
Analysis of uPort Open, an identity
management blockchain-based solution

Andreea-Elena Panait1[0000−0003−0591−3135], Ruxandra F.
Olimid1,2,3[0000−0003−3563−9851], and Alin Stefanescu1,2[0000−0002−8418−2643]

1 Department of Computer Science, University of Bucharest, Romania
2 The Research Institute of the University of Bucharest (ICUB), Romania

3 Department of Information Security and Communication Technology, NTNU -
Norwegian University of Science and Technology, Trondheim, Norway

andreea-elena.panait@drd.unibuc.ro, {ruxandra.olimid,alin}@fmi.unibuc.ro

Abstract. Recently, academics and professionals proposed a substantial
number of identity management solutions based on blockchain technol-
ogy. Among them, uPort appeared promising, being considered for both
personal and administrative operations. This paper analyzes the open-
source version uPort Open in terms of risk delegation and private key
recovery of the mobile application, smart contract security of the uPort
identity registry, and usage and on-chain transaction analytics.

Keywords: identity management, blockchain, self-sovereign, uPort

1 Introduction

Technological development in the last years led to an increased number of dig-
ital entities that must be identified in an interoperable and efficient way. With
the adaptation of 5G and mostly Internet of Things (IoT), identity and access
management became a difficult issue to address. Papers like [10] propose ways
to leverage blockchain for solving such problems. A recent identity management
model, called the Self-Sovereign Identity (SSI) model makes the user be his/her
own identity provider and fully responsible for his/her identity, thus eliminating
the need of an external identity provider [13]. The blockchain technology has
been considered to be a candidate solution to accommodate identity manage-
ment while decreasing risks such as identity fraud or data leaks [13]. Among
the identity-management solutions built on blockchain, uPort is currently one
of the most known, targeting both personal and administrative operations [21].
uPort comes in two versions, one for public networks, called uPort Open, which
is open-source, and one for closed ecosystems and consortia, called uPort Serto.

Contribution. Motivated to find the current status of open-source identity-
management solutions, the paper analyses the security and usage of uPort Open,
as a representative open-source solution. For simplicity, unless otherwise spec-
ified, we will further refer to uPort Open by simply uPort. We conduct our
analysis in three directions: (1) a brief assessment concerning risk delegation



2 A.E.Panait et al.

and private key recovery, (2) an automatic code analysis of the identity registry
smart contract, and (3) uPort usage and on-chain transaction analytics. By look-
ing into terms, conditions, and privacy policies, we found that for the mobile
application, the risks are delegated to the user, with (almost) no responsibility
on the uPort side. Concerning the code analysis, the used tools found possible
vulnerabilities, which we have notified to the uPort team. Later in the paper, we
will refer to the uPort team response to our notice. Their feedback assisted us in
understanding better the purpose of their proposed solution4. Finally, we devel-
oped an application to collect and analyze the blockchain transactions made to
the uPort identity registry, EthereumDIDRegistry. We found that the on-chain
usage of the uPort identity is rather low, the identities did not make significantly
usage of the offered features (i.e., changing owner, setting attributes) through
its EthereumDIDRegistry. Moreover, advanced features such as delegation (i.e.,
granting the right to perform identity-related actions for a certain period to other
addresses) are even more rarely used. However, this on-chain usage is somehow
expected since the uPort identities are intended to be mainly used without any
call to the EthereumDIDRegistry. In fact, changes in the owner or attributes and
delegation are only possible using libraries, and not via the mobile application.

Related Work. Except uPort, several other identity management solutions
have been proposed so far. More comprehensive lists are available at [8, 13]. From
those, we chose to investigate uPort because it is one of the most visible open-
source solution5 both in the academic literature and in the online setting. uPort is
theoretically described and briefly analysed in several publications, including [2,
4, 13, 14]. Nevertheless, they mostly analyze uPort only on general aspects. To
the best of our knowledge, no similar results in terms of smart contract security
and on-chain usage and transaction analytics exist.

2 Background

Identity Management on Blockchain. A blockchain is a type of decentral-
ized distributed database with cryptographic enhancements. It is distributed be-
cause the data is stored on multiple nodes (each node stores a complete or partial
copy of the blockchain), and it is descentralized because the storage decision is
a result of a consensus protocol between the nodes [13]. Data is stored in blocks,
which are basically collections of transactions. A user authenticates a transaction
by signing it with the private key. The paired public key represents the user’s
address in the blockchain. A blockchain-based identity management solution im-
plements selective storing of identities in the blockchain, where the identities are
attested by authorities or other entities in the blockchain, usually by verifiable
claims [13]. A self-sovereign solution eliminates the need for an external author-
ity by transferring the full responsibility for creating and managing the digital
identity and associated attributes to the user.

4 We have notified the uPort team to their official address, info@uport.me.
5 Maybe together with Sovrin [15].



Analysis of uPort Open 3

Ethereum is a particular implementation of a blockchain, which is capable
to store smart contracts. A smart contract is identified and referred to by an
address (a public key) and provides a function-based interface that allows it to
be executed. To execute a smart contract (changing its state), a user performs
a transaction with the function signature and the input parameters as the data
payload and the smart contract’s address as the destination [19]. We differentiate
between direct transactions, which directly call the smart contract and indirect
transactions, which result from an execution of a smart contract that executes
another stand-alone transaction6.

uPort Open. uPort Open is an open-source identity management system
built on Ethereum that claims to satisfy the self-sovereign property [21]. It
has three main components: (1) the mobile application, which stores the user’s
public-private keys pair, and is used to perform different actions (e.g., create and
manage the digital identity, authenticate to third parties, sign transactions), (2)
the Ethereum smart contracts, and (3) protocols for signed messages and mes-
sage flows, as well as libraries and interfaces necessary for integrating uPort with
third-party applications [19, 20]. The uPort identity has a Decentralized Identi-
fier (DID) and a pair of public-private keys [20]. The management of the DIDs
is done by the EthereumDIDRegistry smart contract that allows the owner of an
identity to update the customized attributes. The owner is, in fact, an Ethereum
address that has full control over the identity but accepts delegates. A delegate
is an address that is delegated for some specific time to perform actions on be-
half of an identity [20]. The EthereumDIDRegistry smart contract is deployed
both on mainnet Ethereum blockchains (Mainnet, RSK, and Alastria Telsius)
and on testnets (Ropsten, Rinkeby, Kovan, RSK Testnet, and Goerli) [20]. It
is written in the Solidity programming language and provides several functions
to manage identities: change identity ownership, set or revoke attributes, set or
revoke delegates [20]. Some of these functions emit events that change the state
of the contract. The event arguments are stored in a blockchain special data
structure called transaction log that can be listen to through the Remote Pro-
cedure Call (RPC) interface of an Ethereum client. The EthereumDIDRegistry
functions related to identity ownership emit the DIDOwnerChanged event, the
functions related to identity attributes emit the DIDAttributeChanged event,
and ones related to delegates emit the DIDDelegateChanged [20].

Analysis Tools. To check for vulnerabilities in the uPort registry smart
contract EthereumDIDRegistry we looked into the static and dynamic tools listed
in [3]. To analyze uPort transactions, we used Etherscan.io, which is a stand-
alone web-based Ethereum blockchain explorer, but also provides access to the
data stored in the blockchain by APIs. The APIs are provided as a community
service and require the creation of a free API-Key Token [5]. We developed an
application to extract data and store it in a SQL database. For this, we used
Swagger, an open-source editor dedicated to OpenAPI Specification (OAS)-based
APIs that help developers to make use of RESTful web services [16].

6 For clarity, we avoid to refer to normal and internal transaction.



4 A.E.Panait et al.

3 Results and Discussion

We further present and discuss our results. Since uPort is a solution under con-
tinuous development, note that our analysis is conducted based on the source
code and transactions prior to Dec. 13th, 2019.

3.1 Risk Responsibility

The uPort mobile application is a credential wallet that does not manage all
aspects of an decentralized identity, features that are included in the uPort
libraries (e.g., eth-did-registry and ethr-did that uses [6]). The application can
be used, for example, to register in decentralized applications.

We first look into how the uPort mobile application manages risks respon-
sibility and private key recovery. For this, we have installed and inspected the
uPort application that is freely available in Google Play and tested the appli-
cation ourselves. To create an account, the user must accept the Terms and
Conditions and the Privacy Policy, which delegate strong responsibility to the
user and assume usage on the user’s own risk. The agreements refer to risks
in terms of cryptography and platform security, and also absolve uPort from
bugs, errors, and defects by delegating the responsibility to the user. Although
this might be seen as natural for an open-source solution, the users must fully
understand the responsibility and risks in using the solution.

The Terms and Conditions specify that generation of the private key is possi-
ble from a potential leaked twelve-word seed and the impossibility of recovery of
the private key or the twelve-word seed by other means but by user knowledge.
After installation, uPort displays two options: Get Started and Recover Identity.
While creating the account (Get Started), the user sets a twelve-word Recovery
Seed Phrase that can be used for recovering the account: the words are selected
from a list that becomes available after inputting two letters from a word. This
restricts the available words to be part of a dictionary - BIP39 standard with
2048 English words [11]. The number of possible combinations is 204812 = 2132,
so 132 bits of security, which can be considered rather secure. The twelve-words
passphrase is a widely used practice in applications such as crypto wallets. We
note that while selecting the twelve words, the Next button remains inactivated.
It becomes active only for a valid twelve-word phrase.

3.2 Code Analysis

We further present our findings after analyzing the EthereumDIDRegistry smart
contract with several tools from [3]. The used tools and the found vulnerabilities
are summarized in Table 1, together with suggested tool mitigation techniques
and our notes. We looked into other tools from the above-mentioned list, but we
were not able to use them due to various reasons.

The uPort Response. Regarding the upgrade to a 0.5.x version of Solidity,
uPort admitted that the next contract deployment will be upgraded to a recent



Analysis of uPort Open 5

Table 1. Code analysis: vulnerabilities exposed by different tools

SmartCheck [17]

(V1) Incorrect compiler version
Mitigation: Specify the exact compiler version used for test
Note: Not applicable for a consumption contract, such as the one analyzed [3]

(V2) Old Solidity compiler version
Mitigation: Upgrade to Solidity 0.5.x

(V3) Function keccak256(arg) will become deprecated
Mitigation: Change the function call to keccak256(abi.encodePacked(arg))

(V4) Data location for function parameters is not explicit
Mitigation: Specify data location
Note: This vulnerability is applicable after smart contract update to Solidity 0.5.x

Securify [18]

(V1) Recursive calls after a method call that is followed by a state change
Note: Not accurate, state changes are made after calling the predefined Solidity
function ecrecover by the identity owner, otherwise no state change occurs

(V2) Insecure coding patterns when unrestricted write to storage
Note: Writing is restricted to identity owners only

(V3) Unexpected Ether flow (lock of Ether)
Note: The smart contract does not receive or deposit any Ether

MythX [9]

(V1) Possible overflow at the binary addition of current time with a uint validity
Mitigation: Use an assertion to catch the overflow

(V2) Block number considered a weak source of randomness
Note: Tool warning. The block number is used for logging triggered events, not as
a source of randomness

(V3) Potential Denial-of-Service to block gas limit when using keccak256 function
Note: Tool warning

ContractGuard [23]

(V1) Block number dependency
Mitigation: Not recommended to use, it can be manipulated by attackers

(V2) Timestamp dependency
Mitigation: Not recommended to use the current time
Note: Triggered by an event having a date that is an addition between the current
time and a validity parameter of type uint

(V3) Using require assert without reason string attached
Mitigation: Suggested to add a reason string
Note: Tool warning

(V4) Misplaced order of smart contract functions
Mitigation: Recommended order: constructor, fallback, external, external const,
public, public, const, internal, and private functions
Note: Tool warning



6 A.E.Panait et al.

Solidity version, but even though the keccak256 function is deprecated in the
recent versions, the function behaves as expected in the previous deployments.
For the possible overflow of the binary addition of the current time with a valid-
ity of type uint (within the addDelegate and setAttribute functions) for future
deployments, one can indeed use the assert statement. A possible overflow will
only result in adding a delegate or an attribute that is already expired, but no
other off-chain or on-chain changes will occur. Therefore, this would not be a
problem from the uPort team’s point of view. For the possible DoS attack that
might occur because the first argument of the keccak256 hash function might
grow unbounded, the worst-case scenario would be that the transaction fails.

3.3 Advanced Usage and Transactions Analytics

Finally, we investigate the usage of uPort solution. We start by finding the
number of mobile application downloads but then proceed to a more in-depth
analysis concerning on-chain performed transactions.

Downloads. The first point in our numerical analysis addresses the num-
ber of downloads of the uPort mobile application. Although this cannot be a
precise indication for the number of users (as for example the same user can
download the application on several devices, or individuals can download the
application but never create a digital identity), we consider this to be an accept-
able indication of the interest towards the uPort mobile solutions. At the time
of the writing, in Google Play there were 10,000+ downloads and only seven
reviews [7]. This seems to indicate a low usage of the application, with many
users that downloaded the application just by curiosity. Similarly, within the
AppStore there were only three reviews, indicating the same low usage [1].

Transactions. Secondly, we focused our analytics concerning the analyzed
smart contract’s transactions on different networks. The address of the Ethereum-
DIDRegistry smart contract in different blockchains can be found at [20]. At this
step, we have used these addresses and found the number of transactions directly
from the web interface. Table 2 shows the number of direct transactions made
to the uPort smart contract for each blockchain network where it was deployed,
together with other details. Note that some of these transactions can be with
error (all transactions are included in the web interface), and the number of
transactions always includes one transaction used for the contract creation. We
deliberately exclude the Alastria Telsius testnet from our analysis, as it presents
errors and does not correctly display the information extracted.

Transaction types and on-chain digital identities. We further per-
formed a more in-depth analysis concerning the networks with a significant
number of transactions (Mainnet, Rinkeby, and Ropsten). This time, we ex-
tracted the transactions using the Ethereum Developer APIs [5]. To fulfill our
goal, we developed a .NET Core simple web application for making the API re-
quests through a Swagger frontend interface [16] and saved the transactions in a
SQL Server Database. The sample project can be found at [12]. In order to find
the number of uPort created identities that changed their owner, set identity



Analysis of uPort Open 7

Table 2. EthereumDIDRegistry direct transactions (from the web-platform)

Blockchain
Network

Blockchain
Type

Contract
Creation

First
Transaction

Last
Transaction

Direct
Trans.

Mainnet Mainnet
Jun-15-2018
01:27:27 AM

Jan-11-2019
07:56:32 PM

Nov-09-2019
05:56:40 PM

2079

Rinkeby Testnet
Jun-15-2018
01:05:09 AM

Aug-02-2018
01:28:52 PM

Dec-06-2019
11:24:32 AM

4106

Ropsten Testnet
Jun-15-2018
01:07:19 AM

Oct-01-2018
08:45:27 PM

Nov-22-2019
02:41:49 AM

681

Kovan
Testnet Jun-15-2018

01:01:44 AM
Dec-04-2019
02:27:44 PM

Dec-04-2019
02:27:44 PM

2

RSK
Mainnet Jun-06-2019

04:41:33 AM
- - 0

RSK Testnet Testnet
Jul-24-2019
05:24:34 AM

- - 0

Görli Testnet
Dec-02-2019
01:57:27 PM

- - 0

Table 3. Types of transactions and number of unique addresses grouped by network

Blockchain
Successful

Trans.
Direct Trans.
with Error

Direct
Successful

Trans.

Indirect
Successful

Trans.

Unique
Addresses

Unique Addr.
with > 1

trans.

Mainnet 2844 68 2010 834 2004 431
Rinkeby 7570 89 4016 3554 3805 3570
Ropsten 634 46 634 0 434 19

attributes and/or revoked identity delegates, we used the getLogs API method.
This is an Etherscan API method that provides the event type triggered when a
specific uPort registry function is executed (for the event types, see Section 2). To
exemplify, we give next a Rinkeby request for transactions belonging to blocks in
a given interval (fromBlock - toBlock), where the address could correspond to the
EthereumDIDRegistry smart contract and YOUR-API-KEY is the Api-Key Token:
https://api-rinkeby.etherscan.io/api?module=logs&action=getLogs&fromBlock=

2463641&toBlock=3224895&address=YOUR-ADDRESS&apikey=YOUR-API-KEY.

Table 3 shows the number of successful transactions, the number of error trans-
actions, the number of direct and indirect successful transactions, the number
of unique addresses that made transactions, and the number of addresses that
made multiple transactions. Note that this time, the number of transactions ex-
cludes one successful transaction, which is the contract creation transaction. In
Mainnet, the number of indirect transactions represents 26.93% from the total
number of successful transactions, while for Rinkeby it represents 45.78%. This
suggests that, on tests, the developers are more likely to send transactions to
intermediar smart contracts before sending transactions to the uPort registry.
In Mainnet, only 21.50% of the unique addresses made more than 1 transaction,



8 A.E.Panait et al.

Table 4. Transactions and unique addresses grouped by event type and year

Blockchain Year
uPort
Event

No. Trans
Unique

Addresses.
Unique Addr.

with > 1 trans.

Mainnet 2019
Owner 2002 2001 1

Attribute 839 431 381
Delegate 3 2 1

Rinkeby

2018
Owner 7105 3573 3525

Attribute 137 71 21
Delegate 70 10 5

2019
Owner 2 2 0

Attribute 225 170 18
Delegate 31 8 4

Ropsten

2018
Owner 93 93 0

Attribute 103 85 12
Delegate 15 7 1

2019
Owner 12 5 1

Attribute 276 250 4
Delegate 135 1 1

for Rinkeby network 93.82%, whereas for Ropsten only 4.37%. The number of
unique addresses is important as it reveals the number of identities in the network
that made changes to their initial values, while the number of addresses with
more than one transaction implies that some identities made several changes to
their initial identity. The transactions with errors were not returned by the API
requests because for an error transaction the events are not triggered. Hence, for
each network of interest, we computed their number by the difference between
the number of transactions in Table 2 and the number of direct transactions
returned by API request. A high percentage of errors usually indicate a problem
or an immature solution. We found a percentage of 2,39% errors in Mainnet.
Overall, the numbers indicate that on-chain, the solution is mostly used for
performing tests (Rinkeby), with no significant usage in real applications.

Digital identity-related events. Table 4 splits the transactions on year
and event type. For Mainnet, there are no transactions in 2018. The data shows
that only one identity changed the owner more than once. 88.4% of the addresses
triggered more than a single attribute event. This appears normal, as an identity
should naturally set and change attributes corresponding to its identity. The
delegation was mostly unused: with only 3 DIDDelegateChanged events, it is
clear that the this was found to be an uninteresting feature. With respect to
the test networks, we notice a significant number of creating or changing owners
in 2018. This is natural for testing purposes. Moreover, we observed intense
testing in owner change on Rinkeby (98.65% of the identities made at least a
change in the owner). Concerning the total number of unique addresses per
blokchain network, from Table 3 and Table 4, as well as from querying the
database, it results that: for Mainnet 429 addresses made owner-related and



Analysis of uPort Open 9

attribute-related transactions, and 1 address made owner-related and delegate-
related transactions; for Rinkeby 18 addresses made owner and attribute-related
transactions, 6 addresses made owner and delegate-related transactions, and 5
addresses made attribute and delegate-related transactions. From this, 1 address
made all three types of transactions; for Ropsten there were 7 addresses that
made transactions related to owner and attributes.

Discussion. The measure of downloads and on-chain interaction with the
uPort EthereumDIDRegistry does not entirely reflect the usage of this solution
(uPort self-sovereign libraries), and we can not make a correlation between them,
as initially thought: the uPort mobile application is a credential wallet and does
not interact on-chain with the registry, whereas the on-chain interaction does
not reflect the entire uPort usage. Identities can act themselves as public keys
by using the eth-did-resolver library, which enables the Ethereum addresses to
be self-managed Decentralized Identifiers [22]. This means that they need not to
previous register to produce valid signatures (and prove their identity). More-
over, as the uPort team mentioned in their feedback, the identities are more
likely not to use the changing owner, setting attributes and delegate features
due to reasons of scalability, cost and in order to enhance their privacy. Lastly,
uPort mentioned that the attribute and delegate changes are expected to be per-
formed mostly by organizations that require multiple entities to have the power
of signature without sharing the private keys with each entity. The ownership
changes are to be performed even rarely in extreme events or when upgrading the
identity model from a key pair to a multi-signature contract, the team specified.

4 Conclusions

Being quite visible online and in the academic world, we were interested in
researching whether uPort Open is popular among users. Our analysis concluded
that the on-chain usage of the uPort identities is not significant, but the solution
is expected to be more used for off-chain interaction and valid signature signing.
However, off-chain usage is difficult to be measured due to the privacy-by-design
nature of the solution. The possible vulnerabilities encountered while analyzing
the security of the EthereumDIDRegistry smart contract were reported to the
uPort team, which responded to all our points. The uPort mobile application is
a credential wallet and does not make use of advanced identity features. Finally,
when using the mobile application, responsibility is fully delegated to the user.

Acknowledgement. This work was partially supported by a grant of
Romanian Ministry of Research and Innovation project no. 17PCCDI/2018.

We thank Mircea Nistor, from the uPort team, for his valuable support.

References

1. Apple Store: uPortID (2020), https://apps.apple.com/us/app/uport-
id/id1123434510#?platform=iphone



10 A.E.Panait et al.

2. van Bokkem, D., Hageman, R., Koning, G., Nguyen, L., Zarin, N.: Self-
sovereign identity solutions: The necessity of blockchain technology. arXiv preprint
arXiv:1904.12816 (2019)

3. Consensys: Ethereum Smart Contract Best Practices - Security Tools (2020),
https://consensys.github.io/smart-contract-best-practices

4. Dunphy, P., Petitcolas, F.A.: A first look at identity management schemes on the
blockchain. IEEE Security & Privacy 16(4), 20–29 (2018)

5. Etherscan: Ethereum Developer APIs (2020), https://etherscan.io/apis
6. Foundation, D.I.: DID resolver for Ethereum Addresses with support for key man-

agement (2020), https://github.com/decentralized-identity/ethr-did-resolver
7. Google Play: uPort (2020), https://play.google.com/store/apps/details?id=com.

uportMobile
8. Mire, S.: Blockchain For Identity Management: 33 Startups To Watch

In 2019 (2020), https://www.disruptordaily.com/blockchain-startups-identity-
management

9. MythX: MythX User and Developer Guide (2020),
https://docs.mythx.io/en/latest

10. Nuss, M., Puchta, A., Kunz, M.: Towards Blockchain-Based Identity and Access
Management for Internet of Things in Enterprises: 15th International Conference,
TrustBus 2018, Regensburg, Germany, September 5–6, 2018, Proceedings, pp. 167–
181 (01 2018). https://doi.org/10.1007/978-3-319-98385-1 12

11. Palatinus, M., Rusnak, P., Voisine, A.: Bitcoin bip39 (2020),
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki

12. Panait, A.E.: uPort etherscan transactions (2020), https://github.com/apanait/
EtherscanTransactions

13. Panait, A.E., Olimid, R.F., Stefanescu, A.: Identity management on blockchain–
privacy and security aspects. Proceedings of the Romanian Academy, Series A
21(1), 45–52 (2020)

14. Roos, J.: Identity management on the blockchain. Network 105 (2018)
15. Sovrin: Sovrin: A protocol and token for self-sovereign identity and decentralized

trust (2020), https://sovrin.org/wp-content/uploads/Sovrin-Protocol-and-Token-
White-Paper.pdf

16. Swagger: API development for everyone (2020), https://swagger.io
17. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,

Alexandrov, Y.: Smartcheck: Static analysis of ethereum smart contracts. In: Pro-
ceedings of the 1st International Workshop on Emerging Trends in Software Engi-
neering for Blockchain. pp. 9–16 (2018)

18. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: Practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. pp. 67–82
(2018)

19. uPort: A platform for self-sovereign identity draft version (2016-10-20) (2016),
https://blockchainlab.com/pdf/uPort whitepaper DRAFT20161020.pdf

20. uPort: Ethereum registry for ERC-1056 ethr did methods (2020),
https://github.com/uport-project

21. uPort: uPort (2020), https://www.uport.me
22. W3C: Decentralized Identifiers (DIDs) v1.0 (2020), https://w3c.github.io/did-core
23. Wang, X., He, J., Xie, Z., Zhao, G., Cheung, S.: Contractguard: Defend ethereum

smart contracts with embedded intrusion detection. CoRR abs/1911.10472
(2019), http://arxiv.org/abs/1911.10472 7

7 All links were last accessed March 2020


