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INTRODUCTION

This thesis is concerned with the nonlinear variational wave (NVW) equation

(1) utt − c(u)(c(u)ux)x = 0,

where the function u = u(t, x) is such that u : [0,∞) × R → R, and c : R → R is
a given function depending on u. The equation was first introduced by Saxton in
[29], where it is derived as the Euler–Lagrange equation for the variational integral∫ ∞

0

∫ ∞
−∞

(u2t − c2(u)u2x) dx dt.

The equation appears in the study of liquid crystals, where it describes the director
field of a nematic liquid crystal, and where the function c is given by

(2) c2(u) = α sin2(u) + β cos2(u),

where α and β are positive physical constants. We refer to [24] and [29] for informa-
tion about liquid crystals, and the derivation of the equation. From a mathematical
point of view it is possible to study (1) with other choices of the function c. Com-
monly it is assumed that c is continuous, strictly positive and bounded. In addition,
one often requires some smoothness on the derivatives of c.

The study of the Cauchy problem, i.e., solving (1) with initial data

u|t=0 = u0 and ut|t=0 = u1

has been of interest ever since the derivation of the equation. A key property of
(1) is that solutions can loose regularity in finite time, even for smooth initial data.
The loss of regularity is due to the formation of singularities in the derivatives of
u. A singularity means that either ux or ut becomes unbounded pointwise while u
remains continuous. Therefore, one has to consider weak solutions of (1).

For smooth solutions of the NVW equation, the energy

1

2

∫
R
(u2t + c2(u)u2x) dx

is independent of time. The singularities in the derivatives are characterized by the
fact that ux(t, ·) and ut(t, ·) remain in L2(R) after they become pointwise unbounded.
In other words, we have concentration of energy at points where the derivative blows
up. Thus, it is reasonable to look for weak solutions with bounded energy. This
naturally leads to the two following notions of solutions. For conservative solutions
the energy is constant in time, while for dissipative solutions the energy is decreasing
in time. The difference between these solutions is in the continuation after the
formation of a singularity. For dissipative solutions the energy decreases at the
blow-up time, while for conservative solutions the energy remains unchanged.

The fact that singularities may appear complicates the study of existence, unique-
ness and stability of solutions to the NVW equation. Moreover, there are no known
explicit solutions of (1) that exhibit the singular behavior of the derivative. When
c is equal to a constant we have the classical wave equation whose solutions are
known, but does not have singularities.

1



2 INTRODUCTION

This is in contrast to for example the Camassa–Holm equation, which has sev-
eral known solutions with singularities that have served as illuminating examples.
The lack of explicit solutions for the NVW equation means that one has to draw
inspiration from other equations whose solutions exhibit similar phenomena as (1).
Therefore, the study of (1) has been closely related to the Camassa–Holm equation
and the Hunter–Saxton equation.

Background

An asymptotic equation for (1) has served as a rich source of inspiration in the
study of the NVW equation. The asymptotic equation

(3) (ut + uux)x =
1

2
u2x

was first derived by Hunter and Saxton in [24], and is known as the Hunter–Saxton
(HS) equation. The equation describes small-amplitude and high-frequency pertur-
bations of a constant state of (1). In [24] it is shown that smooth solutions of (3)
break down in finite time, meaning that at some finite point in time, the derivative
ux becomes unbounded pointwise. Therefore, one has to consider weak solutions.
Next, the authors construct weak solutions which remain continuous after the spa-
tial derivative blows up, which comes from the fact that ux is square-integrable.
Their construction of weak solutions reveals that they in general are not unique.

The non-uniqueness of weak solutions suggests that one should introduce admis-
sibility criteria for selecting weak solutions. Motivated by the fact that the energy∫

R
u2x dx

is bounded for weak solutions, Hunter and Zheng introduce the concept of conser-
vative and dissipative solutions for (3) in [25, 26]. For conservative solutions the
energy is constant, even after the solution looses regularity. For dissipative solu-
tions, the energy is nonincreasing, and decreases when singularities appear. The
authors establish global existence of weak solutions of both types, for initial data
where u0,x has compact support and is of bounded variation. They prove the inter-
esting property, which was observed for the constructed solutions in [24], that both
types of weak solutions remain continuous after the derivative blows up.

An important contribution to the study of the NVW equation is [17], where
Glassey, Hunter and Zheng prove the corresponding singularity formation for (1).
They show that the first order derivatives ut and ux can become unbounded point-
wise in finite time, even when starting from smooth initial data. This corresponds
to concentration of energy in a single point. Hence, global smooth solutions of (1)
does not exist.

Moreover, a bounded traveling wave solution is constructed, corresponding to the
function c(u) in (2). The constructed wave is a weak solution, which is continuous
and piecewise smooth. In particular, the smooth parts are monotone and at their
endpoints cusp singularities might turn up, i.e., the derivative is unbounded while
the solution itself is bounded.

The authors also point out the difficulty of concentration of energy at points where
c′ = 0.



INTRODUCTION 3

In a series of papers [30, 31, 32], Zhang and Zheng strengthen the well-posedness
results obtained for the HS equation. They establish global existence and uniqueness
of conservative and dissipative weak solutions with initial data u0,x belonging to
L2(R) and with compact support. The authors apply methods from the theory of
Young measures.

Using similar methods, the same authors study the NVW equation in [33, 34,
36, 37], where they obtain global existence of weak dissipative solutions u of the
NVW equation with the following assumptions on the initial data: u0 ∈ H1(R),
u1 ∈ L2(R) and c′(u0) > 0. It is also assumed that c′(u) ≥ 0 for all u. The functions
u(t, ·), ut(t, ·) and ux(t, ·) belong to L2(R) for all t ≥ 0.

As observed for the constructed weak solution in [17, p. 70], singularities at
points where c′ = 0 are particularly challenging. Because of the expression (2) for
the function c(u) appearing in the context of liquid crystals, it is of interest to study
(1) with a sign changing c′. It turns out that the first order asymptotic equation (3)
is not appropriate for studying these type of singularities.

In the derivation of the HS equation in [24] it is assumed that c′ 6= 0 at the
constant state which is perturbed. The NVW equation allows for a second order
asymptotic equation

(4) (ut + u2ux)x = uu2x,

which was also introduced in [24]. Here, one requires that c′ = 0 and c′′ 6= 0 at the
constant state which is perturbed.

In [35], Zhang and Zheng studied the second order asymptotic equation. The
authors show that the derivative of the solution blows up in finite time, starting
from smooth initial data. From initial data such that u0,x has bounded variation
and compact support, they obtain existence of weak dissipative solutions, where the
solution and the first order derivatives belong to L2

loc(R) for all times.
To further study the challenging singularities of (1), Bressan, Zhang and Zheng

studied in [13] the more general equation

(5) (ut + f(u)x)x =
1

2
f ′′(u)u2x,

where f is a function belonging to C2(R). With f(u) = u2

2
we get the HS equation,

and with f(u) = u3

3
we end up with the second order asymptotic equation (4).

The authors construct a semigroup of both conservative and dissipative solutions.
A fundamental problem in such a construction is the fact that the derivative of
solutions to (5) can become unbounded pointwise in finite time. This corresponds
to energy concentrating in a single point. To overcome this problem, the authors
consider, in addition to the solution itself, a nonnegative Radon measure µ whose
absolutely continuous part corresponds to the classical energy. The singular part of
the measure contains information about energy concentration. With this framework,
one can prescribe singular initial data. Under certain assumptions on the function
f , it is shown that there exists a semigroup of global, weak, conservative solutions.
The solution u(t, ·) is locally Hölder continuous, and depends continuously on the
initial data. The corresponding result holds for dissipative solutions provided that
the function f is convex. For both solutions, uniqueness is shown under certain
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conditions. The conservative solutions are constructed by a change of coordinates
based on the characteristics, and the solution is obtained by a contraction argument.

A semigroup of global, dissipative solution of the HS equation is constructed in
[5].

With a similar approach, in [6, 7] Bressan and Constantin construct a semigroup
of global, conservative and dissipative solutions of the Camassa–Holm (CH) equation

(6) ut − utxx + 2κux + 3uux − 2uxuxx − uxxx = 0,

where κ is a constant. In [6] a set of independent and dependent variables based on
the characteristics are introduced, which transforms the equation into a semilinear
system of equations. In the new variables, the time variable is still present. Existence
and uniqueness of solutions of the semilinear system is obtained by a contraction
argument. These solutions exist globally, even after the formation of singularities.
By returning to the original variables, the authors obtain a semigroup of global
conservative weak solutions.

The idea of rewriting the equation into a system of equations based on the charac-
teristics, is used for the NVW equation in [14] by Bressan and Zheng. A fundamental
difference from the HS and CH equation, is that the NVW equation, like the classical
wave equation, has two families of characteristics: forward and backward charac-
teristics, while the HS and CH equation has one family of characteristics. Loosely
speaking, singularity formation may occur in both families, and one must take this
into account in the new coordinates. A consequence of this is that the time variable
is not present in the new coordinates. By introducing dependent and independent
variables based on the characteristics, (1) transforms into a semilinear system of
equations. Existence and uniqueness of solutions to this system follows by a con-
traction argument. Returning to the original variables, the authors obtain a global
semigroup of conservative solutions of (1).

In [22], Holden and Raynaud construct a semigroup of weak, global, conservative
solutions of the NVW equation. The approach is related to [14]. As in their work
on the CH equation in [21], the equation is rewritten into Lagrangian variables. In
the next section, we will describe the method developed in [22].

Dissipative solutions of (1) have been studied by Bressan and Huang in [9]. The
corresponding semilinear system of differential equations in the new variables now
have discontinuous right-hand side. Existence of solutions to this system follows by a
compactness argument. By mapping the solution back to the original variables, the
authors show that it provides a dissipative solution of the NVW equation, assuming
that c′(u) > 0 for all u.

Uniqueness of weak solutions to the NVW equation is a delicate subject, as the
characteristics in general are not unique. The uniqueness of conservative solutions
is studied in [1, 4], where uniqueness is established for the solutions constructed in
[14] given that certain conditions hold, which yield unique characteristics.

A result on the regularity of conservative solutions to (1) has been established by
Bressan and Chen in [2]. For initial data satisfying certain smoothness conditions,
it is shown that the solution u is piecewise smooth and that the derivative ux can
become pointwise unbounded at finitely many characteristics. An asymptotic de-
scription of these solutions in a neighborhood of the singularities is shown in [10] by
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Bressan, Huang and Yu. Moreover, in this setting a Lipschitz metric for conservative
solutions has been constructed by Bressan and Chen in [3].

Outline of the used method

The main article of this thesis uses the framework from [22]. We therefore give a
short description of the method.

We assume that c belongs to C2(R) and satisfies

(7)
1

κ
≤ c(u) ≤ κ

for some κ ≥ 1. In addition, we assume that

(8) max
u∈R
|c′(u)| ≤ k1 and max

u∈R
|c′′(u)| ≤ k2

for positive constants k1 and k2.
In the study of (1), the functions R = ut + c(u)ux and S = ut − c(u)ux are often

introduced. Then, for smooth solutions the energy rewrites as

1

4

∫
R
(R2 + S2) dx.

The functions R2 and S2 are the left and right traveling part of the energy density,
respectively. In contrast to the classical wave equation, where c is constant, the right
and left part of the energy can interact with each other. That is, energy can swap
back and forth between the two parts, while the total energy remains unchanged, in
the case of conservative solutions.

To take into account energy concentration in both directions, two positive Radon
measures µ and ν are added to the solution and the initial data. The absolutely
continuous part of the measures are equal to the left and right traveling part of the
energy in the smooth case, i.e., µac = 1

4
R2 dx and νac = 1

4
S2 dx.

By considering the tuple (u,R, S, µ, ν), one has a complete description of the
solution u and possible energy concentration at any time. Thus, one considers these
five elements as a solution to (1). The set of all solutions is denoted by D, in which
the functions u, R and S belong to L2(R).

As for the classical wave equation, the NVW equation has two families of char-
acteristics: forward and backward characteristics. The backward characteristics
transport the energy described by the measure µ, while the forward characteristics
transport the energy described by the measure ν. We interpret the characteristics
as particles. At points where the measures are nonsingular there is a finite amount
of energy, and there is exactly one forward and one backward characteristic starting
from that point. This particle is mapped to one point in the new coordinates (X, Y ).

At a point where one of the measures is singular and the other is not, there is an
infinite amount of energy. There are infinitely many characteristics corresponding to
the singular measure starting from that point, while the nonsingular measure yields
one characteristic. This single point is mapped to a horizontal or vertical line in the
new coordinates, depending on which measure is singular.

The situation where both measures are singular at a point, means that there is
an infinite amount of both backward and forward energy at that point. Infinitely
many characteristics of both types start out from that point, and all these particles
correspond to a box in the (X, Y )-plane.
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The derivation of the system of equations corresponding to (1) in the new co-
ordinates is illustrated by assuming that u is smooth, and µ and ν are absolutely
continuous. Then, the method of characteristics yields solutions X and Y of the
equations

(9) Xt − c(u)Xx = 0 and Yt + c(u)Yx = 0.

The operators acting on X and Y are the two factors ∂
∂t
− c(u) ∂

∂x
and ∂

∂t
+ c(u) ∂

∂x

corresponding to the highest order derivatives in (1). This defines new coordinates
(X, Y ). The characteristics for the equations in (9) are given by

(10) xt(t) = −c(u(t, x(t))) and xt(t) = +c(u(t, x(t))),

respectively, for some starting value x(0) = x0. Note that X and Y are constant
along characteristics, meaning that particle paths are mapped to straight lines.

Considering the original variables t and x as functions of X and Y , we de-
fine U(X, Y ) = u(t(X, Y ), x(X, Y )). We introduce functions J and K, where J
corresponds to the energy distribution in the new coordinates. Denoting Z =
(t, x, U, J,K), we end up with the identities

xX = c(U)tX , xY = −c(U)tY ,(11a)

JX = c(U)KX , JY = −c(U)KY ,(11b)

2JXxX = (c(U)UX)2, 2JY xY = (c(U)UY )2,(11c)

and a semilinear system of equations

(12) ZXY = F (Z)(ZX , ZY ),

where F (Z) is a bilinear and symmetric tensor from R5 × R5 to R5. From (11) it
is clear that the vector Z consists of dependent and independent elements. A fixed
point argument is used to prove existence of solutions to the system. This requires
a curve (X (s),Y(s)) parametrized by s ∈ R in the (X, Y )-plane that corresponds
to the initial time t = 0. In the smooth case, the set of points (X, Y ) ∈ R2 such
that t(X, Y ) = 0 defines this curve, which is monotone. For general initial data
this set is the union of strictly monotone curves, horizontal and vertical lines, and
boxes. In the case of a box there are in principle infinitely many possible ways of
choosing the curve. One has to take this into account when defining initial data in
the Lagrangian coordinates.

The initial data in D is mapped to the Lagrangian variables in G0 in two steps.
First we define a map L from D to the set F , consisting of elements ψ = (ψ1, ψ2)
where ψ1(X) and ψ2(Y ) are five dimensional vectors.

Loosely speaking, the map L yields the value of Z and its derivatives in each
characteristic direction, i.e., in the X and the Y direction. Linking the values of
ψ1 and ψ2 yields the set of points in the (X, Y )-plane where time equals zero. For
instance, in the case of initial data where both measures are singular at the same
point, this set is a box.

The next map picks one curve (X ,Y) from the set where time equals zero, and sets
the value of Z and its derivatives on the curve. This map is denoted by C and maps
F to the set G0, which is the set of elements Θ = (X ,Y ,Z,V ,W) corresponding to
time equals zero. An element Θ consists of the initial curve (X ,Y) parametrized by
s ∈ R, and yields the value of Z, ZX and ZY on the curve. This means that Z(s) =
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Z(X (s),Y(s)), V(X) = ZX(X,Y(X−1(X))) and W(Y ) = ZY (X (Y−1(Y )), Y ), and
we denote this by Θ = Z • (X ,Y). In the case of a box, the map C picks the curve
consisting of the left vertical side and the upper horizontal side of the box. We
consider curves (X ,Y) of a certain type. The functions X and Y are continuous,
nondecreasing, and have finite distance to the identity. Moreover, the functions
satisfy X +Y = Id. The set of such curves is denoted by C. The functions Z, V and
W belong, with some modifications, to L∞(R).

Existence and uniqueness of solutions to (12) with initial data Θ follows from a
fixed point argument. The solution is first constructed on small rectangular domains
Ω in the (X, Y )-plane, where the initial curve (X ,Y) connects the lower left corner
with the upper right corner of the rectangle. Here, a solution basically means that
Z, ZX and ZY are pointwise bounded in the box, and that (12) is satisfied almost
everywhere in Ω. We consider solutions satisfying some additional properties, i.e.,
they satisfy the identities in (11) and some monotonicity conditions. The set of such
solutions is denoted by H(Ω). For the initial data Θ ∈ G0 we have V2 + V4 > 0 and
W2 +W4 > 0 almost everywhere. This property is preserved in the solution and is
important in proving that the solution operator from D to D is a semigroup.

A pointwise uniform bound on the functions Z, ZX and ZY in strip like domains
containing small rectangles allows us to prove, by an induction argument, existence
and uniqueness of solutions in H(Ω) on arbitrarily large rectangular domains Ω.

If a function Z in H(Ω) is a solution on any rectangular domain Ω, and there
exists a curve (X ,Y) ∈ C such that Z • (X ,Y) ∈ G, we say that Z is a global
solution to (12). Here, G is the analogue of G0, corresponding to time t different
from zero. The set of global solutions is denoted by H. The functions Z, ZX and
ZY are, with some modifications, pointwise bounded globally. In particular, the
Lagrangian counterpart to the energy is bounded.

A global solution can be constructed by using local solutions in boxes. The
procedure is as follows. First we construct solutions on rectangles with diagonal
points that lie on the initial curve (X ,Y) ∈ C. These solutions are then used to
construct initial data for adjacent rectangles, and we obtain solutions there as well.
Continuing like this one obtains a global solution. We denote the solution map that
to any initial data Θ ∈ G yields a unique solution Z ∈ H by S.

Having constructed a global solution Z ∈ H, the goal is to map it back to Eulerian
coordinates D for any time T > 0. As addressed before, the points (X, Y ) ∈ R2 such
that t(X, Y ) = T may contain boxes. In order to use the sets previously defined for
time equal to zero, we shift time to zero, i.e., for Z ∈ H we define Z̄ ∈ H where
t̄(X, Y ) = t(X, Y ) − T . The other elements of Z̄ are identical to Z. We call this
map tT .

In the case of a box, the curve (X ,Y) corresponding to time T is defined as the
left vertical side and the upper horizontal side of the box. The element Θ ∈ G0 is
then defined as Θ = Z • (X ,Y), and we denote the map by E : H → G0. Because of
the monotonicity of the function t, the curve corresponding to time T is below the
initial curve. For any Θ ∈ G0 we define a map D that associates an element ψ ∈ F .
The operator

ST = D ◦ E ◦ tT ◦ S ◦C
that for any initial data in F yields a solution in F corresponding to time T > 0, is
a semigroup. The remaining step to Eulerian coordinates is the map M : F → D,
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and yields an element (u,R, S, µ, ν)(T ) ∈ D at time T > 0. Thus, the map

S̄T = M ◦ ST ◦ L
yields an element in D given any initial data in D. If L ◦ M = Id, it follows
from the semigroup property of ST that also S̄T is a semigroup. However, this
identity does not hold in general. This is because for any element ψ ∈ F we have
xi+Ji ∈ G, where the group G is given by all invertible functions f such that f−Id,
f−1 − Id ∈ W 1,∞(R) and (f − Id)′ ∈ L2(R), while the element ψ̄ ∈ F given by the
map L satisfies x̄i + J̄i = Id. Therefore, in general one has ψ 6= ψ̄.

To overcome this problem, one considers the following approach. Assume that
x1+J1 = f and x2+J2 = g where f, g ∈ G, and consider ψ̃ defined by x̃1 = x1◦f−1,
J̃1 = J1 ◦ f−1, x̃2 = x2 ◦ g−1 and J̃2 = J2 ◦ g−1. It follows that x̃i + J̃i = Id, i = 1, 2.
We denote φ = (f−1, g−1) and ψ̃ = ψ · φ. This defines an action of G2 on the set F .

Moreover, the transformation of ψ to ψ̃ defines a projection Π from F on the set

F0 = {ψ = (ψ1, ψ2) ∈ F | x1 + J1 = Id and x2 + J2 = Id}.
Thus, we have ψ̃ = Π(ψ). It turns out that the map ST : F → F is invariant under
the group acting on F , i.e.,

ST (ψ · φ) = ST (ψ) · φ,
where φ ∈ G2. This is a consequence of the fact that the maps which ST is composed
of, are invariant under the group action. The action of G2 on the set of curves C
and G naturally follows from the definition of the action on F . On the set of curves
C, the action corresponds to stretching of the curve (X ,Y) ∈ C in the X and Y
direction. For the set H, the action is defined such that it commutes with the •
operation.

A key result is that the map M satisfies M = M◦Π, and that F0 contains exactly
one element of each equivalence class of F with respect to G2. This implies that to
each element in D there correspond infinitely many elements in F , all belonging to
the same equivalence class. The mapping L : D → F0 on the other hand picks one
member of each equivalence class, but we could also pick a different one. Applying
the solution operator to all elements belonging to the same equivalence class yields
infinitely many solutions in F , which form an equivalence class. Using the mapping
M : F → D on all of these solutions yields the same element in D. Since we get the
same solution in the end, we can think of each member of the equivalence class as
a different ”parametrization” of the initial data in F , which are connected through
relabeling. Hence, the map S̄T is a semigroup. Moreover, the solution produced by
the map is a global weak solution of (1). It is conservative in the sense that for all
T ≥ 0,

µ(T )(R) + ν(T )(R) = µ0(R) + ν0(R),

where µ(T ) and ν(T ) are the measures at time T , and µ0 and ν0 are the initial
measures. This is a consequence of the fact that the energy function J in Lagrangian
coordinates is such that the limit

lim
s→±∞

J(X (s),Y(s))

is independent of the curve (X ,Y) ∈ C. Thus, the same limiting values of J are
obtained for curves corresponding to different times.
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Paper I: A Regularized System for the Nonlinear Variational Wave
Equation

The main part of this thesis is the study of a regularizing system for the NVW
equation. This is the content of Paper I, which is an extended version of an article
that will be submitted for publication, see [19]. The system reads

utt − c(u)(c(u)ux)x = −c
′(u)

4
(ρ2 + σ2),(13a)

ρt − (c(u)ρ)x = 0,(13b)

σt + (c(u)σ)x = 0.(13c)

We study (13) by adapting the method used in [22] for the NVW equation, which
is described in the previous section.

As in [22], we consider initial data with measures to allow for energy concentration
at time equals zero. In the smooth case, the energy associated to (13) is

1

4

∫
R

(
R2 + c(u)ρ2 + S2 + c(u)σ2

)
dx.

Here, R2 + c(u)ρ2 and S2 + c(u)σ2 are the left and right traveling part of the energy
density, respectively. The functions ρ and σ are added to the set D. Now D consists
of elements (u,R, S, ρ, σ, µ, ν), where u, R, S, ρ and σ belong to L2(R), and the
measures µ and ν satisfy µac = 1

4
(R2 + c(u)ρ2) dx and νac = 1

4
(S2 + c(u)σ2) dx.

In the new coordinates (X, Y ) we introduce P (X, Y ) = ρ(t(X, Y ), x(X, Y )), p =
PxX , Q(X, Y ) = σ(t(X, Y ), x(X, Y )), and q = QxY . We denote Z = (t, x, U, J,K)
and obtain the same identities as in (11a) and (11b), while the third identity (11c)
now takes the form

(14) 2JXxX = (c(U)UX)2 + c(U)p2 and 2JY xY = (c(U)UY )2 + c(U)q2.

Moreover, we get the same system of differential equations (12), and two additional
equations

(15) pY = 0 and qX = 0,

which correspond to (13b) and (13c). Note the difference between (11c) and (14),
which shows that the solutions of (12) corresponding to (1) and (13) are not iden-
tical. In particular, from (14) we see that the solutions t, x, U, J,K of (12) are not
independent of the solutions p, q of (15).

The construction of a semigroup of weak, global, conservative solutions of (13)
follows to a large extent the procedure for the NVW equation. We add two func-
tions, describing ρ and σ, to the sets that correspond to the solution in Lagrangian
variables. The mappings between the sets are modified accordingly.

Our main results are the following. We consider smooth initial data u0, R0, S0, ρ0
and σ0, and absolutely continuous measures µ0 and ν0 on a finite interval [xl, xr]. If
ρ0 and σ0 are strictly positive on this interval, then for every time t ∈

[
0, 1

2κ
(xr−xl)

]
,

the solutions ρ(t, x) and σ(t, x) will also be strictly positive for all x ∈ [xl+κt, xr−κt].
The strict positivity of ρ0 and σ0 is preserved by (15). This has a regularizing effect
on the solution at time t in the sense that u(t, x), R(t, x), S(t, x), ρ(t, x) and σ(t, x)
are smooth, and the measures µ(t) and ν(t) are absolutely continuous.
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x1(t)
x2(t)t

x
xl xr

1

2
(xr � xl)



2
(xr � xl)

Figure 1. Characteristics of the NVW equation. The forward char-
acteristic x1(t) starting from xl is given by x1,t(t) = c(u(t, x1(t))),
x1(0) = xl, and the backward characteristic x2(t) starting from xr is
given by x2,t(t) = −c(u(t, x2(t))), x2(0) = xr. Because of (7), they
intersect at a time t such that 1

2κ
(xr − xl) ≤ t ≤ κ

2
(xr − xl).

t

x
xl xr

x1(t)
x2(t)

Figure 2. Characteristics of the CH equation. The characteristic
x1(t) starting from xl is given by x1,t(t) = u(t, x1(t)), x1(0) = xl, and
the characteristic x2(t) starting from xr is given by x2,t(t) = u(t, x2(t)),
x2(0) = xr.

The region where regularity holds comes from the characteristics in (10), see
Figure 1.

Next, we consider a sequence of smooth solutions (un, Rn, Sn, ρn, σn, µn, νn) with
initial data satisfying un0 → u0 in L∞([xl, xr]), R

n
0 → R0, S

n
0 → S0, ρ

n
0 → 0, σn0 → 0

in L2([xl, xr]), where u0, R0 and S0 are smooth, and the associated measures µ0

and ν0 are absolutely continuous on [xl, xr]. Then, un(t, ·) → u(t, ·) in L∞([xl +
κt, xr − κt]) for all t ∈

[
0, 1

2κ
(xr − xl)

]
, where u is a solution of the NVW equation
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with initial data (u0, R0, S0, µ0, ν0). A central ingredient in the proof is a Gronwall
inequality in two variables, see [15].

We point out that these are local results. The main reason for this is that we
require the initial data ρ0 and σ0 corresponding to the equations (13b) and (13c) to
be bounded from below by a strictly positive constant and to belong to L2, which
is not possible globally.

We hope that further studies of the smooth approximations will be helpful in the
understanding of singularities to (1).

The motivation for studying (13) comes from the two-component Camassa–Holm
system

ut − utxx + κux + 3uux − 2uxuxx − uuxxx + ηρρx = 0,(16a)

ρt + (uρ)x = 0,(16b)

where κ ∈ R and η ∈ (0,∞) are given numbers. In [18], global, weak, conservative
solutions of (16) are constructed. It is shown that the solution of (16) is regular
if initially ρ0 is strictly positive. Moreover, a sequence of regular solutions, with
ρn0 → 0, converge in L∞(R) to the global conservative weak solution of the CH
equation.

Loosely speaking, since the CH equation has one family of characteristics, see
Figure 2, an extra variable ρ is needed to preserve the positivity of ρ0 in the char-
acteristic direction. Since the NVW equation has both forward and backward char-
acteristics, we need two extra variables ρ and σ to preserve the positivity of ρ0 and
σ0 in each characteristic direction.

We mention that a regularizing system has been studied for the HS equation in
[28].

Paper II: Traveling Waves for the Nonlinear Variational Wave Equation

The second part of this thesis deals with traveling wave solutions of the NVW
equation. Paper II is an extended version of an article that will be submitted for
publication, see [20].

We consider traveling wave solutions of (1) with wave speed s ∈ R, i.e., solu-
tions u(t, x) = w(x− st), where w denotes some continuous and bounded function.
Classical traveling wave solutions of (1) satisfy the equation[

s2 − c2(w)
]
wξξ − c(w)c′(w)w2

ξ = 0.

We assume that the function c belongs to C2(R) and that there exists 0 < α <
β <∞, such that

α = min
u∈R

c(u) and β = max
u∈R

c(u).

Moreover, we assume that (8) holds.
We study whether we can glue together local, classical traveling wave solutions

with wave speed s ∈ R to obtain globally, bounded, continuous traveling waves.
Our main result is that we can only glue at points ξ ∈ R where |s| = c(w(ξ)) and
c′(w(ξ)) 6= 0, where w denotes the traveling wave composed of the local solutions.
At the point ξ, w has a singularity, meaning that the derivative wξ is pointwise
unbounded and w is bounded. Near singularities, the traveling wave is a monotone,
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classical solution. Moreover, denoting u(t, x) = w(x− st), we prove that u is a weak
solution of (1).

There are three possible ways of gluing at the singular point ξ. The derivative
of w can have the same sign on both sides of the singularity, in which case there is
an inflection point at ξ. Another possibility is that the derivative has opposite sign
on each side of the singularity. Then the traveling wave is either convex or concave
on both sides of ξ, and the singularity is a cusp. The third possibility is that w is
constant on one side of the singularity and monotone on the other side.

If |s| does not belong to the interval [α, β], then w is a monotone, classical solution,
which is globally unbounded.

The approach we use is similar to the derivation of the Rankine–Hugoniot condi-
tion for hyperbolic conservation laws, see e.g. [23]. Applying the method of proof
to the CH equation, we recover a well-known result by Lenells on traveling wave
solutions, see [27]. Classical traveling wave solutions of (6), where κ = 0, satisfy

(17) w2(w − s)− w2
ξ(w − s) = 2aw + b

for some constants a and b. Gluing two local, classical traveling wave solutions with
speed s together at a point ξ to obtain a bounded, continuous wave w can only be
done if s = w(ξ), and the constant a corresponding to the two solutions are identical.

Paper III: Competition Models for Plant Stems

The final article [8] of this thesis deals with models for plants competing for
sunlight. It was written during a research stay at Penn State University the academic
year 2018/2019, where Professor Alberto Bressan was visited.

We consider a large number of similar plants, uniformly distributed in the plane.
Moreover, we assume that each plant consists of a single stem, which is described by
a curve γ(s) = (x(s), y(s)) parametrized by arc length. We consider the situation
where sunlight comes from the direction of the unit vector n = (n1, n2), where n2 <
0 < n1. We denote by θ0 ∈ (0, π

2
) the angle such that (−n2, n1) = (cos(θ0), sin(θ0)).

A functional describing the amount of sunlight captured by each stem is to be
maximized, subject to certain conditions. The functional depends on the intensity
of light, which we assume is a given nondecreasing function I(y) depending on the
height above ground. The derivation of the sunlight functional follows the procedure
described in [12].

We analyze two models. In the first one we assume that all stems have the same
given length l > 0 and thickness κ > 0. Then, the optimization problem for a single
stem consists of finding the height h > 0 of the stem and angle θ(y) between the
stem and the x-axis that maximizes the gathered sunlight∫ h

0

I(y)

(
1− exp

{ −κ
cos(θ(y)− θ0)

})
cos(θ(y)− θ0) dy.

We prove that under certain conditions on the light intensity function, there exists
a unique optimal solution (h∗, θ∗). The solution satisfies θ∗(h∗) = θ0, i.e., the tip of
the stem is orthogonal to the light rays. Next, we assume that we have a continuous
distribution of identical stems given by the optimal solution. We use this to compute
the new intensity of light at height y. Given this intensity function, we can continue
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the procedure of finding a new optimal stem. We prove that there exists a unique
competitive equilibrium provided that the density of vegetation is sufficiently small.

In the second model we give no constraint on the length l > 0 of the stem, and
we allow the density u(s) > 0 to be variable along the stem. Now the optimization
problem is to maximize the sunlight gathered by the stem,∫ ∞

0

I(y(s))

(
1− exp

{ −u(s)

cos(θ(s)− θ0)
})

cos(θ(s)− θ0) ds,

among all admissible (θ, u), subject to a cost of transporting water and nutrients
from the root to the leaves, given by∫ ∞

0

(∫ ∞
s

u(t) dt

)α
ds

for some 0 < α < 1. We prove that an optimal solution (θ∗, u∗) exists, which
corresponds to a stem of finite length. The optimization problem can be formulated
as an optimal control problem with both initial and terminal constraints. The
Pontryagin maximum principle, see [11, Section 6.5] and [16, Chapter II, §5] leads
to a two-point boundary value problem for a system of ordinary equations for the
adjoint variables. By analyzing this problem, uniqueness of the optimal solution
is established provided that the density of external vegetation is small. Moreover,
the tip of the stem is orthogonal to the vector n. For the second model we also
prove that there exists a unique competitive equilibrium, provided that the density
of stems is sufficiently small.

We would like to mention that there is an ongoing project with Bressan on the
optimal design of a marine reserve.
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Abstract. We present a new generalization of the nonlinear variational wave
equation. We prove existence of local, smooth solutions for this system. As a
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1. Introduction

The nonlinear variational wave equation (NVW) is given by

(1.1) utt − c(u)(c(u)ux)x = 0,
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where u = u(t, x), t ≥ 0 and x ∈ R, with initial data

(1.2) u|t=0 = u0 and ut|t=0 = u1.

It was introduced by Saxton in [11], where it is derived by applying the variational
principle to the functional ∫ ∞

0

∫ ∞
−∞

(u2
t − c2(u)u2

x) dx dt.

It is well known that derivatives of solutions of this equation can develop singu-
larities in finite time even for smooth initial data, see e.g. [8]. The continuation
past singularities is highly nontrivial, and allows for various distinct solutions. The
most common way of continuing the solution is to require that the energy is non-
increasing, which naturally leads to the two following notions of solutions: Dissi-
pative solutions for which the energy is decreasing in time, see [3, 12, 13, 14], and
conservative solutions for which the energy is constant in time. In the latter case a
semigroup of solutions has been constructed in [4, 10].

In this paper we modify (1.1) by adding two transport equations and coupling
terms. The resulting system is given by

utt − c(u)(c(u)ux)x = −c
′(u)

4
(ρ2 + σ2),(1.3a)

ρt − (c(u)ρ)x = 0,(1.3b)

σt + (c(u)σ)x = 0,(1.3c)

with initial data

(1.4) u|t=0 = u0, ut|t=0 = u1, ρ|t=0 = ρ0, σ|t=0 = σ0.

It is clear that when ρ = σ = 0 we recover (1.1). We assume that c ∈ C2(R) and
satisfies

(1.5)
1

κ
≤ c(u) ≤ κ

for some κ ≥ 1. In addition, we assume that

(1.6) max
u∈R
|c′(u)| ≤ k1 and max

u∈R
|c′′(u)| ≤ k2

for positive constants k1 and k2.
We are interested in studying conservative solutions of the initial value problem

(1.3)-(1.4) for initial data u0, u0,x, u1, ρ0, σ0 ∈ L2(R). For smooth and bounded
solutions such that u, ut, ux, ρ and σ vanish at ±∞ the energy is given by

(1.7) E(t) =
1

2

∫
R

(
u2
t + c2(u)u2

x +
1

2
c(u)ρ2 +

1

2
c(u)σ2

)
dx,

and independent of time. One way to see this is to consider the quantity

K(t) =
1

2

∫
R
u2
t dx,

which we can think of as the ”kinetic energy”. We compute K ′(t) and find by using
(1.3a),

K ′(t) =

∫
R

(
c(u)ut(c(u)ux)x −

1

4
c′(u)ut(ρ

2 + σ2)
)
dx.
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For the first term we get, by integration by parts,∫
R
c(u)ut(c(u)ux)x dx = −

∫
R

(
c2(u)uxuxt + c(u)c′(u)utu

2
x

)
dx = − d

dt

∫
R

1

2
c2(u)u2

x dx,

and for the second term we obtain from (1.3b) and (1.3c),∫
R
c′(u)ut(ρ

2 + σ2) dx =
d

dt

∫
R
c(u)(ρ2 + σ2) dx− 2

∫
R
c(u)(ρρt + σσt) dx

=
d

dt

∫
R
c(u)(ρ2 + σ2) dx−

∫
R

(
(c2(u)ρ2)x − (c2(u)σ2)x

)
dx

=
d

dt

∫
R
c(u)(ρ2 + σ2) dx.

Therefore we get

K ′(t) = − d

dt

(∫
R

1

2
c2(u)u2

x dx+
1

4

∫
R
c(u)(ρ2 + σ2) dx

)
,

which implies that E(t) is constant. In particular, we have

E(t) =
1

2

∫
R

(
u2

1 + c2(u0)u2
0,x +

1

2
c(u0)ρ2

0 +
1

2
c(u0)σ2

0

)
dx.

Next, we introduce the functions R and S defined as

(1.8)

{
R = ut + c(u)ux,

S = ut − c(u)ux.

Note that R and S are smooth by assumption. Using (1.8) we can express the energy
in (1.7) as

(1.9) E(t) =
1

4

∫
R

(
R2 + c(u)ρ2 + S2 + c(u)σ2

)
dx.

As we shall see, we can think of R2 + c(u)ρ2 and S2 + c(u)σ2 as the left and right
traveling part of the energy density, respectively. Indeed, from (1.3a) we have

(1.10)


Rt − c(u)Rx =

c′(u)

4c(u)
(R2 − S2)− c′(u)

4
(ρ2 + σ2),

St + c(u)Sx = − c
′(u)

4c(u)
(R2 − S2)− c′(u)

4
(ρ2 + σ2).

Multiplying the first equation in (1.10) by R and the second by S, using

(c(u)R2)x =
c′(u)

2c(u)
R2(R− S) + c(u)(R2)x,

and

(c(u)S2)x =
c′(u)

2c(u)
S2(R− S) + c(u)(S2)x,

yields 
(R2)t − (c(u)R2)x =

c′(u)

2c(u)
(R2S −RS2)− c′(u)

2
R(ρ2 + σ2),

(S2)t + (c(u)S2)x = − c
′(u)

2c(u)
(R2S −RS2)− c′(u)

2
S(ρ2 + σ2).
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Moreover, using (1.3b) and (1.3c) we get
(ρ2)t − (c(u)ρ2)x =

c′(u)

2c(u)
(R− S)ρ2,

(σ2)t + (c(u)σ2)x = − c
′(u)

2c(u)
(R− S)σ2,

which implies 
(c(u)ρ2)t − (c2(u)ρ2)x =

c′(u)

2
(R + S)ρ2,

(c(u)σ2)t + (c2(u)σ2)x =
c′(u)

2
(R + S)σ2.

This leads to

(1.11)



(R2 + c(u)ρ2)t −
(
c(u)(R2 + c(u)ρ2)

)
x

=
c′(u)

2c(u)
(R2S −RS2) +

c′(u)

2
(ρ2S − σ2R),

(S2 + c(u)σ2)t +
(
c(u)(S2 + c(u)σ2)

)
x

= − c
′(u)

2c(u)
(R2S −RS2)− c′(u)

2
(ρ2S − σ2R).

From (1.11) we get

(1.12)



(
1

c(u)

(
R2 + c(u)ρ2

))
t

− (R2 + c(u)ρ2)x

= − c′(u)

2c2(u)
(R2S +RS2)− c′(u)

2c(u)
(ρ2S + σ2R),(

1

c(u)

(
S2 + c(u)σ2

))
t

+ (S2 + c(u)σ2)x

= − c′(u)

2c2(u)
(R2S +RS2)− c′(u)

2c(u)
(ρ2S + σ2R).

Combining (1.11) and (1.12), we finally obtain

(1.13)



(
R2 + c(u)ρ2 + S2 + c(u)σ2

)
t

−
(
c(u)

(
R2 + c(u)ρ2 − S2 − c(u)σ2

))
x

= 0,(
1

c(u)

(
R2 + c(u)ρ2 − S2 − c(u)σ2

))
t

−
(
R2 + c(u)ρ2 + S2 + c(u)σ2

)
x

= 0.

Let

v = R2 + c(u)ρ2 + S2 + c(u)σ2 and w =
1

c(u)

(
R2 + c(u)ρ2 − S2 − c(u)σ2

)
,
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then (1.13) rewrites as

(1.14)

(
v
w

)
t

−
(
c2(u)w
v

)
x

= 0,

which is a system of conservation laws, see [4, (2.4)-(2.6)] for the NVW equation.
Conservation of v and w here means that

(1.15)
d

dt

∫ x2

x1

v(t, x) dx = (c2(u)w)(t, x2)− (c2(u)w)(t, x1)

and
d

dt

∫ x2

x1

w(t, x) dx = v(t, x2)− v(t, x1).

Note that we have, by (1.9)

E(t) =
1

4

∫
R
v(t, x) dx.

So far we assumed that u, ut, ux, ρ and σ are smooth and bounded functions that
vanish at ±∞. Under these assumptions we get by letting x1 → −∞ and x2 → +∞
in (1.15),

d

dt

∫ ∞
−∞

v(t, x) dx = 0

and we recover the condition E ′(t) = 0.
In the view of (1.11), we interpret R2 + c(u)ρ2 and S2 + c(u)σ2 as the left and

right traveling part of the energy density, respectively. Moreover, the right-hand
sides of the two equations in (1.11) are equal with opposite sign, which means that
the right and the left part can interact with each other. That is, energy can swap
back and forth between the two parts, while the total energy remains unchanged
because of (1.13).

In contrast to the linear wave equation, solutions to (1.1), and hence also to
(1.3), can develop singularities in finite time, even for smooth initial data, see e.g.
[8]. Here, a singularity means that either ux or ut becomes unbounded pointwise
while u remains continuous, and u(t, ·),ux(t, ·), ut(t, ·) ∈ L2(R) for all t ≥ 0. This
means that the energy densities 1

4
(R2 + c(u)ρ2) and 1

4
(S2 + c(u)σ2) may become

unbounded pointwise. In other words, the energy density measures 1
4
(R2+c(u)ρ2) dx

and 1
4
(S2 + c(u)σ2) dx can have singular parts, meaning that energy concentrates on

sets of measure zero. Thus if we want to obtain a semigroup of solutions of (1.3) we
must be able to deal with both singular initial data and singularities turning up at
later times. Assume that we have a singularity at time t = t0. A central question
is: if we want to solve the equation for t ≥ t0, how do we prescribe initial data at
t = t0? By computing 1

4
(R2 + c(u)ρ2)(t0, ·) and 1

4
(S2 + c(u)σ2)(t0, ·) in L2(R), we

cannot conclude whether or not energy has concentrated. On the other hand, the
presence of singularities in the initial data greatly affects the analysis of the equation
and this is information we need to have available at the initial time. The solution
to this problem is to add to the initial data two positive Radon measures µ0 and
ν0, such that the absolutely continuous parts equal the classical energy densities,
i.e., (µ0)ac = 1

4
(R2

0 + c(u0)ρ2
0) dx and (ν0)ac = 1

4
(S2

0 + c(u0)σ2
0) dx. The singular parts

of the measures on the other hand contain information about the concentration of
energy.
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Next, we illustrate the formation of a singularity with the following example. We
consider a function f(t, x), where f 2 should be thought of as either 1

4
(R2 + c(u)ρ2)

or 1
4
(S2 + c(u)σ2). The function f(t, ·) belongs to L2(R) for all t ≥ 0. At t = 0, f is

smooth and bounded for all x. At a later time t = t0 > 0, f becomes unbounded at
the origin and f 2(t, x) dx converges weak-star in the sense of measures to the Dirac
delta at zero as t→ t0.

Let t0 > 0 and consider the function

f(t, x) =
( 2

π

) 1
4 1√
|t− t0|

e
−( x

t−t0
)2

,

where t ≥ 0. We have f(t, ·) ∈ L2(R) for all t ≥ 0 since

(1.16)

∫
R
f 2(t, x) dx = 1.

Note that f(t, x) → 0 for x 6= 0 and f(t, 0) → +∞ as t → t0. Moreover, direct
calculations yield

lim
t→t0

∫
R
φ(x)f(t, x) dx = 0 and lim

t→t0

∫
R
φ(x)f 2(t, x) dx = φ(0)

for all φ ∈ C∞c (R). In other words, f(t, ·) ∗
⇀ 0 and f 2(t, x) dx

∗
⇀ δ0, where δ0 is

the Dirac delta at zero. Also note from (1.16) that f(t, ·) does not converge to zero
in L2(R), and since f(t, x) → 0 almost everywhere it means that f(t, ·) does not
converge in L2(R). In fact we have

lim
t→t0

∫
R
fp(t, x) dx =


0, 1 ≤ p < 2,

1, p = 2,

∞, 2 < p <∞,
and since f ≥ 0 this implies that f(t, ·)→ 0 in Lp(R) for 1 ≤ p < 2.

2. Equivalent System

In this section we introduce a change of coordinates based on the method of
characteristics. As a motivation for the approach we use for (1.1) and (1.3) we start
out with the linear wave equation.

2.1. The Linear Wave Equation. Consider the linear wave equation

(2.1) utt − c2uxx = 0,

where c is constant. We factorize the wave operator and can write the equation
either as

(2.2)
[ ∂
∂t
− c ∂

∂x

][ ∂
∂t

+ c
∂

∂x

]
u = 0

or

(2.3)
[ ∂
∂t

+ c
∂

∂x

][ ∂
∂t
− c ∂

∂x

]
u = 0.

In both cases we find that the characteristics are given by x ± ct = constant, and
that every solution is of the form

(2.4) u(t, x) = F (x+ ct) +G(x− ct),
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for some functions F and G. In other words, the solution consists of a left and right
traveling part.

Let X(t, x) = x+ ct and Y (t, x) = x− ct. Then the functions X and Y satisfy

(2.5) Xt − cXx = 0 and Yt + cYx = 0.

Note that the operators acting on X and Y are the two factors of the wave operator.
We consider the mapping from (t, x)-plane to (X, Y )-plane defined by the above
equations. To make sure that the transformation is non-degenerate we compute

det

([
Xt Xx

Yt Yx

])
= 2c,

which implies that we must have c 6= 0. We observe that the characteristics x+ ct =
constant and x − ct = constant are mapped to horizontal and vertical lines in the
(X, Y )-plane, respectively. Let U(X, Y ) = u(t(X, Y ), x(X, Y )). We compute the
derivatives of u(t, x) = U(X(t, x), Y (t, x)) and get

ut = UXXt + UY Yt,(2.6a)

utt = UXXX
2
t + UXXtt + 2UXYXtYt + UY Y Y

2
t + UY Ytt,(2.6b)

ux = UXXx + UY Yx,(2.6c)

uxx = UXXX
2
x + UXXxx + 2UXYXxYx + UY Y Y

2
x + UY Yxx.(2.6d)

Inserting (2.6) in (2.1) yields

0 = utt − c2uxx

= UXX(X2
t − c2X2

x) + UX(Xtt − c2Xxx) + 2UXY (XtYt − c2XxYx)

+ UY Y (Y 2
t − c2Y 2

x ) + UY (Ytt − c2Yxx)

= −4c2XxYxUXY ,

where we used (2.5). The functions Xx and Yx are nonzero and finite, as Xx = 1
and Yx = 1. Furthermore, since we assume c 6= 0, we get

(2.7) UXY = 0.

In particular, we have U(X, Y ) = F (X) +G(Y ) and once again we obtain (2.4).

2.2. The Nonlinear Variational Wave Equation. Now we turn to the nonlinear
variational wave equation

utt − c(u)(c(u)ux)x = utt − c(u)c′(u)u2
x − c2(u)uxx = 0.

We first note that a factorization of the operator like we did in (2.2) and (2.3) is
not possible because of the function c(u). Instead we look for a factorization of the
terms containing the highest order derivatives. We compute

(2.8)
[ ∂
∂t
−c(u)

∂

∂x

][ ∂
∂t

+c(u)
∂

∂x

]
u = utt−c(u)(c(u)ux)x+c′(u)utux = +c′(u)utux

and

(2.9)
[ ∂
∂t

+c(u)
∂

∂x

][ ∂
∂t
−c(u)

∂

∂x

]
u = utt−c(u)(c(u)ux)x−c′(u)utux = −c′(u)utux.

Both these factorizations take care of the higher order derivatives, and we end up
with a lower order term on the right-hand side. Note the difference in sign of this
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term depending on which operator is used first, showing that the operators do not
commute. Therefore it is natural to consider both equations corresponding to the
two factorizations. Note that (2.8) and (2.9) are the equations for R = ut + c(u)ux
and S = ut − c(u)ux and we see once more that it is convenient to work with these
functions. Note that R and S are the directional derivatives of u in the directions
(1, c(u)) and (1,−c(u)), respectively. From (2.8) and (2.9) we see that the directional
derivative of R in the direction (1,−c(u)) and the directional derivative of S in the
direction (1, c(u)) are equal with opposite sign.

In the following we assume that u is sufficiently smooth and bounded.
We consider the characteristics corresponding to the highest order derivatives, i.e.,

the characteristics corresponding to the two factors ∂
∂t
− c(u) ∂

∂x
and ∂

∂t
+ c(u) ∂

∂x
of

the nonlinear variational wave operator. More specifically, we consider the functions
X(t, x) and Y (t, x) satisfying

(2.10) Xt − c(u)Xx = 0 and Yt + c(u)Yx = 0.

First, we want to solve the equation for X(t, x) with the method of characteristics.
Let t and x be functions of parameters s and ξ. We compute

(2.11)
d

ds
X(t(s, ξ), x(s, ξ)) = Xtts +Xxxs

which is equal to zero if

(2.12) ts(s, ξ) = 1 and xs(s, ξ) = −c(u(t(s, ξ), x(s, ξ))).

We assume that t(0, ξ) = 0 and x(0, ξ) = ξ for all ξ ∈ R. Then we get

(2.13) t(s, ξ) = s and xs(s, ξ) = −c(u(s, x(s, ξ))).

We integrate the last equation in (2.13) and get

(2.14) x(s, ξ) = ξ −
∫ s

0

c(u(r, x(r, ξ))) dr.

Recalling assumption (1.5), we get −κ ≤ xs(s, ξ) ≤ − 1
κ

and

ξ − κs ≤ x(s, ξ) ≤ ξ − 1

κ
s

for all s ≥ 0 and ξ ∈ R.
For fixed ξ we consider the differential equation in (2.13). Assuming that ux(t, ·) ∈

L∞(R), the right-hand side is Lipschitz continuous with respect to the x-argument,
i.e.,

|c(u(s, x2))− c(u(s, x1))| ≤ k1 sup
t≥0
||ux(t, ·)||L∞(R)|x2 − x1|

for all x1, x2 ∈ R. Thus, there exists a unique local solution x(·, ξ) with initial data
x(0, ξ) = ξ. This means that only one characteristic starts from the point given by
t = 0 and x = ξ.

Now we can have three scenarios:
If 0 < xξ(s, ξ) < ∞ for all s < s0, then the solution X(s, x(s, ξ)) is well-defined

and there is at least a chance of continuing X(s, x(s, ξ)) for s ≥ s0.
If xξ(s0, ξ) = 0 at some point (s0, ξ) with s0 > 0 , characteristics starting from

different values of ξ may intersect at s = s0 and it is not clear that X(s, x(s, ξ)) is
well-defined for s > s0.
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If xξ(s, ξ) → ∞ as s tends to some point s0 > 0 and some ξ, then the solution
x(s, ξ) is not defined for s ≥ s0.

Differentiating the last equation in (2.13) with respect to ξ gives us

xsξ(s, ξ) = −c′(u(s, x(s, ξ)))ux(s, x(s, ξ))xξ(s, ξ),

which we integrate to get

(2.15) xξ(s, ξ) = exp

{
−
∫ s

0

c′(u(r, x(r, ξ)))ux(r, x(r, ξ)) dr

}
.

Since ux is bounded we have 0 < xξ(s, ξ) <∞ for all 0 ≤ s <∞ and all ξ. This is
because

exp
{
− k1s sup

t∈[0,s]

||ux(t, ·)||L∞(R)

}
≤ xξ(s, ξ) ≤ exp

{
k1s sup

t∈[0,s]

||ux(t, ·)||L∞(R)

}
.

Thus, in the smooth case we do not end up with the two challenging scenarios
described above.

We compute the determinant of the Jacobian corresponding to the map (s, ξ)→
(t, x) and get

det

([
ts tξ
xs xξ

])
= tsxξ − tξxs = xξ.

Since 0 < xξ(s, ξ) <∞ we have from the inverse function theorem that the Jacobian
corresponding to the map (t, x)→ (s, ξ) satisfies[

st sx
ξt ξx

]
=

1

xξ

[
xξ −tξ
−xs ts

]
.

From (2.13) we get

(2.16) st = 1, sx = 0, ξt = −xs
xξ
, ξx =

1

xξ
,

so that
s(t, x) = t

and
ξt(t, x) = −xs(t, ξ(t, x))ξx(t, x) = c(u(t, ξ(t, x)))ξx(t, x).

Furthermore, (2.10)–(2.12) imply that

X(t(s, ξ), x(s, ξ)) = X(0, ξ) = g(ξ),

for some strictly increasing function g ∈ C1(R). Differentiation, combined with
(2.12) and (2.16) yields

(2.17) Xt = g′(ξ)ξt = −g′(ξ)xs
xξ

and Xx = g′(ξ)ξx = g′(ξ)
1

xξ
,

which implies 0 < Xt <∞ and 0 < Xx <∞.
Next, we study Y (t, x) with the method of characteristics. We obtain

d

ds
Y (t(s, ξ), x(s, ξ)) = 0

with the characteristics given by

(2.18) ts(s, ξ) = 1 and xs(s, ξ) = c(u(t(s, ξ), x(s, ξ))).
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xl xr

1

2c
(xr � xl)

t

x

x2(t) x1(t)

Figure 1. Characteristics of the linear wave equation, i.e., c is con-
stant. The forward characteristic x1(t) = xl + ct starting from xl, and
the backward characteristic x2(t) = xr− ct starting from xr, intersect
at t = 1

2c
(xr − xl).

Assuming that t(0, ξ) = 0 and x(0, ξ) = ξ for all ξ ∈ R we get

(2.19) t(s, ξ) = s and xs(s, ξ) = c(u(s, x(s, ξ))).

If Y (0, ξ) = h(ξ) for some strictly increasing function h ∈ C1(R), then

Y (s, x(s, ξ)) = h(ξ).

As in the computations above we find

(2.20) xξ(s, ξ) = exp

{∫ s

0

c′(u(r, x(r, ξ)))ux(r, x(r, ξ)) dr

}
,

and since ux is bounded, 0 < xξ(s, ξ) <∞ for all 0 ≤ s <∞ and all ξ. We also find
that (2.16) holds with xξ as defined in (2.20), and

(2.21) Yt = h′(ξ)ξt = −h′(ξ)xs
xξ

and Yx = h′(ξ)ξx = h′(ξ)
1

xξ
,

so that −∞ < Yt < 0 and 0 < Yx <∞.
Figure 1 and 2 show the characteristics for the linear wave equation and the NVW

equation, respectively.
Now we consider the mapping from the (t, x)-plane to the (X, Y )-plane. The

determinant of the Jacobian of this map reads

(2.22) d = det

([
Xt Xx

Yt Yx

])
= XtYx −XxYt = 2c(u)XxYx = −2XtYt

c(u)

and once again we see that we must assume that c(u) is strictly positive and finite.
Since 0 < Xx < ∞ and 0 < Yx < ∞, we have 0 < d < ∞. The inverse function
theorem then implies that the Jacobian corresponding to the map (X, Y ) → (t, x)
satisfies [

tX tY
xX xY

]
=

1

d

[
Yx −Xx

−Yt Xt

]
.
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x1(t)
x2(t)t

x
xl xr

1

2
(xr � xl)



2
(xr � xl)

Figure 2. Characteristics of the NVW equation. The forward char-
acteristic x1(t) starting from xl is given by x1,t(t) = c(u(t, x1(t))),
x1(0) = xl, and the backward characteristic x2(t) starting from xr is
given by x2,t(t) = −c(u(t, x2(t))), x2(0) = xr. Because of (1.5), they
intersect at a time t such that 1

2κ
(xr − xl) ≤ t ≤ κ

2
(xr − xl).

From the above equality many identities can be read off, and we only mention some
of them. By using (2.10) and (2.22), we obtain

(2.23) 2c(u)tXXx = 1, −2c(u)tY Yx = 1, 2xXXx = 1, 2xY Yx = 1,

which imply

(2.24) xX = c(u)tX and xY = −c(u)tY .

We observe from (2.23) that tX , tY , xX and xY are nonzero and finite.
Let U(X, Y ) = u(t(X, Y ), x(X, Y )). We insert the derivatives of u(t, x) =

U(X(t, x), Y (t, x)) from (2.6) into (1.1) and get

0 = utt − c(u)(c(u)ux)x(2.25)

= UXX(X2
t − c2(u)X2

x) + UX(Xtt − c2(u)Xxx)

+ 2UXY (XtYt − c2(u)XxYx)

+ UY Y (Y 2
t − c2(u)Y 2

x ) + UY (Ytt − c2(u)Yxx)

− c(u)c′(u)(U2
XX

2
x + 2UXUYXxYx + U2

Y Y
2
x ).

Due to (2.10) all second order derivatives of U drop out except for the term con-
taining the mixed derivative UXY . We compute the remaining terms. From (2.6)
and (2.10) we have

R = ut + c(u)ux = UX(Xt + c(u)Xx) + UY (Yt + c(u)Yx) = 2c(u)UXXx

and

S = ut − c(u)ux = UX(Xt − c(u)Xx) + UY (Yt − c(u)Yx) = −2c(u)UY Yx,
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and after using (2.23) we get

(2.26) R = c(u)
UX
xX

and

(2.27) S = −c(u)
UY
xY

.

By differentiating (2.10) and using (2.23) we obtain

Xtt−c2(u)Xxx = c′(u)XxR =
c′(u)R

2xX
and Ytt−c2(u)Yxx = −c′(u)YxS = −c

′(u)S

2xY
.

From (2.10) and (2.23) we have

XtYt − c2(u)XxYx = −2c2(u)XxYx = − c2(u)

2xXxY
.

Thus (2.25) is equivalent to

(2.28) UXY =
c′(u)

4c3(u)
(R2xXxY + S2xY xX)− c′(u)

2c(u)
UXUY .

Let

(2.29) JX =
1

2
R2xX and JY =

1

2
S2xY ,

which we think of as the left and right traveling part of the energy density in the
new variables, respectively. Now (2.28) yields

UXY =
c′(u)

2c3(U)
(JXxY + JY xX)− c′(u)

2c(u)
UXUY .

Using (2.26), (2.27) and (2.29) we get

(2.30) 2xXJX = c2(U)U2
X and 2xY JY = c2(U)U2

Y .

We find it convenient to introduce the function K defined by

(2.31) KX =
1

2c(u)
R2xX and KY = − 1

2c(u)
S2xY ,

which satisfies

(2.32) JX = c(U)KX and JY = −c(U)KY .

In view of (1.12) and (1.13) (with ρ = σ = 0) we can think of KX and KY as the
left and right traveling part of the second conserved quantity 1

c(u)
(R2 − S2) in the

new coordinates, respectively.
Next, let us derive the equations for tXY , xXY , JXY and KXY . We have xXY =

xY X , which by using (2.24) is the same as (c(U)tX)Y = (−c(U)tY )X . This leads to

tXY = − c
′(U)

2c(U)
(UY tX + UXtY ).

We find the equation for xXY by using (2.24) in tXY = tY X , which yields ( xX
c(U)

)Y =

(− xY
c(U)

)X and finally

xXY =
c′(U)

2c(U)
(UY xX + UXxY ).
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Using JXY = JY X , KXY = KY X and (2.32) we get

JXY =
c′(U)

2c(U)
(UY JX + UXJY )

and

KXY = − c
′(U)

2c(U)
(UYKX + UXKY ).

Finally we end up with the following system of differential equations

tXY = − c
′(U)

2c(U)
(UY tX + UXtY ),(2.33a)

xXY =
c′(U)

2c(U)
(UY xX + UXxY ),(2.33b)

UXY =
c′(u)

2c3(U)
(JXxY + JY xX)− c′(u)

2c(u)
UXUY ,(2.33c)

JXY =
c′(U)

2c(U)
(UY JX + UXJY ),(2.33d)

KXY = − c
′(U)

2c(U)
(UYKX + UXKY ).(2.33e)

2.3. The Regularized System. We derive a set of equations corresponding to
(1.3) in the new variables. We consider characteristics X(t, x) and Y (t, x) given by
(2.10). We assume that u, R, S, ρ, and σ are smooth and bounded. As above we
get that tX , tY , xX , and xY are nonzero and finite.

Denote u(t, x) = U(X(t, x), Y (t, x)). By calculations like those that led to (2.28)
we find

UXY =
c′(u)

4c3(u)

(
(R2 + c(u)ρ2)xXxY + (S2 + c(u)σ2)xY xX

)
− c′(u)

2c(u)
UXUY .

We introduce

(2.34) JX =
1

2
(R2 + c(u)ρ2)xX and JY =

1

2
(S2 + c(u)σ2)xY .

Using (2.26) and (2.27) we obtain

UXY =
c′(u)

2c3(U)
(JXxY + JY xX)− c′(u)

2c(u)
UXUY .

Accordingly, we define

(2.35) KX =
1

2c(u)
(R2 + c(u)ρ2)xX and KY = − 1

2c(u)
(S2 + c(u)σ2)xY .

The derivation of the system of equations is similar to the one in Section 2.2 for
the NVW equation (1.1). In fact, we obtain the same equations as in (2.33). In
addition we get two equations corresponding to (1.3b) and (1.3c). Let ρ(t, x) =
P (X(t, x), Y (t, x)). By (1.3b) we get

0 = ρt − (c(u)ρ)x

= PX(Xt − c(u)Xx) + PY (Yt − c(u)Yx)− c′(u)P (UXXx + UY Yx).
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From (2.10) and (2.23) we have

c(U)PY xX +
c′(U)

2
P (UXxY + UY xX) = 0

and from (2.33) we see that this is the same as

PY xX + PxXY = (PxX)Y = 0.

We define p = PxX , so that
pY = 0.

Let σ(t, x) = Q(X(t, x), Y (t, x)). From (1.3c) we have

0 = σt + (c(u)σ)x

= QX(Xt + c(u)Xx) +QY (Yt + c(u)Yx) + c′(u)Q(UXXx + UY Yx).

Using (2.10) and (2.23) we get

c(U)QXxY +
c′(U)

2
Q(UXxY + UY xX) = 0

and by (2.33) we find
QXxY +QxXY = (QxY )X = 0.

We define q = QxY , so that
qX = 0.

By (2.26), (2.27) and (2.34) we get

(2.36) 2xXJX = c2(U)U2
X + c(U)p2 and 2xY JY = c2(U)U2

Y + c(U)q2.

Furthermore, we note that the relations

xX = c(U)tX , xY = −c(U)tY ,(2.37a)

JX = c(U)KX , JY = −c(U)KY(2.37b)

hold. To summarize, we obtain the following system of equations

tXY = − c
′(U)

2c(U)
(UY tX + UXtY ),(2.38a)

xXY =
c′(U)

2c(U)
(UY xX + UXxY ),(2.38b)

UXY =
c′(U)

2c3(U)
(xY JX + xXJY )− c′(U)

2c(U)
UXUY ,(2.38c)

JXY =
c′(U)

2c(U)
(UY JX + UXJY ),(2.38d)

KXY = − c
′(U)

2c(U)
(UYKX + UXKY ),(2.38e)

pY = 0,(2.38f)

qX = 0.(2.38g)

We introduce the vector Z = (t, x, U, J,K). The system (2.38a)-(2.38e) then rewrites
as

(2.39) ZXY = F (Z)(ZX , ZY ),
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where F (Z) is a bilinear and symmetric tensor from R5 × R5 to R5. Due to the
relations (2.37a), either one of the equations in (2.38a) and (2.38b) is redundant:
one could remove one of them, and the system would remain well-posed, and one
retrieves t or x by using (2.37a). Similarly, either one of the equations (2.38d) and
(2.38e) becomes redundant by (2.37b). However, we find it convenient to work with
the complete set of variables, i.e., Z = (t, x, U, J,K).

We observe that the equations (2.38a)-(2.38e) are not coupled with the last two
(2.38f)-(2.38g). Furthermore they are identical to the set of equations (2.33) found
for the NVW equation. However, we see that (2.30) is different from (2.36), so the
solutions will not be identical. Also, from (2.36) we see that the solutions t, x, U, J,K
of the five first equations are not independent of the solutions p, q of the last two
equations.

To prove the existence of solutions of (2.38) we use a fixed point argument which
is similar to the one found in [10]. In order to do so we need a curve (X (s),Y(s))
parametrized by s ∈ R in the (X, Y )-plane that corresponds to the initial time, i.e.,
it consists of all points (X, Y ) ∈ R2 such that t(X, Y ) = 0. We will admit curves of
the following type.

Definition 2.1. We denote by C the set of curves in the plane R2 parametrized by
(X (s),Y(s)) with s ∈ R, such that

X − Id, Y − Id ∈ W 1,∞(R),(2.40a)

Ẋ ≥ 0, Ẏ ≥ 0(2.40b)

with the normalization

(2.40c)
1

2
(X (s) + Y(s)) = s for all s ∈ R.

We set

(2.40d) ‖(X ,Y)‖C = ‖X − Id‖L∞(R) + ‖Y − Id‖L∞(R) .

In the above derivation where we assumed that the solutions are smooth and
bounded we found that 0 < tX < ∞ and −∞ < tY < 0. This implies that
both X (s) and Y(s) are strictly increasing functions. Indeed, by differentiating
t(X (s),Y(s)) = 0 and using (2.40c) we get

Ẋ = − 2tY
tX − tY

and Ẏ =
2tX

tX − tY
,

which implies Ẋ > 0 and Ẏ > 0. Thus, in this case (X (s),Y(s)) is a strictly
monotone curve.

For general initial data the set

Γ0 = {(X, Y ) ∈ R2 | t(X, Y ) = 0}
will be the union of strictly monotone curves, horizontal and vertical lines, and boxes.
We define this set implicitly in Definition 3.4 and 3.7, and the examples following the
definitions show how the set Γ0 depends on the initial data (u0, R0, S0, ρ0, σ0, µ0, ν0).

The idea is the following. The backward characteristics transports the energy
described by the measure µ0, while the forward characteristics transports the energy
described by the measure ν0.
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At points (0, x0) where the initial data is smooth and bounded and the measures
are absolutely continuous, there is a finite amount of energy, and there is exactly
one forward and one backward characteristic starting from (0, x0). This point is
mapped to one point in Lagrangian coordinates. An interval of such points yields a
strictly monotone curve in Lagrangian coordinates, like we showed above.

At points (0, x0) where only one of the measures is singular, say µ0, there is a finite
amount of forward energy and an infinite amount of backward energy. Thus there
are infinitely many backward characteristics, but only one forward characteristic
starting from (0, x0). If we think of characteristics as particles, then the infinite
amount of backward energy at (0, x0) is distributed over infinitely many particles.
To label these particles, we map this point to a horizontal line in the (X, Y )-plane.

If only ν0 is singular at (0, x0), the point is mapped to a vertical line in the
(X, Y )-plane.

At points (0, x0) where both measures are singular, there is an infinite amount
of both forward and backward energy. Thus there are infinitely many forward and
backward characteristics starting from (0, x0). If we think of characteristics as par-
ticles, then the infinite amount of both forward and backward energy at (0, x0)
is distributed over infinitely many particles and we need a rectangular box in the
(X, Y )-plane to label all these particles.

From the set Γ0 we have to choose a unique curve (X ,Y) ∈ C. In the case of a
box there are in principle infinitely many possible ways of doing this. We define the
curve in Definition 3.7, where we in the case of a box roughly speaking define it to
be the union of the left vertical side and the upper horizontal side of the box.

Having defined the curve (X ,Y), we have to assign the values of Z, ZX , ZY , p and
q on it in order to solve (2.38). In addition we require that several properties derived
in this section for the smooth case hold on the curve, see Definition 4.7. Later we will
prove that solutions of (2.38) satisfy the same properties. In Section 3 we explain
how to define the functions on the curve for general initial data u0, R0, S0, ρ0, σ0 ∈
L2(R) and measures µ0 and ν0. Here we present how to proceed for initial data
such that the functions u0, R0, S0, ρ0, σ0 are smooth and bounded, and such that
the measures µ0 and ν0 are absolutely continuous. We have to specify the values of
19 functions. Let us see how many equations we have available to determine these
values. Let

(2.41) t(X (s),Y(s)) = 0,

and

(2.42) U(X (s),Y(s)) = u0(x(X (s),Y(s))).

From (2.26), (2.27) and (2.34) we have

UX(X ,Y) = xX(X ,Y)
R0(x(X ,Y))

c(u0(x(X ,Y)))
,(2.43)

UY (X ,Y) = −xY (X ,Y)
S0(x(X ,Y))

c(u0(x(X ,Y)))
,(2.44)

JX(X ,Y) =
1

2
xX(X ,Y)(R2

0 + c(u0)ρ2
0)(x(X ,Y)),(2.45)

JY (X ,Y) =
1

2
xY (X ,Y)(S2

0 + c(u0)σ2
0)(x(X ,Y)),(2.46)
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p(X ,Y) = xX(X ,Y)ρ0(x(X ,Y)),(2.47)

q(X ,Y) = xY (X ,Y)σ0(x(X ,Y))(2.48)

and from (2.37a) and (2.37b) we have the relations

xX(X ,Y) = c(u0(x(X ,Y)))tX(X ,Y),(2.49)

xY (X ,Y) = −c(u0(x(X ,Y)))tY (X ,Y),(2.50)

JX(X ,Y) = c(u0(x(X ,Y)))KX(X ,Y),(2.51)

JY (X ,Y) = −c(u0(x(X ,Y)))KY (X ,Y).(2.52)

We also want to use the fact that ZX and ZY are derivatives of Z to assign values
of t, x, U , J , K, and we can write this condition as

(2.53) Ż(X (s),Y(s)) = ZX(X (s),Y(s))Ẋ (s) + ZY (X (s),Y(s))Ẏ(s),

where the notation means Ż(X (s),Y(s)) = d
ds
Z(X (s),Y(s)). We have 19 unknowns

(X ,Y , p, q, Z, ZX , ZY ) and 17 equations, given by (2.40c) and (2.41)-(2.53). We use
the two remaining degrees of freedom to obtain ZX , p, ZY and q bounded. We set

2xX(X (s),Y(s)) + JX(X (s),Y(s)) = 1,(2.54)

2xY (X (s),Y(s)) + JY (X (s),Y(s)) = 1.(2.55)

In view of (2.36), xX and JX have the same sign, so that (2.54) implies that they
are non-negative and bounded. Similarly we find that xY ≥ 0, JY ≥ 0, and that
they are bounded from above. From (2.49) and (2.50) it then follows that tX , KX ,
tY and KY are bounded and tX ≥ 0, KX ≥ 0, tY ≤ 0 and KY ≤ 0. The relation
(2.36) also implies that UX , p, UY and q are bounded.

Using (2.45) and (2.46) in (2.54) and (2.55) yields

xX(X ,Y) =

(
2

4 +R2
0 + c(u0)ρ2

0

)
(x(X ,Y)),(2.56)

xY (X ,Y) =

(
2

4 + S2
0 + c(u0)σ2

0

)
(x(X ,Y)),(2.57)

which implies by (2.49) and (2.50) that

tX(X ,Y) =

(
2

c(u0)(4 +R2
0 + c(u0)ρ2

0)

)
(x(X ,Y)),

tY (X ,Y) = −
(

2

c(u0)(4 + S2
0 + c(u0)σ2

0)

)
(x(X ,Y)).

Now (2.43)-(2.48) take the form

UX(X ,Y) =

(
2R0

c(u0)(4 +R2
0 + c(u0)ρ2

0)

)
(x(X ,Y)),

UY (X ,Y) = −
(

2S0

c(u0)(4 + S2
0 + c(u0)σ2

0)

)
(x(X ,Y)),

JX(X ,Y) =

(
R2

0 + c(u0)ρ2
0

4 +R2
0 + c(u0)ρ2

0

)
(x(X ,Y)),

JY (X ,Y) =

(
S2

0 + c(u0)σ2
0

4 + S2
0 + c(u0)σ2

0

)
(x(X ,Y)),
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p(X ,Y) =

(
2ρ0

4 +R2
0 + c(u0)ρ2

0

)
(x(X ,Y)),

q(X ,Y) =

(
2σ0

4 + S2
0 + c(u0)σ2

0

)
(x(X ,Y))

and from (2.51) and (2.52) we get

KX(X ,Y) =

(
R2

0 + c(u0)ρ2
0

c(u0)(4 +R2
0 + c(u0)ρ2

0)

)
(x(X ,Y)),

KY (X ,Y) = −
(

S2
0 + c(u0)σ2

0

c(u0)(4 + S2
0 + c(u0)σ2

0)

)
(x(X ,Y)).

It remains to determine (X ,Y) and the value of x, J and K on the curve.
Differentiating (2.41) with respect to s yields

tX(X (s),Y(s))Ẋ (s) + tY (X (s),Y(s))Ẏ(s) = 0

and after using (2.49) and (2.50) we get

xX(X (s),Y(s))Ẋ (s) = xY (X (s),Y(s))Ẏ(s).

Using this in (2.53) implies

(2.58) ẋ(X (s),Y(s)) = 2xX(X (s),Y(s))Ẋ (s) = 2xY (X (s),Y(s))Ẏ(s).

We use (2.58) then (2.56) and (2.57) in (2.40c), and get

2 = Ẋ (s) + Ẏ(s)

=
1

2

(
1

xX(X (s),Y(s))
+

1

xY (X (s),Y(s))

)
ẋ(X (s),Y(s))

=

(
2 +

1

4
(R2

0 + c(u0)ρ2
0 + S2

0 + c(u0)σ2
0)

)
(x(X (s),Y(s)))ẋ(X (s),Y(s)).

We define x(X (s),Y(s)) implicitly as

(2.59) 2x(X (s),Y(s)) +
1

4

∫ x(X (s),Y(s))

−∞
(R2

0 + c(u0)ρ2
0 + S2

0 + c(u0)σ2
0)(z) dz = 2s.

Note that the left-hand side is a strictly increasing function with respect to x, so
that (2.59) uniquely defines x(X (s),Y(s)).

From (2.58) and (2.56) it follows that

(2.60) Ẋ (s) =

(
1 +

1

4
(R2

0 + c(u0)ρ2
0)

)
(x(X (s),Y(s)))ẋ(X (s),Y(s))

and we define

X (s) = x(X (s),Y(s)) +
1

4

∫ x(X (s),Y(s))

−∞
(R2

0 + c(u0)ρ2
0)(z) dz.

Similarly, by (2.58) and (2.57), we get

(2.61) Ẏ(s) =

(
1 +

1

4
(S2

0 + c(u0)σ2
0)

)
(x(X (s),Y(s)))ẋ(X (s),Y(s))
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and we set

Y(s) = x(X (s),Y(s)) +
1

4

∫ x(X (s),Y(s))

−∞
(S2

0 + c(u0)σ2
0)(z) dz.

From (2.54), (2.55) and (2.40c) we have

J̇(X ,Y) = JX(X ,Y)Ẋ + JY (X ,Y)Ẏ(2.62)

= (1− 2xX(X ,Y))Ẋ + (1− 2xY (X ,Y))Ẏ
= 2− 2ẋ(X ,Y),

so that
2x(X (s),Y(s)) + J(X (s),Y(s)) = 2s,

which combined with (2.59) yields

J(X (s),Y(s)) =
1

4

∫ x(X (s),Y(s))

−∞
(R2

0 + c(u0)ρ2
0 + S2

0 + c(u0)σ2
0)(z) dz.

From (2.51) and (2.52) we have

K̇(X ,Y) = KX(X ,Y)Ẋ +KY (X ,Y)Ẏ =
JX(X ,Y)Ẋ − JY (X ,Y)Ẏ

c(u0(x(X ,Y)))
.

Multiplying (2.54) by Ẋ and (2.55) by Ẏ , yields

JX(X ,Y)Ẋ = Ẋ − 2xX(X ,Y)Ẋ and JY (X ,Y)Ẏ = Ẏ − 2xY (X ,Y)Ẏ .
Using (2.58), we get

JX(X ,Y)Ẋ − JY (X ,Y)Ẏ = Ẋ − Ẏ ,
which implies by (2.60) and (2.61) that

K̇(X ,Y) =
(R2

0 + c(u0)ρ2
0 − S2

0 − c(u0)σ2
0)(x(X ,Y))

4c(u0(x(X ,Y)))
ẋ(X ,Y).

We define

K(X (s),Y(s)) =

∫ x(X (s),Y(s))

−∞

1

4c(u0)
(R2

0 + c(u0)ρ2
0 − S2

0 − c(u0)σ2
0)(z) dz.

In Section 6 we prove the existence of global, weak, conservative solutions of (1.3).
Our approach follows closely [10]. The solutions we construct will be conservative
in the sense that for all t ≥ 0,

µ(t)(R) + ν(t)(R) = µ0(R) + ν0(R),

where we denote the solution at time t by (u,R, S, ρ, σ, µ, ν)(t), see Theorem 6.2.
This is a consequence of the fact that the energy function J in Lagrangian coordi-
nates satisfies that the limit

lim
s→±∞

J(X (s),Y(s))

is independent of the curve (X ,Y) ∈ C. Thus, the same limiting values of J are
obtained for curves corresponding to different times, see Lemma 4.14. We do not
address uniqueness of conservative solutions.

The main results of this paper is contained in Section 7, where we first prove that
under certain conditions we have local smooth solutions of (1.3). More specifically,
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on a finite interval [xl, xr] we assume that the initial data satisfies the following:
u0, R0, S0, ρ0, σ0 are smooth and bounded, µ0 and ν0 are absolutely continuous, and
the functions ρ0 and σ0 are strictly positive. Then we prove that for every time
t ∈

[
0, 1

2κ
(xr − xl)

]
, the functions ρ(t, x) and σ(t, x) are strictly positive for all

x ∈ [xl +κt, xr−κt]. This has a regularizing effect on the solution in the sense that
the solution at time t will then satisfy the same regularity conditions as the initial
data does on the interval [xl +κt, xr−κt], see Corollary 7.2. Roughly speaking, the
variables p and q contain information about ρ0 and σ0, respectively. In particular,
since pY = 0 and qX = 0, the strict positivity of p and q is preserved in the
characteristic directions. The identities in (2.36) then imply the strict positivity of
xX and xY .

In Theorem 7.3 we prove that we can locally approximate weak solutions of (1.1)
by smooth solutions of (1.3) in L∞, provided that certain regularity and convergence
conditions hold, see Section 7.

3. From Eulerian to Lagrangian Coordinates

We first define the set D which consists of possible initial data corresponding to
(1.3) in Eulerian coordinates.

Definition 3.1. The set D consists of the elements (u,R, S, ρ, σ, µ, ν) such that

u,R, S, ρ, σ ∈ L2(R),

(3.1) ux =
1

2c(u)
(R− S),

and µ and ν are finite positive Radon measures with

(3.2) µac =
1

4
(R2 + c(u)ρ2) dx and νac =

1

4
(S2 + c(u)σ2) dx.

Note that this definition allows for initial data with concentrated energy. The
next step is to map elements from D to a set F which is defined as follows.

Definition 3.2. The group G is given by all invertible functions f such that

(3.3) f − Id and f−1 − Id both belong to W 1,∞(R),

and

(3.4) (f − Id)′ ∈ L2(R).

Note that if f , g ∈ G, then also f−1, g−1 and f ◦ g belong to G.

Definition 3.3. The set F consists of all functions ψ = (ψ1, ψ2) such that

ψ1(X) = (x1(X), U1(X), J1(X), K1(X), V1(X), H1(X))

and
ψ2(Y ) = (x2(Y ), U2(Y ), J2(Y ), K2(Y ), V2(Y ), H2(Y ))

satisfy the following regularity and decay conditions

(3.5a) x1 − Id, x2 − Id, J1, J2, K1, K2 ∈ W 1,∞(R),

(3.5b) x′1 − 1, x′2 − 1, J ′1, J
′
2, K

′
1, K

′
2, H1, H2 ∈ L2(R) ∩ L∞(R),
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(3.5c) U1, U2 ∈ L2(R) ∩ L∞(R),

(3.5d) V1, V2 ∈ L2(R) ∩ L∞(R),

and the additional conditions

(3.6) x′1, x
′
2, J

′
1, J

′
2 ≥ 0,

(3.7) J ′1 = c(U1)K ′1, J ′2 = −c(U2)K ′2,

(3.8) x′1J
′
1 = (c(U1)V1)2 + c(U1)H2

1 , x′2J
′
2 = (c(U2)V2)2 + c(U2)H2

2 ,

(3.9) x1 + J1, x2 + J2 ∈ G,

(3.10) lim
X→−∞

J1(X) = lim
Y→−∞

J2(Y ) = 0.

Moreover, for any curve (X ,Y) ∈ C such that

x1(X (s)) = x2(Y(s)) for all s ∈ R,
we have

(3.11a) U1(X (s)) = U2(Y(s))

for all s ∈ R and

(3.11b)
d

ds
U1(X (s)) =

d

ds
U2(Y(s)) = V1(X (s))Ẋ (s) + V2(Y(s))Ẏ(s)

for almost all s ∈ R.

Condition (3.9) will be important in Section 5.4 where we prove that the solution
operator from D to D is a semigroup. In the proof we use xi + Ji for i = 1, 2 as
relabeling functions.

For any strictly monotone curve (X ,Y) ∈ C we introduce

X (Y ) = X (Y−1(Y )) and Y(X) = Y(X−1(X)).

In the context of the previous section where we derived the system (2.38) for smooth
solutions (Z, p, q), the elements (ψ1, ψ2) should be thought of

x1(X) = x(X,Y(X)), x2(Y ) = x(X (Y ), Y ),

U1(X) = U(X,Y(X)), U2(Y ) = U(X (Y ), Y ),

J1(X) =

∫ X

−∞
JX(Z,Y(Z)) dZ, J2(Y ) =

∫ Y

−∞
JY (X (Z), Z) dZ,

K1(X) =

∫ X

−∞
KX(Z,Y(Z)) dZ, K2(Y ) =

∫ Y

−∞
KY (X (Z), Z) dZ,

V1(X) = UX(X,Y(X)), V2(Y ) = UY (X (Y ), Y ),

H1(X) = p(X,Y(X)), H2(Y ) = q(X (Y ), Y )

and

x′1(X) = 2xX(X,Y(X)), x′2(Y ) = 2xY (X (Y ), Y ),

J ′1(X) = JX(X,Y(X)), J ′2(Y ) = JY (X (Y ), Y ),

K ′1(X) = KX(X,Y(X)), K ′2(Y ) = KY (X (Y ), Y ).
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We define the map from D to F .

Definition 3.4. Given (u,R, S, ρ, σ, µ, ν) ∈ D, we define ψ1 = (x1, U1, J1, K1, V1, H1)
and ψ2 = (x2, U2, J2, K2, V2, H2) as

x1(X) = sup{x ∈ R | x′ + µ((−∞, x′)) < X for all x′ < x},(3.12a)

x2(Y ) = sup{x ∈ R | x′ + ν((−∞, x′)) < Y for all x′ < x}(3.12b)

and

J1(X) = X − x1(X), J2(Y ) = Y − x2(Y ),(3.12c)

U1(X) = u(x1(X)), U2(Y ) = u(x2(Y )),(3.12d)

V1(X) = x′1(X)
R(x1(X))

2c(U1(X))
, V2(Y ) = −x′2(Y )

S(x2(Y ))

2c(U2(Y ))
,(3.12e)

K1(X) =

∫ X

−∞

J ′1(X̄)

c(U1(X̄))
dX̄, K2(Y ) = −

∫ Y

−∞

J ′2(Ȳ )

c(U2(Ȳ ))
dȲ ,(3.12f)

H1(X) =
1

2
ρ(x1(X))x′1(X), H2(Y ) =

1

2
σ(x2(Y ))x′2(Y ).(3.12g)

We let L : D → F denote the mapping which to any (u,R, S, ρ, σ, µ, ν) ∈ D asso-
ciates the element ψ = (ψ1, ψ2) ∈ F as defined above.

As mentioned before solutions can develop singularities in finite time and energy
can concentrate on sets of measure zero. If this is the case one has to put some extra
effort into understanding (3.12e) and (3.12g) since they might be of the form 0 ·∞,
when x′1(X) = 0. One has, in the smooth case for X1 < X2 that∫ x1(X2)

x1(X1)

R

2c(u)
(x) dx =

∫ X2

X1

R(x1(X̃))

2c(u(x1(X̃)))
x′1(X̃) dX̃ =

∫ X2

X1

V1(X̃) dX̃

and ∣∣∣∣∣
∫ x1(X2)

x1(X1)

R

2c(u)
(x) dx

∣∣∣∣∣ ≤ κ
√
x1(X2)− x1(X1)

√
µac((x1(X1), x1(X2))(3.13)

≤ κ
√
x1(X2)− x1(X1)

√
J1(X2)− J1(X1).

If we now consider the nonsmooth case, (3.13) still holds and the above calculations
imply that V1(X) exists and is bounded. Furthermore, if x′1(X) = 0, we must have
that V1(X) = 0.

In the case of initial data (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D such that µ0 and ν0 are
absolutely continuous with respect to the Lebesgue measure, we check that we end
up with the same expressions as at the end of Section 2. By (3.2) we have

µ0((−∞, x)) =
1

4

∫ x

−∞
(R2

0 + c(u0)ρ2
0)(z) dz

and

ν0((−∞, x)) =
1

4

∫ x

−∞
(S2

0 + c(u0)σ2
0)(z) dz.
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Since the functions x+µ0((−∞, x)) and x+ν0((−∞, x)) are continuous and strictly
increasing, we get from (3.12a) and (3.12b),

x1(X) +
1

4

∫ x1(X)

−∞
(R2

0 + c(u0)ρ2
0)(z) dz = X

and

x2(Y ) +
1

4

∫ x2(Y )

−∞
(S2

0 + c(u0)σ2
0)(z) dz = Y.

We add these equalities and since x1(X (s)) = x2(Y(s)) = x(X (s),Y(s)) and X (s) +
Y(s) = 2s we get

2x(X (s),Y(s)) +
1

4

∫ x(X (s),Y(s))

−∞
(R2

0 + c(u0)ρ2
0 + S2

0 + c(u0)σ2
0)(z) dz = 2s

and we recover (2.59). In a similar way we can show by using Definition 3.4 that we
get the other expressions that we derived in Section 2.

We illustrate the mappings in this section with a series of examples. We study
three possible situations where the initial measures are absolutely continuous and
discrete. We want to illustrate how the region where x1(X) = x2(Y ) and Y = 2s−X
in the (X, Y )-plane looks like in each situation. This is important in (3.28), the
definition of the initial curve (X ,Y).

Example 1. We first consider the case where both µ0 and ν0 are absolutely
continuous. More specifically, let

µ0((−∞, x]) = ν0((−∞, x]) = arctan(x) +
π

2
.

The measures are absolutely continuous. Let f(x) = arctan(x) + x + π
2
, which is

strictly increasing and continuous. We have x1(X) = f−1(X) and x2(Y ) = f−1(Y ).
By differentiating the identity f(f−1(X)) = X we obtain

x′1(X) =
1

1 + 1
1+x1(X)2

≥ 1

2
,

and similarly we get x′2(Y ) ≥ 1
2
, so that both x1 and x2 are strictly increasing

functions.
Example 2. We consider the case where one of the measures is absolutely con-

tinuous and the other is not. Let

µ0((−∞, x)) =

{
0, x ≤ 0,

1, x > 0
and ν0((−∞, x)) = arctan(x) +

π

2
.

The measure µ0 is not absolutely continuous with respect to the Lebesgue measure,
as

µ0({0}) = µ0

( ∞⋂
n=1

[
0,

1

n

))
= lim

n→∞
µ0

([
0,

1

n

))
= 1.

Using Definition 3.4, we find that

x1(X) =


X if X ≤ 0,

0 if 0 ≤ X ≤ 1,

X − 1, if 1 ≤ X,
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and as in Example 1 we have x2(Y ) = f−1(Y ).
Example 3. We consider the case where both measures are singular at the same

point. Let (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D be such that

µ0((−∞, x)) =

{
0, x ≤ 0,

1, x > 0
and ν0((−∞, x)) =

{
0, x ≤ 0,

1, x > 0.

From Definition 3.4 we get

x1(X) =


X if X ≤ 0,

0 if 0 ≤ X ≤ 1,

X − 1, if 1 ≤ X

and x2(Y ) =


Y if Y ≤ 0,

0 if 0 ≤ Y ≤ 1,

Y − 1, if 1 ≤ Y.

Proof of the well-posedness of Definition 3.4. We only show that ψ1 as defined above
satisfies the conditions in the definition of F . The corresponding proof for ψ2 is
similar. First we prove that the derivatives of x1 and J1 are well-defined. Let us
show that x1 is Lipschitz continuous. Consider X,X ′ ∈ R such that X < X ′ and
x1(X) < x1(X ′). The definition of x1 implies that there exists an increasing se-
quence, z′i, and a decreasing one, zi, such that lim

i→∞
z′i = x1(X ′) and lim

i→∞
zi = x1(X)

with z′i + µ((−∞, z′i)) < X ′ and zi + µ((−∞, zi)) ≥ X. Combining these two in-
equalities gives

µ((−∞, z′i))− µ((−∞, zi)) + z′i − zi < X ′ −X.
For sufficiently large i, we have z′i > zi, so that µ((−∞, z′i)) − µ((−∞, zi)) =
µ([zi, z

′
i)) ≥ 0. Hence, z′i − zi < X ′ − X. Letting i tend to infinity, we obtain

x1(X ′)−x1(X) ≤ X ′−X and x1 is Lipschitz continuous with Lipschitz constant at
most one. Thus, x1 is differentiable almost everywhere. Then, by (3.12c) it follows
that J1 is Lipschitz continuous with Lipschitz constant at most two, so that J1 is
differentiable almost everywhere.

Next, we show (3.5a)-(3.5d) and that K1 is well-defined and differentiable almost
everywhere. It is clear from (3.12a) that x1 yields a nondecreasing function. For
any z > x1(X), we have z + µ((−∞, z)) ≥ X. Hence, X − z ≤ µ(R) and, since
we can choose z arbitrarily close to x1(X), we obtain X − x1(X) ≤ µ(R). Since
x1(X) ≤ X, we have

(3.14) |X − x1(X)| ≤ µ(R)

and x1 − Id ∈ L∞(R). Since x1 is nondecreasing and has Lipschitz constant at
most one, we have 0 ≤ x′1 ≤ 1 almost everywhere, so that x′1 − 1 ∈ L∞(R). From
(3.14), we obtain |J1(X)| ≤ µ(R) and J1 ∈ L∞(R). We have J ′1 = 1 − x′1 a.e. and
therefore 0 ≤ J ′1 ≤ 1 a.e., which implies that J ′1 ∈ L∞(R). Thus, J ′1 ∈ L1(R) as∫ X
−∞ J

′
1(X̄) dX̄ ≤ ||J1||L∞(R). By Hölder’s inequality, we obtain

‖J ′1‖2
L2(R) ≤ ‖J ′1‖L∞(R) ‖J ′1‖L1(R) ≤ ‖J1‖L∞(R) ≤ µ(R).

Hence, J ′1 ∈ L2(R) and since J ′1 = 1 − x′1 a.e., we have that x′1 − 1 ∈ L2(R). Note
that, by the above, the inequalities for x′1 and J ′1 in (3.6) are satisfied. The fact
that J ′1 is integrable also implies that K1 is well-defined and differentiable almost

everywhere. By differentiating (3.12f), we obtain K ′1 =
J ′1

c(U1)
, so that K1 ∈ W 1,∞(R)
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and K ′1 ∈ L2(R) ∩ L∞(R). By a change of variables and, using the fact that x′1 ≤ 1
a.e., we get ∫

R
H2

1 (X) dX ≤ 1

4

∫
R
ρ2(x) dx <∞

and ∫
R
V 2

1 (X) dX ≤ κ2

4

∫
R
R2(x) dx <∞,

so that H1 and V1 belong to L2(R).
Next, we prove that U1 is in L2(R). Let B3 = {X ∈ R | x′1(X) < 1

2
}. Since

J ′1 = 1− x′1, B3 = {X ∈ R | J ′1(X) > 1
2
}, and J ′1 ∈ L2(R), we obtain meas(B3) <∞

after using Chebyshev’s inequality. We have, since x′1 ≥ 1
2

in Bc
3,∫

R
U2

1 (X) dX =

∫
B3

U2
1 (X) dX +

∫
Bc3

U2
1 (X) dX

≤ meas(B3) ‖u‖2
L∞(R) + 2

∫
Bc3

u2(x1(X))x′1(X) dX

≤ meas(B3) ‖u‖2
L∞(R) + 2 ‖u‖2

L2(R) .

Since u ∈ H1(R), we have that u ∈ L∞(R) and we conclude that U1 ∈ L2(R) ∩
L∞(R). It remains to show that H1 and V1 belong to L∞(R). In order to prove this
and (3.8), we have to compute the derivative of x1. Following [7], we decompose
µ into its absolutely continuous, singular continuous and discrete part, denoted
by µac, µsc and µd, respectively. The support of µd consists of a countable set of
points. The function G(x) = µ((−∞, x)) is lower semi-continuous and its points of
discontinuity coincide exactly with the support of µd. Let A denote the complement
of x−1

1 (supp(µd)), that is, A = {X ∈ R | x1(X) ∈ supp(µd)c}. We claim that for
any X ∈ A, we have

(3.15) µ((−∞, x1(X))) + x1(X) = X.

By (3.12a) there exists an increasing sequence zi which converges to x1(X) such
that G(zi) + zi < X. Since G is lower semi-continuous, lim

i→∞
G(zi) = G(x1(X)) and

therefore
G(x1(X)) + x1(X) ≤ X.

Assume that G(x1(X)) + x1(X) < X. Since x1(X) is a point of continuity of G,
we can find an x such that x > x1(X) and G(x) + x < X. This contradicts the
definition of x1(X) and proves our claim (3.15). Let

B1 =
{
x ∈ R | lim

ε↓0

1

2ε
µ((x− ε, x+ ε)) =

1

4
(R2(x) + c(u(x))ρ2(x))

}
.

Since 1
4
(R2+cρ2) dx is the absolutely continuous part of µ, we have from Besicovitch’s

derivation theorem that meas(Bc
1) = 0. The proof can be found in [1]. Given

X ∈ x−1
1 (B1), we denote x = x1(X). We claim that for all i ∈ N, there exists

0 < ε < 1
i

such that x − ε and x + ε both belong to supp(µd)c. Let us assume

the opposite. Then, there exists i ∈ N such that for all 0 < ε < 1
i
, x − ε and

x + ε both belong to supp(µd). Since the set (0, 1
i
) is uncountable, this implies

that uncountably many points belong to supp(µd). This is a contradiction, and
our claim is proved. Hence, we can find two sequences Xi and X ′i in A such that
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1
2
(x1(Xi) + x1(X ′i)) = x1(X) and 0 < X ′i −Xi <

1
i
. We have by (3.15), since Xi and

X ′i belong to A,

(3.16) µ([x1(Xi), x1(X ′i))) + x1(X ′i)− x1(Xi) = X ′i −Xi.

Since x1(Xi) /∈ supp(µd), we infer that µ({x1(Xi)}) = 0 and µ([x1(Xi), x1(X ′i))) =
µ((x1(Xi), x1(X ′i))). Dividing (3.16) by X ′i −Xi, we get

x1(X ′i)− x1(Xi)

X ′i −Xi

µ((x1(Xi), x1(X ′i)))

x1(X ′i)− x1(Xi)
+
x1(X ′i)− x1(Xi)

X ′i −Xi

= 1

and letting i tend to infinity, we obtain

(3.17) x′1(X)
1

4
(R2 + c(u)ρ2)(x1(X)) + x′1(X) = 1

for almost every X ∈ x−1
1 (B1). Since R = x−1

1 (B1) ∪ x−1
1 (Bc

1), it remains to study
the behavior of x′1 in x−1

1 (Bc
1). We proved above that meas(Bc

1) = 0, which does not
imply in general that meas(x−1

1 (Bc
1)) = 0.1 Therefore, we need the following result.

Lemma 3.5 ([9, Lemma 3.9]). Given an increasing Lipschitz continuous function
f : R → R, for any set B of measure zero, we have f ′ = 0 almost everywhere in
f−1(B).

We apply Lemma 3.5 and get, since meas(Bc
1) = 0, that x′1 = 0 almost everywhere

in x−1
1 (Bc

1). From (3.17), we get

x′1(X)J ′1(X) = x′1(X)2 1

4
(R2(x1(X)) + c(U1(X))ρ2(x1(X)))

= (c(U1(X))V1(X))2 + c(U1(X))H2
1 (X)

and (3.8) follows. The relation in (3.7) follows by differentiating (3.12f). Now we
can prove that H1 and V1 belong to L∞(R). By (3.8), we have

0 ≤
(

1

κ
|V1|+

1√
κ
|H1|

)2

≤
(
c(U1)|V1|+

√
c(U1)|H1|

)2

≤ 2
(
c2(U1)V 2

1 + c(U1)H2
1

)
= 2x′1J

′
1 ≤ 2

since x′1, J
′
1 ∈ [0, 1]. This implies that H1, V1 ∈ L∞(R).

Since x1 + J1 = Id, all conditions in Definition 3.2 are satisfied and hence also
(3.9).

The function J1 vanishes at −∞ since J1 is non-decreasing and non-negative and
x1(X) ≤ X. Hence, (3.10) is satisfied for J1. Let us verify that (3.11a) and (3.11b)
hold. Consider a curve (X ,Y) ∈ C such that x1(X (s)) = x2(Y(s)). By (3.12d), we
have

U1(X (s)) = u(x1(X (s))) = u(x2(Y(s))) = U2(Y(s)).

We obtain

U1(X (s̄))− U1(X (s)) =

∫ x1(X (s̄))

x1(X (s))

ux(x) dx

1If µ = δ0, then Bc
1 = {0}, but x−1

1 ({0}) = [0, 1].
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=

∫ x1(X (s̄))

x1(X (s))

(R− S)

2c(u)
(x) dx

=

∫ x1(X (s̄))

x1(X (s))

R

2c(u)
(x)dx−

∫ x2(Y(s̄))

x2(Y(s))

S

2c(u)
(x) dx

=

∫ s̄

s

(V1(X )Ẋ + V2(Y)Ẏ)(r) dr

where we used that ux = 1
2c(u)

(R − S) and x1(X ) = x2(Y). Dividing both sides by

s̄− s and letting s̄→ s yields (3.11b). �

Given an element in F we want to define a curve (X ,Y) and the values of ψ on
that curve. We define the set G which consists of curves (X ,Y) and five functions
Z, V , W , p and q, next. Recalling Section 2 the idea is that these functions in the
smooth case are given through

Z(s) = Z(X (s),Y(s))

and

V(X (s)) = ZX(X (s),Y(s)), W(Y(s)) = ZY (X (s),Y(s)),

p(X (s)) = p(X (s),Y(s)), q(Y(s)) = q(X (s),Y(s)),

and hence motivate some of the regularity conditions that are imposed in the defini-
tion of the set G. For example, from the derivation in the previous section we know
that the function x(X, Y ) is increasing with respect to both its arguments and is
therefore unbounded. However, from (2.59) we get

|x(X (s),Y(s))− s| ≤ 1

2
(µ0(R) + ν0(R))

which belongs to L∞(R). Therefore, we require that Z2 − Id belongs to L∞(R).
It is convenient to introduce the following notation: to any triplet (Z,V ,W) of

five dimensional vector functions we associate a triplet (Za,Va,Wa) given by

Za1 = Z1 −
1

c(0)
(X − Id), Va1 = V1 −

1

2c(0)
, Wa

1 =W1 +
1

2c(0)
,(3.18a)

Za2 = Z2 − Id, Va2 = V2 −
1

2
, Wa

2 =W2 −
1

2
,(3.18b)

Zai = Zi, Vai = Vi, Wa
i =Wi(3.18c)

for i ∈ {3, 4, 5}.
Definition 3.6. The set G is the set of all elements Θ = (X ,Y ,Z,V ,W , p, q) which
consist of a curve (X (s),Y(s)) ∈ C, three vector-valued functions

Z(s) = (Z1(s),Z2(s),Z3(s),Z4(s),Z5(s)),

V(X) = (V1(X),V2(X),V3(X),V4(X),V5(X)),

W(Y ) = (W1(Y ),W2(Y ),W3(Y ),W4(Y ),W5(Y )),

and two functions p(X) and q(Y ). We set

(3.19) ‖Θ‖2
G = ‖Z3‖2

L2(R) + ‖Va‖2
L2(R) + ‖Wa‖2

L2(R) + ‖p‖2
L2(R) + ‖q‖2

L2(R)
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and

|||Θ|||G = ‖(X ,Y)‖C +

∥∥∥∥ 1

V2 + V4

∥∥∥∥
L∞(R)

+

∥∥∥∥ 1

W2 +W4

∥∥∥∥
L∞(R)

(3.20)

+ ‖Za‖L∞(R) + ‖Va‖L∞(R) + ‖Wa‖L∞(R) + ‖p‖L∞(R) + ‖q‖L∞(R) .

The element Θ belongs to G if

(i)

(3.21) ‖Θ‖G <∞ and |||Θ|||G <∞;

(ii)

(3.22) V2,W2,V4,W4 ≥ 0;

(iii) for almost every s ∈ R, we have

(3.23) Ż(s) = V(X (s))Ẋ (s) +W(Y(s))Ẏ(s)

(iv)

V2(X (s)) = c(Z3(s))V1(X (s)), W2(Y(s)) = −c(Z3(s))W1(Y(s)),(3.24a)

V4(X (s)) = c(Z3(s))V5(X (s)), W4(Y(s)) = −c(Z3(s))W5(Y(s))(3.24b)

and

2V4(X (s))V2(X (s)) = (c(Z3(s))V3(X (s)))2 + c(Z3(s))p2(X (s)),(3.24c)

2W4(Y(s))W2(Y(s)) = (c(Z3(s))W3(Y(s)))2 + c(Z3(s))q2(Y(s));(3.24d)

(v)

(3.25) lim
s→−∞

Z4(s) = 0.

We denote by G0 the subset of G which parametrize the data at time t = 0, that is,

G0 = {Θ ∈ G | Z1 = 0}.
For Θ ∈ G0, we get by using (3.23) and (3.24a), that

(3.26) V2(X (s))Ẋ (s) =W2(Y(s))Ẏ(s).

This implies that

(3.27) Ż2(s) = 2V2(X (s))Ẋ (s) = 2W2(Y(s))Ẏ(s).

Note that for an element Θ ∈ G we have V2 + V4 > 0 and W2 +W4 > 0 al-
most everywhere. As we shall see, this property is preserved in the solution and is
important in proving that the solution operator from D to D is a semigroup.

Definition 3.7. For any ψ = (ψ1, ψ2) ∈ F , we define (X ,Y ,Z,V ,W , p, q) as

(3.28) X (s) = sup{X ∈ R | x1(X ′) < x2(2s−X ′) for all X ′ < X}
and set Y(s) = 2s−X (s). We have

(3.29) x1(X (s)) = x2(Y(s)).

We define

Z1(s) = 0,(3.30a)

Z2(s) = x1(X (s)) = x2(Y(s)),(3.30b)
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Z3(s) = U1(X (s)) = U2(Y(s)),(3.30c)

Z4(s) = J1(X (s)) + J2(Y(s)),(3.30d)

Z5(s) = K1(X (s)) +K2(Y(s))(3.30e)

and

V1(X) =
1

2c(U1(X))
x′1(X), W1(Y ) = − 1

2c(U2(Y ))
x′2(Y ),(3.31a)

V2(X) =
1

2
x′1(X), W2(Y ) =

1

2
x′2(Y ),(3.31b)

V3(X) = V1(X), W3(Y ) = V2(Y ),(3.31c)

V4(X) = J ′1(X), W4(Y ) = J ′2(Y ),(3.31d)

V5(X) = K ′1(X), W5(Y ) = K ′2(Y ),(3.31e)

p(X) = H1(X), q(Y ) = H2(Y ).(3.31f)

Let C : F → G0 denote the mapping which to any ψ ∈ F associates the element
(X ,Y ,Z,V ,W , p, q) ∈ G0 as defined above.

Example 1 continued. The function X (s) is given as the unique point of
intersection X between x1(X) and x2(2s−X), i.e.,

x1(X (s)) = x2(2s−X (s)),

which implies that
X (s) = s and Y(s) = s.

Hence, (X ,Y) is a strictly monotone curve.
Example 2 continued. For s ≤ π

4
, X (s) is given implicitly as the solution of

the equation X = x2(2s−X), or

arctan(X (s)) + 2X (s) +
π

2
= 2s.

By differentiating, we get

Ẋ (s) =
1

1 + 1
2+2X (s)2

,

so that 2
3
≤ Ẋ (s) ≤ 1 which implies that Ẏ(s) ≥ 1. Hence, for s ≤ π

4
(X ,Y) is a

strictly monotone curve.
For π

4
≤ s ≤ π

4
+ 1

2
, we have

X (s) = 2s− π

2
and Y(s) = π

2
, that is, Y(s) is constant.

For s > π
4

+ 1
2
, X (s) is given as the solution of the equation X − 1 = x2(2s−X),

that is
arctan(X (s)− 1) + 2X (s)− 1 +

π

2
= 2s.

We differentiate and get

Ẋ (s) =
1

1 + 1
2+2(X (s)−1)2

,

so that 2
3
≤ Ẋ (s) ≤ 1 and Ẏ(s) ≥ 1. Hence, for s > π

4
+ 1

2
the curve (X ,Y) is the

graph of a strictly increasing function.
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We conclude that the curve (X ,Y) consists of two strictly increasing parts (when
s ≤ π

4
and s > π

4
+ 1

2
) which are joined by a horizontal line segment (when π

4
≤ s ≤

π
4

+ 1
2
).

Example 3 continued. In order to compute X as defined in (3.28) we study
the region (X, Y ) such that Y = 2s−X and x1(X) = x2(Y ). We have

x2(2s−X) =


2s−X − 1 if X ≤ 2s− 1,

0 if 2s− 1 ≤ X ≤ 2s,

2s−X, if 2s ≤ X.

If 2s ≤ 0, the two functions intersect at only one point X = s. The same holds for
2s− 1 ≥ 1, where they intersect at X = s.

If 0 ≤ 2s ≤ 1 then x1(X) = x2(2s−X) for all 0 ≤ X ≤ 2s. Since Y = 2s−X this
corresponds to straight line segments in the (X, Y )-plane with endpoints in (0, 2s)
and (2s, 0). When we consider all 0 ≤ 2s ≤ 1 we therefore get a triangle in the
(X, Y )-plane with corner points at (0, 0), (1, 0) and (0, 1).

If 0 ≤ 2s − 1 ≤ 1 then x1(X) = x2(2s − X) for all 2s − 1 ≤ X ≤ 1. Since
Y = 2s − X this corresponds to straight line segments in the (X, Y )-plane with
endpoints in (2s − 1, 1) and (1, 2s − 1). When we consider all 0 ≤ 2s − 1 ≤ 1 we
therefore get a triangle in the (X, Y )-plane with corner points at (1, 0), (1, 1) and
(0, 1).

Therefore, for 0 ≤ s ≤ 1 the region in the (X, Y )-plane where x1(X) = x2(Y ) for
Y = 2s−X is a box with corners at (0, 0), (1, 0), (1, 1) and (0, 1).

In principle we could pick any curve (X (s),Y(s)) in the box which satisfies Defini-
tion 2.1. This is because for any such curve in the box we have x1(X (s)) = x2(Y(s)).
From (3.30a) we would then have Z1(s) = 0 so that t(X (s),Y(s)) = 0 for any such
curve. Hence, t(X, Y ) = 0 for all (X, Y ) = [0, 1] × [0, 1]. In other words, time is
equal to zero in the box. In order to proceed we must pick one of these curves, and
from (3.28) this curve consists of the straight line between (0, 0) and (0, 1), and the
straight line between (0, 1) and (1, 1), that is,

X (s) =


s if s ≤ 0,

0 if 0 ≤ s ≤ 1
2
,

2s− 1 if 1
2
≤ s ≤ 1,

s if s ≥ 1

and Y(s) =


s if s ≤ 0,

2s if 0 ≤ s ≤ 1
2
,

1 if 1
2
≤ s ≤ 1,

s if s ≥ 1,

see Figure 3 and 4.
We mention that if the measures are not discrete at the same point, we do not get

boxes. Instead, the region in the (X, Y )-plane where x1(X) = x2(Y ) for Y = 2s−X
is a curve consisting of the graph of strictly increasing functions and horizontal and
vertical line segments.

Proof of the well-posedness of Definition 3.7. Let us verify that (X ,Y) belongs to
C. We first prove that X is nondecreasing. Let s < s̄ and consider a sequence Xi

such that lim
i→∞

Xi = X (s) with Xi < X (s). By (3.28) and since x2 is nondecreasing,

we have
x1(Xi) < x2(2s−Xi) ≤ x2(2s̄−Xi).
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x1(X)x2(2s � X)

2s � 1 12s
X

Y

Figure 3. The functions x1(X) and x2(2s − X), from Example 3,
for some s < 0. The functions intersect at X = X (s). As s increases,
the graph of x2(2s−X) moves to the right. Eventually, the functions
will intersect on intervals, which correspond to the box in Figure 4.

1

2
 s  1

0  s  1

2

s  0

s � 1

1

X

Y

1

Figure 4. The set of all X such that x1(X) = x2(2s − X), from
Example 3, for different values of s. The curve (X (s),Y(s)) is marked
in blue.

Hence, Xi < X (s̄). By letting i tend to infinity, we conclude that X (s) ≤ X (s̄).
By the continuity of x1 and x2, we obtain (3.29). We show that X is differentiable
almost everywhere. We claim that X is Lipschitz continuous with Lipschitz constant
bounded by two, that is,

(3.32) |X (s̄)−X (s)| ≤ 2|s̄− s|.
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We may assume without loss of generality that s < s̄. Assume that (3.32) does not
hold, so that

(3.33) X (s̄)−X (s) > 2(s̄− s)
for some s̄ > s ∈ R. Thus, Y(s) > Y(s̄). Then, since x2 is nondecreasing,

x1(X (s)) = x2(Y(s)) ≥ x2(Y(s̄)) = x1(X (s̄)).

This implies that x1(X (s)) = x1(X (s̄)) because x′1 ≥ 0 and X (s) < X (s̄). Hence, x1

is constant on [X (s),X (s̄)]. One proves similarly that x2 is constant on [Y(s̄),Y(s)].
Consider the point (X, Y ) given by Y = Y(s) and X = 2s̄− Y(s). We have

X (s) = 2s− Y(s) < X < 2s̄− Y(s̄) = X (s̄),

so that (X, Y ) ∈ [X (s),X (s̄)] × [Y(s̄),Y(s)]. It follows that x1(X) = x1(X (s)) =
x2(Y(s)) = x2(2s̄ − X) and X < X (s̄), which contradicts the definition of X .
Therefore, (3.33) cannot hold and we have proved (3.32). Then, by Rademacher’s
theorem, X is differentiable almost everywhere. Let us prove that X−Id ∈ W 1,∞(R).
This follows since

X (s)− s =
1

2
(X (s)− Y(s)) =

1

2
(X (s)− x1(X (s)) + x2(Y(s))− Y(s))

and x1 − Id, x2 − Id ∈ W 1,∞(R). Since Ẋ ≤ 2, it follows that Ẏ = 2 − Ẋ ≥ 0. As
above, one can show that Y − Id ∈ W 1,∞(R). Hence, (X ,Y) ∈ C. We prove that
||Θ||G and |||Θ|||G are finite. In order to prove that Z3 ∈ L2(R) we define the set

B = {s ∈ R | Ẋ (s) ≥ 1}.
Since Ẋ + Ẏ = 2, we have Ẏ > 1 on Bc. Thus,∫

R
Z2

3 (s) ds =

∫
B

U2
1 (X (s)) ds+

∫
Bc
U2

2 (Y(s)) ds

≤
∫
B

U2
1 (X (s))Ẋ (s) ds+

∫
Bc
U2

2 (Y(s))Ẏ(s) ds

≤ ‖U1‖2
L2(R) + ‖U2‖2

L2(R)

and Z3 ∈ L2(R). The fact that Za3 ∈ L∞(R) follows from U1, U2 ∈ L2(R) ∩ L∞(R).
Next we show that the components of Va belong to L2(R) ∩ L∞(R). By (3.18) and
(3.31a), we have

|Va1 (X)| =
∣∣∣∣ 1

2c(U1(X))
x′1(X)− 1

2c(0)

∣∣∣∣
=

∣∣∣∣ 1

2c(U1(X))
(x′1(X)− 1) +

c(0)− c(U1(X))

2c(U1(X))c(0)

∣∣∣∣
≤ κ

2
|x′1(X)− 1|+ κ2

2
|c(0)− c(U1(X))|

=
κ

2
|x′1(X)− 1|+ κ2

2

∣∣∣∣ ∫ 0

U1(X)

c′(Ũ) dŨ

∣∣∣∣
≤ κ

2
|x′1(X)− 1|+ κ2k1

2
|U1(X)|,
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which implies that Va1 belongs to L2(R) ∩ L∞(R), as x′1 − 1, U1 ∈ L2(R) ∩ L∞(R).
We have

Va2 = V2 −
1

2
=

1

2
(x′1 − 1),

so that Va2 ∈ L2(R) ∩ L∞(R). Since Va3 = V1, Va4 = J ′1 and Va5 = K ′1, we conclude
that all the components of Va belong to L2(R) ∩ L∞(R). Similarly, one shows that
the components of Wa belong to L2(R) ∩ L∞(R). Since p = H1 and q = H2, we
have p, q ∈ L2(R) ∩ L∞(R). We have that Za2 ∈ L∞(R) because

Za2 (s) = Z2(s)− s = x1(X (s))− s = x1(X (s))−X (s) + X (s)− s
and x1 − Id,X − Id ∈ L∞(R). Since Z1 = 0, we have

Za1 (s) = − 1

c(0)
(X (s)− s),

so that Za1 ∈ L∞(R). From the relations Za4 = J1(X ) + J2(Y) and Za5 = K1(X ) +
K2(Y), it follows from (3.5a) that they belong to L∞(R). To check that 1

V2+V4
and

1
W2+W4

are bounded, we need the following result.

Lemma 3.8 ([9, Lemma 3.2]). If f ∈ G satisfies ||f − Id ||W 1,∞(R) + ||f−1 −
Id ||W 1,∞(R) ≤ α for some α ≥ 0, then 1

1+α
≤ f ′ ≤ 1 + α almost everywhere.

Conversely, if f is absolutely continuous, f − Id ∈ L∞(R), f ′ − 1 ∈ L2(R) and
there exists c ≥ 1 such that 1

c
≤ f ′ ≤ c almost everywhere, then f belongs to G and

satisfies ||f − Id ||W 1,∞(R) + ||f−1 − Id ||W 1,∞(R) ≤ α, where α ≥ 0 only depends on c
and ||f − Id ||L∞(R).

Since x1 +J1 ∈ G, Lemma 3.8 implies that for some α ≥ 0, 1/(1 +α) ≤ x′1 +J ′1 ≤
1+α almost everywhere and it follows that 1

V2+V4
∈ L∞(R). Similarly, one can show

that 1
W2+W4

∈ L∞(R). Hence, (3.21) holds. From (3.31b), (3.31d) and (3.6), we can

check that (3.22) is satisfied. We verify that (3.23) holds. By differentiating (3.29),
we obtain x′1(X )Ẋ = x′2(Y)Ẏ , which after using (3.31b) yields (3.26). It follows that

Ż2 =
1

2
x′1(X )Ẋ +

1

2
x′2(Y)Ẏ = V2(X )Ẋ +W2(Y)Ẏ .

By (3.30a), we have Ż1 = 0, and by (3.31a), (3.30b) and (3.30c), we obtain

V1(X )Ẋ +W1(Y)Ẏ =
1

2c(U1(X ))
x′1(X )Ẋ − 1

2c(U2(Y))
x′2(Y)Ẏ = 0.

Using (3.30c), (3.11b) and (3.31c), we find

Ż3 =
1

2
U ′1(X )Ẋ +

1

2
U ′2(Y)Ẏ = V1(X )Ẋ + V2(Y)Ẏ = V3(X )Ẋ +W3(Y)Ẏ .

The relations for Ż4 and Ż5 in (3.23) follow by differentiating (3.30d) and (3.30e),
respectively. The two identities in (3.24a) follow from (3.31a) and (3.31b). Using
(3.7), we can verify that (3.24b) holds. The last two identities (3.24c) and (3.24d)
follows from (3.8). It remains to prove (3.25). Since Z4(s) = J1(X (s)) + J2(Y(s)),
lim

s→−∞
X (s) = −∞ and lim

s→−∞
Y(s) = −∞, it follows from (3.10) that lim

s→−∞
Z4(s) = 0,

so that (3.25) is satisfied. �
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4. Existence of Solutions for the Equivalent System

4.1. Existence of Short-Range Solutions. In the following we denote rectangu-
lar domains by

Ω = [Xl, Xr]× [Yl, Yr]

and we set sl = 1
2
(Xl + Yl) and sr = 1

2
(Xr + Yr). We define curves in rectangular

domains as follows.

Definition 4.1. Given Ω = [Xl, Xr]×[Yl, Yr], we denote by C(Ω) the set of curves in
Ω parametrized by (X (s),Y(s)) with s ∈ [sl, sr] such that (X (sl),Y(sl)) = (Xl, Yl),
(X (sr),Y(sr)) = (Xr, Yr) and

X − Id, Y − Id ∈ W 1,∞([sl, sr]),(4.1a)

Ẋ ≥ 0, Ẏ ≥ 0,(4.1b)

1

2
(X (s) + Y(s)) = s for all s ∈ [sl, sr].(4.1c)

We set
‖(X ,Y)‖C(Ω) = ‖X − Id‖L∞([sl,sr])

+ ‖Y − Id‖L∞([sl,sr])
.

We introduce the counterpart of G on bounded domains, which we denote by
G(Ω).

Definition 4.2. Given Ω = [Xl, Xr] × [Yl, Yr], we denote by G(Ω) the set of all
elements which consist of a curve (X ,Y) ∈ C(Ω), three vector-valued functions
Z(s), V(X) and W(Y ), and two functions p(X) and q(Y ). We denote Θ =
(X ,Y ,Z,V ,W , p, q) and set

‖Θ‖2
G(Ω) = ‖Z3‖2

L2([sl,sr])
+‖Va‖2

L2([Xl,Xr])
+‖Wa‖2

L2([Yl,Yr])
+‖p‖2

L2([Xl,Xr])
+‖q‖2

L2([Yl,Yr])

and

|||Θ|||G(Ω) = ‖(X ,Y)‖C(Ω) +

∥∥∥∥ 1

V2 + V4

∥∥∥∥
L∞([Xl,Xr])

+

∥∥∥∥ 1

W2 +W4

∥∥∥∥
L∞([Yl,Yr])

+ ‖Za‖L∞([sl,sr])
+ ‖Va‖L∞([Xl,Xr])

+ ‖Wa‖L∞([Yl,Yr])

+ ‖p‖L∞([Xl,Xr])
+ ‖q‖L∞([Yl,Yr])

.

The element Θ belongs2 to G(Ω), if

(i)
|||Θ|||G(Ω) <∞,

(ii)
V2,W2,Z4,V4,W4 ≥ 0,

(iii) for almost every s ∈ R, we have

(4.2) Ż(s) = V(X (s))Ẋ (s) +W(Y(s))Ẏ(s),

2Note that condition (i) implies ‖Θ‖G(Ω) <∞ because Ω is bounded.
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(iv)

V2(X (s)) = c(Z3(s))V1(X (s)), W2(Y(s)) = −c(Z3(s))W1(Y(s)),(4.3a)

V4(X (s)) = c(Z3(s))V5(X (s)), W4(Y(s)) = −c(Z3(s))W5(Y(s))(4.3b)

and

2V4(X (s))V2(X (s)) = (c(Z3(s))V3(X (s)))2 + c(Z3(s))p2(X (s)),(4.3c)

2W4(Y(s))W2(Y(s)) = (c(Z3(s))W3(Y(s)))2 + c(Z3(s))q2(Y(s)).(4.3d)

By definition we have for any (X ,Y ,Z,V ,W , p, q) ∈ G(Ω) that the functions
X and Y are nondecreasing. To any nondecreasing function one can associate its
generalized inverse, a concept which is presented in, e.g., [2].

Definition 4.3. Given Ω = [Xl, Xr] × [Yl, Yr] and (X ,Y) ∈ C(Ω), we define the
generalized inverse of X and Y as

α(X) = sup{s ∈ [sl, sr] | X (s) < X} for X ∈ (Xl, Xr],

β(Y ) = sup{s ∈ [sl, sr] | Y(s) < Y } for Y ∈ (Yl, Yr],

respectively. We denote X−1 = α and Y−1 = β.

The generalized inverse functions X−1 and Y−1 satisfy the following properties.

Lemma 4.4. The functions X−1 and Y−1 are lower semicontinuous and nonde-
creasing. We have

(4.4a) X ◦ X−1 = Id and Y ◦ Y−1 = Id,

(4.4b) X−1 ◦ X (s) = s for any s such that Ẋ (s) > 0

and

(4.4c) Y−1 ◦ Y(s) = s for any s such that Ẏ(s) > 0.

We refer to [10, Lemma 3] for a proof.
Now we define solutions of (2.38) on rectangular domains. Consider the Banach

spaces

L∞X (Ω) = L∞([Yl, Yr], C([Xl, Xr])), L∞Y (Ω) = L∞([Xl, Xr], C([Yl, Yr])),

W 1,∞
X (Ω) = L∞([Yl, Yr],W

1,∞([Xl, Xr])), W 1,∞
Y (Ω) = L∞([Xl, Xr],W

1,∞([Yl, Yr])).

The corresponding norms for f : Ω 7→ R are defined as

||f ||L∞X (Ω) = ess supY ∈[Yl,Yr]
||f(·, Y )||L∞([Xl,Xr]),

||f ||L∞Y (Ω) = ess supX∈[Xl,Xr]
||f(X, ·)||L∞([Yl,Yr]),

||f ||W 1,∞
X (Ω) = ess supY ∈[Yl,Yr]

||f(·, Y )||W 1,∞([Xl,Xr]),

||f ||W 1,∞
Y (Ω) = ess supX∈[Xl,Xr]

||f(X, ·)||W 1,∞([Yl,Yr]).

We introduce the function Za, defined as

Za
1 (X, Y ) = Z1(X, Y )− 1

2c(0)
(X − Y ),(4.5a)

Za
2 (X, Y ) = Z2(X, Y )− 1

2
(X + Y ),(4.5b)
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Za
i (X, Y ) = Zi(X, Y ) for i ∈ {3, 4, 5}(4.5c)

in order to conveniently express the decay of Z at infinity in the diagonal direction.
Although we are not yet concerned with the behavior at infinity, the notation will
be useful when introducing global solutions.

Definition 4.5. We say that (Z, p, q) is a solution of (2.38) in Ω = [Xl, Xr]×[Yl, Yr]
if

(i)

Za ∈ [W 1,∞(Ω)]5, Za
X ∈ [W 1,∞

Y (Ω)]5, Za
Y ∈ [W 1,∞

X (Ω)]5,(4.6)

p ∈ W 1,∞
Y (Ω), q ∈ W 1,∞

X (Ω),

(ii) for almost every X ∈ [Xl, Xr],

(4.7) (ZX(X, Y ))Y = F (Z)(ZX , ZY )(X, Y ),

(iii) for almost every Y ∈ [Yl, Yr],

(4.8) (ZY (X, Y ))X = F (Z)(ZX , ZY )(X, Y ),

(iv) for almost every X ∈ [Xl, Xr],

(4.9) pY (X, Y ) = 0,

(v) for almost every Y ∈ [Yl, Yr],

(4.10) qX(X, Y ) = 0.

We say that (Z, p, q) is a global solution of (2.38), if these conditions hold
for any rectangular domain Ω.

The following lemma, whose proof follows the same lines as the one of [10, Lemma
4], shows that the imposed regularity in Definition 4.5 is necessary to extract relevant
data from a curve. Slightly abusing the notation, we denote

(4.11) X (Y ) = X ◦ Y−1(Y ) and Y(X) = Y ◦ X−1(X).

Lemma 4.6. Let Ω be a rectangular domain in R2 and assume that

Za ∈ [W 1,∞(Ω)]5, Za
X ∈ [W 1,∞

Y (Ω)]5, Za
Y ∈ [W 1,∞

X (Ω)]5,

p ∈ W 1,∞
Y (Ω), q ∈ W 1,∞

X (Ω).

Given a curve (X ,Y) ∈ C(Ω), let (Z,V ,W , p, q) be defined as

Z(s) = Z(X (s),Y(s)) for all s ∈ R
and

V(X) = ZX(X,Y(X)) for a.e. X ∈ R,
W(Y ) = ZY (X (Y ), Y ) for a.e. Y ∈ R,
p(X) = p(X,Y(X)) for a.e. X ∈ R,
q(Y ) = q(X (Y ), Y ) for a.e. Y ∈ R

or equivalently

V(X (s)) = ZX(X (s),Y(s)) for a.e. s ∈ R such that Ẋ (s) > 0,
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W(Y(s)) = ZY (X (s),Y(s)) for a.e. s ∈ R such that Ẏ(s) > 0,

p(X (s)) = p(X (s),Y(s)) for a.e. s ∈ R such that Ẋ (s) > 0,

q(Y(s)) = q(X (s),Y(s)) for a.e. s ∈ R such that Ẏ(s) > 0.

Then Z,V ,W , p, q ∈ L∞loc(R) and we denote Θ = (X ,Y ,Z,V ,W , p, q) by

(Z, p, q) • (X ,Y).

We now introduce the set H(Ω) of all solutions of (2.38) on rectangular domains,
which satisfy (2.36), (2.37), and some additional constraints.

Definition 4.7. Given Ω = [Xl, Xr] × [Yl, Yr], let H(Ω) be the set of all solutions
(Z, p, q) to (2.38) in the sense of Definition 4.5 which satisfy the following properties

xX = c(U)tX , xY = −c(U)tY ,(4.12a)

JX = c(U)KX , JY = −c(U)KY ,(4.12b)

2JXxX = (c(U)UX)2 + c(U)p2, 2JY xY = (c(U)UY )2 + c(U)q2,(4.12c)

xX ≥ 0, xY ≥ 0,(4.12d)

JX ≥ 0, JY ≥ 0,(4.12e)

xX + JX > 0, xY + JY > 0.(4.12f)

We have the following short-range existence theorem.

Theorem 4.8. Given Ω = [Xl, Xr]×[Yl, Yr], then for any Θ = (X ,Y ,Z,V ,W , p, q) ∈
G(Ω), there exists a unique solution (Z, p, q) ∈ H(Ω) such that

(4.13) Θ = (Z, p, q) • (X ,Y),

if sr − sl ≤ 1/C(|||Θ|||G(Ω)). Here C denotes an increasing function dependent on
Ω, κ, k1, and k2.

Proof. We aim to use the Banach fixed-point theorem. Define B as the set of all
elements (Zh, Zv, V,W ) such that

Zh ∈ [L∞X (Ω)]5, Zv ∈ [L∞Y (Ω)]5, V ∈ [L∞Y (Ω)]5, W ∈ [L∞X (Ω)]5

and

(4.14)
5∑
i=1

(||Za
h,i||L∞X (Ω) + ||Za

v,i||L∞Y (Ω) + ||V a
i ||L∞Y (Ω) + ||W a

i ||L∞X (Ω)) ≤ 2|||Θ|||G(Ω),

where we used the same notation for Zh and Zv as in (4.5) for Z. For V and W we
used the same notation as in (3.18) for V and W , that is,

V a
1 = V1 −

1

2c(0)
, W a

1 = W1 +
1

2c(0)
,(4.15a)

V a
2 = V2 −

1

2
, W a

2 = W2 −
1

2
,(4.15b)

V a
i = Vi, W a

i = Wi for i ∈ {3, 4, 5}.(4.15c)

As we shall see, for the fixed point, the functions Zh and Zv coincide and are equal
to the solution Z, but we find it convenient to define both quantities in order to
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keep the symmetry of the problem with respect to the X and Y variables. For any
(Zh, Zv, V,W ) ∈ B, we introduce the mapping T given by

(Z̄h, Z̄v, V̄ , W̄ ) = T (Zh, Zv, V,W ),

where

(4.16) Z̄h(X, Y ) = Z(Y−1(Y )) +

∫ X

X (Y )

V (X̃, Y ) dX̃

for a.e. Y ∈ [Yl, Yr] and all X ∈ [Xl, Xr],

(4.17) Z̄v(X, Y ) = Z(X−1(X)) +

∫ Y

Y(X)

W (X, Ỹ ) dỸ

for a.e. X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr],

(4.18) V̄ (X, Y ) = V(X) +

∫ Y

Y(X)

F (Zh)(V,W )(X, Ỹ ) dỸ

for a.e. X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr],

(4.19) W̄ (X, Y ) =W(Y ) +

∫ X

X (Y )

F (Zh)(V,W )(X̃, Y ) dX̃

for a.e. Y ∈ [Yl, Yr] and all X ∈ [Xl, Xr].
Let us compare this mapping with a solution Z of (2.38a)-(2.38e) (in the sense of

Definition 4.5) which satisfies (4.13). For any (X, Y ) ∈ Ω, we have

Z(X,Y(s)) = Z(s) +

∫ X

X (s)

ZX(X̃,Y(s)) dX̃,

which after setting s = Y−1(Y ) yields

Z(X, Y ) = Z(Y−1(Y )) +

∫ X

X (Y )

ZX(X̃, Y ) dX̃.

Similarly, we obtain, by setting s = X−1(X),

Z(X, Y ) = Z(X−1(X)) +

∫ Y

Y(X)

ZY (X, Ỹ ) dỸ .

For a.e. X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr], we have

ZX(X, Y ) = ZX(X,Y(X)) +

∫ Y

Y(X)

F (Z)(ZX , ZY )(X, Ỹ ) dỸ

which by (4.13) rewrites as

ZX(X, Y ) = V(X) +

∫ Y

Y(X)

F (Z)(ZX , ZY )(X, Ỹ ) dỸ .

By a similar argument, we get

ZY (X, Y ) =W(Y ) +

∫ X

X (Y )

F (Z)(ZX , ZY )(X̃, Y ) dX̃

for a.e. Y ∈ [Yl, Yr] and all X ∈ [Xl, Xr]. Thus, if Z is a solution of (2.38a)-(2.38e)
which satisfies (4.13), then (Z,Z, ZX , ZY ) is a fixed point of T .
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Let us show that the mapping T maps B into B. To begin with we derive some
estimates. We set δ = sr − sl. By (4.4a) and since 0 ≤ Ẋ ≤ 2, we have

(4.20) |X −X (Y )| = |X (α(X))−X (β(Y ))| ≤ X (sr)−X (sl) ≤ 2(sr − sl) = 2δ

and similarly, we get

(4.21) |Y − Y(X)| ≤ 2(sr − sl) = 2δ.

For the first component of Z̄a
h, we have

Z̄a
h,1(X, Y ) = Z̄h,1(X, Y )− 1

2c(0)
(X − Y ) by (4.5)

= Z1(Y−1(Y )) +

∫ X

X (Y )

V1(X̃, Y ) dX̃ − 1

2c(0)
(X − Y ) by (4.16)

= Za1 (Y−1(Y )) +
1

c(0)
(X (Y )− Y−1(Y )) by (3.18) and (4.15)

+

∫ X

X (Y )

(
V a

1 (X̃, Y ) +
1

2c(0)

)
dX̃ − 1

2c(0)
(X − Y )

= Za1 (Y−1(Y )) +

∫ X

X (Y )

V a
1 (X̃, Y ) dX̃

+
1

c(0)

(
1

2
X (Y ) +

1

2
Y − Y−1(Y )

)
.

From (4.1c), we obtain

1

2
X (Y ) +

1

2
Y − Y−1(Y ) =

1

2
X (Y ) +

1

2
Y − 1

2
(X (Y ) + Y ) = 0.

Hence, by (4.20),

||Z̄a
h,1||L∞X (Ω) ≤ ||Za1 ||L∞([sl,sr]) + 2δ||V a

1 ||L∞Y (Ω).

We proceed similarly for the second component of Z̄a
h and get

Z̄a
h,2(X, Y ) = Z̄h,2(X, Y )− 1

2
(X + Y )

= Z2(Y−1(Y )) +

∫ X

X (Y )

V2(X̃, Y ) dX̃ − 1

2
(X + Y )

= Za2 (Y−1(Y )) + Y−1(Y ) +

∫ X

X (Y )

(
V a

2 (X̃, Y ) +
1

2

)
dX̃ − 1

2
(X + Y )

= Za2 (Y−1(Y )) +

∫ X

X (Y )

V a
2 (X̃, Y ) dX̃ + Y−1(Y )− 1

2
X (Y )− 1

2
Y.

By (4.1c), we have

Y−1(Y )− 1

2
X (Y )− 1

2
Y =

1

2
(X (Y ) + Y )− 1

2
X (Y )− 1

2
Y = 0,

which leads to the estimate

||Z̄a
h,2||L∞X (Ω) ≤ ||Za2 ||L∞([sl,sr]) + 2δ||V a

2 ||L∞Y (Ω).
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For i ∈ {3, 4, 5}, we have

||Z̄a
h,i||L∞X (Ω) ≤ ||Zai ||L∞([sl,sr]) + 2δ||V a

i ||L∞Y (Ω).

Similar bounds hold for the components of Z̄a
v . Let us consider V̄ a

1 . By using the
governing equations (2.38), we obtain

V̄ a
1 (X, Y ) = V̄1(X, Y )− 1

2c(0)

= V1(X)− 1

2c(0)
+

∫ Y

Y(X)

F1(Zh)(V,W )(X, Ỹ ) dỸ

= Va1 (X)−
∫ Y

Y(X)

(
c′(Zh,3)

2c(Zh,3)
(V3W1 +W3V1)

)
(X, Ỹ ) dỸ .

We have

|V3W1 +W3V1| =
∣∣∣∣V a

3 W
a
1 +W a

3 V
a

1 −
1

2c(0)
(W a

3 − V a
3 )

∣∣∣∣
≤ ||V a

3 ||L∞Y (Ω)||W a
1 ||L∞X (Ω) + ||W a

3 ||L∞X (Ω)||V a
1 ||L∞Y (Ω)

+
κ

2

(
||W a

3 ||L∞X (Ω) + ||V a
3 ||L∞Y (Ω)

)
≤ 4|||Θ|||2G(Ω) + κ|||Θ|||G(Ω) by (4.14).

Hence,

||V̄ a
1 ||L∞Y (Ω) ≤ ||Va1 ||L∞([Xl,Xr]) + δκk1

(
4|||Θ|||2G(Ω) + κ|||Θ|||G(Ω)

)
.

After doing the same for the other components of V̄ and W̄ , we get
5∑
i=1

(||Z̄a
h,i||L∞X (Ω)+||Z̄a

v,i||L∞Y (Ω)+||V̄ a
i ||L∞Y (Ω)+||W̄ a

i ||L∞X (Ω)) ≤ |||Θ|||G(Ω)+δC1(|||Θ|||G(Ω))

for some increasing function C1(|||Θ|||G(Ω)). Hence, by setting δ small enough, the
mapping T maps B into B.

It remains to show that T is a contraction. Let (Zh, Zv, V,W ) and (Z ′h, Z
′
v, V

′,W ′)
belong to B, and fix (X, Y ) ∈ Ω. For the first component of F , we have

|V̄ a
1 (X, Y )− (V̄ ′1)a(X, Y )|(4.22)

= |V̄1(X, Y )− V̄ ′1(X, Y )|

≤
∫ Y

Y(X)

|F1(Zh)(V,W )− F1(Z ′h)(V
′,W ′)|(X, Ỹ ) dỸ

and by (2.38), we get

F1(Zh)(V,W )− F1(Z ′h)(V
′,W ′)

= − c
′(Zh,3)

2c(Zh,3)
(V3W1 +W3V1) +

c′(Z ′h,3)

2c(Z ′h,3)
(V ′3W

′
1 +W ′

3V
′

1)

= −
c′(Za

h,3)

2c(Za
h,3)

(
V a

3

(
W a

1 −
1

2c(0)

)
+W a

3

(
V a

1 +
1

2c(0)

))
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+
c′((Z ′h,3)a)

2c((Z ′h,3)a)

(
(V ′3)a

(
(W ′

1)a − 1

2c(0)

)
+ (W ′

3)a
(

(V ′1)a +
1

2c(0)

))
=
c′((Z ′h,3)a)

2c((Z ′h,3)a)

(
(V ′3)a((W ′

1)a −W a
1 ) +W a

1 ((V ′3)a − V a
3 )

+ (W ′
3)a((V ′1)a − V a

1 ) + V a
1 ((W ′

3)a −W a
3 )

− 1

2c(0)
((V ′3)a − V a

3 ) +
1

2c(0)
((W ′

3)a −W a
3 )

)
+

1

2

(
V a

3 W
a
1 +W a

3 V
a

1 −
1

2c(0)
V a

3 +
1

2c(0)
W a

3

)(
c′((Z ′h,3)a)

c((Z ′h,3)a)
−
c′(Za

h,3)

c(Za
h,3)

)
.

Since
c′((Z ′h,3)a)

c((Z ′h,3)a)
−
c′(Za

h,3)

c(Za
h,3)

=

∫ (Z′h,3)a

Zah,3

(
c′′c− (c′)2

c2

)
(Z) dZ,

this leads to the estimate

|F1(Zh)(V,W )− F1(Z ′h)(V
′,W ′)|

≤ κk1

2

(
2|||Θ|||G(Ω)

(
||(W ′

1)a −W a
1 ||L∞X (Ω) + ||(V ′3)a − V a

3 ||L∞Y (Ω)

+ ||(V ′1)a − V a
1 ||L∞Y (Ω) + ||(W ′

3)a −W a
3 ||L∞X (Ω)

)
+
κ

2

(
||(V ′3)a − V a

3 ||L∞Y (Ω) + ||(W ′
3)a −W a

3 ||L∞X (Ω)

))
+

1

2

(
4|||Θ|||2G(Ω) + κ|||Θ|||G(Ω)

)
||(Z ′h,3)a − Za

h,3||L∞X (Ω)

× (κk2 + (κk1)2),

where we used (4.14). We insert this into (4.22) and obtain

|V̄ a
1 (X, Y )− (V̄ ′1)a(X, Y )|
≤ δK

(
||W a − (W ′)a||L∞X (Ω) + ||V a − (V ′)a||L∞Y (Ω) + ||Za

h − (Z ′h)
a||L∞X (Ω)

)
,

where K depends on |||Θ|||G(Ω), κ, k1 and k2 because of (1.5) and (1.6). Following
the same lines, we obtain

||Z̄a
h − (Z̄ ′h)

a||L∞X (Ω) + ||Z̄a
v − (Z̄ ′v)

a||L∞Y (Ω) + ||V̄ a − (V̄ ′)a||L∞Y (Ω) + ||W̄ a − (W̄ ′)a||L∞X (Ω)

≤ δC2

(
||Za

h − (Z ′h)
a||L∞X (Ω) + ||Za

v − (Z ′v)
a||L∞Y (Ω)

+ ||V a − (V ′)a||L∞Y (Ω) + ||W a − (W ′)a||L∞X (Ω)

)
for some increasing function C2 depending on |||Θ|||G(Ω), Ω, κ, k1 and k2. By setting
δ > 0 so small that δC2 < 1, we conclude that T is a contraction. Hence, T admits
a unique fixed point that we denote (Zh, Zv, V,W ).

Let us prove that Zh = Zv, V = ZX and W = ZY . We denote by NX the
set of points X ∈ [Xl, Xr] for which (4.17) and (4.18) hold. Similarly, we denote
by NY the set of points Y ∈ [Yl, Yr] for which (4.16) and (4.19) hold. We have
meas([Xl, Xr] \ NX) = meas([Yl, Yr] \ NY ) = 0 such that meas(Ω \ NX ×NY ) = 0.
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For any (X, Y ) ∈ NX ×NY , we have

Zh(X, Y )− Zv(X, Y ) = Z(Y−1(Y )) +

∫ X

X (Y )

V (X̃, Y ) dX̃(4.23)

−Z(X−1(X))−
∫ Y

Y(X)

W (X, Ỹ ) dỸ .

From (4.18) and (4.19), we obtain∫ X

X (Y )

V (X̃, Y ) dX̃ −
∫ Y

Y(X)

W (X, Ỹ ) dỸ

=

∫ X

X (Y )

(
V(X̃) +

∫ Y

Y(X̃)

F (Zh)(V,W )(X̃, Ỹ ) dỸ

)
dX̃

−
∫ Y

Y(X)

(
W(Ỹ ) +

∫ X

X (Ỹ )

F (Zh)(V,W )(X̃, Ỹ ) dX̃

)
dỸ

=

∫ X

X (Y )

V(X̃) dX̃ −
∫ Y

Y(X)

W(Ỹ ) dỸ

=

∫ X◦X−1(X)

X◦Y−1(Y )

V(X̃) dX̃ −
∫ Y◦Y−1(Y )

Y◦X−1(X)

W(Ỹ ) dỸ by (4.4a) and (4.11)

= −
∫ Y−1(Y )

X−1(X)

(
V(X (s))Ẋ (s) +W(Y(s))Ẏ(s)

)
ds by a change of variables

= −
∫ Y−1(Y )

X−1(X)

Ż(s) ds by (4.2)

= Z(X−1(X))−Z(Y−1(Y )).

By inserting this into (4.23), we conclude that Zh(X, Y ) = Zv(X, Y ) for all (X, Y ) ∈
NX ×NY , that is, almost everywhere in Ω.

We denote Z = Zh = Zv. The function Z is only defined in NX ×NY . We define
Z(X, Y ) for all (X, Y ) ∈ Ω by setting

(4.24) Z(X, Y ) = lim
n→∞

Z(Xn, Yn),

where (Xn, Yn) is a squence in NX × NY such that (Xn, Yn) → (X, Y ) as n → ∞.
Let us prove that this is well-defined. First we show that Z is Lipschitz continuous
in NX ×NY . Let (X1, Y1), (X2, Y2) ∈ NX ×NY . By (4.16), we have

Z(X2, Y2)− Z(X1, Y2) =

∫ X2

X (Y2)

V (X̃, Y2) dX̃ −
∫ X1

X (Y2)

V (X̃, Y2) dX̃

=

∫ X2

X1

V (X̃, Y2) dX̃

and, from (4.17), we get

Z(X1, Y2)− Z(X1, Y1) =

∫ Y2

Y(X1)

W (X1, Ỹ ) dỸ −
∫ Y1

Y(X1)

W (X1, Ỹ ) dỸ
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=

∫ Y2

Y1

W (X1, Ỹ ) dỸ .

This implies that

|Z(X2, Y2)− Z(X1, Y1)|(4.25)

≤ |Z(X2, Y2)− Z(X1, Y2)|+ |Z(X1, Y2)− Z(X1, Y1)|
≤ (||V ||L∞Y (Ω) + ||W ||L∞X (Ω))(|X2 −X1|+ |Y2 − Y1|)
≤ C(|X2 −X1|+ |Y2 − Y1|),

where C only depends on |||Θ|||G(Ω), and we conclude that Z is Lipschitz continuous
in NX ×NY .

For any (X, Y ) ∈ Ω, there exists a sequence (Xn, Yn) ∈ NX × NY such that
(Xn, Yn)→ (X, Y ) as n→∞, since meas(Ω \NX ×NY ) = 0. From (4.25), we have

|Z(Xn, Yn)− Z(Xm, Ym)| ≤ C(|Xn −Xm|+ |Yn − Ym|),
so that the limit lim

n→∞
Z(Xn, Yn) exists. We claim that the limit is independent of the

particular choice of the sequence in NX × NY converging to (X, Y ). Let (X̄m, Ȳm)
be another sequence in NX × NY such that (X̄m, Ȳm) → (X, Y ) as n → ∞. By
(4.25), we have

|Z(Xn, Yn)− Z(X̄m, Ȳm)| ≤ C(|Xn − X̄m|+ |Yn − Ȳm|)
≤ C(|Xn −X|+ |X − X̄m|+ |Yn − Y |+ |Y − Ȳm|)

which implies that lim
n→∞

Z(Xn, Yn) = lim
m→∞

Z(X̄m, Ȳm). This proves the claim and

(4.24) is well-defined. It now follows from (4.25) that Z is Lipschitz continuous in
Ω. Indeed, for any (X, Y ), (X̄, Ȳ ) ∈ Ω, there exist sequences (Xn, Yn), (X̄n, Ȳn) ∈
NX ×NY , such that (Xn, Yn)→ (X, Y ) and (X̄n, Ȳn)→ (X̄, Ȳ ), which yields

|Z(X, Y )− Z(X̄, Ȳ )| = lim
n→∞

|Z(Xn, Yn)− Z(X̄n, Ȳn)|
≤ C lim

n→∞
(|Xn − X̄n|+ |Yn − Ȳn|)

= C(|X − X̄|+ |Y − Ȳ |).
Thus, Z is Lipschitz continuous and therefore differentiable almost everywhere in
Ω. It follows from (4.16) and (4.17), that

ZX(X, Y ) = V (X, Y ) and ZY (X, Y ) = W (X, Y )

for almost every X ∈ [Xl, Xr] and Y ∈ [Yl, Yr]. Now we define the solutions p
and q of (2.38f) and (2.38g), respectively. For almost every X ∈ [Xl, Xr] and all
Y ∈ [Yl, Yr], we set

(4.26) p(X, Y ) = p(X)

and for almost every Y ∈ [Yl, Yr] and all X ∈ [Xl, Xr], we set

(4.27) q(X, Y ) = q(Y ).

Let us check that (4.6) is satisfied. Since Z is Lipschitz continuous, it follows that
all the components of Z belong to W 1,∞(Ω). As in the argument above where we
showed that Z is Lipschitz continuous, one can show that for almost every X, ZX is
Lipschitz continuous with respect to Y , and that for almost every Y , ZY is Lipschitz



44 K. GRUNERT AND A. REIGSTAD

continuous with respect to X. It implies that ZXY (X, ·) ∈ L∞([Yl, Yr]) for almost
every X ∈ [Xl, Xr] and ZY X(·, Y ) ∈ L∞([Xl, Xr]) for almost every Y ∈ [Xl, Xr],
which in turn implies that

ess supX∈[Xl,Xr]
||ZX(X, ·)||W 1,∞([Yl,Yr])

and
ess supY ∈[Yl,Yr]

||ZY (·, Y )||W 1,∞([Xl,Xr])

are bounded by a constant. Hence, ZX ∈ W 1,∞
Y (Ω) and ZY ∈ W 1,∞

X (Ω). The

fact that p ∈ W 1,∞
Y (Ω) and q ∈ W 1,∞

X (Ω) follows by (4.26) and (4.27), since p ∈
L∞([Xl, Xr]) and q ∈ L∞([Yl, Yr]). Thus, (4.6) holds.

Next, we verify that the relations (4.7)-(4.10) are satisfied. Since (Z,Z, ZX , ZY )
is a fixed point of T , we have, by differentiating (4.18) and (4.19), that (4.7) and
(4.8) hold. The relations (4.9) and (4.10) follow by differentiating (4.26) and (4.27),
respectively.

We prove that (Z, p, q) satisfies (4.13). Since (Z,Z, ZX , ZY ) is a fixed point of T ,
we get, by (4.18) and (4.19), that

ZX(X,Y(X)) = V(X) and ZY (X (Y ), Y ) =W(Y ).

By (4.17), we have
Z(X (s),Y(s)) = Z(X−1(X (s)))

and, by (4.4b), this implies (4.13) for all s ∈ [sl, sr] such that Ẋ (s) > 0. Similarly,
by (4.16), we have

Z(X (s),Y(s)) = Z(Y−1(Y(s)))

and, by (4.4c), this implies (4.13) for all s ∈ [sl, sr] such that Ẏ(s) > 0. Since
Ẋ + Ẏ = 2, the set of all s ∈ [sl, sr] such that both Ẋ (s) = 0 and Ẏ(s) = 0 has zero
measure. Hence, for almost every s ∈ [sl, sr], (4.13) holds, and since Z is continuous,
we get that Z(X (s),Y(s)) = Z(s) for all s ∈ [sl, sr]. By (4.26) and (4.27), it follows
that

p(X,Y(X)) = p(X)

for almost every X ∈ [Xl, Xr] and

q(X (Y ), Y ) = q(Y )

for almost every Y ∈ [Yl, Yr], respectively, and we conclude that (4.13) holds. Hence,
we have shown that Z is a solution of (2.38a)-(2.38e) which satisfies (4.13) if and only
if it is a fixed point for T . Since the fixed point exists and is unique, we have proved
the existence and uniqueness of the solution Z to (2.38a)-(2.38e). Furthermore, since
the functions p and q, as defined in (4.26) and (4.27), respectively, satisfy Definition
4.5 and (4.13), we have proved the existence of a unique solution (Z, p, q) of (2.38).
Next we prove that the solution (Z, p, q) belongs to H(Ω). We define the functions
v ∈ W 1,∞

Y (Ω) and w ∈ W 1,∞
X (Ω) as

v = xX − c(U)tX and w = xY + c(U)tY .

We want to prove that v and w are both zero. By using the governing equations
(2.38), we obtain

vY = xXY − c′(U)UY tX − c(U)tXY =
c′(U)

2c(U)
(UY v + UXw)
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and

wX = xXY + c′(U)UXtY + c(U)tXY =
c′(U)

2c(U)
(UY v + UXw).

By (4.13) and (4.3a), we have v(X,Y(X)) = 0 and w(X (Y ), Y ) = 0. It follows that

v(X, Y ) =

∫ Y

Y(X)

(
c′(U)

2c(U)
(UY v + UXw)

)
(X, Ỹ ) dỸ ,

w(X, Y ) =

∫ X

X (Y )

(
c′(U)

2c(U)
(UY v + UXw)

)
(X̃, Y ) dX̃,

which implies, by using (4.20) and (4.21), that

||v||L∞Y (Ω) ≤ δκk1

(
||UY ||L∞X (Ω) + ||UX ||L∞Y (Ω))(||v||L∞Y (Ω) + ||w||L∞X (Ω)

)
,

||w||L∞X (Ω) ≤ δκk1

(
||UY ||L∞X (Ω) + ||UX ||L∞Y (Ω))(||v||L∞Y (Ω) + ||w||L∞X (Ω)

)
.

Hence, by setting δ > 0 smaller if necessary, we get ||v||L∞Y (Ω) = ||w||L∞X (Ω) = 0. One

proceeds similarly in order to prove (4.12b). We show (4.12c). Define z ∈ W 1,∞
Y (Ω)

as
z = 2JXxX − (c(U)UX)2 − c(U)p2.

We have

zY = 2JXY xX + 2JXxXY − 2c(U)2UXUXY − 2c(U)c′(U)UYU
2
X

− c′(U)UY p
2 − 2c(U)ppY

=
c′(U)

c(U)
UY z

and by (4.3c), z(X,Y(X)) = 0 for X ∈ [Xl, Xr], since (Z, p, q)• (X ,Y) = Θ ∈ G(Ω).
After integrating, we obtain, since |UY | ≤ 2|||Θ|||G(Ω) and |Y − Y(X)| ≤ 2δ, that

|z(X, Y )| ≤ |z(X,Y(X))|e4δκk1|||Θ|||G(Ω) .

Hence, z = 0. Similarly, one proves that 2JY xY = (c(U)UY )2 + c(U)q2. Now we
prove (4.12d)-(4.12f). Since

1

xX + JX
(X,Y(X)) =

1

V2 + V4

(X)

for almost every X ∈ [Xl, Xr], and since V2 and V4 belong to G(Ω), we have∥∥∥∥ 1

xX + JX
(·,Y(·))

∥∥∥∥
L∞([Xl,Xr])

≤ |||Θ|||G(Ω).

Let X ∈ [Xl, Xr] such that

1

xX + JX
(X,Y(X)) ≤ |||Θ|||G(Ω),

and we define

Y∗ = inf{Y ∈ [Yl, Yr] | Y ≤ Y(X) and (xX + JX)(X, Y ′) > 0 for all Y ′ > Y }
and

Y ∗ = sup{Y ∈ [Yl, Yr] | Y ≥ Y(X) and (xX + JX)(X, Y ′) > 0 for all Y ′ < Y }.
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For Y ∈ (Y∗, Y
∗), we have (xX + JX)(X, Y ) > 0 and we define

η(Y ) =
1

(xX + JX)(X, Y )
.

Let us assume that Y ∗ < Yr. Then

(4.28) (xX + JX)(X, Y ∗) = 0.

Since η(Y ) ≥ 0 for Y ∈ (Y∗, Y
∗), and JXxX ≥ 0 by (4.12c), we have that

xX(X, Y ) ≥ 0 and JX(X, Y ) ≥ 0

for Y ∈ (Y∗, Y
∗). By (2.38), we have

ηY = −xXY + JXY
(xX + JX)2

= − c
′(U)

2c(U)

UY (xX + JX) + UX(xY + JY )

(xX + JX)2

and from (4.12c), we obtain

|UX | ≤
1

c(U)

√
2JXxX ≤

1√
2c(U)

(JX + xX).

Hence,

ηY ≤
|c′(U)|
2c(U)

(
|UY |+

1√
2c(U)

(xY + JY )
)
η ≤ Cη

for some constant C which only depends on |||Θ|||G(Ω). From Gronwall’s inequality
it follows that

(4.29)
1

xX + JX
(X, Y ) ≤ 1

V2 + V4

(X)eC|Y−Y(X)|,

which contradicts (4.28), so that we must have Y ∗ = Yr. In the same way one proves
that Y∗ = Yl. Hence,

xX(X, Y ) ≥ 0, JX(X, Y ) ≥ 0 and (xX + JX)(X, Y ) > 0

for almost every X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr]. This concludes the proof of the
first identities in (4.12d)–(4.12f). The second identities in (4.12d) – (4.12f) can be
proved in a similar way. �

4.2. Existence of Local Solutions. We begin with some a priori estimates.
Given a positive constant L, we call domains of the type

{(X, Y ) ∈ R2 | |Y −X| ≤ 2L}
strip domains, which correspond to domains where time is bounded. We have the
following a priori estimates for the solution of (2.38).

Lemma 4.9. Given Ω = [Xl, Xr] × [Yl, Yr] and Θ = (X ,Y ,Z,V ,W , p, q) ∈ G(Ω),
let (Z, p, q) ∈ H(Ω) be a solution of (2.38) such that Θ = (Z, p, q) • (X ,Y). Let
E0 = ||Z4||L∞([sl,sr]) + ||Z5||L∞([sl,sr]). Then the following statements hold:

(i) Boundedness of the energy, that is,

(4.30a) 0 ≤ J(X, Y ) ≤ E0 for all (X, Y ) ∈ Ω

and

(4.30b) ||K||L∞(Ω) ≤ (1 + κ)E0.
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(ii) The functions Z, ZX , ZY , p and q remain uniformly bounded in strip
domains which contain Ω, that is, there exists a nondecreasing function
C1 = C1(|||Θ|||G(Ω), L) such that for any L > 0 and any (X, Y ) ∈ Ω such
that |X − Y | ≤ 2L, we have

(4.31a) |Za(X, Y )| ≤ C1, |ZX(X, Y )| ≤ C1, |ZY (X, Y )| ≤ C1,

(4.31b) |p(X, Y )| ≤ C1, |q(X, Y )| ≤ C1

and

(4.31c)
1

xX + JX
(X, Y ) ≤ C1,

1

xY + JY
(X, Y ) ≤ C1.

Condition (ii) is equivalent to the following:
(iii) For any curve (X̄ , Ȳ) ∈ C(Ω), we have

(4.32) |||(Z, p, q) • (X̄ , Ȳ)|||G(Ω) ≤ C1,

where C1 = C1(||(X̄ , Ȳ)||C(Ω), |||Θ|||G(Ω)) is an increasing function with re-
spect to both its arguments.

Proof. Given P = (X, Y ) ∈ Ω, let s0 = Y−1(Y ) and s1 = X−1(X), where we assume
that s0 ≤ s1 (the proof for the other case is similar). We denote P0 = (X (s0),Y(s0))
and P1 = (X (s1),Y(s1)). Since X and Y are increasing functions, we have that
X = X (s1) ≥ X (s0) and Y = Y(s0) ≤ Y(s1). Then, because Z4 ≥ 0, JX ≥ 0 and
JY ≥ 0, we have

(4.33) 0 ≤ Z4(s0) = J(P0) ≤ J(P ) ≤ J(P1) = Z4(s1) ≤ E0,

which proves (4.30a). By (4.12b), we have

K(P )−K(P0) =

∫ X

X (s0)

(
JX
c(U)

)
(X̃, Y ) dX̃.

Hence,
|K(P )| ≤ |K(P0)|+ κ(J(P )− J(P0)) ≤ (1 + κ)E0

by (4.30a). This proves (4.30b). Next we show (4.31a)-(4.31b). Since xX ≥ 0, we
have

x(P ) ≥ x(P0) = Z2(s0) = Za2 (s0) + s0 ≥ −|||Θ|||G(Ω) + s0

and since 1
2
(X + Y ) = Y + 1

2
(X − Y ) ≤ Y(s0) + L, it follows that

x(P )− 1

2
(X + Y ) ≥ −|||Θ|||G(Ω) + (s0 − Y(s0))− L ≥ −2|||Θ|||G(Ω) − L.

Similarly, we find x(P ) ≤ |||Θ|||G(Ω) + s1 and 1
2
(X + Y ) ≥ X (s1)− L, which implies

that

x(P )− 1

2
(X + Y ) ≤ 2|||Θ|||G(Ω) + L.

Hence,

|Za
2 (P )| =

∣∣∣x(P )− 1

2
(X + Y )

∣∣∣ ≤ 2|||Θ|||G(Ω) + L.

By (4.12a), we have

|t(P )| ≤ |t(P1)|+
∫ Y(s1)

Y

|tY (X, Ỹ )| dỸ
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= |t(P1)|+
∫ Y(s1)

Y

(
xY
c(U)

)
(X, Ỹ ) dỸ

≤ |t(P1)|+ κ(x(P1)− x(P ))

and since

(4.34) x(P1)−x(P ) ≤ x(P1)−x(P0) = Za2 (s1)+s1−Za2 (s0)−s0 ≤ 2|||Θ|||G(Ω)+s1−s0

and

(4.35) s1 − s0 = (s1 −X (s1)) + (Y(s0)− s0) + (X − Y ) ≤ 2|||Θ|||G(Ω) + 2L,

it follows that

|t(P )| = |Z1(P )| ≤ |||Θ|||G(Ω) + κ(4|||Θ|||G(Ω) + 2L).

Hence,

|Za
1 (P )| =

∣∣∣t(P )− 1

2c(0)
(X − Y )

∣∣∣ ≤ |||Θ|||G(Ω) + κ(4|||Θ|||G(Ω) + 3L).

We have

|U(P )| ≤ |U(P1)|+
∫ Y(s1)

Y

|UY (X, Ỹ )| dỸ .

By (4.12c), we have 2JY xY ≥ (c(U)UY )2, which implies that

(4.36) |UY | ≤
κ√
2

(JY + xY ).

Hence, by (4.33), (4.34) and (4.35), we obtain

|U(P )| ≤ |U(P1)|+ κ√
2

(J(P1) + x(P1)− J(P )− x(P ))(4.37)

≤ |||Θ|||G(Ω) +
κ√
2

(E0 + 4|||Θ|||G(Ω) + 2L).

We prove that ZX and ZY remain bounded. As above, we assume that Y ≤ Y(X).
For almost every X ∈ [Xl, Xr], we have

|ZX(X, Y )| ≤ |ZX(X,Y(X))|+
∫ Y(X)

Y

(|tXY |+|xXY |+|UXY |+|JXY |+|KXY |)(X, Ỹ ) dỸ .

From the governing equations (2.38), we find that

|tXY |+ |xXY |+ |UXY |+ |JXY |+ |KXY | ≤ C|ZX ||ZY |
for some constant C dependent on Ω, κ, and k1. By Gronwall’s lemma we obtain

|ZX(X, Y )| ≤ |ZX(X,Y(X))| exp
(∫ Y(X)

Y

C|ZY (X, Ỹ )| dỸ
)

(4.38)

= |V(X)| exp
(
C

∫ Y(X)

Y

|ZY (X, Ỹ )| dỸ
)
.

From (3.18), we have

|V(X)| ≤ |Va(X)|+ C ≤ |||Θ|||G(Ω) + C
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for some constant C dependent on Ω, κ, and k1. Furthermore, using (4.12a), (4.12b)
and (4.36), we obtain

|ZY | =
1

c(U)
(xY + JY ) + xY + JY + |UY | ≤ C(xY + JY ).

Hence,∫ Y(X)

Y

|ZY (X, Ỹ )| dỸ ≤ C

∫ Y(X)

Y

(xY + JY )(X, Ỹ ) dỸ

= C(x(X,Y(X)) + J(X,Y(X))− x(X, Y )− J(X, Y ))

≤ C(E0 + 4|||Θ|||G(Ω) + 2L),

where we used the same estimate as in (4.37). Combined with (4.38), this yields

|ZX(X, Y )| ≤ C1

for some constant C1 which only depends on |||Θ|||G(Ω) and L. Similarly, one proves
the bound on ZY . The estimates in (4.31b) follows from the fact that pY = 0 and
qX = 0. Indeed, we have

|p(X, Y )| = |p(X,Y(X))| = |p(X)| ≤ |||Θ|||G(Ω)

and similarly for q. Let us prove (4.31c). In (4.29), we found that

(4.39)
1

xX + JX
(X, Y ) ≤ 1

V2 + V4

(X)eC|Y−Y(X)|

for a constant C which only depends on |||Θ|||G(Ω). We have

|Y − Y(X)| = |Y −X + X (X−1(X))−X−1(X) + X−1(X)− Y(X−1(X))|
≤ L+ ‖X − Id‖L∞([sl,sr])

+ ‖Y − Id‖L∞([sl,sr])

≤ L+ |||Θ|||G(Ω),

which combined with (4.39) yields the first inequality in (4.31c). The other inequal-
ity in (4.31c) can be proved in a similar way. We show that the conditions (ii) and
(iii) are equivalent. Given a curve (X̄ , Ȳ) ∈ C(Ω), we have, since X̄ + Ȳ = 2s, that

||X̄ − Ȳ||L∞ = 2||X̄ − Id ||L∞ = ||X̄ − Id ||L∞ + ||Ȳ − Id ||L∞ = ||(X̄ , Ȳ)||C(Ω)

and (4.32) follows. �

We have the following existence and uniqueness result.

Lemma 4.10 (Existence and uniqueness on arbitrarily large rectangles). Given a
rectangular domain Ω = [Xl, Xr] × [Yl, Yr] and Θ = (X ,Y ,Z,V ,W , p, q) ∈ G(Ω),
there exists a unique solution (Z, p, q) ∈ H(Ω) such that

Θ = (Z, p, q) • (X ,Y).

Proof. Let δ = sr−sl
N

, where N is an integer that we will specifiy later. For i =
0, . . . , N , let si = iδ + sl and Pi = (Xi, Yi) = (X (si),Y(si)). For i, j = 0, . . . , N , we
construct a grid which consists of the points Pi,j = (Xi,j, Yi,j), where Xi,j = Xi and
Yi,j = Yj. We denote by Ωi,j the rectangle with diagonal points Pi,j and Pi+1,j+1,
and by Ωn the rectangle with diagonal points (X0, Y0) and (Xn, Yn). We prove by
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induction that there exists a unique (Z, p, q) ∈ H(Ωn) such that Θ = (Z, p, q) •
(X ,Y) ∈ G(Ωn). There is an increasing function C = C(|||Θ|||G(Ω)) such that

s1 − s0 = δ ≤ 1/C(|||Θ|||G(Ω)) ≤ 1/C(|||Θ|||G(Ω1)),

provided that N is large enough. Hence, by Theorem 4.8, there exists a unique
solution (Z, p, q) ∈ H(Ω1) such that Θ = (Z, p, q)• (X ,Y) ∈ G(Ω1). We assume that
there exists a unique solution (Z, p, q) on Ωn and prove that there exists a solution
on Ωn+1. By Theorem 4.8, there exists a unique solution on Ωn,n since

sn+1 − sn = δ ≤ 1/C(|||Θ|||G(Ω)) ≤ 1/C(|||Θ|||G(Ωn,n)).

For j = n − 1, . . . , 0, we iteratively construct the unique solution in Ωn,j and Ωj,n

as follows. We only treat the case of Ωn,j. We assume that the solution is known

on Ωn,j+1, then we define Θ̃ = (X̃ , Ỹ , Z̃, Ṽ , W̃ , p̃, q̃) ∈ G(Ωn,j) as follows: the curve

(X̃ (s), Ỹ(s)) is given by

X̃ (s) = Xn, Ỹ(s) = 2s−Xn

for 1
2
(Xn + Yj) ≤ s ≤ 1

2
(Xn + Yj+1) and

X̃ (s) = 2s− Yj+1, Ỹ(s) = Yj+1

for 1
2
(Xn + Yj+1) ≤ s ≤ 1

2
(Xn+1 + Yj+1). We set

Z̃(s) = Z(X̃ (s), Ỹ(s)) for s ∈
[1

2
(Xn + Yj),

1

2
(Xn+1 + Yj+1)

]
,

Ṽ(X) = ZX(X, Yj+1) for a.e. X ∈ [Xn, Xn+1],

W̃(Y ) = ZY (Xn, Y ) for a.e. Y ∈ [Yj, Yj+1],

p̃(X) = p(X, Yj+1) for a.e. X ∈ [Xn, Xn+1],

q̃(Y ) = q(Xn, Y ) for a.e. Y ∈ [Yj, Yj+1],

where (Z, p, q) is the solution on Ωn ∪ (∪ni=j+1Ωn,i). By Lemma 4.9, we have that

|||Θ̃|||G(Ωn,j) ≤ C1(|||Θ|||G(Ω), L). We have

1

2
(Xn+1 + Yj+1)− 1

2
(Xn + Yj) =

1

2
(X (sn+1)−X (sn) + Y(sj+1)− Y(sj)) ≤ 2δ,

because X and Y are Lipschitz continuous with Lipschitz constant smaller than 2.
By setting N so large that 2δ ≤ 1/C(C1) it follows that 2δ ≤ 1/C(|||Θ̃|||G(Ωn,j)), so
that we can apply Theorem 4.8 to Ωn,j and obtain the existence of a unique solution
in H(Ωn,j). Similarly we obtain the existence of a unique solution in H(Ωj,n). Since

Ωn+1 = Ωn ∪ (∪nj=0Ωn,j) ∪ (∪n−1
j=0 Ωj,n),

we have proved the existence of a unique solution in Ωn+1. �

Lemma 4.11 (A Gronwall lemma for curves). Let Ω = [Xl, Xr]×[Yl, Yr] and assume
that (Z, p, q) ∈ H(Ω) and (X ,Y) ∈ C(Ω). Then, for any (X̄ , Ȳ) ∈ C(Ω), we have

||(Z, p, q) • (X̄ , Ȳ)||G(Ω) ≤ C||(Z, p, q) • (X ,Y)||G(Ω),

where C = C(||(X̄ , Ȳ)||C(Ω), |||(Z, p, q) • (X ,Y)|||G(Ω)) is an increasing function with
respect to both its arguments.
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Proof. Note that for any function f ∈ W 1,∞
Y (Ω), fY is well-defined, but not fX . This

means that the form f(X, Y ) dX is well-defined, while the form f(X, Y ) dY is not.
Similarly, for any function g ∈ W 1,∞

X (Ω), the form g(X, Y ) dY is well-defined and
g(X, Y ) dX is not. Thus, given (Z, p, q) ∈ H(Ω), we can consider the forms U2 dX,
U2 dY , |Za

X |2 dX, |Za
Y |2 dY , p2 dX and q2 dY . For any curve Γ̄ = (X̄ , Ȳ) ∈ C(Ω) and

Θ̄ = (X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄) such that Θ̄ = (Z, p, q) • (X̄ , Ȳ), we have∫
Γ̄

U2(X, Y ) dX + U2(X, Y ) dY = 2

∫ sr

sl

Z̄2
3 (s) ds

and, since Za
X(X, Y ) = Za

X(X, Ȳ(X)) and Za
Y (X, Y ) = Za

Y (X̄ (Y ), Y ) on Γ̄, we have∫
Γ̄

|Za
X(X, Y )|2 dX =

∫ Xr

Xl

|V̄a(X)|2 dX,
∫

Γ̄

|Za
Y (X, Y )|2 dY =

∫ Yr

Yl

|W̄a(Y )|2 dY.

Similarly, since p(X, Y ) = p(X, Ȳ(X)) and q(X, Y ) = q(X̄ (Y ), Y ) on Γ̄, we obtain∫
Γ̄

p(X, Y )2 dX =

∫ Xr

Xl

p̄(X)2 dX,

∫
Γ̄

q(X, Y )2 dY =

∫ Yr

Yl

q̄(Y )2 dY.

Now we can rewrite

||(Z, p, q) • (X̄ , Ȳ)||2G(Ω)(4.40)

=

∫
Γ̄

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
.

Thus, we want to prove that∫
Γ̄

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
(4.41)

≤ C

∫
Γ

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
.

We decompose the proof into three steps.
Step 1. We first prove that (4.41) holds for small domains. We claim that there

exist constants δ and C, which depend on ||(X̄ , Ȳ)||C(Ω) and |||(Z, p, q)•(X ,Y)|||G(Ω),
such that for any rectangular domain Ω = [Xl, Xr]× [Yl, Yr] with sr − sl ≤ δ, (4.41)
holds. By Lemma 4.9, we have

||U ||L∞(Ω) + ||Za
X ||L∞(Ω) + ||Za

Y ||L∞(Ω) + ||p||L∞(Ω) + ||q||L∞(Ω) ≤ C,

where C = C(Ω, |||(Z, p, q) • (X ,Y)|||G(Ω)) which is increasing with respect to its
second argument. Let

A = sup
Γ̄

∫
Γ̄

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
,

where the supremum is taken over all Γ̄ = (X̄ , Ȳ) ∈ C(Ω). We have(
xX −

1

2

)2

(X, Y ) =

(
xX −

1

2

)2

(X,Y(X))(4.42)

+

∫ Y

Y(X)

2

((
xX −

1

2

)
xXY

)
(X, Ỹ ) dỸ .
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Since (Z, p, q) is a solution of (2.38), we have for almost every X ∈ [Xl, Xr] and all
Y ∈ [Yl, Yr], that

2

(
xX −

1

2

)
xXY =

(
xX −

1

2

)
c′(U)

c(U)
(UY xX + UXxY )

=
c′(U)

c(U)

(
UY

(
xX −

1

2

)2

+
1

2
UY

(
xX −

1

2

)
+ UX

(
xY −

1

2

)(
xX −

1

2

)
+

1

2
UX

(
xX −

1

2

))
.

Using (1.5), (1.6) and Young’s inequality, we get∣∣∣∣2(xX − 1

2

)
xXY

∣∣∣∣(4.43)

≤ κk1

(
||Za

Y ||L∞(Ω)

(
xX −

1

2

)2

+
1

2
|UY |

∣∣∣∣xX − 1

2

∣∣∣∣
+ ||Za

X ||L∞(Ω)

∣∣∣∣xY − 1

2

∣∣∣∣∣∣∣∣xX − 1

2

∣∣∣∣+
1

2
|UX |

∣∣∣∣xX − 1

2

∣∣∣∣)
≤ κk1

(
||Za

Y ||L∞(Ω)

(
xX −

1

2

)2

+
1

4
U2
Y +

1

4

(
xX −

1

2

)2

+
1

2
||Za

X ||L∞(Ω)

(
xY −

1

2

)2

+
1

2
||Za

X ||L∞(Ω)

(
xX −

1

2

)2

+
1

4
U2
X +

1

4

(
xX −

1

2

)2)
≤ κk1

(
C

((
xX −

1

2

)2

+

(
xY −

1

2

)2)
+

1

2

((
xX −

1

2

)2

+ U2
X + U2

Y

))
≤ κk1

(
C +

1

2

)(
|Za

X |2 + |Za
Y |2
)
.

Inserting this into (4.42) and integrating over [Xl, Xr] gives∫
Γ̄

(
xX −

1

2

)2

dX ≤
∫

Γ

(
xX −

1

2

)2

dX(4.44)

+ κk1

(
C +

1

2

)∫ Xr

Xl

∫ Yr

Yl

(
|Za

X |2 + |Za
Y |2
)
dY dX.

For any Y ∈ [Yl, Yr], the integral
∫ Xr
Xl
|Za

X |2(X, Y ) dX can be seen as part of the

integral of the form |Za
X |2 dX on the piecewise linear path going through the points

(Xl, Yl), (Xl, Y ), (Xr, Y ) and (Xr, Yr), which implies that
∫ Xr
Xl
|Za

X |2(X, Y ) dX ≤ A.

Similarly, for any X ∈ [Xl, Xr],
∫ Yr
Yl
|Za

Y |2(X, Y ) dY ≤ A. Hence, by (4.44),∫
Γ̄

(
Za

2,X

)2
dX ≤

∫
Γ

(
Za

2,X

)2
dX + κk1

(
C +

1

2

)
A(Yr − Yl +Xr −Xl)
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≤
∫

Γ

(
Za

2,X

)2
dX + 2δκk1

(
C +

1

2

)
A

since Yr − Yl + Xr −Xl = 2(sr − sl). By treating the other components of Za
X and

Za
Y similarly, we get ∫

Γ̄

|Za
X |2 dX ≤

∫
Γ

|Za
X |2 dX + δC̄A,(4.45) ∫

Γ̄

|Za
Y |2 dY ≤

∫
Γ

|Za
Y |2 dY + δC̄A.(4.46)

where C̄ depends on ||(X̄ , Ȳ)||C(Ω), |||(Z, p, q) • (X ,Y)|||G(Ω), κ and k1. For almost
every X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr], we have pY (X, Y ) = 0, so that p(X, Y ) =
p(X,Y(X)). By squaring this expression and integrating over [Xl, Xr], we obtain

(4.47)

∫
Γ̄

p2 dX =

∫
Γ

p2 dX.

Since qX(X, Y ) = 0 for almost every Y ∈ [Yl, Yr] and all X ∈ [Xl, Xr], we get
q(X, Y ) = q(X (Y ), Y ) which implies, after squaring and integrating over [Yl, Yr],
that

(4.48)

∫
Γ̄

q2 dY =

∫
Γ

q2 dY.

For U , we have

U2(X, Y ) = U2(X,Y(X)) + 2

∫ Y

Y(X)

(UUY )(X, Ỹ ) dỸ

≤ U2(X,Y(X)) +

∣∣∣∣∫ Y

Y(X)

U2(X, Ỹ ) dỸ

∣∣∣∣+

∣∣∣∣∫ Y

Y(X)

U2
Y (X, Ỹ ) dỸ

∣∣∣∣ .
As above, it follows that

(4.49)

∫
Γ̄

U2 dX ≤
∫

Γ

U2 dX + 2δA.

Similarly, we obtain

(4.50)

∫
Γ̄

U2 dY ≤
∫

Γ

U2 dY + 2δA.

By adding (4.45) – (4.50), we obtain∫
Γ̄

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
≤
∫

Γ

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
+ 2δC̄A+ 2δA,

which yields, after taking the supremum over all curves Γ̄,

(1− 2δC̄ − 2δ)A ≤
∫

Γ

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
and (4.41) follows.
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Step 2. For an arbitrarily large rectangular domain Ω = [Xl, Xr] × [Yl, Yr], we
now prove that (4.41) holds for curves Γ̄ = (X̄ , Ȳ) ∈ C(Ω) such that

(4.51) Ȳ(s)− X̄ (s) > Y(s)−X (s) for all s ∈ (sl, sr).

We claim that (4.51) implies that the curve Γ̄ lies above Γ and intersects Γ only
at the end points. From (4.51) and (4.1c), we find that Ȳ(s) > Y(s) and X (s) >
X̄ (s). If X̄ (s̄) = X (s) for some s̄ ∈ (sl, sr), then X̄ (s̄) = X (s) > X̄ (s), so that
s̄ ≥ s because X̄ is nondecreasing. This implies, since also Ȳ is nondecreasing, that
Y(s) < Ȳ(s) ≤ Ȳ(s̄). Hence, Γ̄ is above Γ except at the end points. The proof in the
case when Γ̄ is below Γ is similar. For some constant K > 0 that will be determined
later, we have for almost every X ∈ [Xl, Xr], that

e−K(Ȳ(X)−X)

(
xX −

1

2

)2

(X, Ȳ(X))− e−K(Y(X)−X)

(
xX −

1

2

)2

(X,Y(X))

= −K
∫ Ȳ(X)

Y(X)

e−K(Y−X)

(
xX −

1

2

)2

(X, Y ) dY

+

∫ Ȳ(X)

Y(X)

e−K(Y−X)

(
2

(
xX −

1

2

)
xXY

)
(X, Y ) dY.

By integrating over [Xl, Xr] and using (4.43), we get that∫
Γ̄

e−K(Ȳ(X)−X)

(
xX −

1

2

)2

(X, Ȳ(X)) dX −
∫

Γ

e−K(Y(X)−X)

(
xX −

1

2

)2

(X,Y(X)) dX

≤ −K
∫ Xr

Xl

∫ Ȳ(X)

Y(X)

e−K(Y−X)

(
xX −

1

2

)2

(X, Y ) dY dX

+ κk1

(
C +

1

2

)∫ Xr

Xl

∫ Ȳ(X)

Y(X)

e−K(Y−X)
(
|Za

X |2 + |Za
Y |2
)
(X, Y ) dY dX.

We treat the other components of Za
X in the same way and obtain∫

Γ̄

e−K(Ȳ(X)−X)|Za
X(X, Ȳ(X))|2 dX −

∫
Γ

e−K(Y(X)−X)|Za
X(X,Y(X))|2 dX(4.52)

≤ −K
∫ Xr

Xl

∫ Ȳ(X)

Y(X)

e−K(Y−X)|Za
X(X, Y )|2 dY dX

+M

∫ Xr

Xl

∫ Ȳ(X)

Y(X)

e−K(Y−X)
(
|Za

X |2 + |Za
Y |2
)
(X, Y ) dY dX,

where M depends on ||(X̄ , Ȳ)||C(Ω), |||(Z, p, q) • (X ,Y)|||G(Ω), κ and k1. Similarly,
for Za

Y , we obtain∫
Γ̄

e−K(Y−X̄ (Y ))|Za
Y (X̄ (Y ), Y )|2 dY −

∫
Γ

e−K(Y−X (Y ))|Za
Y (X (Y ), Y )|2 dY(4.53)

≤ −K
∫ Yr

Yl

∫ X (Y )

X̄ (Y )

e−K(Y−X)|Za
Y (X, Y )|2 dX dY

+M

∫ Yr

Yl

∫ X (Y )

X̄ (Y )

e−K(Y−X)
(
|Za

X |2 + |Za
Y |2
)
(X, Y ) dX dY.
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We claim that the sets

N1 = {(X, Y ) | Xl < X < Xr, Y(X) < Y < Ȳ(X)}
and

N2 = {(X, Y ) | Yl < Y < Yr, X̄ (Y ) < X < X (Y )}
are equal up to a set of zero measure. Let (X, Y ) ∈ N1 and set s1 = X−1(X),
s2 = Y−1(Y ), s3 = Ȳ−1(Y ) and s4 = X̄−1(X). We have

Y(s1) = Y(X) < Y = Y(s2) = Ȳ(s3) < Ȳ(X) = Ȳ(s4)

so that s1 < s2 and s3 < s4. It follows that

X̄ (Y ) = X̄ (s3) ≤ X̄ (s4) = X = X (s1) ≤ X (s2) = X (Y ).

Hence, N1 ⊂ N2 up to a set of measure zero. Similarly, one proves the reverse
inclusion. Now (4.52) and (4.53) take the form∫

Γ̄

e−K(Ȳ(X)−X)|Za
X(X, Ȳ(X))|2 dX −

∫
Γ

e−K(Y(X)−X)|Za
X(X,Y(X))|2 dX(4.54)

≤ −K
∫∫
N1

e−K(Y−X)|Za
X(X, Y )|2 dX dY

+M

∫∫
N1

e−K(Y−X)
(
|Za

X |2 + |Za
Y |2
)
(X, Y ) dX dY

and ∫
Γ̄

e−K(Y−X̄ (Y ))|Za
Y (X̄ (Y ), Y )|2 dY −

∫
Γ

e−K(Y−X (Y ))|Za
Y (X (Y ), Y )|2 dY(4.55)

≤ −K
∫∫
N1

e−K(Y−X)|Za
Y (X, Y )|2 dX dY

+M

∫∫
N1

e−K(Y−X)
(
|Za

X |2 + |Za
Y |2
)
(X, Y ) dX dY.

A similar computation as above yields∫
Γ̄

e−K(Ȳ(X)−X)U2(X, Ȳ(X)) dX −
∫

Γ

e−K(Y(X)−X)U2(X,Y(X)) dX(4.56)

=

∫∫
N1

e−K(Y−X)(−KU2 + 2UUY )(X, Y ) dX dY

≤
∫∫
N1

e−K(Y−X)(−KU2 + U2 + U2
Y )(X, Y ) dX dY

and ∫
Γ̄

e−K(Y−X̄ (Y ))U2(X̄ (Y ), Y ) dY −
∫

Γ

e−K(Y−X (Y ))U2(X (Y ), Y ) dY(4.57)

≤
∫∫
N1

e−K(Y−X)(−KU2 + U2 + U2
X)(X, Y ) dX dY.

Furthermore, we have∫
Γ̄

e−K(Ȳ(X)−X)p2(X, Ȳ(X)) dX −
∫

Γ

e−K(Y(X)−X)p2(X,Y(X)) dX(4.58)
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= −K
∫∫
N1

e−K(Y−X)p2(X, Y ) dX dY

and ∫
Γ̄

e−K(Y−X̄ (Y ))q2(X̄ (Y ), Y ) dY −
∫

Γ

e−K(Y−X (Y ))q2(X (Y ), Y ) dY(4.59)

= −K
∫∫
N1

e−K(Y−X)q2(X, Y ) dX dY.

By combining (4.54)-(4.59), we obtain∫
Γ̄

e−K(Ȳ(X)−X)

(
1

2
U2 + |Za

X |2 + p2

)
(X, Ȳ(X)) dX

+

∫
Γ̄

e−K(Y−X̄ (Y ))

(
1

2
U2 + |Za

Y |2 + q2

)
(X̄ (Y ), Y ) dY

−
∫

Γ

e−K(Y(X)−X)

(
1

2
U2 + |Za

X |2 + p2

)
(X,Y(X)) dX

−
∫

Γ

e−K(Y−X (Y ))

(
1

2
U2 + |Za

Y |2 + q2

)
(X (Y ), Y ) dY

≤
∫∫
N1

e−K(Y−X)

(
−KU2 + U2 +

1

2
U2
Y +

1

2
U2
X −K|Za

X |2 −K|Za
Y |2

+ 2M |Za
X |2 + 2M |Za

Y |2 −Kp2 −Kq2

)
(X, Y ) dX dY

≤ (2M + 1−K)

∫∫
N1

e−K(Y−X)(U2 + |Za
X |2 + |Za

Y |2 + p2 + q2)(X, Y ) dX dY.

By choosing K so large that the right-hand side is negative and get that

e−K||(X̄ ,Ȳ)||C(Ω)

∫
Γ̄

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
≤ eK||(X ,Y)||C(Ω)

∫
Γ

(
1

2
U2 (dX + dY ) + |Za

X |2 dX + |Za
Y |2 dY + p2 dX + q2 dY

)
and (4.41) follows.

Step 3. Given any rectangle Ω = [Xl, Xr] × [Yl, Yr], we consider a sequence of
rectangular domains Ωi = [Xi, Xi+1]× [Yi, Yi+1] for i = 0, . . . , N−1 such that Xi and
Yi are increasing, (X0, Y0) = (Xl, Yl), (XN , YN) = (Xr, Yr), and (X ,Y), (X̄ , Ȳ) ∈
C(Ωi) for s ∈ [si, si+1]. We construct the sequence of rectangles such that either
si+1 − si ≤ δ (and Step 1 applies) or Ȳ(s)− X̄ (s) > Y(s)−X (s) or Ȳ(s)− X̄ (s) <
Y(s)−X (s) for s ∈ (si, si+1) (and Step 2 applies). Then

||(Z, p, q) • (X̄ , Ȳ)||2G(Ω) =
N−1∑
i=0

||(Z, p, q) • (X̄ , Ȳ)||2G(Ωi)

≤
N−1∑
i=0

C||(Z, p, q) • (X ,Y)||2G(Ωi)

= C||(Z, p, q) • (X ,Y)||2G(Ω).
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�

Lemma 4.12 (Stability in L2). Let Ω = [Xl, Xr]× [Yl, Yr] and assume that (Z, p, q),
(Z̃, p̃, q̃) ∈ H(Ω) and (X ,Y) ∈ C(Ω). Then, for any (X̄ , Ȳ) ∈ C(Ω), we have

||(Z − Z̃, p− p̃, q − q̃) • (X̄ , Ȳ)||G(Ω) ≤ D||(Z − Z̃, p− p̃, q − q̃) • (X ,Y)||G(Ω),

where D = D(||(X̄ , Ȳ)||C(Ω), |||(Z, p, q) • (X ,Y)|||G(Ω), |||(Z̃, p̃, q̃) • (X ,Y)|||G(Ω)) is an
increasing function with respect to all its arguments.

Proof. As in the proof of Lemma 4.11, we can consider the forms (U − Ũ)2 dX,
(U − Ũ)2 dY , |Za

X − Z̃a
X |2 dX, |Za

Y − Z̃a
Y |2 dY , (p− p̃)2 dX and (q− q̃)2 dY . For any

curve Γ̄ = (X̄ , Ȳ) ∈ C(Ω), we find

||(Z − Z̃, p− p̃, q − q̃) • (X̄ , Ȳ)||2G(Ω)

=

∫
Γ̄

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
.

Thus, we want to prove that∫
Γ̄

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX(4.60)

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
≤ D

∫
Γ

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
.

We decompose the proof into three steps.
Step 1. We prove that (4.60) holds for small domains. We claim that there exist

constants δ and D, which depend on ||(X̄ , Ȳ)||C(Ω), |||(Z, p, q) • (X ,Y)|||G(Ω) and

|||(Z̃, p̃, q̃)•(X ,Y)|||G(Ω), such that for any rectangular domain Ω = [Xl, Xr]× [Yl, Yr]
with sr − sl ≤ δ, (4.60) holds. By Lemma 4.9, we have

||U ||L∞(Ω) + ||Za
X ||L∞(Ω) + ||Za

Y ||L∞(Ω) + ||p||L∞(Ω) + ||q||L∞(Ω) ≤ C,(4.61)

||Ũ ||L∞(Ω) + ||Z̃a
X ||L∞(Ω) + ||Z̃a

Y ||L∞(Ω) + ||p̃||L∞(Ω) + ||q̃||L∞(Ω) ≤ C̃

where C = C(Ω, |||(Z, p, q) • (X ,Y)|||G(Ω)) and C̃ = C̃(Ω, |||(Z̃, p̃, q̃) • (X ,Y)|||G(Ω))
are increasing with respect to the second argument. Let

A = sup
Γ̄

∫
Γ̄

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
,

where the supremum is taken over all Γ̄ = (X̄ , Ȳ) ∈ C(Ω). We have

(xX − x̃X)2(X, Y ) = (xX − x̃X)2(X,Y(X))(4.62)
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+

∫ Y

Y(X)

2(xX − x̃X)(xXY − x̃XY )(X, Ỹ ) dỸ .

Since (Z, p, q) is a solution of (2.38), we have for almost every X ∈ [Xl, Xr] and all
Y ∈ [Yl, Yr], that

xXY − x̃XY =
c′(U)

2c(U)
(UY xX + UXxY )− c′(Ũ)

2c(Ũ)
(ŨY x̃X + ŨX x̃Y )

=
c′(U)

2c(U)
(UY xX + UXxY − ŨY x̃X − ŨX x̃Y )

+

(
c′(U)

2c(U)
− c′(Ũ)

2c(Ũ)

)
(ŨY x̃X + ŨX x̃Y )

=
c′(U)

2c(U)

(
UY (xX − x̃X) +

((
x̃X −

1

2

)
+

1

2

)
(UY − ŨY )

+ UX(xY − x̃Y ) +

((
x̃Y −

1

2

)
+

1

2

)
(UX − ŨX)

)
+

1

2

(
ŨY

((
x̃X −

1

2

)
+

1

2

)
+ ŨX

((
x̃Y −

1

2

)
+

1

2

))
×
∫ U

Ũ

(
c′′(u)c(u)− c′(u)2

c(u)2

)
du.

Using (1.5), (1.6) and (4.61), this implies that∣∣2(xX − x̃X)(xXY − x̃XY )
∣∣

≤ κk1

(
||Za

Y ||L∞(Ω)(xX − x̃X)2 +

(
||Z̃a

X ||L∞(Ω) +
1

2

)
|UY − ŨY ||xX − x̃X |

+ ||Za
X ||L∞(Ω)|xY − x̃Y ||xX − x̃X |+

(
||Z̃a

Y ||L∞(Ω) +
1

2

)
|UX − ŨX ||xX − x̃X |

)
+

(
||Z̃a

Y ||L∞(Ω)

(
||Z̃a

X ||L∞(Ω) +
1

2

)
+ ||Z̃a

X ||L∞(Ω)

(
||Z̃a

Y ||L∞(Ω) +
1

2

))
× (κk2 + κ2k2

1)|U − Ũ ||xX − x̃X |

≤ κk1

(
C + C̃ +

1

2

)(
(xX − x̃X)2 + |UY − ŨY ||xX − x̃X |

+ |xY − x̃Y ||xX − x̃X |+ |UX − ŨX ||xX − x̃X |
)

+ 2

(
C̃ +

1

2

)2

(κk2 + κ2k2
1)|U − Ũ ||xX − x̃X |

≤ κk1

(
C + C̃ +

1

2

)(
(xX − x̃X)2 +

1

2
(UY − ŨY )2 +

1

2
(xX − x̃X)2

+
1

2
(xY − x̃Y )2 +

1

2
(xX − x̃X)2 +

1

2
(UX − ŨX)2 +

1

2
(xX − x̃X)2

)
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+ 2

(
C̃ +

1

2

)2

(κk2 + κ2k2
1)

(
1

2
(U − Ũ)2 +

1

2
(xX − x̃X)2

)
≤ 5

2
κk1

(
C + C̃ +

1

2

)(
(xX − x̃X)2 + (UY − ŨY )2 + (xY − x̃Y )2 + (UX − ŨX)2

)
+

(
C̃ +

1

2

)2

(κk2 + κ2k2
1)

(
(U − Ũ)2 + (xX − x̃X)2

)
.

We set

m = max

{
5

2
κk1

(
C + C̃ +

1

2

)
,

(
C̃ +

1

2

)2

(κk2 + κ2k2
1)

}
and get ∣∣2(xX − x̃X)(xXY − x̃XY )

∣∣(4.63)

≤ m
(
(UY − ŨY )2 + (xY − x̃Y )2 + (UX − ŨX)2 + (U − Ũ)2

)
+ 2m(xX − x̃X)2

≤ 2m
(
(U − Ũ)2 + |Za

X − Z̃a
X |2 + |Za

Y − Z̃a
Y |2
)
.

We insert this into (4.62) and get

(xX − x̃X)2(X, Y ) ≤ (xX − x̃X)2(X,Y(X))

+ 2m

∫ Yr

Yl

(
(U − Ũ)2 + |Za

X − Z̃a
X |2 + |Za

Y − Z̃a
Y |2
)
(X, Ỹ ) dỸ

which, after integrating over [Xl, Xr], yields∫
Γ̄

(xX − x̃X)2 dX ≤
∫

Γ

(xX − x̃X)2 dX

+ 2m

∫ Xr

Xl

∫ Yr

Yl

(
(U − Ũ)2 + |Za

X − Z̃a
X |2 + |Za

Y − Z̃a
Y |2
)
dY dX.

For any Y ∈ [Yl, Yr],
∫ Xr
Xl

(
1
2
(U − Ũ)2 + |Za

X − Z̃a
X |2
)
(X, Y ) dX can be seen as part of

the integral of the form
(

1
2
(U − Ũ)2 + |Za

X − Z̃a
X |2
)
dX on the piecewise linear path

going through the points (Xl, Yl), (Xl, Y ), (Xr, Y ) and (Xr, Yr). This implies that∫ Xr
Xl

(
1
2
(U − Ũ)2 + |Za

X − Z̃a
X |2
)
(X, Y ) dX ≤ A. Similarly, for any X ∈ [Xl, Xr], we

get
∫ Yr
Yl

(
1
2
(U − Ũ)2 + |Za

Y − Z̃a
Y |2
)
(X, Y ) dY ≤ A. Hence,∫

Γ̄

(
Za

2,X − Z̃a
2,X

)2
dX ≤

∫
Γ

(
Za

2,X − Z̃a
2,X

)2
dX + 2mA(Yr − Yl +Xr −Xl)

≤
∫

Γ

(
Za

2,X − Z̃a
2,X

)2
dX + 4δmA

because Yr−Yl+Xr−Xl = 2(sr−sl). By treating the other components of Za
X−Z̃a

X

and Za
Y − Z̃a

Y similarly, we get∫
Γ̄

|Za
X − Z̃a

X |2 dX ≤
∫

Γ

|Za
X − Z̃a

X |2 dX +MAδ,(4.64) ∫
Γ̄

|Za
Y − Z̃a

Y |2 dY ≤
∫

Γ

|Za
Y − Z̃a

Y |2 dY +MAδ,(4.65)
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where M depends on ||(X̄ , Ȳ)||C(Ω), |||(Z, p, q)•(X ,Y)|||G(Ω), |||(Z̃, p̃, q̃)•(X ,Y)|||G(Ω),
κ, k1 and k2. For almost every X ∈ [Xl, Xr] and all Y ∈ [Yl, Yr], we have pY (X, Y ) =
0 and p̃Y (X, Y ) = 0, so that p(X, Y ) − p̃(X, Y ) = p(X,Y(X)) − p̃(X,Y(X)). By
squaring this expression and integrating over [Xl, Xr], we obtain

(4.66)

∫
Γ̄

(p− p̃)2 dX =

∫
Γ

(p− p̃)2 dX.

Since qX(X, Y ) = 0 and q̃X(X, Y ) = 0 for almost every Y ∈ [Yl, Yr] and all X ∈
[Xl, Xr], we get q(X, Y )− q̃(X, Y ) = q(X (Y ), Y )− q̃(X (Y ), Y ) which implies, after
squaring and integrating over [Yl, Yr], that

(4.67)

∫
Γ̄

(q − q̃)2 dY =

∫
Γ

(q − q̃)2 dY.

We have

(U − Ũ)2(X, Y )

= (U − Ũ)2(X,Y(X)) + 2

∫ Y

Y(X)

(U − Ũ)(UY − ŨY )(X, Ỹ ) dỸ

≤ (U − Ũ)2(X,Y(X)) +

∫ Y

Y(X)

(U − Ũ)2(X, Ỹ ) dỸ +

∫ Y

Y(X)

(UY − ŨY )2(X, Ỹ ) dỸ .

As above, it follows that

(4.68)

∫
Γ̄

(U − Ũ)2 dX ≤
∫

Γ

(U − Ũ)2 dX + 2Aδ.

Similarly, we obtain

(4.69)

∫
Γ̄

(U − Ũ)2 dY ≤
∫

Γ

(U − Ũ)2 dY + 2Aδ.

By adding (4.64)-(4.69), we obtain∫
Γ̄

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
≤
∫

Γ

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
+ 2δMA+ 2δA

which yields, after taking the supremum over all curves Γ̄,

(1− 2δM − 2δ)A ≤
∫

Γ

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
and (4.60) follows.
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Step 2. For an arbitrarily large rectangular domain Ω = [Xl, Xr] × [Yl, Yr], we
now prove that (4.60) holds for curves Γ̄ = (X̄ , Ȳ) ∈ C(Ω) such that

Ȳ(s)− X̄ (s) > Y(s)−X (s) for all s ∈ (sl, sr),

that is, the curve Γ̄ lies above Γ and intersects Γ only at the end points, as in the
proof of Lemma 4.11. The proof in the case when Γ̄ is below Γ is similar. For a
constant K > 0 that will be determined later, we have for almost every X ∈ [Xl, Xr],
that

e−K(Ȳ(X)−X)(xX − x̃X)2(X, Ȳ(X))− e−K(Y(X)−X)(xX − x̃X)2(X,Y(X))

= −K
∫ Ȳ(X)

Y(X)

e−K(Y−X)(xX − x̃X)2(X, Y ) dY

+

∫ Ȳ(X)

Y(X)

e−K(Y−X)(2(xX − x̃X)(xXY − x̃XY ))(X, Y ) dY.

We integrate over [Xl, Xr] and get, by using (4.63), that∫
Γ̄

e−K(Ȳ(X)−X)(xX − x̃X)2(X, Ȳ(X)) dX −
∫

Γ

e−K(Y(X)−X)(xX − x̃X)2(X,Y(X)) dX

≤ −K
∫ Xr

Xl

∫ Ȳ(X)

Y(X)

e−K(Y−X)(xX − x̃X)2(X, Y ) dY dX

+ 2m

∫ Xr

Xl

∫ Ȳ(X)

Y(X)

e−K(Y−X)
(
(U − Ũ)2 + |Za

X − Z̃a
X |2 + |Za

Y − Z̃a
Y |2
)
(X, Y ) dY dX.

By treating the other components of Za
X − Z̃a

X in the same way, we obtain∫
Γ̄

e−K(Ȳ(X)−X)|Za
X − Z̃a

X |2(X, Ȳ(X)) dX −
∫

Γ

e−K(Y(X)−X)|Za
X − Z̃a

X |2(X,Y(X)) dX

≤ −K
∫ Xr

Xl

∫ Ȳ(X)

Y(X)

e−K(Y−X)|Za
X − Z̃a

X |2(X, Y ) dY dX

+M

∫ Xr

Xl

∫ Ȳ(X)

Y(X)

e−K(Y−X)
(
(U − Ũ)2 + |Za

X − Z̃a
X |2 + |Za

Y − Z̃a
Y |2
)
(X, Y ) dY dX

where M depends on ||(X̄ , Ȳ)||C(Ω), |||(Z, p, q)•(X ,Y)|||G(Ω), |||(Z̃, p̃, q̃)•(X ,Y)|||G(Ω),

κ, k1 and k2. Similarly, for Za
Y − Z̃a

Y , we get∫
Γ̄

e−K(Y−X̄ (Y ))|Za
Y − Z̃a

Y |2(X̄ (Y ), Y ) dY −
∫

Γ

e−K(Y−X (Y ))|Za
Y − Z̃a

Y |2(X (Y ), Y ) dY

≤ −K
∫ Yr

Yl

∫ X (Y )

X̄ (Y )

e−K(Y−X)|Za
Y − Z̃a

Y |2(X, Y ) dX dY

+M

∫ Yr

Yl

∫ X (Y )

X̄ (Y )

e−K(Y−X)
(
(U − Ũ)2 + |Za

X − Z̃a
X |2 + |Za

Y − Z̃a
Y |2
)
(X, Y ) dX dY.

In the proof of Lemma 4.11, we showed that the sets

N1 = {(X, Y ) | Xl < X < Xr, Y(X) < Y < Ȳ(X)}
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and
N2 = {(X, Y ) | Yl < Y < Yr, X̄ (Y ) < X < X (Y )}

are equal up to a set of zero measure. Hence, we get∫
Γ̄

e−K(Ȳ(X)−X)|Za
X − Z̃a

X |2(X, Ȳ(X)) dX(4.70)

−
∫

Γ

e−K(Y(X)−X)|Za
X − Z̃a

X |2(X,Y(X)) dX

≤ −K
∫∫
N1

e−K(Y−X)|Za
X − Z̃a

X |2(X, Y ) dX dY

+M

∫∫
N1

e−K(Y−X)
(
(U − Ũ)2 + |Za

X − Z̃a
X |2

+ |Za
Y − Z̃a

Y |2
)
(X, Y ) dX dY

and ∫
Γ̄

e−K(Y−X̄ (Y ))|Za
Y − Z̃a

Y |2(X̄ (Y ), Y ) dY(4.71)

−
∫

Γ

e−K(Y−X (Y ))|Za
Y − Z̃a

Y |2(X (Y ), Y ) dY

≤ −K
∫∫
N1

e−K(Y−X)|Za
Y − Z̃a

Y |2(X, Y ) dX dY

+M

∫∫
N1

e−K(Y−X)
(
(U − Ũ)2 + |Za

X − Z̃a
X |2

+ |Za
Y − Z̃a

Y |2
)
(X, Y ) dX dY.

A similar computation as above yields∫
Γ̄

e−K(Ȳ(X)−X)(U − Ũ)2(X, Ȳ(X)) dX(4.72)

−
∫

Γ

e−K(Y(X)−X)(U − Ũ)2(X,Y(X)) dX

=

∫∫
N1

e−K(Y−X)(−K(U − Ũ)2 + 2(U − Ũ)(UY − ŨY ))(X, Y ) dX dY

≤
∫∫
N1

e−K(Y−X)(−K(U − Ũ)2 + (U − Ũ)2 + (UY − ŨY )2)(X, Y ) dX dY

and ∫
Γ̄

e−K(Y−X̄ (Y ))(U − Ũ)2(X̄ (Y ), Y ) dY(4.73)

−
∫

Γ

e−K(Y−X (Y ))(U − Ũ)2(X (Y ), Y ) dY

≤
∫∫
N1

e−K(Y−X)(−K(U − Ũ)2 + (U − Ũ)2 + (UX − ŨX)2)(X, Y ) dX dY.
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Furthermore, we have∫
Γ̄

e−K(Ȳ(X)−X)(p− p̃)2(X, Ȳ(X)) dX(4.74)

−
∫

Γ

e−K(Y(X)−X)(p− p̃)2(X,Y(X)) dX

= −K
∫∫
N1

e−K(Y−X)(p− p̃)2(X, Y ) dX dY

and ∫
Γ̄

e−K(Y−X̄ (Y ))(q − q̃)2(X̄ (Y ), Y ) dY(4.75)

−
∫

Γ

e−K(Y−X (Y ))(q − q̃)2(X (Y ), Y ) dY

= −K
∫∫
N1

e−K(Y−X)(q − q̃)2(X, Y ) dX dY.

Combining (4.70)-(4.75), we obtain∫
Γ̄

e−K(Ȳ(X)−X)

(
1

2
(U − Ũ)2 + |Za

X − Z̃a
X |2 + (p− p̃)2

)
(X, Ȳ(X)) dX

+

∫
Γ̄

e−K(Y−X̄ (Y ))

(
1

2
(U − Ũ)2 + |Za

Y − Z̃a
Y |2 + (q − q̃)2

)
(X̄ (Y ), Y ) dY

−
∫

Γ

e−K(Y(X)−X)

(
1

2
(U − Ũ)2 + |Za

X − Z̃a
X |2 + (p− p̃)2

)
(X,Y(X)) dX

−
∫

Γ

e−K(Y−X (Y ))

(
1

2
(U − Ũ)2 + |Za

Y − Z̃a
Y |2 + (q − q̃)2

)
(X (Y ), Y ) dY

≤
∫∫
N1

e−K(Y−X)

(
−K(U − Ũ)2 + (U − Ũ)2 +

1

2
(UY − ŨY )2

+
1

2
(UX − ŨX)2 −K|Za

X − Z̃a
X |2 −K|Za

Y − Z̃a
Y |2

+ 2M(U − Ũ)2 + 2M |Za
X − Z̃a

X |2 + 2M |Za
Y − Z̃a

Y |2

−K(p− p̃)2 −K(q − q̃)2

)
(X, Y ) dX dY

≤ (2M + 1−K)

∫∫
N1

e−K(Y−X)

(
(U − Ũ)2 + |Za

X − Z̃a
X |2 + |Za

Y − Z̃a
Y |2

+ (p− p̃)2 + (q − q̃)2

)
(X, Y ) dX dY.

We choose K so large that the right-hand side becomes negative. This implies that

e−K||(X̄ ,Ȳ)||C(Ω)

∫
Γ̄

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
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≤ eK||(X ,Y)||C(Ω)

∫
Γ

(
1

2
(U − Ũ)2 (dX + dY ) + |Za

X − Z̃a
X |2 dX

+ |Za
Y − Z̃a

Y |2 dY + (p− p̃)2 dX + (q − q̃)2 dY

)
and (4.60) follows.

Step 3. Given any rectangle Ω = [Xl, Xr] × [Yl, Yr], we consider a sequence of
rectangular domains Ωi = [Xi, Xi+1]× [Yi, Yi+1] for i = 0, . . . , N−1 such that Xi and
Yi are increasing, (X0, Y0) = (Xl, Yl), (XN , YN) = (Xr, Yr), and (X ,Y), (X̄ , Ȳ) ∈
C(Ωi) for s ∈ [si, si+1]. We construct the sequence of rectangles such that either
si+1 − si ≤ δ (and Step 1 applies) or Ȳ(s)− X̄ (s) > Y(s)−X (s) or Ȳ(s)− X̄ (s) <
Y(s)−X (s) for s ∈ (si, si+1) (and Step 2 applies). Then

||(Z − Z̃, p− p̃, q − q̃) • (X̄ , Ȳ)||2G(Ω) =
N−1∑
i=0

||(Z − Z̃, p− p̃, q − q̃) • (X̄ , Ȳ)||2G(Ωi)

≤
N−1∑
i=0

D||(Z − Z̃, p− p̃, q − q̃) • (X ,Y)||2G(Ωi)

= D||(Z − Z̃, p− p̃, q − q̃) • (X ,Y)||2G(Ω).

�

4.3. Existence of Global Solutions in H.

Definition 4.13 (Global solutions). Let H be the set of all functions (Z, p, q) such
that

(i) (Z, p, q) ∈ H(Ω) for all rectangular domains Ω;
(ii) there exists a curve (X ,Y) ∈ C such that (Z, p, q) • (X ,Y) ∈ G.

The following lemma shows that condition (ii) does not depend on the partic-
ular curve for which it holds. In particular, we can replace this condition by
the requirement that (Z, p, q) • (Xd,Yd) ∈ G for the diagonal, which is given by
Xd(s) = Yd(s) = s.

Lemma 4.14. Given (Z, p, q) ∈ H, we have (Z, p, q) • (X ,Y) ∈ G for any curve
(X ,Y) ∈ C. Moreover, the limit lim

s→∞
J(X (s),Y(s)) is independent of the curve

(X ,Y) ∈ C.

Proof. Since (Z, p, q) ∈ H, we know that there exists a curve (X ,Y) ∈ C such that
(Z, p, q) • (X ,Y) ∈ G. We have to check that the conditions (i)-(v) of Definition 3.6
are satisfied for Θ̄ = (Z, p, q) • (X̄ , Ȳ). For any curve (X̄ , Ȳ) ∈ C, we have to prove
that

(4.76) |||(Z, p, q) • (X̄ , Ȳ)|||G <∞ and ||(Z, p, q) • (X̄ , Ȳ)||G <∞.
For any positive number s̄, we denote Ωs̄ = [X̄ (−s̄), X̄ (s̄)]× [Ȳ(−s̄), Ȳ(s̄)]. Let

smax =

{
Y−1(Ȳ(s̄)) if Y(X−1(X̄ (s̄))) ≤ Ȳ(s̄)

X−1(X̄ (s̄)) otherwise
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and

smin =

{
X−1(X̄ (−s̄)) if X̄ (−s̄) ≤ X (Y−1(Ȳ(−s̄)))
Y−1(Ȳ(−s̄)) otherwise.

We claim that smin ≤ −s̄ ≤ s̄ ≤ smax.
If Y(X−1(X̄ (s̄))) ≤ Ȳ(s̄), then X−1(X̄ (s̄)) ≤ Y−1(Ȳ(s̄)) = smax, so that X̄ (s̄) ≤
X (smax). This implies, since Y(smax) = Ȳ(s̄), that

2s̄− Ȳ(s̄) ≤ 2smax − Y(smax) = 2smax − Ȳ(s̄)

and we conclude that s̄ ≤ smax.
If X̄ (−s̄) ≤ X (Y−1(Ȳ(−s̄))), then smin = X−1(X̄ (−s̄)) ≤ Y−1(Ȳ(−s̄)) and we get
Y(smin) ≤ Ȳ(−s̄), which implies, since X (smin) = X̄ (−s̄), that

2smin −X (smin) ≤ −2s̄− X̄ (−s̄) = −2s̄−X (smin).

Hence, smin ≤ −s̄. The other cases can be treated in a similar way.
We denote Ω̃s̄ = [X (smin),X (smax)] × [Y(smin),Y(smax)] and, since smin ≤ −s̄ ≤

s̄ ≤ smax, we have Ωs̄ ⊂ Ω̃s̄. We define the curve

(X̃ (s), Ỹ(s))

=



(X (s),Y(s)) if s < smin,

straight line joining (X (smin),Y(smin)) and (X̄ (−s̄),Y(−s̄)) if smin ≤ s < −s̄,
(X̄ (s), Ȳ(s)) if − s̄ ≤ s ≤ s̄,

straight line joining (X̄ (s̄),Y(s̄)) and (X (smax),Y(smax)) if s̄ < s ≤ smax,

(X (s),Y(s)) if smax < s.

We have that (X̃ , Ỹ) and (X ,Y) belong to C(Ω̃s̄). By Lemma 4.9, we get

|||(Z, p, q) • (X̄ , Ȳ)|||G(Ωs̄) ≤ |||(Z, p, q) • (X̃ , Ỹ)|||G(Ω̃s̄)

≤ C1

(
||(X̃ , Ỹ)||C(Ω̃s̄), |||Θ|||G(Ω̃s̄)

)
≤ C1

(
||(X̃ , Ỹ)||C, |||Θ|||G

)
,

and by letting s̄ tend to infinity, we obtain |||(Z, p, q) • (X̄ , Ȳ)|||G <∞. By Lemma
4.11, we obtain

||(Z, p, q) • (X̄ , Ȳ)||G(Ωs̄) ≤ ||(Z, p, q) • (X̃ , Ỹ)||G(Ω̃s̄)

≤ C||(Z, p, q) • (X ,Y)||G(Ω̃s̄)

≤ C||(Z, p, q) • (X ,Y)||G,
where

C = C
(
||(X̃ , Ỹ)||C(Ωs̄), |||(Z, p, q) • (X ,Y)|||G(Ω̃s̄)

)
≤ C

(
||(X̃ , Ỹ)||C, |||(Z, p, q) • (X ,Y)|||G

)
.

By letting s̄ tend to infinity, we get ||(Z, p, q) • (X̄ , Ȳ)||G < ∞ and we have proved
(4.76). Hence, condition (i) of Definition 3.6 is satisfied. The conditions (ii)-(iv)
follow directly since (Z, p, q) ∈ H and (X̄ , Ȳ) ∈ C. We prove that

(4.77) lim
s→±∞

J(X̄ (s), Ȳ(s)) = lim
s→±∞

J(X (s),Y(s)).
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For any s ∈ R, let s1 = X−1(X̄ (s)) and s2 = Y−1(Ȳ(s)). If s1 ≤ s2, then X̄ (s) =
X (s1) ≤ X (s2) and Ȳ(s) = Y(s2) ≥ Y(s1). Since JX , JY ≥ 0, we get

J(X (s1),Y(s1)) ≤ J(X̄ (s), Ȳ(s)) ≤ J(X (s2),Y(s2)).

Similarly, if s2 ≤ s1, we obtain

J(X (s2),Y(s2)) ≤ J(X̄ (s), Ȳ(s)) ≤ J(X (s1),Y(s1)),

so that

(4.78) min{J(X (s1),Y(s1)), J(X (s2),Y(s2))} ≤ J(X̄ (s), Ȳ(s))

and

(4.79) J(X̄ (s), Ȳ(s)) ≤ max{J(X (s1),Y(s1)), J(X (s2),Y(s2))}.
Since

|s1 − s| ≤ |X (s1)− s1|+ |X̄ (s)− s| ≤ ||(X ,Y)||C + ||(X̄ , Ȳ)||C,
we have that lim

s→±∞
s1 = lim

s→±∞
X−1(X̄ (s)) = ±∞. Similarly, we find that lim

s→±∞
s2 =

lim
s→±∞

Y−1(Ȳ(s)) = ±∞. Hence, (4.78) and (4.79) yield (4.77), since J is bounded

and monotone. In particular, we have that these limits are independent of which
curve (X̄ , Ȳ) is chosen. Furthermore, by (3.25),

lim
s→−∞

J(X̄ (s), Ȳ(s)) = lim
s→−∞

J(X (s),Y(s)) = 0,

which shows that the last condition (v) in Definition 3.6 is satisfied for Θ̄ = (Z, p, q) •
(X̄ , Ȳ). Hence, Θ̄ ∈ G. �

We have the following global existence theorem.

Theorem 4.15 (Existence and uniqueness of global solutions). For any initial data
Θ = (X ,Y ,Z,V ,W , p, q) ∈ G, there exists a unique solution (Z, p, q) ∈ H such that
Θ = (Z, p, q) • (X ,Y). We denote this solution mapping by

(4.80) S : G → H.
Proof. First we show how to construct the solution on rectangles with diagonal
points which lie on the curve (X ,Y) ∈ C.

We consider two points, (X̄l, Ȳl) and (X̄r, Ȳr), on the curve (X ,Y) ∈ C such that
X̄l < X̄r and Ȳl < Ȳr. Set s̄l = 1

2
(X̄l + Ȳl) and s̄r = 1

2
(X̄r + Ȳr). Let the restriction

of Θ to Ω̄ = [X̄l, X̄r] × [Ȳl, Ȳr], which we denote by Θ̄ = (X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄),
be such that X̄ (s) = X (s), Ȳ(s) = Y(s), Z̄(s) = Z(s), V̄(X̄ (s)) = V(X (s)),
W̄(Ȳ(s)) = W(Y(s)), p̄(X̄ (s)) = p(X (s)) and q̄(Ȳ(s)) = q(Y(s)) for s ∈ [s̄l, s̄r].
Then, Θ̄ ∈ G(Ω̄) and, by Lemma 4.10, there exists a unique solution (Z̄, p̄, q̄) ∈ H(Ω̄)
such that Θ̄ = (Z̄, p̄, q̄) • (X̄ , Ȳ).

We can consider a new rectangle Ω̃ = [X̃l, X̃r]× [Ỹl, Ỹr] such that the upper right
diagonal point of Ω̄ is the lower left diagonal point of Ω̃, that is, X̃l = X̄r and
Ỹl = Ȳr. We set the upper right diagonal point (X̃r, Ỹr) to be on the curve (X ,Y).
By the above argument, we obtain a unique solution (Z̃, p̃, q̃) ∈ H(Ω̃) such that
Θ̃ = (Z̃, p̃, q̃) • (X̃ , Ỹ), where Θ̃ = (X̃ , Ỹ , Z̃, Ṽ , W̃ , p̃, q̃) is the restriction of Θ to Ω̃.
By repeating this argument on rectangles above Ω̃ and below Ω̄, we obtain unique
solutions in rectangles which cover the curve (X ,Y).
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Now we show how to construct solutions on rectangles with diagonal points which
does not lie on the given curve (X ,Y) ∈ C. We consider the above setting.

Let Ω̂ = [X̂l, X̂r] × [Ŷl, Ŷr] be the rectangle which lies above Ω̄ and to the left of

Ω̃, that is, X̂l = X̄l, X̂r = X̄r = X̃l, Ŷl = Ỹl = Ȳr and Ŷr = Ỹr. Set

(X̂ (s), Ŷ(s)) =

{
(2s− Ŷl, Ŷl) if ŝl ≤ s ≤ s̃l,

(X̂r, 2s− X̂r) if s̃l < s ≤ ŝr,

where ŝl, s̃l and ŝr are defined similarly to s̄l and s̄r above. We have (X̂ , Ŷ) ∈ C(Ω̂),

and we denote Θ̂ = (X̂ , Ŷ , Ẑ, V̂ , Ŵ , p̂, q̂), where

Ẑ(s) = Z̄(s), V̂(X̂ (s)) = V̄(X̂ (s)), Ŵ(Ŷ(s)) = W̄(Ŷ(s)),

p̂(X̂ (s)) = p̄(X̂ (s)), q̂(Ŷ(s)) = q̄(Ŷ(s))

for ŝl ≤ s ≤ s̃l and

Ẑ(s) = Z̃(s), V̂(X̂ (s)) = Ṽ(X̂ (s)), Ŵ(Ŷ(s)) = W̃(Ŷ(s)),

p̂(X̂ (s)) = p̃(X̂ (s)), q̂(Ŷ(s)) = q̃(Ŷ(s))

for s̃l < s ≤ ŝr. We have Θ̂ ∈ G(Ω̂). By Lemma 4.10, there exists a unique solution

(Ẑ, p̂, q̂) ∈ H(Ω̂) such that Θ̂ = (Ẑ, p̂, q̂) • (X̂ , Ŷ). By repeatedly applying this
argument to rectangles that are adjacent to rectangles where we have a solution, we
obtain unique solutions in any rectangular domain. Hence, condition (i) of Definition
4.13 is satisfied.

We define (Z, p, q) to be the unique solution in each rectangle. Then, we have
(Z, p, q) • (X ,Y) = Θ ∈ G and condition (ii) of Definition 4.13 is satisfied, so that
(Z, p, q) ∈ H. �

5. From Lagrangian to Eulerian Coordinates

5.1. Mapping from H to F . Given an element (Z, p, q) in H we now want to map
it to an element in the set G and then further to one in F . For a solution in H
corresponding to time T > 0, i.e., t(X, Y ) = T , we find it convenient to first shift
the time to zero so that we can map the solution to an element in G0 in the next
step.

Definition 5.1. Given T ≥ 0 and (Z, p, q) ∈ H, we define

(5.1a) t̄(X, Y ) = t(X, Y )− T
and

x̄(X, Y ) = x(X, Y ), Ū(X, Y ) = U(X, Y ),(5.1b)

J̄(X, Y ) = J(X, Y ), K̄(X, Y ) = K(X, Y ),(5.1c)

p̄(X, Y ) = p(X, Y ), q̄(X, Y ) = q(X, Y ).(5.1d)

We denote by tT : H → H the mapping which associates to any (Z, p, q) ∈ H the
element (Z̄, p̄, q̄) ∈ H. We have

(5.2) tT+T ′ = tT ◦ tT ′ .
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Definition 5.2. Given (Z, p, q) ∈ H, we define

(5.3) X (s) = sup{X ∈ R | t(X ′, 2s−X ′) < 0 for all X ′ < X}
and Y(s) = 2s − X (s). Then, we have (X ,Y) ∈ C and (Z, p, q) • (X ,Y) ∈ G0. We
denote by E : H → G0 the mapping which associates to any (Z, p, q) ∈ H the element
(Z, p, q) • (X ,Y) ∈ G0.

Proof of the well-posedness of Definition 5.2. We prove that (X ,Y) belongs to C.
Let us verify that X is nondecreasing. Let s < s̄ and consider a sequence Xi such
that Xi < X (s) and lim

i→∞
Xi = X (s). We have t(Xi, 2s−Xi) < 0 and, since tY ≤ 0,

t(Xi, 2s̄ −Xi) < 0, which implies that Xi < X (s̄). By letting i tend to infinity, we
obtain X (s) ≤ X (s̄), so that X is nondecreasing.

Next we show that X is differentiable almost everywhere. We claim that X
is Lipschitz continuous with Lipschitz constant at most two. Let us assume the
opposite, that is, there exists s̄ > s such that

X (s̄)−X (s) > 2(s̄− s).
This implies that Y(s) > Y(s̄) and we denote Ω = [X (s),X (s̄)]× [Y(s̄),Y(s)]. Since
tX ≥ 0 and tY ≤ 0, we have, for any (X, Y ) ∈ Ω, that

0 = t(X (s),Y(s)) ≤ t(X,Y(s)) ≤ t(X, Y ) ≤ t(X,Y(s̄)) ≤ t(X (s̄),Y(s̄)) = 0,

so that t(X, Y ) = 0 for all (X, Y ) ∈ Ω. Consider the point (X, Y ) given by Y = Y(s)
and X = 2s̄− Y(s). It belongs to Ω since X = 2s̄− Y(s) < 2s̄− Y(s̄) = X (s̄). We
have t(X, Y ) = 0, X + Y = 2s̄ and X < X (s̄), which contradicts the definition of
X (s̄). Hence, we have proved that X is Lipschitz continuous with Lipschitz constant
at most two and therefore differentiable almost everywhere. Furthermore, it follows
that Y is nondecreasing and differentiable almost everywhere. Since Ẋ , Ẏ ∈ [0, 2],
we find that Ẋ − 1, Ẏ − 1 ∈ L∞(R). It remains to prove that X − Id and Y − Id
belong to L∞(R). We will prove that

(5.4) lim sup
s→±∞

|X (s)− s| ≤ L

2

for a constant L that will be set later, and which depends on κ and |||(Z, p, q) •
(Xd,Yd)|||G. First we prove that

(5.5) lim sup
s→∞

(X (s)− s) ≤ L

2
.

Assume the opposite. Introducing f(s) = sup
r≥s

(X (r) − r), which is a nonincreasing

function, we then have

inf
s≥0

f(s) >
L

2
.

This implies that

f(s) >
L

2
for all s ≥ 0. The function X − Id can only be unbounded at infinity since it
is continuous with bounded derivative. If X − Id is bounded at infinity, (5.5) is
immediately satisfied. Thus, we assume that X (s) − s tends to infinity as s → ∞.
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This implies that f(s) → ∞ as s → ∞. Then there is an increasing sequence
sn →∞ as n→∞, such that

X (sn)− sn >
L

2

for all n, and X (sn)− sn →∞ as n→∞. We have Y(sn) = 2sn−X (sn) ≤ sn− L
2
.

Since tX ≥ 0 and tY ≤ 0 we have

0 = t(X (sn),Y(sn)) ≥ t
(
sn +

L

2
, sn −

L

2

)
.

Next we prove that

(5.6) lim inf
n→∞

t
(
sn +

L

2
, sn −

L

2

)
≥ 1,

which will lead to the contradiction

0 ≥ lim inf
n→∞

t
(
sn +

L

2
, sn −

L

2

)
≥ 1,

and (5.5) follows.
By (4.12a) and (4.12d), we have

t
(
sn +

L

2
, sn −

L

2

)
(5.7)

= t
(
sn −

L

2
, sn −

L

2

)
+

∫ sn+L
2

sn−L2

(
xX
c(U)

)(
X̃, sn −

L

2

)
dX̃

≥ −|||(Z, p, q) • (Xd,Yd)|||G +
L

2κ
+

1

κ

∫ sn+L
2

sn−L2

(
xX −

1

2

)(
X̃, sn −

L

2

)
dX̃.

Let Ωn,L = [sn − L
2
, sn + L

2
]× [sn − L

2
, sn + L

2
] and consider the curve

(X̄ (s), Ȳ(s)) =


(Xd(s),Yd(s)) for s < sn − L

2
,

(2s− (sn − L
2
), sn − L

2
) for sn − L

2
≤ s ≤ sn,

(sn + L
2
, 2s− (sn + L

2
)) for sn ≤ s ≤ sn + L

2
,

(Xd(s),Yd(s)) for s > sn + L
2
.

Both (Xd,Yd) and (X̄ , Ȳ) belong to C(Ωn,L). By the Cauchy–Schwarz inequality and
Lemma 4.11, we find∣∣∣∣ ∫ sn+L

2

sn−L2

(
xX −

1

2

)(
X̃, sn −

L

2

)
dX̃

∣∣∣∣(5.8)

≤
√
L

(∫ sn+L
2

sn−L2

(
xX −

1

2

)2(
X̃, sn −

L

2

)
dX̃

) 1
2

≤
√
L ||(Z, p, q) • (X̄ , Ȳ)||G(Ωn,L)

≤
√
LC||(Z, p, q) • (Xd,Yd)||G(Ωn,L).

Here, C is an increasing function with respect to both its arguments and we have

C = C
(
||(X̄ , Ȳ)||C(Ωn,L), |||(Z, p, q) • (Xd,Yd)|||G(Ωn,L)

)
≤ C

(
L, |||(Z, p, q) • (Xd,Yd)|||G

)
,
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where we used that ||(X̄ , Ȳ)||C(Ωn,L) = L. From (4.40), we have

lim
n→∞

||(Z, p, q) • (Xd,Yd)||2G(Ωn,L)

= lim
n→∞

∫ sn+L
2

sn−L2

(
U2 + |Za

X |2 + |Za
Y |2 + p2 + q2

)
(X̃, X̃) dX̃ = 0,

which combined with (5.8) and (5.7) yields

lim inf
n→∞

t
(
sn +

L

2
, sn −

L

2

)
≥ −|||(Z, p, q) • (Xd,Yd)|||G +

L

2κ
.

Setting L ≥ 2κ(|||(Z, p, q) • (Xd,Yd)|||G + 1) implies (5.6). Thus, we have proved
(5.5).

It remains to prove that lim inf
s→∞

(X (s)− s) ≥ −L
2

in order to conclude that

lim sup
s→∞

|X (s)− s| ≤ L

2
.

The proof is similar to the one above. Now one has to show that

(5.9) lim sup
n→∞

t
(
sn −

L

2
, sn +

L

2

)
≤ −1,

for an increasing sequence sn →∞ as n→∞, in order to get a contradiction.
The proof of

lim sup
s→−∞

|X (s)− s| ≤ L

2

is similar to the argument above. To show

lim sup
s→−∞

(X (s)− s) ≤ L

2
and lim inf

s→−∞
(X (s)− s) ≥ −L

2
,

one proves

lim inf
n→∞

t
(
sn +

L

2
, sn −

L

2

)
≥ 1 and lim sup

n→∞
t
(
sn −

L

2
, sn +

L

2

)
≤ −1,

respectively, for a carefully chosen decreasing sequence sn → −∞ as n→∞.
This concludes the proof of (5.4), and we have showed that X − Id and Y − Id

belong to L∞(R), so that (X ,Y) ∈ C. Then, by Lemma 4.14, we have

(X ,Y ,Z,V ,W , p, q) = (Z, p, q) • (X ,Y) ∈ G
and by construction Z1(s) = t(X (s),Y(s)) = 0 so that (Z, p, q) • (X ,Y) ∈ G0. �

Definition 5.3. Given (X ,Y ,Z,V ,W , p, q) ∈ G0, let ψ1 = (x1, U1, J1, K1, V1, H1)
and ψ2 = (x2, U2, J2, K2, V2, H2) be defined as

x1(X (s)) = x2(Y(s)) = Z2(s),(5.10a)

U1(X (s)) = U2(Y(s)) = Z3(s),(5.10b)

J1(X (s)) =

∫ s

−∞
V4(X (τ))Ẋ (τ) dτ, J2(Y(s)) =

∫ s

−∞
W4(Y(τ))Ẏ(τ) dτ,(5.10c)

K1(X (s)) =

∫ s

−∞
V5(X (τ))Ẋ (τ) dτ, K2(Y(s)) =

∫ s

−∞
W5(Y(τ))Ẏ(τ) dτ,(5.10d)
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and

V1 = V3, V2 =W3,(5.10e)

H1 = p, H2 = q.(5.10f)

We denote by D : G0 → F the mapping which to any (X ,Y ,Z,V ,W , p, q) ∈ G0

associates the element ψ ∈ F as defined above.

Proof of the well-posedness of Definition 5.3. We check the well-posedness of (5.10a)
and (5.10b). Consider s < s̄ such that X (s) = X (s̄). Since X is nondecreasing and
continuous, we have Ẋ (s̃) = 0 and Ẏ(s̃) = 2 for all s̃ ∈ [s, s̄]. From (3.26), it follows
that W2(Y(s̃)) = 0 for all s̃ ∈ [s, s̄]. Hence,

Ż2(s̃) = V2(X (s̃))Ẋ (s̃) +W2(Y(s̃))Ẏ(s̃) = 0

for all s̃ ∈ [s, s̄], so that Z2(s̃) = Z2(s̄) and (5.10a) is well-posed.
From (3.24d), we obtain

0 = 2W4(Y(s̃))W2(Y(s̃)) = (c(Z3(s̃))W3(Y(s̃)))2 + c(Z3(s̃))q2(Y(s̃)),

which implies that W3(Y(s̃)) = 0 and q(Y(s̃)) = 0 for all s̃ ∈ [s, s̄]. Thus,

Ż3(s̃) = V3(X (s̃))Ẋ (s̃) +W3(Y(s̃))Ẏ(s̃) = 0

so that Z3(s̃) = Z3(s̄) and (5.10b) is well-posed.
Let us prove that J1 and K1 given by (5.10c) and (5.10d) are well-posed. The

proof is similar for J2 and K2. Since V4,W4, Ẋ , Ẏ ≥ 0, we have J1 ≥ 0 and

J1(X (s)) =

∫ s

−∞
V4(X (τ))Ẋ (τ) dτ(5.11)

≤
∫ s

−∞
(V4(X (τ))Ẋ (τ) +W4(Y(τ))Ẏ(τ)) dτ

=

∫ s

−∞
Ż4(τ) dτ ≤ ||Za4 ||L∞(R),

so that the function V4 belongs to L1(R) and J1 is bounded. If s, s̄ ∈ R are such that
s < s̄ and X (s) = X (s̄), we have Ẋ (s̃) = 0 for all s̃ ∈ [s, s̄] since X is nondecreasing.
Hence,

(5.12)

∫ s̃

−∞
V4(X (τ))Ẋ (τ) dτ =

∫ s

−∞
V4(X (τ))Ẋ (τ) dτ,

and J1 is well-posed. For K1, we have by (3.24b), that

(5.13) K1(X (s)) =

∫ s

−∞
V5(X (τ))Ẋ (τ) dτ =

∫ s

−∞

V4(X (τ))

c(Z3(τ))
Ẋ (τ) dτ ≤ κJ1(X (s)),

which by (5.11) and since V4 ≥ 0 and c > 0, implies that 0 ≤ K1(X) ≤ κ||Za4 ||L∞(R).
By an argument as in (5.12) applied to K1, we conclude that also K1 is well-posed.

Next we show that ψ1 = (x1, U1, J1, K1, V1, H1) as defined in (5.10a)-(5.10f) satis-
fies the conditions in the definition of the set F . The proof for ψ2 is similar.

Let us show that x1 is Lipschitz continuous and therefore differentiable almost
everywhere. Consider s, s̄ ∈ R and set X = X (s) and X̄ = X (s̄). We have

|x1(X̄)− x1(X)| = |Z2(s̄)−Z2(s)|
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=

∣∣∣∣ ∫ s̄

s

Ż2(s̃) ds̃

∣∣∣∣
=

∣∣∣∣ ∫ s̄

s

(V2(X (s̃))Ẋ (s̃) +W2(Y(s̃))Ẏ(s̃)) ds̃

∣∣∣∣
=

∣∣∣∣2 ∫ s̄

s

V2(X (s̃))Ẋ (s̃) ds̃

∣∣∣∣ by (3.26)

=

∣∣∣∣2 ∫ s̄

s

Va2 (X (s̃))Ẋ (s̃) ds̃+

∫ s̄

s

Ẋ (s̃) ds̃

∣∣∣∣ by (3.18)

≤ (2 ‖Va2‖L∞(R) + 1)|X̄ −X|.
From (5.11), we have that J1 is increasing and hence differentiable almost every-

where. Similarly, one shows that K1 is differentiable almost everywhere.
Next we show (3.5a)-(3.5d). We have

(5.14) x1(X (s))−X (s) = Z2(s)− s+ s−X (s) = Za2 + s−X (s),

so that x1 − Id ∈ L∞(R) since Za2 and X − Id belong to L∞(R). Differentiating
(5.10a) and using (3.26), we obtain x′1(X )Ẋ = Ż2 = 2V2(X )Ẋ . Hence, x′1 = 2V2

and we get that
x′1 − 1 = 2V2 − 1 = 2Va2 ,

which shows that x′1 − 1 ∈ L2(R) ∩ L∞(R). By (5.11), we have J1 ∈ L∞(R). We
differentiate (5.10c) and obtain J ′1 = V4 = Va4 , which implies that J ′1 ∈ L2(R) ∩
L∞(R). Then, from (5.13) it follows that K1 ∈ L∞(R) and K ′1 ∈ L2(R) ∩ L∞(R).
Since p, q ∈ L2(R) ∩ L∞(R), we have by (5.10f) that H1 and H2 belong to L2(R) ∩
L∞(R). The function U1 belongs to L2(R) and L∞(R), as U1(X ) = Z3 ∈ L2(R) ∩
L∞(R). We have V1 ∈ L2(R)∩L∞(R) by (5.10e) and since V3 = Va3 ∈ L2(R)∩L∞(R).
Hence, we have proved (3.5a)-(3.5d). Let us verify (3.6). We showed above that
x′1 = 2V2 and J ′1 = V4. Thus, x′1, J

′
1 ≥ 0 because V2,V4 ≥ 0. The identity (3.7)

follows from (3.24b) since J ′1 = V4 and K ′1 = V5. We can check that the relation (3.8)
holds by using (3.24c), (5.10e) and (5.10f). Let us prove (3.9) by using Lemma 3.8.
We found above that J1 is absolutely continuous. Since x1 is Lipschitz continuous,
it follows that x1 + J1 is absolutely continuous. By (5.11), we have

|x1 + J1 − Id | ≤ |x1 − Id |+ ||Za4 ||L∞(R)

which, by (5.14), implies that x1 + J1 − Id ∈ L∞(R).
We proved above that x′1− 1, J ′1 ∈ L2(R), which implies that x′1 +J ′1− 1 ∈ L2(R).
The fact that 1

V2+V4
∈ L∞(R) implies that there exists a number k > 0 such that

V2(X) + V4(X) ≥ k for almost every X ∈ R. Then, since x′1 + J ′1 = 2V2 + V4, we
obtain

k ≤ V2+V4 ≤ x′1+J ′1 ≤ 2(V2+V4) = 2(Va2 +Va4 )+1 ≤ 2
(
||Va2 ||L∞(R)+||Va4 ||L∞(R)

)
+1,

so that the remaining condition in Lemma 3.8 holds. Hence, x1 + J1 ∈ G and we
have proved (3.9).

By (5.10c) and (3.25), we have

0 ≤ J1(X (s)) + J2(Y(s)) =

∫ s

−∞
Ż4(τ) dτ = Z4(s),
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and since lim
s→−∞

X (s) = −∞ and lim
s→−∞

Y(s) = −∞, (3.25) implies (3.10). The

relation (3.11a) follows directly from (5.10b). Using (5.10b), (3.23), and (5.10e), we
obtain

d

ds
U1(X ) =

d

ds
U2(Y) = Ż3 = V3(X )Ẋ +W3(Y)Ẏ = V1(X )Ẋ + V2(Y)Ẏ ,

so that (3.11b) holds.
�

5.2. Semigroup of Solutions in F . We define the solution operator on the set
F .

Definition 5.4. For any T ≥ 0, we define the mapping ST : F → F by

ST = D ◦ E ◦ tT ◦ S ◦C.

In order to show that ST is a semigroup we need the following result.

Lemma 5.5. We have

(5.15) C ◦D ◦ E = E, D ◦C = Id

and

(5.16) E ◦ S ◦C = C, S ◦ E = Id .

It follows that S ◦C = (D ◦ E)−1 and the sets F and H are in bijection.

Proof. We first prove (5.15). Given (Z, p, q) ∈ H, let

(X ,Y ,Z,V ,W , p, q) = E(Z, p, q),

(ψ1, ψ2) = D(X ,Y ,Z,V ,W , p, q),

(X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄) = C(ψ1, ψ2).

We want to prove that (X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄) = (X ,Y ,Z,V ,W , p, q). Let us show
that X̄ = X . We claim that for any s ∈ R and (X, Y ) such that X < X (s) and
X + Y = 2s, we have either

(5.17) x1(X) < x1(X (s)) or x2(Y ) > x2(Y(s)).

Let us assume the opposite, that is, there exist s̄ and (X̄, Ȳ ) such that X̄ < X (s̄),
X̄ + Ȳ = 2s̄ and

x1(X̄) = x1(X (s̄)) = Z2(s̄) = x2(Y(s̄)) = x2(Ȳ ),

where we used (5.10a). Let s0 = X−1(X̄) and s1 = Y−1(Ȳ ). Since X̄ < X (s̄),
Y(s̄) < Ȳ and Ẋ , Ẏ ≥ 0, we have s0 < s̄ < s1. Consider the rectangular domain
Ω = [X (s0),X (s1)] × [Y(s0),Y(s1)]. We want to construct a solution (Z̃, p̃, q̃) of
(2.38) in Ω.

Since

Z2(s0) = x1(X (s0)) = x1(X̄) = Z2(s̄),

Z2(s1) = x2(Y(s1)) = x2(Ȳ ) = Z2(s̄)

and Z2 is nondecreasing, we have Z2(s) = Z2(s0) = Z2(s1) for all s ∈ [s0, s1].
We have Ż2(s) = V2(X (s))Ẋ (s) + W2(Y(s))Ẏ(s) = 0 for all s ∈ [s0, s1], which
implies that V2(X) = 0 for almost every X ∈ [X (s0),X (s1)] and W2(Y ) = 0 for



74 K. GRUNERT AND A. REIGSTAD

almost every Y ∈ [Y(s0),Y(s1)]. Then, by (3.24a), (3.24c) and (3.24d), we have
V1(X) = V3(X) = p(X) = 0 for almost every X ∈ [X (s0),X (s1)] and W1(Y ) =
W3(Y ) = q(Y ) = 0 for almost every Y ∈ [Y(s0),Y(s1)]. Hence, Z1(s) is constant
for all s ∈ [s0, s1] and we define3 t̃(X, Y ) = 0 in Ω. Let

x̃(X, Y ) = Z2(s), Ũ(X, Y ) = Z3(s),

J̃(X, Y ) = J1(X) + J2(Y ), K̃(X, Y ) = K1(X) +K2(Y ),

p̃(X, Y ) = p(X), q̃(X, Y ) = q(Y ).

Then, (Z̃, p̃, q̃) is a solution of (2.38) in Ω. By the uniqueness of the solution, we
get (Z̃, p̃, q̃) = (Z, p, q). In particular, we have t(X̄, Ȳ ) = 0 such that X̄ < X (s̄)
and X̄ + Ȳ = 2s̄, which contradicts the definition of X given by (5.3). Hence, we
conclude that (5.17) holds. By (5.10a), we have x1(X (s)) = x2(2s − X (s)). Thus,
(3.28) implies that X̄ (s) ≤ X (s) and it follows that Ȳ(s) ≥ Y(s). From (3.29), we
have

(5.18) x1(X̄ (s)) = x2(Ȳ(s)).

Let us assume that X̄ (s) < X (s). Then, by (5.17), we have either x1(X̄ (s)) <
x1(X (s)) or x2(Ȳ(s)) > x2(Y(s)). If x1(X̄ (s)) < x1(X (s)), then

x1(X̄ (s)) < x1(X (s)) = x2(Y(s)) ≤ x2(Ȳ(s)),

which contradicts (5.18). Similarly, if x2(Ȳ(s)) > x2(Y(s)), we obtain the contra-
diction

x2(Ȳ(s)) > x2(Y(s)) = x1(X (s)) ≥ x1(X̄ (s)).

Hence, X̄ = X and therefore Ȳ = Y . Then, by (3.30b) and (5.10a), we have
Z̄2(s) = x1(X̄ (s)) = x1(X (s)) = Z2(s). Similarly, one finds that Z̄3 = Z3. By
(3.30a) and since (X ,Y ,Z,V ,W , p, q) ∈ G0, we have Z̄1 = Z1 = 0. We have

Z̄4(s) = J1(X̄ (s)) + J2(Ȳ(s)) by (3.30d)

= J1(X (s)) + J2(Y(s))

=

∫ s

−∞
(V4(X (τ))Ẋ (τ) +W4(Y(τ))Ẏ(τ)) dτ by (5.10c)

=

∫ s

−∞
Ż4(τ) dτ = Z4(s) by (3.23)

and by a similar calculation, we obtain Z̄5 = Z5. Let us verify that V̄ = V (one
shows that W̄ = W in a similar way). By differentiating x1(X (s)) = Z2(s) and
using (3.26), we obtain x′1 = 2V2. This yields

V̄1(X̄ ) = V̄1(X ) =
1

2c(U1(X ))
x′1(X ) =

1

c(Z3)
V2(X ) = V1(X )

by (3.31a) and (3.24a), and

V̄2(X̄ ) = V̄2(X ) =
1

2
x′1(X ) = V2(X )

3In a rectangular domain where t = 0, (X ,Y) as defined by (5.3) has to consist of the vertical
straight line connecting the lower left diagonal point with the upper left corner, and the horizontal
straight line connecting the upper left corner with the upper right diagonal point, since tX ≥ 0
and tY ≤ 0
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by (3.31b). From (3.31c)-(3.31f) and (5.10c)-(5.10f), we obtain

V̄3(X̄ ) = V̄3(X ) = V1(X ) = V3(X ),

V̄4(X̄ ) = V̄4(X ) = J ′1(X ) = V4(X ),

V̄5(X̄ ) = V̄5(X ) = K ′1(X ) = V5(X ),

p̄(X̄ ) = p̄(X ) = H1(X ) = p(X ),

q̄(Ȳ) = q̄(Y) = H2(Y) = q(X ).

Hence, we have proved that C ◦D ◦E = E. By a straightforward calculation, using
Definition 3.7 and Definition 5.3, one proves that D ◦ C = Id. This concludes the
proof of (5.15).

Next we prove (5.16). Given (ψ1, ψ2) ∈ F , let

(X ,Y ,Z,V ,W , p, q) = C(ψ1, ψ2),

(Z, p, q) = S(X ,Y ,Z,V ,W , p, q),

(X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄) = E(Z, p, q).

As before, we first show that X̄ = X . Since (Z, p, q) ∈ H is a solution with (Z, p, q)•
(X ,Y) = (X ,Y ,Z,V ,W , p, q) ∈ G0, we have that t(X (s),Y(s)) = 0. Hence, by
(5.3), we get X̄ (s) ≤ X (s). Assume that there exists s ∈ R such that X̄ (s) <
X (s). Let s0 = X−1(X̄ (s)) and s1 = Y−1(Ȳ(s)). Since X (s0) = X̄ (s) < X (s)
and Y(s1) = Ȳ(s) > Y(s), we have s0 < s < s1. By (4.12a), (4.12d) and since
t(X (s0),Y(s0)) = t(X̄ (s), Ȳ(s)) = t(X (s1),Y(s1)) = 0, we get tY (X (s0), Y ) = 0 for
Y ∈ [Y(s0),Y(s1)] and tX(X,Y(s1)) = 0 for X ∈ [X (s0),X (s1)]. This implies, by
(4.12a), that xY (X (s0), Y ) = 0 for Y ∈ [Y(s0),Y(s1)] and xX(X,Y(s1)) = 0 for
X ∈ [X (s0),X (s1)]. Then,

x1(X̄ (s)) = x1(X (s0))

= Z2(s0) by (3.30b)

= x(X (s0),Y(s0)) since (Z, p, q) • (X ,Y) = (X ,Y ,Z,V ,W , p, q)

= x(X (s0),Y(s1))

= x(X (s1),Y(s1)) = Z2(s1) = x2(Y(s1)) = x2(Ȳ(s)).

However, the fact that x1(X̄ (s)) = x2(Ȳ(s)) and X̄ (s) < X (s) contradicts the
definition of X in (3.28). Hence, we must have X̄ = X , which yields Ȳ = Y and

Z̄(s) = Z(X̄ (s), Ȳ(s)) = Z(X (s),Y(s)) = Z(s),

V̄(X̄ ) = V̄(X ) = ZX(X ,Y) = V(X ),

W̄(Ȳ) = W̄(Y) = ZY (X ,Y) =W(Y),

p̄(X̄ ) = p̄(X ) = p(X ,Y) = p(X ),

q̄(Ȳ) = q̄(Y) = q(X ,Y) = q(Y).

Hence, we have proved that E ◦ S ◦ C = C. By the uniqueness of the solution for
given data (X ,Y ,Z,V ,W , p, q) ∈ G0, we have that S ◦ E = Id. This concludes the
proof of (5.16). �

Theorem 5.6. The mapping ST is a semigroup.
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Proof. We have

ST ◦ ST ′ = D ◦ E ◦ tT ◦ S ◦C ◦D ◦ E ◦ tT ′ ◦ S ◦C

= D ◦ E ◦ tT ◦ tT ′ ◦ S ◦C by Lemma 5.5

= D ◦ E ◦ tT+T ′ ◦ S ◦C by (5.2)

= ST+T ′ .

�

5.3. Mapping from F to D.

Definition 5.7. Given ψ = (ψ1, ψ2) ∈ F , we define (u,R, S, ρ, σ, µ, ν) as

(5.19a) u(x) = U1(X) if x1(X) = x

or, equivalently,

(5.19b) u(x) = U2(Y ) if x2(Y ) = x,

R(x) dx = (x1)#(2c(U1(X))V1(X) dX),(5.19c)

S(x) dx = (x2)#(−2c(U2(Y ))V2(Y ) dY ),(5.19d)

ρ(x) dx = (x1)#(2H1(X) dX),(5.19e)

σ(x) dx = (x2)#(2H2(Y ) dY ),(5.19f)

µ = (x1)#(J ′1(X) dX),(5.19g)

ν = (x2)#(J ′2(Y ) dY ).(5.19h)

The relations (5.19c)-(5.19f) are equivalent to

R(x1(X))x′1(X) = 2c(U1(X))V1(X),(5.20a)

S(x2(Y ))x′2(Y ) = −2c(U2(Y ))V2(Y ),(5.20b)

ρ(x1(X))x′1(X) = 2H1(X),(5.20c)

σ(x2(Y ))x′2(Y ) = 2H2(Y ),(5.20d)

respectively, for almost every X and Y . We denote by M : F → D the mapping
which to any ψ ∈ F associates the element (u,R, S, ρ, σ, µ, ν) ∈ D as defined above.

The push-forward of a measure λ by a function f is the measure f#λ defined by
f#λ(B) = λ(f−1(B)) for Borel sets B.

The well-posedness of Definition 5.7 is part of the proof of the following lemma.

Lemma 5.8. Given ψ = (ψ1, ψ2) ∈ F , let (u,R, S, ρ, σ, µ, ν) = M(ψ1, ψ2). Then,
for any Θ = (X ,Y ,Z,V ,W , p, q) ∈ G0 such that (ψ1, ψ2) = D(X ,Y ,Z,V ,W , p, q),
we have

(5.21a) u(x) = Z3(s) if x = Z2(s),

R(x) dx = (Z2)#(2c(Z3(s))V3(X (s))Ẋ (s) ds),(5.21b)

S(x) dx = (Z2)#(−2c(Z3(s))W3(Y(s))Ẏ(s) ds),(5.21c)

ρ(x) dx = (Z2)#(2p(X (s))Ẋ (s) ds),(5.21d)

σ(x) dx = (Z2)#(2q(Y(s))Ẏ(s) ds),(5.21e)
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µ = (Z2)#(V4(X (s))Ẋ (s) ds),(5.21f)

ν = (Z2)#(W4(Y(s))Ẏ(s) ds).(5.21g)

The relations (5.21b) and (5.21d) are equivalent to

R(Z2(s))V2(X (s)) = c(Z3(s))V3(X (s)),(5.22a)

ρ(Z2(s))V2(X (s)) = p(X (s))(5.22b)

for any s such that Ẋ (s) > 0, respectively. The relations (5.21c) and (5.21e) are
equivalent to

S(Z2(s))W2(Y(s)) = −c(Z3(s))W3(Y(s)),(5.23a)

σ(Z2(s))W2(Y(s)) = q(Y(s))(5.23b)

for any s such that Ẏ(s) > 0, respectively.

Proof. We decompose the proof into five steps.
Step 1. We first prove that (5.19) implies (5.21). If x = x1(X), let s = X−1(X).

Then, by (5.10a), x = x1(X) = x1(X (s)) = Z2(s), and, by (5.10b), u(x) = U1(X) =
U1(X (s)) = Z3(s). Similarly, if x = x2(Y ), we let s = Y−1(Y ) and obtain x =
x2(Y ) = x2(Y(s)) = Z2(s) and u(x) = U2(Y ) = U2(Y(s)) = Z3(s). Hence, both
(5.19a) and (5.19b) imply (5.21a). The identity (5.21b) follows from (5.19c) since,
for any Borel set A, we have∫

A

R(x) dx =

∫
x−1

1 (A)

2c(U1(X))V1(X) dX

=

∫
(x1◦X )−1(A)

2c(U1(X (s)))V1(X (s))Ẋ (s) ds by a change of variables

=

∫
Z−1

2 (A)

2c(Z3(s))V3(X (s))Ẋ (s) ds by (5.10a), (5.10b) and (5.10e).

In the same way, one proves that (5.19d) implies (5.21c). By a similar calculation
as above, we obtain ∫

A

ρ(x) dx =

∫
x−1

1 (A)

2H1(X) dX

=

∫
(x1◦X )−1(A)

2H1(X (s))Ẋ (s) ds

=

∫
Z−1

2 (A)

2p(X (s))Ẋ (s) ds

and ∫
A

σ(x) dx =

∫
x−1

2 (A)

2H2(Y ) dY

=

∫
(x2◦Y)−1(A)

2H2(Y(s))Ẏ(s) ds

=

∫
Z−1

2 (A)

2q(Y(s))Ẏ(s) ds,
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which shows that (5.19e) and (5.19f) imply (5.21d) and (5.21e), respectively. From
(5.19g), we find

µ(A) =

∫
x−1

1 (A)

J ′1(X) dX =

∫
(x1◦X )−1(A)

J ′1(X (s))Ẋ (s) ds =

∫
Z−1

2 (A)

V4(X (s))Ẋ (s) ds,

so that (5.19g) leads to (5.21f). By a similar calculation, one shows that (5.19h)
yields (5.21g).

Step 2. We prove that u is a well-defined function that belongs to L2(R). Con-
sider s0, s1 ∈ R such that s0 < s1 and x = Z2(s0) = Z2(s1). Since Z2 is con-
tinuous and nondecreasing, we have Ż2(s) = V2(X (s))Ẋ (s) +W2(Y(s))Ẏ(s) = 0
for s ∈ [s0, s1], which implies that V2(X (s))Ẋ (s) = W2(Y(s))Ẏ(s) = 0. Then, by
multiplying (3.24c) with Ẋ (s)2 and (3.24d) with Ẏ(s)2, we obtain V3(X (s))Ẋ (s) =
W3(Y(s))Ẏ(s) = 0 and therefore Ż3(s) = V3(X (s))Ẋ (s) +W3(Y(s))Ẏ(s) = 0 for
s ∈ [s0, s1]. Hence, Z3(s0) = Z3(s1) and (5.21a) is well-defined. We have∫

R
u2(x) dx =

∫
R
u2(Z2(s))Ż2(s) ds by a change of variables

=

∫
R
Z2

3 (s)Ż2(s) ds by (5.21a)

= 2

∫
R
Z2

3 (s)V2(X (s))Ẋ (s) ds by (3.26)

≤ 4

∫
R
Z2

3 (s)V2(X (s)) ds since 0 ≤ Ẋ ≤ 2 and V2 ≥ 0

= 4

∫
R
Z2

3 (s)

(
Va2 (X (s)) +

1

2

)
ds by (3.18)

≤ 4

(
||Va2 ||L∞(R) +

1

2

)
||Z3||2L2(R)

and u ∈ L2(R).
Step 3. We show that the definitions (5.21b)-(5.21e) are well-defined, and that

the relations (5.22a)-(5.23b) hold. First we prove that the measures

(Z2)#(2c(Z3(s))V3(X (s))Ẋ (s) ds),

(Z2)#(−2c(Z3(s))W3(Y(s))Ẏ(s) ds),

(Z2)#(2p(X (s))Ẋ (s) ds),

(Z2)#(2q(Y(s))Ẏ(s) ds)

are absolutely continuous with respect to Lebesgue measure. We claim that the
function

F (x) =

∫
Z−1

2 ((−∞,x])

2c(Z3(s))V3(X (s))Ẋ (s) ds

is absolutely continuous. Let (xi, x̄i), i = 1, . . . , N , be non-intersecting intervals.
We have

N∑
i=1

|F (x̄i)− F (xi)| =
N∑
i=1

∣∣∣∣ ∫
Z−1

2 ((xi,x̄i])

2c(Z3(s))V3(X (s))Ẋ (s) ds

∣∣∣∣.
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The set Z−1
2 ((xi, x̄i]) is an interval, since the function Z2 is nondecreasing and con-

tinuous. Denote si = sup{s ∈ R | Z2(s) ≤ xi} and s̄i = sup{s ∈ R | Z2(s) ≤ x̄i}.
We have Z2(si) = xi, Z2(s̄i) = x̄i and Z−1

2 ((xi, x̄i]) = (si, s̄i]. Then

N∑
i=1

|F (x̄i)− F (xi)| ≤ 2κ

∫
N⋃
i=1

(si, s̄i]

|V3(X (s))|Ẋ (s) ds.

From (3.24c), we obtain |V3(X )| ≤ κ(2V4(X )V2(X ))
1
2 . This implies, by the Cauchy–

Schwarz inequality, that
N∑
i=1

|F (x̄i)− F (xi)|(5.24)

≤ 2κ2

∫
N⋃
i=1

(si, s̄i]

(V4(X (s))Ẋ (s))
1
2 (2V2(X (s))Ẋ (s))

1
2 ds

≤ 2κ2

(∫
N⋃
i=1

(si, s̄i]

V4(X (s))Ẋ (s) ds

) 1
2
(∫

N⋃
i=1

(si, s̄i]

2V2(X (s))Ẋ (s) ds

) 1
2

.

Inserting the estimates∫
N⋃
i=1

(si, s̄i]

V4(X (s))Ẋ (s) ds ≤
∫
R
V4(X (s))Ẋ (s) ds

≤
∫
R
(V4(X (s))Ẋ (s) +W4(Y(s))Ẏ(s)) ds

=

∫
R
Ż4(s) ds

≤ ||Za4 ||L∞(R) by (3.25)

and ∫
N⋃
i=1

(si, s̄i]

2V2(X (s))Ẋ (s) ds =

∫
N⋃
i=1

(si, s̄i]

Ż2(s) ds =
N∑
i=1

|x̄i − xi|

into (5.24), we get

N∑
i=1

|F (x̄i)− F (xi)| ≤ C

( N∑
i=1

|x̄i − xi|
) 1

2

for a constant C which only depends on |||Θ|||G and κ. This implies that F is
absolutely continuous. Then, the measure (Z2)#(2c(Z3(s))V3(X (s))Ẋ (s) ds) is ab-
solutely continuous. In the same way, one proves that measures
(Z2)#(−2c(Z3(s))W3(Y(s))Ẏ(s) ds), (Z2)#(2p(X (s))Ẋ (s) ds) and

(Z2)#(2q(Y(s))Ẏ(s) ds) are absolutely continuous, so that the functions R, S, ρ and
σ as given by (5.21b)-(5.21e) are well-defined.
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Let us prove (5.22a). We have

(5.25)

∫
Z−1

2 (A)

R(Z2(s))Ż2(s) ds =

∫
Z−1

2 (A)

2c(Z3(s))V3(X (s))Ẋ (s) ds

for any Borel set A, and we want to show that for any measurable set B,

(5.26)

∫
B

R(Z2(s))Ż2(s) ds =

∫
B

2c(Z3(s))V3(X (s))Ẋ (s) ds.

For any measurable set B, we have the decomposition Z−1
2 (Z2(B)) = B ∪ (Bc ∩

Z−1
2 (Z2(B))). Let us prove that Ż2 = 0 on Bc ∩ Z−1

2 (Z2(B)). Consider a point
s̄ ∈ Bc ∩ Z−1

2 (Z2(B)). There exists s̃ ∈ B such that Z2(s̄) = Z2(s̃), which implies,
since Z2 is nondecreasing, that Ż2 = 0 on the interval joining the points s̄ and s̃.
Since s̄ was arbitrary, we conclude that Ż2(s) = 0 for all s ∈ Bc ∩ Z−1

2 (Z2(B)).
Then, by an estimate as above, we get∣∣∣∣ ∫

Bc∩Z−1
2 (Z2(B))

2c(Z3(s))V3(X (s))Ẋ (s) ds

∣∣∣∣
≤ 2κ2||Za4 ||

1
2

L∞(R)

(∫
Bc∩Z−1

2 (Z2(B))

Ż2(s) ds

) 1
2

= 0.

Hence, by taking A = Z2(B) in (5.25), we obtain (5.26). Thus,

R(Z2(s))Ż2(s) = 2c(Z3(s))V3(X (s))Ẋ (s)

which yields, because Ż2(s) = 2V2(X (s))Ẋ (s),

R(Z2(s))V2(X (s)) = c(Z3(s))V3(X (s))

for any s such that Ẋ (s) > 0. Similarly, one proves (5.22b), (5.23a) and (5.23b).
Step 4. We show that R, S, ρ and σ belong to L2(R), and ux = R−S

2c(u)
. Since∫

R
R2(x) dx =

∫
R
R2(Z2(s))Ż2(s) ds by a change of variables

= 2

∫
R
R2(Z2(s))V2(X (s))Ẋ (s) ds by (3.26)

= 2

∫
{s∈R | V2(X (s))>0}

(
R(Z2(s))V2(X (s))

)2

V2(X (s))
Ẋ (s) ds

= 2

∫
{s∈R | V2(X (s))>0}

(
c(Z3(s))V3(X (s))

)2

V2(X (s))
Ẋ (s) ds by (5.22a)

≤ 4

∫
R
V4(X (s))Ẋ (s) ds by (3.24c)

≤ 4

∫
R

(
V4(X (s))Ẋ (s) +W4(Y(s))Ẏ(s)

)
ds since W4 ≥ 0

= 4

∫
R
Ż4(s) ds

≤ 4||Za4 ||L∞(R) by (3.25),



A REGULARIZED SYSTEM FOR THE NONLINEAR VARIATIONAL WAVE EQUATION 81

R belongs to L2(R). Similarly, using (5.22b), (5.23a) and (5.23b), one proves that
ρ, S and σ belong to L2(R), respectively.

Let φ be a smooth test function with compact support. We have∫
R
u(x)φx(x) dx

=

∫
R
u(Z2(s))φx(Z2(s))Ż2(s) ds by a change of variables

=

∫
R
Z3(s)(φ(Z2(s)))s ds by (5.21a)

= −
∫
R
Ż3(s)φ(Z2(s)) ds by integrating by parts

= −
∫
R

(
V3(X (s))Ẋ (s) +W3(Y(s))Ẏ(s)

)
φ(Z2(s)) ds

= −
∫
R

1

c(Z3(s))

(
R(Z2(s))V2(X (s))Ẋ (s)

− S(Z2(s))W2(Y(s))Ẏ(s)
)
φ(Z2(s)) ds by (5.22)

= −
∫
R

1

2c(Z3(s))

(
R(Z2(s))− S(Z2(s))

)
φ(Z2(s))Ż2(s) ds by (3.26)

= −
∫
R

1

2c(u(x))

(
R(x)− S(x)

)
φ(x) ds by a change of variables.

Hence, ux = R−S
2c(u)

in the sense of distributions.

Step 5. We prove that µac = 1
4
(R2 + c(u)ρ2) dx and νac = 1

4
(S2 + c(u)σ2) dx. Let

(5.27) A = {s ∈ R | V2(X (s)) > 0} and B = (Z2(Ac))c.

Since Ż2 = 2V2(X )Ẋ , we have Ż2 = 0 on Ac, so that

meas(Bc) =

∫
Ac
Ż2(s) ds = 0.

Since Z−1
2 (Bc) = Z−1

2 (Z2(Ac)) ⊃ Ac, we have Z−1
2 (B) ⊂ A4. Let M be any Borel

set. We have µ(M) = µ(M ∩ B) + µ(M ∩ Bc), and we claim that µ(M ∩ B) is the
absolutely continuous part of µ. Since M ∩B ⊂ B, Z−1

2 (M ∩B) ⊂ A. Hence,

µ(M ∩B)

=

∫
Z−1

2 (M∩B)

V4(X (s))Ẋ (s) ds

=

∫
Z−1

2 (M∩B)

V4(X (s))V2(X (s))

V2(X (s))
Ẋ (s) ds

=

∫
Z−1

2 (M∩B)

(c(Z3(s))V3(X (s)))2 + c(Z3(s))p2(X (s))

2V2(X (s))
Ẋ (s) ds by (3.24c)

4The following example is useful to have in mind. Suppose that Z2 is strictly increasing outside
an interval I on which Ż2 = 0. Assume further that Ac is a subinterval of I. We have V2(X ) = 0

on Ac, and Ẋ = 0 on I \Ac. In this case it is not hard to check that Z−1
2 (B) ⊂ A
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=
1

4

∫
Z−1

2 (M∩B)

(R2(Z2(s)) + c(Z3(s))ρ2(Z2(s)))2V2(X (s))Ẋ (s) ds by (5.22)

=
1

4

∫
Z−1

2 (M∩B)

(R2(Z2(s)) + c(Z3(s))ρ2(Z2(s)))Ż2(s) ds

=
1

4

∫
M∩B

(R2(x) + c(u(x))ρ2(x)) dx by a change of variables.

It follows that for any Borel set M with measure zero, µ(M ∩ B) = 0, so that
µac = 1

4
(R2(x) + c(u(x))ρ2(x)) dx. Similarly, one proves that νac = 1

4
(S2(x) +

c(u(x))σ2(x)) dx.
For further reference, let us prove that the singular part of µ, µsing(M) = µ(M ∩

Bc) = µ(M ∩ Z2(Ac)), can be written as

(5.28) µsing(M) =

∫
Z−1

2 (M)∩Ac
V4(X (s))Ẋ (s) ds.

We have

(5.29) µsing(M) =

∫
Z−1

2 (M∩Z2(Ac))

V4(X (s))Ẋ (s) ds

and

Z−1
2 (M ∩ Z2(Ac)) = Z−1

2 (M) ∩ Z−1
2 (Z2(Ac))

= Z−1
2 (M) ∩ (Ac ∪ (A ∩ Z−1

2 (Z2(Ac))))

= (Z−1
2 (M) ∩ Ac) ∪ (Z−1

2 (M) ∩ (A ∩ Z−1
2 (Z2(Ac)))).

Either the set A∩Z−1
2 (Z2(Ac)) is empty, or Z2 is constant on A∩Z−1

2 (Z2(Ac)), and
that Ż2 = 2V2(X )Ẋ = 0 and, since V2(X ) > 0 on A, we must have that Ẋ = 0 on
A∩Z−1

2 (Z2(Ac)). Then (5.28) follows from (5.29). In a similar way, one shows that

νsing(M) =

∫
Z−1

2 (M)∩Ac
W4(Y(s))Ẏ(s) ds.

�

By using the semigroup ST we can, together with the mappings from D to F and
vica versa, study the solution in the original set of variables, for given initial data
in D.

Lemma 5.9. Given (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D, let

(u,R, S, ρ, σ, µ, ν)(T ) = M ◦ ST ◦ L(u0, R0, S0, ρ0, σ0, µ0, ν0)

and
(Z, p, q) = S ◦C ◦ L(u0, R0, S0, ρ0, σ0, µ0, ν0).

Then, we have

(5.30) u(t(X, Y ), x(X, Y )) = U(X, Y )

for all (X, Y ) ∈ R2,

R(t(X, Y ), x(X, Y ))xX(X, Y ) = c(U(X, Y ))UX(X, Y ),(5.31a)

ρ(t(X, Y ), x(X, Y ))xX(X, Y ) = p(X, Y )(5.31b)
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for almost every (X, Y ) ∈ R2 such that xX(X, Y ) > 0, and

S(t(X, Y ), x(X, Y ))xY (X, Y ) = −c(U(X, Y ))UY (X, Y ),(5.32a)

σ(t(X, Y ), x(X, Y ))xY (X, Y ) = q(X, Y )(5.32b)

for almost every (X, Y ) ∈ R2 such that xY (X, Y ) > 0. Furthermore, we have

(5.33) ut =
1

2
(R + S) and ux =

1

2c(u)
(R− S)

in the sense of distributions.

Proof. Given (X, Y ) ∈ R2, we denote t̄ = t(X, Y ) and x̄ = x(X, Y ). Let

(X ,Y ,Z,V ,W , p, q) = E ◦ tt̄(Z, p, q).

We have t(X (s),Y(s)) = t̄, Z2(s) = x(X (s),Y(s)) and Z3(s) = U(X (s),Y(s)).
Notice that we can write

(u,R, S, ρ, σ, µ, ν)(t̄) = M ◦ St̄ ◦ L(u0, R0, S0, ρ0, σ0, µ0, ν0)

= M ◦D ◦ E ◦ tt̄ ◦ S ◦C ◦ L(u0, R0, S0, ρ0, σ0, µ0, ν0)

= M ◦D ◦ E ◦ tt̄(Z, p, q)

= M ◦D(X ,Y ,Z,V ,W , p, q),

so that we can apply Lemma 5.8, from which we have that u(t̄, x̄) = Z3(s) for any
s such that x̄ = Z2(s). This implies that, for any s̄ such that

(5.34) t(X (s̄),Y(s̄)) = t̄ = t(X, Y ) and x(X (s̄),Y(s̄)) = x̄ = x(X, Y ),

we have
u(t̄, x̄) = U(X (s̄),Y(s̄)).

Then, (5.30) will be proved once we have proved that

(5.35) U(X (s̄),Y(s̄)) = U(X, Y ).

We show that when (5.34) holds, then either (X, Y ) = (X (s̄),Y(s̄)) or

(5.36) xX = xY = UX = UY = p = q = 0

in the rectangle with corners at (X, Y ) and (X (s̄),Y(s̄)), so that (5.35) holds in
both cases. We first consider the rectangle where X (s̄) ≤ X and Y(s̄) ≤ Y . Since
xX ≥ 0 and xY ≥ 0, (5.34) implies that xX = 0 and xY = 0 in [X (s̄), X]× [Y(s̄), Y ].
By (4.12c), we have UX = UY = p = q = 0 in [X (s̄), X] × [Y(s̄), Y ], so that U is
constant and we have proved (5.35). In the case where X (s̄) ≤ X and Y(s̄) ≥ Y , we
find, since tX ≥ 0 and tY ≤ 0, that tX = 0 and tY = 0 in [X (s̄), X]× [Y,Y(s̄)]. By
(4.12a), it follows that xX = xY = 0 and we prove (5.35) as before. The other cases
can be treated in the same way. Thus, (5.35) holds and we have proved (5.30). We
prove (5.31a) and (5.31b). By (5.22a), (5.22b) and the definition of E, we have

R(t̄, x(X (s),Y(s)))xX(X (s),Y(s)) = c(U(X (s),Y(s)))UX(X (s),Y(s)),

ρ(t̄, x(X (s),Y(s)))xX(X (s),Y(s)) = p(X (s),Y(s)),

so that

R(t(X, Y ), x(X, Y ))xX(X (s̄),Y(s̄)) = c(U(X (s̄),Y(s̄)))UX(X (s̄),Y(s̄)),

ρ(t(X, Y ), x(X, Y ))xX(X (s̄),Y(s̄)) = p(X (s̄),Y(s̄))
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for any s̄ such that (5.34) holds. This implies (5.31a) and (5.31b) because when
(5.34) is satisfied, then either (X, Y ) = (X (s̄),Y(s̄)) or (5.36) holds. Similarly, from
(5.23a) and (5.23b), we obtain

S(t(X, Y ), x(X, Y ))xY (X (s̄),Y(s̄)) = −c(U(X (s̄),Y(s̄)))UY (X (s̄),Y(s̄)),

σ(t(X, Y ), x(X, Y ))xY (X (s̄),Y(s̄)) = q(X (s̄),Y(s̄))

for any s̄ such that (5.34) holds, so that (5.32a) and (5.32b) follows. Now we prove
(5.33). Let φ(t, x) be a smooth test function with compact support. We have∫∫

R2

(uφt)(t, x) dt dx

=

∫∫
R2

(
(uφt) ◦ (t, x)(tXxY − tY xX)

)
(X, Y ) dX dY by a change of variables

=

∫∫
R2

(
Uφt ◦ (t, x)(tXxY − tY xX)

)
(X, Y ) dX dY by (5.30)

=

∫∫
R2

(
U(φX ◦ (t, x)xY − φY ◦ (t, x)xX)

)
(X, Y ) dX dY by calculating φX and φY

= −
∫∫

R2

(
((UxY )X − (UxX)Y )φ ◦ (t, x)

)
(X, Y ) dX dY by integrating by parts

= −
∫∫

R2

(
(UXxY − UY xX)φ ◦ (t, x)

)
(X, Y ) dX dY

= −
∫∫

R2

((
R + S

c(u)
φ

)
◦ (t, x)xXxY

)
(X, Y ) dX dY by (5.31a) and (5.32a)

= −
∫∫

R2

((
1

2
(R + S)φ

)
◦ (t, x)(tXxY − tY xX)

)
(X, Y ) dX dY by (4.12a)

= −
∫∫

R2

(
1

2
(R + S)φ

)
(t, x) dt dx,

which proves the first identity in (5.33). The second one is proven in the same
way. �

5.4. Semigroup of Solutions in D. Now we can define a mapping on the original
set of variables, D.

Definition 5.10. For any T > 0, let S̄T : D → D be defined as

S̄T = M ◦ ST ◦ L.

Since
S̄T ◦ S̄T ′ = M ◦ ST ◦ L ◦M ◦ ST ′ ◦ L

it would immediately follow from the semigroup property of ST that S̄T is also a
semigroup if we had L ◦M = Id, but this identity does not hold in general. To see
this consider an element ψ in F . By Definition 3.3 we have x1 + J1 ∈ G, which in
particular means that x1 + J1 − Id ∈ L∞(R). Let ξ = M(ψ) and ψ̄ = L(ξ). From
Definition 3.4 we have x̄1 + J̄1 = Id, and it is clear that in general we have ψ 6= ψ̄.

It is the aim of this section to prove that S̄T is a semigroup. The idea is loosely
speaking the following. Assume that x1(X) + J1(X) = f(X) where f ∈ G. We
associate to x1 and J1 the functions x̄1 and J̄1 such that x̄1 + J̄1 = Id. We observe
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that the transformation x̄1(X) = x1(f−1(X)) and J̄1(X) = J1(f−1(X)) is such a
mapping. The identities (3.7) and (3.8) allow us to define the remaining elements
of ψ̄, see Definition 5.11 below. The transformation of ψ to ψ̄ defines an action of
G2 on the set F . It defines a projection Π from F on the set

F0 = {ψ = (ψ1, ψ2) ∈ F | x1 + J1 = Id and x2 + J2 = Id}.
Thus, we have ψ̄ = Π(ψ).

We prove that the map ST is invariant under the group acting on F . Thus, we
have to define the action of G2 on the sets C, G and H. The definition of the action
on F will naturally lead to the definition of the action on the set of curves C and
the set G. We define the action of G2 on the set of solutions H so that it commutes
with the • operation, see Lemma 5.15 below.

Then we prove that the map M satisfies M = M◦Π, and that F0 contains exactly
one element of each equivalence class of F with respect to G2.

Definition 5.11. For any ψ = (ψ1, ψ2) ∈ F and f, g ∈ G, we define ψ̄ = (ψ̄1, ψ̄2)
as

x̄1(X) = x1(f(X)), x̄2(Y ) = x2(g(Y )),(5.37a)

Ū1(X) = U1(f(X)), Ū2(Y ) = U2(g(Y )),(5.37b)

J̄1(X) = J1(f(X)), J̄2(Y ) = J2(g(Y )),(5.37c)

K̄1(X) = K1(f(X)), K̄2(Y ) = K2(g(Y )),(5.37d)

V̄1(X) = f ′(X)V1(f(X)), V̄2(Y ) = g′(Y )V2(g(Y )),(5.37e)

H̄1(X) = f ′(X)H1(f(X)), H̄2(Y ) = g′(Y )H2(g(Y )).(5.37f)

The mapping F × G2 → F given by ψ × (f, g) 7→ ψ̄ defines an action of the group
G2 on F and we denote ψ̄ = ψ · (f, g).

Proof of the well-posedness of Definition 5.11. We prove that ψ̄ = (ψ̄1, ψ̄2) belongs
to F . We only show that ψ̄1 satisfies the conditions in Definition 3.3. The proof is
similar for ψ̄2. First we show that ψ̄1 satisfies the regularity conditions in (3.5). We
will use the following result throughout the proof. By Lemma 3.8, there exists α ≥ 0
such that 1

1+α
≤ f ′(X) ≤ 1 + α for almost every X ∈ R and 1

1+α
≤ g′(Y ) ≤ 1 + α

for almost every Y ∈ R.
Since x1 − Id, f − Id ∈ L∞(R),

x̄1(X)−X = (x1(f(X))− f(X)) + (f(X)−X)

and x̄1 − Id belongs to L∞(R). We differentiate and obtain

x̄′1(X)− 1 = (x′1(f(X))− 1)f ′(X) + (f ′(X)− 1).

Since x′1 − 1, f ′ − 1 ∈ L∞(R) and 1
1+α
≤ f ′ ≤ 1 + α, x̄′1 − 1 belongs to L∞(R).

Moreover, by a straightforward calculation, we get∫
R
(x̄′1(X)− 1)2 dX ≤ 2

∫
R
(x′1(f(X))− 1)2f ′(X)2 dX + 2

∫
R
(f ′(X)− 1)2 dX

≤ 2(1 + α)

∫
R
(x′1(f(X))− 1)2f ′(X) dX + 2

∫
R
(f ′(X)− 1)2 dX

= 2(1 + α)

∫
R
(x′1(X)− 1)2 dX + 2

∫
R
(f ′(X)− 1)2 dX,
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where we used a change of variables in the last equality. This shows that x̄′1 − 1 ∈
L2(R) because x′1−1, f ′−1 ∈ L2(R). Since J1 ∈ L∞(R) it follows immediately from
the definition of J̄1 that it also belongs to L∞(R). We have J̄ ′1(X) = J ′1(f(X))f ′(X),
so that J̄ ′1 ∈ L∞(R) because J ′1 ∈ L∞(R) and 1

1+α
≤ f ′ ≤ 1 + α. The function J̄ ′1

also belongs to L2(R) since∫
R
J̄ ′1(X)2 dX =

∫
R
J ′1(f(X))2f ′(X)2 dX(5.38)

≤ (1 + α)

∫
R
J ′1(f(X))2f ′(X) dX

= (1 + α)

∫
R
J ′1(X)2 dX by a change of variables

and J ′1 ∈ L2(R). In a similar way, one shows that K̄1 ∈ L∞(R) and K̄ ′1, H̄1, V̄1 ∈
L2(R) ∩ L∞(R). We have∫

R
Ū1(X)2 dX =

∫
R
U1(f(X))2f

′(X)

f ′(X)
dX

≤ (1 + α)

∫
R
U1(f(X))2f ′(X) dX

= (1 + α)

∫
R
U1(X)2 dX by a change of variables,

so that Ū1 ∈ L2(R) ∩ L∞(R) as U1 ∈ L2(R) ∩ L∞(R). Hence, we have proved (3.5).
By differentiating x̄1 and J̄1, we find that the inequalities in (3.6) are satisfied since
x′1, J

′
1 ≥ 0 and f ′ ≥ 1

1+α
> 0.

The relations in (3.7)-(3.8) follow by direct calculation, for example, we have

x̄′1(X)J̄ ′1(X) = f ′(X)2x′1(f(X))J ′1(f(X))

= f ′(X)2
[
(c(U1(f(X)))V1(f(X)))2 + c(U1(f(X)))H2

1 (f(X))
]

= (c(Ū1(X))V̄1(X))2 + c(Ū1(X))H̄2
1 (X).

Let us prove that x̄1 + J̄1 ∈ G. We proved above that x̄1 − Id, J̄1 ∈ L∞(R)
and x̄′1 − 1, J̄ ′1 ∈ L2(R) ∩ L∞(R), which implies that x̄1 + J̄1 − Id ∈ W 1,∞(R) and
x̄′1 + J̄ ′1 − 1 ∈ L2(R). Since x1 + J1 ∈ G we get by Lemma 3.8 that there exists
α1 ≥ 0 such that 1

1+α1
≤ x′1 + J ′1 ≤ 1 + α1 and x̄1 + J̄1 is invertible because

x̄′1(X) + J̄ ′1(X) = f ′(X)(x′1(f(X)) + J ′1(f(X))) ≥ 1

(1 + α)(1 + α1)
> 0.

We prove that (x̄1 + J̄1)−1 − Id belongs to W 1,∞(R). Since

(x̄1 + J̄1)−1 − Id = f−1 ◦ (x1 + J1)−1 − Id

= f−1 ◦ (x1 + J1)−1 − (x1 + J1)−1 + (x1 + J1)−1 − Id

and f−1 − Id, (x1 + J1)−1 − Id ∈ L∞(R), (x̄1 + J̄1)−1 − Id belongs to L∞(R). Let
v = x̄1 + J̄1. We have

(v−1)′ =
1

v′(v−1)
=

1

f ′(v−1)(x′1(f(v−1)) + J ′1(f(v−1)))
,
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so that
1

(1 + α)(1 + α1)
− 1 ≤ (v−1)′ − 1 ≤ (1 + α)(1 + α1)− 1

and ((x̄1 + J̄1)−1)′ − 1 ∈ L∞(R). Hence, we have proved (3.9).
We prove (3.10). Since f−Id ∈ L∞(R), we have lim

X→−∞
f(X) = −∞. This implies,

by (3.10), that
lim

X→−∞
J̄1(X) = lim

X→−∞
J1(f(X)) = 0.

In order to prove the identities (3.11a) and (3.11b) we have to define the action of
G2 on C.
Definition 5.12. For any (X ,Y) ∈ C and f, g ∈ G, we define (X̄ , Ȳ) as

(5.39) X̄ = f−1 ◦ X ◦ h and Ȳ = g−1 ◦ Y ◦ h,
where h ∈ G is the re-normalizing function which yields X̄ + Ȳ = 2 Id, that is,

(5.40) (f−1 ◦ X + g−1 ◦ Y) ◦ h = 2 Id .

The mapping C × G2 → C given by (X ,Y) × (f, g) 7→ (X̄ , Ȳ) defines an action of
the group G2 on C and we denote (X̄ , Ȳ) = (X ,Y) · (f, g).

The action corresponds to a stretching of the curve in the X and Y directions.

Proof of the well-posedness of Definition 5.12. Let v = 1
2
(f−1 ◦ X + g−1 ◦ Y). We

want to prove that v belongs to G by using Lemma 3.8. We have

v − Id =
1

2
(f−1 ◦ X − X + X + g−1 ◦ Y)− Id

=
1

2
(f−1 ◦ X − X + 2 Id−Y + g−1 ◦ Y)− Id

=
1

2
(f−1 ◦ X − X + g−1 ◦ Y − Y)

which belongs to L∞(R) because f − Id, g − Id ∈ L∞(R). Since f and g belong to
G, we have, by Lemma 3.8, that there exists α ≥ 0 such that 1

1+α
≤ (f−1)′ ≤ 1 + α

and 1
1+α
≤ (g−1)′ ≤ 1 + α almost everywhere. Then,

v′ =
1

2
(((f−1)′ ◦ X )Ẋ + ((g−1)′ ◦ Y)Ẏ) ≤ 1

2
(1 + α)(Ẋ + Ẏ) = 1 + α

and, similarly, we obtain that

(5.41) v′ ≥ 1

1 + α
.

We show that v is absolutely continuous. Let (si, s̄i), i = 1, . . . , N , be non-
intersecting intervals. We have

N∑
i=1

|v(s̄i)− v(si)| =
1

2

N∑
i=1

|f−1 ◦ X (s̄i) + g−1 ◦ Y(s̄i)− f−1 ◦ X (si)− g−1 ◦ Y(si)|

≤ 1

2

N∑
i=1

(∣∣∣∣ ∫ X (s̄i)

X (si)

(f−1)′(X) dX

∣∣∣∣+

∣∣∣∣ ∫ Y(s̄i)

Y(si)

(g−1)′(Y ) dY

∣∣∣∣)
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≤ 1

2
(1 + α)

N∑
i=1

(|X (s̄i)−X (si)|+ |Y(s̄i)− Y(si)|)

≤ 2(1 + α)
N∑
i=1

|s̄i − si|,

where we used that Ẋ and Ẏ are bounded by 2. Hence, v is absolutely continuous.
Let us prove that if w ∈ G, then (w−1)′− 1 belongs to L2(R). Since w ◦w−1 = Id,

we have (w′◦w−1)(w−1)′ = 1, so that, by Lemma 3.8, (w−1)′ ≤ 1+β for some β > 0.
This implies that∫

R
((w−1)′(x)− 1)2 dx(5.42)

=

∫
R
((w−1)′(x)− (w′ ◦ (w−1)(x))(w−1)′(x))2 dx

=

∫
R
(1− w′ ◦ (w−1)(x))2(w−1)′(x)2 dx

≤ (1 + β)

∫
R
(1− w′ ◦ (w−1)(x))2(w−1)′(x) dx

≤ (1 + β)

∫
R
(1− w′(x))2 dx by a change of variables,

which is bounded because w′−1 ∈ L2(R), and we conclude that (w−1)′−1 ∈ L2(R).
Since Ẋ + Ẏ = 2, we have

v′ − 1 =
1

2
(((f−1)′ ◦ X )Ẋ + ((g−1)′ ◦ Y)Ẏ − 2)

=
1

2
(((f−1)′ ◦ X )Ẋ − Ẋ + ((g−1)′ ◦ Y)Ẏ − Ẏ).

Hence,∫
R
(v′(s)− 1)2 ds

=
1

4

∫
R
(((f−1)′ ◦ X (s))Ẋ (s)− Ẋ (s) + ((g−1)′ ◦ Y(s))Ẏ(s)− Ẏ(s))2 ds

≤ 1

2

∫
R
(((f−1)′ ◦ X (s))Ẋ (s)− Ẋ (s))2 ds

+
1

2

∫
R
(((g−1)′ ◦ Y(s))Ẏ(s)− Ẏ(s))2 ds

≤
∫
R
((f−1)′ ◦ X (s)− 1)2Ẋ (s) ds

+

∫
R
((g−1)′ ◦ Y(s)− 1)2Ẏ(s) ds since Ẋ ≤ 2 and Ẏ ≤ 2

=

∫
R
((f−1)′(X)− 1)2 dX +

∫
R
((g−1)′(Y )− 1)2 dY by a change of variables

and by (5.42), we conclude that v′ − 1 ∈ L2(R). Then, by Lemma 3.8, v ∈ G.
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We define h = v−1. Since v ◦ h = Id, (5.40) holds. We claim that h ∈ G. Since v
belongs to G, we have that h − Id and h−1 − Id belong to W 1,∞(R). From (5.42),
we get that h′ − 1 ∈ L2(R). Therefore, h ∈ G.

Now we prove that (X̄ , Ȳ) ∈ C. We have X̄ − Id ∈ W 1,∞(R) since

X̄ − Id = f−1 ◦ X ◦ h−X ◦ h+ X ◦ h− h+ h− Id

and f−1 − Id,X − Id, h− Id ∈ W 1,∞(R). Since Ẋ ≥ 0, we get

˙̄X = ((f−1)′ ◦ X ◦ h)(Ẋ ◦ h)h′ ≥ 1

(1 + α)2
Ẋ ◦ h ≥ 0.

Similarly, one shows that Ȳ − Id ∈ W 1,∞(R) and ˙̄Y ≥ 0. The identity (2.40c) is
satisfied since v ◦ h = Id, which we proved above. Hence, (X̄ , Ȳ) ∈ C. �

End of proof of the well-posedness of Definition 5.11.
It remains to prove (3.11a) and (3.11b). Let (X̄ , Ȳ) ∈ C. Then (X ,Y) = (X̄ , Ȳ) ·

(f−1, g−1) belongs to C. In particular, x1(X (s)) = x2(Y(s)) for all s ∈ R and
the identities (3.11a) and (3.11b) hold for the elements corresponding to (ψ1, ψ2).
Furthermore, (X̄ , Ȳ) = (X ,Y) · (f, g), which implies, using the same notation as in
Definition 5.12, that

x̄1(X̄ (s)) = x1(X (h(s))) = x2(Y(h(s))) = x̄2(Ȳ(s)).

We find
Ū1(X̄ (s)) = U1(X (h(s))) = U2(Y(h(s))) = Ū2(Ȳ(s)),

which proves (3.11a). Since

˙̄X (s) =
Ẋ (h(s))h′(s)

f ′(X̄ (s))
and ˙̄Y(s) =

Ẏ(h(s))h′(s)

g′(Ȳ(s))

we have

V̄1(X̄ (s)) ˙̄X (s) + V̄2(Ȳ(s)) ˙̄Y(s) = h′(s)
[
V1(X (h(s)))Ẋ (h(s)) + V2(Y(h(s)))Ẏ(h(s))

]
.

and we obtain

V̄1(X̄ (s)) ˙̄X (s) + V̄2(Ȳ(s)) ˙̄Y(s) =
d

ds
U1(X (h(s))) =

d

ds
Ū1(X̄ (s))

=
d

ds
U2(Y(h(s))) =

d

ds
Ū2(Ȳ(s)).

This proves (3.11b). �

Definition 5.13. For any Θ = (X ,Y ,Z,V ,W , p, q) ∈ G and f, g ∈ G, we define
Θ̄ = (X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄) as

(X̄ , Ȳ) = (X ,Y) · (f, g),(5.43a)

Z̄ = Z ◦ h,(5.43b)

where h is given by (5.40), and

V̄(X) = f ′(X)V(f(X)), W̄(Y ) = g′(Y )W(g(Y )),(5.43c)

p̄(X) = f ′(X)p(f(X)), q̄(Y ) = g′(Y )q(g(Y )).(5.43d)

The mapping G × G2 → G given by Θ × (f, g) 7→ Θ̄ defines an action of the group
G2 on G and we denote Θ̄ = Θ · (f, g).
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Proof of the well-posedness of Definition 5.13. We have to prove that Θ̄ belongs to
G. In the proof of the well-posedness of Definition 5.12, we showed that (X̄ , Ȳ) ∈ C.
We check that ||Θ̄||G and |||Θ̄|||G are finite. Since f, h ∈ G, we have from (3.3) that
f − Id, f−1 − Id, h − Id ∈ W 1,∞(R) and therefore, by (3.18), we conclude that the
quantities

Z̄a1 = Z̄1 −
1

c(0)
(X̄ − Id)

= Z1 ◦ h−
1

c(0)
(f−1 ◦ X ◦ h− Id)

= Z1 ◦ h−
1

c(0)
(f−1 ◦ X ◦ h−X ◦ h+ X ◦ h− h+ h− Id)

= Za1 ◦ h−
1

c(0)
(f−1 ◦ X ◦ h−X ◦ h+ h− Id),

Z̄a2 = Z̄2 − Id = Z2 ◦ h− Id = Z2 ◦ h− h+ h− Id = Za2 ◦ h+ h− Id

and
Z̄ai = Z̄i = Zi ◦ h = Zai ◦ h for i ∈ {3, 4, 5}

belong to L∞(R).
By Lemma 3.8, there exists δ > 0 such that

(5.44) f ′(X) ≥ δ, g′(X) ≥ δ, and h′(X) ≥ δ,

for almost every X ∈ R. This yields∫
R
Z̄3(s)2 ds =

∫
R
(Z3 ◦ h(s))2 ds ≤ 1

δ

∫
R
(Z3 ◦ h(s))2h′(s) ds =

1

δ

∫
R
Z3(s)2 ds

by a change of variables, and we conclude that Z̄3 ∈ L2(R). Furthermore, we have

V̄a1 = V̄1 −
1

2c(0)

= f ′V1 ◦ f −
1

2c(0)

= f ′
(
V1 ◦ f −

1

2c(0)

)
+

1

2c(0)
(f ′ − 1)

= f ′Va1 ◦ f +
1

2c(0)
(f ′ − 1),

V̄a2 = V̄2 −
1

2
= f ′V2 ◦ f −

1

2
= f ′

(
V2 ◦ f −

1

2

)
+

1

2
(f ′ − 1) = f ′Va2 ◦ f +

1

2
(f ′ − 1),

V̄ai = V̄i = f ′Vi ◦ f = f ′Vai ◦ f for i ∈ {3, 4, 5},
p̄ = f ′p ◦ f

and
q̄ = g′p ◦ g

which implies, by (3.3), (3.4) and (5.44), that all the components of V̄a and p̄ and q̄
belong to L2(R) ∩ L∞(R). Similarly, one shows that the components of W̄a belong
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to the same set. From (5.43c) and (5.44), we see that the inequalities in (3.22) are
satisfied for Θ̄. Since

1

V̄2 + V̄4

=
1

f ′(V2 ◦ f + V4 ◦ f)
≤ 1

δ(V2 ◦ f + V4 ◦ f)

and
1

W̄2 + W̄4

=
1

g′(W2 ◦ g +W4 ◦ g)
≤ 1

δ(W2 ◦ g +W4 ◦ g)
,

1
V̄2+V̄4

and 1
W̄2+W̄4

belong to L∞(R). Hence, ||Θ̄||G and |||Θ̄|||G are finite. By (5.39),
we obtain

˙̄Z(s) = Ż(h(s))ḣ(s)

=
[
V(X (h(s)))Ẋ (h(s)) +W(Y(h(s)))Ẏ(h(s))

]
ḣ(s)

= V(f(X̄ (s)))f ′(X̄ (s)) ˙̄X (s) +W(g(Ȳ(s)))g′(Ȳ(s)) ˙̄Y(s)

= V̄(X̄ (s)) ˙̄X (s) + W̄(Ȳ(s)) ˙̄Y(s)

and we have proved that Θ satisfies (3.23). The relations (3.24a)-(3.24d) follows by
direct computation, for instance, we have

2V̄4(X̄ )V̄2(X̄ ) = 2f ′(X̄ )2V4(f(X̄ ))V2(f(X̄ ))

= 2f ′(X̄ )2V4(X (h))V2(X (h))

= f ′(X̄ )2
[
(c(Z3(h))V3(X (h)))2 + c(Z3(h))p(X (h))2

]
= f ′(X̄ )2

[
(c(Z̄3)V3(f(X̄ )))2 + c(Z̄3)p(f(X̄ ))2

]
= (c(Z̄3)V̄3(X̄ ))2 + c(Z̄3)p̄(X̄ )2.

It remains to prove that (3.25) holds for Θ̄. Since h−Id ∈ L∞(R), lim
s→−∞

h(s) = −∞,

so that
lim

s→−∞
Z̄4(s) = lim

s→−∞
Z4(h(s)) = 0

and we conclude that Θ̄ ∈ G. �

Definition 5.14. For any (Z, p, q) ∈ H and f, g ∈ G, we define

Z̄(X, Y ) = Z(f(X), g(Y )),(5.45a)

p̄(X, Y ) = f ′(X)p(f(X), g(Y )),(5.45b)

q̄(X, Y ) = g′(Y )q(f(X), g(Y )).(5.45c)

The mapping H × G2 → H given by (Z, p, q) × (f, g) 7→ (Z̄, p̄, q̄) defines an action
of the group G2 on H and we denote (Z̄, p̄, q̄) = (Z, p, q) · (f, g).

Proof of the well-posedness of Definition 5.14. Condition (i) of Definition 4.13 im-
plies that for any (Z, p, q) ∈ H, we have

Za ∈ [W 1,∞(R2)]5, Za
X ∈ [W 1,∞

Y (R2)]5, Za
Y ∈ [W 1,∞

X (R2)]5,(5.46)

p ∈ W 1,∞
Y (R2), q ∈ W 1,∞

X (R2),

(5.47) (ZX(X, Y ))Y = F (Z)(ZX , ZY )(X, Y )
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for almost every X ∈ R,

(5.48) (ZY (X, Y ))X = F (Z)(ZX , ZY )(X, Y )

for almost every Y ∈ R,

(5.49) pY (X, Y ) = 0

for almost every X ∈ R,

(5.50) qX(X, Y ) = 0

for almost every Y ∈ R. We first prove that the same regularity conditions hold for
(Z̄, p̄, q̄). Let us consider the first component of Z̄. We have, by (4.5),

Z̄a
1 (X, Y )

= Z1(f(X), g(Y ))− 1

2c(0)
(X − Y )

= Z1(f(X), g(Y ))− 1

2c(0)
(f(X)− g(Y )) +

1

2c(0)
(f(X)− g(Y ))− 1

2c(0)
(X − Y )

= Za
1 (f(X), g(Y )) +

1

2c(0)
(f(X)−X + Y − g(Y )).

Since f − Id, g − Id ∈ L∞(R) and c ≥ 1
κ
, we get, by (5.46), that Z̄a

1 ∈ L∞(R2). We
differentiate and obtain

Z̄a
1,X(X, Y ) = f ′(X)Za

1,X(f(X), g(Y )) +
1

2c(0)
(f ′(X)− 1)

and

Z̄a
1,Y (X, Y ) = g′(Y )Za

1,Y (f(X), g(Y ))− 1

2c(0)
(g′(Y )− 1).

Since f and g belong to G, we have, by Lemma 3.8, that there exists α ≥ 0 such
that 1

1+α
≤ f ′(X) ≤ 1 + α for almost every X ∈ R and 1

1+α
≤ g′(Y ) ≤ 1 + α

for almost every Y ∈ R. This implies, by (5.46), that Z̄a
1,X , Z̄

a
1,Y ∈ L∞(R2) as

f ′ − 1, g′ − 1 ∈ L∞(R) and c ≥ 1
κ
. We have

sup
X∈R
||Z̄a

1,X(X, ·)||L∞(R) ≤ (1 + α) sup
X∈R
||Za

1,X(X, ·)||L∞(R) +
κ

2
(α + 2)

and
sup
Y ∈R
||Z̄a

1,Y (·, Y )||L∞(R) ≤ (1 + α) sup
Y ∈R
||Za

1,Y (·, Y )||L∞(R) +
κ

2
(α + 2).

Differentiating Z̄a
1,X and Z̄a

1,Y yields

sup
X∈R
||Z̄a

1,XY (X, ·)||L∞(R) ≤ (1 + α)2 sup
X∈R
||Za

1,XY (X, ·)||L∞(R)

and
sup
Y ∈R
||Z̄a

1,Y X(·, Y )||L∞(R) ≤ (1 + α)2 sup
Y ∈R
||Za

1,Y X(·, Y )||L∞(R).

From (5.46), we conclude that Z̄a
1,X ∈ W 1,∞

Y (R2) and Z̄a
1,Y ∈ W 1,∞

X (R2). One proves

the same inclusions for the other components of Z̄ in a similar way. We have

sup
X∈R
||p̄(X, ·)||L∞(R) ≤ (1 + α) sup

X∈R
||p(X, ·)||L∞(R)
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and
sup
Y ∈R
||q̄(·, Y )||L∞(R) ≤ (1 + α) sup

Y ∈R
||q(·, Y )||L∞(R)

which are bounded by (5.46). From (5.49) and (5.50), we have

p̄Y (X, Y ) = f ′(X)g′(Y )pY (f(X), g(Y )) = 0

and
q̄X(X, Y ) = f ′(X)g′(Y )qX(f(X), g(Y )) = 0,

so that condition (iv) and (v) of Definition 4.5 are satisfied. Moreover, p̄ ∈ W 1,∞
Y (R2)

and q̄ ∈ W 1,∞
X (R2), so that conditions (i) of Definition 4.5 holds. By using the

linearity of the mapping F (Z), we obtain

Z̄XY = f ′g′ZXY (f, g)

= f ′g′F (Z(f, g))(ZX(f, g), ZY (f, g))

= F (Z(f, g))(f ′ZX(f, g), g′ZY (f, g))

= F (Z̄)(Z̄X , Z̄Y ),

so that conditions (ii) and (iii) of Definition 4.5 are satisfied. It remains to show
the relations in (4.12). The identities (4.12a)-(4.12c) follows by direct computation.
For instance, we have

2J̄X x̄X = 2(f ′)2JX(f, g)xX(f, g)

= (f ′)2[(c(U(f, g))UX(f, g))2 + c(U(f, g))p2(f, g)]

= (c(U(f, g))f ′UX(f, g))2 + c(U(f, g))(f ′p(f, g))2

= (c(Ū)ŪX)2 + c(Ū)p̄2.

Since xX + JX > 0 and f ′ ≥ 1
1+α

> 0, we get

x̄X + J̄X = f ′(xX(f, g) + JX(f, g)) ≥ 1

1 + α
(xX(f, g) + JX(f, g)) > 0.

Similarly, one shows the other inequalities in (4.12d)-(4.12f). Hence, we have proved
that (Z̄, p̄, q̄) satisfies condition (i) of Definition 4.13. To prove that the second
condition is satisfied, we need the following lemma.

Lemma 5.15. For any (Z, p, q) ∈ H, Γ = (X ,Y) ∈ C and φ = (f, g) ∈ G2, we have

((Z, p, q) • Γ) · φ = ((Z, p, q) · φ) • (Γ · φ).

Proof. Let

Θ = (X ,Y ,Z,V ,W , p, q) = (Z, p, q) • Γ,

Θ̄ = (X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄) = Θ · φ,
Γ̄ = (X̄ , Ȳ) = Γ · φ,

(Z̄, p̄, q̄) = (Z, p, q) · φ,
Θ̃ = (X̄ , Ȳ , Z̃, Ṽ , W̃ , p̃, q̃) = (Z̄, p̄, q̄) • Γ̄.

We want to prove that Θ̄ = Θ̃. By (5.45a), (5.39) and (5.43b), we get

Z̃ = Z̄(X̄ , Ȳ) = Z(f ◦ X̄ , g ◦ Ȳ) = Z(X ◦ h,Y ◦ h) = Z ◦ h = Z̄.
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We have

Ṽ(X̄ ) = Z̄X(X̄ , Ȳ)

= f ′(X̄ )ZX(f ◦ X̄ , g ◦ Ȳ) by (5.45a)

= f ′(X̄ )ZX(X ◦ h,Y ◦ h) by (5.39)

= f ′(X̄ )V(X ◦ h)

= f ′(X̄ )V(f ◦ X̄ ) by (5.39)

= V̄(X̄ ) by (5.43c).

In a similar way, one shows that W̃ = W̄ . Moreover,

p̃(X̄ ) = p̄(X̄ , Ȳ)

= f ′(X̄ )p(f ◦ X̄ , g ◦ Ȳ) by (5.45b)

= f ′(X̄ )p(X ◦ h,Y ◦ h) by (5.39)

= f ′(X̄ )p(X ◦ h)

= f ′(X̄ )p(f ◦ X̄ ) by (5.39)

= p̄(X̄ ) by (5.43d).

and

q̃(Ȳ) = q̄(X̄ , Ȳ)

= g′(Ȳ)q(f ◦ X̄ , g ◦ Ȳ) by (5.45c)

= g′(Ȳ)q(X ◦ h,Y ◦ h) by (5.39)

= g′(Ȳ)q(Y ◦ h)

= g′(Ȳ)q(g ◦ Ȳ) by (5.39)

= q̄(Ȳ) by (5.43d)

and we have proved that Θ̄ = Θ̃. �

End of proof of the well-posedness of Definition 5.14. Now we prove that for any
φ = (f, g) ∈ G2 and (Z, p, q) ∈ H, (Z̄, p̄, q̄), as defined in (5.45), satisfies condition
(ii) in Definition 4.13. Since (Z, p, q) ∈ H, there exists a curve Γ ∈ C such that
(Z, p, q) • Γ ∈ G. Consider the curve Γ̄ = Γ · φ which, by Definition 5.12, belongs to
C. By Definition 5.13, ((Z, p, q)•Γ)·φ belongs to G. This implies that (Z̄, p̄, q̄)•Γ̄ ∈ G,
as

(Z̄, p̄, q̄) • Γ̄ = ((Z, p, q) · φ) • (Γ · φ) by (5.45)

= ((Z, p, q) • Γ) · φ by Lemma 5.15

and we have proved the last condition. Hence, we conclude that (Z̄, p̄, q̄) ∈ H. �

Lemma 5.16. The mappings E, tT , S, D and C are G2-equivariant, that is, for
all φ = (f, g) ∈ G2, we have

E((Z, p, q) · φ) = E(Z, p, q) · φ,(5.51a)

tT ((Z, p, q) · φ) = tT (Z, p, q) · φ(5.51b)
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for all (Z, p, q) ∈ H,

(5.51c) S(Θ · φ) = S(Θ) · φ
for all Θ ∈ G,

(5.51d) D(Θ · φ) = D(Θ) · φ
for all Θ ∈ G0, and

(5.51e) C(ψ · φ) = C(ψ) · φ
for all ψ ∈ F . Therefore ST is G2-equivariant, that is,

(5.51f) ST (ψ · φ) = ST (ψ) · φ
for all ψ ∈ F .

Proof. We decompose the proof into six steps.
Step 1. We prove (5.51a). Let

Θ = (X ,Y ,Z,V ,W , p, q) = E(Z, p, q),

Θ̃ = (X̃ , Ỹ , Z̃, Ṽ , W̃ , p̃, q̃) = Θ · φ,
(Z̄, p̄, q̄) = (Z, p, q) · φ,

Θ̄ = (X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄) = E(Z̄, p̄, q̄).

We want to prove that Θ̃ = Θ̄. First we show that (X̃ , Ỹ) = (X̄ , Ȳ). By (5.3) and
(5.45), we have

(5.52) X̄ (s) = sup{X ∈ R | t(f(X ′), g(2s−X ′)) < 0 for all X ′ < X}.
From (5.3), we have t(X (s),Y(s)) = 0, so that t(X ◦ h(s),Y ◦ h(s)) = 0 which
implies, by (5.39), that t(f ◦ X̃ (s), g ◦ Ỹ(s)) = 0. Hence, by (5.52), X̄ ≤ X̃ . Let
us assume that X̄ (s) < X̃ (s) for some s ∈ R. Since f and g are strictly increasing
functions, we have f(X̄ (s)) < f(X̃ (s)) and g(Ỹ(s)) < g(Ȳ(s)) which implies, by
(4.12a) and (4.12d), that

t(f ◦ X̄ (s), g ◦ Ȳ(s)) ≤ t(f ◦ X̃ (s), g ◦ Ȳ(s)) ≤ t(f ◦ X̃ (s), g ◦ Ỹ(s)).

By (5.52), we have t(f ◦ X̄ (s), g ◦ Ȳ(s)) = 0 and since t(f ◦ X̃ (s), g ◦ Ỹ(s)) =
t(X ◦ h(s),Y ◦ h(s)) = 0, the monotonicity of t implies that t(X, Y ) = 0 for all
(X, Y ) ∈ [f ◦ X̄ (s), f ◦ X̃ (s)] × [g ◦ Ỹ(s), g ◦ Ȳ(s)]. If f ◦ X̄ (s) ≤ 2h(s) − g ◦ Ȳ(s),
set X ′ = 2h(s)− g ◦ Ȳ(s) and Y ′ = g ◦ Ȳ(s). We get

f ◦ X̄ (s) ≤ X ′ < 2h(s)− g ◦ Ỹ(s) = 2h(s)− Y ◦ h(s) = X ◦ h(s) = f ◦ X̃ (s),

that is, X ′ ∈ [f ◦X̄ (s), f ◦X̃ (s)], so that t(X ′, Y ′) = 0. Thus, we have t(X ′, Y ′) = 0,
X ′ < X ◦ h(s) and X ′+ Y ′ = 2h(s), which contradicts the definition (5.3) of (X ,Y)
at h(s). If f ◦ X̄ (s) > 2h(s)− g ◦ Ȳ(s), let X ′ = f ◦ X̄ (s) and Y ′ = 2h(s)− f ◦ X̄ (s),
which implies that X ′ < f ◦ X̃ (s) = X ◦ h(s) and

g ◦ Ỹ(s) = Y ◦ h(s) = 2h(s)−X ◦ h(s) = 2h(s)− f ◦ X̃ (s)

< 2h(s)− f ◦ X̄ (s) = Y ′ < g ◦ Ȳ(s),
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so that Y ′ ∈ [g◦Ỹ(s), g◦Ȳ(s)]. Thus, t(X ′, Y ′) = 0 which is a contradiction, because
X ′ < X ◦ h(s) and X ′ + Y ′ = 2h(s). Hence, we must have X̄ = X̃ , which implies
that Ȳ = Ỹ . Then, we get

E((Z, p, q) · φ) = ((Z, p, q) · φ) • (X̄ , Ȳ)

= ((Z, p, q) · φ) • (X̃ , Ỹ)

= ((Z, p, q) · φ) • ((X ,Y) · φ)

= ((Z, p, q) • (X ,Y)) · φ by Lemma 5.15

= E(Z, p, q) · φ
and we have proved (5.51a).

Step 2. Let us prove (5.51b). We denote

(Ẑ, p̂, q̂) = (Z, p, q) · φ,
(Z̃, p̃, q̃) = tT (Ẑ, p̂, q̂),

(Ž, p̌, q̌) = tT (Z, p, q),

(Z̄, p̄, q̄) = (Ž, p̌, q̌) · φ
and we want to show that (Z̃, p̃, q̃) = (Z̄, p̄, q̄). By (5.45) and (5.1), we obtain

t̃ = t̂− T = t(f, g)− T = ť(f, g) = t̄,

x̃ = x̂ = x(f, g) = x̌(f, g) = x̄,

p̃ = p̂ = f ′p(f, g) = f ′p̌(f, g) = p̄,

q̃ = q̂ = g′q(f, g) = g′q̌(f, g) = q̄.

By a calculation similar to the one where it is shown that x̃ = x̄, one obtains for
the remaining components that Z̃ = Z̄.

Step 3. We prove (5.51c). For any Θ = (X ,Y ,Z,V ,W , p, q), we denote

(Z̃, p̃, q̃) = S(Θ · φ),

(Z, p, q) = S(Θ),

(Z̄, p̄, q̄) = (Z, p, q) · φ.
We want to prove that (Z̃, p̃, q̃) = (Z̄, p̄, q̄). From the definition of the solution
operator S in (4.80), we have

(Z̃, p̃, q̃) • ((X ,Y) · φ) = Θ · φ and (Z, p, q) • (X ,Y) = Θ

which implies, along with Lemma 5.15, that

(Z̄, p̄, q̄) • ((X ,Y) · φ) = ((Z, p, q) · φ) • ((X ,Y) · φ)

= ((Z, p, q) • (X ,Y)) · φ = Θ · φ.
Hence, (Z̃, p̃, q̃) and (Z̄, p̄, q̄) are two solutions to the same data Θ · φ. By Theorem
4.15, the solution is unique, so that (Z̃, p̃, q̃) = (Z̄, p̄, q̄).

Step 4. Now we prove (5.51d). For any Θ = (X ,Y ,Z,V ,W , p, q) ∈ G0, let

Θ̃ = (X̃ , Ỹ , Z̃, Ṽ , W̃ , p̃, q̃) = Θ · φ,
ψ̃ = (ψ̃1, ψ̃2) = D(Θ̃),
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ψ = (ψ1, ψ2) = D(Θ),

ψ̄ = (ψ̄1, ψ̄2) = ψ · φ,
where we denote ψ̃1 = (x̃1, Ũ1, J̃1, K̃1, Ṽ1, H̃1) and ψ̃2 = (x̃2, Ũ2, J̃2, K̃2, Ṽ2, H̃2), and

similar for ψ and ψ̄. We want to show that ψ̃ = ψ̄. The proofs of ψ̃1 = ψ̄1 and
ψ̃2 = ψ̄2 are similar and we only show that ψ̃1 = ψ̄1. We have

x̃1(X̃ (s)) = Z̃2(s) by (5.10a)

= Z2(h(s)) by (5.43b)

= x1(X ◦ h(s)) by (5.10a)

= x1(f ◦ X̃ (s)) by (5.39)

= x̄1(X̃ (s)) by (5.37a).

Similarly, one proves that Ũ1 = Ū1.

J̃1(X̃ (s)) =

∫ X̃ (s)

−∞
Ṽ4(X) dX by (5.10c)

=

∫ f−1◦X◦h(s)

−∞
f ′(X)V4(f(X)) dX by (5.39) and (5.43c)

=

∫ X◦h(s)

−∞
V4(X) dX by a change of variables

= J1(X ◦ h(s)) by (5.10c)

= J1(f ◦ X̃ (s)) by (5.39)

= J̄1(X̃ (s)) by (5.37c).

By a similar calculation, one shows that K̃1 = K̄1. From (5.10f), (5.43d) and (5.37f),
we obtain

H̃1(X̃ (s)) = p̃(X̃ (s)) = f ′(X̃ (s))p(f ◦ X̃ (s)) = f ′(X̃ (s))H1(f ◦ X̃ (s)) = H̄1(X̃ (s)),

H̃2(Ỹ(s)) = q̃(Ỹ(s)) = g′(Ỹ(s))q(g ◦ Ỹ(s)) = g′(Ỹ(s))H2(g ◦ Ỹ(s)) = H̄2(Ỹ(s)).

Similarly, one proves that Ṽ1 = V̄1.
Step 5. We prove (5.51e). Given ψ = (ψ1, ψ2) ∈ F , we denote

ψ̄ = (ψ̄1, ψ̄2) = ψ · φ,
Θ̄ = (X̄ , Ȳ , Z̄, V̄ , W̄ , p̄, q̄) = C(ψ̄),

Θ = (X ,Y ,Z,V ,W , p, q) = C(ψ),

Θ̃ = (X̃ , Ỹ , Z̃, Ṽ , W̃ , p̃, q̃) = Θ · φ.
We want to prove that Θ̃ = Θ̄. We first show that (X̃ , Ỹ) = (X̄ , Ȳ). By (3.28) and
(5.37a), we have

(5.53) X̄ (s) = sup{X ∈ R | x1 ◦ f(X ′) < x2 ◦ g(2s−X ′) for all X ′ < X}.
From (3.29), we obtain x1 ◦ X ◦ h = x2 ◦ Y ◦ h which implies, by (5.39), that
x1◦f ◦X̃ = x2◦g◦Ỹ . Hence, by (5.53), X̄ ≤ X̃ . Assume that X̄ (s) < X̃ (s) for some
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s ∈ R. Since f and g are strictly increasing functions, we have f(X̄ (s)) < f(X̃ (s))
and g(Ỹ(s)) < g(Ȳ(s)) which implies, by (3.6), that

x1 ◦ f ◦ X̄ (s) ≤ x1 ◦ f ◦ X̃ (s) = x2 ◦ g ◦ Ỹ(s) ≤ x2 ◦ g ◦ Ȳ(s).

By (5.53), we have x1◦f ◦X̄ (s) = x2◦g◦Ȳ(s), so we must have x1◦f ◦X̄ (s) = x1◦f ◦
X̃ (s) and x2◦g◦Ỹ(s) = x2◦g◦Ȳ(s). This implies, since x1 and x2 are nondecreasing,
that x1 and x2 are constant on [f ◦X̄ (s), f ◦X̃ (s)] and [g◦Ỹ(s), g◦Ȳ(s)], respectively.
If f ◦ X̄ (s) ≤ 2h(s)− g ◦ Ȳ(s), set X ′ = 2h(s)− g ◦ Ȳ(s) and Y ′ = g ◦ Ȳ(s). We get

f ◦ X̄ (s) ≤ X ′ < 2h(s)− g ◦ Ỹ(s) = 2h(s)− Y ◦ h(s) = X ◦ h(s) = f ◦ X̃ (s),

that is, X ′ ∈ [f ◦ X̄ (s), f ◦ X̃ (s)], so that x1(X ′) = x1(f ◦ X̃ (s)). Similarly, we get
that x2(Y ′) = x2(g ◦ Ỹ(s)). Then, by (5.39) and (3.29), we obtain

x1(X ′) = x1(f ◦ X̃ (s)) = x1(X ◦ h(s)) = x2(Y ◦ h(s)) = x2(g ◦ Ỹ(s)) = x2(Y ′).

Thus, we have x1(X ′) = x2(Y ′), X ′ < X ◦ h(s) and X ′ + Y ′ = 2h(s), which
contradicts the definition (3.28) of (X ,Y) at h(s). If f ◦ X̄ (s) > 2h(s)− g ◦ Ȳ(s), let
X ′ = f ◦X̄ (s) and Y ′ = 2h(s)−f ◦X̄ (s), which implies that X ′ < f ◦X̃ (s) = X ◦h(s)
and x1(X ′) = x1(f ◦ X̃ (s)). We get

g ◦ Ỹ(s) = Y ◦ h(s) = 2h(s)−X ◦ h(s) = 2h(s)− f ◦ X̃ (s)

< 2h(s)− f ◦ X̄ (s) = Y ′ < g ◦ Ȳ(s),

so that Y ′ ∈ [g ◦ Ỹ(s), g ◦ Ȳ(s)] and x2(Y ′) = x2(g ◦ Ỹ(s)). Then, as before,
we obtain x1(X ′) = x2(Y ′) which is a contradiction, because X ′ < X ◦ h(s) and
X ′ + Y ′ = 2h(s). Hence, we must have X̄ = X̃ , which implies that Ȳ = Ỹ . Then,
by a straightforward calculation, one proves that Z̄ = Z̃, V̄ = Ṽ , W̄ = W̃ , p̄ = p̃
and q̄ = q̃. For example, we have

Z̄3(s) = Ū1(X̄ (s)) by (3.30c)

= Ū1(X̃ (s))

= U1(f ◦ X̃ (s)) by (5.37b)

= U1(X ◦ h(s)) by (5.39)

= Z3(h(s)) by (3.30c)

= Z̃3(s) by (5.43b),

V̄1(X̄ (s)) =
1

2c(Ū1 ◦ X̃ (s))
x̄′1(X̃ (s)) by (3.31a)

=
f ′(X̃ (s))

2c(U1 ◦ f ◦ X̃ (s))
x′1(f ◦ X̃ (s)) by (5.37a) and (5.37b)

= f ′(X̃ (s))V1(f ◦ X̃ (s)) by (3.31a)

= Ṽ1(X̃ (s)) by (5.43c),

and, by (3.31f), (5.37f) and (5.43d),

p̄(X̄ (s)) = H̄1(X̃ (s)) = f ′(X̃ (s))H1(f ◦ X̃ (s)) = f ′(X̃ (s))p(f ◦ X̃ (s)) = p̃(X̃ (s)),

q̄(Ȳ(s)) = H̄2(Ỹ(s)) = g′(Ỹ(s))H2(g ◦ Ỹ(s)) = g′(Ỹ(s))q(g ◦ Ỹ(s)) = q̃(Ỹ(s)).
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This concludes the proof of (5.51e).
Step 6. We are now ready to prove (5.51f). Let

Θ = C(ψ), (Z, p, q) = S(Θ), (Z̄, p̄, q̄) = tT (Z, p, q), Θ̄ = E(Z̄, p̄, q̄), ψ̄ = D(Θ̄).

We claim that ST (ψ · φ) = ST (ψ) · φ. This follows from Step 1-6, as

ST (ψ · φ) = D ◦ E ◦ tT ◦ S ◦C(ψ · φ)

= D ◦ E ◦ tT ◦ S(C(ψ) · φ) by (5.51e)

= D ◦ E ◦ tT ◦ S(Θ · φ)

= D ◦ E ◦ tT (S(Θ) · φ) by (5.51c)

= D ◦ E ◦ tT ((Z, p, q) · φ)

= D ◦ E(tT (Z, p, q) · φ) by (5.51b)

= D ◦ E((Z̄, p̄, q̄) · φ)

= D(E(Z̄, p̄, q̄) · φ) by (5.51a)

= D(Θ̄ · φ)

= D(Θ̄) · φ by (5.51d)

= ψ̄ · φ
= ST (ψ) · φ.

�

Definition 5.17. We denote by F/G2 the quotient of F with respect to the action
of the group G2 on F . More specifically, we define the equivalence relation, ∼, on
F as

for any ψ, ψ̄ ∈ F , ψ ∼ ψ̄ if there exists φ ∈ G2 such that ψ̄ = ψ · φ.
For an element ψ ∈ F , we denote the equivalence class by

[ψ] = {ψ̄ ∈ F | ψ̄ ∼ ψ}.
We define the quotient space as

F/G2 = {[ψ] | ψ ∈ F}.
Definition 5.18. Let

F0 = {ψ = (ψ1, ψ2) ∈ F | x1 + J1 = Id and x2 + J2 = Id}
and Π : F → F0 be the projection on F0 given by ψ̄ = (ψ̄1, ψ̄2) = Π(ψ) where ψ̄ ∈ F0

is defined as follows. Let

(5.54) f(X) = x1(X) + J1(X) and g(Y ) = x2(Y ) + J2(Y )

and denote φ = (f, g) ∈ G2. We set

ψ̄ = ψ · φ−1.

Proof of the well-posedness of Definition 5.18. Since x1 + J1 and x2 + J2 belong to
G, f and g belong to G and their inverses exist. We claim that f−1 and g−1 belong
to G. This immediately follows from (3.3) and the following estimate. Since f ∈ G,
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Lemma 3.8 implies that there exists α ≥ 0 such that 1
1+α
≤ f ′ ≤ 1 + α almost

everywhere, and we get∫
R
(f−1(X)′ − 1)2 dX =

∫
R

(
1− f ′(f−1(X))

f ′(f−1(X))

)2

dX

≤ (1 + α)

∫
R

(1− f ′(f−1(X)))2

f ′(f−1(X))
dX

= (1 + α)

∫
R
(1− f ′(X))2 dX

by a change of variables. Hence, (f−1)′ − 1 ∈ L2(R) and f−1 ∈ G. The same
argument shows that g−1 ∈ G. Then the proof of the well-posedness of Definition
5.11 implies that ψ̄ = ψ · φ−1 belongs to F . Furthermore, we have

x̄1(X) + J̄1(X) = (x1 + J1) ◦ f−1(X) = (x1 + J1) ◦ (x1 + J1)−1(X) = X.

By a similar calculation, we get x̄2(Y ) + J̄2(Y ) = Y and conclude that ψ̄ ∈ F0. �

Lemma 5.19. The following statements hold:

(i) For any ψ and ψ̄ in F , we have

(5.55a) ψ ∼ ψ̄ if and only if Π(ψ) = Π(ψ̄),

so that the sets F/G2 and F0 are in bijection.
(ii) We have

(5.55b) M ◦ Π = M

and

(5.55c) L ◦M|F0 = Id |F0 and M ◦ L = Id,

so that the sets D, F0 and F/G2 are in bijection.
(iii) We have

(5.55d) Π ◦ ST ◦ Π = Π ◦ ST .
Note that the first identity in (5.55c) is equivalent to

(5.56) L ◦M ◦ Π = Π.

Before we prove the lemma we make some remarks.
Let ξ0 = (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D. Consider ψ = L(ξ0), ψ̄ = ST (ψ) and

ξT = M(ψ̄).

Let φ ∈ G2 and use ψ̂ = ψ · φ as initial data for the solution operator ST . From
(5.51f) we have ST (ψ̂) = ST (ψ) · φ = ψ̄ · φ = ψ̃. Let ξ̃T = M(ψ̃). Since φ ∈ G2 we

have ψ̃ ∼ ψ̄. Then, by (5.55a) we get Π(ψ̃) = Π(ψ̄) and from (5.55b) we get

M(ψ̃) = M(Π(ψ̃)) = M(Π(ψ̄)) = M(ψ̄).

This implies
ξ̃T = M(ψ̃) = M(ψ̄) = ξT ,

so the two solutions are identical.
We can think of this as follows: To each element ξ0 ∈ D there correspond infinitely

many elements in F , all belonging to the same equivalence class. The mapping
L : D → F0 picks one member of the equivalence class, but we could also pick a
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different one. Applying the solution operator to all elements belonging to the same
equivalence class yields infinitely many solutions in F , which form an equivalence
class. Using the mapping M : F → D on all of these solutions yields the same
element in D. Since we get the same solution in the end, we can think of each
member of the equivalence class as a different ”parametrization” of the initial data
in F , which are connected through relabeling.

The following example shows how we can use relabeling in order to get dif-
ferent initial curves in G0. We use the same notation as above. Assume that
ξ0 = (u0, R0, S0, ρ0, σ0, µ0, ν0) belongs to D and satisfies the additional conditions
u0, R0, S0, ρ0, σ0 ∈ L∞(R) and that µ0 and ν0 are absolutely continuous. We have

f(x1(X)) = X and g(x2(Y )) = Y,

where

f(x) = x+
1

4

∫ x

−∞
(R2

0 + c(u0)ρ2
0)(z) dz and g(x) = x+

1

4

∫ x

−∞
(S2

0 + c(u0)σ2
0)(z) dz.

Since the functions f and g are strictly increasing, they are invertible and x1 and
x2 are given as

x1(X) = f−1(X) and x2(Y ) = g−1(Y ).

Let Θ = C(ψ). The functions X and Y are given by

x1(X (s)) = x2(2s−X (s)) and Y(s) = 2s−X (s).

From this we get that X and Y are strictly increasing functions. Furthermore, the
functions f and g belong to G and can therefore be used as relabeling functions. In
the above notation this means φ = (f, g). Denote ψ̂ = ψ ·φ. Then we get x̂1(X) = X

and x̂2(Y ) = Y . Consider Θ̂ = C(ψ̂). Now we get X̂ (s) = s and Ŷ(s) = s. As
above, using either Θ or Θ̃ yields the same solution in D. Therefore, for this type
of initial data in D we can without loss of generality assume that the initial curve
(X ,Y) is the identity, i.e., X (s) = s and Y(s) = s. Note that without the additional
assumptions on the initial data in D, it is not possible to relabel the initial curve
into the identity.

Proof. We decompose the proof into five steps.
Step 1. We prove (5.55a). If ψ ∼ ψ̄, there exists φ̃ = (f̃ , g̃) ∈ G2 such that

(ψ̄1, ψ̄2) = ψ̄ = ψ · φ̃ = (ψ1, ψ2) · φ̃. Let φ = (f, g) and φ̄ = (f̄ , ḡ) be given by (5.54)

for ψ and ψ̄, respectively. We have φ̄ = φ ◦ φ̃ because

φ̄ = (f̄ , ḡ) = (x̄1 + J̄1, x̄2 + J̄2) = ((x1 + J1) ◦ f̃ , (x2 + J2) ◦ g̃) = (f ◦ f̃ , g ◦ g̃) = φ ◦ φ̃.
Then, we get

Π(ψ̄) = ψ̄ · (φ̄)−1 = (ψ · φ̃) · (φ ◦ φ̃)−1 = ψ · (φ̃ ◦ (φ ◦ φ̃)−1)

= ψ · (φ̃ ◦ (φ̃)−1 ◦ φ−1) = ψ · φ−1 = Π(ψ),

where the identity (ψ · φ̃) ·(φ◦ φ̃)−1 = ψ ·(φ̃◦(φ◦ φ̃)−1) follows from a straightforward
calculation using Definition 5.11. For example, by (5.37a), we have

x̄1 ◦ F (X) = x1 ◦ f̃ ◦ F (X) = x1 ◦ f−1,
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where we denote F = (f ◦ f̃)−1, and

F ′(X)H̄1 ◦ F (X) = F ′(X)(f̃)′ ◦ F (X)H1 ◦ f̃ ◦ F (X)

= (f̃ ◦ F (X))XH1 ◦ f̃ ◦ F (X)

= (f−1)′H1 ◦ f−1(X).

Conversely, if Π(ψ) = Π(ψ̄), then ψ ·φ−1 = ψ̄ ·(φ̄)−1, where φ = (f, g) and φ̄ = (f̄ , ḡ)
are given by (5.54). This implies that

(5.57) ψ̄ = ψ · (φ−1 ◦ φ̄).

This also follows from a direct calculation. For example, we have

((f̄)−1)′(X)H̄1 ◦ (f̄)−1(X) = (f−1)′(X)H1 ◦ f−1(X)

which implies that

((f̄)−1)′ ◦ f̄(X)H̄1(X) = (f−1)′ ◦ f̄(X)H1 ◦ f−1 ◦ f̄(X)

and since ((f̄)−1)′ ◦ f̄(X) = 1
(f̄)′(X)

, we get5

H̄1(X) = (f−1 ◦ f̄(X))XH1 ◦ f−1 ◦ f̄(X).

Then, since φ−1 ◦ φ̄ ∈ G2, (5.57) implies that ψ and ψ̄ are equivalent.
Step 2. We prove (5.55b). Given ψ = (ψ1, ψ2) ∈ F , let (u,R, S, ρ, σ, µ, ν) =

M(ψ), ψ̄ = (ψ̄1, ψ̄2) = Π(ψ) and (ū, R̄, S̄, ρ̄, σ̄, µ̄, ν̄) = M(ψ̄). We want to prove that
(ū, R̄, S̄, ρ̄, σ̄, µ̄, ν̄) = (u,R, S, ρ, σ, µ, ν). From (5.19a), (5.37a) and (5.37b), we get

ū(x̄1(X)) = Ū1(X) = U1(f−1(X)) = u(x1 ◦ f−1(X)) = u(x̄1(X)).

For any Borel set B, we have∫
B

R̄(x) dx =

∫
x̄−1

1 (B)

2c(Ū1(X))V̄1(X) dX by (5.19c)

=

∫
{X∈R | x1(f−1(X))∈B}

2c(U1(f−1(X)))(f−1(X))′V1(f−1(X)) dX

=

∫
x−1

1 (B)

2c(U1(X))V1(X) dX by a change of variables

=

∫
B

R(x) dx by (5.19c),

where we used (5.37a), (5.37b) and (5.37e). Hence, R̄ = R almost everywhere. By
(5.19e) and (5.37f), we obtain∫

B

ρ̄(x) dx =

∫
x̄−1

1 (B)

2H̄1(X) dX

=

∫
x̄−1

1 (B)

2(f−1(X))′H1(f−1(X)) dX

=

∫
x−1

1 (B)

2H1(X) dX

5Since f̄ ∈ G, there exists δ > 0 such that f̄ ′ ≥ δ almost everywhere, see Lemma 3.8.
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=

∫
B

ρ(x) dx.

Similarly, one proves that S̄ = S and σ̄ = σ almost everywhere. Using (5.19g) and
(5.37c), we find for any Borel set B ⊂ R, that

µ̄(B) =

∫
x̄−1

1 (B)

J̄1(X) dX

=

∫
x̄−1

1 (B)

(f−1(X))′J ′1(f−1(X)) dX

=

∫
x−1

1 (B)

J ′1(X) dX

= µ(B)

and µ̄ = µ. One proves that ν̄ = ν in a similar way.
Step 3. We prove that L ◦ M|F0 = Id |F0 . Given ψ = (ψ1, ψ2) ∈ F0, let

(u,R, S, ρ, σ, µ, ν) = M(ψ) and ψ̄ = (ψ̄1, ψ̄2) = L(u,R, S, ρ, σ, µ, ν). We want to
show that ψ̄ = ψ. We first prove that x̄1 = x1. Let

(5.58) g(x) = sup{X ∈ R | x1(X) < x}.
For all x ∈ R, we have

(5.59) x1(g(x)) = x

and since x1 is continuous and nondecreasing, x−1
1 ((−∞, x)) = (−∞, g(x)). From

(5.19g) and (3.10), we get

(5.60) µ((−∞, x)) =

∫
x−1

1 ((−∞,x))

J ′1(X) dX =

∫ g(x)

−∞
J ′1(X) dX = J1(g(x)).

Since ψ ∈ F0, x1 + J1 = Id which implies, by (5.59) and (5.60), that

(5.61) x+ µ((−∞, x)) = g(x).

From the definition (3.12a) of x̄1, we then obtain

(5.62) x̄1(X) = sup{x ∈ R | g(x) < X}.
This implies that, for any X ∈ R, there exists an increasing sequence, zi, such that
lim
i→∞

zi = x̄1(X) and g(zi) < X. Using that x1 is nondecreasing and (5.59), we get

zi ≤ x1(X). Letting i tend to infinity, we obtain x̄1(X) ≤ x1(X). Assume that
x̄1(X) < x1(X). Then, there exists x ∈ R such that x̄1(X) < x < x1(X) which
implies, by (5.62), that g(x) ≥ X. On the other hand, x1(g(x)) = x < x1(X) implies
that g(x) < X because x1 is nondecreasing, which gives us a contradiction. Hence,
we must have x̄1 = x1. Then, by (3.12c) and since x1 + J1 = Id, we get

J̄1(X) = X − x̄1(X) = X − x1(X) = J1(X)

and from (3.12d) and (5.19a), we obtain

Ū1(X) = u(x̄1(X)) = u(x1(X)) = U1(X).

By (3.12e) and (5.20a), we have

V̄1(X) = x̄′1(X)
R(x̄1(X))

2c(Ū1(X))
= x′1(X)

R(x1(X))

2c(U1(X))
= V1(X)
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and by (3.12f) and (3.7), we get

K̄1(X) =

∫ X

−∞

J̄ ′1(X̄)

c(Ū1(X̄))
dX̄ =

∫ X

−∞

J ′1(X̄)

c(U1(X̄))
dX̄ = K1(X).

Using (3.12g) and (5.20c), we find that

H̄1(X) =
1

2
ρ(x̄1(X))x̄′1(X) =

1

2
ρ(x1(X))x′1(X) = H1(X).

Hence, we have proved that ψ̄1 = ψ1. Similarly, one proves that x̄2 = x2 and
ψ̄2 = ψ2. For example, by (3.12g) and (5.20d), we have

H̄2(Y ) =
1

2
σ(x̄2(Y ))x̄′2(Y ) =

1

2
σ(x2(Y ))x′2(Y ) = H2(Y ).

Step 4. Let us prove that M ◦ L = Id. Given (u,R, S, ρ, σ, µ, ν) ∈ D, let
ψ = (ψ1, ψ2) = L(u,R, S, ρ, σ, µ, ν) and (ū, R̄, S̄, ρ̄, σ̄, µ̄, ν̄) = M(ψ). We want to
prove that (ū, R̄, S̄, ρ̄, σ̄, µ̄, ν̄) = (u,R, S, ρ, σ, µ, ν). First we show that µ̄ = µ. Let
g be the function defined as before by (5.58). The same computation that leads to
(5.61) now gives

(5.63) x+ µ̄((−∞, x)) = g(x).

By (3.12a), for anyX ∈ R, there exists an increasing sequence, xi, such that lim
i→∞

xi =

x1(X) and xi+µ((−∞, xi)) < X. Sending i to infinity, and since x 7→ µ((−∞, x)) is
lower semi-continuous, we obtain x1(X) + µ((−∞, x1(X)))) ≤ X. We set X = g(x)
and get, by (5.59), that

(5.64) x+ µ((−∞, x)) ≤ g(x).

From the definition of g, we have that, for any x ∈ R, there exists an increasing
sequence, Xi, such that lim

i→∞
Xi = g(x) and x1(Xi) < x. This implies, by (3.12a),

that x+µ((−∞, x)) ≥ Xi. Letting i tend to infinity, we obtain x+µ((−∞, x)) ≥ g(x)
which, together with (5.64), yields

(5.65) x+ µ((−∞, x)) = g(x).

Comparing (5.63) and (5.65), we get that µ̄ = µ. Similarly, one proves that ν̄ = ν.
By (5.19a) and (3.12d), we have

ū(x1(X)) = U1(X) = u(x1(X)).

For any Borel set B, we have∫
B

R̄(x) dx =

∫
x−1

1 (B)

2c(U1(X))V1(X) dX by (5.19c)

=

∫
x−1

1 (B)

2c(u ◦ x1(X))x′1(X)
R(x1(X))

2c(u ◦ x1(X))
dX by (3.12d) and (3.12e)

=

∫
B

R(x) dx by a change of variables,

so that R̄ = R almost everywhere. Similarly, one proves that S̄ = S almost every-
where. From (5.19e) and (3.12g), we get∫

B

ρ̄(x) dx =

∫
x−1

1 (B)

2H1(X) dX =

∫
x−1

1 (B)

ρ(x1(X))x′1(X) dX =

∫
B

ρ(x) dx.
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Hence, ρ̄ = ρ almost everywhere. Similarly, one proves that σ̄ = σ almost every-
where.

Step 5. We prove (5.55d). Given ψ = (ψ1, ψ2) ∈ F , let φ = (f, g) ∈ G2 be
defined as in (5.54) so that Π(ψ) = ψ · φ−1. By (5.51f), we get

ST ◦ Π(ψ) = ST (ψ · φ−1) = ST (ψ) · φ−1,

which implies that ST ◦Π and ST are equivalent. Then, (5.55d) follows from (5.55a).
�

Now we are finally in position to prove that S̄T is a semigroup.

Theorem 5.20. The mapping S̄T is a semigroup.

Proof. The proof relies on Lemma 5.19 and Theorem 5.6. From Definition 5.10 we
have

S̄T ◦ S̄T ′ = M ◦ ST ◦ L ◦M ◦ ST ′ ◦ L

= M ◦ Π ◦ ST ◦ L ◦M ◦ Π ◦ ST ′ ◦ L by (5.55b)

= M ◦ Π ◦ ST ◦ Π ◦ ST ′ ◦ L by (5.56)

= M ◦ Π ◦ ST ◦ ST ′ ◦ L by (5.55d)

= M ◦ ST ◦ ST ′ ◦ L by (5.55b)

= M ◦ ST+T ′ ◦ L by Theorem 5.6

= S̄T+T ′ .

�

6. Existence of Weak Global Conservative Solutions

It remains to prove that the solution obtained by using the operator S̄T is a weak
solution of (1.3).

Theorem 6.1. Let t > 0 and (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D. Then

(u,R, S, ρ, σ, µ, ν)(t) = S̄t(u0, R0, S0, ρ0, σ0, µ0, ν0)

is a weak solution of (1.3), meaning that∫∫
[0,∞)×R

([
φt − c(u)φx

]
R +

[
φt + c(u)φx

]
S +

c′(u)

c(u)
RSφ

)
dx dt(6.1a)

=

∫∫
[0,∞)×R

2c′(u)

c(u)
φ dµ dt+

∫∫
[0,∞)×R

2c′(u)

c(u)
φ dν dt,

(6.1b)

∫∫
[0,∞)×R

[
φt − c(u)φx

]
ρ dx dt = 0,

and

(6.1c)

∫∫
[0,∞)×R

[
φt + c(u)φx

]
σ dx dt = 0

for all φ = φ(t, x) in C∞0 ((0,∞)× R), where

(6.1d) R = ut + c(u)ux and S = ut − c(u)ux

in the sense of distributions.
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Moreover, the measures µ and ν satisfy the equations

(6.2a) (µ+ ν)t − (c(u)(µ− ν))x = 0

and

(6.2b)

(
1

c(u)
(µ− ν)

)
t

− (µ+ ν)x = 0

in the sense of distributions.

Note that if the two measures µ and ν are absolutely continuous, (6.2a) and (6.2b)
coincide with (1.13) in the sense of distributions, which we derived in the smooth
case. Moreover, the difference of the sign in front of µ and ν indicates the two
opposite traveling directions.

Proof. We decompose the proof into two steps.
Step 1. We first show (6.1). Given (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D, we consider

(u,R, S, ρ, σ, µ, ν)(t) = S̄t(u0, R0, S0, ρ0, σ0, µ0, ν0), where S̄t is given by Definition
5.10. The identities in (6.1d) follow from (5.33) in Lemma 5.9. By a change of
variables, we get∫∫

[0,∞)×R
(φt − c(u)φx)R(t, x) dx dt(6.3)

=

∫∫
R2

(φt − c(u)φx)R(t(X, Y ), x(X, Y ))(tXxY − tY xX)(X, Y ) dX dY

= 2

∫∫
R2

(
φt − c(u)φx

c(u)
R

)
(t(X, Y ), x(X, Y ))xXxY (X, Y ) dX dY by (4.12a)

= −2

∫∫
R2

φYR(t(X, Y ), x(X, Y ))xX(X, Y ) dX dY

= −2

∫∫
R2

c(U)UX(X, Y )φY (t(X, Y ), x(X, Y )) dX dY by (5.30), (5.31a)

= 2

∫∫
R2

(c(U)UX)Y (X, Y )φ(t(X, Y ), x(X, Y )) dX dY

= 2

∫∫
R2

(c′(U)UXUY + c(U)UXY )(X, Y )φ(t(X, Y ), x(X, Y )) dX dY,

where we used integration by parts and

φY (t(X, Y ), x(X, Y ))(6.4)

= φt(t(X, Y ), x(X, Y ))tY (X, Y ) + φx(t(X, Y ), x(X, Y ))xY (X, Y )

= −
(
φt − c(u)φx

c(u)

)
(t(X, Y ), x(X, Y ))xY (X, Y ),

which follows from (4.12a).
Similarly, we find that∫∫

[0,∞)×R
(φt + c(u)φx)S(t, x) dx dt(6.5)

= 2

∫∫
R2

(c′(U)UXUY + c(U)UXY )(X, Y )φ(t(X, Y ), x(X, Y )) dX dY
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and ∫∫
[0,∞)×R

c′(u)

c(u)
RSφ(t, x) dt dx(6.6)

= −2

∫∫
R2

c′(U)UXUY (X, Y )φ(t(X, Y ), x(X, Y )) dX dY.

Combining (6.3), (6.5), (6.6) and (2.38c) yields∫∫
[0,∞)×R

([
φt − c(u)φx

]
R +

[
φt + c(u)φx

]
S +

c′(u)

c(u)
RSφ

)
dx dt(6.7)

=

∫∫
R2

2c′(U)

c2(U)
(xY JX + xXJY )φ(t, x) dX dY.

We have6 (u,R, S, ρ, σ, µ, ν)(t) = M ◦D(Θ(t)) and by (5.21f)∫∫
[0,∞)×R

2c′(u)

c(u)
φ(t, x) dµ(t) dt

=

∫∫
[0,∞)×R

2c′(u)

c(u)
φ(t,Z2(t, s))V4(t,X (t, s))Xs(t, s) ds dt,

where we added the t dependence in Θ(t), which gives X (t, s), Z2(t, s) and V4(t, s) in
the equation above. The measures µ and ν integrate with respect to the x variable
and the notation dµ(t) and dν(t) means that they depend on t. We proceed to the
change of variables s = 1

2
(X + Y ) and t = t(X, Y ) and obtain∫∫

[0,∞)×R

2c′(u)

c(u)
φ(t,Z2(t, s))V4(t,X (t, s))Xs(t, s) ds dt

=

∫∫
R2

2c′(u)

c(u)
φ(t(X, Y ), x(X, Y ))JX(X, Y )

×Xs(t(X, Y ), s(X, Y ))

(
tX − tY

2

)
(X, Y ) dX dY

=

∫∫
R2

2c′(U)

c2(U)
xY JX(X, Y )φ(t(X, Y ), x(X, Y )) dX dY by (4.12a),

where we used that Ż1(t, s) = 0, which implies

0 = tX(X, Y )Xs(t(X, Y ), s(X, Y )) + tY (X, Y )Ys(t(X, Y ), s(X, Y ))(6.8)

= (tX − tY )(X, Y )Xs(t(X, Y ), s(X, Y ))− 2

(
xY
c(U)

)
(X, Y ),

by (2.40c) and (4.12a).
Similarly, we obtain∫∫

[0,∞)×R

2c′(u)

c(u)
φ(t, x) dν(t) dt

6Note that although the mapping D is from G0 to F , the t dependence in Θ makes sense, since,
for any fixed t ≥ 0, we can consider the set Gt, that is, the set G where Z1(s) = t. This still gives

Ż1(s) = 0, and Gt can be mapped to G0 by tt.
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=

∫∫
R2

2c′(U)

c2(U)
xXJY (X, Y )φ(t(X, Y ), x(X, Y )) dX dY,

and we get∫∫
[0,∞)×R

2c′(u)

c(u)
φ(t, x) dµ(t) dt+

∫∫
[0,∞)×R

2c′(u)

c(u)
φ(t, x) dν(t) dt(6.9)

=

∫∫
R2

2c′(U)

c2(U)
(xY JX + xXJY )φ(t, x) dX dY.

From (6.7) and (6.9) we conclude that (6.1a) holds.
It remains to prove (6.1b) and (6.1c). We have∫∫

[0,∞)×R
(φt − c(u)φx)ρ(t, x) dx dt

= 2

∫∫
R2

(
φt − c(u)φx

c(u)
ρ

)
(t(X, Y ), x(X, Y ))xXxY (X, Y ) dX dY

= −2

∫∫
R2

φY ρ(t(X, Y ), x(X, Y ))xX(X, Y ) dX dY by (6.4)

= −2

∫∫
R2

p(X, Y )φY (t(X, Y ), x(X, Y )) dX dY by (5.30) and (5.31b)

= 2

∫∫
R2

pY (X, Y )φ(t(X, Y ), x(X, Y )) dX dY by integration by parts

= 0 by (2.38f)

and ∫∫
[0,∞)×R

(φt + c(u)φx)σ(t, x) dx dt

= 2

∫∫
R2

(
φt + c(u)φx

c(u)
σ

)
(t(X, Y ), x(X, Y ))xXxY (X, Y ) dX dY

= 2

∫∫
R2

φXσ(t(X, Y ), x(X, Y ))xY (X, Y ) dX dY

= 2

∫∫
R2

q(X, Y )φX(t(X, Y ), x(X, Y )) dX dY by (5.30) and (5.32b)

= −2

∫∫
R2

qX(X, Y )φ(t(X, Y ), x(X, Y )) dX dY by integration by parts

= 0 by (2.38g)

because

φX(t(X, Y ), x(X, Y )) =

(
φt + c(u)φx

c(u)

)
(t(X, Y ), x(X, Y ))xX(X, Y ),

which follows from a similar calculation as in (6.4). Thus, we have proved (6.1b)
and (6.1c).

Step 2. Now we prove (6.2). First we show (6.2a), that is,∫∫
[0,∞)×R

(φt − c(u)φx)(t, x) dµ(t) dt+

∫∫
[0,∞)×R

(φt + c(u)φx)(t, x) dν(t) dt = 0
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for all φ ∈ C∞0 ((0,∞)× R). By a calculation as above we find∫∫
[0,∞)×R

(φt − c(u)φx)(t, x) dµ(t) dt

=

∫∫
[0,∞)×R

(φt − c(u)φx)(t,Z2(t, s))V4(t,X (t, s))Xs(t, s) ds dt by (5.21f)

=

∫∫
R2

(φt − c(u)φx)(t(X, Y ), x(X, Y ))JX(X, Y )

×Xs(t(X, Y ), s(X, Y ))

(
tX − tY

2

)
(X, Y ) dX dY

=

∫∫
R2

(φt − c(u)φx)(t(X, Y ), x(X, Y ))

× JX(X, Y )

(
xY
c(U)

)
(X, Y ) dX dY by (6.8) and (4.12a)

= −
∫∫

R2

φY (t(X, Y ), x(X, Y ))JX(X, Y ) dX dY by (6.4),

where we used the change of variables s = 1
2
(X + Y ) and t = t(X, Y ).

Similarly, one proves that∫∫
[0,∞)×R

(φt + c(u)φx)(t, x) dν(t) dt =

∫∫
R2

φX(t(X, Y ), x(X, Y ))JY (X, Y ) dX dY,

so that∫∫
[0,∞)×R

(φt − c(u)φx)(t, x) dµ(t) dt+

∫
[0,∞)×R

(φt + c(u)φx)(t, x) dν(t) dt

=

∫∫
R2

(−φY (t(X, Y ), x(X, Y ))JX(X, Y ) + φX(t(X, Y ), x(X, Y ))JY (X, Y )) dX dY

= 0

by integration by parts. This concludes the proof of (6.2a). In a similar way, one
proves (6.2b). �

The semigroup of solutions, S̄t, is conservative in the following sense.

Theorem 6.2. Given (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D, let

(u,R, S, ρ, σ, µ, ν)(t) = S̄t(u0, R0, S0, ρ0, σ0, µ0, ν0).

We have:

(i) For all t ≥ 0,

µ(t)(R) + ν(t)(R) = µ0(R) + ν0(R).

(ii) For almost every t ≥ 0, the singular parts of µ(t) and ν(t) are concentrated
on the set where c′(u) = 0.

Proof. We prove (i). Given τ ≥ 0, let

(u,R, S, ρ, σ, µ, ν)(τ) = S̄τ (u0, R0, S0, ρ0, σ0, µ0, ν0).

We consider Θ(τ) ∈ Gτ and (Z, p, q) ∈ H such that (u,R, S, ρ, σ, µ, ν)(τ) = M ◦
D(Θ(τ)) and Θ(τ) = E(Z, p, q). By Definition 5.2, we have
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Z2(τ, s) = x(X (τ, s),Y(τ, s)), V4(X (τ, s)) = JX(X (τ, s),Y(τ, s)) and W4(Y(τ, s)) =
JY (X (τ, s),Y(τ, s)). Then, from (5.21f) and (5.21g), we have for any Borel set B,
that

µ(τ)(B) =

∫
{s∈R | Z2(τ,s)∈B}

V4(X (τ, s))Xs(τ, s) ds

=

∫
{s∈R |x(X (τ,s),Y(τ,s))∈B}

JX(X (τ, s),Y(τ, s))Xs(τ, s) ds

and

ν(τ)(B) =

∫
{s∈R | Z2(τ,s)∈B}

W4(Y(τ, s))Ys(τ, s) ds

=

∫
{s∈R |x(X (τ,s),Y(τ,s))∈B}

JY (X (τ, s),Y(τ, s))Ys(τ, s) ds

respectively. Hence,

µ(τ)(R) + ν(τ)(R)

=

∫
R
(JX(X (τ, s),Y(τ, s))Xs(τ, s) + JY (X (τ, s),Y(τ, s))Ys(τ, s)) ds

=

∫
R
Js(X (τ, s),Y(τ, s)) ds

= lim
s→∞

J(X (τ, s),Y(τ, s))

= lim
s→∞

J(X (0, s),Y(0, s)) by Lemma 4.14

= µ0(R) + ν0(R),

where we used that lim
s→−∞

J(X (τ, s),Y(τ, s)) = lim
s→−∞

Z4(τ, s) = 0.

Let us prove (ii). We decompose µ(τ) into its absolutely continuous and singular
part, that is, µ(τ) = µ(τ)ac +µ(τ)sing. We want to prove that, for almost every time
τ ≥ 0,

µ(τ)sing({x ∈ R | c′(u(τ, x)) 6= 0}) = 0.

Consider the set
Aτ = {s ∈ R | xX(X (τ, s),Y(τ, s)) > 0}.

Since xX(X (τ, s),Y(τ, s)) = V2(X (τ, s)), Aτ corresponds to the set A in (5.27) in
the proof of Lemma 5.8. Using V4(X (τ, s)) = JX(X (τ, s),Y(τ, s)) and Z2(τ, s) =
x(X (τ, s),Y(τ, s)) in (5.28), we get

µsing(τ)(B) =

∫
{s∈R | Z2(τ,s)∈B}∩Acτ

V4(X (τ, s))Xs(τ, s) ds(6.10)

=

∫
{s∈Acτ |x(X (τ,s),Y(τ,s))∈B}

JX(X (τ, s),Y(τ, s))Xs(τ, s) ds

for any Borel set B. Let

E = {(X, Y ) ∈ R2 | xX(X, Y ) = 0 and c′(U(X, Y )) 6= 0}.
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For a given time τ , we consider the mapping Γτ : s 7→ (X (τ, s),Y(τ, s)). From
(6.10), we obtain

µ(τ)sing({x ∈ R | c′(u(τ, x)) 6= 0})(6.11)

=

∫
{s∈R | (X (τ,s),Y(τ,s))∈E}

JX(X (τ, s),Y(τ, s))Xs(τ, s) ds

=

∫
Γ−1
τ (E)

JX(X (τ, s),Y(τ, s))Xs(τ, s) ds

≤ 2||JX ||W 1,∞
Y (R)meas(Γ−1

τ (E)).

We claim that meas(Γ−1
τ (E)) = 0. By the area formula, see Section 3.3 in [5], we

obtain

meas(Γ−1
τ (E)) =

∫
Γ−1
τ (E)

1

2
(Xs(τ, s) + Ys(τ, s)) ds since Xs + Ys = 2(6.12)

≤
∫

Γ−1
τ (E)

(X 2
s (τ, s) + Y2

s (τ, s))
1
2 ds

= H1(Γτ ◦ Γ−1
τ (E))

≤ H1(E ∩ t−1(τ)),

where we used that Xs = (X 2
s )

1
2 ≤ (X 2

s + Y2
s )

1
2 (and similarly for Ys). Here, H1

denotes the one-dimensional Hausdorff measure. The fact that Γτ ◦ Γ−1
τ (E) ⊂ E ∩

t−1(τ) follows from the following argument. If E ∩ t−1(τ) contains a rectangle, we
have by the Definition 5.2, that the curve Γτ consists of the left vertical side and
the upper horizontal side of the rectangle. We show that H1(E ∩ t−1(τ)) = 0. We
have

E = A1 ∪ A3,

where

A1 = {(X, Y ) ∈ R2 | xX(X, Y ) = 0, xY (X, Y ) > 0 and c′(U(X, Y )) 6= 0}
and

A3 = {(X, Y ) ∈ R2 | xX(X, Y ) = 0, xY (X, Y ) = 0 and c′(U(X, Y )) 6= 0}.
By an argument as in the proof of Theorem 4 in [10], we obtain meas(A1) = 0.

Hence, by the coarea formula, see Section 3.4 in [5], we get∫
R
H1(E ∩ t−1(τ)) dτ =

∫∫
E

(t2X(X, Y ) + t2Y (X, Y ))
1
2 dX dY

=

∫∫
A3

(t2X(X, Y ) + t2Y (X, Y ))
1
2 dX dY

=

∫∫
A3

1

c(U(X, Y ))
(x2

X(X, Y ) + x2
Y (X, Y ))

1
2 dX dY by (4.12a)

= 0.

Therefore, we get from (6.12), that meas(Γ−1
τ (E)) = 0, which inserted into (6.11)

yields
µ(τ)sing({x ∈ R | c′(u(τ, x)) 6= 0}) = 0.
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Theorem 6.3 (Finite speed of propagation). For initial data (u0, R0, S0, ρ0, σ0, µ0, ν0)
and (ū0, R̄0, S̄0, ρ̄0, σ̄0, µ̄0, ν̄0) in D, we consider the solutions

(u,R, S, ρ, σ, µ, ν)(t) = S̄t(u0, R0, S0, ρ0, σ0, µ0, ν0)

and
(ū, R̄, S̄, ρ̄, σ̄, µ̄, ν̄)(t) = S̄t(ū0, R̄0, S̄0, ρ̄0, σ̄0, µ̄0, ν̄0).

Given t > 0 and x ∈ R, if

(u0, R0, S0, ρ0, σ0, µ0, ν0)(x) = (ū0, R̄0, S̄0, ρ̄0, σ̄0, µ̄0, ν̄0)(x)

for x ∈ [x− κt,x + κt], then

u(t,x) = ū(t,x).

In the case of the linear wave equation, i.e., c is constant, one has u(t,x) = ū(t,x)
if the initial data are equal on the interval [x − ct,x + ct]. If the function c(u)
satisfies 1

κ
≤ c(u) ≤ κ for some κ ≥ 1 the corresponding interval is contained in

[x − κt,x + κt]. Thus, we require the initial data to coincide on a slightly bigger
interval.

Proof. We denote xl = x−κt and xr = x+κt. For a given (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈
D, we define

(ū0, R̄0, S̄0, ρ̄0, σ̄0)(x) =

{
(u0, R0, S0, ρ0, σ0)(x) if x ∈ [xl, xr]

(0, 0, 0, 0, 0) otherwise

and
µ̄0(B) = µ0(B ∩ [xl, xr]), ν̄0(B) = ν0(B ∩ [xl, xr])

for any Borel set B. It is enough to prove the theorem for the initial data
(u0, R0, S0, ρ0, σ0, µ0, ν0) and (ū0, R̄0, S̄0, ρ̄0, σ̄0, µ̄0, ν̄0) in D. We have to compute the
solutions corresponding to these two initial data. We decompose the proof into five
steps.

Step 1. Let ψ = (ψ1, ψ2) = L(u0, R0, S0, ρ0, σ0, µ0, ν0) and ψ̄ = (ψ̄1, ψ̄2) =
L(ū0, R̄0, S̄0, ρ̄0, σ̄0, µ̄0, ν̄0). We denote Xl = xl, Yl = xl, Xr = xr + µ0([xl, xr]),
Yr = xr + ν0([xl, xr]) and Ω = [Xl, Xr]× [Yl, Yr]. We claim that

(6.13) x̄1(X) =


X if X ≤ Xl,

x1(X + µ0((−∞, xl))) if Xl < X ≤ Xr,

X − µ0([xl, xr]) if X > Xr

and

(6.14) x̄2(Y ) =


Y if Y ≤ Yl,

x2(Y + ν0((−∞, xl))) if Yl < Y ≤ Yr,

Y − ν0([xl, xr]) if Y > Yr.

From (3.12a), we have

(6.15) x̄1(X) = sup{x′ ∈ R | x′ + µ̄0((−∞, x′)) < X}.
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First case: X ≤ Xl. For any x′ such that x′+ µ̄0((−∞, x′)) < X, we have x′ < X,
so that x′ < X ≤ Xl = xl. Then, µ̄0((−∞, x′)) = µ0((−∞, x′) ∩ [xl, xr]) = 0 and
x̄1(X) = X.

Second case: Xl < X ≤ Xr. We have xl + µ̄0((−∞, xl)) = xl = Xl < X, so that

(6.16) x̄1(X) = sup{x′ ∈ [xl,∞) | x′ + µ0([xl, x
′)) < X}.

We claim that for any x′ such that x′+ µ̄0((−∞, x′)) < X, we have x′ ≤ xr. Assume
the opposite, that is, x′ > xr. Then, µ̄0((−∞, x′)) = µ0((−∞, x′) ∩ [xl, xr]) =
µ0([xl, xr]) and we get

x′ + µ0([xl, xr]) = x′ + µ̄0((−∞, x′)) < X ≤ Xr = xr + µ0([xl, xr]),

which contradicts the assumption x′ > xr. Hence,

(6.17) x̄1(X) = sup{x′ ∈ [xl, xr] | x′ + µ0([xl, x
′)) < X}.

We claim that

x1(X + µ0((−∞, xl))) = sup{x′ ∈ [xl, xr] | x′ + µ0([xl, x
′)) < X}.

By (3.12a), we have

x1(X + µ0((−∞, xl))) = sup{x′ ∈ R | x′ + µ0((−∞, x′)) < X + µ0((−∞, xl))}.
We have xl + µ0((−∞, xl)) = Xl + µ0((−∞, xl)) < X + µ0((−∞, xl)), so that

x1(X + µ0((−∞, xl))) = sup{x′ ∈ [xl,∞) | x′ + µ0((−∞, x′)) < X + µ0((−∞, xl))}
= sup{x′ ∈ [xl,∞) | x′ + µ0([xl, x

′)) < X}
= x̄1(X) by (6.16).

Then, by (6.17), we get

x1(X + µ0((−∞, xl))) = sup{x′ ∈ [xl, xr] | x′ + µ0([xl, x
′)) < X}.

Third case: X > Xr. Since xr + µ̄0((−∞, xr)) = xr + µ0([xl, xr)) ≤ xr +
µ0([xl, xr]) = Xr < X, we have

x̄1(X) = sup{x′ ∈ [xr,∞) | x′ + µ̄0((−∞, x′)) < X}.
If x′ > xr, µ̄0((−∞, x′)) = µ0([xl, xr]), which implies that

x̄1(X) = X − µ0([xl, xr]).

This concludes the proof of (6.13). Similarly, one proves (6.14).
Let f(X) = X + µ0((−∞, xl)) and g(Y ) = Y + ν0((−∞, xl)). We claim that

φ = (f, g) ∈ G2. Since f ′ = 1, f is invertible and f−1(X) = X − µ0((−∞, xl)). We
have ||f−Id ||L∞(R) ≤ µ0(R), ||f−1−Id ||L∞(R) ≤ µ0(R), f ′−1 = 0 and (f−1)′−1 = 0.

Hence, f belongs to G. Similarly, one shows that g ∈ G. We denote ψ̃ = ψ · φ. We
have proved that

(6.18) x̄1(X) = x̃1(X) for Xl < X ≤ Xr

and

(6.19) x̄2(Y ) = x̃2(Y ) for Yl < Y ≤ Yr.

Step 2. Let Θ̄ = C(ψ̄) and Θ̃ = C(ψ̃). We prove that

(6.20) X̄ (s) = X̃ (s) and Ȳ(s) = Ỹ(s)
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for s ∈ [sl, sr] where sl = 1
2
(Xl + Yl) and sr = 1

2
(Xr + Yr). First we show that

(6.21) X̃ (sl) = Xl and Ỹ(sl) = Yl.

By (3.28), we have

X̃ (s) = sup{X ∈ R | x̃1(X ′) < x̃2(2s−X ′) for all X ′ < X}.
For any X < Xl, x̃1(X) ≤ x̃1(Xl) because x̃1 is nondecreasing. We claim that
x̃1(X) < x̃1(Xl). Assume the opposite, that is, x̃1(X) = x̃1(Xl). Then, since
x̃1(Xl) = xl, there exists an increasing sequence xi such that lim

i→∞
xi = xl and

xi + µ0((−∞, xi)) < X + µ0((−∞, xl)). By sending i to infinity, we get, since x 7→
µ0((−∞, x)) is lower semi-continuous, that xl + µ0((−∞, xl)) ≤ X + µ0((−∞, xl)).
This leads to the contradiction xl ≤ X < Xl = xl. Therefore, for any X < Xl,

x̃1(X) < x̃1(Xl) = x1(xl + µ0((−∞, xl))) = xl

= x2(xl + ν0((−∞, xl))) = x̃2(Yl) ≤ x̃2(2sl −X),

where we used that ψ̃ = ψ ·φ and the fact that x̃2 is nondecreasing. Hence, X̃ (sl) =
Xl and we have proved (6.21). By using similar arguments, one obtains

(6.22) X̃ (sr) = Xr and Ỹ(sr) = Yr.

The corresponding results for X̄ and Ȳ , which we state here for completeness, are

X̄ (sl) = Xl, Ȳ(sl) = Yl and X̄ (sr) = Xr, Ȳ(sr) = Yr.

In particular, we have proved (6.20) for s = sl and s = sr. For s ∈ (sl, sr), we
have either Xl < X̄ (s) ≤ Xr or Yl ≤ Ȳ(s) < Yr by the definition of X̄ and Ȳ . We
only consider the case Xl < X̄ (s) ≤ Xr, as the other case can be treated similarly.
By (3.28), there exists an increasing sequence Xi such that lim

i→∞
Xi = X̄ (s) and

x̄1(Xi) < x̄2(2s − Xi). For sufficiently large i, we have Xl < Xi ≤ Xr and, by
(6.18), we get x̃1(Xi) = x̄1(Xi) < x̄2(2s − Xi). If 2s − Xi ≤ Yr then, by (6.19),
x̄2(2s−Xi) = x̃2(2s−Xi), so that x̃1(Xi) < x̃2(2s−Xi). If 2s−Xi > Yr then also
x̃1(Xi) < x̃2(2s − Xi). Assume the opposite, that is, x̃1(Xi) ≥ x̃2(2s − Xi). Since
x̃1 and x̃2 are nondecreasing, we have x̃1(Xr) ≥ x̃1(Xi) ≥ x̃2(2s−Xi) ≥ x̃2(Yr). We
have

x̃1(Xr) = x1(Xr + µ0((−∞, xl))) = x1(xr + µ0((−∞, xr]))
= x1(xr + µ0((−∞, xr))) = xr

and similarly, we obtain x̃2(Yr) = xr. Thus, x̃1(Xr) = x̃2(Yr), which implies that
x̃2(2s − Xi) = xr. By (3.12b), there exists a decreasing sequence xj such that
lim
j→∞

xj = x̃2(2s−Xi) and

xj + ν0((−∞, xj)) ≥ 2s−Xi + ν0((−∞, xl)). Sending j to infinity, we get

2s−Xi + ν0((−∞, xl)) ≤ x̃2(2s−Xi) + ν0((−∞, x̃2(2s−Xi)]) = xr + ν0((−∞, xr]),
which leads to the contradiction

2s−Xi ≤ xr + ν0([xl, xr]) = Yr.

Hence, we have shown that

(6.23) x̃1(Xi) < x̃2(2s−Xi).
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If Yl < Ȳ(s) < Yr, we get, from (6.18) and (6.19), that

(6.24) x̃1(X̄ (s)) = x̄1(X̄ (s)) = x̄2(Ȳ(s)) = x̃2(Ȳ(s)).

If Ȳ(s) = Yl, we have x̄2(Ȳ(s)) = xl = x̃2(Ȳ(s)), so that (6.24) also holds. It
then follows from (6.23) and (6.24) that X̄ (s) = X̃ (s), which concludes the proof of
(6.20).

Step 3. Let (Z̄, p̄, q̄) = S(Θ̄) and (Z̃, p̃, q̃) = S(Θ̃). We prove that

t̄(X, Y ) = t̃(X, Y ), x̄(X, Y ) = x̃(X, Y ), Ū(X, Y ) = Ũ(X, Y ),(6.25)

p̄(X, Y ) = p̃(X, Y ), q̄(X, Y ) = q̃(X, Y )

for all (X, Y ) ∈ Ω, where Ω = [Xl, Xr] × [Yl, Yr]. We have x̄1(X) = x̃1(X) for
X ∈ [Xl, Xr] and x̄2(Y ) = x̃2(Y ) for Y ∈ [Yl, Yr]. Let us show that

Ū1(X) = Ũ1(X), V̄1(X) = Ṽ1(X), J̄1(X) = J̃1(X)− J̃1(Xl),

K̄1(X) = K̃1(X)− K̃1(Xl), H̄1(X) = H̃1(X)

for X ∈ [Xl, Xr], and

Ū2(Y ) = Ũ2(Y ), V̄2(Y ) = Ṽ2(Y ), J̄2(Y ) = J̃2(Y )− J̃2(Yl),(6.26)

K̄2(Y ) = K̃2(Y )− K̃2(Yl), H̄2(Y ) = H̃2(Y )

for Y ∈ [Yl, Yr]. From (3.12d), we have

Ū1(X) = ū0(x̄1(X)) = u0(x̃1(X)) = u0(x1(f(X))) = U1(f(X)) = Ũ1(X).

By (3.12e), we get

V̄1(X) = x̄′1(X)
R̄0(x̄1(X))

2c(Ū1(X))

= x̃′1(X)
R0(x̃1(X))

2c(Ũ1(X))

= f ′(X)x′1(f(X))
R0(x1(f(X)))

2c(U1(f(X)))

= f ′(X)V1(f(X))

= Ṽ1(X).

We have, by (3.12c), that

J̄1(X) = X − x̄1(X)

= X − x̃1(X)

= X − x1(X + µ0((−∞, xl)))
= X + µ0((−∞, xl))− x1(X + µ0((−∞, xl)))
− (Xl + µ0((−∞, xl)) + x1(Xl + µ0((−∞, xl))))

= J1(X + µ0((−∞, xl)))− J1(Xl + µ0((−∞, xl)))
= J̃1(X)− J̃1(Xl)
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since x1(Xl + µ0((−∞, xl))) = Xl. From (6.13), x̄1(X) = X for X ≤ Xl, so that
J̄1(X) = X − x̄1(X) = 0 for X ≤ Xl. This implies, by (3.12f), that

K̄1(X) =

∫ X

−∞

J̄ ′1(X̄)

c(Ū1(X̄))
dX̄

=

∫ X

Xl

J̃ ′1(X̄)

c(Ũ1(X̄))
dX̄

=

∫ X

Xl

J ′1(X̄ + µ0((−∞, xl)))
c(U1(X̄ + µ0((−∞, xl))))

dX̄

=

∫ X+µ0((−∞,xl))

Xl+µ0((−∞,xl))

J ′1(X̄)

c(U1(X̄))
dX̄ by a change of variables

=

∫ X+µ0((−∞,xl))

−∞

J ′1(X̄)

c(U1(X̄))
dX̄ −

∫ Xl+µ0((−∞,xl))

−∞

J ′1(X̄)

c(U1(X̄))
dX̄

= K1(X + µ0((−∞, xl)))−K1(Xl + µ0((−∞, xl)))
= K̃1(X)− K̃1(Xl).

By (3.12g), we have

H̄1(X) =
1

2
ρ̄0(x̄1(X))x̄′1(X)

=
1

2
ρ0(x̃1(X))x̃′1(X)

=
1

2
ρ0(x1(f(X)))x′1(f(X))f ′(X)

= f ′(X)H1(f(X))

= H̃1(X).

In a similar way, one proves (6.26).
We have X̄ (s) = X̃ (s) and Ȳ(s) = Ỹ(s) for s ∈ [sl, sr]. We show that

Z̄1(s) = Z̃1(s), Z̄2(s) = Z̃2(s), Z̄3(s) = Z̃3(s),

Z̄4(s) = Z̃4(s)− Z̃4(sl), Z̄5(s) = Z̃5(s)− Z̃5(sl)

for s ∈ [sl, sr], and

(6.27) V̄(X) = Ṽ(X), W̄(Y ) = W̃(Y ), p̄(X) = p̃(X), q̄(Y ) = q̃(Y )

for X ∈ [Xl, Xr] and Y ∈ [Yl, Yr]. From (3.30a), we have Z̄1(s) = 0 = Z̃1(s). By
(3.30b) and (3.30c), we have Z̄2(s) = x̄1(X̄ (s)) = x̃1(X̃ (s)) = Z̃2(s) and Z̄3(s) =
Ū1(X̄ (s)) = Ũ1(X̃ (s)) = Z̃3(s), respectively. From (3.30d), we get

Z̄4(s) = J̄1(X̄ (s)) + J̄2(Ȳ(s))

= J̃1(X̃ (s))− J̃1(Xl) + J̃2(Ỹ(s))− J̃2(Yl)

= Z̃4(s)− Z̃4(sl)

and similarly, we find that Z̄5(s) = Z̃5(s)−Z̃5(sl). Using (3.31a)-(3.31f), a straight-
forward calculation shows (6.27). Hence, Θ̄ and Θ̃ are equal in Ω, except that the
energy potentials differ up to a constant. However, since the governing equations
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(2.38) are invariant with respect to addition of a constant to the energy potentials,
we get, by Lemma 4.10, that (6.25) holds.

Step 4. We prove that there exists (X0, Y0) ∈ Ω such that

(6.28) t̄(X0, Y0) = t and x̄(X0, Y0) = x.

We have

x̄(Xl, Yl) = x̄1(Xl) = x̄2(Yl) = xl and x̄(Xr, Yr) = x̄1(Xr) = x̄2(Yr) = xr,

so that

x̄(Xr, Yl)− xl = x̄(Xr, Yl)− x̄(Xl, Yl)(6.29)

=

∫ Xr

Xl

x̄X(X, Yl) dX

=

∫ Xr

Xl

c(Ū(X, Yl))t̄X(X, Yl) dX by (4.12a)

≤ κ

∫ Xr

Xl

t̄X(X, Yl) dX since
1

κ
≤ c ≤ κ and t̄X ≥ 0

= κt̄(Xr, Yl) since t̄(Xl, Yl) = t̄(X̄ (sl), Ȳ(sl)) = 0.

In a similar way, one proves that xr − x̄(Xr, Yl) ≤ κt̄(Xr, Yl), which added to (6.29)
yields xr − xl ≤ 2κt̄(Xr, Yl), or

(6.30) t ≤ t̄(Xr, Yl).

There exists (X0, Y0) ∈ R2, which may not be unique, such that

t̄(X0, Y0) = t and x̄(X0, Y0) = x.

Assume that

(6.31) t̄(X, Y ) 6= t or x̄(X, Y ) 6= x

for all (X, Y ) ∈ Ω. We claim that we cannot have

(6.32) X0 > Xr and Y0 < Yl

or

(6.33) X0 < Xr and Y0 > Yl,

so that either X0 > Xr and Y0 ≥ Yl or X0 ≤ Xr and Y0 < Yl.
If (6.32) holds, we get, since t̄X ≥ 0 and t̄Y ≤ 0, that t = t̄(X0, Y0) ≥ t̄(Xr, Yl) ≥ t,

where we used (6.30). Hence, t̄(Xr, Yl) = t, which contradicts (6.31).
If (6.33) holds, we have either Y0 > Yr or Yl < Y0 ≤ Yr. If Y0 > Yr, we get

a contradiction, since t = t̄(X0, Y0) ≤ t̄(Xr, Yr) = t̄(X̄ (sr), Ȳ(sr)) = 0. If Yl <
Y0 ≤ Yr, we have X0 < Xl because (X0, Y0) /∈ Ω, which leads to the contradiction
t = t̄(X0, Y0) ≤ t̄(Xl, Yl) = t̄(X̄ (sl), Ȳ(sl)) = 0. Hence, we have either X0 > Xr and
Y0 ≥ Yl or X0 ≤ Xr and Y0 < Yl.

Assume that X0 > Xr and Y0 ≥ Yl. If Y0 > Yr, then x = x̄(X0, Y0) ≥ x̄(Xr, Yr) =
xr = x + κt, that is, t ≤ 0, which is a contradiction. Therefore, Yl ≤ Y0 ≤ Yr.
Since x̄X ≥ 0, we have x̄(Xr, Y0) ≤ x̄(X0, Y0). We claim that x̄(Xr, Y0) < x̄(X0, Y0).
Assume the opposite, that is, x̄(Xr, Y0) = x̄(X0, Y0). Then, since x̄ is nondecreasing
in the X variable, we have x̄X(X, Y0) = 0 for all X ∈ [Xr, X0]. By (4.12a), we
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get t̄X(X, Y0) = 0 for all X ∈ [Xr, X0], so that t̄(Xr, Y0) = t̄(X0, Y0) = t. This
contradicts (6.31) and we must have x̄(Xr, Y0) < x̄(X0, Y0). We obtain

x = x̄(X0, Y0)

> x̄(Xr, Y0)

= xr −
∫ Yr

Y0

x̄Y (Xr, Y ) dY

= xr +

∫ Yr

Y0

c(Ū(Xr, Y ))t̄Y (Xr, Y ) dY by (4.12a)

≥ xr + κ

∫ Yr

Y0

t̄Y (Xr, Y ) dY since
1

κ
≤ c ≤ κ and t̄Y ≤ 0

= xr − κt̄(Xr, Y0) since t̄(Xr, Yr) = t̄(X̄ (sr), Ȳ(sr)) = 0

≥ xr − κt̄(X0, Y0) because t̄X ≥ 0

= x,

which is a contradiction. The situation X0 ≤ Xr and Y0 < Yl can be treated
similarly. Hence, (6.31) cannot hold and we have proved (6.28).

Step 5. We have

ū(t,x) = Ū(X0, Y0) by (6.28) and (5.30)

= Ũ(X0, Y0) by (6.25)

= U(f(X0), g(Y0))

= u(t(f(X0), g(Y0)), x(f(X0), g(Y0))) by (5.30)

= u(t̃(X0, Y0), x̃(X0, Y0))

= u(t̄(X0, Y0), x̄(X0, Y0)) by (6.25)

= u(t,x) by (6.28).

This concludes the proof. �

7. Regularity of Solutions

The theorems we prove in Section 7.1 and 7.2 are local results. The main reason
for this is that we require the initial data ρ0 and σ0 corresponding to the equations
(1.3b) and (1.3c) to be bounded from below by a strictly positive constant and to
belong to L2, which is not possible globally.

7.1. Existence of Smooth Solutions.

Theorem 7.1. Let −∞ < xl < xr <∞ and consider (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D.
Let m ∈ N and assume that,

(A1) u0 ∈ L∞([xl, xr]),
(A2) R0, S0, ρ0, σ0 ∈ Wm−1,∞([xl, xr]),
(A3) there are constants d > 0 and e > 0 such that ρ0(x) ≥ d and σ0(x) ≥ e for

all x ∈ [xl, xr],
(A4) µ0 and ν0 are absolutely continuous on [xl, xr],
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(A5) c ∈ Cm−1(R) and max
u∈R

∣∣∣∣ didui c(u)

∣∣∣∣ ≤ ki for constants ki, i = 3, 4, 5, . . . ,m− 1.

For any τ ∈
[
0, 1

2κ
(xr − xl)

]
consider

(u,R, S, ρ, σ, µ, ν)(τ) = S̄τ (u0, R0, S0, ρ0, σ0, µ0, ν0).

Then

(P1) u(τ, ·) ∈ Wm,∞([xl + κτ, xr − κτ ]),
(P2) R(τ, ·), S(τ, ·), ρ(τ, ·), σ(τ, ·) ∈ Wm−1,∞([xl + κτ, xr − κτ ]),
(P3) there are constants d̄ > 0 and ē > 0 such that ρ(τ, x) ≥ d̄ and σ(τ, x) ≥ ē

for all x ∈ [xl + κτ, xr − κτ ],
(P4) µ(τ, ·) and ν(τ, ·) are absolutely continuous on [xl + κτ, xr − κτ ].

For τ ∈
[
− 1

2κ
(xr − xl), 0

]
, the solution satisfies the same properties on the interval[

xl − κτ, xr + κτ
]
.

Note that since (u0)x = 1
2c(u0)

(R0 − S0), it follows from assumptions (A1), (A2)

and (A5) that u0 ∈ Wm,∞([xl, xr]).
Specifically, (A4) means that µ0((−∞, xl)) = µ0((−∞, xl]) and ν0((−∞, xl)) =

ν0((−∞, xl]).
By (1.5) and (1.6), (A5) holds for i = 0, 1, 2.

Proof. In the following, we will consider the case 0 < τ ≤ 1
2κ

(xr − xl). The case

− 1
2κ

(xr − xl) ≤ τ < 0 can be treated in the same way.
We decompose the proof into three steps.
Step 1. We first consider the case m = 1.
(i) Consider (ψ1, ψ2) = L(u0, R0, S0, ρ0, σ0, µ0, ν0). Since µ0 is absolutely contin-

uous on [xl, xr] we have from (3.12a),

x1(X) + µ0((−∞, x1(X))) = X

for all x1(X) ∈ [xl, xr]. For Xl and Xr satisfying x1(Xl) = xl and x1(Xr) = xr we
have

Xl = xl + µ0((−∞, xl)) and Xr = xr + µ0((−∞, xr)).
Therefore, since x1 is nondecreasing, we get

(7.1) x1(X) + µ0((−∞, x1(X))) = X

for all X ∈ [Xl, Xr]. Similarly we find by using (3.12b),

x2(Y ) + ν0((−∞, x2(Y ))) = Y

for all Y ∈ [Yl, Yr], where x2(Yl) = xl, x2(Yr) = xr and

Yl = xl + ν0((−∞, xl)) and Yr = xr + ν0((−∞, xr)).
We define Ω = [Xl, Xr] × [Yl, Yr]. From now on we only consider (X, Y ) ∈ Ω.
Rewriting (7.1) yields

x1(X) + µ0((−∞, xl)) + (µ0)ac((xl, x1(X))) = X.

Hence,

x1(X) + µ0((−∞, xl)) +
1

4

∫ x1(X)

xl

(R2
0 + c(u0)ρ2

0)(x) dx = X.
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We differentiate and obtain

x′1(X) +
1

4
x′1(X)(R2

0 + c(u0)ρ2
0) ◦ x1(X) = 1,

which implies that

(7.2) x′1(X) =
4

(R2
0 + c(u0)ρ2

0) ◦ x1(X) + 4
.

Since R0, ρ0 ∈ L∞([xl, xr]), we get the lower bound

(7.3) x′1(X) ≥ 4

||R0||2L∞([xl,xr])
+ κ||ρ0||2L∞([xl,xr])

+ 4
=: d1 > 0,

and since ρ0(x) ≥ d, we find the upper bound

(7.4) x′1(X) ≤ 4κ

d2 + 4κ
.

Similarly, we find

x′2(Y ) =
4

(S2
0 + c(u0)σ2

0) ◦ x2(Y ) + 4
,

(7.5) x′2(Y ) ≥ 4

||S0||2L∞([xl,xr])
+ κ||σ0||2L∞([xl,xr])

+ 4
=: e1 > 0

and

(7.6) x′2(Y ) ≤ 4κ

e2 + 4κ
.

(ii) Let Θ = (X ,Y ,Z,V ,W , p, q) = C(ψ1, ψ2). By (3.28) we have x1(X (s)) =
x2(Y(s)), which after differentiating and using X (s) + Y(s) = 2s, yields

(7.7) Ẋ (s) =
2x′2(Y(s))

x′1(X (s)) + x′2(Y(s))
and Ẏ(s) =

2x′1(X (s))

x′1(X (s)) + x′2(Y(s))
.

This implies, by (7.3)-(7.6), that

(7.8) Ẋ (s) ≥ 2e1

(
4κ

d2 + 4κ
+

4κ

e2 + 4κ

)−1

and Ẏ(s) ≥ 2d1

(
4κ

d2 + 4κ
+

4κ

e2 + 4κ

)−1

for all s such that (X (s),Y(s)) ∈ Ω, that is, for values of s which satisfy Xl ≤ X (s) ≤
Xr and Yl ≤ Y(s) ≤ Yr. Using this together with the identity X (s) +Y(s) = 2s, we
find that (7.8) is valid for all s ∈ [sl, sr], where sl = 1

2
(Xl +Yl) and sr = 1

2
(Xr +Yr).

Hence, X (s) and Y(s) are strictly increasing functions on [sl, sr].
(iii) Consider (Z, p, q) = S(Θ). By an argument as in the proof of Lemma 4.9,

we obtain the inequality

(xX + JX)(X, Y ) ≤ (V2 + V4)(X)eC|Y−Y(X)|

for all (X, Y ) ∈ Ω, where C depends on |||Θ|||G(Ω). We have V2 +V4 = 1
2
x′1 + J ′1 and

since J ′1 = 1− x′1, x′1 ≥ 0 and J ′1 ≥ 0, this implies that 1
2
≤ V2 + V4 ≤ 1. Thus, we

get

(7.9) (xX + JX)(X, Y ) ≤ eC|Y−Y(X)|.
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By (3.31f), (3.12g), (A3) and (7.3) we obtain

(7.10) p(X,Y(X)) = p(X) = H1(X) =
1

2
ρ0(x1(X))x′1(X) ≥ 1

2
dd1 =: d2.

Similarly we obtain

q(X (Y ), Y ) = q(Y ) = H2(Y ) =
1

2
σ0(x2(Y ))x′2(Y ) ≥ 1

2
ee1 =: e2.

Then, since pY = 0, we get

d2
2 ≤ p2(X,Y(X))

= p2(X, Y )

≤
(

1

c(U)
((c(U)UX)2 + c(U)p2)

)
(X, Y )

≤ κ((c(U)UX)2 + c(U)p2)(X, Y )

= 2κ(JXxX)(X, Y )

≤ 2κ(JX + xX)xX(X, Y )

≤ 2κeC|Y−Y(X)|xX(X, Y ),

where we used (4.12c) and (7.9). Hence,

(7.11) xX(X, Y ) ≥ d2
2

2κ
e−C|Y−Y(X)|.

Using that qX = 0, we find in the same way that

(7.12) xY (X, Y ) ≥ e2
2

2κ
e−C̃|X−X (Y )|,

where C̃ depends on |||Θ|||G(Ω). From (4.12a), we then get

(7.13) tX(X, Y ) ≥ d2
2

2κ2
e−C|Y−Y(X)| and tY (X, Y ) ≤ − e2

2

2κ2
e−C̃|X−X (Y )|.

(iv) For any 0 < τ ≤ 1
2κ

(xr − xl) consider Θ(τ) = E ◦ tτ (Z, p, q).
We claim that (X (τ, s),Y(τ, s)) lies below the curve7 (X (s),Y(s)). For any s̄ and

s such that X (τ, s̄) = X (s) we have

t(X (s),Y(s)) = 0 < τ = t(X (τ, s̄),Y(τ, s̄)),

so that by (4.12a) and (4.12d),

(7.14) Y(τ, s̄) < Y(s),

which proves the claim.
We prove that there exist s̄min and s̄max satisfying sl < s̄min ≤ s̄max < sr such that

(X (τ, s),Y(τ, s)) belongs to Ω for all s ∈ [s̄min, s̄max]. First we need an estimate.
Since c(u) ≤ κ, tX(X, Y ) > 0, and tY (X, Y ) < 0 we have

1

2κ
(xr − xl) =

1

2κ
(x(Xr, Yr)− x(Xl, Yl))(7.15)

=
1

2κ
(x(Xr, Yr)− x(Xr, Yl) + x(Xr, Yl)− x(Xl, Yl))

7Note that this is also true outside of Ω.
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=
1

2κ

(∫ Yr

Yl

xY (Xr, Y ) dY +

∫ Xr

Xl

xX(X, Yl) dX

)
=

1

2κ

(
−
∫ Yr

Yl

c(U(Xr, Y ))tY (Xr, Y ) dY

+

∫ Xr

Xl

c(U(X, Yl))tX(X, Yl) dX

)
by (4.12a)

≤ 1

2

(
−
∫ Yr

Yl

tY (Xr, Y ) dY +

∫ Xr

Xl

tX(X, Yl) dX

)
= t(Xr, Yl).

Consider s̄max such that X (τ, s̄max) = Xr. Note that since X (τ, s̄max) = X (sr) we
get from (7.14), Y(τ, s̄max) < Y(sr) = Yr. From (7.15) we get

t(Xr,Y(τ, s̄max)) = τ ≤ 1

2κ
(xr − xl) ≤ t(Xr, Yl),

so that Y(τ, s̄max) ≥ Yl. In particular, we have

(7.16) Yl ≤ Y(τ, s̄max) < Yr

and therefore, since X (τ, ·) and Y(τ, ·) are nondecreasing and continuous, there
exists s̄min such that s̄min ≤ s̄max, Y(τ, s̄min) = Yl and X (τ, s̄min) ≤ Xr. Since

t(Xl, Yl) = 0 < τ = t(X (τ, s̄min), Yl)

we find that X (τ, s̄min) > Xl and we have

(7.17) Xl < X (τ, s̄min) ≤ Xr.

For any s ∈ [s̄min, s̄max] we get from (7.16) and (7.17), since X (τ, ·) and Y(τ, ·) are
nondecreasing, that

Xl < X (τ, s̄min) ≤ X (τ, s) ≤ X (τ, s̄max) = Xr

and
Yl = Y(τ, s̄min) ≤ Y(τ, s) ≤ Y(τ, s̄max) < Yr.

In other words, the curve (X (τ, s),Y(τ, s)) lies in Ω for all s ∈ [s̄min, s̄max], and hence
all the estimates obtained in (iii) are valid along this curve. Observe that

sl =
1

2
(Xl + Yl) <

1

2

(
X (τ, s̄min) + Y(τ, s̄min)

)
= s̄min

and

sr =
1

2
(Xr + Yr) >

1

2

(
X (τ, s̄max) + Y(τ, s̄max)

)
= s̄max,

which implies sl < s̄min ≤ s̄max < sr.
By differentiating t(X (τ, s),Y(τ, s)) = τ and using that Ẋ (τ, s) + Ẏ(τ, s) = 2, we

obtain

(7.18) Ẋ (τ, s) =
−2tY (X (τ, s),Y(τ, s))

tX(X (τ, s),Y(τ, s))− tY (X (τ, s),Y(τ, s))
.

By (4.5), we have

|tX(X, Y )| ≤ ||Za
X ||W 1,∞

Y (Ω) +
κ

2
, |tY (X, Y )| ≤ ||Za

Y ||W 1,∞
X (Ω) +

κ

2
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x1(t) x2(t) x3(t)x4(t)
x5(t)

x6(t)

xl + ⌧1 xr � ⌧1 xrxl

x

⌧1

⌧2

t

Figure 5. The region bounded by the characteristics x2(t) (forward)
and x5(t) (backward) starting from xl and xr, respectively, at t = 0.
Here, 0 < τ1 < τ2 = 1

2κ
(xr−xl). The remaining functions are given by

x1(t) = xl+
t
κ
, x3(t) = xl+κt, x4(t) = xr−κt and x6(t) = xr− t

κ
. We

have x3(τ1) = xl+κτ1 = x(X (τ1, s̄1),Y(τ1, s̄1)) and x4(τ1) = xr−κτ1 =
x(X (τ1, s̄2),Y(τ1, s̄2)).

(X (⌧2, s), Y(⌧2, s))

(X (⌧1, s), Y(⌧1, s))

(X (s), Y(s))

s̄1 = s̄2

s̄min s̄min

s̄max

s̄max

s̄1

s̄2

X
Xl Xr

Yr

Yl

Y

Figure 6. The region from Figure 5 in Lagrangian coordinates. The
curves (X (s),Y(s)), (X (τ1, s),Y(τ1, s)) and (X (τ2, s),Y(τ2, s)) corre-
spond to t = 0, t = τ1 and t = τ2, respectively.

for all (X, Y ) ∈ Ω. Using this and (7.13) in (7.18), we find

(7.19) Ẋ (τ, s) ≥ e2
2κ
−2e−C̃|X−X (Y )|

||Za
X ||W 1,∞

Y (Ω) + ||Za
Y ||W 1,∞

X (Ω) + κ
=: α1e

−C̃|X−X (Y )|
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for all s ∈ [s̄min, s̄max]. Similarly, one proves that

(7.20) Ẏ(τ, s) ≥ α2e
−C|Y−Y(X)|

for some positive constant α2 that depends on d2, κ, ||Za
X ||W 1,∞

Y (Ω) and ||Za
Y ||W 1,∞

X (Ω).

Next, we prove that there exist s̄1 and s̄2 satisfying s̄min ≤ s̄1 ≤ s̄2 ≤ s̄max such
that

(7.21) x(X (τ, s̄1),Y(τ, s̄1)) = xl + κτ and x(X (τ, s̄2),Y(τ, s̄2)) = xr − κτ.
Observe that since x is increasing with respect to both variables this will imply

xl + κτ ≤ x(X (τ, s),Y(τ, s)) ≤ xr − κτ
for all s ∈ [s̄1, s̄2]. Furthermore, since s̄min ≤ s̄1 ≤ s̄2 ≤ s̄max and X (τ, ·) and Y(τ, ·)
are increasing functions, (X (τ, s),Y(τ, s)) belongs to Ω for all s ∈ [s̄1, s̄2], see Figure
5 and 6.

By (4.12a) and (1.5), we have

x(X (τ, s̄min), Yl) = x(Xl, Yl) +

∫ X (τ,s̄min)

Xl

xX(X, Yl) dX

= x(Xl, Yl) +

∫ X (τ,s̄min)

Xl

c(U(X, Yl))tX(X, Yl) dX

≤ x(Xl, Yl) + κ

∫ X (τ,s̄min)

Xl

tX(X, Yl) dX

= x(Xl, Yl) + κ(t(X (τ, s̄min), Yl)− t(Xl, Yl))

= xl + κτ.

Similarly, by using the lower bound on c, we get

x(X (τ, s̄min), Yl) ≥ xl +
1

κ
τ.

From (4.12a) and (1.5), we have

xr = x(Xr, Yr) = x(Xr,Y(τ, s̄max)) +

∫ Yr

Y(τ,s̄max)

xY (Xr, Y ) dY

= x(Xr,Y(τ, s̄max))−
∫ Yr

Y(τ,s̄max)

c(U(Xr, Y ))tY (Xr, Y ) dY

≤ x(Xr,Y(τ, s̄max))− κ
∫ Yr

Y(τ,s̄max)

tY (Xr, Y ) dY since tY < 0

= x(Xr,Y(τ, s̄max)) + κτ,

so that
x(Xr,Y(τ, s̄max)) ≥ xr − κτ.

Similarly, we obtain

x(Xr,Y(τ, s̄max)) ≤ xr −
1

κ
τ.

Hence, we end up with

(7.22) xl +
1

κ
τ ≤ x(X (τ, s̄min), Yl) ≤ xl + κτ
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and

(7.23) xr − κτ ≤ x(Xr,Y(τ, s̄max)) ≤ xr −
1

κ
τ.

Since 0 < τ ≤ 1
2κ

(xr−xl) we have xl+κτ = xl+2κτ−κτ ≤ xl+xr−xl−κτ = xr−κτ ,
which implies, since x is continuous with respect to both variables, that there exist
s̄1 and s̄2 such that s̄1 ≤ s̄2 and

(7.24) x(X (τ, s̄1),Y(τ, s̄1)) = xl + κτ and x(X (τ, s̄2),Y(τ, s̄2)) = xr − κτ.
From (7.22), (7.24), and the fact that x increases along the curve (X (τ, s),Y(τ, s)),
we have

x(X (τ, s̄min), Yl) ≤ xl + κτ = x(X (τ, s̄1),Y(τ, s̄1)),

so that X (τ, s̄min) ≤ X (τ, s̄1) which implies s̄min ≤ s̄1. By (7.23) and (7.24) we have

x(X (τ, s̄2),Y(τ, s̄2)) = xr − κτ ≤ x(Xr,Y(τ, s̄max)),

and we get Y(τ, s̄2) ≤ Y(τ, s̄max) and s̄2 ≤ s̄max. This concludes the proof of (7.21).
We prove (P1). From (5.21a) we have

u(τ, x) = Z3(τ, s) if x = Z2(τ, s).

Since the function Z2(τ, s) is nondecreasing, the smallest and biggest value it can
attain for s ∈ [s̄1, s̄2] is

Z2(τ, s̄1) = x(X (τ, s̄1),Y(τ, s̄1)) = xl + κτ

and
Z2(τ, s̄2) = x(X (τ, s̄2),Y(τ, s̄2)) = xr − κτ,

respectively. The function Z2(τ, ·) is in fact strictly increasing for s ∈ [s̄1, s̄2], as we
now show. We differentiate the relation Z2(τ, s) = x(X (τ, s),Y(τ, s)) and get

Ż2(τ, s) = xX(X (τ, s),Y(τ, s))Ẋ (τ, s) + xY (X (τ, s),Y(τ, s))Ẏ(τ, s).

From (7.11), (7.12), (7.19) and (7.20) we have

(7.25) Ż2(τ, s) ≥ 1

2κ

(
α1d

2
2 + α2e

2
2

)
e−C|Y−Y(X)|−C̃|X−X (Y )| > 0.

Hence, s 7→ Z2(τ, s) is strictly increasing for s ∈ [s̄1, s̄2] and therefore invertible on
[s̄1, s̄2]. For any x ∈ [xl + κτ, xr − κτ ] we get

(7.26) u(τ, x) = Z3(τ,Z−1
2 (τ, x)),

and since |Z3(τ,Z−1
2 (τ, x))| = |U(X (τ,Z−1

2 (τ, x)),Y(τ,Z−1
2 (τ, x)))| ≤ ||U ||L∞(Ω) we

have

(7.27) u(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).

Next, we differentiate (7.26) and get

(7.28) ux(τ, x) = Ż3(τ,Z−1
2 (τ, x))

d

dx
Z−1

2 (τ, x) =
Ż3(τ,Z−1

2 (τ, x))

Ż2(τ,Z−1
2 (τ, x))

.

We have

|Ż3(τ, s)| = |V3(τ,X (τ, s))Ẋ (τ, s) +W3(τ,Y(τ, s))Ẏ(τ, s)|
= |UX(X (τ, s),Y(τ, s))Ẋ (τ, s) + UY (X (τ, s),Y(τ, s))Ẏ(τ, s)|
≤ 2||UX ||W 1,∞

Y (Ω) + 2||UY ||W 1,∞
X (Ω),
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so that Ż3(τ, ·) ∈ L∞([s̄1, s̄2]). By (7.25) we end up with

|ux(τ, x)| ≤ 2κ||Ż3(τ, ·)||L∞([s̄1,s̄2])

α1d2
2 + α2e2

2

eC|Y−Y(X)|+C̃|X−X (Y )|,

which implies that

(7.29) ux(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).

From (7.27) and (7.29) we conclude that (P1) holds.
We prove (P2). From (5.22a) and (5.22b), we have

R(τ,Z2(τ, s))V2(τ,X (τ, s)) = c(Z3(τ, s))V3(τ,X (τ, s))

and
ρ(τ,Z2(τ, s))V2(τ,X (τ, s)) = p(τ,X (τ, s))

for all s ∈ [s̄1, s̄2]. We multiply these equations with 2Ẋ (τ, s) and use (3.27) to get

R(τ,Z2(τ, s))Ż2(τ, s) = 2c(Z3(τ, s))V3(τ,X (τ, s))Ẋ (τ, s)

and
ρ(τ,Z2(τ, s))Ż2(τ, s) = 2p(τ,X (τ, s))Ẋ (τ, s),

which yields

(7.30) R(τ, x) =
2c(Z3(τ,Z−1

2 (τ, x)))V3(τ,X (τ,Z−1
2 (τ, x)))Ẋ (τ,Z−1

2 (τ, x))

Ż2(τ,Z−1
2 (τ, x))

and

(7.31) ρ(τ, x) =
2p(τ,X (τ,Z−1

2 (τ, x)))Ẋ (τ,Z−1
2 (τ, x))

Ż2(τ,Z−1
2 (τ, x))

for all x ∈ [xl + κτ, xr − κτ ]. Since V3(τ,X (τ, s)) = UX(X (τ, s),Y(τ, s)) and
|V3(τ,X (τ, s))| ≤ ||UX ||W 1,∞

Y (Ω) we have V3(τ,X (τ, ·)) ∈ L∞([s̄1, s̄2]), and since

p(τ,X (τ, s)) = p(X (τ, s),Y(τ, s)) and |p(τ,X (τ, s))| ≤ ||p||W 1,∞
Y (Ω) we have p(τ,X (τ, ·)) ∈

L∞([s̄1, s̄2]). Using (7.25) in (7.30) and (7.31) we obtain

|R(τ, x)| ≤ 8κ2||V3(τ,X (τ, ·))||L∞([s̄1,s̄2])

α1d2
2 + α2e2

2

eC|Y−Y(X)|+C̃|X−X (Y )|

and

|ρ(τ, x)| ≤ 8κ||p(τ,X (τ, ·))||L∞([s̄1,s̄2])

α1d2
2 + α2e2

2

eC|Y−Y(X)|+C̃|X−X (Y )|

for all x ∈ [xl + κτ, xr − κτ ]. Therefore R(τ, ·), ρ(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]). In
a similar way one shows that S(τ, ·), σ(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]) and we have
proved (P2).

We prove (P3). By inserting

Ż2(τ,Z−1
2 (τ, x)) = 2xX(X (τ,Z−1

2 (τ, x)),Y(τ,Z−1
2 (τ, x)))Ẋ (τ,Z−1

2 (τ, x))

into (7.31) we get

ρ(τ, x) =
p(τ,X (τ,Z−1

2 (τ, x)))

xX(X (τ,Z−1
2 (τ, x)),Y(τ,Z−1

2 (τ, x)))

for all s ∈ [s̄1, s̄2]. Since pY = 0 we get from (7.10),

p(τ,X) = p(X,Y(τ,X−1(τ,X))) = p(X,Y(X)) ≥ d2
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for all X ∈ [Xl, Xr]. Recalling (7.9) and that JX(X, Y ) ≥ 0 we get

ρ(τ, x) ≥ d2e
−C|Yl−Yr|

for all x ∈ [xl + κτ, xr − κτ ]. Similarly we find

σ(τ, x) ≥ e2e
−C̃|Xl−Xr|

for all x ∈ [xl + κτ, xr − κτ ]. This concludes the proof of (P3).
We prove (P4). Let M ⊂ [xl + κτ, xr − κτ ] be a Borel set. By (5.28), we have

µsing(τ,M) =

∫
Z−1

2 (τ,M)∩Ac
V4(τ,X (τ, s))Ẋ (τ, s) ds,

where A = {s ∈ R | V2(τ,X (τ, s)) > 0}. We have meas(Ac) = 0, which implies that

µsing(τ,M) ≤ 2|||Θ(τ)|||G(Ω) meas(Ac) = 0.

This proves that µ(τ) is absolutely continuous on [xl + κτ, xr − κτ ]. Similarly, one
shows that ν(τ) is absolutely continuous on [xl + κτ, xr − κτ ].

Step 2. Assume that m = 2. By Step 1, (P3) and (P4) hold. Moreover, (P1) and
(P2) hold form = 1. It remains to prove that uxx(τ, ·), Rx(τ, ·), Sx(τ, ·), ρx(τ, ·), σx(τ, ·) ∈
L∞([xl + κτ, xr − κτ ]). In order to do so, we have to show that
ZXX = (tXX , xXX , UXX , JXX , KXX) and ZY Y = (tY Y , xY Y , UY Y , JY Y , KY Y ) exist
and are bounded. We first consider ZXX . There exists a unique solution ZXX in Ω
of the system

ZXXY (X, Y ) = f(X, Y, ZXX)

since f is Lipschitz continuous with respect to the ZXX variable, which comes from
the fact that the system is semilinear. This can be seen by differentiating the
governing equations (2.38). For instance, we have

xXXY =
c′(U)

2c(U)
(xXUXY − UXxXY ) +

c′′(U)

2c(U)
UX(UXxY + UY xX)(7.32)

+
c′(U)

2c(U)
(xYUXX + UY xXX)

and

(7.33) |xXX(X, Y )| ≤ |xXX(X,Y(X))|+
∫ Y(X)

Y

|xXXY (X, Ỹ )| dỸ ,

if we assume without loss of generality that Y ≤ Y(X) (the other case is similar.)
Let us find a bound on xXX at time τ = 0. We differentiate (7.2) and get

x′′1(X) = −1

4
x′1(X)3(2R0R0x + c′(u0)u0xρ

2
0 + 2c(u0)ρ0ρ0x) ◦ x1(X),

which, by (7.4), implies that

|x′′1(X)| ≤ 1

4

(
4κ

d2 + 4κ

)3

(2||R0||L∞([xl,xr])||(R0)x||L∞([xl,xr])(7.34)

+ k1||(u0)x||L∞([xl,xr])||ρ0||2L∞([xl,xr])

+ 2κ||ρ0||L∞([xl,xr])||(ρ0)x||L∞([xl,xr]))

and we conclude that x′′1 ∈ L∞([Xl, Xr]).
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By Definition 3.4 and Definition 3.7, we have

xX(X,Y(X)) = V2(X) =
1

2
x′1(X).

We differentiate and get

xXX(X,Y(X)) + xXY (X,Y(X))

( Ẏ
Ẋ

)
◦ X−1(X) =

1

2
x′′1(X),

so that by (7.19),

|xXX(X,Y(X))| ≤ 1

2
|x′′1(X)|+ |xXY (X,Y(X))|

( Ẏ
Ẋ

)
◦ X−1(X)

≤ 1

2
||x′′1||L∞([Xl,Xr]) +

k1κ

α1e−C̃|X−X (Y )|

(
|||Θ|||2G(Ω) +

1

2
|||Θ|||G(Ω)

)
and xXX(·,Y(·)) ∈ L∞([Xl, Xr]). Here we used the estimate

|xXY (X (s),Y(s))|

=

∣∣∣∣ c′(Z3(s))

2c(Z3(s))
(V3(X (s))W2(Y(s)) +W3(Y(s))V2(X (s)))

∣∣∣∣ by (2.38)

≤ 1

2
k1κ

(
||Va3 ||L∞([Xl,Xr])

(
||Wa

2 ||L∞([Yl,Yr]) +
1

2

)
+ ||Wa

3 ||L∞([Yl,Yr])

(
||Va2 ||L∞([Xl,Xr]) +

1

2

))
≤ 1

2
k1κ

(
|||Θ|||2G(Ω) +

1

2
|||Θ|||G(Ω)

)
.

We estimate xXXY . Since |Za
X | ≤ ||Za

X ||W 1,∞
Y (Ω) and |Za

Y | ≤ ||Za
Y ||W 1,∞

X (Ω), we get

from (2.38) that

(7.35) |ZXY | ≤ η,

where η depends on ||Za
X ||W 1,∞

Y (Ω), ||Za
Y ||W 1,∞

X (Ω), κ and k1. We obtain from (7.32),

|xXXY | ≤
1

2
k1κ

[(
||Za

X ||W 1,∞
Y (Ω) +

1

2

)
η + ||Za

X ||W 1,∞
Y (Ω)η

]
(7.36)

+
1

2
k2κ||Za

X ||W 1,∞
Y (Ω)

[
||Za

X ||W 1,∞
Y (Ω)

(
||Za

Y ||W 1,∞
X (Ω) +

1

2

)
+ ||Za

Y ||W 1,∞
X (Ω)

(
||Za

X ||W 1,∞
Y (Ω) +

1

2

)]
+

1

2
k1κ

[(
||Za

Y ||W 1,∞
X (Ω) +

1

2

)
|UXX |+ ||Za

Y ||W 1,∞
X (Ω)|xXX |

]
≤ k1κ

(
||Za

X ||W 1,∞
Y (Ω) +

1

2

)
η

+ k2κ||Za
X ||W 1,∞

Y (Ω)

(
||Za

X ||W 1,∞
Y (Ω) +

1

2

)(
||Za

Y ||W 1,∞
X (Ω) +

1

2

)
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+
1

2
k1κ

(
||Za

Y ||W 1,∞
X (Ω) +

1

2

)
(|UXX |+ |xXX |).

We insert (7.36) into (7.33) and get

|xXX(X, Y )|

≤ ||xXX(·,Y(·))||L∞([Xl,Xr]) +

[
k1κ

(
||Za

X ||W 1,∞
Y (Ω) +

1

2

)
η

+ k2κ||Za
X ||W 1,∞

Y (Ω)

(
||Za

X ||W 1,∞
Y (Ω) +

1

2

)(
||Za

Y ||W 1,∞
X (Ω) +

1

2

)]
|Yr − Yl|

+

∫ Y(X)

Y

1

2
k1κ

(
||Za

Y ||W 1,∞
X (Ω) +

1

2

)
(|UXX |+ |xXX |)(X, Ỹ ) dỸ .

Following the same lines for the other components of ZXX , we obtain

(|tXX |+ |xXX |+ |UXX |+ |JXX |+ |KXX |)(X, Y )

≤ ||ZXX(·,Y(·))||L∞([Xl,Xr]) + C1|Yr − Yl|

+

∫ Y(X)

Y

C2(|tXX |+ |xXX |+ |UXX |+ |JXX |+ |KXX |)(X, Ỹ ) dỸ ,

where C1 and C2 depend on ||Za
X ||W 1,∞

Y (Ω), ||Za
Y ||W 1,∞

X (Ω), κ, k1 and k2. By Gronwall’s

lemma, we obtain

(|tXX |+ |xXX |+ |UXX |+ |JXX |+ |KXX |)(X, Y )(7.37)

≤ (||ZXX(·,Y(·))||L∞([Xl,Xr]) + C1|Yr − Yl|)eC2|Y−Y(X)|.

A similar procedure yields

(|tY Y |+ |xY Y |+ |UY Y |+ |JY Y |+ |KY Y |)(X, Y )(7.38)

≤ (||ZY Y (X (·), ·)||L∞([Yl,Yr]) + C̃1|Xr −Xl|)eC̃2|X−X (Y )|,

where C̃1 and C̃2 depend on ||Za
X ||W 1,∞

Y (Ω), ||Za
Y ||W 1,∞

X (Ω), κ, k1 and k2.

We also need estimates for Ẍ (τ, s) and Ÿ(τ, s). By (3.26), we have

xX(X (τ, s),Y(τ, s))Ẋ (τ, s) = xY (X (τ, s),Y(τ, s))Ẏ(τ, s).

We differentiate and get

xXX(X (τ, s),Y(τ, s))Ẋ (τ, s)2 + xX(X (τ, s),Y(τ, s))Ẍ (τ, s)(7.39)

= xY Y (X (τ, s),Y(τ, s))Ẏ(τ, s)2 + xY (X (τ, s),Y(τ, s))Ÿ(τ, s).

Since X (τ, s) + Y(τ, s) = 2s, we have Ÿ(τ, s) = −Ẍ (τ, s), so that

Ẍ (τ, s) =
xY Y (X (τ, s),Y(τ, s))Ẏ(τ, s)2 − xXX(X (τ, s),Y(τ, s))Ẋ (τ, s)2

xX(X (τ, s),Y(τ, s)) + xY (X (τ, s),Y(τ, s))
.

By (7.11), (7.12), (7.37) and (7.38), we find

|Ẍ (τ, s)| ≤ 4

( |xXX(X (τ, s),Y(τ, s))|+ |xY Y (X (τ, s),Y(τ, s))|
xX(X (τ, s),Y(τ, s)) + xY (X (τ, s),Y(τ, s))

)
(7.40)

≤ 4
d2

2

2κ
e−C|Y−Y(X)| +

e22
2κ
e−C̃|X−X (Y )|
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× ((||ZXX(·,Y(·))||L∞([Xl,Xr]) + C1|Yr − Yl|)eC2|Y−Y(X)|

+ (||ZY Y (X (·), ·)||L∞([Yl,Yr]) + C̃1|Xr −Xl|)eC̃2|X−X (Y )|).

If we define

D =
(
4 max{||ZXX(·,Y(·))||L∞([Xl,Xr]) + C1|Yr − Yl|,

||ZY Y (X (·), ·)||L∞([Yl,Yr]) + C̃1|Xr −Xl|}
)(

min
{ d2

2

2κ
,
e2

2

2κ

})−1

and
C̄ = max{C, C̃, C2, C̃2},

we get from (7.40),

|Ẍ (τ, s)| ≤ D

(
eC̄|X−X (Y )| + eC̄|Y−Y(X)|

e−C̄|X−X (Y )| + e−C̄|Y−Y(X)|

)
(7.41)

= DeC̄(|X−X (Y )|+|Y−Y(X)|).

We conclude that Ẍ (τ, ·) ∈ L∞([s̄1, s̄2]). Here we used that

ea + eb

e−a + e−b
= ea+b

for a, b ∈ R. We differentiate Z2(τ, s) = x(X (τ, s),Y(τ, s)) twice and get, by (7.39),
that

Z̈2(τ, s) = xXX(X (τ, s),Y(τ, s))Ẋ (τ, s)2 + xX(X (τ, s),Y(τ, s))Ẍ (τ, s)

+ 2xXY (X (τ, s),Y(τ, s))Ẋ (τ, s)Ẏ(τ, s)

+ xY Y (X (τ, s),Y(τ, s))Ẏ(τ, s)2 + xY (X (τ, s),Y(τ, s))Ÿ(τ, s)

= 2xXX(X (τ, s),Y(τ, s))Ẋ (τ, s)2 + 2xX(X (τ, s),Y(τ, s))Ẍ (τ, s)

+ 2xXY (X (τ, s),Y(τ, s))Ẋ (τ, s)Ẏ(τ, s).

Using the estimates (7.35), (7.37), and (7.41), we get

|Z̈2(τ, s)| ≤ 8(||ZXX(·,Y(·))||L∞([Xl,Xr]) + C1|Yr − Yl|)eC2|Y−Y(X)|

+ 2

(
||Za

X ||W 1,∞
Y (Ω) +

1

2

)
DeC̄(|X−X (Y )|+|Y−Y(X)|) + 8η

and Z̈2(τ, ·) ∈ L∞([s̄1, s̄2]).
We have

Z̈3(τ, s) = UXX(X (τ, s),Y(τ, s))Ẋ (τ, s)2 + UX(X (τ, s),Y(τ, s))Ẍ (τ, s)

+ 2UXY (X (τ, s),Y(τ, s))Ẋ (τ, s)Ẏ(τ, s)

+ UY Y (X (τ, s),Y(τ, s))Ẏ(τ, s)2 + UY (X (τ, s),Y(τ, s))Ÿ(τ, s),

which implies, by (7.35), (7.38) and (7.41), that

|Z̈3(τ, s)| ≤ 4(||ZXX(·,Y(·))||L∞([Xl,Xr]) + C1|Yr − Yl|)eC2|Y−Y(X)|

+ ||Za
X ||W 1,∞

Y (Ω)De
C̄(|X−X (Y )|+|Y−Y(X)|) + 8η

+ 4(||ZY Y (X (·), ·)||L∞([Yl,Yr]) + C̃1|Xr −Xl|)eC̃2|X−X (Y )|
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+ ||Za
Y ||W 1,∞

X (Ω)De
C̄(|X−X (Y )|+|Y−Y(X)|).

Hence, Z̈3(τ, ·) ∈ L∞([s̄1, s̄2]).
We compute uxx from (7.28) and get

uxx(τ, x) =
Z̈3(τ,Z−1

2 (τ, x))

Ż2(τ,Z−1
2 (τ, x))2

− Ż3(τ,Z−1
2 (τ, x))Z̈2(τ,Z−1

2 (τ, x))

Ż2(τ,Z−1
2 (τ, x))3

.

By (7.25) we obtain

|uxx(τ, x)| ≤ ||Z̈3(τ, ·)||L∞([s̄1,s̄2])[
1

2κ

(
α1d2

2 + α2e2
2

)
e−C|Y−Y(X)|−C̃|X−X (Y )|

]2
+
||Ż3(τ, ·)||L∞([s̄1,s̄2])||Z̈2(τ, ·)||L∞([s̄1,s̄2])[
1

2κ

(
α1d2

2 + α2e2
2

)
e−C|Y−Y(X)|−C̃|X−X (Y )|

]3 ,
and we conclude that uxx(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).

By differentiating (7.30) we get

Rx(τ, x)

=
2Ẋ (τ,Z−1

2 (τ, x))[
Ż2(τ,Z−1

2 (τ, x))
]2 [c′(Z3(τ,Z−1

2 (τ, x)))Ż3(τ,Z−1
2 (τ, x))V3(τ,X (τ,Z−1

2 (τ, x)))

+ c(Z3(τ,Z−1
2 (τ, x)))V̇3(τ,X (τ,Z−1

2 (τ, x)))
]

+
2c(Z3(τ,Z−1

2 (τ, x)))V3(τ,X (τ,Z−1
2 (τ, x)))Ẍ (τ,Z−1

2 (τ, x))[
Ż2(τ,Z−1

2 (τ, x))
]2

− 2c(Z3(τ,Z−1
2 (τ, x)))V3(τ,X (τ,Z−1

2 (τ, x)))Ẋ (τ,Z−1
2 (τ, x))Z̈2(τ,Z−1

2 (τ, x))[
Ż2(τ,Z−1

2 (τ, x))
]3 ,

where we denote V̇3(τ,X (τ, s)) = d
ds
V3(τ,X (τ, s)). Since V3(τ,X (τ, s)) =

UX(X (τ, s),Y(τ, s)), we have

V̇3(τ,X (τ, s)) = UXX(X (τ, s),Y(τ, s))Ẋ (τ, s) + UXY (X (τ, s),Y(τ, s))Ẏ(τ, s).

From (7.35) and (7.37) we obtain

|V̇3(τ,X (τ, s))| ≤ 2
[
(||ZXX(·,Y(·))||L∞([Xl,Xr]) + C1|Yr − Yl|)eC2|Y−Y(X)| + η

]
,

where η is a constant that depends on ||Za
X ||W 1,∞

Y (Ω), ||Za
Y ||W 1,∞

X (Ω), κ and k1. There-

fore we have V̇3(τ,X (τ, ·)) ∈ L∞([s̄1, s̄2]). By (7.25) we get

|Rx(τ, x)| ≤ 2[
1

2κ

(
α1d2

2 + α2e2
2

)
e−C|Y−Y(X)|−C̃|X−X (Y )|

]2
×
(

2k1||Ż3(τ, ·)||L∞([s̄1,s̄2])||V3(τ,X (τ, ·))||L∞([s̄1,s̄2])

+ 2κ||V̇3(τ,X (τ, ·))||L∞([s̄1,s̄2])

+ κ||V3(τ,X (τ, ·))||L∞([s̄1,s̄2])||Ẍ (τ, ·)||L∞([s̄1,s̄2])

)
+

4κ||V3(τ,X (τ, ·))||L∞([s̄1,s̄2])||Z̈2(τ, ·)||L∞([s̄1,s̄2])[
1

2κ

(
α1d2

2 + α2e2
2

)
e−C|Y−Y(X)|−C̃|X−X (Y )|

]3 ,
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which implies that Rx(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).
We differentiate (7.31) and get

ρx(τ, x)

=
2
[
ṗ(τ,X (τ,Z−1

2 (τ, x)))Ẋ (τ,Z−1
2 (τ, x))2 + p(τ,X (τ,Z−1

2 (τ, x)))Ẍ (τ,Z−1
2 (τ, x))

][
Ż2(τ,Z−1

2 (τ, x))
]2

− 2p(τ,X (τ,Z−1
2 (τ, x)))Ẋ (τ,Z−1

2 (τ, x))Z̈2(τ,Z−1
2 (τ, x))[

Ż2(τ,Z−1
2 (τ, x))

]3 ,

where we denote ṗ(τ,X (τ, s)) = d
ds
p(τ,X (τ, s)). Since p(τ,X (τ, s)) =

p(X (τ, s),Y(τ, s)) and pY (X, Y ) = 0 we have

ṗ(τ,X (τ, s)) = pX(X (τ, s),Y(τ, s))Ẋ (τ, s).

Furthermore, by (3.31f) and (3.12g), we have

(7.42) p(X,Y(X)) = p(X) = H1(X) =
1

2
ρ0(x1(X))x′1(X).

We differentiate and get, since pY (X, Y ) = 0,

pX(X, Y ) = pX(X,Y(X)) =
1

2
(ρ0)x(x1(X))x′1(X)2 +

1

2
ρ0(x1(X))x′′1(X).

Using (7.4), this leads to the estimate

|pX(X, Y )| ≤ 1

2
||(ρ0)x||L∞([xl,xr])

(
4κ

d2 + 4κ

)2

+
1

2
||ρ0||L∞([xl,xr])||x′′1||L∞([Xl,Xr]),

which implies that

|ṗ(τ,X (τ, s))| ≤ ||(ρ0)x||L∞([xl,xr])

(
4κ

d2 + 4κ

)2

+ ||ρ0||L∞([xl,xr])||x′′1||L∞([Xl,Xr]).

Recalling (7.34), it follows that ṗ(τ,X (τ, ·)) ∈ L∞([s̄1, s̄2]). Using (7.25), we end up
with

|ρx(τ, x)| ≤ 2
(
2||ṗ(τ,X (τ, ·))||L∞([s̄1,s̄2]) + ||p(τ,X (τ, ·))||L∞([s̄1,s̄2])||Ẍ (τ, ·)||L∞([s̄1,s̄2])

)[
1

2κ

(
α1d2

2 + α2e2
2

)
e−C|Y−Y(X)|−C̃|X−X (Y )|

]2
+

4||p(τ,X (τ, ·))||L∞([s̄1,s̄2])||Z̈2(τ, ·)||L∞([s̄1,s̄2])[
1

2κ

(
α1d2

2 + α2e2
2

)
e−C|Y−Y(X)|−C̃|X−X (Y )|

]3
and we conclude that ρx(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).

In a similar way one shows that Sx(τ, ·), σx(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).
Step 3. Assume that the result holds for m = n, that is, if u0 ∈ L∞([xl, xr])

and R0, S0, ρ0, σ0 ∈ W n−1,∞([xl, xr]), then u(τ, ·) ∈ W n,∞([xl +κτ, xr−κτ ]), R(τ, ·),
S(τ, ·), ρ(τ, ·), σ(τ, ·) ∈ W n−1,∞([xl+κτ, xr−κτ ]) and (P3) and (P4) hold. We show
by induction that the result also holds for m = n + 1, that is, we assume that R0,
S0, ρ0, σ0 belong W n,∞([xl, xr]), and prove that u(τ, ·) ∈ W n+1,∞([xl + κτ, xr − κτ ])
and R(τ, ·), S(τ, ·), ρ(τ, ·), σ(τ, ·) ∈ W n,∞([xl + κτ, xr − κτ ]).
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Since the result holds for m = n we get, following closely the argument used in
Step 2 to derive (7.37) and (7.38), that

(7.43)
∂α+β

∂Xα∂Y β
Z ∈ [L∞(Ω)]5, α, β = 0, 1, . . . , n, α + β ≤ n.

Since R0, S0, ρ0, σ0 ∈ W n,∞([xl, xr]) we get by Definition 3.4 and Definition 3.7
that

∂α+β

∂Xα∂Y β
Z, α, β = 0, 1, . . . , n+ 1, α + β = n+ 1

is bounded on the curve (X (s),Y(s)), s ∈ [sl, sr].
Since the governing equation (2.38) is semilinear, there exists a unique solution
∂n+1

∂Xα∂Y β
Z,

α, β = 0, 1, . . . , n+ 1, α + β = n+ 1 in Ω of the system

∂

∂Y

∑
α,β=0,1,...,n+1
α+β=n+1

∂n+1

∂Xα∂Y β
(t+ x+ U + J +K)(7.44)

= f +
∑

α,β=0,1,...,n+1
α+β=n+1

〈
gα,β,

∂n+1

∂Xα∂Y β
Z

〉
,

where f and gα,β depend on derivatives up to order n. By (7.43), the functions f
and gα,β are bounded. Here, gα,β denotes n+ 1 five dimensional vectors. To clarify
the notation, let us compute (7.44) for n = 2. We have

∂

∂Y

∑
α,β=0,1,2,3
α+β=3

∂3

∂Xα∂Y β
(t+ x+ U + J +K)

= f + 〈g3,0, ZXXX〉+ 〈g2,1, ZXXY 〉+ 〈g1,2, ZXY Y 〉+ 〈g0,3, ZY Y Y 〉.
By Gronwall’s lemma, we obtain

∂n+1

∂Xα∂Y β
Z ∈ [L∞(Ω)]5, α, β = 0, 1, . . . , n+ 1, α + β = n+ 1.

This implies, since xX(X (τ, s),Y(τ, s))Ẋ (τ, s) = xY (X (τ, s),Y(τ, s))Ẏ(τ, s), Z2(τ, s) =
x(X (τ, s),Y(τ, s)) and Z3(τ, s) = U(X (τ, s),Y(τ, s)), that

dn+1

dsn+1
X (τ, ·), d

n+1

dsn+1
Y(τ, ·), d

n+1

dsn+1
Z2(τ, ·), d

n+1

dsn+1
Z3(τ, ·) ∈ L∞([sl, sr]).

It then follows from (7.25) and (7.26) that

∂n+1

∂xn+1
u(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]),

and from (7.25) and (7.30) we obtain

∂n

∂xn
R(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).

By (7.42), ∂k

∂Xk p(·,Y(·)), k = 0, 1, . . . , n, is bounded on the curve (X (s),Y(s)),
s ∈ [sl, sr]. Since

∂k

∂Xk
p(X,Y(X)) =

∂k

∂Xk
p(X, Y ),
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we get from (7.25) and (7.31),

∂n

∂xn
ρ(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).

Similarly, one proves that

∂n

∂xn
S(τ, ·), ∂

n

∂xn
σ(τ, ·) ∈ L∞([xl + κτ, xr − κτ ]).

�

From Theorem 7.1 we obtain the following result.

Corollary 7.2. Let −∞ < xl < xr <∞ and consider (u0, R0, S0, ρ0, σ0, µ0, ν0) ∈ D.
Assume that

(A1’) u0, R0, S0, ρ0, σ0 ∈ C∞([xl, xr]),
(A2’) there are constants d > 0 and e > 0 such that ρ0(x) ≥ d and σ0(x) ≥ e for

all x ∈ [xl, xr],
(A3’) µ0 and ν0 are absolutely continuous on [xl, xr],
(A4’) c ∈ C∞(R) and c(m) ∈ L∞(R) for m = 3, 4, 5, . . . .

For any τ ∈
[
0, 1

2κ
(xr − xl)

]
consider

(u,R, S, ρ, σ, µ, ν)(τ) = S̄τ (u0, R0, S0, ρ0, σ0, µ0, ν0).

Then

(P1’) u(τ, ·), R(τ, ·), S(τ, ·), ρ(τ, ·), σ(τ, ·) ∈ C∞([xl + κτ, xr − κτ ]),
(P2’) there are constants d̄ > 0 and ē > 0 such that ρ(τ, x) ≥ d̄ and σ(τ, x) ≥ ē

for all x ∈ [xl + κτ, xr − κτ ],
(P3’) µ(τ, ·) and ν(τ, ·) are absolutely continuous on [xl + κτ, xr − κτ ].

For τ ∈
[
− 1

2κ
(xr − xl), 0

]
, the solution satisfies the same properties on the interval[

xl − κτ, xr + κτ
]
.

7.2. Approximation by Smooth Solutions. The following theorem is our main
result. In the proof we use Lemma 7.5 and Lemma 7.7 which are stated and proved
in Section 7.3.

Theorem 7.3. Let −∞ < xl < xr < ∞. Consider (u0, R0, S0, ρ0, σ0, µ0, ν0) and
(un0 , R

n
0 , S

n
0 , ρ

n
0 , σ

n
0 , µ

n
0 , ν

n
0 ) in D. Assume that for all n ∈ N,

(A1”) u0, R0, S0, u
n
0 , R

n
0 , S

n
0 , ρ

n
0 , σ

n
0 ∈ C∞([xl, xr]),

(A2”) ρ0(x) = 0 and σ0(x) = 0 for all x ∈ [xl, xr],
(A3”) there are constants dn > 0 and en > 0 such that ρn0 (x) ≥ dn and σn0 (x) ≥ en

for all x ∈ [xl, xr],
(A4”) un0 → u0 in L∞([xl, xr]), Rn

0 → R0, S
n
0 → S0, ρ

n
0 → ρ0 and σn0 → σ0 in

L2([xl, xr]),
(A5”) µ0, ν0, µ

n
0 and νn0 are absolutely continuous on [xl, xr],

(A6”) µ0((−∞, xl)) = µn0 ((−∞, xl)), µ0((−∞, xr, )) = µn0 ((−∞, xr)),
ν0((−∞, xl)) = νn0 ((−∞, xl)) and ν0((−∞, xr, )) = νn0 ((−∞, xr)),

(A7”) c ∈ C∞(R) and c(m) ∈ L∞(R) for m = 3, 4, 5, . . . .

For any τ ∈
[
0, 1

2κ
(xr − xl)

]
consider

(un, Rn, Sn, ρn, σn, µn, νn)(τ) = S̄τ (u
n
0 , R

n
0 , S

n
0 , ρ

n
0 , σ

n
0 , µ

n
0 , ν

n
0 )
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and
(u,R, S, ρ, σ, µ, ν)(τ) = S̄τ (u0, R0, S0, ρ0, σ0, µ0, ν0).

Then we have

(P1”) un(τ, ·)→ u(τ, ·) in L∞([xl + κτ, xr − κτ ]),
(P2”) ρn(τ, ·)→ 0 and σn(τ, ·)→ 0 in L1([xl + κτ, xr − κτ ]).

The same conclusion holds on the interval
[
xl − κτ, xr + κτ

]
in the case where

τ ∈
[
− 1

2κ
(xr − xl), 0

]
.

Observe that we assume in (A4”) un0 → u0 in L∞([xl, xr]), in contrast to the
L2(R) convergence in the global case. This is because functions in H1(R) tend to
0 as x → ±∞, while here we have no assumptions on the values of u0 and un0 at
the endpoints of [xl, xr]. Since [xl, xr] is a bounded interval, the convergence in
L∞([xl, xr]) implies that un0 → u0 in L2([xl, xr]).

By the assumptions (A5”) and (A6”) we mean that

µ0([xl, xr]) = µn0 ([xl, xr]) and ν0([xl, xr]) = νn0 ([xl, xr])

for all n.
Note that the approximating sequence in Theorem 7.3 is smooth. Indeed, by

Corollary 7.2 we have un(τ, ·), Rn(τ, ·), Sn(τ, ·), ρn(τ, ·), σn(τ, ·) ∈ C∞([xl + κτ, xr −
κτ ]). Furthermore, there are constants d̄n > 0 and ēn > 0 such that ρn(τ, x) ≥ d̄n
and σn(τ, x) ≥ ēn for all x ∈ [xl+κτ, xr−κτ ], and µn(τ, ·) and νn(τ, ·) are absolutely
continuous on [xl + κτ, xr − κτ ] for all n. However, the limit solution does not
in general satisfy these properties. Of course, we have that (u,R, S, ρ, σ, µ, ν)(τ)
belongs to D, but the functions are not necessarily smooth and the measures are
not necessarily absolutely continuous. We illustrate this with an example. Consider
the function

fn(x) =

(
2

π

) 1
4√

ne−(nx)2

.

We have ||fn||L2(R) = 1, fn(x)→ 0 for x 6= 0 and fn(0)→ +∞, and fn → 0 in L1(R)
as n→∞. By standard calculations we get that

lim
n→∞

∫
R
φ(x)fn(x) dx = 0

and

lim
n→∞

∫
R
φ(x)f 2

n(x) dx = φ(0)

for all φ ∈ C∞c (R). In other words, fn
∗
⇀ 0 and f 2

n dx
∗
⇀ δ0, where δ0 is the Dirac

delta at zero, which is a singular measure. Returning to our setting, since µn(τ, ·)
is absolutely continuous on [xl + κτ, xr − κτ ] we have

µn(τ, [xl + κτ, xr − κτ ]) =
1

4

∫ xr−κτ

xl+κτ

[(Rn)2 + c(un)(ρn)2](τ, x) dx.

We can think of
√
c(un(τ, x))ρn(τ, x) as the function fn in the example above.

We then have that
√
c(un(τ, ·))ρn(τ, ·) is in C∞([xl + κτ, xr − κτ ]) and satisfies√

c(un(τ, ·))ρn(τ, ·)→ 0 in L1([xl + κτ, xr − κτ ]), but c(un(τ, ·))(ρn)2(τ, ·) ∗
⇀ δ0.
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Proof. We will only consider the case 0 < τ ≤ 1
2κ

(xr − xl). The case − 1
2κ

(xr − xl) ≤
τ < 0 can be treated in the same way.

We split the proof into four steps.
Step 1. Set

(ψ1, ψ2) = L(u0, R0, S0, ρ0, σ0, µ0, ν0)

and
(ψn1 , ψ

n
2 ) = L(un0 , R

n
0 , S

n
0 , ρ

n
0 , σ

n
0 , µ

n
0 , ν

n
0 ),

where
ψ1 = (x1, U1, J1, K1, V1, H1), ψ2 = (x2, U2, J2, K2, V2, H2)

and
ψn1 = (xn1 , U

n
1 , J

n
1 , K

n
1 , V

n
1 , H

n
1 ), ψn2 = (xn2 , U

n
2 , J

n
2 , K

n
2 , V

n
2 , H

n
2 ).

Let us find out what kind of region the interval [xl, xr] corresponds to in Lagrangian
coordinates (X, Y ). Since the measures are assumed to be absolutely continuous we
get from (3.12a),

x1(X) + µ0((−∞, x1(X))) = X

for all x1(X) ∈ [xl, xr]. We show which range of the X-variable this corresponds to.

If X̂ is such that x1(X̂) = xl then

xl + µ0((−∞, xl)) = X̂.

We also have
xn1 (X) + µn0 ((−∞, xn1 (X))) = X

for all xn1 (X) ∈ [xl, xr]. If X̌ is such that xn1 (X̌) = xl we get

xl + µn0 ((−∞, xl)) = X̌.

Using (A6”) we obtain

X̂ = X̌

and we denote Xl = X̂ = X̌.
If X̄ and X̃ are such that x1(X̄) = xn1 (X̃) = xr then

xr + µ0((−∞, xr)) = X̄

and
xr + µn0 ((−∞, xr)) = X̃,

and by (A6”) we get
X̄ = X̃

which we denote Xr = X̄ = X̃. We have Xl ≤ Xr since

Xl = xl + µ0((−∞, xl)) ≤ xr + µ0((−∞, xr)) = Xr.

In other words, we can define the interval [Xl, Xr] using either the measure µ0 or
µn0 , and observe that this is a consequence of the assumptions (A5”) and (A6”).

In a similar way we find that

x2(Y ) + ν0((−∞, x2(Y ))) = Y and xn2 (Y ) + νn0 ((−∞, xn2 (Y ))) = Y

for all Y ∈ [Yl, Yr] where

Yl = xl + ν0((−∞, xl)) and Yr = xr + ν0((−∞, xr)).
We denote Ω = [Xl, Xr]× [Yl, Yr].
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Following closely the proof of Lemma 7.5, we obtain that x1, xn1 , x2 and xn2 are
strictly increasing for X ∈ [Xl, Xr] and Y ∈ [Yl, Yr], respectively, and

xn1 → x1, (xn1 )−1 → x−1
1 , Un

1 → U1, Jn1 → J1 in L∞([Xl, Xr]),

xn2 → x2, (xn2 )−1 → x−1
2 , Un

2 → U2, Jn2 → J2 in L∞([Yl, Yr]),

V n
1 → V1, Hn

1 → H1, (xn1 )′ → x′1, (Jn1 )′ → J ′1, (Kn
1 )′ → K ′1 in L2([Xl, Xr]),

V n
2 → V2, Hn

2 → H2, (xn2 )′ → x′2, (Jn2 )′ → J ′2, (Kn
2 )′ → K ′2 in L2([Yl, Yr]).

Note that (3.12f) does not imply Kn
1 → K1 in L∞([Xl, Xr]) and Kn

2 → K2 in
L∞([Yl, Yr]). However, we have Kn

1 −Kn
1 (Xl) → K1 −K1(Xl) in L∞([Xl, Xr]) and

Kn
2 − Kn

2 (Yl) → K2 − K2(Yl) in L∞([Yl, Yr]). The proof of this closely follows the
procedure in (7.105).

Step 2. Let
Θ = (X ,Y ,Z,V ,W , p, q) = C(ψ1, ψ2)

and
Θn = (X n,Yn,Zn,Vn,Wn, pn, qn) = C(ψn1 , ψ

n
2 ).

From (3.28) we have

x1(X (s)) = x2(2s−X (s)) and xn1 (X n(s)) = xn2 (2s−X n(s)).

Since we only consider the functions x1 and xn1 on [Xl, Xr], and x2 and xn2 on [Yl, Yr],
the relevant values of s are those satisfying X (s) ∈ [Xl, Xr] and 2s−X (s) ∈ [Yl, Yr].
In other words, since x1(Xl) = x2(Yl) = xl and x1(Xr) = x2(Yr) = xr, we have

1

2
(Xl + Yl) ≤ s ≤ 1

2
(Xr + Yr)

and we call sl = 1
2
(Xl + Yl) and sr = 1

2
(Xr + Yr). The same conclusion holds for

the s-values of (X n(s),Yn(s)). The points sl and sr correspond to the two diagonal
points in the box for both curves, i.e., (X (sl),Y(sl)) = (Xl, Yl) = (X n(sl),Yn(sl))
and (X (sr),Y(sr)) = (Xr, Yr) = (X n(sr),Yn(sr)).

Following closely the proof of Lemma 7.7, we obtain that X , Y , X n and Yn are
strictly increasing on [sl, sr], and

X n → X , Yn → Y , Znj → Zj in L∞([sl, sr]),

Vni → Vi, pn → p in L2([Xl, Xr]),

Wn
i →Wi, qn → q in L2([Yl, Yr])

for i = 1, . . . , 5, j = 1, . . . , 4. From (3.31f) and (3.12g) we have

p(X) = H1(X) =
1

2
ρ0(x1(X))x′1(X)

and

pn(X) = Hn
1 (X) =

1

2
ρn0 (xn1 (X))(xn1 )′(X)

for all X ∈ [Xl, Xr]. Using (A2”), (A3”) and (7.3) we get for all X ∈ [Xl, Xr],
p(X) = 0 and pn(X) ≥ kn > 0 for some constant kn.

Since Kn
1 −Kn

1 (Xl) → K1 −K1(Xl) in L∞([Xl, Xr]) and Kn
2 −Kn

2 (Yl) → K2 −
K2(Yl) in L∞([Yl, Yr]) we get from (3.30e) that Zn5 − Zn5 (sl) → Z5 − Z5(sl) in
L∞([sl, sr]).
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Step 3. Consider (Z, p, q) = S(Θ) and (Zn, pn, qn) = S(Θn). We prove a Gronwall
type estimate. We claim that for all (X, Y ) in Ω,[[

Z3 − Zn
3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X, Y )(7.45)

≤ K

{
||U1 − Un

1 ||2L∞([Xl,Xr])

+
5∑
j=1

([
Vj(X)− Vnj (X)

]2
+
[
Wj(Y )−Wn

j (Y )
]2)

+
[
Y ◦ X−1(X)− Yn ◦ (X n)−1(X)

]2
+
[
X ◦ Y−1(Y )−X n ◦ (Yn)−1(Y )

]2}
,

where K depends on κ, k1, k2, |||Θ|||G(Ω) and the size of Ω.
Let (X, Y ) ∈ Ω. Subtracting the equations

tX(X, Y ) = tX(X,Y(X)) +

∫ Y

Y(X)

tXY (X, Ỹ ) dỸ

and

(7.46) tnX(X, Y ) = tnX(X,Yn(X)) +

∫ Y

Yn(X)

tnXY (X, Ỹ ) dỸ

yields

tX(X, Y )− tnX(X, Y ) = V1(X)− Vn1 (X)−
∫ Y(X)

Yn(X)

tnXY (X, Ỹ ) dỸ(7.47)

+

∫ Y

Y(X)

(tXY (X, Ỹ )− tnXY (X, Ỹ )) dỸ .

Using (2.38a) we get

tXY − tnXY(7.48)

= − c
′(U)

2c(U)
(UXtY + UY tX) +

c′(Un)

2c(Un)
(Un

Xt
n
Y + Un

Y t
n
X)

= − c
′(U)

2c(U)

(
UX(tY − tnY ) + tnY (UX − Un

X) + UY (tX − tnX) + tnX(UY − Un
Y )
)

− 1

2
(Un

Xt
n
Y + Un

Y t
n
X)

∫ U

Un

(
c′′(V )

c(V )
− c′(V )2

c(V )2

)
dV

where we used
d

dV

(
c′(V )

c(V )

)
=
c′′(V )

c(V )
− c′(V )2

c(V )2
.

We need a pointwise uniform bound on the components of Zn
X and Zn

Y . This will
be done in the same way as in Lemma 4.9. We show the details here for completeness.
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By (2.38a) we get

|tnXY | ≤
1

2
k1κ
(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)(
|tnY |+ |xnY |+ |Un

Y |+ |JnY |+ |Kn
Y |
)
,

and by doing the same kind of estimate for the other components we get(
|tnXY |+ |xnXY |+ |Un

XY |+ |JnXY |+ |Kn
XY |
)

(7.49)

≤ B1

(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

×
(
|tnY |+ |xnY |+ |Un

Y |+ |JnY |+ |Kn
Y |
)

for a constant B1 that only depends on κ and k1. By (7.46) and the corresponding
expressions for xnX , Un

X , JnX and Kn
X we obtain(

|tnX |+ |xnX |+ |Un
X |+ |JnX |+ |Kn

X |
)

(X, Y )(7.50)

≤
(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

(X,Yn(X))

+

∣∣∣∣ ∫ Y

Yn(X)

(
|tnXY |+ |xnXY |+ |Un

XY |+ |JnXY |+ |Kn
XY |
)

(X, Ỹ ) dỸ

∣∣∣∣
≤
(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

(X,Yn(X))

+

∣∣∣∣ ∫ Y

Yn(X)

B1

{(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

×
(
|tnY |+ |xnY |+ |Un

Y |+ |JnY |+ |Kn
Y |
)}

(X, Ỹ ) dỸ

∣∣∣∣,
where we used (7.49). By Gronwall’s inequality,(

|tnX |+ |xnX |+ |Un
X |+ |JnX |+ |Kn

X |
)

(X, Y )

≤
(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

(X,Yn(X))

× exp

{
B1

∣∣∣∣ ∫ Y

Yn(X)

(
|tnY |+ |xnY |+ |Un

Y |+ |JnY |+ |Kn
Y |
)

(X, Ỹ ) dỸ

∣∣∣∣
}
.

By (4.12a), (4.12b), (4.12d) and (4.12e) we get

|tnY |+ |xnY |+ |Un
Y |+ |JnY |+ |Kn

Y | =
1

c(Un)
xnY + xnY + |Un

Y |+ JnY +
1

c(Un)
JnY(7.51)

≤ (1 + κ)(xnY + JnY ) + |Un
Y |.

From (4.12c) we have

2JnY x
n
Y = (c(Un)Un

Y )2 + c(Un)(qn)2 ≥ (c(Un)Un
Y )2,

and by Young’s inequality,

|Un
Y | ≤ κ

√
2JnY x

n
Y ≤

κ√
2

(JnY + xnY ),
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which by (7.51) implies

|tnY |+ |xnY |+ |Un
Y |+ |JnY |+ |Kn

Y | ≤
[
1 +

(
1 +

1√
2

)
κ

]
(xnY + JnY ).

Using this in (7.50) we obtain(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

(X, Y )(7.52)

≤
(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

(X,Yn(X))

× exp

{
B2

∣∣∣∣ ∫ Y

Yn(X)

(xnY + JnY )(X, Ỹ ) dỸ

∣∣∣∣
}

for a new constant B2 that only depends on κ and k1. Since xn and Jn are nonde-
creasing with respect to both variables, we have∣∣∣∣ ∫ Y

Yn(X)

(xnY + JnY )(X, Ỹ ) dỸ

∣∣∣∣
=
∣∣xn(X, Y )− xn(X,Yn(X)) + Jn(X, Y )− Jn(X,Yn(X))

∣∣
≤
∣∣xn(Xr, Yr)− xn(Xl, Yl)

∣∣+
∣∣Jn(Xr, Yr)− Jn(Xl, Yl)

∣∣
=
∣∣xn(X n(sr),Yn(sr))− xn(X n(sl),Yn(sl))

∣∣
+
∣∣Jn(X n(sr),Yn(sr))− Jn(X n(sl),Yn(sl))

∣∣
=
∣∣Zn2 (sr)−Zn2 (sl)

∣∣+
∣∣Zn4 (sr)−Zn4 (sl)

∣∣.
Since

Zn2 (sr)−Zn2 (sl) = Zn2 (sr)−Z2(sr) + Z2(sr)−Zn2 (sl) + Z2(sl)−Z2(sl)

= Zn2 (sr)−Z2(sr) + Za2 (sr) + sr −Zn2 (sl) + Z2(sl)−Za2 (sl)− sl
and

Zn4 (sr)−Zn4 (sl) = Zn4 (sr)−Z4(sr) + Za4 (sr)−Zn4 (sl) + Z4(sl)−Za4 (sl)

we end up with ∣∣∣∣ ∫ Y

Yn(X)

(xnY + JnY )(X, Ỹ ) dỸ

∣∣∣∣
≤ 2||Z2 −Zn2 ||L∞([sl,sr]) + 2||Za2 ||L∞([sl,sr]) + sr − sl

+ 2||Z4 −Zn4 ||L∞([sl,sr]) + 2||Za4 ||L∞([sl,sr]).

The convergence Zni → Zi in L∞([sl, sr]) implies that for every ε > 0 we can choose
n so large that ||Zi −Zni ||L∞([sl,sr]) ≤ ε, i = 1, 2. Hence,

(7.53)

∣∣∣∣ ∫ Y

Yn(X)

(xnY +JnY )(X, Ỹ ) dỸ

∣∣∣∣ ≤ 4ε+2||Za2 ||L∞([sl,sr])+2||Za4 ||L∞([sl,sr])+sr−sl.

We use (7.53) and Zn
i,X(X,Yn(X)) = Vni (X) in (7.52) and obtain

(7.54)
(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

(X, Y ) ≤ B3

5∑
l=1

∣∣Vnl (X)
∣∣
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where B3 only depends on κ, k1 and |||Θ|||G(Ω). Since µn0 is absolutely continuous in
[xl, xr] we obtain as in (7.2) that

0 ≤ (xn1 )′(X) ≤ 1

for all X ∈ [Xl, Xr]. Using (3.31a), (3.31b), (3.31d), (3.31e), (3.12c) and (3.12f) we
get

0 ≤ Vn1 (X) ≤ 1

2
κ, 0 ≤ Vn2 (X) ≤ 1

2
, 0 ≤ Vn4 (X) ≤ 1, 0 ≤ Vn5 (X) ≤ κ

for all X ∈ [Xl, Xr]. From (3.31c) and (3.8) we have

|Vn3 (X)| ≤ 1

c(Un
1 (X))

√
(xn1 )′(X)(Jn1 )′(X) ≤ κ.

By inserting these estimates in (7.54) we get

(7.55)
(
|tnX |+ |xnX |+ |Un

X |+ |JnX |+ |Kn
X |
)

(X, Y ) ≤ B4 for all (X, Y ) ∈ Ω

for a new constant B4, which only depends on κ, k1 and |||Θ|||G(Ω). Similarly we
can show that there exist constants B5, B6 and B7, which only depend on κ, k1 and
|||Θ|||G(Ω), such that for all (X, Y ) ∈ Ω,

(7.56)
(
|tnY |+ |xnY |+ |Un

Y |+ |JnY |+ |Kn
Y |
)

(X, Y ) ≤ B5,

(7.57)
(
|tX |+ |xX |+ |UX |+ |JX |+ |KX |

)
(X, Y ) ≤ B6

and

(7.58)
(
|tY |+ |xY |+ |UY |+ |JY |+ |KY |

)
(X, Y ) ≤ B7.

From (7.49) we get for all (X, Y ) ∈ Ω that

(7.59)
(
|tnXY |+ |xnXY |+ |Un

XY |+ |JnXY |+ |Kn
XY |
)

(X, Y ) ≤ D

for a constant D that depends on κ, k1 and |||Θ|||G(Ω). From (7.55)-(7.58) we get in
(7.48), for all (X, Y ) ∈ Ω that∣∣tXY − tnXY ∣∣(X, Y )(7.60)

≤ C1

(
|U − Un|+ |tX − tnX |+ |UX − Un

X |+ |tY − tnY |+ |UY − Un
Y |
)

(X, Y ),

where C1 depends on κ, k1, k2 and |||Θ|||G(Ω).
Using the estimates (7.60) and (7.59) in (7.47) we get

|tX(X, Y )− tnX(X, Y )|
≤ |V1(X)− Vn1 (X)|+D|Y ◦ X−1(X)− Yn ◦ (X n)−1(X)|

+ C1

∣∣∣∣ ∫ Y

Y(X)

(
|U − Un|+ |tX − tnX |+ |UX − Un

X |

+ |tY − tnY |+ |UY − Un
Y |
)
(X, Ỹ ) dỸ

∣∣∣∣.
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To write the estimates more compactly, we denote Z = (Z1, Z2, Z3, Z4, Z5) =
(t, x, U, J,K), and similar for Zn. With this notation we get from the above es-
timate that

|Z1,X(X, Y )− Zn
1,X(X, Y )|(7.61)

≤ |V1(X)− Vn1 (X)|+D|Y ◦ X−1(X)− Yn ◦ (X n)−1(X)|

+ C1

∣∣∣∣ ∫ Y

Y(X)

[
|Z3 − Zn

3 |+
5∑
i=1

(
|Zi,X − Zn

i,X |+ |Zi,Y − Zn
i,Y |
)]

(X, Ỹ ) dỸ

∣∣∣∣.
By the same procedure as above, we obtain

|Zj,X(X, Y )− Zn
j,X(X, Y )|(7.62)

≤ |Vj(X)− Vnj (X)|+D|Y ◦ X−1(X)− Yn ◦ (X n)−1(X)|

+ Cj

∣∣∣∣ ∫ Y

Y(X)

[
|Z3 − Zn

3 |+
5∑
i=1

(
|Zi,X − Zn

i,X |+ |Zi,Y − Zn
i,Y |
)]

(X, Ỹ ) dỸ

∣∣∣∣.
for j = 2, 3, 4, 5, where Cj depends on κ, k1, k2 and |||Θ|||G(Ω), and D depends on κ,
k1 and |||Θ|||G(Ω).

Let us find similar estimates for the partial derivatives with respect to Y . Now
we subtract

tY (X (Y ), Y ) = tY (X, Y ) +

∫ X (Y )

X

tXY (X̃, Y ) dX̃

and

tnY (X n(Y ), Y ) = tnY (X, Y ) +

∫ Xn(Y )

X

tnXY (X̃, Y ) dX̃

to get

tY (X, Y )− tnY (X, Y ) =W1(Y )−Wn
1 (Y ) +

∫ Xn(Y )

X (Y )

tnXY (X̃, Y ) dX̃

−
∫ X (Y )

X

(tXY (X̃, Y )− tnXY (X̃, Y )) dX̃,

and we obtain

|tY (X, Y )− tnY (X, Y )|
≤ |W1(Y )−Wn

1 (Y )|+D|X ◦ Y−1(Y )−X n ◦ (Yn)−1(Y )|

+ C1

∣∣∣∣ ∫ X (Y )

X

(
|U − Un|+ |tX − tnX |+ |UX − Un

X |

+ |tY − tnY |+ |UY − Un
Y |
)
(X̃, Y ) dX̃

∣∣∣∣,
which in the alternative notation takes the form

|Z1,Y (X, Y )− Zn
1,Y (X, Y )|(7.63)

≤ |W1(Y )−Wn
1 (Y )|+D|X ◦ Y−1(Y )−X n ◦ (Yn)−1(Y )|

+ C1

∣∣∣∣ ∫ X (Y )

X

[
|Z3 − Zn

3 |+
5∑
i=1

(
|Zi,X − Zn

i,X |+ |Zi,Y − Zn
i,Y |
)]

(X̃, Y ) dX̃

∣∣∣∣.



A REGULARIZED SYSTEM FOR THE NONLINEAR VARIATIONAL WAVE EQUATION 143

Similarly, we get

|Zj,Y (X, Y )− Zn
j,Y (X, Y )|(7.64)

≤ |Wj(Y )−Wn
j (Y )|+D|X ◦ Y−1(Y )−X n ◦ (Yn)−1(Y )|

+ Cj

∣∣∣∣ ∫ X (Y )

X

[
|Z3 − Zn

3 |+
5∑
i=1

(
|Zi,X − Zn

i,X |+ |Zi,Y − Zn
i,Y |
)]

(X̃, Y ) dX̃

∣∣∣∣
for j = 2, 3, 4, 5.

We have

U(X, Y ) = U(X,Y(X)) +

∫ Y

Y(X)

UY (X, Ỹ ) dỸ

and

Un(X, Y ) = Un(X,Yn(X)) +

∫ Y

Yn(X)

Un
Y (X, Ỹ ) dỸ ,

so that

U(X, Y )− Un(X, Y ) = U(X,Y(X))− Un(X,Yn(X))−
∫ Y(X)

Yn(X)

Un
Y (X, Ỹ ) dỸ

+

∫ Y

Y(X)

(UY (X, Ỹ )− Un
Y (X, Ỹ )) dỸ .

To any X in [Xl, Xr], there exist unique s and sn in [sl, sr] such that X = X (s) and
X = X n(sn) and we can write

U(X,Y(X))− Un(X,Yn(X)) = U(X (s),Y(s))− Un(X n(sn),Yn(sn))

= Z3(s)−Zn3 (sn)

= U1(X (s))− Un
1 (X n(sn))

= U1(X)− Un
1 (X).

Therefore,

|U(X, Y )− Un(X, Y )|
≤ ||U1 − Un

1 ||L∞([Xl,Xr]) +B5|Y ◦ X−1(X)− Yn ◦ (X n)−1(X)|

+

∣∣∣∣ ∫ Y

Y(X)

|UY (X, Ỹ )− Un
Y (X, Ỹ )| dỸ

∣∣∣∣,
where we used (7.56). In the new notation this implies

|Z3(X, Y )− Zn
3 (X, Y )|(7.65)

≤ ||U1 − Un
1 ||L∞([Xl,Xr]) +B5|Y ◦ X−1(X)− Yn ◦ (X n)−1(X)|

+

∣∣∣∣ ∫ Y

Y(X)

[
|Z3 − Zn

3 |+
5∑
i=1

(
|Zi,X − Zn

i,X |+ |Zi,Y − Zn
i,Y |
)]

(X, Ỹ ) dỸ

∣∣∣∣.
From (7.61)–(7.64) we get by using Hölder’s inequality8,[

Zj,X(X, Y )− Zn
j,X(X, Y )

]2
(7.66)

8The factor 3 comes from that we first split the right-hand side in three terms, the factor
33 = 3 · 11 comes from splitting the 11 terms in the integral.
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≤ 3
[
Vj(X)− Vnj (X)

]2
+ 3D2

[
Y ◦ X−1(X)− Yn ◦ (X n)−1(X)

]2
+ 33C2

j |Y − Y(X)|
∣∣∣∣ ∫ Y

Y(X)

[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X, Ỹ ) dỸ

∣∣∣∣
and [

Zj,Y (X, Y )− Zn
j,Y (X, Y )

]2
(7.67)

≤ 3
[
Wj(Y )−Wn

j (Y )
]2

+ 3D2
[
X ◦ Y−1(Y )−X n ◦ (Yn)−1(Y )

]2
+ 33C2

j |X (Y )−X|
∣∣∣∣ ∫ X (Y )

X

[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X̃, Y ) dX̃

∣∣∣∣
for j = 1, . . . , 5. Similarly, from (7.65) we get[

Z3(X, Y )− Zn
3 (X, Y )

]2
(7.68)

≤ 3||U1 − Un
1 ||2L∞([Xl,Xr])

+ 3B2
5

[
Y ◦ X−1(X)− Yn ◦ (X n)−1(X)

]2
+ 33|Y − Y(X)|

∣∣∣∣ ∫ Y

Y(X)

[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X, Ỹ ) dỸ

∣∣∣∣.
We combine (7.66)-(7.68) and get for all (X, Y ) ∈ Ω that[[

Z3 − Zn
3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X, Y )(7.69)

≤ 3||U1 − Un
1 ||2L∞([Xl,Xr])

+ 3(B2
5 + 5D2)

[
Y ◦ X−1(X)− Yn ◦ (X n)−1(X)

]2
+ 15D2

[
X ◦ Y−1(Y )−X n ◦ (Yn)−1(Y )

]2
+ 3

5∑
j=1

[
Vj(X)− Vnj (X)

]2
+ 3

5∑
j=1

[
Wj(Y )−Wn

j (Y )
]2

+ 33(1 + C)|Y − Y(X)|
∣∣∣∣ ∫ Y

Y(X)

[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X, Ỹ ) dỸ

∣∣∣∣
+ 33C|X (Y )−X|

∣∣∣∣ ∫ X (Y )

X

[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X̃, Y ) dX̃

∣∣∣∣,
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where we introduced C =
∑5

j=1C
2
j .

At this point we need the following Gronwall inequality, which can be found in
[6], see chapter ”Gronwall inequalities in higher dimensions”. For completeness, we
state and prove the inequality in the following lemma.

Lemma 7.4. Consider a nonnegative function u(x, y) in the region x ≥ 0 and y ≥ 0.
Assume that

u(x, y) ≤ c+ a

∫ x

0

u(r, y) dr + b

∫ y

0

u(x, s) ds

where a, b and c are nonnegative constants. Then we have

u(x, y) ≤ ce2ax+2by+abxy.

Proof. Set

G(x, y) =

∫ y

0

u(x, s) ds.

We have Gy(x, y) = u(x, y), so that

Gy(x, y) ≤ c+ a

∫ x

0

u(r, y) dr + bG(x, y)

and
d

dy

(
G(x, y)e−by

)
≤
(
c+ a

∫ x

0

u(r, y) dr

)
e−by.

Integration yields

(7.70) G(x, y) ≤ c

b
(eby − 1) + a

∫ y

0

∫ x

0

u(r, s)eb(y−s) dr ds.

Therefore we get

u(x, y) ≤ c+ a

∫ x

0

u(r, y) dr + bG(x, y)

≤ ceby + a

∫ x

0

u(r, y) dr + ab

∫ y

0

∫ x

0

u(r, s)eb(y−s) dr ds.

Denote

g(x, y) = ceby + a

∫ x

0

u(r, y) dr + ab

∫ y

0

∫ x

0

u(r, s)eb(y−s) dr ds

which implies

(7.71) u(x, y) ≤ g(x, y).

From (7.70) we have

G(x, y) ≤ c

b
(eby − 1) + a

∫ y

0

∫ x

0

u(r, s)eb(y−s) dr ds(7.72)

≤ 1

b

(
ceby + ab

∫ y

0

∫ x

0

u(r, s)eb(y−s) dr ds

)
≤ 1

b

(
ceby + a

∫ x

0

u(r, y) dr + ab

∫ y

0

∫ x

0

u(r, s)eb(y−s) dr ds

)
=

1

b
g(x, y).
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We compute

gx(x, y) = au(x, y) + ab

∫ y

0

u(x, s)eb(y−s) ds.

Integration by parts yields

(7.73) gx(x, y) = au(x, y) + ab

∫ y

0

u(x, s) ds+ ab2

∫ y

0

∫ s

0

u(x, l)eb(y−s) dl ds.

In the last integral on the right-hand side we use∫ s

0

u(x, l) dl = G(x, s) ≤ c

b
(ebs − 1) + a

∫ s

0

∫ x

0

u(r, t)eb(s−t) dr dt

and get ∫ y

0

∫ s

0

u(x, l)eb(y−s) dl ds(7.74)

≤
∫ y

0

eb(y−s)
(
c

b
(ebs − 1) + a

∫ s

0

∫ x

0

u(r, t)eb(s−t) dr dt

)
ds

≤
∫ y

0

eb(y−s)
(
c

b
ebs + a

∫ y

0

∫ x

0

u(r, t)eb(s−t) dr dt

)
ds

=

∫ y

0

(
c

b
eby + a

∫ y

0

∫ x

0

u(r, t)eb(y−t) dr dt

)
ds

=
c

b
yeby + ay

∫ y

0

∫ x

0

u(r, t)eb(y−t) dr dt.

Using the estimates (7.71), (7.72) and (7.74) in (7.73) gives

gx(x, y) ≤ ag(x, y) + ab
1

b
g(x, y) + abcyeby + a2b2y

∫ y

0

∫ x

0

u(r, t)eb(y−t) dr dt

= 2ag(x, y) + aby

(
ceby + ab

∫ y

0

∫ x

0

u(r, t)eb(y−t) dr dt

)
≤ 2ag(x, y) + aby

(
ceby + a

∫ x

0

u(r, y) dr + ab

∫ y

0

∫ x

0

u(r, t)eb(y−t) dr dt

)
= 2ag(x, y) + abyg(x, y).

Integration leads to

g(x, y) ≤ g(0, y)e2ax+abxy = ce2ax+by+abxy

and using (7.71) finally implies

u(x, y) ≤ ce2ax+by+abxy.

If we instead considered

G̃(x, y) =

∫ x

0

u(r, y) dr

we would have ended up with

u(x, y) ≤ ceax+2by+abxy.

�
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We return to (7.69). Using Lemma 7.4 we get[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X, Y )(7.75)

≤
{

3||U1 − Un
1 ||2L∞([Xl,Xr])

+ 3(B2
5 + 5D2)

[
Y ◦ X−1(X)− Yn ◦ (X n)−1(X)

]2
+ 15D2

[
X ◦ Y−1(Y )−X n ◦ (Yn)−1(Y )

]2
+ 3

5∑
j=1

[
Vj(X)− Vnj (X)

]2
+ 3

5∑
j=1

[
Wj(Y )−Wn

j (Y )
]2}

× exp

{
66C

[
X (Y )−X

]2
+ 66(1 + C)

[
Y − Y(X)

]2
+ 332C(1 + C)

[
X (Y )−X

]2[
Y − Y(X)

]2}
.

Since all the differences appearing in the exponential function are bounded by either
Xr−Xl or Yr−Yl we can find a new constant K which depends on κ, k1, k2, |||Θ|||G(Ω)

and the size of Ω such that[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(X, Y )

≤ K

{
||U1 − Un

1 ||2L∞([Xl,Xr])
+

5∑
j=1

([
Vj(X)− Vnj (X)

]2
+
[
Wj(Y )−Wn

j (Y )
]2)

+
[
Y ◦ X−1(X)− Yn ◦ (X n)−1(X)

]2
+
[
X ◦ Y−1(Y )−X n ◦ (Yn)−1(Y )

]2}
,

and we have proved the claim (7.45).
From (7.45) we obtain an estimate for the difference Zi(X, 2s−X)−Zn

i (X, 2s−X)
for i = 1, . . . , 4. We have

Zi(X, 2s−X)− Zn
i (X, 2s−X)

= Zi(X (s), 2s−X (s)) +

∫ X

X (s)

(Zi,X − Zi,Y )(ξ, 2s− ξ) dξ

− Zn
i (X n(s), 2s−X n(s))−

∫ X

Xn(s)

(Zn
i,X − Zn

i,Y )(ξ, 2s− ξ) dξ

= Zi(s)−Zni (s) +

∫ X

X (s)

[
(Zi,X − Zn

i,X)− (Zi,Y − Zn
i,Y )
]
(ξ, 2s− ξ) dξ

−
∫ X (s)

Xn(s)

(Zn
i,X − Zn

i,Y )(ξ, 2s− ξ) dξ,
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which implies by (7.55), (7.56), and the Cauchy–Schwarz inequality, that∣∣Zi(X, 2s−X)− Zn
i (X, 2s−X)

∣∣(7.76)

≤ ||Zi −Zni ||L∞([sl,sr]) + (B4 +B5)||X − X n||L∞([sl,sr])

+
[
X −X (s)

] 1
2

{∣∣∣∣ ∫ X

X (s)

(Zi,X − Zn
i,X)2(ξ, 2s− ξ) dξ

∣∣∣∣ 1
2

+

∣∣∣∣ ∫ X

X (s)

(Zi,Y − Zn
i,Y )2(ξ, 2s− ξ) dξ

∣∣∣∣ 1
2

}
≤ ||Zi −Zni ||L∞([sl,sr]) + (B4 +B5)||X − X n||L∞([sl,sr])

+ 2(Xr −Xl)
1
2

∣∣∣∣ ∫ X

X (s)

[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(ξ, 2s− ξ) dξ

∣∣∣∣ 1
2

.

From (7.45), we have[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(ξ, 2s− ξ)

≤ K

{
||U1 − Un

1 ||2L∞([Xl,Xr])
+

5∑
j=1

([
Vj(ξ)− Vnj (ξ)

]2
+
[
Wj(2s− ξ)−Wn

j (2s− ξ)
]2)

+
[
Y ◦ X−1(ξ)− Yn ◦ (X n)−1(ξ)

]2
+
[
X ◦ Y−1(2s− ξ)−X n ◦ (Yn)−1(2s− ξ)

]2}
.

Integration and a change of variables leads to∣∣∣∣ ∫ X

X (s)

[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(ξ, 2s− ξ) dξ

∣∣∣∣(7.77)

≤ K

{
|X −X (s)|||U1 − Un

1 ||2L∞([Xl,Xr])

+
5∑
j=1

(∣∣∣∣ ∫ X

X (s)

[
Vj(ξ)− Vnj (ξ)

]2
dξ

∣∣∣∣+

∣∣∣∣ ∫ Y(s)

2s−X

[
Wj(ξ)−Wn

j (ξ)
]2
dξ

∣∣∣∣
)

+

∣∣∣∣ ∫ X

X (s)

[
Y ◦ X−1(ξ)− Yn ◦ (X n)−1(ξ)

]2
dξ

∣∣∣∣
+

∣∣∣∣ ∫ Y(s)

2s−X

[
X ◦ Y−1(ξ)−X n ◦ (Yn)−1(ξ)

]2
dξ

∣∣∣∣
}

≤ K

{
(Xr −Xl)||U1 − Un

1 ||2L∞([Xl,Xr])
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+
5∑
j=1

(
||Vj − Vnj ||2L2([Xl,Xr])

+ ||Wj −Wn
j ||2L2([Yl,Yr])

)
+

∫ Xr

Xl

[
Y ◦ X−1(ξ)− Yn ◦ (X n)−1(ξ)

]2
dξ

+

∫ Yr

Yl

[
X ◦ Y−1(ξ)−X n ◦ (Yn)−1(ξ)

]2
dξ

}
.

From (2.40c) we have X + Y ◦ X−1(X) = 2X−1(X) and X + Yn ◦ (X n)−1(X) =
2(X n)−1(X), so that

(7.78) Y ◦ X−1(X)− Yn ◦ (X n)−1(X) = 2(X−1(X)− (X n)−1(X)).

This leads to ∫ Xr

Xl

[
Y ◦ X−1(ξ)− Yn ◦ (X n)−1(ξ)

]2
dξ(7.79)

= 4

∫ Xr

Xl

[
X−1(ξ)− (X n)−1(ξ)

]2
dξ

≤ 4(sr − sl)
∫ Xr

Xl

|X−1(ξ)− (X n)−1(ξ)| dξ.

To estimate the above integral, we need to introduce another sequence of curves
on [sl, sr] given by (X̂ n(s), Ŷn(s)) = (max{X (s),X n(s)},min{Y(s),Yn(s)}). This

sequence satisfies that both (X ,Y) and (X n,Yn) lie above or are equal to (X̂ n, Ŷn).

This implies that X−1(X) ≥ (X̂ n)−1(X) and (X n)−1(X) ≥ (X̂ n)−1(X) for all X in
[Xl, Xr], and that∫ Xr

Xl

|X−1(ξ)− (X n)−1(ξ)| dξ =

∫ Xr

Xl

(X−1(ξ)− (X̂ n)−1(ξ)) dξ(7.80)

+

∫ Xr

Xl

((X n)−1(ξ)− (X̂ n)−1(ξ)) dξ.

By a change of variables and integration by parts we get∫ Xr

Xl

X−1(ξ) dξ =

∫ X−1(Xr)

X−1(Xl)

sẊ (s) ds = XrX−1(Xr)−XlX−1(Xl)−
∫ X−1(Xr)

X−1(Xl)

X (s) ds,

and similarly we find∫ Xr

Xl

(X̂ n)−1(ξ) dξ = Xr(X̂ n)−1(Xr)−Xl(X̂ n)−1(Xl)−
∫ (X̂n)−1(Xr)

(X̂n)−1(Xl)

X̂ n(s) ds.

Note that

X−1(Xl) = sl = (X̂ n)−1(Xl) and X−1(Xr) = sr = (X̂ n)−1(Xr).

Therefore, ∫ Xr

Xl

|X−1(ξ)− (X̂ n)−1(ξ)| dξ =

∫ sr

sl

(X̂ n(s)−X (s)) ds.
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We obtain in a similar way,∫ Xr

Xl

|(X n)−1(ξ)− (X̂ n)−1(ξ)| dξ =

∫ sr

sl

(X̂ n(s)−X n(s)) ds.

Combining (7.80) and the above estimates we end up with∫ Xr

Xl

|X−1(ξ)− (X n)−1(ξ)| dξ =

∫ sr

sl

(X̂ n(s)−X (s)) ds+

∫ sr

sl

(X̂ n(s)−X n(s)) ds

=

∫ sr

sl

|X n(s)−X (s)| ds,

which inserted in (7.79) yields

(7.81)

∫ Xr

Xl

[
Y ◦ X−1(ξ)− Yn ◦ (X n)−1(ξ)

]2
dξ ≤ 4(sr − sl)2||X − X n||L∞([sl,sr]).

By similar calculations we find

(7.82)

∫ Yr

Yl

[
X ◦ Y−1(ξ)−X n ◦ (Yn)−1(ξ)

]2
dξ ≤ 4(sr − sl)2||Y − Yn||L∞([sl,sr]).

Returning to (7.77) we now get∣∣∣∣ ∫ X

X (s)

[[
Z3 − Zn

3

]2
+

5∑
i=1

([
Zi,X − Zn

i,X

]2
+
[
Zi,Y − Zn

i,Y

]2)]
(ξ, 2s− ξ) dξ

∣∣∣∣
≤ K

{
(Xr −Xl)||U1 − Un

1 ||2L∞([Xl,Xr])

+
5∑
j=1

(
||Vj − Vnj ||2L2([Xl,Xr])

+ ||Wj −Wn
j ||2L2([Yl,Yr])

)
+ 4(sr − sl)2

(
||X − X n||L∞([sl,sr]) + ||Y − Yn||L∞([sl,sr])

)}
,

which we insert in (7.76) and get∣∣Zi(X, 2s−X)− Zn
i (X, 2s−X)

∣∣(7.83)

≤ ||Zi −Zni ||L∞([sl,sr]) + (B4 +B5)||X − X n||L∞([sl,sr])

+ 2
√
K(Xr −Xl)

{
(Xr −Xl)||U1 − Un

1 ||2L∞([Xl,Xr])

+
5∑
j=1

(
||Vj − Vnj ||2L2([Xl,Xr])

+ ||Wj −Wn
j ||2L2([Yl,Yr])

)

+ 4(sr − sl)2
(
||X − X n||L∞([sl,sr]) + ||Y − Yn||L∞([sl,sr])

)} 1
2

for i = 1, . . . , 4. A similar inequality is valid for

|(Z5(X, 2s−X)− Z5(Xl, 2sl −Xl))− (Zn
5 (X, 2s−X)− Zn

5 (Xl, 2sl −Xl))
∣∣,
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the only difference from (7.83) being that we get ||(Z5−Z5(sl))−(Zn5−Zn5 (sl))||L∞([sl,sr])

on the right-hand side.
Step 4. For any 0 < τ ≤ 1

2κ
(xr − xl) consider

Θ(τ) = E ◦ tτ (Z, p, q), Θn(τ) = E ◦ tτ (Z
n, pn, qn),

(u,R, S, ρ, σ, µ, ν)(τ) = M ◦D(Θ(τ))

and
(un, Rn, Sn, ρn, σn, µn, νn)(τ) = M ◦D(Θn(τ)).

We prove (P1”).
A close inspection of the proof of (7.21) reveals that there exist s̄1 and s̄2 such

that sl < s̄1 ≤ s̄2 < sr, (X (τ, s),Y(τ, s)) ∈ Ω for all s ∈ [s̄1, s̄2] and

x(X (τ, s̄1),Y(τ, s̄1)) = xl + κτ and x(X (τ, s̄2),Y(τ, s̄2)) = xr − κτ.
Moreover, there exist s̄n1 and s̄n2 such that sl < s̄n1 ≤ s̄n2 < sr, (X n(τ, s),Yn(τ, s)) ∈ Ω
for all s ∈ [s̄n1 , s̄

n
2 ] and

xn(X n(τ, s̄n1 ),Yn(τ, s̄n1 )) = xl + κτ and xn(X n(τ, s̄n2 ),Yn(τ, s̄n2 )) = xr − κτ.
Consider z ∈ [xl + κτ, xr − κτ ]. There are s ∈ [s̄1, s̄2] and sn ∈ [s̄n1 , s̄

n
2 ] such that

z = Z2(τ, s) = Zn2 (τ, sn). Using (5.21a) we obtain

u(τ, z)− un(τ, z) = Z3(τ, s)−Zn3 (τ, sn)(7.84)

= U(X (τ, s),Y(τ, s))− Un(X n(τ, sn),Yn(τ, sn)).

Now we can have several different scenarios depending on the order of the points s
and sn, and the intervals [s̄1, s̄2] and [s̄n1 , s̄

n
2 ]. We only show one of the challenging

cases, the others can be treated in a similar way. Assume that s ≤ s̄n1 ≤ s̄max. For
the definition of s̄max see Step 1 (iv) in the proof of Theorem 7.1. Observe that in
this case the point (X (τ, s̄n1 ),Y(τ, s̄n1 )) is in Ω, but the point (X n(τ, s),Yn(τ, s)) may
be outside Ω. So when estimating (7.84) we have to carefully choose points on the
curve so that we do not end up outside Ω, see Figure 7.

Write9

U(X (τ, s),Y(τ, s))− Un(X n(τ, sn),Yn(τ, sn))

= U(X (τ, s),Y(τ, s))− U(X (τ, s̄n1 ),Y(τ, s̄n1 )) (An1 )

+ U(X (τ, s̄n1 ),Y(τ, s̄n1 ))− U(X n(τ, s̄n1 ),Yn(τ, s̄n1 )) (An2 )

+ U(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))− Un(X n(τ, s̄n1 ),Yn(τ, s̄n1 )) (An3 )

+ Un(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))− Un(X n(τ, sn),Yn(τ, sn)) (An4 ).

By (3.23) and the Cauchy–Schwarz inequality we have

|An1 | = |Z3(τ, s̄n1 )−Z3(τ, s)|(7.85)

=

∣∣∣∣∫ s̄n1

s

Ż3(τ, r) dr

∣∣∣∣
=

∣∣∣∣∫ s̄n1

s

[V3(τ,X (τ, r))Ẋ (τ, r) +W3(τ,Y(τ, r))Ẏ(τ, r)] dr

∣∣∣∣
9In the case when s̄n1 ≥ s̄max the point (X (τ, s̄n1 ),Y(τ, s̄n1 )) may be outside Ω. In that case the

proof can be done in a similar way by replacing s̄n1 with s̄max.
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(X n(⌧, r), Yn(⌧, r))

(X (⌧, r), Y(⌧, r))⌦

X

Y

s̄max

s̄n
1

s̄1

sn

s

Figure 7. An example of the situation described in Step 4. Note
that the point (X n(τ, s),Yn(τ, s)) lies outside Ω.

≤
(∫ s̄n1

s

Ẋ (τ, r) dr

) 1
2
(∫ s̄n1

s

V2
3 (τ,X (τ, r))Ẋ (τ, r) dr

) 1
2

+

(∫ s̄n1

s

Ẏ(τ, r) dr

) 1
2
(∫ s̄n1

s

W2
3 (τ,Y(τ, r))Ẏ(τ, r) dr

) 1
2

.

From (3.24c) and (3.27) we get

0 ≤
∫ s̄n1

s

V2
3 (τ,X (τ, r))Ẋ (τ, r) dr(7.86)

=

∫ s̄n1

s

(
2V2(τ,X (τ, r))V4(τ,X (τ, r))

c2(Z3(τ, r))
− p2(τ,X (τ, r))

c(Z3(τ, r))

)
Ẋ (τ, r) dr

≤
∫ s̄n1

s

2V2(τ,X (τ, r))V4(τ,X (τ, r))

c2(Z3(τ, r))
Ẋ (τ, r) dr

≤ κ2B6

∫ s̄n1

s

2V2(τ,X (τ, r))Ẋ (τ, r) dr

= κ2B6

∫ s̄n1

s

Ż2(τ, r) dr

= κ2B6

[
Z2(τ, s̄n1 )−Z2(τ, s)

]
= κ2B6

[
Z2(τ, s̄n1 )−Zn2 (τ, s̄n1 ) + Zn2 (τ, s̄n1 )−Zn2 (τ, sn)

]
≤ κ2B6

[
Z2(τ, s̄n1 )−Zn2 (τ, s̄n1 )

]
,

where we used that Z2(τ, s) = Zn2 (τ, sn) and Zn2 (τ, s̄n1 ) ≤ Zn2 (τ, sn) since s̄n1 ≤ sn and
Zn2 (τ, ·) is nondecreasing. We also used that since (X (τ, r),Y(τ, r)) ∈ Ω for r ∈ [s, s̄n1 ]
we can use the estimate in (7.57) to obtain |V4(τ,X (τ, r))| = |JX(X (τ, r),Y(τ, r))| ≤
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B6. We have

Z2(τ, s̄n1 )−Zn2 (τ, s̄n1 )(7.87)

= x(X (τ, s̄n1 ),Y(τ, s̄n1 ))− xn(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))

= x(X (τ, s̄n1 ),Y(τ, s̄n1 ))− x(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))

+ x(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))− xn(X n(τ, s̄n1 ),Yn(τ, s̄n1 )).

By (4.12a) and since tX ≥ 0 and tY ≤ 0 we get

|x(X (τ, s̄n1 ),Y(τ, s̄n1 ))− x(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))|

=

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(xX − xY )(X, 2s̄n1 −X) dX

∣∣∣∣∣
=

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

[c(U)(tX + tY )](X, 2s̄n1 −X) dX

∣∣∣∣∣
≤ κ

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(tX − tY )(X, 2s̄n1 −X) dX

∣∣∣∣∣
= κ|t(X (τ, s̄n1 ),Y(τ, s̄n1 ))− t(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))|.

Since t(X (τ, s̄n1 ),Y(τ, s̄n1 )) = τ = tn(X n(τ, s̄n1 ),Yn(τ, s̄n1 )) we have

t(X (τ, s̄n1 ),Y(τ, s̄n1 ))− t(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))(7.88)

= tn(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))− t(X n(τ, s̄n1 ),Yn(τ, s̄n1 )).

Therefore,

|x(X (τ, s̄n1 ),Y(τ, s̄n1 ))− x(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))|
≤ κ|t− tn|(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))

and (7.87) yields

(7.89) 0 ≤ Z2(τ, s̄n1 )−Zn2 (τ, s̄n1 ) ≤
(
|x− xn|+ κ|t− tn|

)
(X n(τ, s̄n1 ),Yn(τ, s̄n1 )).

We insert this in (7.86) and get

0 ≤
∫ s̄n1

s

V2
3 (τ,X (τ, r))Ẋ (τ, r) dr ≤ κ2B6

(
|x− xn|+ κ|t− tn|

)
(X n(τ, s̄n1 ),Yn(τ, s̄n1 )).

Similarly we get

0 ≤
∫ s̄n1

s

W2
3 (τ,Y(τ, r))Ẏ(τ, r) dr ≤ κ2B7

(
|x− xn|+ κ|t− tn|

)
(X n(τ, s̄n1 ),Yn(τ, s̄n1 )).

We have ∫ s̄n1

s

Ẋ (τ, r) dr = X (τ, s̄n1 )−X (τ, s) ≤ Xr −Xl

and ∫ s̄n1

s

Ẏ(τ, r) dr ≤ Yr − Yl.

Using these estimates in (7.85) gives

(7.90) |An1 | ≤ v1

(
|x− xn|+ κ|t− tn|

) 1
2 (X n(τ, s̄n1 ),Yn(τ, s̄n1 ))
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for a constant v1 that is independent of n.
By (4.12c) we have the estimates

|UX | ≤
√

2JXxX
c(U)

and |UY | ≤
√

2JY xY
c(U)

which leads to

|An2 | ≤ |U(X (τ, s̄n1 ),Y(τ, s̄n1 ))− U(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))|

=

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(UX − UY )(X, 2s̄n1 −X) dX

∣∣∣∣∣
≤
√

2κ

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(√
JXxX +

√
JY xY

)
(X, 2s̄n1 −X) dX

∣∣∣∣∣
≤
√

2κ

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

JX(X, 2s̄n1 −X) dX

∣∣∣∣∣
1
2
∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

xX(X, 2s̄n1 −X) dX

∣∣∣∣∣
1
2

+
√

2κ

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

JY (X, 2s̄n1 −X) dX

∣∣∣∣∣
1
2
∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

xY (X, 2s̄n1 −X) dX

∣∣∣∣∣
1
2

≤ 2
√

2κ

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(JX + JY )(X, 2s̄n1 −X) dX

∣∣∣∣∣
1
2

×
∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(xX + xY )(X, 2s̄n1 −X) dX

∣∣∣∣∣
1
2

since xY ≥ 0 and JY ≥ 0. From (4.12a) we get∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(xX + xY )(X, 2s̄n1 −X) dX

∣∣∣∣∣
=

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

[
c(U)(tX − tY )

]
(X, 2s̄n1 −X) dX

∣∣∣∣∣
≤ κ

∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(tX − tY )(X, 2s̄n1 −X) dX

∣∣∣∣∣
= κ|t(X (τ, s̄n1 ),Y(τ, s̄n1 ))− t(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))|
= κ|t− tn|(X n(τ, s̄n1 ),Yn(τ, s̄n1 )),

where the last equality follows from (7.88). Using (7.57) and (7.58) yields∣∣∣∣∣
∫ X (τ,s̄n1 )

Xn(τ,s̄n1 )

(JX + JY )(X, 2s̄n1 −X) dX

∣∣∣∣∣
≤ (B6 +B7)|X (τ, s̄n1 )−X n(τ, s̄n1 )|
≤ (B6 +B7)(Xr −Xl).
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Now we get

(7.91) |An2 | ≤ v2|t− tn|
1
2 (X n(τ, s̄n1 ),Yn(τ, s̄n1 ))

for a constant v2 which is independent of n.
By estimating as we did for An1 we get

|An4 | ≤
(∫ sn

s̄n1

Ẋ n(τ, r) dr

) 1
2
(∫ sn

s̄n1

(Vn3 )2(τ,X n(τ, r))Ẋ n(τ, r) dr

) 1
2

+

(∫ sn

s̄n1

Ẏn(τ, r) dr

) 1
2
(∫ sn

s̄n1

(Wn
3 )2(τ,Yn(τ, r))Ẏn(τ, r) dr

) 1
2

and

0 ≤
∫ sn

s̄n1

(Vn3 )2(τ,X n(τ, r))Ẋ n(τ, r) dr

≤ κ2B4

[
Zn2 (τ, sn)−Zn2 (τ, s̄n1 )

]
= κ2B4

[
Z2(τ, s)−Z2(τ, s̄n1 ) + Z2(τ, s̄n1 )−Zn2 (τ, s̄n1 )

]
≤ κ2B4

[
Z2(τ, s̄n1 )−Zn2 (τ, s̄n1 )

]
,

where we used that Zn2 (τ, sn) = Z2(τ, s) and Z2(τ, s) ≤ Z2(τ, s̄n1 ) since s ≤ s̄n1 and
Z2(τ, ·) is nondecreasing. By using (7.89) we end up with

(7.92) |An4 | ≤ v3

(
|x− xn|+ κ|t− tn|

) 1
2 (X n(τ, s̄n1 ),Yn(τ, s̄n1 ))

for a constant v3 that is independent of n.
Using (7.90), (7.91) and (7.92) in (7.84) yields

|u(τ, z)− un(τ, z)|

≤
[
(v1 + v3)

(
|x− xn|+ κ|t− tn|

) 1
2 + v2|t− tn|

1
2 + |U − Un|

]
(X n(τ, s̄n1 ),Yn(τ, s̄n1 ))

and we conclude, after using (7.83), that un(τ, ·)→ u(τ, ·) in L∞([xl +κτ, xr−κτ ]).
For any z ∈ [xl + κτ, xr − κτ ], there are s ∈ [s̄1, s̄2] and sn ∈ [s̄n1 , s̄

n
2 ] such that

z = Z2(τ, s) = Zn2 (τ, sn). From (5.21a) and (5.21b) we have∫ z

xl+κτ

R(τ, y)

c(u(τ, y))
dy =

∫ s

s̄1

1

c(u(τ,Z2(τ, r)))
2c(Z3(τ, r))V3(τ,X (τ, r))Ẋ (τ, r) dr

=

∫ s

s̄1

2V3(τ,X (τ, r))Ẋ (τ, r) dr,

and similarly we have∫ z

xl+κτ

S(τ, y)

c(u(τ, y))
dy =

∫ s

s̄1

−2W3(τ,Y(τ, r))Ẏ(τ, r) dr.

Using (3.1) and (3.23) yields∫ z

xl+κτ

ux(τ, y) dy =

∫ z

xl+κτ

(
R− S
2c(u)

)
(τ, y) dy

=

∫ s

s̄1

Ż3(τ, r) dr

= Z3(τ, s)−Z3(τ, s̄1)
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= u(τ, z)− u(τ, xl + κτ),

where the last equality follows from (5.21a). According to Theorem 3.35 in [7], the
function u(τ, ·) is absolutely continuous on [xl + κτ, xr − κτ ]. We also have∫ z

xl+κτ

unx(τ, y) dy = un(τ, z)− un(τ, xl + κτ).

Therefore ∣∣∣∣∫ z

xl+κτ

(ux − unx)(τ, y) dy

∣∣∣∣ ≤ 2||u(τ, ·)− un(τ, ·)||L∞([xl+κτ,xr−κτ ]),

so that

lim
n→∞

∫ z

xl+κτ

unx(τ, y) dy =

∫ z

xl+κτ

ux(τ, y) dy.

Since pY = pnY = 0 we have

p(τ,X) = p(X,Y(τ,X−1(τ,X))) = p(X,Y(X−1(X))) = p(X)

and

pn(τ,X) = pn(X,Yn(τ, (X n)−1(τ,X))) = pn(X,Yn((X n)−1(X))) = pn(X).

From Step 2 we get p(τ,X) = 0 and pn(τ,X) ≥ kn > 0 for all X ∈ [Xl, Xr]. Then
by (5.21d) we obtain∫ z

xl+κτ

ρ(τ, y) dy =

∫ s

s̄1

2p(τ,X (τ, r))Ẋ (τ, r) dr = 0,

so that by a change of variables,∣∣∣∣∫ z

xl+κτ

(ρn − ρ)(τ, y) dy

∣∣∣∣ =

∫ Xn(τ,sn)

Xn(τ,s̄n1 )

2pn(X) dX ≤ 2
√
Xr −Xl||pn||L2([Xl,Xr]).

Since pn → 0 in L2([Xl, Xr]) this implies that

(7.93) lim
n→∞

∫ z

xl+κτ

ρn(τ, y) dy =

∫ z

xl+κτ

ρ(τ, y) dy = 0.

As mentioned in the comment before the proof, there is for any n a constant d̄n > 0
such that

ρn(τ, z) ≥ d̄n
for all z ∈ [xl+κτ, xr−κτ ]. Since ρn(τ, ·) is positive, (7.93) is the same as ρn(τ, ·)→ 0
in L1([xl + κτ, xr − κτ ]).

Similarly we obtain σn(τ, ·)→ 0 in L1([xl+κτ, xr−κτ ]). This concludes the proof
of (P2”). �
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7.3. Convergence Results.

Lemma 7.5. Let (u,R, S, ρ, σ, µ, ν) and (un, Rn, Sn, ρn, σn, µn, νn) belong to D, and
assume that µ, ν, µn and νn are absolutely continuous. Consider

ψ1 = (x1, U1, J1, K1, V1, H1), ψ2 = (x2, U2, J2, K2, V2, H2),

and
ψn1 = (xn1 , U

n
1 , J

n
1 , K

n
1 , V

n
1 , H

n
1 ), ψn2 = (xn2 , U

n
2 , J

n
2 , K

n
2 , V

n
2 , H

n
2 )

defined by
(ψ1, ψ2) = L(u,R, S, ρ, σ, µ, ν)

and
(ψn1 , ψ

n
2 ) = L(un, Rn, Sn, ρn, σn, µn, νn).

Assume that

un → u, Rn → R, Sn → S, ρn → ρ and σn → σ in L2(R).

Then, xi and xni are strictly increasing, and

xni → xi, (xni )−1 → x−1
i , Un

i → Ui, Jni → Ji, Kn
i → Ki in L∞(R),

Un
i → Ui, V n

i → Vi, Hn
i → Hi in L2(R),

(xni )′ → x′i, (Jni )′ → J ′i , (Kn
i )′ → K ′i in L1(R)

for i = 1, 2.

We mention that the functions which converge in L1(R) also converge in L2(R),
because convergence in L1(R) and (uniform) boundedness in L∞(R) imply conver-
gence in L2(R).

Let us show this in detail for (xn1 )′ → x′1. Since the measures are absolutely
continuous we get as in (7.2),

x′1(X) =
4

(R2
0 + c(u0)ρ2

0) ◦ x1(X) + 4
,

so that 0 ≤ x′1(X) ≤ 1. We also have 0 ≤ (xn1 )′(X) ≤ 1. We get∫
R

(
x′1(X)− (xn1 )′(X)

)2
dX ≤

∫
R

∣∣x′1(X)− (xn1 )′(X)
∣∣(x′1(X) + (xn1 )′(X)

)
dX

≤ 2

∫
R

∣∣x′1(X)− (xn1 )′(X)
∣∣ dX.

Therefore, (xn1 )′ → x′1 in L1(R) and L2(R). Notice that it was important that (xn1 )′

was uniformly bounded in L∞(R), not just that (xn1 )′ − 1 ∈ L∞(R) for all n, which
is what we get from the definition of F .

Proof. We start by proving that un → u in L∞(R). By (3.1) and the Cauchy Schwarz
inequality, we have

(u(x)− un(x))2

= 2

∫ x

−∞
(u− un)(ux − unx)(y) dy

=

∫ x

−∞
(u− un)

(
1

c(u)
(R− S)− 1

c(un)
(Rn − Sn)

)
(y) dy
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≤
∫
R
κ|u− un|(|R|+ |Rn|+ |S|+ |Sn|)(y) dy

≤ κ||u− un||L2(R)

(
||R||L2(R) + ||Rn||L2(R) + ||S||L2(R) + ||Sn||L2(R)

)
≤ κ||u− un||L2(R)(2||R||L2(R) + ||R−Rn||L2(R) + 2||S||L2(R) + ||S − Sn||L2(R)),

which implies, since Rn → R, Sn → S and un → u in L2(R), that un → u in L∞(R).
Let

ψ = (ψ1, ψ2) = L(u,R, S, ρ, σ, µ, ν)

and
ψn = (ψn1 , ψ

n
2 ) = L(un, Rn, Sn, ρn, σn, µn, νn).

We will only prove the results for the components of ψ1, the proof for ψ2 can be
done in a similar way.

Let f = 1
4
(R2 + c(u)ρ2) and fn = 1

4
((Rn)2 + c(un)(ρn)2). From (3.2) we have

µ((−∞, x)) =
∫ x
−∞ f(z) dz and µn((−∞, x)) =

∫ x
−∞ f

n(z) dz, since µ and µn are
absolutely continuous measures. Consider the functions

F (x) = x+

∫ x

−∞
f(z) dz and F n(x) = x+

∫ x

−∞
fn(z) dz,

which are strictly increasing and continuous. By (3.12a), we have that F (x1(X)) =
X and F n(xn1 (X)) = X for all X ∈ R, which implies that x1 and xn1 are strictly
increasing. Since x−1

1 = F and (xn1 )−1 = F n, the inverses x−1
1 and (xn1 )−1 exist and

are strictly increasing. We prove that (xn1 )−1 → x−1
1 in L∞(R). Since

|x−1
1 (x)− (xn1 )−1(x)| ≤ ||f − fn||L1(R)

we have to show that fn → f in L1(R). By using the estimate

(7.94)

∣∣∣∣ 1

c(u)
− 1

c(un)

∣∣∣∣ =

∣∣∣∣ ∫ u

un
− c
′(w)

c2(w)
dw

∣∣∣∣ ≤ κ2k1|u− un|

and the Cauchy–Schwarz inequality, we find

||f − fn||L1(R) =
1

4

∫
R
|R2 − (Rn)2 + ρ2(c(u)− c(un)) + c(un)(ρ2 − (ρn)2)|(x) dx

≤ 1

4

∫
R

(
|R2 − (Rn)2|+ k1ρ

2|u− un|+ κ|ρ2 − (ρn)2|
)
(x) dx

≤ 1

4
||R +Rn||L2(R)||R−Rn||L2(R) +

k1

4
||ρ||2L2(R)||u− un||L∞(R)

+
κ

4
||ρ+ ρn||L2(R)||ρ− ρn||L2(R)

≤ 1

4

(
2||R||L2(R) + ||R−Rn||L2(R)

)
||R−Rn||L2(R)

+
k1

4
||ρ||2L2(R)||u− un||L∞(R)

+
κ

4

(
2||ρ||L2(R) + ||ρ− ρn||L2(R)

)
||ρ− ρn||L2(R).

Since Rn → R and ρn → ρ in L2(R), and un → u in L∞(R), it follows that fn → f
in L1(R). Therefore (xn1 )−1 → x−1

1 in L∞(R).
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We prove that xn1 → x1 in L∞(R). We first consider the case xn1 (X) ≤ x1(X). By
direct calculations we get

x1(X)− xn1 (X) = −
∫ x1(X)

−∞
f(x) dx+

∫ xn1 (X)

−∞
fn(x) dx(7.95)

= −
∫ x1(X)

−∞
(f(x)− fn(x)) dx−

∫ x1(X)

xn1 (X)

fn(x) dx

≤ −
∫ x1(X)

−∞
(f(x)− fn(x)) dx,

since fn ≥ 0. If x1(X) ≤ xn1 (X), we get in a similar way that

(7.96) xn1 (X)− x1(X) ≤
∫ x1(X)

−∞
(f(x)− fn(x)) dx.

Combining (7.95) and (7.96), we end up with

|x1(X)− xn1 (X)| ≤ ||f − fn||L1(R),

which implies, since fn → f in L1(R), that xn1 → x1 in L∞(R). Using (3.12c) we
get Jn1 → J1 in L∞(R).

We prove that (xn1 )′ → x′1 in L1(R). As in (7.2) we get

(xn1 )′ =
1

fn ◦ xn1 + 1
and x′1 =

1

f ◦ x1 + 1
,

so that

(7.97) (xn1 )′ − x′1 = (f ◦ x1 − fn ◦ xn1 )(xn1 )′x′1.

For every ε > 0, there exists a function l in Cc(R) such that ||f − l||L1(R) ≤ ε. Here
Cc(R) denotes the space of continuous functions with compact support. Applying
the triangle inequality in (7.97) yields∫

R
|x′1(X)− (xn1 )′(X)| dX(7.98)

≤
∫
R
|f ◦ x1(X)− l ◦ x1(X)|x′1(X) dX +

∫
R
|l ◦ x1(X)− l ◦ xn1 (X)| dX

+

∫
R
|l ◦ xn1 (X)− f ◦ xn1 (X)|(xn1 )′(X) dX

+

∫
R
|f ◦ xn1 (X)− fn ◦ xn1 (X)|(xn1 )′(X) dX

= 2||f − l||L1(R) + ||l ◦ x1 − l ◦ xn1 ||L1(R) + ||f − fn||L1(R),

by a change of variables. Furthermore we used that 0 ≤ x′1 ≤ 1 and 0 ≤ (xn1 )′ ≤ 1.
It remains to show that lim

n→∞
||l ◦ x1 − l ◦ xn1 ||L1(R) = 0. We have l ◦ xn1 → l ◦ x1

pointwise almost everywhere. In order to use the dominated convergence theorem
we have to show that l ◦ xn1 can be uniformly bounded by a function which belongs
to L1(R). We prove a slightly more general result which will be used many times
throughout the text.
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Lemma 7.6. Assume that g ∈ Cc(R), and that h and hn satisfy h − Id, hn − Id ∈
L∞(R) and hn → h in L∞(R). Then there exists a constant 0 < K < ∞ that is
independent of n such that

(7.99) |g ◦ hn| ≤ ||g||L∞(R)χ[−K,K],

where χ[−K,K] denotes the indicator function of the interval [−K,K].

Proof. Since g has compact support there is a constant 0 < k < ∞ such that
supp(g) ⊂ [−k, k]. Writing hn(x) = hn(x)−h(x) +h(x)−x+x, we get {x | hn(x) ∈
[−k, k]} ⊂ [−Kn, Kn] where Kn = k+ ||h−hn||L∞(R) + ||h− Id ||L∞(R). Since hn → h
in L∞(R) we can find a constant M such that ||h − hn||L∞(R) ≤ M for all n. If we
set K = k +M + ||h− Id ||L∞(R) we get

|g ◦ hn(x)| ≤ |g ◦ hn(x)|χ[−K,K] ≤ ||g||L∞(R)χ[−K,K],

which proves (7.99). �

From (7.99) we conclude that l ◦ xn1 can be uniformly bounded by an L1(R) func-
tion. By the dominated convergence theorem we obtain lim

n→∞
||l◦x1−l◦xn1 ||L1(R) = 0.

We conclude that the right-hand side of (7.98) can be made arbitrarily small, so that
(xn1 )′ → x′1 in L1(R) and as an immediate consequence (Jn1 )′ → J ′1 in L1(R).

We show that Un
1 → U1 in L∞(R). By (3.12d) and the Cauchy–Schwarz inequality

we get∣∣U1(X)− Un
1 (X)

∣∣ ≤ ∣∣u(x1(X))− u(xn1 (X))
∣∣+
∣∣u(xn1 (X))− un(xn1 (X))

∣∣
≤
∣∣∣∣ ∫ x1(X)

xn1 (X)

ux(x) dx

∣∣∣∣+
∣∣u(xn1 (X))− un(xn1 (X))

∣∣
≤ ||ux||L2(R)||x1 − xn1 ||

1
2

L∞(R) + ||u− un||L∞(R).

From (3.1) we have ||ux||L2(R) ≤ κ
2
(||R||L2(R) + ||S||L2(R)), and since xn1 → x1 and

un → u in L∞(R) we conclude that Un
1 → U1 in L∞(R).

Let us prove that Un
1 → U1 in L2(R). Since u ∈ H1(R) there is for every ε > 0

a continuous function η with compact support such that ||u − η||L2(R) ≤ ε and
||u− η||L∞(R) ≤ ε. We have

||U1 − Un
1 ||L2(R) ≤ ||u ◦ x1 − η ◦ x1||L2(R) + ||η ◦ x1 − η ◦ xn1 ||L2(R)(7.100)

+ ||η ◦ xn1 − u ◦ xn1 ||L2(R) + ||u ◦ xn1 − un ◦ xn1 ||L2(R).

Let

D1 =

{
X ∈ R | x′1(X) <

1

2

}
and D2 =

{
Y ∈ R | x′2(Y ) <

1

2

}
.

Observe that

meas(D1) ≤
∫
R

2J ′1(X) dX and meas(D2) ≤
∫
R

2J ′2(Y ) dY,

since J ′i = 1− x′i, i = 1, 2. Since lim
X→−∞

J1(X) = lim
Y→−∞

J2(Y ) = 0 we get

meas(D1) ≤ 2||J1||L∞(R) and meas(D2) ≤ 2||J2||L∞(R).



A REGULARIZED SYSTEM FOR THE NONLINEAR VARIATIONAL WAVE EQUATION 161

In a similar way we find that the measures of the sets

Dn
1 =

{
X ∈ R | (xn1 )′(X) <

1

2

}
and Dn

2 =

{
Y ∈ R | (xn2 )′(Y ) <

1

2

}
have the bounds

meas(Dn
1 ) ≤ 2||Jn1 ||L∞(R) and meas(Dn

2 ) ≤ 2||Jn2 ||L∞(R).

Since Jni → Ji in L∞(R), we can find constants E1 and E2 that are independent of
n such that meas(Dn

1 ) ≤ E1 and meas(Dn
2 ) ≤ E2 for all n. We have

||u ◦ x1 − η ◦ x1||2L2(R)(7.101)

=

∫
D1

(
u ◦ x1(X)− η ◦ x1(X)

)2
dX +

∫
Dc1

(
u ◦ x1(X)− η ◦ x1(X)

)2
dX

≤ meas(D1)||u− η||2L∞(R) + 2

∫
Dc1

(
u ◦ x1(X)− η ◦ x1(X)

)2
x′1(X) dX

≤ meas(D1)||u− η||2L∞(R) + 2

∫
R

(
u ◦ x1(X)− η ◦ x1(X)

)2
x′1(X) dX

= meas(D1)||u− η||2L∞(R) + 2||u− η||2L2(R)

by a change of variables. Similarly,

(7.102) ||η ◦ xn1 − u ◦ xn1 ||2L2(R) ≤ E1||u− η||2L∞(R) + 2||u− η||2L2(R)

and
||u ◦ xn1 − un ◦ xn1 ||2L2(R) ≤ E2||u− un||2L∞(R) + 2||u− un||2L2(R).

Since un → u in L2(R) and L∞(R) we get that

(7.103) lim
n→∞

||u ◦ xn1 − un ◦ xn1 ||L2(R) = 0.

For the remaining term in (7.100) we use the dominated convergence theorem.
We have η ◦ xn1 → η ◦ x1 pointwise almost everywhere, and by Lemma 7.6 we find
that η ◦ xn1 can be uniformly bounded by an L2(R) function. By the dominated
convergence theorem we get

(7.104) lim
n→∞

||η ◦ x1 − η ◦ xn1 ||L2(R) = 0.

From (7.103) and (7.104), and since the right-hand sides of (7.101) and (7.102)
can be made arbitrarily small, we conclude that Un

1 → U1 in L2(R).
We prove that Kn

1 → K1 in L∞(R). By (3.12f) we get

K1(X)−Kn
1 (X) =

∫ X

−∞

[
J ′1(X̄)

c(U1(X̄))
− (Jn1 )′(X̄)

c(Un
1 (X̄))

]
dX̄(7.105)

=

∫ X

−∞
J ′1(X̄)

[
1

c(U1(X̄))
− 1

c(Un
1 (X̄))

]
dX̄

+

∫ X

−∞

1

c(Un
1 (X̄))

[
J ′1(X̄)− (Jn1 )′(X̄)

]
dX̄.
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For the first term on the right-hand side we use the Cauchy–Schwarz inequality and
get ∣∣∣∣ ∫ X

−∞
J ′1(X̄)

[
1

c(U1(X̄))
− 1

c(Un
1 (X̄))

]
dX̄

∣∣∣∣
≤ ||J ′1||L2(R)

∣∣∣∣ ∫ X

−∞

(∫ U1(X̄)

Un1 (X̄)

− c
′(U)

c2(U)
dU

)2

dX̄

∣∣∣∣ 1
2

≤ k1κ
2||J ′1||L2(R)||U1 − Un

1 ||L2(R),

and for the second term we have∣∣∣∣ ∫ X

−∞

1

c(Un
1 (X̄))

[
J ′1(X̄)− (Jn1 )′(X̄)

]
dX̄

∣∣∣∣ ≤ κ||J ′1 − (Jn1 )′||L1(R),

which implies that Kn
1 → K1 in L∞(R).

The above proof in fact also shows that (Kn
1 )′ → K ′1 in L1(R). This is because∫

R

∣∣K ′1(X)− (Kn
1 )′(X)

∣∣ dX =

∫
R

∣∣∣∣ J ′1(X)

c(U1(X))
− (Jn1 )′(X)

c(Un
1 (X))

∣∣∣∣ dX,
which is very similar to the term we estimated above.

We prove that Hn
1 → H1 in L2(R). Since ρ and ρn belong to L2(R) there exist

for every ε > 0 functions φ and φn in Cc(R) such that ||ρ − φ||L2(R) ≤ ε and
||ρn− φn||L2(R) ≤ ε. Since ρn → ρ in L2(R) we can for every ε > 0 choose n so large
that ||ρ − ρn||L2(R) ≤ ε. This implies that for large n we have ||φ − φn||L2(R) ≤ 3ε.
From (3.12g) we have

H1 −Hn
1 =

1

2
x′1(ρ ◦ x1 − φ ◦ x1) +

1

2
((φ ◦ x1)x′1 − (φn ◦ xn1 )(xn1 )′)

+
1

2
(xn1 )′(φn ◦ xn1 − ρn ◦ xn1 ),

so that

||H1 −Hn
1 ||L2(R) ≤

1

2
||x′1(ρ ◦ x1 − φ ◦ x1)||L2(R)(7.106)

+
1

2
||(φ ◦ x1)x′1 − (φn ◦ xn1 )(xn1 )′||L2(R)

+
1

2
||(xn1 )′(φn ◦ xn1 − ρn ◦ xn1 )||L2(R).

Since 0 ≤ x′1 ≤ 1 we get for the first term on the right-hand side by a change of
variables,

||x′1(ρ ◦ x1 − φ ◦ x1)||2L2(R) ≤
∫
R
x′1(X)(ρ(x1(X))− φ(x1(X)))2 dX(7.107)

= ||ρ− φ||2L2(R).

Similarly we get for the third term,

(7.108) ||(xn1 )′(φn ◦ xn1 − ρn ◦ xn1 )||L2(R) ≤ ||ρn − φn||L2(R).

For the second term we have

||(φ ◦ x1)x′1 − (φn ◦ xn1 )(xn1 )′||L2(R)(7.109)
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≤ ||(φ ◦ x1)(x′1 − (xn1 )′)||L2(R) + ||(xn1 )′(φ ◦ x1 − φ ◦ xn1 )||L2(R)

+ ||(xn1 )′(φ ◦ xn1 − φn ◦ xn1 )||L2(R)

≤
√

2||φ||L∞(R)||x′1 − (xn1 )′||
1
2

L1(R) + ||φ ◦ x1 − φ ◦ xn1 ||L2(R)

+ ||φ− φn||L2(R),

where we used that 0 ≤ x′1 ≤ 1, 0 ≤ (xn1 )′ ≤ 1, and a change of variables for the last
term on the right-hand side. We have φ ◦ xn1 → φ ◦ x1 pointwise almost everywhere,
and by Lemma 7.6 we get that φ◦xn1 can be uniformly bounded by an L2(R) function.
By the dominated convergence theorem we have lim

n→∞
||φ ◦ x1 − φ ◦ xn1 ||L2(R) = 0.

Using the estimates (7.107)-(7.109) in (7.106) we observe that all terms on the
right-hand side can be made arbitrarily small, which implies that Hn

1 → H1 in
L2(R).

We can prove in more or less the same way that V n
1 → V1 in L2(R), where we also

have to use that Un
1 → U1 in L∞(R) and the boundedness of c and c′. �

Lemma 7.7. Let (ψ1, ψ2) and (ψn1 , ψ
n
2 ) belong to F , where ψi = (xi, Ui, Ji, Ki, Vi, Hi)

and ψni = (xni , U
n
i , J

n
i , K

n
i , V

n
i , H

n
i ). Assume that xi and xni are strictly increasing,

and that xi + Ji = Id, and xni + Jni = Id. Consider

(X ,Y ,Z,V ,W , p, q) = C(ψ1, ψ2)

and
(X n,Yn,Zn,Vn,Wn, pn, qn) = C(ψn1 , ψ

n
2 ).

Assume

xni → xi, (xni )−1 → x−1
i , Un

i → Ui, Jni → Ji, Kn
i → Ki in L∞(R),

Un
i → Ui, V n

i → Vi, Hn
i → Hi in L2(R),

(xni )′ → x′i, (Jni )′ → J ′i , (Kn
i )′ → K ′i in L2(R)

for i = 1, 2. Then X , Y, X n and Yn are strictly increasing, and

X n → X , Yn → Y , Zni → Zi in L∞(R),

Zn3 → Z3, Vni → Vi, Wn
i →Wi, pn → p, qn → q in L2(R)

for i = 1, . . . , 5.

Proof. Since xi and xni are continuous and strictly increasing for i = 1, 2, we have
by (3.28) that for every s ∈ R there exist unique points X (s) and X n(s) such that

x1(X (s)) = x2(2s−X (s)) and xn1 (X n(s)) = xn2 (2s−X n(s)).

Moreover, X and X n are strictly increasing and continuous. It follows that Y and
Yn are strictly increasing and continuous. Thus, the inverse functions X−1, Y−1,
(X n)−1 and (Yn)−1 exist, and they are continuous and strictly increasing.

We prove that X n → X in L∞(R). To begin with we show that Jni ◦ (xni )−1 →
Ji ◦ x−1

i in L∞(R). Write

Ji ◦x−1
i (X)−Jni ◦ (xni )−1(X) =

∫ x−1
i (X)

(xni )−1(X)

J ′i(Z) dZ+Ji ◦ (xni )−1(X)−Jni ◦ (xni )−1(X)

to get

|Ji ◦ x−1
i (X)− Jni ◦ (xni )−1(X)| ≤ ||x−1

i − (xni )−1||L∞(R) + ||Ji − Jni ||L∞(R).
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We used that 0 ≤ J ′i ≤ 1, where the upper bound comes from the identity x′i+J
′
i = 1,

and x′i ≥ 0. Using the convergence assumptions implies that Jni ◦ (xni )−1 → Ji ◦ x−1
i

in L∞(R).
We insert X = X (s) in x1(X) + J1(X) = X and get

(7.110) X (s) = x1 ◦ X (s) + J1 ◦ X (s) = x1 ◦ X (s) + J1 ◦ x−1
1 ◦ x1 ◦ X (s).

Similarly we get

(7.111) Y(s) = x2 ◦ Y(s) + J2 ◦ Y(s) = x1 ◦ X (s) + J2 ◦ x−1
2 ◦ x1 ◦ X (s),

where we used that x1(X (s)) = x2(Y(s)). The expressions for X n and Yn are defined
in a similar way. By (2.40c),

X (s) + Y(s)−X n(s)− Yn(s) = 0,

which combined with the above expressions yields

2
(
x1 ◦ X (s)− xn1 ◦ X n(s)

)
+ J1 ◦ x−1

1 ◦ x1 ◦ X (s)− Jn1 ◦ (xn1 )−1 ◦ xn1 ◦ X n(s)

+ J2 ◦ x−1
2 ◦ x1 ◦ X (s)− Jn2 ◦ (xn2 )−1 ◦ xn1 ◦ X n(s) = 0.

Since Jni ◦ (xni )−1 is increasing we get

2
∣∣x1 ◦ X (s)− xn1 ◦ X n(s)

∣∣
+ |J1 ◦ x−1

1 ◦ x1 ◦ X (s)− J1 ◦ x−1
1 ◦ xn1 ◦ X n(s)|

+ |J2 ◦ x−1
2 ◦ x1 ◦ X (s)− J2 ◦ x−1

2 ◦ xn1 ◦ X n(s)|
≤ |Jn1 ◦ (xn1 )−1 ◦ xn1 ◦ X n(s)− J1 ◦ x−1

1 ◦ xn1 ◦ X n(s)|
+ |Jn2 ◦ (xn2 )−1 ◦ xn1 ◦ X n(s)− J2 ◦ x−1

2 ◦ xn1 ◦ X n(s)|,
Therefore

||x1 ◦ X − xn1 ◦ X n||L∞(R) ≤
1

2
||Jn1 ◦ (xn1 )−1 − J1 ◦ x−1

1 ||L∞(R)

+
1

2
||Jn2 ◦ (xn2 )−1 − J2 ◦ x−1

2 ||L∞(R),

||J1 ◦ x−1
1 ◦ x1 ◦ X − J1 ◦ x−1

1 ◦ xn1 ◦ X n||L∞(R) ≤ ||Jn1 ◦ (xn1 )−1 − J1 ◦ x−1
1 ||L∞(R)

+ ||Jn2 ◦ (xn2 )−1 − J2 ◦ x−1
2 ||L∞(R),

and

||J1 ◦ X − Jn1 ◦ X n||L∞(R) = ||J1 ◦ x−1
1 ◦ x1 ◦ X − Jn1 ◦ (xn1 )−1 ◦ xn1 ◦ X n||L∞(R)

≤ 2||Jn1 ◦ (xn1 )−1 − J1 ◦ x−1
1 ||L∞(R)

+ ||Jn2 ◦ (xn2 )−1 − J2 ◦ x−1
2 ||L∞(R).

Thus, we showed that xn1 ◦ X n → x1 ◦ X and Jn1 ◦ X n → J1 ◦ X in L∞(R) since
Jni ◦ (xni )−1 − Ji ◦ x−1

i in L∞(R).
From (7.110), (2.40c), (7.111), (3.30b) and (3.30d) it immediately follows that
X n → X , Yn → Y , Zn2 → Z2 and Zn4 → Z4 in L∞(R).

We show that Zn5 → Z5 in L∞(R). By (3.30e) we have

Z5(s)−Zn5 (s) = K1(X (s))−K1(X n(s)) +K1(X n(s))−Kn
1 (X n(s))

+K2(Y(s))−K2(Yn(s)) +K2(Yn(s))−Kn
2 (Yn(s))
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and for the first line we get∣∣K1(X (s))−K1(X n(s)) +K1(X n(s))−Kn
1 (X n(s))

∣∣
=

∣∣∣∣ ∫ X (s)

Xn(s)

K ′1(X) dX +K1(X n(s))−Kn
1 (X n(s))

∣∣∣∣
≤ ||K ′1||L∞(R)||X − X n||L∞(R) + ||K1 −Kn

1 ||L∞(R).

A similar estimate for the second line yields Zn5 → Z5 in L∞(R). By (3.30c) and
the Cauchy–Schwarz inequality we have

|Z3(s)−Zn3 (s)| ≤
∣∣∣∣ ∫ X (s)

Xn(s)

U ′1(X) dX

∣∣∣∣+ |U1(X n(s))− Un
1 (X n(s))|

≤ ||U ′1||L2(R)||X − X n||
1
2

L∞(R) + ||U1 − Un
1 ||L∞(R),

which shows that Zn3 → Z3 in L∞(R).
We prove that Zn3 → Z3 in L2(R). We have

(7.112) ||Z3 −Zn3 ||2L2(R) = ||Z3||2L2(R) − 2〈Z3,Zn3 〉+ ||Zn3 ||2L2(R),

where 〈·, ·〉 denotes the inner product on L2(R). Since Ẋ + Ẏ = 2 we get from
(3.30c) and a change of variables,

||Z3||2L2(R) =
1

2

∫
R
U2

1 (X (s))Ẋ (s) ds+
1

2

∫
R
U2

2 (Y(s))Ẏ(s) ds(7.113)

=
1

2
||U1||2L2(R) +

1

2
||U2||2L2(R),

and similarly

(7.114) ||Zn3 ||2L2(R) =
1

2
||Un

1 ||2L2(R) +
1

2
||Un

2 ||2L2(R).

Using that Ẋ n + Ẏn = 2 we have

2〈Z3,Zn3 〉 =

∫
R
Z3(s)Zn3 (s)Ẋ n(s) ds+

∫
R
Z3(s)Zn3 (s)Ẏn(s) ds.

Since Z3 ∈ L2(R) there exists for every ε > 0 a function φ ∈ C∞c (R) such that
||Z3 − φ||L2(R) ≤ ε. Write∫

R
Z3(s)Zn3 (s)Ẋ n(s) ds

=

∫
R

[
Z3(s)− φ(s)

]
Zn3 (s)Ẋ n(s) ds+

∫
R
φ(s)Zn3 (s)Ẋ n(s) ds−

∫
R
φ(s)Z3(s)Ẋ (s) ds

+

∫
R
Z3(s)Ẋ (s)

[
φ(s)−Z3(s)

]
ds+

∫
R
Z2

3 (s)Ẋ (s) ds

= T n1 +

∫
R
Z2

3 (s)Ẋ (s) ds.

By a change of variables we get

(7.115)

∫
R
Z3(s)Zn3 (s)Ẋ n(s) ds = T n1 + ||U1||2L2(R)
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and in a similar way we obtain

(7.116)

∫
R
Z3(s)Zn3 (s)Ẏn(s) ds = T n2 + ||U2||2L2(R),

where T n2 is equal to T n1 with X (s) and X n(s) replaced by Y(s) and Yn(s), respec-
tively.

Using (7.113)-(7.116) in (7.112) we get

||Z3 −Zn3 ||2L2(R) =
1

2

(
||Un

1 ||2L2(R) − ||U1||2L2(R) + ||Un
2 ||2L2(R) − ||U2||2L2(R)

)
(7.117)

− T n1 − T n2 .
The strong convergence Un

i → Ui in L2(R) implies that ||Un
i ||L2(R) → ||Ui||L2(R) for

i = 1, 2. Thus, it remains to show that T ni → 0 for i = 1, 2.
Using (3.30c) and 0 ≤ Ẋ n ≤ 2 we get by the Cauchy–Schwarz inequality and a

change of variables,

(7.118)

∣∣∣∣ ∫
R
Z3(s)Ẋ (s)

[
φ(s)−Z3(s)

]
ds

∣∣∣∣ ≤ √2||U1||L2(R)||Z3 − φ||L2(R),

and similarly ∣∣∣∣ ∫
R

[
Z3(s)− φ(s)

]
Zn3 (s)Ẋ n(s) ds

∣∣∣∣(7.119)

≤
√

2
(
||Un

1 − U1||L2(R) + ||U1||L2(R)

)
||Z3 − φ||L2(R).

Since φ has compact support, there exists k > 0 such that supp(φ) ⊂ [−k, k].
Integration by parts yields∫

R
φ(s)Z3(s)Ẋ (s) ds =

∫ k

−k
φ(s)Z3(s)Ẋ (s) ds = −

∫ k

−k
φ′(s)

∫ s

−k
Z3(t)Ẋ (t) dt ds

where the first term in the integration by parts equals zero because φ has compact
support and the second integral is finite, since∣∣∣∣ ∫ s

−k
Z3(t)Ẋ (t) dt

∣∣∣∣ =

∣∣∣∣ ∫ X (s)

X (−k)

U1(X) dX

∣∣∣∣ ≤ (2||X − Id ||L∞(R) + 2k
) 1

2 ||U1||L2(R)

for s ∈ [−k, k]. Here we used a change of variables and the estimate∣∣X (k)−X (−k)
∣∣ =

∣∣(X (k)− k)− (X (−k)− (−k)) + 2k
∣∣(7.120)

≤ 2||X − Id ||L∞(R) + 2k.

We have ∫
R
φ(s)Z3(s)Ẋ (s) ds = −

∫ k

−k
φ′(s)

∫ X (s)

X (−k)

U1(X) dX ds

and similarly we obtain∫
R
φ(s)Zn3 (s)Ẋ n(s) ds = −

∫ k

−k
φ′(s)

∫ Xn(s)

Xn(−k)

Un
1 (X) dX ds.

By the Cauchy–Schwarz inequality we get∣∣∣∣ ∫ X (s)

X (−k)

U1(X) dX −
∫ Xn(s)

Xn(−k)

Un
1 (X) dX

∣∣∣∣(7.121)
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≤
∣∣∣∣ ∫ X (s)

X (−k)

[
U1(X)− Un

1 (X)
]
dX

∣∣∣∣
+

∣∣∣∣ ∫ X (−k)

Xn(−k)

Un
1 (X) dX

∣∣∣∣+

∣∣∣∣ ∫ X (s)

Xn(s)

Un
1 (X) dX

∣∣∣∣
≤ ||U1 − Un

1 ||L2(R)

∣∣X (k)−X (−k)
∣∣ 1

2 + 2||Un
1 ||L2(R)||X − X n||

1
2

L∞(R),

which implies by (7.120) that∣∣∣∣ ∫
R
φ(s)Zn3 (s)Ẋ n(s) ds−

∫
R
φ(s)Z3(s)Ẋ (s) ds

∣∣∣∣
≤ 2k||φ′||L∞(R)

[
||U1 − Un

1 ||L2(R)

(
2||X − Id ||L∞(R) + 2k

) 1
2

+ 2
(
||Un

1 − U1||L2(R) + ||U1||L2(R)

)
||X − X n||

1
2

L∞(R)

]
.

Therefore

(7.122) lim
n→∞

∣∣∣∣ ∫
R
φ(s)Zn3 (s)Ẋ n(s) ds−

∫
R
φ(s)Z3(s)Ẋ (s) ds

∣∣∣∣ = 0.

From (7.118), (7.119) and (7.122) we conclude that T n1 → 0 as n → ∞. In a
similar way we can prove that T n2 → 0. This implies by (7.117) that Zn3 → Z3 in
L2(R).

Using (3.31a) we get∣∣∣∣V1 − Vn1
∣∣∣∣
L2(R)

≤
∣∣∣∣∣∣∣∣x′1( 1

2c(U1)
− 1

2c(Un
1 )

)∣∣∣∣∣∣∣∣
L2(R)

+

∣∣∣∣∣∣∣∣ 1

2c(Un
1 )

(
x′1 − (xn1 )′

)∣∣∣∣∣∣∣∣
L2(R)

,

and by inserting the estimates∣∣∣∣∣∣∣∣x′1( 1

2c(U1)
− 1

2c(Un
1 )

)∣∣∣∣∣∣∣∣2
L2(R)

≤ 1

4

(
||x′1 − 1||L∞(R) + 1

)2
∫
R

(∫ U1(X)

Un1 (X)

− c
′(U)

c2(U)
dU

)2

dX

≤ 1

4
k2

1κ
4
(
||x′1 − 1||L∞(R) + 1

)2∣∣∣∣U1 − Un
1

∣∣∣∣2
L2(R)

and ∣∣∣∣∣∣∣∣ 1

2c(Un
1 )

(
x′1 − (xn1 )′

)∣∣∣∣∣∣∣∣
L2(R)

≤ 1

2
κ
∣∣∣∣x′1 − (xn1 )′

∣∣∣∣
L2(R)

we see that Vn1 → V1 in L2(R).
From (3.31b)-(3.31f) and the assumptions we immediately get that Vni → Vi,

i = 2, . . . , 5 and pn → p in L2(R).
The corresponding results for W and q can be proved in a similar way. �

Theorem 7.3 deals with convergence of the elements u, ρ and σ for (u,R, S, ρ, σ, µ, ν)
in D, see (P1”) and (P2”). The following result indicates the type of convergence we
have to assume for the elements of the set G0 in order to get weak-star convergence
of the remaining elements in D.
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Lemma 7.8. Let Θ = (X ,Y ,Z,V ,W , p, q) and Θn = (X n,Yn,Zn,Vn,Wn, pn, qn)
belong to G0. Consider

(u,R, S, ρ, σ, µ, ν) = M ◦D(Θ)

and
(un, Rn, Sn, ρn, σn, µn, νn) = M ◦D(Θn).

Assume that
X n → X , Yn → Y , Zni → Zi in L∞(R),

Zn3 → Z3, Vni → Vi, Wn
i →Wi, pn → p, qn → q in L2(R),

for i = 1, . . . , 5. Then
un → u in L∞(R)

and

Rn ∗
⇀ R, Sn

∗
⇀ S, ρn

∗
⇀ ρ, σn

∗
⇀ σ, µn

∗
⇀ µ and νn

∗
⇀ ν.

Observe that there are no assumptions on the monotonicity of (X ,Y) and (X n,Yn).
This means that as functions of s they are nondecreasing, but not necessarily strictly
increasing.

From these results it follows immediately that unx
∗
⇀ ux due to (3.1).

Proof. We will use Lemma 5.8. For any x, there exist s and sn, which are not
necessarily unique, such that x = Z2(s) and x = Zn2 (sn). By (5.21a), we have
u(x) = Z3(s) and un(x) = Zn3 (sn). We have

(7.123) u(x)− un(x) = Z3(s)−Zn3 (sn) = Z3(s)−Z3(sn) + Z3(sn)−Zn3 (sn).

We estimate the difference Z3(s) − Z3(sn). We assume that sn ≤ s, the other case
can be treated similar. We have

|Z3(s)−Z3(sn)| =
∣∣∣∣∫ s

sn
Ż3(s̄) ds̄

∣∣∣∣(7.124)

=

∣∣∣∣∫ s

sn
(V3(X (s̄))Ẋ (s̄) +W3(Y(s̄))Ẏ(s̄)) ds̄

∣∣∣∣
≤
(∫ s

sn
Ẋ (s̄) ds̄

) 1
2
(∫ s

sn
V2

3 (X (s̄))Ẋ (s̄) ds̄

) 1
2

+

(∫ s

sn
Ẏ(s̄) ds̄

) 1
2
(∫ s

sn
W2

3 (Y(s̄))Ẏ(s̄) ds̄

) 1
2

by the Cauchy–Schwarz inequality. From (3.24c), we get∫ s

sn
V2

3 (X (s̄))Ẋ (s̄) ds̄(7.125)

=

∫ s

sn

(
2V2(X (s̄))V4(X (s̄))

c2(Z3(s̄))
− p2(X (s̄))

c(Z3(s̄))

)
Ẋ (s̄) ds̄

≤
∫ s

sn

2V2(X (s̄))V4(X (s̄))

c2(Z3(s̄))
Ẋ (s̄) ds̄

≤ κ2||Va4 ||L∞(R)

∫ s

sn
2V2(X (s̄))Ẋ (s̄) ds̄



A REGULARIZED SYSTEM FOR THE NONLINEAR VARIATIONAL WAVE EQUATION 169

= κ2||Va4 ||L∞(R)

∫ s

sn
Ż2(s̄) ds̄ by (3.27)

= κ2||Va4 ||L∞(R)(Z2(s)−Z2(sn))

= κ2||Va4 ||L∞(R)(Zn2 (sn)−Z2(sn)) since Z2(s) = Zn2 (sn)

≤ κ2||Va4 ||L∞(R)||Zn2 −Z2||L∞(R).

In a similar way, we obtain

(7.126)

∫ s

sn
W2

3 (Y(s̄))Ẏ(s̄) ds̄ ≤ κ2||Wa
4 ||L∞(R)||Zn2 −Z2||L∞(R).

Using Z2(s) = Zn2 (sn) once more we get∫ s

sn
Ẋ (s̄) ds̄ = X (s)−X (sn)(7.127)

=
(
X (s)− s

)
−
(
X (sn)− sn

)
−
(
Z2(s)− s

)
+
(
Z2(s)− sn

)
=
(
X (s)− s

)
−
(
X (sn)− sn

)
−
(
Z2(s)− s

)
+
(
Zn2 (sn)− sn

)
=
(
X (s)− s

)
−
(
X (sn)− sn

)
−
(
Z2(s)− s

)
+
(
Zn2 (sn)−Z2(sn)

)
+
(
Z2(sn)− sn

)
≤ 2||X − Id ||L∞(R) + 2||Z2 − Id ||L∞(R) + ||Z2 −Zn2 ||L∞(R)

Similarly, we get

(7.128)

∫ s

sn
Ẏ(s̄) ds̄ ≤ 2||Y − Id ||L∞(R) + 2||Z2 − Id ||L∞(R) + ||Z2 −Zn2 ||L∞(R).

Combining (7.125)-(7.128) in (7.124) and using that Zn2 → Z2 in L∞(R) we find
that Z3(sn)→ Z3(s). Using this and that Zn3 → Z3 in L∞(R) in (7.123) we conclude
that un → u in L∞(R).

We prove that µn
∗
⇀ µ, that is,

lim
n→∞

∫
R
φ(x) dµn =

∫
R
φ(x) dµ

for all φ ∈ C0(R). Here C0(R) is the space of continuous functions that vanish at
infinity. Since C∞c (R) is dense in C0(R) it suffices to consider test functions φ in
C∞c (R). By (5.21f) we have

(7.129)

∫
R
φ(x) dµ =

∫
R
φ(Z2(s))V4(X (s))Ẋ (s) ds.

By (3.23) and (3.24b) we have

2V4(X (s))Ẋ (s) = V4(X (s))Ẋ (s) +W4(Y(s))Ẏ(s)

+ V4(X (s))Ẋ (s)−W4(Y(s))Ẏ(s)

= Ż4(s) + c(Z3(s))
[
V5(X (s))Ẋ (s) +W5(Y(s))Ẏ(s)

]
= Ż4(s) + c(Z3(s))Ż5(s).

Inserting this in (7.129) and using integration by parts yields∫
R
φ(x) dµ =

1

2

∫
R

[
φ(Z2(s))Ż4(s) + φ(Z2(s))c(Z3(s))Ż5(s)

]
ds
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= −1

2

∫
R
φ′(Z2(s))Ż2(s)Z4(s) ds

− 1

2

∫
R

[
φ′(Z2(s))Ż2(s)c(Z3(s)) + φ(Z2(s))c′(Z3(s))Ż3(s)

]
Z5(s) ds.

Similarly we find∫
R
φ(x) dµn = −1

2

∫
R
φ′(Zn2 (s))Żn2 (s)Zn4 (s) ds

− 1

2

∫
R

[
φ′(Zn2 (s))Żn2 (s)c(Zn3 (s)) + φ(Zn2 (s))c′(Zn3 (s))Żn3 (s)

]
Zn5 (s) ds.

We subtract and get∫
R
φ(x) dµ−

∫
R
φ(x) dµn(7.130)

= −1

2

(∫
R

[
φ′(Z2(s))Ż2(s)Z4(s)− φ′(Zn2 (s))Żn2 (s)Zn4 (s)

]
ds

+

∫
R

[
φ′(Z2(s))Ż2(s)c(Z3(s))Z5(s)

− φ′(Zn2 (s))Żn2 (s)c(Zn3 (s))Zn5 (s)
]
ds

+

∫
R

[
φ(Z2(s))c′(Z3(s))Ż3(s)Z5(s)

− φ(Zn2 (s))c′(Zn3 (s))Żn3 (s)Zn5 (s)
]
ds

)
.

The three integrals on the right-hand side of (7.130) can be treated in more or less
the same way, and we only consider the second one. We have∫

R

[
φ′(Z2(s))Ż2(s)c(Z3(s))Z5(s)− φ′(Zn2 (s))Żn2 (s)c(Zn3 (s))Zn5 (s)

]
ds(7.131)

=

∫
R
Ż2(s)c(Z3(s))Z5(s)

[
φ′(Z2(s))− φ′(Zn2 (s))

]
ds (In1 )

+

∫
R
φ′(Zn2 (s))c(Z3(s))Z5(s)

[
Ż2(s)− Żn2 (s)

]
ds (In2 )

+

∫
R
φ′(Zn2 (s))Żn2 (s)c(Z3(s))

[
Z5(s)−Zn5 (s)

]
ds (In3 )

+

∫
R
φ′(Zn2 (s))Żn2 (s)Zn5 (s)

[
c(Z3(s))− c(Zn3 (s))

]
ds (In4 ).

We have

(7.132)
∣∣In1 ∣∣ ≤ 4κ

(
||Va2 ||L∞(R) +

1

2

)
||Z5||L∞(R)||φ′ ◦ Z2 − φ′ ◦ Zn2 ||L1(R)

since

0 ≤ Ż2(s) = 2V2(X (s))Ẋ (s) ≤ 4V2(X (s)) = 4

(
Va2 (X (s)) +

1

2

)
.

We have φ′ ◦Zn2 → φ′ ◦Z2 pointwise almost everywhere, and by Lemma 7.6 we find
that φ′ ◦ Zn2 can be uniformly bounded by an L1(R) function. By the dominated



A REGULARIZED SYSTEM FOR THE NONLINEAR VARIATIONAL WAVE EQUATION 171

convergence theorem we get lim
n→∞

||φ′ ◦ Z2 − φ′ ◦ Zn2 ||L1(R) = 0, which from (7.132)

implies lim
n→∞

In1 = 0.

Integration by parts yields

In2 =

∫
R

[
φ′′(Zn2 (s))Żn2 (s)c(Z3(s))Z5(s) + φ′(Zn2 (s))c′(Z3(s))Ż3(s)Z5(s)

+ φ′(Zn2 (s))c(Z3(s))Ż5(s)
][
Z2(s)−Zn2 (s)

]
ds

which implies

|In2 | ≤
(
κ||Z5||L∞(R)

∫
R

∣∣φ′′(Zn2 (s))
∣∣Żn2 (s) ds

+
[
2k1||Z5||L∞(R)

(
||Va3 ||L∞(R) + ||Wa

3 ||L∞(R)

)
+ 2κ

(
||Va5 ||L∞(R) + ||Wa

5 ||L∞(R)

)]
×
∫
R

∣∣φ′(Zn2 (s))
∣∣ ds)||Z2 −Zn2 ||L∞(R).

By a change of variables and an estimate as in the proof of Lemma 7.6 we get

|In2 | ≤
(
κ||Z5||L∞(R)||φ′′||L∞(R)meas

(
supp(φ′′)

)
+
[
2k1||Z5||L∞(R)

(
||Va3 ||L∞(R) + ||Wa

3 ||L∞(R)

)
+ 2κ

(
||Va5 ||L∞(R) + ||Wa

5 ||L∞(R)

)]
× C̃||φ′||L∞(R)

)
||Z2 −Zn2 ||L∞(R)

for a constant C̃ that is independent of n. Since Zn2 → Z2 in L∞(R) we get lim
n→∞

In2 =

0.
For the third integral we use a change of variables and get

|In3 | ≤ κ||Z5 −Zn5 ||L∞(R)

∫
R

∣∣φ′(Zn2 (s))
∣∣Żn2 (s) ds

≤ κmeas
(
supp(φ′)

)
||φ′||L∞(R)||Z5 −Zn5 ||L∞(R),

which implies since Zn5 → Z5 in L∞(R) that lim
n→∞

In3 = 0.

By the Cauchy–Schwarz inequality we get

|In4 | ≤ ||c(Z3)− c(Zn3 )||L∞(R)||Zn5 ||L∞(R)

∫
R

∣∣φ′(Zn2 (s))
∣∣Żn2 (s) ds

≤ ||c(Z3)− c(Zn3 )||L∞(R)

(
||Zn5 −Z5||L∞(R) + ||Z5||L∞(R)

)
||φ′(Zn2 (s))Żn2 ||L1(R)

and by inserting the estimates

||φ′(Zn2 )Żn2 ||L1(R) = ||φ′||L1(R)

≤ ||φ′||L∞(R)meas
(
supp(φ′)

)
and

||c(Z3)− c(Zn3 )||L∞(R) ≤ k1||Z3 −Zn3 ||L∞(R)
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we obtain

|In4 | ≤ k1||φ′||L∞(R)meas
(
supp(φ′)

)(
||Zn5 −Z5||L∞(R) + ||Z5||L∞(R)

)
||Z3 −Zn3 ||L∞(R)

Since Zn5 → Z5 and Zn3 → Z3 in L∞(R) we obtain lim
n→∞

In4 = 0.

We return to (7.131) and obtain

lim
n→∞

∣∣∣∣ ∫
R

[
φ′(Z2(s))Ż2(s)c(Z3(s))Z5(s)(7.133)

− φ′(Zn2 (s))Żn2 (s)c(Zn3 (s))Zn5 (s)
]
ds

∣∣∣∣ = 0.

By using (7.133) in (7.130) we get

(7.134) lim
n→∞

∣∣∣∣ ∫
R
φ(x) dµ−

∫
R
φ(x) dµn

∣∣∣∣ = 0

for all φ ∈ C∞c (R), and we conclude that µn
∗
⇀ µ. Similarly we prove that νn

∗
⇀ ν.

Next we show that ρn
∗
⇀ ρ, that is,

lim
n→∞

∫
R
ρn(x)φ(x) dx =

∫
R
ρ(x)φ(x) dx

for all φ ∈ L2(R). Since C∞c (R) is dense in L2(R), it suffices to consider test functions
φ in C∞c (R).

Consider a test function φ in C∞c (R). By (5.21d), we have∫
R
φ(x)ρ(x) dx = 2

∫
R
φ(Z2(s))p(X (s))Ẋ (s) ds

and ∫
R
φ(x)ρn(x) dx = 2

∫
R
φ(Zn2 (s))pn(X n(s))Ẋ n(s) ds.

By subtracting we get∫
R
φ(x)

[
ρ(x)− ρn(x)

]
dx(7.135)

= 2

∫
R
φ(Z2(s))

[
p(X (s))Ẋ (s)− pn(X n(s))Ẋ n(s)

]
ds (An1 )

+ 2

∫
R
pn(X n(s))Ẋ n(s)

[
φ(Z2(s))− φ(Zn2 (s))

]
ds (An2 ).

Since φ has compact support, there exists k > 0 such that supp(φ) ⊂ [−k, k].
Thus, we only integrate over s such that −k ≤ Z2(s) ≤ k in An1 . Since the quantity
Z2 − Id belongs to L∞(R), the region we integrate over is contained in

−k − ||Z2 − Id ||L∞(R) ≤ s ≤ k + ||Z2 − Id ||L∞(R),

or written more compactly, −M ≤ s ≤M with M = k+||Z2−Id ||L∞(R). Integration
by parts yields

An1 = 2

∫ M

−M
φ(Z2(s))

[
p(X (s))Ẋ (s)− pn(X n(s))Ẋ n(s)

]
ds(7.136)

= 2

[
φ(Z2(s))

∫ s

−M

[
p(X (τ))Ẋ (τ)− pn(X n(τ))Ẋ n(τ)

]
dτ

]s=M
s=−M



A REGULARIZED SYSTEM FOR THE NONLINEAR VARIATIONAL WAVE EQUATION 173

− 2

∫ M

−M
φ′(Z2(s))Ż2(s)

×
(∫ s

−M

[
p(X (τ))Ẋ (τ)− pn(X n(τ))Ẋ n(τ)

]
dτ

)
ds.

By a change of variables we have∫ s

−M

[
p(X (τ))Ẋ (τ)− pn(X n(τ))Ẋ n(τ)

]
dτ =

∫ X (s)

X (−M)

p(X) dX −
∫ Xn(s)

Xn(−M)

pn(X) dX.

Using an estimate as in (7.121) yields∣∣∣∣ ∫ s

−M

[
p(X (τ))Ẋ (τ)− pn(X n(τ))Ẋ n(τ)

]
dτ

∣∣∣∣
≤ ||p− pn||L2(R)

(
2||X − Id ||L∞(R) + 2M

) 1
2

+ 2
(
||pn − p||L2(R) + ||p||L2(R)

)
||X − X n||

1
2

L∞(R).

This implies that the first term on the right-hand side of (7.136) equals zero. More-
over, we get

|An1 | ≤ 2
[
||p− pn||L2(R)

(
2||X − Id ||L∞(R) + 2M

) 1
2

+ 2
(
||pn − p||L2(R) + ||p||L2(R)

)
||X − X n||

1
2

L∞(R)

] ∫ M

−M
|φ′(Z2(s))|Ż2(s) ds

≤ 2
[
||p− pn||L2(R)

(
2||X − Id ||L∞(R) + 2M

) 1
2

+ 2
(
||pn − p||L2(R) + ||p||L2(R)

)
||X − X n||

1
2

L∞(R)

]
||φ′||L∞(R)meas

(
supp(φ′)

)
where we used that∫ M

−M
|φ′(Z2(s))|Ż2(s) ds ≤

∫
R
|φ′(Z2(s))|Ż2(s) ds

=

∫
R
|φ′(x)| dx ≤ ||φ′||L∞(R)meas

(
supp(φ′)

)
.

Since X n → X in L∞(R) and pn → p in L2(R) we find that lim
n→∞

An1 = 0.

The second integral in (7.135) is estimated as follows. Using the Cauchy–Schwarz
inequality and that 0 ≤ Ẋ n ≤ 2 we obtain

|An2 | ≤ 2

(∫
R

(
pn(X n(s))Ẋ n(s)

)2
ds

) 1
2

||φ ◦ Z2 − φ ◦ Zn2 ||L2(R)

≤ 2
√

2||pn||L2(R)||φ ◦ Z2 − φ ◦ Zn2 ||L2(R)

≤ 2
√

2
(
||pn − p||L2(R) + ||p||L2(R)

)
||φ ◦ Z2 − φ ◦ Zn2 ||L2(R)

by a change of variables. We have φ◦Zn2 → φ◦Z2 pointwise almost everywhere, and
by Lemma 7.6 we get that φ ◦ Zn2 can be uniformly bounded by an L2(R) function,
so the dominated convergence theorem implies that lim

n→∞
||φ ◦Z2−φ ◦Zn2 ||L2(R) = 0.

Since also pn → p in L2(R) we find that lim
n→∞

An2 = 0.



174 K. GRUNERT AND A. REIGSTAD

We return to (7.135), and conclude that

lim
n→∞

∣∣∣∣ ∫
R
φ(x)

[
ρ(x)− ρn(x)

]
dx

∣∣∣∣ = 0.

Therefore, ρn
∗
⇀ ρ. In a similar way one shows that σn

∗
⇀ σ.

We prove that Rn ∗
⇀ R. Consider a test function φ in C∞c (R). By (5.21b) we can

write ∫
R
φ(x)

[
R(x)−Rn(x)

]
dx

= 2

∫
R
φ(Z2(s))c(Z3(s))

[
V3(X (s))Ẋ (s)− Vn3 (X n(s))Ẋ n(s)

]
ds

+ 2

∫
R
c(Z3(s))Vn3 (X n(s))Ẋ n(s)

[
φ(Z2(s))− φ(Zn2 (s))

]
ds

+ 2

∫
R
φ(Zn2 (s))Vn3 (X n(s))Ẋ n(s)

[
c(Z3(s))− c(Zn3 (s))

]
ds.

The first and second integral can be treated more or less like An1 and An2 in (7.135),
respectively. The last integral is estimated as follows∣∣∣∣ ∫

R
φ(Zn2 (s))Vn3 (X n(s))Ẋ n(s)

[
c(Z3(s))− c(Zn3 (s))

]
ds

∣∣∣∣
≤ ||φ||L∞(R)||(Vn3 ◦ X n)Ẋ n||L2(R)||c ◦ Z3 − c ◦ Zn3 ||L2(R)

≤
√

2k1||φ||L∞(R)

(
||Vn3 − V3||L2(R) + ||V3||L2(R)

)
||Z3 −Zn3 ||L2(R).

This implies that Rn ∗
⇀ R. In a similar way one shows that Sn

∗
⇀ S. �
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TRAVELING WAVES FOR THE NONLINEAR VARIATIONAL
WAVE EQUATION

KATRIN GRUNERT AND AUDUN REIGSTAD

Abstract. We study traveling wave solutions of the nonlinear variational wave
equation. In particular, we show how to obtain global, bounded, weak traveling
wave solutions from local, classical ones. The resulting waves consist of monotone
and constant segments, glued together at points where at least one one-sided
derivative is unbounded.

Applying the method of proof to the Camassa–Holm equation, we recover some
well-known results on its traveling wave solutions.

1. Introduction

We consider the nonlinear variational wave (NVW) equation

(1.1) utt − c(u)(c(u)ux)x = 0,

with initial data

(1.2) u|t=0 = u0 and ut|t=0 = u1.

Here, u = u(t, x) where t ≥ 0 and x ∈ R.
The NVW equation was introduced by Saxton in [17], where it is derived by

applying the variational principle to the functional∫ ∞
0

∫ ∞
−∞

(u2
t − c2(u)u2

x) dx dt.

The equation appears in the study of liquid crystals, where it describes the director
field of a nematic liquid crystal, and where the function c is given by

(1.3) c2(u) = λ1 sin2(u) + λ2 cos2(u),

where λ1 and λ2 are positive physical constants. We refer to [14] and [17] for
information about liquid crystals, and the derivation of the equation.

It is well known that derivatives of solutions of the NVW equation can develop
singularities in finite time even for smooth initial data, see [8]. A singularity means
that either ux or ut becomes unbounded pointwise while u remains continuous. The
continuation past singularities is highly nontrivial, and allows for various distinct
solutions. The most common way of continuing the solution is to require that
the energy is non-increasing, which naturally leads to the following two notions
of solutions: Dissipative solutions for which the energy is decreasing in time, see
[1, 18, 19, 20], and conservative solutions for which the energy is constant in time.
In the latter case a semigroup of solutions has been constructed in [2, 12].

2010 Mathematics Subject Classification. Primary: 35C07, 35L70; Secondary: 35B60.
Key words and phrases. Nonlinear variational wave equation, traveling waves, composite waves.
Research supported by the grants Waves and Nonlinear Phenomena (WaNP) and Wave Phe-
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2 K. GRUNERT AND A. REIGSTAD

We are interested in traveling wave solutions of (1.1) with wave speed s ∈ R, i.e.,
solutions of the form u(t, x) = w(x− st) for some bounded and continuous function
w.

A bounded traveling wave was constructed in [8], corresponding to the function
c given in (1.3). The constructed wave is a weak solution, which is continuous
and piecewise smooth. In particular, the smooth parts are monotone and at their
endpoints cusp singularities might turn up. By the latter we mean points where the
derivative is unbounded while the solution itself is bounded.

In this paper we consider local, classical traveling wave solutions of (1.1), and
study whether these can be glued together to produce globally bounded traveling
waves. The approach we use is similar to the derivation of the Rankine–Hugoniot
condition for hyperbolic conservation laws, see e.g. [13].

We assume that the function c belongs to C2(R) and that there exists 0 < α <
β <∞, such that

(1.4) α = min
u∈R

c(u) and β = max
u∈R

c(u).

Moreover, we assume that

(1.5) max
u∈R
|c′(u)| ≤ K1 and max

u∈R
|c′′(u)| ≤ K2

for positive constants K1 and K2.
The following theorem is our main result, and will be proved in the next section.

Theorem 1.1. Let c ∈ C2(R) such that α and β defined in (1.4) satisfy 0 < α <
β < ∞. Consider the continuous function w : R 7→ R composed of local, classical
traveling wave solutions of (1.1) with wave speed s ∈ R.

If |s| /∈ [α, β], then w is a monotone, classical solution, which is globally un-
bounded.

If |s| ∈ [α, β], we have the following two possibilities:
1. If for some ξ, |s| 6= c(w(ξ)) and c has a local maximum or minimum at w(ξ),

the wave w is a monotone, classical solution near ξ, which has an inflection point
at ξ.

2. If for some ξ, |s| = c(w(ξ)) and c′(w(ξ)) 6= 0, the wave w has a singularity
at ξ, meaning that the derivative is unbounded at ξ while w is continuous. Near
the singularity, the wave is a monotone, classical solution on both sides of ξ. The
following scenarios are possible:

i) The derivative has the same sign (nonzero) on both sides of ξ, and the wave
has an inflection point at ξ.

ii) The derivative has opposite sign (nonzero) on each side of ξ. Then, the wave
is either convex or concave on both sides, and the singularity is a cusp.

iii) The wave can be constant on one side of the singularity and strictly monotone
on the other side.

For |s| ∈ [α, β], a weak bounded traveling wave solution of (1.1) can be con-
structed.

We observe that case 2 of Theorem 1.1 allows for globally bounded waves w.
Excluding the trivial case of w constant on the whole real line, we then see that the
wave consists of increasing, constant, and decreasing parts, and that it has at least
two singularities. The simplest nontrivial traveling wave consists of two constant
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⇠

w

Figure 1. A traveling wave solution w(ξ) consisting of two constant
values joined together by a strictly decreasing part.

values joined together by a monotone segment, which has two singularities, see
Figure 1. This corresponds to the case that c(u) satisfies c2(u) = s2 for at least two
values of u.

In Section 3, we consider the Camassa–Holm (CH) equation

(1.6) ut − utxx + 3uux − 2uxuxx − uuxxx = 0,

which was introduced in [5]. The CH equation has been studied intensively within
the last three decades. There are too many interesting results to mention here, and
we refer to [3, 4, 5, 6, 7, 9, 10, 11] and the citations therein for more information.
We point out that the peakon solution, which was already observed in [5], is a weak
traveling wave solution of (1.6). This is in contrast to the NVW equation, where
there are no known non-constant explicit weak solutions. Moreover, like the NVW
equation, singularity formation in the derivatives of solutions to (1.6) may occur,
see [7].

In [15], Lenells derives criteria for gluing together local, classical traveling wave so-
lutions of (1.6) to obtain global, bounded traveling waves, see also [16]. By doing so,
all weak, bounded traveling wave solutions of the CH equation are classified. Some
of these traveling waves have discontinuous derivatives, such as peakons, cuspons,
stumpons, and composite waves. These waves have, except for the peakons, singu-
larities in their derivatives.

We apply the aforementioned method to the CH equation and reproduce the
criteria derived by Lenells.

2. Proof of Theorem 1.1

Let ξ = x − st and denote the derivative of w with respect to ξ by wξ. Assume
for the moment that w ∈ C2(R). Inserting the derivatives

ut(t, x) = −swξ(x− st), utt(t, x) = s2wξξ(x− st),
ux(t, x) = wξ(x− st), uxx(t, x) = wξξ(x− st)

into (1.1) yields

(2.1)
[
s2 − c2(w)

]
wξξ − c(w)c′(w)w2

ξ = 0.
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Observe that (2.1) is satisfied at all points ξ such that |s| = c(w(ξ)), at which either
wξ(ξ) = 0, leading to constant solutions, or c′(w(ξ)) = 0. We multiply (2.1) by 2wξ
and get

2
[
s2 − c2(w)

]
wξξwξ − 2c(w)c′(w)w3

ξ = 0,

which is the same as
d

dξ

(
w2
ξ

[
s2 − c2(w)

])
= 0.

Integration leads to

(2.2) w2
ξ

[
s2 − c2(w)

]
= k

for some integration constant k. Observe that we derived (2.2) assuming that w ∈
C2(R), but for (2.2) to make sense it suffices that w is in C1(R).

We say that u is a local, classical traveling wave solution of (1.1) if u(t, x) =
w(x− st), for some w in C2(I), where I denotes some interval, and satisfies (2.1).

If |s| /∈ [α, β], then |s| 6= c(w(ξ)) for all ξ and we have

(2.3) wξ(ξ) = ±
√
|k|√

|s2 − c2(w(ξ))|
.

The right-hand side of (2.3) is Lipschitz continuous with respect to w and there
exists a unique local solution w which is continuously differentiable and monotone.
For these solutions we see from (2.3) that the derivatives are bounded. In particular,
the solutions are bounded locally, but not globally.

In the case |s| ∈ [α, β], Lipschitz continuity fails, and the standard existence and
uniqueness result for ordinary differential equations does not apply. In this case we
show, under some specific conditions, that if there is a local solution, it is Hölder
continuous. Let w be a bounded and strictly monotone solution of (2.3) on an
interval [ξ0, ξ1] such that c(w(ξ0)) 6= |s|, c(w(ξ1)) 6= |s|, and |s| = c(w(η)) for some
η ∈ (ξ0, ξ1). Then, by assumption, the derivative wξ is bounded at ξ0 and ξ1. We
claim that the solution is Hölder continuous on [ξ0, ξ1] if c′(w(η)) 6= 0. From (2.3)
and a change of variables we get

(2.4)

∫ ξ1

ξ0

w2
ξ(ξ) dξ =

√
|k|
∣∣∣∣ ∫ w(ξ1)

w(ξ0)

1√
|s2 − c2(z)|

dz

∣∣∣∣
and c(w(η)) = |s| yields∫ ξ1

ξ0

w2
ξ(ξ) dξ =

√
|k|
∣∣∣∣ ∫ w(ξ1)

w(ξ0)

1√
|c2(w(η))− c2(z)|

dz

∣∣∣∣.
The integrand is finite everywhere except at z = w(η). For z near w(η) we replace
c(z) by its Taylor approximation and get

|c2(w(η))− c2(z)| = |c(w(η)) + c(z)| · |c(w(η))− c(z)|
≥ 2α|c(w(η))− c(z)|

= 2α
∣∣c′(w(η))(z − w(η)) +

1

2
c′′(p)(z − w(η))2

∣∣,
for some p between z and w(η). The expression∣∣c′(w(η))(z − w(η)) +

1

2
c′′(p)(z − w(η))2

∣∣− 1
2
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is integrable if c′(w(η)) 6= 0 and not integrable if c′(w(η)) = 0. Therefore, the
integral ∫ ξ1

ξ0

w2
ξ(ξ) dξ

is finite if for all ξ ∈ (ξ0, ξ1) such that |s| = c(w(ξ)) we have c′(w(ξ)) 6= 0. In
particular, by the Cauchy–Schwarz inequality we have

|w(ξ1)− w(ξ0)| ≤ ||wξ||L2([ξ0,ξ1])|ξ1 − ξ0|
1
2

and w is Hölder continuous with exponent 1
2
. This continuity will be important later

in the text when we discuss which traveling waves can be glued together.
We illustrate the above result with an example.

Example 2.1. Let

A =
β − α
π

and B = α + β,

where 0 < α < β <∞. Consider the function

(2.5) c(u) = A arctan(u) +
B

2
,

which is strictly increasing and satisfies

lim
u→−∞

c(u) = α and lim
u→+∞

c(u) = β.

Consider the wave speed

s =
B

2
,

where we have α < s < β. Let f(u) = s2 − c2(u). We have

f(u) = −A arctan(u)(A arctan(u) +B).

We compute the derivative and get

f ′(u) = − A

1 + u2
(2A arctan(u) +B)

and since
2A arctan(u) +B ≥ 2α > 0

for all u we have f ′(u) < 0. The only point satisfying f(u) = 0 is u = 0. In other
words, s = c(0).

Denote by w the strictly increasing solution to (2.3) and (2.5). We assume that
w(ξ0) < 0 < w(ξ1), so that c(w(ξ0)) 6= s and c(w(ξ1)) 6= s, which implies that the
derivative wξ is bounded at ξ0 and ξ1. From (2.4) we get∫ ξ1

ξ0

w2
ξ(ξ) dξ =

√
|k|
∫ 0

w(ξ0)

1√
−A arctan(z)(A arctan(z) +B)

dz(2.6)

+
√
|k|
∫ w(ξ1)

0

1√
A arctan(z)(A arctan(z) +B)

dz,

By a change of variables we have∫ w(ξ1)

0

1√
A arctan(z)(A arctan(z) +B)

dz
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≤
∫ w(ξ1)

0

1√
AB arctan(z)

dz

≤ (1 + w2(ξ1))

∫ w(ξ1)

0

1√
AB arctan(z)

1

1 + z2
dz

= (1 + w2(ξ1))
1√
AB

∫ arctan(w(ξ1))

0

y−
1
2 dy

= 2(1 + w2(ξ1))
1√
AB

√
arctan(w(ξ1))

and since w(ξ1) is finite, the integral converges. Note that this only holds locally. The
first integral in (2.6) can be treated in the same way, showing that wξ ∈ L2([ξ0, ξ1])
and we conclude that w is Hölder continuous on [ξ0, ξ1].

Let us focus on weak traveling wave solutions. To derive the weak form of (1.1)
we first assume that we have a bounded solution u ∈ C2((0,∞)× R). We multiply
(1.1) by a smooth test function φ ∈ C∞c ((0,∞)× R) and integrate. We have∫ ∞

0

∫ ∞
−∞

[
utt − c(u)c′(u)u2

x − c2(u)uxx
]
φ dx dt = 0.

Integrating by parts yields

(2.7)

∫ ∞
0

∫ ∞
−∞

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx
]
dx dt = 0.

We say that a function u satisfying u(t, ·) ∈ L∞(R) and ut(t, ·), ux(t, ·) ∈ L2(R)
for all t ≥ 0 is a weak solution of (1.1) if (2.7) holds for all test functions φ in
C∞c ((0,∞)×R). We observe that if there exists a piecewise smooth traveling wave
solution satisfying these conditions, it is Hölder continuous with exponent 1

2
.

In the case of a traveling wave, (2.7) reads∫ ∞
0

∫ ∞
−∞

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt = 0.

Now we want to glue together two classical solutions to produce a weak traveling
wave solution. At the points where we glue them together the derivatives may be
discontinuous. Thus, we consider the following situation: assume that ut and ux
have discontinuities that move along a smooth curve Γ : x = γ(t), where we assume
that γ is a smooth and strictly increasing function. Moreover, we assume that there
exists a sufficiently small neighborhood of γ(t) such that u is a classical solution of
(1.1) on each side of γ(t).

Lemma 2.2. Given a curve Γ : x = γ(t) = st + γ0, where γ0 is a constant, denote
by D a neighborhood of (t̄, γ(t̄)) ∈ Γ. Furthermore, let D = D1∪Γ|D∪D2, where D1

and D2 are the parts of D to the left and to the right of Γ, respectively, see Figure
2. Consider two local, classical traveling wave solutions u1 and u2 of (1.1) in D1

and D2, respectively. Assume that we glue these waves at Γ to obtain a continuous
traveling wave u(t, x) = w(x− st) in D, which satisfies∫∫

D

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt = 0 for any φ ∈ C∞c (D).
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D1

D2

�

t

x

Figure 2. Some strictly increasing curve Γ : x = γ(t) and the neigh-
borhoods D1 and D2.

If |s| /∈ [α, β], then

(2.8a) wξ(γ0−) = wξ(γ0+).

If |s| ∈ (α, β) and c′(w(ξ)) 6= 0 for all ξ = x − st, such that (t, x) ∈ D and
|s| = c(w(ξ)), then[√

|k1| sign
((

(c2(w(γ0))− s2)wξ(γ0)
)
−
)

(2.8b)

−
√
|k2| sign

((
(c2(w(γ0))− s2)wξ(γ0)

)
+
)]√
|c2(w(γ0))− s2| = 0,

where k1 and k2 denote the constants in (2.2) corresponding to the classical solutions
u1 and u2 in D1 and D2, respectively.

Proof. Let
I = {t ∈ [0,∞) | (t, γ(t)) ∈ D}.

For any ε > 0 consider

Dε
i = {(t, x) ∈ Di | dist((t, x),Γ) > ε}

for i = 1, 2. We have∫∫
D

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx
]
dx dt(2.9)

= lim
ε→0

( 2∑
i=1

∫∫
Dε

i

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx
]
dx dt

)
.

Since u is a classical solution in Dε
1 we have∫∫

Dε
1

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx
]
dx dt
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=

∫∫
Dε

1

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx − uttφ+ c(u)c′(u)u2
xφ+ c2(u)uxxφ

]
dx dt

=

∫∫
Dε

1

[
− (utφ)t + (c2(u))xuxφ+ c2(u)(uxφ)x

]
dx dt

=

∫∫
Dε

1

[
(c2(u)uxφ)x − (utφ)t

]
dx dt.

By Green’s theorem we get∫∫
Dε

1

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx
]
dx dt =

∫
∂Dε

1

[
utφ dx+ c2(u)uxφ dt

]
=

∫
Γε
1

[
utφ dx+ c2(u)uxφ dt

]
,

where the last equality follows since φ is zero everywhere on ∂Dε
1 except on Γε1,

where Γε1 is the part of ∂Dε
1 which does not coincide with the boundary D. We can

parametrize the curve by Γε1 : x = γε1(t) for t ∈ Iε1 , where γε1 is a smooth and strictly
increasing function and Iε1 is an interval. Now we have∫∫

Dε
1

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx
]
dx dt(2.10)

=

∫
Iε1

[
(utφ)(t, γε1(t))(γε1)′(t) + (c2(u)uxφ)(t, γε1(t))

]
dt.

By assumption u(t, x) = w(x − st) is a classical traveling wave solution in Dε
1. It

follows that γε1(t) = γ(t)− ε
√
s2 + 1,

Iε1 = {t ∈ [0,∞) | (t, γε1(t)) ∈ D1}
and

Γε1 = {(t, γε1(t)) | t ∈ Iε1}.
From (2.10) we get∫∫

Dε
1

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt(2.11)

=

∫
Iε1

[
c2(w(γε1(t)− st))− s2

]
wξ(γ

ε
1(t)− st)φ(t, γε1(t)) dt.

By similar computations, as above, for Dε
2 we get∫∫

Dε
2

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx
]
dx dt =

∫
Γε
2

[
utφ dx+ c2(u)uxφ dt

]
,

where Γε2 is the part of ∂Dε
2 which does not coincide with the boundary ∂D. We

parametrize the curve by Γε2 : x = γε2(t) for t ∈ Iε2 , where γε2 is a smooth and strictly
increasing function and Iε2 is an interval. We obtain∫∫

Dε
2

[
− utφt + c(u)c′(u)u2

xφ+ c2(u)uxφx
]
dx dt(2.12)

= −
∫
Iε2

[
(utφ)(t, γε2(t))(γε2)′(t) + (c2(u)uxφ)(t, γε2(t))

]
dt
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where the negative sign comes from the fact that we are integrating counterclockwise
around the boundary in Green’s theorem. Inserting u(t, x) = w(x− st) yields∫∫

Dε
2

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt(2.13)

= −
∫
Iε2

[
c2(w(γε2(t)− st))− s2

]
wξ(γ

ε
2(t)− st)φ(t, γε2(t)) dt,

where γε2(t) = γ(t) + ε
√
s2 + 1,

Iε2 = {t ∈ [0,∞) | (t, γε2(t)) ∈ D2}
and

Γε2 = {(t, γε2(t)) | t ∈ Iε2}.
Consider |s| /∈ [α, β]. Then |s| 6= c(w(ξ)) for all ξ, and by (2.2) the derivative wξ

is bounded at all points in D. From (2.11) and (2.13) we have

lim
ε→0

∫∫
Dε

1

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt

=

∫
I

[
c2(w(γ0))− s2

]
wξ(γ0−)φ(t, γ(t)) dt

and

lim
ε→0

∫∫
Dε

2

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt

= −
∫
I

[
c2(w(γ0))− s2

]
wξ(γ0+)φ(t, γ(t)) dt,

respectively. Here, wξ(γ0−) and wξ(γ0+) denote the left and right limit of wξ at γ0,
respectively. We insert these expressions in (2.9) and get∫∫

D

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt

=
[
c2(w(γ0))− s2

][
wξ(γ0−)− wξ(γ0+)

] ∫
I

φ(t, γ(t)) dt.

For w to be a weak solution this expression has to be zero for every test function φ,
and we must have [

c2(w(γ0))− s2
][
wξ(γ0−)− wξ(γ0+)

]
= 0

which implies
wξ(γ0−) = wξ(γ0+).

This proves (2.8a).
Now we consider |s| ∈ [α, β]. In this case wξ may be unbounded on the curve Γ

and we have to eliminate the derivatives from (2.11) and (2.13). Recall that we only
consider continuous waves.

Since w is a classical solution in Dε
1 we get from (2.2),

(2.14) w2
ξ(ξ)

[
s2 − c2(w(ξ))

]
= k1
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where k1 is a constant. We have

(c2(w)− s2)wξ = sign
(
(c2(w)− s2)wξ

)√
|c2(w)− s2|

√
|c2(w)− s2|w2

ξ

= sign
(
(c2(w)− s2)wξ

)√
|c2(w)− s2|

√
|k1|.

In (2.11) we now get∫∫
Dε

1

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt

=

∫
Iε1

√
|k1|
(

sign
(
(c2(w)− s2)wξ

)√
|c2(w)− s2|

)
(γε1(t)− st)φ(t, γε1(t)) dt

and we obtain

lim
ε→0

∫∫
Dε

1

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt(2.15)

=

∫
I

√
|k1| sign

((
(c2(w(γ0))− s2)wξ(γ0)

)
−
)

×
√
|c2(w(γ0))− s2|φ(t, γ(t)) dt.

In a similar way we get by using that

(2.16) w2
ξ(ξ)

[
s2 − c2(w(ξ))

]
= k2

in Dε
2 for some constant k2,∫∫

Dε
2

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt

= −
∫
Iε2

√
|k2|
(

sign
(
(c2(w)− s2)wξ

)√
|c2(w)− s2|

)
(γε2(t)− st)φ(t, γε2(t)) dt,

where we used that

(c2(w)− s2)wξ = sign
(
(c2(w)− s2)wξ

)√
|c2(w)− s2|

√
|k2|.

We have

lim
ε→0

∫∫
Dε

2

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt(2.17)

= −
∫
I

√
|k2| sign

((
(c2(w(γ0))− s2)wξ(γ0)

)
+
)

×
√
|c2(w(γ0))− s2|φ(t, γ(t)) dt.

Combining (2.15) and (2.17) in (2.9) we get∫∫
D

[
swξφt + c(w)c′(w)w2

ξφ+ c2(w)wξφx
]
dx dt

=

∫
I

[√
|k1| sign

((
(c2(w(γ0))− s2)wξ(γ0)

)
−
)

−
√
|k2| sign

((
(c2(w(γ0))− s2)wξ(γ0)

)
+
)]√
|c2(w(γ0))− s2|φ(t, γ(t)) dt.
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For w to be a weak solution this expression has to be zero for every test function,
and we must have[√

|k1| sign
((

(c2(w(γ0))− s2)wξ(γ0)
)
−
)

−
√
|k2| sign

((
(c2(w(γ0))− s2)wξ(γ0)

)
+
)]√
|c2(w(γ0))− s2| = 0.

This concludes the proof of (2.8b). �

Remark 2.3. Note that (2.10) and (2.12) hold for any solution u and curve x = γ(t)
as described before the lemma, not just for traveling wave solutions, where γ(t) =
st+ γ0.

Using Lemma 2.2 we prove Theorem 1.1.

Proof of Theorem 1.1. Consider |s| /∈ [α, β]. From (2.8a), w and its derivative wξ
are continuous at γ0. In particular, w is monotone and coincides with the global
solution for (2.3) for a fixed k. Thus, the resulting wave will be unbounded and
hence not a weak solution to the NVW equation. We will not discuss this case
further.

Now consider |s| ∈ [α, β]. First we study the case |s| 6= c(w(γ0)). For (2.8b) to
be satisfied we must have√

|k1| sign
(
wξ(γ0)−

)
−
√
|k2| sign

(
wξ(γ0) +

)
= 0.

If sign
(
wξ(γ0)−

)
and sign

(
wξ(γ0) +

)
have opposite sign we get k1 = k2 = 0 and

w is constant in D.
If sign

(
wξ(γ0)−

)
and sign

(
wξ(γ0) +

)
have the same sign then |k1| = |k2|. Then

the solution w is monotone in D and is given by

wξ(ξ) = ±
√
|k1|√

|s2 − c2(w(ξ))|
.

Since w is a classical solution in Dε
1 and Dε

2, and |s| 6= c(w(γ0)), we have |s| 6= c(w(ξ))
in D. Both w and its derivative wξ are continuous at γ0. In particular, w is monotone
and coincides with the local solution in D of the above differential equation for a
fixed k1.

Thus, we showed that gluing solutions at points γ0 so that c(w(γ0)) 6= |s|, does
not yield a new solution. In particular, one can possibly only glue two solutions with
different k together at a point γ0 to obtain a new solution, if c(w(γ0)) = |s|. This
means in particular, for bounded, non-constant waves, that c must have at least one
extremal point and hence w must have at least one inflection point.

Next we consider |s| ∈ [α, β] such that |s| = c(w(γ0)). As discussed before, at
points ξ where |s| = c(w(ξ)) and c′(w(ξ)) = 0, wξ(ξ) is unbounded and wξ does
not belong to L2

loc(R). Therefore, by the definition of a weak solution, we cannot
use such waves as building blocks. This immediately excludes the cases |s| = α
and |s| = β. Thus, we consider |s| ∈ (α, β) and assume that all points ξ such that
|s| = c(w(ξ)) satisfy c′(w(ξ)) 6= 0.

The remaining case to be treated is |s| ∈ (α, β) such that |s| = c(w(γ0)) and
c′(w(γ0)) 6= 0. Using the same notation as in the proof of Lemma 2.2, denote by
u1(t, x) = w1(x− st) and u2(t, x) = w2(x− st) the classical solutions to (1.1) in Dε

1

and Dε
2, respectively. Then w1 and w2 are locally Hölder continuous. Furthermore,
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we see from (2.14) and (2.16) that k1 and k2 are finite and (2.8b) is satisfied for any
values of k1 and k2. In particular, the functions w1 and w2 satisfy

(2.18) w1,ξ(ξ) = ±
√
|k1|√

|s2 − c2(w1(ξ))|
and w2,ξ(ξ) = ±

√
|k2|√

|s2 − c2(w2(ξ))|
in Dε

1 and Dε
2, respectively.

We study the case w1,ξ(ξ)→ ±∞ as ξ → γ0− and w2,ξ(ξ)→ ±∞ as ξ → γ0+. It
remains to show which solutions, if any, can be glued together.

Let s > 0. Assume that s = c(w1(γ0)) = c(w2(γ0)) and c′(w1(γ0)) = c′(w2(γ0)) <
0. Since c′, w1 and w2 are continuous we have c′(w1(ξ)) < 0 for ξ < γ0 near γ0 and
c′(w2(ξ)) < 0 for ξ > γ0 near γ0. We have the following four possibilities:
1. If w1,ξ(ξ) > 0 for ξ < γ0 near γ0 then c(w1(ξ)) > s and from (2.1) we get

w1,ξξ(ξ) > 0.
2. If w1,ξ(ξ) < 0 for ξ < γ0 near γ0 then c(w1(ξ)) < s and (2.1) implies that

w1,ξξ(ξ) < 0.
3. If w2,ξ(ξ) > 0 for ξ > γ0 near γ0 then c(w2(ξ)) < s and by (2.1) we have

w2,ξξ(ξ) < 0.
4. If w2,ξ(ξ) < 0 for ξ > γ0 near γ0 then c(w2(ξ)) > s and by (2.1) we have

w2,ξξ(ξ) > 0.
We have now 4 possibilities for gluing waves at γ0: 1. and 4., 1. and 3., 2. and

3., and 2. and 4. In all cases the derivatives are unbounded at the gluing point.
For instance, combining 1. and 4. results in a wave with a cusp at γ0. Since the
constants k1 and k2 may differ, w1 and w2 may have different slope away from γ0.

Another possibility, due to (2.1), is that either w1 or w2 is constant. We can
combine constant solutions with singular waves. For instance, let w1(ξ) = w2(γ0)
for ξ ≤ γ0, and w2 be as in 3.

We can also combine the wave in 1. with the constant solution where w2(ξ) =
w1(γ0) for ξ ≥ γ0.

A similar analysis can be done in the case c′(w1(γ0)) = c′(w2(γ0)) > 0.
Note that the resulting waves may be unbounded. This is for example the case if

c(u) = |s| for exactly one u ∈ R. On the other hand, the resulting waves belong to
L2(D) and are locally Hölder continuous.

Finally we study how we can glue local waves to get a bounded traveling wave.
Let us consider the wave composed of 1. and 3. For ξ < γ0 near γ0, it is given by
w1(ξ) which is strictly increasing and convex. For ξ > γ0 near γ0, it is given by
w2(ξ) which is strictly increasing and concave. In this case we assumed that the
function c is strictly decreasing at the point w1(γ0) = w2(γ0). Now we assume that
c has a local minimum to the right of this point. More precisely, we assume that
there exists E1 > γ0 such that c′(w2(E1)) = 0, c′(w2(ξ)) < 0 for all γ0 ≤ ξ < E1,
and c′(w2(ξ)) > 0 for all E1 < ξ < ξ1 for ξ1 near E1, so that c(w2(ξ)) < s for all
E1 < ξ ≤ ξ1.

The function w2(ξ) is a strictly increasing classical solution for all γ0 < ξ < ξ1.
Furthermore, w2(ξ) has an inflection point at ξ = E1 and is concave for γ0 ≤ ξ < E1

and convex for E1 < ξ ≤ ξ1.
If c′(w2(ξ)) > 0 for all ξ1 ≤ ξ ≤ γ1 where γ1 satisfies c(w2(γ1)) = s, we can

continue the wave after γ1 either by a singular wave or by setting w equal to w(γ1)
for γ1 < ξ. The situation is illustrated in Figure 3 and 4.
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c(w)

w

s

Figure 3. The points are from left to right: w1(ξ) for ξ < γ0,
w1(γ0) = w2(γ0), w2(ξ) for γ0 < ξ < E1, w2(E1), w2(ξ1) and w2(γ1).

⇠

w

w1

w2

Figure 4. The points are from left to right: ξ < γ0, γ0, γ0 < ξ < E1,
E1, ξ1 and γ1. The blue part to the right shows one of the three ways
of continuing the wave for ξ > γ1.

Depending on the function c, we can continue this gluing procedure to produce
a wave w consisting of decreasing, increasing, and constant segments. Note that
to get a non-constant bounded traveling wave we have to use both increasing and
decreasing parts. The derivative of the composite wave belongs to L2

loc(R). If wξ ∈
L2(R), then w is not only a global traveling wave solution, but also a weak solution.

�

3. The Camassa–Holm Equation

Now we study weak traveling wave solutions of the CH equation (1.6). We insert
for a traveling wave solution u(t, x) = w(x− st), and get

(3.1) − swξ + swξξξ + 3wwξ − 2wξwξξ − wwξξξ = 0.
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We say that u is a local, classical traveling wave solution of (1.6) if u(t, x) =
w(x− st) for some w in C3(I), where I denotes some interval, and satisfies (3.1).

Rewriting (3.1) yields

−swξ + swξξξ +
3

2
(w2)ξ −

1

2
(w2

ξ)ξ − (wwξξ)ξ = 0.

Integration leads to

(3.2) − sw + swξξ +
3

2
w2 − 1

2
w2
ξ − wwξξ = a,

where a is some integration constant. Multiplying (3.2) by 2wξ leads to

−s(w2)ξ + (w3)ξ +
(
w2
ξ(s− w)

)
ξ

= 2awξ

and integrating once more we get

(3.3) − sw2 + w3 + w2
ξ(s− w) = 2aw + b,

where b is some integration constant.
We study if we can glue together local, classical wave solutions like we did in the

previous section for the NVW equation. We are interested in the situation where
the composite wave has a discontinuous derivative at the gluing points.

First we derive a weak form of the CH equation. Rewrite the equation as

ut − utxx +
3

2
(u2)x −

1

2
(u2

x)x − (uuxx)x = 0.

Assume that we have a bounded solution u ∈ C3((0,∞)× R). We multiply with a
smooth test function φ ∈ C∞c ((0,∞)× R), integrate by parts, and get∫ ∞

0

∫ ∞
−∞

(
− uφt + uφtxx −

3

2
u2φx +

1

2
u2
xφx + uuxxφx

)
dx dt = 0.

Writing
1

2
u2
x + uuxx = (uux)x −

1

2
u2
x,

and integrating by parts again yields

(3.4)

∫ ∞
0

∫ ∞
−∞

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt = 0,

which serves as a basis for defining weak solutions.
A function u satisfying u(t, ·) ∈ L∞(R)∩H1

loc(R) for all t ≥ 0 is said to be a weak
solution of (1.6) if (3.4) holds for all test functions φ in C∞c ((0,∞)×R). In the case
of a traveling wave solution, u(t, x) = w(x− st), (3.4) reads∫ ∞

0

∫ ∞
−∞

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt.

Assume that ut and ux have discontinuities that move along a smooth curve
Γ : x = γ(t), where γ is a strictly increasing function, and that u is a local, classical
solution of (1.6) on each side of γ(t).
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Lemma 3.1. Given a curve Γ : x = γ(t) = st + γ0, where γ0 is a constant, denote
by D a neighborhood of (t̄, γ(t̄)) ∈ Γ. Furthermore, let D = D1∪Γ|D∪D2, where D1

and D2 are the parts of D to the left and to the right of Γ, respectively, see Figure 2.
Consider two local, classical traveling wave solution u1 and u2 of (1.6) in D1 and D2,
respectively. Assume that we glue these waves at Γ to obtain a continuous traveling
wave u(t, x) = w(x− st) in D, which satisfies
(3.5)∫∫

D

[
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
]
dx dt = 0 for any φ ∈ C∞c (D).

Then we have a1 = a2, where a1 and a2 denote the constants in (3.2) corresponding
to the local, classical solutions u1(t, x) = w1(x− st) and u2(t, x) = w2(x− st) in D1

and D2, respectively.
If wξ and wξξ are bounded on the curve x = γ(t), then

(3.6a) (w(γ0)− s)(wξ(γ0−)− wξ(γ0+)) = 0.

If wξ and wξξ may be unbounded on the curve x = γ(t), then

sign
((

(w(γ0)− s)wξ(γ0)
)
−
)

(3.6b)

×
√

(w2(γ0)(w(γ0)− s)− 2a1w(γ0)− b1)(w(γ0)− s)
− sign

((
(w(γ0)− s)wξ(γ0)

)
+
)

×
√

(w2(γ0)(w(γ0)− s)− 2a1w(γ0)− b2)(w(γ0)− s) = 0,

where b1 and b2 are the constants in (3.3) corresponding to the local, classical solution
u1(t, x) = w1(x− st) and u2(t, x) = w2(x− st) in D1 and D2, respectively.

Proof. Let
I = {t ∈ [0,∞) | (t, γ(t)) ∈ D}.

For any ε > 0 consider

Dε
i = {(t, x) ∈ Di | dist((t, x),Γ) > ε}

for i = 1, 2. We have∫∫
D

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt

= lim
ε→0

( 2∑
i=1

∫∫
Dε

i

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt

)
.

Since u is a classical solution in Dε
1 we get∫∫

Dε
1

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt

=

∫∫
Dε

1

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx

+ utφ− utxxφ+
3

2
(u2)xφ−

1

2
(u2

x)xφ− (uuxx)xφ
)
dx dt.
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We integrate by parts and get∫∫
Dε

1

uφtxx dx dt =

∫
Iε1

(uφtx)(t, γ
ε
1(t)) dt−

∫∫
Dε

1

uxφtx dx dt∫∫
Dε

1

utxxφ dx dt =

∫
Iε1

(utxφ)(t, γε1(t)) dt−
∫∫

Dε
1

utxφx dx dt,

and ∫∫
Dε

1

(uuxx)xφ dx dt =

∫
Iε1

(uuxxφ)(t, γε1(t)) dt−
∫∫

Dε
1

uuxxφx dx dt,

where Γε1 denotes the part of ∂Dε
1, which does not coincide with the boundary of D.

We can parametrize this curve by Γε1 : x = γε1(t) for t ∈ Iε1 . Here γε1 is a smooth and
strictly increasing function and Iε1 is an interval. Now we get∫∫

Dε
1

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt(3.7)

=

∫∫
Dε

1

(
(uφ)t + uxφtx +

3

2
(u2φ)x + uuxφxx +

1

2
u2
xφx

+ utxφx −
1

2
(u2

x)xφ+ uuxxφx
)
dx dt

−
∫
Iε1

(
uuxxφ+ uφtx + utxφ

)
(t, γε1(t)) dt.

Using

uuxφxx +
1

2
u2
xφx −

1

2
(u2

x)xφ+ uuxxφx

= uuxφxx −
1

2
u2
xφx −

1

2
(u2

x)xφ+ u2
xφx + uuxxφx

= uuxφxx −
1

2
(u2

xφ)x + (uux)xφx

= −1

2

(
u2
xφ
)
x

+ (uuxφx)x

we obtain∫∫
Dε

1

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt

=

∫∫
Dε

1

(
(uφ)t + (uxφx)t +

3

2
(u2φ)x −

1

2

(
u2
xφ
)
x

+ (uuxφx)x
)
dx dt

−
∫
Iε1

(
uuxxφ+ uφtx + utxφ

)
(t, γε1(t)) dt

=

∫∫
Dε

1

[
∂

∂x

(3

2
u2φ− 1

2
u2
xφ+ uuxφx

)
+
∂

∂t

(
uφ+ uxφx

)]
dx dt

−
∫
Iε1

(
uuxxφ+ uφtx + utxφ

)
(t, γε1(t)) dt.
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By Green’s theorem we get∫∫
Dε

1

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt

=

∫
∂Dε

1

[
−
(
uφ+ uxφx

)
dx+

(3

2
u2φ− 1

2
u2
xφ+ uuxφx

)
dt

]
−
∫
Iε1

(
uuxxφ+ uφtx + utxφ

)
(t, γε1(t)) dt,

and since the integrand is zero everywhere on ∂Dε
1 except on the part corresponding

to γε1(t) we have∫∫
Dε

1

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt(3.8)

=

∫
Iε1

[
− (uφ+ uxφx)(t, γ

ε
1(t))(γε1)′(t)

+
(3

2
u2φ− 1

2
u2
xφ+ uuxφx − uuxxφ− uφtx − utxφ

)
(t, γε1(t))

]
dt.

From this point on we assume that u(t, x) = w(x− st) is a classical traveling wave
solution of (1.6). Then (3.8) rewrites as∫∫

Dε
1

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt(3.9)

=

∫
Iε1

([
− ws+

3

2
w2 − 1

2
w2
ξ − (w − s)wξξ

]
(γε1(t)− st)φ(t, γε1(t))

+
[
(w − s)wξ

]
(γε1(t)− st)φx(t, γε1(t))

− w(γε1(t)− st)φtx(t, γε1(t))

)
dt.

In a similar way as above we obtain∫∫
Dε

2

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt

=

∫
∂Dε

2

[
−
(
uφ+ uxφx

)
dx+

(3

2
u2φ− 1

2
u2
xφ+ uuxφx

)
dt

]
+

∫
Iε2

(
uuxxφ+ uφtx + utxφ

)
(t, γε2(t)) dt,

where Iε2 and γε2(t) are defined in the same way as their counterparts in Dε
1. Note

that the sign in front of the second integral has changed compared to (3.7), which
comes from the fact that Dε

2 is to the right of the curve Γ. Proceeding as above we
find∫∫

Dε
2

(
uφt − uφtxx +

3

2
u2φx + uuxφxx +

1

2
u2
xφx
)
dx dt

= −
∫
Iε2

[
−
(
uφ+ uxφx

)
(t, γε2(t))(γε2)′(t) +

(3

2
u2φ− 1

2
u2
xφ+ uuxφx

)
(t, γε2(t))

]
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+

∫
Iε2

(
uuxxφ+ uφtx + utxφ

)
(t, γε2(t)) dt,

where the negative sign in front of the first integral comes from the fact that we
are integrating counterclockwise around the boundary in Green’s theorem. Now we
assume that u is a traveling wave solution, i.e., u(t, x) = w(x− st) and get∫∫

Dε
2

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt(3.10)

=

∫
Iε2

(
−
[
− ws+

3

2
w2 − 1

2
w2
ξ − (w − s)wξξ

]
(γε2(t)− st)φ(t, γε2(t))

−
[
(w − s)wξ

]
(γε2(t)− st)φx(t, γε2(t))

+ w(γε2(t)− st)φtx(t, γε2(t))

)
dt.

From (3.2) and (3.3) we have

(3.11) − sw + swξξ +
3

2
w2 − 1

2
w2
ξ − wwξξ = ai

and

(3.12) − sw2 + w3 + w2
ξ(s− w) = 2aiw + bi

in Dε
i , i = 1, 2. We insert (3.11) in (3.9) and obtain∫∫

Dε
1

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt(3.13)

=

∫
Iε1

(
a1φ(t, γε1(t)) +

[
(w − s)wξ

]
(γε1(t)− st)φx(t, γε1(t))

− w(γε1(t)− st)φtx(t, γε1(t))

)
dt.

Inserting (3.12) into (3.10) yields∫∫
Dε

2

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt(3.14)

=

∫
Iε2

(
− a2φ(t, γε2(t))−

[
(w − s)wξ

]
(γε2(t)− st)φx(t, γε2(t))

+ w(γε2(t)− st)φtx(t, γε2(t))

)
dt.

Assume that wξ and wξξ are bounded on the curve x = γ(t). Since w, φ and the
derivatives of φ are continuous we get from (3.13),

lim
ε→0

∫∫
Dε

1

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt(3.15)

=

∫
I

(
a1φ(t, γ(t)) +

[
(w(γ0)− s)wξ(γ0−)

]
φx(t, γ(t))
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− w(γ0)φtx(t, γ(t))

)
dt.

From (3.14) we obtain

lim
ε→0

∫∫
Dε

2

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt(3.16)

=

∫
I

(
− a2φ(t, γ(t))−

[
(w(γ0)− s)wξ(γ0+)

]
φx(t, γ(t))

+ w(γ0)φtx(t, γ(t))

)
dt.

We combine (3.15) and (3.16), and obtain∫∫
D

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt(3.17)

=

∫
I

(
(a1 − a2)φ(t, γ(t)) + (w(γ0)− s)(wξ(γ0−)− wξ(γ0+))φx(t, γ(t))

)
dt

for all φ ∈ C∞c (D). Now we derive conditions that ensure that the integral in (3.17)
is equal to zero for all test functions φ ∈ C∞c (D). For a positive number d and
constants k and l satisfying k < l, consider the domain D̃ ⊂ D bounded by the lines
t = k, t = l and x = γ(t)± d. We define the test function φ̃ ∈ C∞c (D) by

(3.18) φ̃(t, x) = exp

{
− 1

d− (x− γ(t))2
− 1

1
4
(l − k)2 − (t− k+l

2
)2

}
,

which is positive and smooth in D̃ and equals zero on the boundary ∂D̃. In partic-
ular, φ̃x(t, γ(t)) = 0 for all t ∈ [k, l]. From (3.5) and (3.17), we then get∫∫

D̃

(
wφ̃t−wφ̃txx+

3

2
w2φ̃x+wwξφ̃xx+

1

2
w2
ξ φ̃x
)
dx dt =

∫ b

a

[
a1−a2

]
φ̃(t, γ(t)) dt = 0,

and since φ̃ is positive in D̃ this implies that a1 = a2. Furthermore, since (3.17)
should be equal to zero for all test functions φ, we must have∫∫

D

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt(3.19)

=

∫
I

(w(γ0)− s)(wξ(γ0−)− wξ(γ0+))φx(t, γ(t)) dt = 0

for all φ ∈ C∞c (D), which implies

(w(γ0)− s)(wξ(γ0−)− wξ(γ0+)) = 0.

This proves (3.6a).
Now assume that wξ and wξξ may be unbounded on the curve x = γ(t). Recall

that w is a classical solution in Dε
i , i = 1, 2.

Using (3.12) we write

(w − s)wξ = sign
(
(w − s)wξ

)√
(w − s)2w2

ξ

= sign
(
(w − s)wξ

)√
(w2(w − s)− 2a1w − b1)(w − s)
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in Dε
1, which inserted into (3.13) yields∫∫

Dε
1

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt

=

∫
Iε1

(
a1φ(t, γε1(t))− w(γε1(t)− st)φtx(t, γε1(t))

+

[
sign

(
(w − s)wξ

)√
(w2(w − s)− 2a1w − b1)(w − s)

]
(γε1(t)− st)

× φx(t, γε1(t))

)
dt.

Letting ε tend to zero we obtain

lim
ε→0

∫∫
Dε

1

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt

=

∫
I

(
a1φ(t, γ(t))− w(γ0)φtx(t, γ(t)) + sign

((
(w(γ0)− s)wξ(γ0)

)
−
)

×
√

(w2(γ0)(w(γ0)− s)− 2a1w(γ0)− b1)(w(γ0)− s)φx(t, γ(t))

)
dt.

In a similar way we get by using (3.12) in (3.14),

lim
ε→0

∫∫
Dε

2

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt

=

∫
I

(
− a2φ(t, γ(t)) + w(γ0)φtx(t, γ(t))− sign

((
(w(γ0)− s)wξ(γ0)

)
+
)

×
√

(w2(γ0)(w(γ0)− s)− 2a2w(γ0)− b2)(w(γ0)− s)φx(t, γ(t))

)
dt.

This implies that∫∫
D

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt

=

∫
I

(
(a1 − a2)φ(t, γ(t)) +

(
sign

((
(w(γ0)− s)wξ(γ0)

)
−
)

×
√

(w2(γ0)(w(γ0)− s)− 2a1w(γ0)− b1)(w(γ0)− s)
− sign

((
(w(γ0)− s)wξ(γ0)

)
+
)

×
√

(w2(γ0)(w(γ0)− s)− 2a2w(γ0)− b2)(w(γ0)− s)
)
φx(t, γ(t))

)
dt

for all φ ∈ C∞c (D).

As before, we choose the test function φ̃ ∈ C∞c (D) given by (3.18) to obtain
a1 = a2. Thus, we have∫∫

D

(
wφt − wφtxx +

3

2
w2φx + wwξφxx +

1

2
w2
ξφx
)
dx dt

=

∫
I

(
sign

((
(w(γ0)− s)wξ(γ0)

)
−
)
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×
√

(w2(γ0)(w(γ0)− s)− 2a1w(γ0)− b1)(w(γ0)− s)
− sign

((
(w(γ0)− s)wξ(γ0)

)
+
)

×
√

(w2(γ0)(w(γ0)− s)− 2a1w(γ0)− b2)(w(γ0)− s)
)
φx(t, γ(t)) dt

for all φ ∈ C∞c (D). For this integral to be equal to zero for all test functions, we
must have

sign
((

(w(γ0)− s)wξ(γ0)
)
−
)

×
√

(w2(γ0)(w(γ0)− s)− 2a1w(γ0)− b1)(w(γ0)− s)
− sign

((
(w(γ0)− s)wξ(γ0)

)
+
)

×
√

(w2(γ0)(w(γ0)− s)− 2a1w(γ0)− b2)(w(γ0)− s) = 0.

This concludes the proof of (3.6b). �

We apply Lemma 3.1 to study which local, classical traveling waves we can glue
together.

Bounded derivatives
Case 1. Consider s 6= w(γ0). For (3.6a) to be satisfied we must have wξ(γ0−) =

wξ(γ0+), i.e., the derivative is continuous at γ0. From (3.12) we then get that
b1 = b2, and w coincides with the local solution in D of the differential equation
(3.12).

Case 2. If s = w(γ0), (3.6a) is satisfied. Since u(t, γ(t)) = w(γ(t)− st) = w(γ0)
we get u(t, γ(t)) = s for all t ≥ 0. We denote the solution in D1 and D2 by w1

and w2, respectively. Then w1(γ0) = w2(γ0) = s. We let ξ tend to γ0 in (3.11) and
obtain

a1 =
1

2
w2

1(γ0)− 1

2
w2

1,ξ(γ0)

and

a2 =
1

2
w2

2(γ0)− 1

2
w2

2,ξ(γ0).

Since a1 = a2 this implies that w2
1,ξ(γ0) = w2

2,ξ(γ0).
If w1,ξ(γ0) = w2,ξ(γ0), one has b1 = b2 and as in Case 1 w coincides with the local

solution in D of the differential equation (3.12).
If

(3.20) w1,ξ(γ0) = −w2,ξ(γ0).

We get, from (3.12) that

2a1s+ b1 = 0 and 2a1s+ b2 = 0,

which implies b1 = b2. Furthermore, (3.12) takes the form(
w2

1,ξ(ξ)− w2
1(ξ) + 2a1

)(
s− w1(ξ)

)
= 0

and (
w2

2,ξ(ξ)− w2
2(ξ) + 2a1

)(
s− w2(ξ)

)
= 0

in Dε
1 and Dε

2, respectively.
Assuming that w1 and w2 are not constant and equal to s near γ0, we have

(3.21) w2
1,ξ − w2

1 + 2a1 = 0 and w2
2,ξ − w2

2 + 2a2 = 0.
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For this to be well-defined we require

w2
1 − 2a1 ≥ 0 and w2

2 − 2a2 ≥ 0,

and in particular,

(3.22) w1,ξ = ±
√
w2

1 − 2a1 and w2,ξ = ±
√
w2

2 − 2a2.

Note that w1 and w2 can only change from increasing to decreasing or the other way
round if w2

1 = 2a1. We differentiate (3.21) and get

w1,ξ(w1,ξξ − w1) = 0 and w2,ξ(w2,ξξ − w2) = 0,

and since the solutions are not constant we have

(3.23) w1,ξξ = w1 and w2,ξξ = w2.

Letting ξ tend to γ0 in (3.23) yields

w1,ξξ(γ0) = w1(γ0) and w2,ξξ(γ0) = w2(γ0),

so that if s is positive then w1 and w2 are convex. Since the functions are not
constant and (3.20) holds, this implies that w1 is increasing and w2 is decreasing
near γ0. Otherwise the resulting function w would be globally unbounded. Thus, the
maximum value of w1 and w2 near γ0 is attained at γ0 where w1(γ0) = w2(γ0) = s.

If s is negative, w1 and w2 are concave, and w1 is decreasing and w2 is increasing.
Otherwise the resulting function w would be globally unbounded. The minimum
value of w1 and w2 near γ0 is attained at γ0 where w1(γ0) = w2(γ0) = s.

Example 3.2. Let γ0 = 0. Then

w1(ξ) = c1e
ξ + c2e

−ξ and w2(ξ) = c2e
ξ + c1e

−ξ,

where c1 and c2 are constants satisfying c1
c2
> e2, solve the differential equations

(3.23) in [−1, 0] and [0, 1], respectively. Observe that w1 is increasing in [−1, 0], w2

is decreasing in [0, 1], w1(0) = w2(0) and w1,ξ(0) = −w2,ξ(0).

Remark 3.3. Note that the so-called multipeakon solutions are of the form u(t, x) =∑n
i=1 pi(t)e

−|x−qi(t)|. Thus if one only glues together local, traveling waves, which
have bounded derivatives, one ends up with a multipeakon solution due to (3.23).

Unbounded derivatives
Since we have from (3.12),

(3.24) w2
ξ = w2 − 2a1w + bi

w − s
in Dε

i , it follows that s = w(γ0) at the possible glueing point. Furthermore, due to
(3.6b) the constants b1 and b2 do not have to be identical.

Note that (3.6b) implies that it is possible to glue together both constant and non-
constant local, classical solutions as long as s = w(γ0). This means in particular
that one can insert constant parts by gluing.

In [15], Lenells presents a complete classification of weak, bounded traveling waves
for the CH equation. He shows that there exists a wide range of waves, such as
smooth waves, but also peakons, cuspons, stumpons, and composite waves which
might have singularities.
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Lenells proves that two traveling waves w1 and w2 can only be glued together at
a point ξ if the wave height equals the wave speed, i.e., w1(ξ) = w2(ξ) = s, and if
the constants a1 and a2 from (3.12) are equal. We remark that the constants a and
c in [15] corresponds to 2a and s here, respectively, and that we assume k = 0.

Our main objective was to recover these conditions by using the method presented
above. Showing other important features of traveling wave solutions of the CH
equation requires the machinery used by Lenells, which we outline next. For a
detailed description we refer to [15]. A key property is that the maximum value of
the wave equals s for s > 0 and the minimum value equals s for s < 0.

In particular, we highlight the role the constant bi plays in obtaining a bounded
wave. Assume that we are in our usual setting where we have classical solutions w1

and w2 in Dε
1 and Dε

2, respectively. We want to glue these waves together. Thus,
we must have w1(γ0) = w2(γ0) = s and a1 = a2. Hence, we can write (3.12) as

w2
ξ(s− w) = −w3 + sw2 + 2a1w + bi

in Dε
i , i = 1, 2. Introducing

f(w) = −w3 + sw2 + 2a1w,

we can write these equations as

(3.25) w2
ξ(s− w) = f(w) + bi = gi(w)

in Dε
i , i = 1, 2. Note that

g′1(w) = g′2(w) = f ′(w) = −3w2 + 2sw + 2a1.

In what follows we assume that s > 0.
If s2 + 6a1 ≤ 0, then

g′1(w) ≤ −3w2 + 2sw − s2

3
= −3

(
w − s

3

)2

,

which is strictly negative provided that w is not identically equal to s
3
. This means

that g1(w) is strictly decreasing and f(w) + b1 has exactly one zero. Assume that
b1 is such that f(s) + b1 < 0. By continuity we have f(w) + b1 < 0 for w near s.
Then (3.25) implies that w > s. Since f(w) + b1 < 0 for all w > s, (3.25) shows
that wξ 6= 0 for all w > s. Thus, w is strictly monotone and unbounded. Next, let
us set b1 larger so that f(s) + b1 > 0. Then f(w) + b1 > 0 for w near s and from
(3.25) we get w < s. We have f(w) + b1 > 0 for all w < s, so (3.25) implies that
wξ 6= 0 for all w < s. Hence, w is strictly monotone and unbounded. The situation
f(s) + b1 = 0 can be treated similarly, showing that there are no bounded solutions.
Thus, if s2 + 6a1 ≤ 0, f(w) + b1 has one zero and there exist no bounded solutions
to (3.25).

If s2 + 6a1 > 0, then g1(w) = f(w) + b1 has at least one zero, but the number of
zeros is dependent on the choice of b1. To be more precise the function g1(w) has a
local minimum and maximum at

wmin =
s−
√
s2 + 6a1

3
and wmax =

s+
√
s2 + 6a1

3
,

respectively. It is strictly decreasing for w < wmin and w > wmax.
If g1 has only one zero, we can show as before (i.e. in the case s2 + 6a1 ≤ 0), that

there only exist unbounded solutions.
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f(w) + b1

w
wmin s ⌘

•••

Figure 5. Sketch of the function g1 with a double zero at w = wmin

and a simple zero at w = η. Furthermore, wmin < s < η.

Consider the case where g1 has three zeros. Moreover, we consider s between two
of the zeros of g1, since any other case yields unbounded solutions.

First we treat the case where g1 has a double zero and a simple zero. The double
zero is either the local minimum or maximum of g1. We only consider the case where
the double zero is the local minimum of g1, see Figure 5, since the other one follows
the same lines. Denoting the simple zero by η, we write

(3.26) g1(w) = −(w − wmin)2(w − η).

Expanding this expression and comparing it with g1(w) = f(w) + b1 we get the
relations

η + 2wmin = s, −2ηwmin − w2
min = 2a1, and ηw2

min = b1.

By assumption wmin < s < η. Then g1(s) > 0, so that g1(w) > 0 for w near s. By
(3.25), w < s. Note that wξ = 0 for the value w = wmin. We have

(3.27) wξ = ±(w − wmin)

√
η − w
s− w

and w exponentially decays to wmin as ξ → ±∞. With the notation above, we see
that one possibility is to choose w1 and w2 to be solutions to (3.27), which yields
the cuspon with decay. In particular, w1 is the strictly increasing part, and w2 the
strictly decreasing part. Note that the derivatives are unbounded at w1 = w2 = s.

Let us investigate if we can glue waves wi, i = 1, 2 given by (3.27) to constant
solutions. Consider w1 given by (3.27). From (3.25) we have

w2
2,ξ =

g2(w2)

s− w2

.

We are looking for solutions satisfying w2,ξ = 0. Since at the gluing point we
have w1 = w2 = s, we require that g2(w) = (d − w)(s − w)2 for some constant d.
Comparing the coefficients, yields the relations

d = −s, 2a1 = s2, and b2 = −s3.

Hence, if s2 = 2a1 we can glue wi as given by (3.27) with the constant solution
wi±1 = s, which are the building blocks for so-called stumpons.

Remark 3.4. Note that the condition s2 = 2a1 is related to (3.22), which describes
all local, classical traveling waves that have a bounded derivative at points where
w = s. In particular, (3.22) implies that peakons can only turn up in bounded,
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•••• w
s⌘1 ⌘2 ⌘3

f(w) + b1

Figure 6. Sketch of the function g1 with three simple zeros η1 <
η2 < η3. Furthermore, η2 < s < η3.

composite waves such that s2 ≥ 2a1 and the case s2 = 2a1 corresponds to the constant
solution.

Let us turn back to (3.26). If s = η, then

(3.28) wξ = ±(w − wmin).

In particular, w is monotone and decays to wmin as ξ → ±∞. Choosing w1 and
w2 to be solutions to (3.28) yields the peakon with decay. In particular, w1 is the
strictly increasing part and w2 the strictly decreasing one.

Let us see if we can glue waves given by (3.28) to constant solutions. Let w1 be
the strictly increasing function given by (3.28). The graph of the function g2(w) =
f(w) + b2 is equal to the one for g1 up to a vertical shift, i.e., there is a constant α
such that g2(w) = −(w − wmin)2(w − s) + α. From (3.25) we get

w2
2,ξ = (w2 − wmin)2 +

α

s− w.

Observe that the only choice of the constant α which gives a solution with bounded
derivative is α = 0. Then we get

w2
2,ξ = (w2 − wmin)2,

and the only possibility for w2,ξ = 0 is if w2 = wmin. But then w2 can not be glued
to w1, as wmin 6= s. We conclude that waves given by (3.28) cannot be glued to
constant solutions.

Next we treat the case where g1 has three simple zeros η1 < η2 < η3, i.e.,

g1(w) = −(w − η1)(w − η2)(w − η3),

see Figure 6.
Let s be such that η2 < s < η3. Then g1(s) > 0, so that g1(w) > 0 for w near s.

By (3.25), w < s. Observe that wξ = 0 at w = η2. We have

(3.29) wξ = ±√w − η2 h(w),

where

h(w) =

√
−(w − η1)(w − η3)

s− w > 0

for all η2 < w < s, so that w attains the value η2 at some finite point ξ̄. Note that
the solution to (3.29) is not unique. Thus, w ∈ C1 can be defined in such a way
that w attains its minimum at ξ̄, is strictly decreasing to the left of ξ̄, and strictly
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increasing to the right of ξ̄. Gluing countably many of these waves together yields
a periodic cuspon.

If s = η3, then

(3.30) wξ = ±√w − η1

√
w − η2,

whose solutions, following the same lines as above, serves as building blocks for a
periodic peakon.

In a similar way as above, we can study if the waves given by (3.29) and (3.30)
can be glued to constant solutions. We find that we can only glue waves given by
(3.29) to constant solutions which are equal to s. Then we obtain stumpons, which
consist of monotone segments glued at points where the derivative is unbounded to
piecewise constants parts.
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[20] P. Zhang and Y. Zheng: On the global weak solutions to a variational wave equation. In: C.
M. Dafermos and E. Feireisl (eds.) Handbook of Differential Equations. Evolutionary Equations.
Volume 2, 561–648. Elsevier, Amsterdam (2005).

Department of Mathematical Sciences, Norwegian University of Science and
Technology, NO-7491 Trondheim, Norway

E-mail address: katrin.grunert@ntnu.no
URL: http://www.ntnu.no/ansatte/katrin.grunert

Department of Mathematical Sciences, Norwegian University of Science and
Technology, NO-7491 Trondheim, Norway

E-mail address: audun.reigstad@ntnu.no
URL: http://www.ntnu.no/ansatte/audun.reigstad





Paper III

Competition Models for Plant Stems

A. Bressan, S. T. Galtung, A. Reigstad, and J. Ridder

Published in J. Differential Equations 269 (2020), no. 2, 1571–1611





Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations 269 (2020) 1571–1611

www.elsevier.com/locate/jde

Competition models for plant stems

Alberto Bressan a,∗, Sondre T. Galtung b, Audun Reigstad b, 
Johanna Ridder a

a Department of Mathematics, Penn State University, University Park, PA 16802, USA
b Department of Mathematical Sciences, NTNU – Norwegian University of Science and Technology, NO-7491 

Trondheim, Norway

Received 5 September 2019; revised 20 December 2019; accepted 11 January 2020
Available online 20 January 2020

Abstract

The models introduced in this paper describe a uniform distribution of plant stems competing for sunlight. 
The shape of each stem, and the density of leaves, are designed in order to maximize the captured sunlight, 
subject to a cost for transporting water and nutrients from the root to all the leaves. Given the intensity 
of light, depending on the height above ground, we first solve the optimization problem determining the 
best possible shape for a single stem. We then study a competitive equilibrium among a large number of 
similar plants, where the shape of each stem is optimal given the shade produced by all others. Uniqueness 
of equilibria is proved by analyzing the two-point boundary value problem for a system of ODEs derived 
from the necessary conditions for optimality.
© 2020 Elsevier Inc. All rights reserved.

MSC: 34B15; 49N90; 91A40; 92B05

Keywords: Optimal shape; Competitive equilibrium; Nonlinear boundary value problem

1. Introduction

Optimization problems for tree branches have recently been studied in [3,5]. In these models, 
optimal shapes maximize the total amount of sunlight gathered by the leaves, subject to a cost for 
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building a network of branches that will bring water and nutrients from the root to all the leaves. 
Following [2,8,11,13,14], this cost is defined in terms of a ramified transport.

In the present paper we consider a competition model, where a large number of similar plants 
compete for sunlight. To make the problem tractable, instead of a tree-like structure we assume 
that each plant consists of a single stem. As a first step, assuming that the intensity of light I (·)
depends only on the height above ground, we determine the corresponding optimal shape of the 
stem. This will be a curve γ (·) which can be found by classical techniques of the Calculus of 
Variations or optimal control [4,6,7]. In turn, given the density of plants (i.e., the average number 
of plants growing per unit area), if all stems have the same shape γ (·) one can compute the 
intensity of light I (h) that reaches a point at height h.

An equilibrium configuration is now defined as a fixed point of the composition of the two 
maps I (·) �→ γ (·) and γ (·) �→ I (·). A major goal of this paper is to study the existence and 
properties of these equilibria, where the shape of each stem is optimal subject to the presence of 
all other competing plants.

In Section 2 we introduce our two basic models. In the first model, the length � of the stems 
and the thickness (i.e., the density of leaves along each stem) are assigned a priori. The only 
function to optimize is thus the curve γ : [0, �] �→ R2 describing the shape of the stems. In the 
second model, also the length and the thickness of the stems are allowed to vary, and optimal 
values for these variables need to be determined.

In Section 3, given a light intensity function I (·), we study the optimization problem for 
Model 1, proving the existence of an optimal solution and deriving necessary conditions for 
optimality. We also give a condition which guarantees the uniqueness of the optimal solution. 
A counterexample shows that, in general, if this condition is not satisfied multiple solutions 
can exist. In Section 4 we consider the competition of a large number of stems, and prove the 
existence of an equilibrium solution. In this case, the common shape of the plant stems can be 
explicitly determined by solving a particular ODE.

The subsequent sections extend the analysis to a more general setting (Model 2), where both 
the length and the thickness of the stems are to be optimized. In Section 5 we prove the existence 
of optimal stem configurations, and derive necessary conditions for optimality, while in Section 6
we establish the existence of a unique equilibrium solution for the competitive game, assuming 
that the density (i.e., the average number of stems growing per unit area) is sufficiently small. 
The key step in the proof is the analysis of a two-point boundary value problem, for a system of 
ODEs derived from the necessary conditions.

In the above models, the density of stems was assumed to be uniform on the whole space. As a 
consequence, the light intensity I (h) depends only of the height h above ground. Section 7, on the 
other hand, is concerned with a family of stems growing only on the positive half line. In this case 
the light intensity I = I (h, x) depends also on the spatial location x, and the analysis becomes 
considerably more difficult. Here we only derive a set of equations describing the competitive 
equilibrium, and sketch what we conjecture should be the corresponding shape of stems.

The final section contains some concluding remarks. In particular, we discuss the issue of 
phototropism, i.e. the tendency of plant stems to bend in the direction of the light source. Devising 
a mathematical model, which demonstrates phototropism as an advantageous trait, remains a 
challenging open problem. For a biological perspective on plant growth we refer to [9]. A recent 
mathematical study of the stabilization problem for growing stems can be found in [1].
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Fig. 1. By a reflection argument, it is not restrictive to assume that the tangent vector t(s) to the stem satisfies (2.4), i.e., 
it lies in the shaded cone.

2. Optimization problems for a single stem

We shall consider plant stems in the x-y plane, where y is the vertical coordinate. We assume 
that sunlight comes from the direction of the unit vector

n = (n1, n2), n2 < 0 < n1.

As in Fig. 1, we denote by θ0 ∈]0, π/2[ the angle such that

(−n2, n1) = (cos θ0, sin θ0). (2.1)

Moreover, we assume that the light intensity I (y) ∈ [0, 1] is a non-decreasing function of the 
height y. This is due to the presence of competing vegetation: close to the ground, less light can 
get through.

Model 1 (a stem with fixed length and constant thickness). We begin by studying a simple 
model, where each stem has a fixed length �. Let s �→ γ (s) = (x(s), y(s)), s ∈ [0, �], be an 
arc-length parameterization of the stem. As a first approximation, we assume that the leaves are 
uniformly distributed along the stem, with density κ . The total distribution of leaves in space is 
thus by a measure μ, with

μ(A) = κ · meas
({

s ∈ [0, �] ; γ (s) ∈ A
})

(2.2)

for every Borel set A ⊆R2.
Among all stems with given length �, we seek the shape which will collect the most sunlight. 

This can be formulated as an optimal control problem. Since γ is parameterized by arc-length, 
the map s �→ γ (s) is Lipschitz continuous with constant 1. Hence the tangent vector

t(s) = γ̇ (s) = (cos θ(s), sin θ(s))

is well defined for a.e. s ∈ [0, �]. The map s �→ θ(s) will be regarded as a control function.
According to the model in [5], calling �(·) the density of the projection of μ on the space E⊥

n
orthogonal to n, the total sunlight captured by the stem is
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S(γ ) =
∫ (

1 − exp{−�(z)}
)

dz

=
�∫

0

I (y(s)) ·
(

1 − exp
{ −κ

cos(θ(s) − θ0)

})
cos(θ(s) − θ0) ds. (2.3)

In order to maximize (2.3), we claim that it is not restrictive to assume that the angle satisfies

θ0 ≤ θ(s) ≤ π

2
for all s ∈ [0, �]. (2.4)

Indeed, for any measurable map s �→ θ(s) ∈] − π, π], we can define a modified angle function 
θ�(·) by setting

θ�(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ(s) if θ(s) ∈]0, θ0 + π/2],

−θ(s) if θ(s) ∈] − π, θ0 − π/2],
2θ0 + π − θ(s) if θ(s) ∈]θ0 + π/2,π],

2θ0 − θ(s) if θ(s) ∈]θ0 − π/2,0].

(2.5)

Calling γ � : [0, �] �→ R2 the curve whose tangent vector is γ̇ �(s) = (cos θ�(s), sin θ�(s)), since 
the light intensity function y �→ I (y) is nondecreasing, we have S(γ �) ≥ S(γ ).

By this first step, without loss of generality we can now assume θ(s) ∈]0, θ0 + π/2]. To 
proceed further, consider the piecewise affine map

ϕ(θ) =

⎧⎪⎨⎪⎩
θ if θ ∈]θ0,π/2],

π − θ if θ ∈ [π/2, θ0 + π/2],
2θ0 − θ if θ ∈ [0, θ0].

(2.6)

Call γ ϕ the curve whose tangent vector is γ̇ ϕ(s) =
(

cos(ϕ(θ(s))), sin(ϕ(θ(s)))
)

. Since I (·) is 

nondecreasing, we again have S(γ ϕ) ≥ S(γ ). We now observe that, since 0 < θ0 < π/2, there 
exists an integer m ≥ 1 such that the m-fold composition ϕm .= ϕ ◦ · · · ◦ ϕ maps [0, θ0 + π/2]
into [θ0, π/2]. An inductive argument now yields S(γ ϕm

) ≥ S(γ ), completing the proof of our 
claim.

As shown in Fig. 2, left, we call z the coordinate along the space E⊥
n perpendicular to n, and 

let y be the vertical coordinate. Hence

dz(s) = cos(θ(s) − θ0) ds, dy(s) = sin(θ(s)) ds. (2.7)

In view of (2.4), one can express both γ and θ as functions of the variable y. Introducing the 
function

g(θ)
.=
(

1 − exp
{ −κ

cos(θ − θ0)

}) cos(θ − θ0)

sin θ
, (2.8)

the problem can be equivalently formulated as follows.
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(OP1) Given a length � > 0, find h > 0 and a control function y �→ θ(y) ∈ [θ0, π/2] which 
maximizes the integral

h∫
0

I (y)g(θ(y)) dy (2.9)

subject to

h∫
0

1

sin θ(y)
dy = �. (2.10)

Model 2 (stems with variable length and thickness). Here we still assume that the plant 
consists of a single stem, parameterized by arc-length: s �→ γ (s), s ∈ [0, �]. However, now we 
give no constraint on the length � of the stem, and we allow the density of leaves to be variable 
along the stem.

Call u(s) the density of leaves at the point γ (s). In other words, μ is now the measure which 
is absolutely continuous w.r.t. arc-length measure on γ , with density u. Instead of (2.2) we thus 
have

μ(A) =
∫

{s ; γ (s)∈A}
u(s) ds . (2.11)

Calling I (y) the intensity of light at height y, the total sunlight gathered by the stem is now 
computed by

S(μ) =
�∫

0

I (y(s)) ·
(

1 − exp
{ −u(s)

cos(θ(s) − θ0)

})
cos(θ(s) − θ0) ds. (2.12)

As in [5], we consider a cost for transporting water and nutrients from the root to the leaves. This 
is measured by

Iα(μ) =
�∫

0

⎛⎝ �∫
s

u(t) dt

⎞⎠α

ds, (2.13)

for some 0 < α < 1. Notice that, in Model 1, this cost was the same for all stems and hence it did 
not play a role in the optimization.

For a given constant c > 0, we now consider a second optimization problem:

maximize: S(μ) − cIα(μ), (2.14)

subject to:

y(0) = 0, ẏ(s) = sin θ(s). (2.15)
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The maximum is sought over all controls θ : R+ �→ [0, π] and u :R+ �→ R+. Calling

z(t)
.=

+∞∫
t

u(s) ds, (2.16)

G(θ,u)
.=
(

1 − exp

{ −u

cos(θ − θ0)

})
cos(θ − θ0) , (2.17)

this leads to an optimal control problem in a more standard form.

(OP2) Given a sunlight intensity function I (y), and constants 0 < α < 1, c > 0, find controls 
θ : R+ �→ [θ0, π/2] and u :R+ �→ R+ which maximize the integral

+∞∫
0

[
I (y)G(θ,u) − c zα

]
dt, (2.18)

subject to

{
ẏ(t) = sin θ,

ż(t) = − u,

{
y(0) = 0,

z(+∞) = 0.
(2.19)

3. Optimal stems with fixed length and thickness

3.1. Existence of an optimal solution

Let I (y) be the light intensity, which we assume is a non-decreasing function of the verti-
cal component y. For a given κ > 0 (the thickness of the stem), we seek a curve s �→ γ (s), 
starting at the origin and with a fixed length �, which maximizes the sunlight functional defined 
at (2.9).

Theorem 3.1. For any non-decreasing function y �→ I (y) ∈ [0, 1] and any constants �, κ > 0
and θ0 ∈]0, π/2[ , the optimization problem (OP1) has at least one solution.

Proof. 1. Let M be the supremum among all admissible payoffs in (2.9). By the analysis in [5]
it follows that

0 ≤ M ≤ κ μ(R2) = κ �.

Hence there exists a maximizing sequence of control functions θn : [0, hn] �→ [θ0, π/2], so that

hn∫
0

1

sin θn(y)
dy = � for all n ≥ 1, (3.1)
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hn∫
0

I (y)g(θn(y)) dy → M. (3.2)

2. For each n, let θ�
n be the non-increasing rearrangement of the function θn. Namely, θ�

n is the 
unique (up to a set of zero measure) non-increasing function such that, for every c ∈ R

meas
(
{s ; θ�

n(s) < c}
)

= meas
(
{s ; θn(s) < c}

)
. (3.3)

This can be explicitly defined as

θ�
n(y) = sup

{
ξ ; meas

(
{σ ∈ [0, hn] ; θn(σ ) ≥ ξ}

)
> y
}

.

For every n ≥ 1 we claim that

hn∫
0

1

sin θ
�
n(y)

dy =
hn∫

0

1

sin θn(y)
dy = �, (3.4)

hn∫
0

I (y)g(θ�
n(y)) dy ≥

hn∫
0

I (y)g(θn(y)) dy. (3.5)

Indeed, to prove the first identity we observe that, by (3.3), there exists a measure-preserving 
map y �→ ζ(y) from [0, hn] into itself such that θ�

n(y) = θn(ζ(y)). Using ζ as new variable of 
integration, one immediately obtains (3.4).

To prove (3.5) we observe that the function g introduced at (2.8) is smooth and satisfies

g′(θ) ≤ 0 for all θ ∈ [θ0, π/2]. (3.6)

Therefore, the map y �→ g(θ
�
n(y)) coincides with the non-decreasing rearrangement of y �→

g(θn(y)). On the other hand, since I (·) is non-decreasing, it trivially coincides with the non-
decreasing rearrangement of itself. Therefore, (3.5) is an immediate consequence of the Hardy-
Littlewood inequality [10].

3. Since all functions θ�
n are non-increasing, they have bounded variation. Using Helly’s com-

pactness theorem, by possibly extracting a subsequence, we can find h > 0 and a non-increasing 
function θ∗ : [0, h] �→ [θ0, π/2] such that

lim
n→∞hn = h , lim

n→∞ θ�
n(y) = θ∗(y) for a.e. y ∈ [0, h]. (3.7)

This implies

h∫
0

1

sin θ∗(y)
dy = �,

h∫
0

I (y)g(θ∗(y)) dy = M,

proving the optimality of θ∗. �



1578 A. Bressan et al. / J. Differential Equations 269 (2020) 1571–1611

3.2. Necessary conditions for optimality

Let y �→ θ∗(y) be an optimal solution. By the previous analysis we already know that the 
function θ∗(·) is non-increasing. Otherwise, its non-increasing rearrangement achieves a better 
payoff. In particular, this implies that the left limit at the terminal point y = h is well defined:

θ∗(h) = lim
y→h− θ∗(y). (3.8)

Consider an arbitrary perturbation

θε = θ∗ + ε�, hε = h + εη.

The constraint (2.10) implies

h+εη∫
0

1

sin θε(y)
dy = �. (3.9)

Differentiating (3.9) w.r.t. ε one obtains

1

sin θ∗(h)
η −

h∫
0

cos θ∗(y)

sin2 θ∗(y)
�(y)dy = 0. (3.10)

Next, calling

Jε
.=

hε∫
0

I (y)g(θε(y))dy

and assuming that I (·) is continuous at least at y = h, by (3.10) we obtain

0 = d

dε
Jε

∣∣∣∣
ε=0

=
h∫

0

I (y)g′(θ∗(y))�(y)dy

+ I (h)g(θ∗(h)) · sin θ∗(h)

h∫
0

cos θ∗(y)

sin2 θ∗(y)
�(y)dy.

(3.11)

Since (3.11) holds for arbitrary perturbations �(·), the optimal control θ∗(·) should satisfy the 
identity

I (y)g′(θ∗(y)
)+ λ · cos θ∗(y)

sin2 θ∗(y)
= 0, for a.e. y ∈ [0, h], (3.12)
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where
λ = I (h)g(θ∗(h)) · sin θ∗(h). (3.13)

It will be convenient to write

g(θ) = G(θ)

sin θ
, G(θ)

.=
(

1 − exp
{ −κ

cos(θ − θ0)

})
cos(θ − θ0). (3.14)

Inserting (3.14) in (3.12) one obtains the pointwise identities

I (y)
(
G′(θ∗(y)) sin θ∗(y) − G(θ∗(y)) cos θ∗(y)

)
+ λ · cos θ∗(y) = 0. (3.15)

At y = h, the identities (3.13) and (3.15) yield

G′(θ∗(h)) tan θ∗(h) − G(θ∗(h)) = − I (h)G(θ∗(h))

I (h)
.

Hence

G′(θ∗(h)) tan θ∗(h) = 0,

which implies

θ∗(h) = θ0 , λ = I (h)g(θ0) sin θ0 = (
1 − e−κ

)
I (h) . (3.16)

Notice that (3.15) corresponds to

θ∗(y) = arg max
θ∈[0,π]

{
I (y)

G(θ)

sin θ
− λ

sin θ

}
. (3.17)

Equivalently, θ = θ∗(y) is the solution to

G′(θ) tan θ − G(θ) = − λ

I (y)
, (3.18)

where G is the function at (3.14).

Lemma 3.2. Let G be the function at (3.14). Then for every z ∈] − ∞, e−κ − 1] the equation

F(θ)
.= G′(θ) tan θ − G(θ) = z (3.19)

has a unique solution θ = ϕ(z) ∈ [θ0, π/2[ .

Proof. Observing that{
G(θ0) = 1 − e−κ ,

G′(θ0) = 0,

{
G′(θ) < 0

G′′(θ) < 0
for θ ∈]θ0,π/2[ , (3.20)
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we obtain F(θ0) = e−κ − 1 and

F ′(θ) = G′′(θ) tan θ + G′(θ) tan2 θ < 0 for θ ∈ [θ0,π/2[ .

Therefore, for θ ∈ [θ0, π/2[ , the left hand side of (3.19) is monotonically decreasing from
e−κ − 1 to −∞. We conclude that (3.19) has a unique solution θ = ϕ(z) for any z ∈] − ∞,

e−κ − 1]. �
The optimal control θ∗(·) determined by the necessary condition (3.18) is thus recovered by

θ∗(y) = ϕ

( −λ

I (y)

)
= ϕ

(
(e−κ − 1)I (h)

I (y)

)
. (3.21)

Next, we need to determine h so that the constraint

L(h)
.=

h∫
0

1

sin(θ∗(y))
dy = � (3.22)

is satisfied. As shown by Example 3.4 below, the solution of (3.21)-(3.22) may not be unique.
In the following, we seek a condition on I which implies that L is monotone, i.e.,

L′(h) = 1

sin(θ0)
+

h∫
0

cos θ∗(y)

sin2 θ∗(y)

1

F ′(θ∗(y))

I ′(h)

I (y)
G(θ0) dy > 0 . (3.23)

This will guarantee that (3.22) has a unique solution. To get an upper bound for F ′(θ), observe 
that, for θ ∈ [θ0, π/2[,

F ′(θ) ≤ tan(θ)G′′(θ)

= − tan(θ)

[
cos(θ − θ0)

(
1 −

(
κ

cos(θ − θ0)
+ 1

)
exp
{ −κ

cos(θ − θ0)

})
+ tan2(θ−θ0)

cos(θ−θ0)
κ2 exp

{ −κ
cos(θ−θ0)

}]
= − tan(θ) cos(π/2 − θ0)

(
1 − (κ + 1)e−κ

)
.

Since θ∗(y) ∈ [θ0, π/2] and G(θ0) = 1 − e−κ , using the above inequality one obtains

h∫
0

cos θ∗(y)

sin2 θ∗(y)
· 1

|F ′(θ∗(y))|
I ′(h)

I (y)
G(θ0) dy

≤ cos2 θ0

sin3 θ0
· 1 − e−κ

cos(π/2 − θ0)
(

1 − (κ + 1)e−κ
) h∫

0

I ′(h)

I (y)
dy .
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Fig. 2. Left: the optimal shape of a stem, as described in Theorem 3.3. Right: if the light intensity I changes abruptly as 
a function of the hight, the optimal shape may not be unique, as shown in Example 3.4.

Hence (3.23) is satisfied provided that

h∫
0

I ′(h)

I (y)
dy < tan2 θ0 · cos(π/2 − θ0)

(
1 − (κ + 1)e−κ

)
1 − e−κ

. (3.24)

From the above analysis, we conclude

Theorem 3.3. Assume that the light intensity function I is Lipschitz continuous and satisfies the 
strict inequality (3.24) for a.e. h ∈ [0, �]. Then the optimization problem (OP1) has a unique 
optimal solution θ∗ : [0, h∗] �→ [θ0, π/2]. The function θ∗ is non-increasing, and satisfies

θ∗(y) = ϕ

(
(e−κ − 1)

I (h∗)
I (y)

)
, (3.25)

where z �→ ϕ(z) = θ is the function implicitly defined by (3.19).

The following example shows that, without the bound (3.24) on the sunlight intensity function 
I (·), the conclusion of Theorem 3.3 can fail.

Example 3.4 (non-uniqueness). Choose n =
(

− 1√
2
, 1√

2

)
, � = 6/5 <

√
2, κ = 1,

I (y) =
{

ε if y ∈ [0,1],
1 if y > 1,

with ε > 0l.
By Theorem 3.1 at least one optimal solution exists. By the previous analysis, any optimal 

solution θ∗ : [0, h∗] �→ [θ0, π/2] satisfies the necessary conditions (3.25). In this particular case, 
this implies that θ∗(y) is constant separately for y < 1 and for y > 1. As shown in Fig. 2, right, 
these necessary conditions can have two solutions.

Solution 1. If h∗ < 1, then I (y) = ε for all y ∈ [0, h∗] and the necessary conditions (3.25)
yield
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θ∗
1 (y) = ϕ(e−1 − 1) = θ0 = π/4 for all y ∈ [0, h∗].

The total sunlight collected is

Sε(θ
∗
1 ) = 6

5
(1 − e−1) . (3.26)

Solution 2. If h∗ > 1, then I (h∗) = 1 and the necessary conditions (3.25) yield

θ∗
2 (y) = ϕ

(
(e−1 − 1)

I (h∗)
I (y)

)
=
⎧⎨⎩ ϕ

(
(e−1 − 1)ε−1

)
if y ∈ [0,1],

π/4 if y > 1.

Calling α = α(ε) .= ϕ
(
(e−1 − 1)ε−1

)
, the total sunlight collected in this case is

Sε(θ
∗
2 ) =

(
1 − exp

{
− 1

cos(α − π/4)

})
cos(α − π/4) ε +

(
6

5
− 1

sinα

)(
1 − e−1). (3.27)

We claim that, for a suitable choice of ε ∈]0, 1[ , the two quantities in (3.26) and (3.27) become 
equal. Indeed, as ε → 0+ we have

α(ε)
.= ϕ

(
e−1 − 1

ε

)
→ π

2
,

Sε(θ
∗
1 ) → 0, Sε(θ

∗
2 ) → 1 − e−1

5
. (3.28)

On the other hand, as ε → 1 we have α(ε) → π/4. By continuity, there exists ε1 ∈]0, 1[ such 
that

sinα(ε1) = 5

6
.

As ε → ε1+, we have

Sε(θ
∗
2 ) →

(
1 − exp

{
− 1

cos(α(ε1) − π/4)

})
cos(α(ε1) − π/4) ε1 < Sε1(θ

∗
1 ). (3.29)

Comparing (3.28) with (3.29), by continuity we conclude that there exists some ̂ε ∈]0, ε1[ such 
that Ŝε(θ

∗
1 ) = Ŝε(θ

∗
2 ). Hence for ε = ε̂ the optimization problem has two distinct solutions.

We remark that in this example the light intensity I (y) is discontinuous at y = 1. However, 
by a mollification one can still construct a similar example with two optimal configurations, also 
for I (·) smooth. Of course, in this case the derivative I ′(h) will be extremely large for h ≈ 1, so 
that the assumption (3.24) fails.



A. Bressan et al. / J. Differential Equations 269 (2020) 1571–1611 1583

4. A competition model

In the previous analysis, the light intensity function I (·) was a priori given. We now consider 
a continuous distribution of stems, and determine the average sunlight I (y) available at height y
above ground, depending on the density of vegetation above y.

Let the constants �, κ > 0 be given, specifying the length and thickness of each stem. We 
now introduce another constant ρ > 0 describing the density of stems, i.e. how many stems grow 
per unit area. Assume that all stems have the same height and shape, described by the function 
θ : [0, h] �→ [θ0, π/2]. For any y ∈ [0, h], the total amount of vegetation at height ≥ y, per unit 
length, is then measured by

ρ ·
h∫

y

κ

sin θ(y)
dy.

The corresponding light intensity function is defined as

I (y)
.= exp

⎧⎨⎩−ρ ·
h∫

y

κ

sin θ(y)
dy

⎫⎬⎭ for y ∈ [0, h], (4.1)

while I (y) = 1 for y ≥ h. We are interested in equilibrium configurations, where the shape of 
the stems is optimal for the light intensity I (·). We recall that θ0 is the angle of incoming light 
rays, as in (2.1), while the constants �, κ > 0 denote the length and thickness of the stems.

Definition 4.1. Given an angle θ0 ∈]0, π/2] and constants �, κ, ρ > 0, we say that a light in-
tensity function I ∗ : R+ �→ [0, 1] and a stem shape function θ∗ : [0, h∗] �→ [θ0, π/2] yield a
competitive equilibrium if the following holds.

(i) The stem shape function θ∗ : [0, h∗] �→ [θ0, π/2] provides an optimal solution to the opti-
mization problem (OP1), with light intensity function I = I ∗.

(ii) For all y ≥ 0, the light intensity at height y satisfies

I ∗(y) = exp

⎧⎪⎨⎪⎩−ρ ·
h∗∫

min{y,h∗}

κ

sin θ∗(y)
dy

⎫⎪⎬⎪⎭ . (4.2)

If the density of vegetation is sufficiently small, we now show that an equilibrium configura-
tion exists.

Theorem 4.2. Let the light angle θ0 ∈]0, π/2] be given, together with the constants �, κ > 0
determining the common length and thickness of all the stems. Then there exists a constant c0 > 0
such that, for all 0 < ρ ≤ c0, an equilibrium configuration exists.

Proof. 1. Consider the set of stem configurations

K .=
{
� : [0, �] �→ [θ0, π/2] , � is nonincreasing

}
, (4.3)
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and the set of light intensity functions

J .=
{
I : [0,+∞[ �→ [0,1] ; I is nondecreasing, I (y) = 1 for y ≥ �,

I is Lipschitz continuous with constant
ρκ

sin θ0

}
.

(4.4)

We observe that K is a compact, convex subset of L1([0, �]), while J is a compact, convex 
subset of C0([0, +∞[).

If �(·) ∈ K describes the common configuration of all stems, we denote by I�(·) the corre-
sponding light intensity function. Moreover, for a given function I (·), we denote by �∗(I ) the 
corresponding optimal configuration of plant stems.

In the following steps we shall prove that:

(i) The map � �→ I� is continuous from K into J .
(ii) The map I �→ �∗(I ) is continuous from J into K.

As a consequence, the composed map � �→ �∗(I�) is continuous from K into itself. By Schaud-
er’s theorem, it has a fixed point, which provides an equilibrium solution.

2. Given � ∈K, define the constant

h̄
.=

�∫
0

sin�(t) dt . (4.5)

More generally, for s ∈ [0, �], set

y(s)
.=

s∫
0

sin�(t) dt ∈ [0, h̄]. (4.6)

We observe that, since �(t) ∈ [θ0, π/2], the inverse function y �→ s(y) from [0, h̄] into [0, �] is a 
strictly increasing bijection, with Lipschitz constant L = 1

sin θ0
. The corresponding light intensity 

function is determined by

I�(y) =
{

exp
{−ρκ(� − s(y))

}
if y ∈ [0, h̄],

1 if y > �.
(4.7)

From the above definitions it follows that � �→ I� is continuous from K into J .
3. Next, let I ∈ J . Given the constants �, κ , by choosing ρ > 0 small enough, any Lipschitz 

continuous function I : [0, �] �→ [0, 1] with Lipschitz constant L = ρκ
sin θ0

will satisfy the inequal-
ity (3.24). Hence, by Theorem 3.3, the optimization problem (OP1) has a unique optimal solution 
θ∗ : [0, h∗] �→ [θ0, π/2].

Notice that in Theorem 3.3 this solution is written in terms of the variable y ∈ [0, h∗], and 
satisfies the optimality condition (3.25). In terms of the arc-length parameter s ∈ [0, �], this cor-
responds to
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�∗(s) = θ∗(h(s))

where the variable y(s) ∈ [0, h∗] is implicitly defined by

y(s)∫
0

1

sin θ∗(z)
dz = s.

In view of (2.3), given I ∈ J and � ∈K, the total sunlight collected by the stem is computed 
by

S(I,�) = =
�∫

0

I (y(s)) ·
(

1 − exp
{ −κ

cos(�(s) − θ0)

})
cos(�(s) − θ0) ds, (4.8)

where

y(s)
.=

s∫
0

sin�(s)ds.

From the above formulas it follows that the map (I, �) �→ S(I, �) is continuous on the compact 
set J ×K. In particular, the function

I �→ max
�∈K

S(I,�) (4.9)

is continuous on the compact set J .
Given a light intensity function I ∈ J , call �∗(I ) ∈ K the unique optimal stem shape. We 

claim that the map I �→ �∗(I ) is continuous.
Indeed, this is a straightforward consequence of continuity and compactness. If continuity 

fails, there exists a convergent sequence In → I such that �(In) does not converge to �(I). By 
the compactness of K, we can extract a subsequence such that

�nk
→ �� �= �(I).

By continuity, one obtains

S(I,�(I)) = sup
�∈K

S(I,�) = lim
k→∞ sup

�∈K
S(Ink

,�)

= lim
k→∞S(Ink

,�(Ink
))) = S(I,��).

This contradicts the uniqueness of the optimal stem configuration, stated in Theorem 3.3. We 
thus conclude that the map I �→ �∗(I ) is continuous, completing the proof. �
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4.1. Uniqueness and representation of equilibrium solutions

By (3.21) and (4.2), this equilibrium configuration (h∗, θ∗) must satisfy the necessary condi-
tion

θ∗(y) = ϕ

⎛⎝(e−κ − 1) exp

⎧⎨⎩
h∗∫

y

ρκ

sin θ∗(y)
dy

⎫⎬⎭
⎞⎠ , y ∈ [0, h∗], (4.10)

where ϕ is the function defined in Lemma 3.2. Here the constant h∗ must be determined so that

h∗∫
0

1

sin θ∗(y)
dy = �. (4.11)

Based on (4.10), one obtains a simple representation of all equilibrium configurations, for any 
length � > 0. Indeed, for t ∈] − ∞, 0], let t �→ ζ̂ (t) be the solution of the Cauchy problem

ζ ′ = − ρκ

sin θ
, where θ = ϕ

(
(e−κ − 1) eζ

)
,

with terminal condition ζ(0) = 0.

Notice that the corresponding function t �→ θ̂ (t) = ϕ
(
(e−κ − 1) eζ̂ (t)

)
satisfies

θ̂ (0) = ϕ(e−κ − 1) = θ0 .

For any length � of the stem, choose h∗ = h∗(�) so that

0∫
−h∗

1

sin θ̂ (t)
dt = � . (4.12)

The shape of the stem that achieves the competitive equilibrium is then provided by

θ∗(y) = θ̂ (y − h∗) , y ∈ [0, h∗]. (4.13)

Since the backward Cauchy problem

ζ ′ = − ρκ

sin
(
ϕ
(
(e−κ − 1) eζ

)) , ζ(0) = 0, (4.14)

has a unique solution, we conclude that, if an equilibrium solution exists, by the representation 
(4.13) it must be unique. (See Fig. 3.)
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Fig. 3. Left: the curve γ , parameterized by the coordinate t . For t < 0, the tangent vector is dγ
dt

= (tan θ(t), 1), where 
θ(t) is obtained by solving the Cauchy problem (4.14). Right: for different lengths 0 < �1 < �2 < �3, the equilibrium 
configuration is obtained by taking the upper portion of the same curve γ , up to the length �i , i = 1, 2, 3.

5. Stems with variable length and thickness

We now consider the optimization problem (OP2), allowing for stems of different lengths and 
with variable density of leaves.

5.1. Existence of an optimal solution

Theorem 5.1. For any bounded, non-decreasing function y �→ I (y) ∈ [0, 1] and any constants 
0 < α < 1, c > 0 and θ0 ∈]0, π/2[ , the optimization problem (OP2) has at least one solution.

Proof. 1. Consider a maximizing sequence of couples (θk, uk) : R+ �→ [θ0, π/2] × R+. For 
k ≥ 1, let

s �→ γk(s) =
⎛⎝ s∫

0

cos θk(s) ds ,

s∫
0

sin θk(s) ds

⎞⎠
be the arc-length parameterization of the stem γk . Call μk the Radon measure on R2 describing 
the distribution of leaves along γk . For every Borel set A ⊆Rn, we thus have

μk(A) =
∫

{s ; γk(s)∈A}
uk(s) ds. (5.1)

For a given radius ρ > 0, we have the decomposition

μk = μ
�
k + μ

�
k ,

where μ�
k is the restriction of μk to the ball B(0, ρ), while μ�

k is the restriction of μk to the 
complement R2 \ B(0, ρ). By the same arguments used in steps 1-2 of the proof of Theorem 3.1 
in [3], if the radius ρ is sufficiently large, then

S(μ
�
k) − cIα(μ

�
k) ≥ S(μk) − cIα(μk) (5.2)
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for all k ≥ 1. Here S and Iα are the functionals defined at (2.12)-(2.13). According to (5.2), we 
can replace the measure μk with μ�

k without decreasing the objective functional.
Without loss of generality we can thus choose � > 0 sufficiently large and assume that

uk(s) = 0 for all s > �, k ≥ 1.

In turn, since S(μk) − cIα(μk) ≥ 0, we obtain the uniform bound

Iα(μk) ≤ κ1
.= 1

c
S(μk) ≤ �

c
. (5.3)

2. In this step we show that the measures μk can be taken with uniformly bounded mass. 
Consider a measure μk for which (5.3) holds. By (2.13), for every r ∈ [0, �] one has

Iα(μk) ≥ r ·
⎛⎝ �∫

r

uk(t) dt

⎞⎠α

.

In view of (5.3), this implies

�∫
r

uk(s) ds ≤
(κ1

r

)1/α

. (5.4)

It thus remains to prove that, in our maximizing sequence, the functions uk can be replaced with 
functions ũk having a uniformly bounded integral over [0, r], for some fixed r > 0.

Toward this goal we fix 0 < ε < β < 1, and, for j ≥ 1, we define rj = 2−j , and the interval 
Vj =]rj+1, rj ]. Given u = uk , if 

∫
Vj

u(s) ds > rε
j , we introduce the functions

uj (s)
.= χ

Vj
(s)u(s), ũj (s)

.= min{uj (s), cj }, (5.5)

choosing the constant cj ≥ 2r
β−1
j so that∫

Vj

ũj (s) ds = r
β
j . (5.6)

We then let μj = ujμ and μ̃j = ũjμ be the measures supported on Vj , corresponding to these 
densities.

For a fixed integer j∗, whose precise value will be chosen later, consider the set of indices

J
.=

⎧⎪⎨⎪⎩j ≥ j∗
∣∣∣∣ ∫
Vj

u(s) ds > rε
j

⎫⎪⎬⎪⎭ (5.7)

and the modified density
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ũ(s)
.= u(s) +

∑
j∈J

(ũj (s) − uj (s)). (5.8)

Moreover, call μ̃ the measure obtained by replacing u with ũ in (2.11). By (5.4) and (5.5) the 
total mass of μ̃ is bounded. Indeed

μ̃(R2) =
�∫

rj∗

ũ(s) ds +
rj∗∫
0

ũ(s) ds ≤
(

κ1

rj∗

)1/α

+
∑
j≥j∗

rε
j ≤

(
κ1

rj∗

)1/α

+
∑
j≥1

2−jε < +∞.

(5.9)

We now claim that

S(μ̃) − cIα(μ̃) ≥ S(μ) − cIα(μ). (5.10)

Toward a proof of (5.10), we estimate

S(μ) − S(μ̃) ≤
∑
j∈J

(∫
Vj

I (y(t)) cos(θ(t) − θ0) dt

−
∫
Vj

I (y(t))

(
1 − exp

{
− ũj (t)

cos(θ(t) − θ0)

})
cos(θ(t) − θ0) dt

)

≤
∑
j∈J

rj∫
rj+1

exp
{−ũj (t)

}
dt ≤

∑
j∈J

rj+1 exp
{
−2r

β−1
j

}
. (5.11)

To estimate the difference in the irrigation cost, we first observe that the inequality⎛⎝ �∫
r

u(t) dt

⎞⎠α

≤ 1

r
Iα(μ) = κ1

r

implies

⎛⎝ �∫
r

u(t) dt

⎞⎠α−1

≥
(κ1

r

) α−1
α

. (5.12)

Since ũ(s) ≤ u(s) for every s ∈ [0, �], using (5.12) we now obtain

Iα(μ) − Iα(μ̃) =
1∫

0

d

dλ
Iα
(
λμ + (1 − λ)μ̃

)
dλ

=
1∫

0

�∫
0

d

dλ

⎛⎝ �∫
s

[λu(t) + (1 − λ)ũ(t)]dt

⎞⎠α

ds dλ
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=
1∫

0

�∫
0

⎧⎪⎨⎪⎩α

⎛⎝ �∫
s

[λu(t) + (1 − λ)ũ(t)]dt

⎞⎠α−1 �∫
s

[u(t) − ũ(t)]dt

⎫⎪⎬⎪⎭ds dλ

≥
�∫

0

⎧⎪⎨⎪⎩α

⎛⎝ �∫
s

u(t) dt

⎞⎠α−1 �∫
s

[u(t) − ũ(t)]dt

⎫⎪⎬⎪⎭ds

≥
∑
j∈J

rj+1∫
rj+2

⎡⎢⎣α

⎛⎝ �∫
s

u(t) dt

⎞⎠α−1 rj∫
rj+1

(uj (t) − ũj (t)) dt

⎤⎥⎦ds

≥
∑
j∈J

α

(
κ1

rj+2

) α−1
α · (rε

j − r
β
j ) · rj+2

=
∑
j∈J

κ2r
1/α
j (rε

j − r
β
j ), (5.13)

where κ2 = α(4κ1)
α−1
α . Combining (5.11) with (5.13) we obtain

c[Iα(μ)−Iα(μ̃)]− [S(μ)−S(μ̃)] ≥
∑
j∈J

(
cκ2r

1/α
j (rε

j − r
β
j )− rj+1 exp

{
−2r

β−1
j

})
. (5.14)

By choosing the integer j∗ large enough in (5.7), for j ≥ j∗ all terms in the summation on the 
right hand side of (5.14) are ≥ 0. This implies (5.10).

3. By the two previous steps, w.l.o.g. we can assume that the measures μk have uniformly 
bounded support and uniformly bounded total mass. Otherwise, we can replace the sequence 
(uk)k≥1 with a new maximizing sequence (ũk)k≥1 having these properties.

By taking a subsequence, we can thus assume the weak convergence μk ⇀ μ. The upper 
semicontinuity of the functional S , proved in [5], yields

S(μ) ≥ lim sup
k→∞

S(μk). (5.15)

In addition, since all maps s �→ γk(s) are 1-Lipschitz, by taking a further subsequence we can 
assume the convergence

γk(s) → γ (s) (5.16)

for some limit function γ , uniformly for s ∈ [0, �].
Since each measure μk is supported on γk , the weak limit μ is a measure supported on the 

curve γ .
4. Since θk(s) ∈ [θ0, π/2], we can re-parameterize each stem γk in terms of the vertical vari-

able

yk(s) =
s∫

0

sin θk(t) dt.
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Calling s = sk(y) the inverse function, we thus obtain a maximizing sequence of couples

y �→ (θ̂k(y), ûk(y))
.=
(
θk(sk(y)), uk(sk(y))

)
, y ∈ [0, hk] .

Moreover, the stem γk can be described as the graph of the Lipschitz function

x = xk(y) =
sk(y)∫
0

cos θk(s) ds.

Since all functions xk(·) satisfy xk(0) = 0 and are non-decreasing, uniformly continuous with 
Lipschitz constant L = cos θ0/ sin θ0, by possibly extracting a further subsequence, we obtain 
the convergence hk → h̄ and xk(·) → x̄(·). Here x̄ : [0, h̄] �→ R is a nondecreasing continuous 
function with Lipschitz constant L, such that x̄(0) = 0. More precisely, the convergence xk → x̄

is uniform on every compact subinterval [0, h] with h < h̄.
5. We claim that the irrigation cost of μ is no greater that the lim-inf of the irrigation costs for 

μk . Let σ �→ γ (σ ) be an arc-length parameterization of γ . Since s �→ γ (s) is 1-Lipschitz, one 
has dσ/ds ≤ 1. We now compute

Iα(μ) =
σ(�)∫
0

⎛⎝ σ(�)∫
σ

u(t) dt

⎞⎠α

dσ =
σ(�)∫
0

⎛⎝ lim
k→∞

�∫
s

uk(t) dt

⎞⎠α

dσ(s)

≤ lim
k→∞

�∫
0

⎛⎝ �∫
s

uk(t) dt

⎞⎠α

ds = lim
k→∞Iα(μk).

(5.17)

6. Combining (5.15) with (5.17) we conclude that the measure μ, supported on the stem γ , is 
optimal.

Let ū be the density of the absolutely continuous part of μ w.r.t. the arc-length measure on 
γ̄ , and call μ∗ the measure that has density ū w.r.t. arc-length measure. Since S(μ∗) = S(μ), 
it follows that μ∗ = μ. Otherwise Iα(μ∗) < Iα(μ) and μ is not optimal. This argument shows 
that the optimal measure μ is absolutely continuous w.r.t. the arc-length measure on γ .

Calling σ �→ γ (σ ) the arc-length parameterization of γ , the optimal solution to (OP2) is now 
provided by σ �→ (θ(σ ), ū(σ )), where θ is the orientation of the tangent vector:

d

dσ
γ (σ ) = (

cos θ(σ ), sin θ(σ )
)
. �

5.2. Necessary conditions for optimality

Let t �→ (θ∗(t), u∗(t)) be an optimal solution to the problem (OP2). The necessary conditions 
for optimality [4,6,7] yield the existence of dual variables p, q satisfying

{
ṗ = − I ′(y)G(θ,u),

q̇ = cα zα−1,

{
p(+∞) = 0,

q(0) = 0,
(5.18)
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and such that the maximality condition

(θ∗(t), u∗(t)) = arg max
θ∈[0,π], u≥0

{
p(t) sin θ − q(t)u + I (y(t))G(θ,u) − czα

}
. (5.19)

We recall that G(θ, u) is the function defined at (2.17). An intuitive interpretation of the quanti-
ties on the right-hand side of (5.19) goes as follows:

• p(t) is the rate of increase in the gathered sunlight, if the upper portion of stem {γ (s) ; s > t}
is raised higher.

• q(t) is the rate at which the irrigation cost increases, adding mass at the point γ (t).
• I (y(t)) G(θ, u) is the sunlight captured by the leaves at the point γ (t).

6. Uniqueness of the optimal stem configuration

Aim of this section is to show that, if the light intensity I (y) remains sufficiently close to 1 for 
all y ≥ 0, then the shape of the optimal stem is uniquely determined. This models a case where 
the density of external vegetation is small.

Theorem 6.1. Let h �→ I (h) ∈ [0, 1] be a non-decreasing, absolutely continuous function which 
satisfies

I ′(y) ≤ Cy−β for a.e. y > 0, (6.1)

for some constants C > 0 and 0 < β < 1. If

I (0) ≥ 1 − δ (6.2)

for some δ > 0 sufficiently small, then the optimal solution to (OP2) is unique.

Proof. We will show that the necessary conditions for optimality have a unique solution. This 
will be achieved in several steps. 1. Given I, p, q , define the functions �, U by setting(

�(I,p, q), U(I,p, q)
)

.= arg max
θ∈[0,π], u≥0

{
p · sin θ − q u + I · G(θ,u) − czα

}
. (6.3)

We recall that G is the function defined at (2.17). Notice that one can write

G(θ,u) = uG̃

(
cos (θ − θ0)

u

)
with

G̃(x)
.=
(

1 − exp

{
− 1

x

})
x > 0, G̃′(x) ≤ 1, G̃′′(x) ≤ 0, for all x > 0.

(6.4)

Denote by

H(θ, u)
.= p · sin θ − q u + I (y)G(θ,u) − czα (6.5)
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the quantity to be maximized in (6.3). Differentiating H w.r.t. θ and imposing that the derivative 
is zero, we obtain

p

I
= −Gθ(θ,u)

cos θ

= sin (θ − θ0)

cos θ

[
1 − exp

{
− u

cos (θ − θ0)

}
− u

cos (θ − θ0)
exp

{
− u

cos (θ − θ0)

}]
.

(6.6)

Similarly, differentiating H w.r.t. u, we find

−q + IGu(θ,u) = − q + I exp

{
− u

cos (θ − θ0)

}
= 0.

This yields

u = − ln
(q

I

)
cos (θ − θ0). (6.7)

A lengthy but elementary computation shows that the Hessian matrix of second derivatives of H
w.r.t. θ, u is negative definite, and the critical point is indeed the point where the global maximum 
is attained. By (6.7) it follows

U(I,p, q) = − ln
(q

I

)
cos
(
�(I,p, q) − θ0

)
. (6.8)

Inserting (6.8) in (6.6) and using the identity

sin (θ − θ0)

cos θ
= cos θ0 tan θ − sin θ0

we obtain

�(I,p, q) = arctan

(
tan θ0 +

1
cos θ0

p
I

1 − q
I

+ q
I

ln
( q

I

)) . (6.9)

Introducing the function

w(I,p, q)
.= p/I

1 − q
I

+ q
I

ln
( q

I

) , (6.10)

by (6.9) one has the identities⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin
(
�(I,p, q)

) = sin θ0 + w√
cos2 θ0 + (w + sin θ0)2

,

cos
(
�(I,p, q) − θ0

) = 1 + w sin θ0√
cos2 θ0 + (w + sin θ0)2

.

(6.11)

Note that w ≥ 0, because p, q, I ≥ 0. In turn, from (6.11) it follows
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cos
(
�(I,p, q)

) = cos θ0√
cos2 θ0 + (w + sin θ0)2

,

sin (�(I,p, q) − θ0) = w cos θ0√
cos2 θ0 + (w + sin θ0)2

.

(6.12)

2. The necessary conditions for the optimality of a solution to (OP2) yield the boundary value 
problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẏ(t) = sin�,

ż(t) = − U,

ṗ(t) = − I ′(y)G
(
�,U

)
,

q̇(t) = cαzα−1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0) = 0,

z(T ) = 0,

p(T ) = 0,

q(T ) = I (y(T )),

q(0) = 0.

(6.13)

Here [0, T [ is the interval where u > 0, while

� = �(I (y),p, q), U = U(I (y),p, q) (6.14)

are the functions introduced at (6.3), or more explicitly at (6.8)-(6.9). Notice that the length T of 
the stem is a quantity to be determined, using the boundary conditions in (6.13).

3. Since the control system (2.19) and the running cost (2.18) do not depend explicitly on 
time, the Hamiltonian function

H(y, z,p, q)
.= max

θ∈[0,π], u≥0

{
p · sin θ − q u + I (y)G(θ,u) − czα

}
(6.15)

is constant along trajectories of (6.13). Observing that the terminal conditions in (6.13) imply 
H(y(T ), z(T ), p(T ), q(T )) = 0, one has the first integral

H(y(t), z(t),p(t), q(t)) = 0 for all t ∈ [0, T ]. (6.16)

This yields

0 = p sin� +
[
I (y) − q + q ln

(
q

I (y)

)]
cos (� − θ0) − czα

=
p [sin θ0 + w] +

[
I (y) − q + q ln

(
q

I (y)

)]
[1 + w sin θ0]√

cos2 θ0 + (w + sin θ0)2
− czα

= I (y)

[
1 − q

I (y)
+ q

I (y)
ln

(
q

I (y)

)]√
cos2 θ0 + (w + sin θ0)2 − czα.

We can use this identity to express z as a function of the other variables:
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z
(
I (y),p, q

) =
{

I (y)

c

[
1 − q

I (y)
+ q

I (y)
ln

(
q

I (y)

)]√
cos2 θ0 + (w + sin θ0)2

}1/α

= c−1/α

{([
I (y) − q + q ln

( q

I (y)

)]
cos θ0

)2

+
(
p +

[
I (y) − q + q ln

(
q

I (y)

)]
sin θ0

)2
}1/2α

.

(6.17)

4. Since I is given as a function of the height y, it is convenient to rewrite the equations 
(6.13) using y as an independent variable. Using the identity (6.17), we obtain a system of two 
equations for the variables p, q:

d

dy
p(y) = − I ′(y)

[
1 − q(y)

I (y)

]
cos
(
�
(
I (y),p(y), q(y)

)− θ0
)

sin�
(
I (y),p(y), q(y)

)
= − I ′(y)

[
1 − q(y)

I (y)

]
1 + w sin θ0

w + sin θ0
.= − I ′(y)f1

(
I (y),p(y), q(y)

)
,

(6.18)

d

dy
q(y) = cα

[
z
(
I (y),p(y), q(y)

)]α−1

sin�
(
I (y),p(y), q(y)

)
= αc1/α

w + sin θ0

[
cos2 θ0 + (sin θ0 + w)2

]1− 1
2α

×
[
I (y)

(
1 − q

I (y)
+ q

I (y)
ln

(
q

I (y)

))]1− 1
α

.= f2
(
I (y),p(y), q(y)

)
,

(6.19)

where w = w(I, p, q) is the function introduced at (6.10). Note that under our assumptions, f1
remains bounded, while f2 diverges as q(y) → I (y). The system (6.13) can now be equivalently 
formulated as{

p′(y) = −I ′(y)f1
(
I (y),p, q

)
,

q ′(y) = f2
(
I (y),p, q

)
,

{
p(h) = 0,

q(h) = I (h),
q(0) = 0. (6.20)

5. To prove uniqueness of the solution to the boundary value problem (6.13), it thus suffices 
to prove the following (see Fig. 4, right).

(U) Call

y �→ (
p(y,h), q(y,h)

)
(6.21)

the solution to the system (6.20), with the two terminal conditions given at y = h. Then there 
is a unique choice of h > 0 which satisfies also the third boundary condition

q(0, h) = 0. (6.22)
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Fig. 4. Left and center: sketch of the solution of the system (5.18) in the case where I (y) ≡ 1. Left: the graphs of the 
functions z in (6.25) and u = − lnq . Center: the graph of the function q at (6.26). The figure on the right shows the case 
where I (·) is not constant. As before, h must be determined so that q(0, h) = 0.

To make the argument more clear, the uniqueness property (U) will be proved in two steps.

(i) When I (y) ≡ 1, the map

h �→ q(0, h) (6.23)

is strictly decreasing, hence it vanishes at a unique point h0.
(ii) For all functions I (·) sufficiently close to the constant map ≡ 1, the map (6.23) is strictly 

decreasing in a neighborhood of h0.

In the case I (y) ≡ 1, recalling (6.9) we obtain (see Fig. 4)

I ′(y) = 0, p(y,h) = 0, �(I,0, q) = θ0, G(θ0,U) = 1 − e−U ,

U(1,0, q) = argmax
u

{−qu + G(θ0,U)
} = argmax

u
{−qu + 1 − e−u} = − lnq,

The system (6.13) can now be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p′(y) = 0,

q ′(y) = cαzα−1

sin θ0
,

z′(y) = lnq

sin θ0
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p(h) = 0,

q(h) = 1,

z(h) = 0,

q(0) = 0. (6.24)

From (6.24) it follows p(y) ≡ 0, while

dz

dq
= lnq

cαzα−1 .

Integrating the above ODE with terminal conditions q = 1, z = 0, one obtains

z = c−1/α
[
1 + q lnq − q

]1/α

. (6.25)

The second equation in (6.24) thus becomes
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q ′(y) = αc1/α

sin θ0

[
1 + q ln |q| − q

] α−1
α

. (6.26)

Notice that here the right hand side is strictly positive for all q ∈] −1, 1[ . Of course, only positive 
values of q are relevant for the optimization problem, but for the analysis it is convenient to 
extend the definition also to negative values of q . The solution of (6.26) with terminal condition 
q(h) = 1 is implicitly determined by

h − y = sin θ0

αc1/α

1∫
q(y)

[
1 + s ln |s| − s

] 1−α
α

ds . (6.27)

The map h �→ q(0, h) thus vanishes at the unique point

h0 = sin θ0

αc1/α

1∫
0

[
1 + s ln |s| − s

] 1−α
α

ds. (6.28)

As expected, the height h0 of the optimal stem decreases as we increase the constant c in the 
transportation cost. A straightforward computation yields

∂

∂h
q(0, h) = − αc1/α

sin θ0

[
1 + q(0, h) ln |q(0, h)| − q(0, h)

] 1−α
α

. (6.29)

In particular, at h = h0 we have q(h0)(0) = 0 and hence

d

dh
q(0, h)

∣∣∣∣
h=h0

= − αc1/α

sin θ0
< 0. (6.30)

6. We will show that a strict inequality as in (6.30) remains valid for a more general function 
I (·), provided that the assumptions (6.1)-(6.2) hold.

Toward this goal, we need to determine how p and q vary w.r.t. the parameter h. Denoting by

P(y)
.= ∂p(y,h)

∂h
, Q(y)

.= ∂q(y,h)

∂h
(6.31)

their partial derivatives, by (6.20) one obtains the linear system(
P(y)

Q(y)

)′
=
(−I ′(y)f1,p −I ′(y)f1,q

f2,p f2,q

)(
P(y)

Q(y)

)
. (6.32)

The boundary conditions at y = h require some careful consideration. As y → h−, we expect 
f2(I (y), p(y), q(y)) → +∞ and Q(y) → −∞. To cope with this singularity we introduce the 
new variable

Q̃(y)
.= Q(y)

f2
(
I (y),p(y), q(y)

) . (6.33)
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The system (6.32), together with the new boundary conditions for P, Q̃, can now be written as⎧⎪⎨⎪⎩
P ′(y) = −I ′(y)

[
f1,pP + f1,qf2Q̃

]
,

Q̃′(y) = f2,p

f2
P − I ′(y)[f2,I − f2,pf1]

f2
Q̃,

{
P(h) = 0,

Q̃(h) = − 1.
(6.34)

To analyze this system we must compute the partial derivatives of f1 and f2. From the definition 
(6.10) it follows

∂w

∂I
= w2

p

[
1 − q

I

]
,

∂w

∂p
= w

p
,

∂w

∂q
= −w2

p
ln
(q

I

)
. (6.35)

Using (6.35), from (6.18), (6.19) we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1,p

(
I (y),p, q

) = 1 − q
I (y)

I (y) tan2 �
[
1 − q

I (y)
+ q

I (y)
ln
(

q
I (y)

)] ,
f1,q

(
I (y),p, q

) = 1

I (y)

cos (� − θ0)

sin�
−

sin (� − θ0) cos�
[
1 − q

I (y)

]
ln
( q

I

)
I (y) sin2 �

[
1 − q

I (y)
+ q

I (y)
ln
(

q
I (y)

)] ,
f2,p

(
I (y),p, q

) = −
[

1 + α

sin2 �
− 2α

]
1

z
(
I (y),p, q

) ,
f2,q

(
I (y),p, q

)
) = −

[
(1 − α) sin θ0

sin2 �
− sin (� − θ0)

cos�

(
1 + α

sin2 �
− 2α

)] ln
(

q
I (y)

)
z
(
I (y),p, q

) ,
f2,I

(
I (y),p, q

) = −
[
(1 − α) sin θ0

sin2 �
+ sin (� − θ0)

cos�

(
1 + α

sin2 �
− 2α

)] 1 − q
I (y)

z
(
I (y),p, q

) .

(6.36)

At this stage, the strategy of the proof is straightforward. When I ′(y) ≡ 0, the solution to (6.34)
is trivially given by P(y) ≡ 0, Q̃(y) ≡ −1. This implies

∂

∂h
q(0, h) = Q̃(0) · f2(I (0),p(0), q(0)) < 0.

We need to show that the same strict inequality holds when δ > 0 in (6.2) is small enough. 
Notice that, if the right hand sides of the equations in (6.34) were bounded, letting ‖I ′‖L∞ →
0 a continuity argument would imply the uniform convergence P(y) → 0 and Q̃(y) → −1. 
The same conclusion can be achieved provided that the right hand sides in (6.34) are uniformly 
integrable. This is precisely what will be proved in the next two steps, relying on the identities 
(6.36).

7. In this step we prove an inequality of the form

0 < θ0 ≤ �(I,p, q) ≤ θ+ <
π

2
. (6.37)

As a consequence, this implies that all terms in (6.36) involving sin� or cos� remain uniformly 
positive.
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The lower bound � ≥ θ0 is an immediate consequence of (6.9). To obtain an upper bound on 
�, we set

q� .= q(y)

I (y)
.

By (6.13), a differentiation yields

q̇� = cαzα−1 − q�I ′ sin(�)

I
.

Next, we observe that, by (6.13), one has

dz

dq�
= lnq� ·cos(�−θ0) · I

cαzα−1 − q�I ′ sin(�)
= ϕ1(q

�) · lnq� ·αzα−1 ,

{
z(h) = 0,

q�(h) = 1.

In (6.2) we can now choose δ ≤ cαMα−1, where M ≥ z(0) is an a priori bound on the mass of 
the stem, derived in Section 5. This ensures that ϕ1 is a bounded, uniformly positive function for 
y close enough to h, say

0 < c− ≤ ϕ1 ≤ c+,

for some constants c−, c+. Integrating, we obtain

zα =
z∫

0

αζα−1 dζ = −
1∫

q�

ϕ1(s) ln s ds = − ϕ2(q
�)

1∫
q�

ln s ds = ϕ3(q
�) · (1 − q�)2, (6.38)

and

dq�

dy
= cα

sin�

⎛⎜⎝−
1∫

q�

ϕ1(s) ln s ds

⎞⎟⎠
α−1
α

= ϕ4(q
�) ·
⎛⎜⎝−

1∫
q�

ln s ds

⎞⎟⎠
α−1
α

= ϕ5(q
�) · (1 − q�)

2(α−1)
α . (6.39)

Here the ϕk are uniformly positive, bounded functions. Integrating (6.39) we obtain

1∫
q�

1

ϕ5(s)
(1 − s)

2(1−α)
α ds = h − y. (6.40)

To fix the ideas, assume

0 < c3 ≤ ϕ5(s) ≤ C3 .
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Then

1

c3

1∫
q�

(1 − s)
2(1−α)

α ds = α

(2 − α)c3
(1 − q�)

2−α
α ds ≥ h − y.

1 − q�(y) ≥
(

(2 − α)c3

α

) α
2−α

(h − y)
α

2−α . (6.41)

A similar argument yields

1 − q�(y) ≤
(

(2 − α)C3

α

) α
2−α

(h − y)
α

2−α . (6.42)

Using (6.1) and (6.42) in the equation (6.18) we obtain a bound of the form

−p′(y) ≤ C1(1 − q(y)) ≤ C2(h − y)
α

2−α (6.43)

for y in a left neighborhood of h, which yields

p(y) ≤ C2

α + 1
(h − y)

2
2−α . (6.44)

Since α < 1, using (6.41) and (6.44) in (6.9) we obtain the limit �(y) → θ0 as y → h−.
On the other hand, when y is bounded away from h, the denominator in (6.10) is strictly 

positive and the quantity w = w(I, p, q) remains uniformly bounded. By (6.9), we obtain the 
upper bound � ≤ θ+, for some θ+ < π/2.

8. Relying on (6.36), in this step we prove that all terms on the right hand sides of the ODEs 
in (6.34) are uniformly integrable.

(i) We first consider the terms appearing in the ODE for P(y). Concerning f1,p, as y → h−
one has

f1,p = O(1) ·
(

1 − q

I

)−1 = O(1) · (h − y)
−α
2−α , (6.45)

because of (6.41). Since α < 1, this implies that f1,p is an integrable function of y.
(ii) By the second equation in (6.36), as y → h− one has

f1,q = O(1) · (1 − q�) ln(q�)

1 − q� + q� ln(q�)
= O(1). (6.46)

(iii) The term f2 blows up as y → h−, due to the factor zα−1. However, this factor is integrable 
in y because, by (6.38), (6.41) and (6.42)

zα
(
I (y),p(y), q(y)

) = O(1) · (h − y)
2α

2−α . (6.47)



A. Bressan et al. / J. Differential Equations 269 (2020) 1571–1611 1601

This implies

f2
(
I (y),p(y), q(y)

)=O(1) · zα−1(I (y),p(y), q(y)
)

=O(1) · (h − y)−1+ α
2−α , (6.48)

showing that f2 is integrable, because α > 0.
(iv) We now solve the linear ODE for P in (6.34) with terminal condition P(h) = 0. By the 

estimates (6.45)-(6.46) and (6.48) one obtains a bound of the form

P(y) = O(1) · (h − y)
α

2−α , (6.49)

valid in a left neighborhood of y = h.
(v) In a neighborhood of the origin, the function f1,q contains a logarithm which blows up as 

y → 0+. However, this is integrable because, for y ≈ 0, we have

q(y)

I (y)
≈
(

d

dy

q(y)

I (y)

)∣∣∣∣
y=0

· y = cα

(z(0))1−αI (0) sin (�(0))
y,

and lny is integrable in y. Recalling (6.1), as y ranges in a right neighborhood of the origin, 
i.e. for y > 0, we conclude⎧⎨⎩ I ′(y) · f1,qf2 = O(1) · I ′(y)f1,q = O(1) · y−β lny,

I ′(y) · f1,p = O(1) · I ′(y) = O(1) · y−β .

(6.50)

This shows that, in (6.34), the coefficients in first equation are uniformly integrable in a 
right neighborhood of the origin.

(vi) It remains to consider the terms appearing in the ODE for Q̃(y). We first observe that

f2,p

f2
= − sin�

cα

[
1 + α

sin2 �
− 2α

]
z−α
(
I (y),p(y), q(y)

)
.

As y → h−, by (6.47) and (6.49) this implies

f2,p

f2
· P = O(1) · (h − y)

−2α
2−α · (h − y)

α
2−α , (6.51)

which is integrable for α < 1.
(vii) Finally, as y → h−, we consider

f2,I

f2
= − sin�

cα

[
(1 − α) sin θ0

sin2 �
+ sin (� − θ0)

cos�

(
1 + α

sin2 �
− 2α

)]
× 1 − q

I (y)

zα
(
I (y),p(y), q(y)

)
= O(1) · (1 − q�)z−α

(
I (y),p(y), q(y)

) = O(1) · (h − y)
α

2−α · (h − y)
−2α
2−α ,

(6.52)
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which is integrable in y since α < 1. Similarly, by (6.51), (6.18), and (6.42), it follows

f2,p

f2
· f1 = O(1) · (h − y)

−2α
2−α · (h − y)

α
2−α , (6.53)

which is again integrable.

9. The proof can now be accomplished by a contradiction argument. If the conclusion of 
the theorem were not true, one could find a sequence of absolutely continuous, non-decreasing 
functions In : R+ �→ [0, 1], all satisfying (6.1), with In(0) → 1, and such that, for each n ≥ 1, 
the optimization problem (OP2) has two distinct solutions, say (θ̌n, ǔn) and (θ̂n, ûn). As a 
consequence, for each n ≥ 1 the system (6.13) has two solutions. To fix the ideas, let the 
first solution be defined on [0, ȟn] and the second on [0, ĥn], with ȟn < ĥn. These two solu-
tions will be denoted by (p̌n, q̌n, ̌zn) and (p̂n, q̂n, ̂zn). They both satisfy the boundary condi-
tions

p̌n(ȟn) = p̂n(ĥn) = 0, q̌n(ȟn) = I (ȟn), q̂n(ĥn) = I (ĥn), q̌n(0) = q̂n(0) = 0.

(6.54)

As a preliminary, we observe that, for δ > 0 small, the heights ĥ, ȟ of optimal stems must 
remain uniformly positive. Indeed, by (2.3) the sunlight gathered by a stem γ of length � is 
bounded by

S(γ ) ≤ �.

Hence, for a sequence of stems γn with heights ĥn → 0, the total sunlight satisfies

S(γn) ≤ �n ≤ ĥn

sin θ0
→ 0.

Therefore, for n large, none of these stems can be optimal.
Thanks to the last identity in (6.54), by the mean value theorem there exists some intermediate 

point kn ∈ [ȟn, ĥn] such that, with the notation introduced at (6.21),

∂qn

∂h
(0, kn) = 0. (6.55)

For each n ≥ 1 consider the corresponding system⎧⎪⎨⎪⎩
P ′

n(y) = −I ′
n(y)

[
f1,pPn + f1,qf2Q̃n

]
,

Q̃′(y) = f2,p

f2
Pn − I ′

n(y)[f2,I − f2,pf1]
f2

Q̃n,

{
Pn(kn) = 0,

Q̃n(kn) = − 1.
(6.56)

Since f2
(
In(0), pn(0, kn), 0

)
> 0, by (6.55) it follows

Q̃n(0) = 1

f2
(
In(0),pn(0, kn),0

) · ∂qn

∂h
(0, kn) = 0. (6.57)
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Let

Pn(y)
.= ∂p(y, kn)

∂h
, Q̃n(y)

.= 1

f2
(
In(y),pn(y, kn), qn(y, kn)

) · ∂q(y, kn)

∂h
,

be the solutions to (6.56). By the previous steps, their derivatives 
(
P ′

n, Q̃
′
n

)
n≥1 form a sequence 

of uniformly integrable functions defined on the intervals [0, kn]. Note that the existence of an 
upper bound supn kn

.= h+ < +∞ follows from the existence proof.
Thanks to the uniform integrability, by possibly taking a subsequence, we can assume the 

convergence kn → h ∈ [0, h+], the weak convergence of derivatives P ′
n ⇀ P ′, Q̃′

n ⇀ Q̃′ in L1, 
and the convergence

Pn → P, Q̃n → Q̃,

uniformly on every subinterval [0, h] with h < h̄.
Recalling that every I ′

n satisfies the uniform bounds (6.1), since In(y) → I (y) ≡ 1 uniformly 
for all y ≥ 0, we conclude that (P, Q̃) provides a solution to the linear system (6.34) on [0, h̄], 
corresponding to the constant function I (y) ≡ 1. We now observe that, when I (y) ≡ 1, the 
solution to (6.34) is P(y) ≡ 0 and Q̃(y) ≡ −1. On the other hand, our construction yields

Q̃(0) = lim
n→∞ Q̃n(0) = 0.

This contradiction achieves the proof of Theorem 6.1. �
7. Existence of an equilibrium solution

Given a nondecreasing light intensity function I : R+ �→ [0, 1], in the previous section we 
proved the existence of an optimal solution (θ∗, u∗) for the maximization problem (OP2).

Conversely, let ρ0 > 0 be the constant density of stems, i.e. the number of stems growing 
per unit area. If all stems have the same configuration, described by the couple of functions 
y �→ (θ(y), u(y)) as in (2.18), then the corresponding intensity of light at height y above ground 
is computed as

I (θ,u)(y)
.= exp

⎧⎨⎩− ρ0

cos θ0

+∞∫
y

u(ζ )

sin θ(ζ )
dζ

⎫⎬⎭ . (7.1)

The main goal of this section is to find a competitive equilibrium, i.e. a fixed point of the 
composition of the two maps I �→ (θ∗, u∗) and (θ, u) �→ I (θ,u).

Definition 7.1. Given an angle θ0 ∈]0, π/2[ and a constant ρ0 > 0, we say that the light intensity 
function I ∗ : R+ �→ [0, 1] and the stem configuration (θ∗, u∗) : R+ �→ [θ0, π/2] × R+ yield a
competitive equilibrium if the following holds.

(i) The couple (θ∗, u∗) provides an optimal solution to the optimization problem (OP2), with 
light intensity function I = I ∗.

(ii) The identity I ∗ = I (θ∗,u∗) holds.
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The main result of this section provides the existence of a competitive equilibrium, assuming 
that the density ρ0 of stems is sufficiently small.

Theorem 7.2. Let an angle θ0 ∈]0, π/2[ be given. Then, for all ρ0 > 0 sufficiently small, a 
unique competitive equilibrium (I∗, θ∗, u∗) exists.

Proof. 1. Setting C = 1 and β = 1/2 in (6.1), we define the family of functions

F .=
{
I : R+ �→ [1 − δ, 1] ; I is absolutely continuous,

I ′(y) ∈ [0, y−1/2 ] for a.e. y > 0
}
,

(7.2)

where δ > 0 is chosen small enough so that the conclusion of Theorem 6.1 holds.
2. For each I ∈ F , let (θ(I), u(I)) describe the corresponding optimal stem. Calling

h(I) = sup
{
y ≥ 0 ; u(I)(y) > 0

}
the height of this stem, by the a priori bounds proved in Section 6 we have a uniform bound

h(I) ≤ h+

for all I ∈ F . Let p(I), q(I) : [0, h(I)] �→ R+ be the corresponding solutions of (6.20). For con-
venience, we extend all these functions to the larger interval [0, h+] by setting

p(I)(y)
.= p(I)

(
h(I)
)
, q(I)(y)

.= q(I)
(
h(I)
)
, for all y ∈ [h(I), h+].

3. By the analysis in Section 6, for any I ∈ F , the solution to the system of optimality condi-
tions (6.13) satisfies

θ0 ≤ �(I (y),p(y), q(y)) ≤ θ+ , c0 y ≤ q(y)

I (y)
≤ 1, (7.3)

for some θ+ < π/2 and c0 > 0 sufficiently small. In view of (6.8), this implies

U(I (y),p(y), q(y))
.= − ln

(
q(I )

I (y)

)
cos
(
�(I (y),p(y), q(y)) − θ0

) ≤ − ln(c0y). (7.4)

Note that �(I (y), p(I)(y), q(I)(y)) = θ(I)(y) and U(I (y), p(I)(y), q(I)(y)) = u(I)(y). Thus, 
if we choose ρ0 > 0 small enough, it follows that the corresponding light intensity function I (θ,u)

at (7.1) is again in F . A competitive equilibrium will be obtained by constructing a fixed point 
of the composition of the two maps

�1 : I �→ (
θ(I), u(I)

)
, �2 : (θ, u) �→ I (θ,u). (7.5)

In order to use Schauder’s theorem, we need to check the continuity of these maps, in a suitable 
topology.
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We start by observing that F ⊂ C0([0, h+]) is a compact, convex set. Again by the analysis 
in Section 6, as I varies within the domain F , the corresponding functions θ(I) are uniformly 
bounded in L∞([0, h+]), while u(I) is uniformly bounded in L1([0, h+]).

From the estimate (6.43) it follows that the functions p(I) are equicontinuous on [0, h+]. 
Recalling that q = q� · I , by (6.39) we conclude that the functions q(I) are equicontinuous as 
well.

4. Motivated by (7.3)-(7.4), we consider the set of functions

U .=
{
(θ, u) ∈ L1([0, h+] ; R2), θ(y) ∈ [θ0, θ

+], 0 ≤ u(y) ≤ − ln(c0y)
}
. (7.6)

Thanks to the uniform bounds imposed on θ and u in the definition (7.6), the continuity of the 
map �2 : U �→ C0, defined at (7.1) is now straightforward.

5. To prove the continuity of the map �1, consider a sequence of functions In ∈ F , with 
In → I uniformly on [0, h+]. Let (θn, un) : [0, h+] �→ R2 be the corresponding unique optimal 
solutions.

We claim that (θn, un) → (θ, u) in L1([0, h+]), where (θ, u) is the unique optimal solution, 
given the light intensity I .

To prove the claim, let (pn, qn) be the corresponding solutions of the system (6.20). By the 
estimates on p′, q ′ proved in Section 6, the functions (pn, qn) are equicontinuous. From any 
subsequence we can thus extract a further subsequence and obtain the convergence

pnj
→ p̂, qnj

→ q̂, Inj
→ I, (7.7)

for some functions p̂, ̂q , uniformly on [0, h+].
For every j ≥ 1 we now have

θnj
(y) = �

(
Inj

(y),pnj
(y), qnj

(y)
)
, unj

(y) = U
(
Inj

(y),pnj
(y), qnj

(y)
)
,

where U and � are the functions in (6.8)-(6.9). By the dominated convergence theorem, the con-
vergence (7.7) together with the uniform integrability of θnj

and unj
yields the L1 convergence

‖θnj
− θ̂‖L1 → 0, ‖unj

− û‖L1 → 0. (7.8)

In turn this implies that (p̂, ̂q) provide a solution to the problem (6.20), in connection with the 
light intensity I . By uniqueness, p̂ = p and ̂q = q . Therefore, ̂θ = θ and ̂u = u as well.

The above argument shows that, from any subsequence, one can extract a further subsequence 
so that the L1-convergence (7.8) holds. Therefore, the entire sequence (θn, un)n≥1 converges to 
(θ, u) in L1([0, h+]). This establishes the continuity of the map �1.

6. The map �2 ◦�1 is now a continuous map of the compact, convex domain F ⊂ C0([0, h+])
into itself. By Schauder’s theorem it admits a fixed point I ∗(·). By construction, the optimal stem 
configuration 

(
θ(I∗), u(I∗)) yields a competitive equilibrium, in the sense of Definition 7.1.

7. To prove uniqueness, we derive a set of necessary conditions satisfied by the equilibrium 
solution, and show that this system has a unique solution.
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Using (6.8) and (6.11), we can rewrite the light intensity function (7.1) as

I (y) = exp

{
ρ0

cos θ0

∞∫
y

ln
(q

I

)1 + w sin θ0

sin θ0 + w
dζ

}
,

where w = w(I, p, q) is the function introduced at (6.10). Differentiating w.r.t. y one obtains

I ′(y) = − ρ0

cos θ0
ln

(
q

I

)
1 + w sin θ0

sin θ0 + w
· I .= f3(I,p, q). (7.9)

Combining (7.9) with (6.20), we conclude that the competitive equilibrium satisfies the system 
of equations and boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

p′(y) = −f1
(
I (y),p(y), q(y)

) · f3(I (y),p(y), q(y)),

q ′(y) = f2
(
I (y),p(y), q(y)

)
,

I ′(y) = f3(I (y),p(y), q(y)),

⎧⎪⎪⎨⎪⎪⎩
p(h) = 0,

q(h) = 1,

I (h) = 1,

(7.10)

together with

q(0) = 0. (7.11)

Here the common height of the stems h > 0 is a constant to be determined.
8. The uniqueness of solutions to (7.10) will be achieved by a contradiction argument. Since 

this is very similar to the one used in the proof of Theorem 6.1, we only sketch the main steps.
In analogy with (6.31), (6.33), denote by p(y, h), q(y, h), I (y, h) the unique solution to the 

Cauchy problem (7.10), with terminal conditions given at y = h. Consider the functions

P(y)
.= ∂p(y,h)

∂h
, Q̃(y)

.= 1

f2(I,p, q)

∂q(y,h)

∂h
, J (y)

.= ∂I (y,h)

∂h
.

By (7.10), these functions satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P ′(y) = −[f3,I f1 + f3f1,I

]
J − [f3,pf1 + f3f1,p

]
P − [f3,qf1 + f3f1,q

]
f2Q̃,

Q̃′(y) = f2,I

f2
J + f2,p

f2
P − f3

f2

[
f2,I − f2,pf1

]
Q̃,

J ′(y) = f3,I J + f3,pP + f3,qf2Q̃,

(7.12)

with boundary conditions

P(h) = 0, Q̃(h) = −1, J (h) = 0.

Set d0 = ρ0
cos θ0

. Several of the partial derivatives on the right-hand side of (7.12) were computed 
in (6.36). The remaining ones are
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f1,I (I,p, q) = q

I 2 · 1 + w sin θ0

sin θ0 + w
− cos2 θ0

(sin θ0 + w)2

w2

p

[
1 − q

I

]
,

f3,I (I,p, q) = −d0

[(
ln
(q

I

)
− 1
)1 + w sin θ0

sin θ0 + w
− I ln

(q

I

) cos2 θ0

(sin θ0 + w)2

w2

p

(
1 − q

I

)]
,

f3,p(I,p, q) = d0I ln
(q

I

) cos2 θ0

(sin θ0 + w)2

w

p
,

f3,q(I,p, q) = −d0I

[
1

q
· 1 + w sin θ0

sin θ0 + w
+
[

ln
(q

I

)]2 cos2 θ0

(sin θ0 + w)2

w2

p

]
.

By the same arguments used in step 8 of the proof of Theorem 6.1, we conclude that the right-
hand side of (7.12) is uniformly integrable.

9. Let a density ρ0 > 0 be given. Assume that the problem (7.10)-(7.11) has two distinct 
solutions (p̂, q̂, Î ) and (p̌, q̌, Ǐ ), defined on [0, ĥ] and [0, ȟ] say with ĥ < ȟ. Since q̂(0) = q̌(0) =
0, by the mean value theorem there exists k ∈ [ĥ, ȟ] such that ∂q

∂h
(0, k) = 0.

Next, if multiple solutions exist for arbitrarily small values of the density ρ0, we can find 
a decreasing sequence ρ0,n ↓ 0 and corresponding solutions Pn, Qn, In of (7.12), defined for 
y ∈ [0, kn], such that

Pn(kn) = 0, Q̃n(kn) = −1, Jn(kn) = 0, Q̃n(0) = 0. (7.13)

Thanks to the uniform integrability of the right hand sides of (7.12), by possibly extracting a 
subsequence we can achieve the convergence kn → h̄ ∈ [0, h+], the weak convergence P ′

n ⇀ P ′, 
Q̃′

n ⇀ Q̃′, J ′
n ⇀ J ′ in L1, and the strong convergence

Pn → P, Q̃n → Q̃, Jn → J,

uniformly on every subinterval [0, h] with h < h̄.
To reach a contradiction, we observe that

Jn(y) = −
kn∫

y

J ′
n(z) dz

and the right-hand side of J ′
n in (7.12) consists of uniformly integrable terms which are multiplied 

by ρ0,n. This implies J (y) ≡ 0. This corresponds to the case of an intensity function I (y) ≡ 1. 
But in this case we know that Q̃(y) ≡ −1, contradicting the fact that, by (7.13),

Q̃(0) = lim
n→∞ Q̃n(0) = 0. �

8. Stem competition on a domain with boundary

We consider here the same model introduced in Section 2, where all stems have fixed length �
and constant thickness κ . But we now allow the sunlight intensity I = I (x, y) to vary w.r.t. both 
variables x, y. As shown in Fig. 5, left, we denote by
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Fig. 5. Left: to leading order, the amount of vegetation in the shaded region is proportional to κ ρ̄(ξ)dξds. Since the 
area is computed in terms of the cross product ∂γ

∂ξ
× ∂γ

∂s
, this motivates the formula (8.4). Right: a possible competitive 

equilibrium, where the light rays come from the direction n = ( −1√
2
, 1√

2
) and stems are distributed along the positive 

half line, with density as in (8.9). In this case, stems originating from points close to the origin have no incentive to 
grow upward, because they already receive a nearly maximum light intensity. Hence they bend to the right, almost 
perpendicularly to the light rays.

s �→ γ (s, ξ) = (x(s), y(s)), s ∈ [0, �], (8.1)

the arc-length parameterization of the stem whose root is located at (ξ, 0), and write g for the 
function introduced at (2.8). This leads to the optimization problem

(OP3) Given a light intensity function I = I (x, y), find a control s �→ θ(s) ∈ [0, π] which max-
imizes the integral

�∫
0

I (x(s), y(s)) g(θ(s)) ds (8.2)

subject to

d

ds
(x(s), y(s)) = (cos θ(s), sin θ(s)), (x(0), y(0)) = (ξ,0). (8.3)

Next, consider a function ρ̄(ξ) ≥ 0 describing the density of stems which grow near ξ ∈ R. 
At any point in space reached by a stem, i.e. such that

(x, y) = γ (s, ξ) for some ξ ∈ R, s ∈ [0, �],

the density of vegetation is

ρ(x, y) = ρ(γ (s, ξ)) = κ ρ̄(ξ) ·
[
∂γ

∂ξ
× ∂γ

∂s

]−1

. (8.4)
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The light intensity at a point P = (x, y) ∈ R2 is now given by

I (P ) = exp

⎧⎨⎩−
+∞∫
0

ρ(P + tn) dt

⎫⎬⎭ . (8.5)

Definition 8.1. Given the constants �, κ and the density ρ̄ ∈ L∞(R), we say that the maps γ :
[0, �] ×R and I : R ×R+ �→ [0, 1] yield a competitive equilibrium if the following holds:

(i) For each ξ ∈R, the stem γ (·, ξ) provides an optimal solution to (OP3).
(ii) The function I (·) coincides with the light intensity determined by (8.4)-(8.5).

We shall not analyze the existence or uniqueness of the competitive equilibrium, in the case 
where the distribution of stem roots is not uniform. We only observe that, if the stem γ (·, ξ) in 
(8.1) is optimal, the necessary conditions yield the existence of a dual vector s �→ p(s) satisfying

ṗ(s) = − ∇I
(
x(s), y(s)

)
g(θ(s)), p(�) = (0,0), (8.6)

and such that, for a.e. s ∈ [0, �], the optimal angle θ∗(s) satisfies

θ∗(s) = argmax
θ

{
p(s) · (cos θ, sin θ) + I (x(s), y(s))g(θ)

}
. (8.7)

Differentiating the expression on the right hand side of (8.7) one obtains an implicit equation for 
θ∗(s), namely

I
(
x(s), y(s)

)
)g′(θ∗(s)) + p(s) · n(s) = 0 (8.8)

for a.e. s ∈ [0, �]. Here n(s)
.= (− sin θ(s), cos θ(s)

)
is the unit vector perpendicular to the stem. 

Moreover, by (8.6) one has

p(s) =
�∫

s

∇I
(
x(σ ), y(σ )) g(θ∗(σ )

)
dσ.

An interesting case is where stems grow only on the half line {ξ ≥ 0}. For example, one can take

ρ̄(ξ) =
⎧⎨⎩

0 if ξ < 0,

b−1ξ if ξ ∈ [0, b],
1 if ξ > b.

(8.9)

In this case, we conjecture that the competitive equilibrium has the form illustrated in Fig. 5, 
right.
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Fig. 6. The stem γ1, oriented perpendicularly to the sun rays, collects much more sunlight than γ2. Indeed, γ1 would 
give the best orientation for solar panels. Notice that γ2 minimizes the sunlight gathered because the upper leaves put the 
lower ones in shade.

9. Concluding remarks

A motivation for the present study was to understand whether competition for sunlight could 
explain phototropism, i.e. the tendency of plant stems to bend toward the light source. A naive 
approach may suggest that, if a stem bends in the direction of the light rays, the leaves will 
be closer to the sun and hence gather more light. However, since the average distance of the 
earth from the sun is approximately 90 million miles, getting a few inches closer cannot make a 
difference.

As shown in Fig. 6, if a single stem were present, to maximize the collected sunlight it should 
be perpendicular to the light rays, not parallel. In the presence of competition among several 
plant stems, our analysis shows that the best configuration is no longer perpendicular to light 
rays: the lower part of the stems should grow in a nearly vertical direction, while the upper part 
bends away from the sun.

Still, our competition models do not predict the tilting of stems in the direction of the sun rays. 
This may be due to the fact that these models are “static”, i.e., they do not describe how plants 
grow in time. This leaves open the possibility of introducing further models that can explain 
phototropism in a time-dependent framework. As suggested in [12], the preemptive conquering 
of space, in the direction of the light rays, can be an advantageous strategy. We leave these issues 
for future investigation.
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