, by Lemma 5.1,
we have that A is invertible, which implies that T is invertible. Hence, by Lemma 4.4
again, {σ (k)(g)�ξ}g∈G is a frame for M , which completes the proof. ��

We also need the following generalization of Lemma 5.2. Although it is not a
consequence of Lemma 5.2, the proof is very similar and we include a sketch of the
proof for the reader’s convenience.

Lemma 5.4 Assume that π is a projective unitary representation of a countable group
G on a Hilbert space H. Suppose that ∪k

i=1{π(g)ξi }g∈G is a Bessel sequence and let

M = span ∪k
i=1 {π(g)ξi }g∈G .

Then there exists a vector �η such that

(i) ∪k
i=1{π(g)ηi }g∈G is a Parseval frame for M, and

(ii) ��η,π (H) = [��ξ,π (H)].
Proof It is sufficient to consider the case when M = H . Write T = ��ξ,π and let T =
U |T | be its polar decomposition. Then U is an isometry from H into �2(G)(k) since
the range of T ∗ is dense in H . It can be easily verified that T π(g) = λ(k)(g)T for every
g ∈ G, where λ is the left regular representation for G with the same multiplier as π .
This implies thatUπ(g) = λ(k)(g)U for all g ∈ G. Letψi = 0⊕· · ·⊕0⊕χe⊕0 · · ·⊕0,
where χe appears in the i-th component, and let ηi = U∗ψi . Then we have

Uπ(g)ηi = Uπ(g)U∗ψi = UU∗λ(k)(g)ψ = Pλ(k)(g)ψi ,

where P is the orthogonal projection from �2(G)(k) onto [��ξ,π (H)]. Since

{λ(k)(g)ψi : g ∈ G, i = 1, . . . , k}

is an orthonormal basis for �2(G)(k), we get that {Uπ(g)ηi : g ∈ G, i = 1, . . . , k}
is a Parserval frame for [��ξ,π (H)] and the range space of its analysis operator is

[��ξ,π (H)]. Since U is an isometry, we obtain that ∪k
i=1{π(g)ηi }g∈G is a Parseval

frame for H and ��η,π (H) = [��ξ,π (H)]. ��
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Let π be a projective unitary representation of G on a Hilbert space H such that Bπ

is dense in H . Recall from [12] that two vectors ξ and η in H are calledπ -orthogonal if
range(�ξ ) ⊥ range(�η), and π -weakly equivalent if [range(�ξ )] = [range(�η].

The following result obtained in [27] characterizes the π -orthogonality and π -
weakly equivalence in terms of the commutant of π(G).

Lemma 5.5 Let π be a projective representation of a countable group G on a Hilbert
space H such that Bπ is dense in H. Then two vectors ξ, η ∈ H are

(i) π -orthogonal if and only if [π(G)′ξ ] ⊥ [π(G)′η], and
(ii) π -weakly equivalent if and only if [π(G)′ξ ] = [π(G)′η].
We need the following (partial) generalization of Lemma 5.5 (ii).

Lemma 5.6 Let (π, σ ) be a commutant pair of projective unitary representations of a
countable group G on a Hilbert space H such that Bπ is dense in H. Let ξi , ηi ∈ H
(i = 1, . . . , k) be Bessel vectors for π . If [��ξ,π (H)] = [��η,π (H)], then [σ (k)(G)�ξ ] =
[σ (k)(G)�η ].
Proof By Lemma 4.1, we know that w∗(σ (G)) = π(G)′ is the closure of the linear
span of

{�∗
u,π�v,π : u, v ∈ Bπ }

in the weak operator topology. Hence w∗(σ (k)(G)) is the (wot)-closure of the linear
span of

{�∗
u,π�v,π ⊕ · · · ⊕ �∗

u,π�v,π : u, v ∈ Bπ }.

Assume that �z = (z1, . . . , zk) ∈ [σ (k)(G)�ξ ]⊥. Then for any u, v ∈ Bπ we have

0 =
k∑

i=1

〈zi ,�
∗
u,π�v,π (ξi )〉 =

k∑

i=1

〈�u,π (zi ),�v,π (ξi )〉

=
k∑

i=1

〈�ξi ,π (v),�zi ,π (u)〉 = 〈��ξ,π (v),��z,π (u)〉.

This implies ��z,π (u) ⊥ ��ξ,π (v). Since v ∈ Bπ is arbitrary and Bπ is dense in H , we
get that ��z,π (u) ⊥ [��ξ,π (H)], which implies that ��z,π (u) ⊥ [��η,π (H)]. Therefore
we obtain that

k∑

i=1

〈zi ,�
∗
u,π�v,π (ηi )〉 = 〈��η,π (v),��z,π (u)〉 = 0.

This implies that �z ∈ [σ (k)(G)�η ]⊥. Hence [σ (k)(G)�ξ ] ⊆ [σ (k)(G)�η ]. Similarly, we
also have the reversed inclusion. Therefore we obtain [σ (k)(G)�ξ ] = [σ (k)(G)�η ], as
claimed. ��
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Lemma 5.7 Let (π, σ ) be a commuting pair of projective unitary representations of a
countable group G on a Hilbert space H. If {σ (k)(g)�ξ}g∈G is a Riesz sequence, then

span ∪k
i=1 {π(g)ξi }g∈G = H .

Proof Assume that x ⊥ π(g)ξi for all g ∈ G and i = 1, . . . , k. We need to show
that x = 0. Since w∗(π(G)) = σ(G)′, we get that [σ(G)′x] ⊥ [σ(G)′ξi ]. Apply-
ing Lemma 5.5 (i) to σ , we get that x and ξi are σ -orthogonal. This implies that
range(�x,σ ) ⊥ range(�ξi ,σ ) for every i . Let �x = (x, 0, . . . , 0) ∈ H (k). Then we
have range(��x,σ (k) ) ⊥ range(��ξ,σ (k) ). Since {σ (k)(g)�ξ}g∈G is a Riesz sequence, we

know that range(��ξ,σ (k) ) = �2(G). Thus range(��x,σ (k) ) = {0}, which implies �x = 0
and hence x = 0, as claimed. ��
Lemma 5.8 Let (π, σ ) be a commutant pair of projective unitary representations of a
countable group G on a Hilbert space H. If {σ (k)(g)�ξ}g∈G is a Riesz sequence, then
∪k

i=1{π(g)ξi }g∈G is a frame for H.

Proof From Lemma 5.7 we know that span ∪k
i=1 {π(g)ξi }g∈G = H . By using

Lemma 5.4, there exists a vector �η such that ∪k
i=1{π(g)ηi }g∈G is a Parseval frame for

H , and��η,π (H) = [��ξ,π (H)].ByLemma 5.6we get that [σ (k)(G)�η ] = [σ (k)(G)�ξ ].
Let M = [σ (k)(G)�ξ ]. Since �ξ is a frame vector and �η is a Bessel vector for σ (k)|M , we
have by Lemma 4.4 that there is an operator T in w∗(σ (k)(G)|M ) such that �η = T �ξ .
Write T = (A ⊕ · · · ⊕ A)|M with A ∈ w∗(σ (G)) = π(G)′. Then we have Aξi = ηi

for i = 1, . . . , k. From Lemma 5.1 we get that A is invertible and ∪k
i=1{π(g)ξi }g∈G

is a frame for H ��
Lemma 5.9 Let π be a projective unitary representations of a countable group G on
a Hilbert space H such that Bπ is dense in H and it admits a Riesz sequence vector.
Suppose that ξ ∈ H such that range(�ξ,π ) is not dense in �2(G). Then there exits a
nonzero vector x ∈ H such that range(�x,π ) and range(�ξ,π ) are orthogonal.

Proof Letψ ∈ H be such that {π(g)ψ}g∈G is a Riesz sequence and�ψ,π = V |�ψ,π |
be the polar decomposition of its analysis operator. Since range(�ψ,π ) = �2(G), we
have that V is a co-isometry. It can be verified that V π(g) = λ(g)V and hence we
get π(g)V ∗ = V ∗λ(g) for every g ∈ G, where λ is the left regular projective unitary
representation associated with the same multiplier as π . Now let P be the orthogonal
projection onto [range(�ξ,π )] and x = V ∗ P⊥χe, where P⊥ = I − P . Then P
commutes with λ and so x �= 0. Now for any y ∈ H we get

�x,π (y) =
∑

g∈G

〈y, π(g)x〉χg

=
∑

g∈G

〈y, π(g)V ∗ P⊥χe〉χg

=
∑

g∈G

〈y, V ∗λ(g)P⊥χe〉χg
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=
∑

g∈G

〈y, V ∗ P⊥λ(g)χe〉χg

=
∑

g∈G

〈P⊥V y, χg〉χg

= P⊥V y.

Thus range(�x,π ) is contained in the range space of P⊥, and therefore we get that
range(�x,π ) and range(�ξ,π ) are orthogonal. ��

Now we are in the position to prove Theorem 3.2, which follows from the next two
theorems.

Theorem 5.10 Let π be a frame representation and (π, σ ) be a dual commutant pair
of projective unitary representations of G on H and �ξ = (ξ1, . . . , ξk) ∈ H (k). Then
∪k

i=1{π(g)ξi }g∈G is a frame for H if and only if {σ(g)ξ1 ⊕ · · · ⊕ σ(g)ξk}g∈G is a
Riesz sequence.

Proof The sufficient part has been established in Lemma 5.8. To prove the necessary
part, let us assume that ∪k

i=1{π(g)ξi }g∈G is a frame for H . Then, by Lemma 5.3, we
have that {σ(g)ξ1 ⊕ · · · ⊕ σ(g)ξk}g∈G is a frame sequence in H (k). Thus in order
to show that it is a Riesz sequence, it suffices to show that the range space (which is
already closed) of its analysis operator ��ξ,σ (k) is the entire space �2(G).

Assume to the contrary that ��ξ,σ (k) (H (k)) �= �2(G). By the assumption on dual

commutant pairs we know that σ (k) admits a Riesz sequence vector, and that the set of
its Bessel vectors is dense in H (k), we obtain by Lemma 5.9 that there exists a nonzero
vector �x ∈ H (k) such that range(��x,σ (k) ) ⊥ range(��ξ,σ (k) ).

Let Hi = 0 ⊕ · · · ⊕ 0 ⊕ H ⊕ 0 · · · ⊕ 0, where H appears in the i-th component.
Then we get in particular that ��x,σ (k) (Hi ) ⊥ ��ξ,σ (k) (Hj ). Note that ��x,σ (k) (Hi ) =
�xi ,σ (H) and ��ξ,σ (k) (Hj ) = �ξ j ,σ (H). So we have that �xi ,σ (H) ⊥ �ξ j ,σ (H)

for all i, j = 1, . . . , k. Thus xi and ξ j are σ -orthogonal for all i, j = 1, . . . , k. By
Lemma 5.5 we get that [σ(G)′xi ] ⊥ [σ(G)′ξ j ] for all i, j . Since σ(G)′ = w∗(π(G))

we get that for each i , xi ⊥ [π(G)ξ j ] for j = 1, . . . k. Hence xi = 0 for each i and so
�x = 0, which is a contradiction. Therefore we have that ��ξ,σ (k) (H (k)) = �2(G), and

hence {σ (k)(g)�ξ}g∈G is a Riesz sequence, as claimed. ��
Theorem 5.11 Let π be a frame representation and (π, σ ) be a dual commutant pair
of projective unitary representations of G on H. Let �ξ = (ξ1, · · · , ξk) . Then we have

(i) �ξ is a Parserval super-frame vector for π if and only if {σ(g)ξ j : g ∈ G, j =
1, . . . , k} is an orthogonal sequence in H and ||ξi ||2 = T rπ(G)′(I ).

(ii) �ξ is a super-frame vector for π if and only if {σ(g)ξ j : g ∈ G, j = 1, . . . , k} is
Riesz sequence in H.

Proof (i) First assume that �ξ is a complete Parserval super-frame vector for π . Then
each ξi is a complete Parserval frame vector for π , and ξi and ξ j are π -orthogonal
for i �= j . Thus, by Theorem 1.2 and Lemma 5.5, we get that {σ(g)ξi }g∈G is
an orthogonal sequence, and [π(G)′ξi ] ⊥ [π(G)′ξ j ] for i �= j . Therefore we
have that {σ(g)ξ j : g ∈ G, j = 1, . . . , k} is an orthogonal sequence in H . The



Journal of Fourier Analysis and Applications            (2020) 26:83 Page 17 of 19    83 

identity follows from Lemma 4.2 and the fact that each ξi is a complete Parseval
frame vector for π . Clearly the above argument is reversible, and so we also get
the sufficiency part of the proof.

(ii) First assume that �ξ is super-frame vector for π . By Lemma 4.4, there exists
an invertible operator B = A ⊕ · · · . ⊕ A ∈ w∗(π(k)(G)) such that B�ξ is a
Parserval super-frame vector for π . This implies by (i) that ∪k

i=1{σ(g)Aξi }g∈G

is an orthogonal sequence. Since A ∈ w∗(π(G)) = σ(G)′ is invertible, we get
that σ(g)ξi = A−1σ Aξi , and therefore

{σ(g)ξi : g ∈ G, i = 1, · · · , k} = A−1{σ(g)Aξi : g ∈ G, i = 1, · · · , k}

is a Riesz sequence.
Conversely assume that {σ(g)ξ j : g ∈ G, j = 1, · · · , k} is Riesz sequence in H .

Let K be the closed subspace generated by {σ(g)ξ j : g ∈ G, j = 1, . . . , k} and let
S = �∗

�ξ,σ
��ξ,σ .

S =
k∑

i=1

�∗
ξi ,σ

�ξi ,σ .

Note that since �∗
ξi ,σ

�ξi ,σ ∈ σ(G)′ = w∗(π(G)), we obtain that S ∈ w∗(π(G)).

Moreover, S|K : K → K is positive invertible. Write T = (S|K )−1/2. Then T
commutes with σ(g) when restricted to K for all g ∈ G. Thus we obtain that

∪k
i=1{σ(g)T ξi : g ∈ G} = T ∪k

i=1 {σ(g)ξi : g ∈ G}

is an Parseval frame for K . Since T is invertible and {σ(g)ξ j : g ∈ G, j = 1, . . . , k}
is a Riesz basis for K , we get that ∪k

i=1{σ(g)T ξi : g ∈ G} is an orthogonal basis
for K . Select ci > 0 such that c2i ||T ξi ||2 = T rπ(G)′(I ) and write ηi = ci T ξi . Then
∪k

i=1{σ(g)ηi : g ∈ G} is an orthogonal sequence with ||ηi ||2 = T rπ(G)′(I ). Thus,
by (i) we get that η = (η1, · · · , ηk) is a complete Parserval super-frame vector for π .
This implies that �φ := (T ξ1, . . . , T ξk) is also a complete super-frame vector for π .

Let P be the orthogonal projection from H onto K . Then P ∈ w∗(π(G)) since K
is invariant under σ(G). Define A = T ⊕ P⊥ and

B = A ⊕ · · · ⊕ A.

Then B ∈ w∗(π(k)(G)) is invertible and B�ξ = �φ. This implies by Lemma 4.4 that
�ξ = B−1 �φ is a complete frame vector for π(k), i.e., ξ is super-frame vector for π . ��
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