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A B S T R A C T

Material use in buildings affects the climate over centuries, however, temporal aspects are often ignored in
Life Cycle Assessment (LCA). Results too often promise uncontested precision of impacts occurring far into the
future. Additionally, the validity of building LCAs is being questioned over inadequate scope and inventory.

A dynamic LCA method for material use in buildings that addresses those concerns is presented, along with
a case study of 20 buildings. In particular, a novel solution to account for delayed emissions is presented, along
with future technological improvements. Climate change effects of material use in construction, operation, and
end-of-life phases are estimated, from production, transport, construction-waste incineration, biogenic carbon-
sequestration, and cement carbonation. Building subpart metrics reveal drivers of impacts and are used for
generating statistical emission profiles.

Application on a bottom-up harmonized dataset produces statistical results for building types (typology,
timber/concrete) and building subparts (building elements, material categories). Global warming policy targets
requires that the building industry focuses on interventions with short-term effects, such as low-impact
materials in the construction phase and reduced construction waste.

Uncertainty is estimated, and parameter influence assessed with global sensitivity analysis. Time horizon
(TH), building lifetime, and construction waste parameters are found most sensitive. The method reduces
uncertainty of postulated future impacts; an important step in the direction of policy-relevant modeling. We
recommend that building LCA modeling practice adopts the presented methodological concepts to gain trust
and policy-relevance.
1. Introduction

Buildings are a large global source of anthropogenic greenhouse gas
(GHG) emissions, which can be estimated by Life Cycle Assessment
(LCA) methods. Results can be used to identify promising mitigation
interventions and design improvement strategies, benchmark individ-
ual building performance, and guide effective policy measures. With
growing focus on material embodied emissions in buildings, GHG emis-
sions are usually quantified in kgCO2e per unit of material consumed
or per m2 of floor area, according to the 100-year Global Warming Po-
tential (GWP100) indicator and with data from Environmental Product
Declarations (EPDs) from given manufacturers. The information from
EPDs, together with material quantities and other data specific to the
building form the basis for modeling its emission profile throughout
its postulated lifetime. However, the validity of building LCAs has
been questioned due to varying system boundaries and assumptions,
lack of completeness, transparency in methodological choices, and

∗ Corresponding author at: Department of Architecture and Technology, Norwegian University of Science and Technology, Trondheim, Norway.

reproducibility [1–3], and for ignoring time-dependent effects [4–7].
There are also large uncertainties that are often not quantified and
communicated [8].

1.1. Complexity and uncertainty of LCA modeling

Modeling the environmental impact of buildings is inherently un-
certain due to their long service life and large variation in design
and composition. Nevertheless, LCA too often promises uncontested
precision [8]. Saltelli et al. (2020) [8] offer five principles that society
should demand to ensure quality from modeling: Minding the assump-
tions, hubris, framing, consequences, and unknowns. LCAs of buildings
too often ignore those principles, thereby damaging their trust. In gen-
eral, results of unclear LCAs lack significance and inhibit conclusions
that could aid environmental paradigm shifts [3]. We suggest that the
principles can be implemented in LCA modeling as follows.
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Assumptions: By exploring the entire parameter space, a global sen-
sitivity analysis (GSA) can determine to which parameters a model is
particularly sensitive, and will thereby reveal parameters that demand
high confidence. GSA stands in contrast to local sensitivity methods,
limited in their ability to quantify how individual parameters con-
tribute to the overall uncertainty [9]. Sensitivity analysis methods best
fit for building LCAs were investigated in [10], who found that the most
used methods were regression-based or local sensitivity analyses and
that the choice of method was rarely justified. The study concluded that
the variance-based Sobol analysis was best fit to precisely determine the
factors’ influence when ignoring its much higher computational cost.
Sobol analysis is also able to identify interactions and non-linearities.
Using this method, the study found the three most influential parame-
ters to be the building lifetime, the time horizon, and the choice of an
hourly versus yearly electricity mix [10].

Hubris: Complexity should only be added to a model if it reduces
the overall uncertainty. By determining factors responsible for model
variance, less influential factors can be assigned default values while
priority is given to the most influential, hence simplifying the model
description. Future events are highly uncertain. This should be reflected
in the modeling by avoiding superfluous complexity, and the greatest
uncertainties should be reduced first.

Framing: The outcome of an LCA highly depends on modeling
choices and scenario assumptions [3]. One normative question that can
be asked is how to reduce the building’s impact on climate change over
a defined time horizon (TH). Within a short TH, future emissions will
have less time to warm the atmosphere. LCA studies usually consider
the impact over the same TH for emissions happening at whatever point
in time (for example, construction and dismantling emissions are both
assumed to happen at year 0 and their impact assessed with GWP100,
i.e. a time horizon of 100 years). According to the IPCC, however,
emissions must be cut rapidly if we are to stay within the 1.5 ◦C and
2 ◦C targets, making timing highly relevant [11]. Furthermore, if the
goal is to reduce the overall impact of a building’s materials, the scope
must include all relevant materials and emission sources.

Consequences and unknowns: Results of building LCAs are profoundly
uncertain; some parts more than others. The degree of confidence
should be conveyed when presenting LCA results, to stimulate effective
climate mitigation in the construction industry. Likewise, unknowns
must be communicated.

1.2. Time-dependent effects

Non-dynamic LCA aggregates GHG emissions over the lifetime and
ignores time-dependent effects. For products with long lifetimes, such
as buildings, the timing of events will influence both the likely mag-
nitude of future emissions and their aggregated effects over a defined
TH. A dynamic LCA (DLCA) can be used to include those effects, but
this requires lifecycle inventory (LCI) emission data for each year in the
TH, as well as the temporal development of the dynamic effects.

A dynamic LCA framework proposed in [4] was applied in multiple
studies, e.g. [4,5,12–14]. Various frameworks for dynamic LCA for
buildings were proposed in [6,7,15–19].

The most common application of time-dependent emission effects
for buildings is related to carbon sequestration and temporary storage
of biogenic carbon in building products. Ref. [20] presents a critical
review of the main approaches to include time considerations in LCA
of biogenic carbon. Of the different methods available, the dynamic
LCA approach [4] is based on a temporal explicit life-cycle emis-
sion inventory, which can be produced by using probability density
functions (PDFs) to model the timing of future events and distribute
future emissions [20]. The use of PDFs to model the decay of carbon-
containing products is better suited than the more common first-order
decay approaches [21]. In [22], different PDFs were compared and it
was concluded that a chi-square distribution, also used in e.g. [23],
2

appears most reliable and appropriate. In a study of the sensitivity of w
parameters in dynamic LCA, it was concluded that dynamic climate
change is not sensitive to LCI time steps lower than 1 year [24]; the
difference in results is rather dominated by the choice of TH.

Moreover, future emissions will be affected by technological de-
velopment. Technological development of material production was
implemented in [14], and by a dynamic emission factor for electricity
in [15]. The effects of technological progress on material production
and transport were investigated by Resch et al. [25], where the future
magnitude of emissions were adjusted by the modeled technological
improvement in the year of their occurrence.

1.3. The climate change impact of buildings

Several previous studies have presented statistical LCA results, how-
ever, they are often based on varying system boundaries and offer
no assessment of uncertainty. A global study from International En-
ergy Agency Annex 72 analyzed the carbon footprint of 238 build-
ings [2]. For advanced building energy-performance classes, the first
and third quartiles of embodied emissions range between 0.1 and 0.5
tons CO2e/m2 for residential buildings and between 0.3 and 0.5 tons
CO2e/m2 for office buildings.1 The resolution of the data analyzed
was only aggregated results extracted from literature. The study sepa-
rated embodied from operational emissions, but there is no distinction
between methodological choices and no separation between emission
sources, building elements, and lifecycle phases. Thus, they were not
able to do a thorough normalized comparison. Without such informa-
tion, there is no way of knowing which building elements and which
parts of the lifecycle these numbers represent, and hence if the results
are reliable.

Large variation between building LCA studies is shown in another
comparison of 116 cases from 47 scientific articles and reports [1].
Methodological issues and subjective choices of the LCA practitioner
are found to cause huge variance in the results. The construction phase
emissions vary between 0.03 and 2.00 tons CO2e per m2 gross floor
area. The study concludes that ‘‘published building LCAs do not offer
solid background information for policy-making without deep under-
standing of the premises of a certain study and good methodological
knowledge’’.

Another meta-analysis of over 250 case studies from 70 papers
mapped methodological aspects and found a need for clarity in method-
ological choices and a lack of uncertainty and sensitivity analyses.
This study also called for more advanced LCA modeling such as in-
cluding biogenic CO2 dynamics, carbonation in concrete, and dynamic
modeling to increase robustness and avoid false incentives [3].

1.4. Aims and objective of this study

To address the limitations discussed above, we present a novel
method for estimating the lifecycle impacts on climate change imposed
by material use in buildings over clearly specified THs.

The methodology builds upon previous research, including studies
by the authors: structuring and storing inventory data [26], weighted
average emission metrics for building subparts and including the effect
of future technology improvements [25], using these to estimate aver-
age emission and material use profiles for building types [27], and a
dynamic LCA of a cluster of buildings [28]. In this study, the method-
ologies are combined and developed further, additional methodological
concepts are introduced, and the scope of emission sources is expanded
along with the dataset.

We apply this method on primary inventory data acquired from 20
previously reported building LCA studies. Missing data in one building
is imputed based on data from the remaining buildings, in this way

1 Converted to a functional unit of heated floor area over a 50 year lifetime,
hich was the lifetime used in most studies.
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Fig. 1. Methodological steps.

nsuring more equal system boundaries of each study, thereby reduc-
ng underestimation of results due to incomplete system boundaries.
his, together with the advantage of recalculating each study with
qual model parameters, means that the given studies are harmonized
ottom-up, for a more consistent statistical analysis. We perform this
limate change impact analysis of the dataset based on building types,
uilding elements, material categories, and emission sources.

The model’s sensitivity to changes in methodological choices and
arameters is thoroughly investigated, thereby determining which
odel choices and parameters are essential for obtaining high-quality

CA results that can be used to guide design choices and material-use
olicy.

. Methods

This section first describes the goal and scope of the LCA 2.1
nd methods for obtaining probability distributed dynamic inventory
.2, future technology improvements and emission delay 2.3, biogenic
arbon 2.4, and carbonation 2.6.

Then, descriptions of the methodological steps shown in Fig. 1
ollow. Yearly emissions are first calculated for inventory items and then

adjusted to the dynamic effects 2.7, which are then used to calculate
emissions for building subparts, together with aggregated quantities
and average emission-, technology-, and delay factors 2.8. These met-
rics are used to calculate statistical emission profiles of building types
2.9.

2.1. System definition

The goal of the analysis is to quantify the GWPTH of an average
square meter of heated floor area (HFA) in a building, over a given
time horizon (TH), while also testing assumptions and methodological
choices. The focus is on process-based, attributional LCA. The func-
tional unit is m2 of HFA over given building lifetimes and THs. In
our dynamic interpretation of the GWPTH impact, the accumulated
adiative forcing impact of emissions occurring late in that period have
ess warming potential than emissions occurring early in the period,
nd the impacts of emissions occurring beyond the given TH are zero.
missions are thus weighted by their time of occurrence to account
or the accumulated effect on radiative forcing during that TH. Non-
eighted emissions are also calculated for comparison; the effect of
mission delay on the importance of future emissions is quantified in
he delay factors, 𝜏.

.1.1. Scope of building elements
Fig. 2 shows the included building elements, structured according

o the hierarchy classification in Norwegian standard NS 3451 ‘Ta-
le of building elements’ [29]. The standard is widely used in the
orwegian construction sector to categorize building inventories, and
onsequently, also in building LCAs. Building elements available in at
east one of the collected LCAs are included.
3

Fig. 2. Hierarchy classification of included building elements. Numbers, names, and
hierarchy according to NS3445 [29].

Fig. 3. Timeline of included emission sources and lifecycle phases.

2.1.2. Scope of emission sources
The study estimates material embodied emissions during the entire

TH, i.e. the defined time of interest in the analysis (may differ from
the building lifetime). The building lifecycle is separated into lifecycle
modules as shown in Fig. 3: initial impacts from building construction
in module A, impacts during operation throughout the building lifetime
in module B, and end-of-life impacts in module C. In each temporal
module, the model includes the emission sources material production
(pro), material transport (tra), material waste (was), biogenic carbon
uptake (bio), and carbonation of cement products (cem).

The widely used European standard EN 15978 separates modules
into numbered submodules, e.g. A1−3 is cradle-to-gate material pro-
duction. That module is here instead termed Apro. This terminology
s applied to all emission sources to ensure consistency and avoid
mbiguity.
𝐀pro is the production of building materials, including construc-

ion waste. 𝐁pro is the production of replacement building materi-
ls throughout the building lifetime, calculated as the statistically
istributed 𝐀pro emission for all replacement years.

Equivalently, 𝐀tra is the transport of building materials and con-
truction waste, and 𝐁tra is the transport of replaced materials through-
ut the building lifetime, calculated as the statistically distributed 𝐀tra

emission for all replacement years. 𝐂tra is the transport of all building
materials to waste processing at the end of building life.

𝐀was is the oxidation of construction waste incinerated during ini-
ial construction. 𝐁was is the oxidation of the replaced materials and
onstruction waste of the new materials. 𝐂was is the oxidation of the
aterials in the building at the end of building life. It is assumed that
alf of the carbon in the materials is oxidized by waste incineration
nd released into the atmosphere. The remaining half of waste mate-
ials could be either reused, recycled, or landfilled, however, related
missions are beyond the scope of the study.

𝐁bio and 𝐂bio are the carbon sequestration from regrowth of trees
ue to use of biogenic materials in the building, both initial and
eplacement materials. The separation between the B- and C-phases
epends on if the sequestration happens during the building service life
B) or after (C).

𝐁cem is the carbonation of concrete during the building’s lifetime.
arbonation effects at end-of-life is not attributed to the building.
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Fig. 4. Replacement emissions are chi-square distributed. Shows an example product
with 35 years service life and 100 year building lifetime.

Table 1
Adjustments to future emissions. 𝑦=year in time horizon.

Decay function Half-life Applies to

Technological progress

Production 𝑒−.01𝑦 69 years Bpro
Waste 𝑒−.01𝑦 69 years Bwas, Cwas
Transport 𝑒−.02𝑦 35 years Btra, Ctra
Production PV 𝑒−.037𝑦 19 years Bpro

Effects of delay

𝑇 -year TH 2 − 𝑒
ln(2)
𝑇

𝑦 – all
20-year TH 2 − 𝑒.0347𝑦 – all
100-year TH 2 − 𝑒.00693𝑦 – all
500-year TH 2 − 𝑒.00139𝑦 – all

Climate change effects outside the study scope include the choice
f building site, direct and indirect land-use change, albedo change,
y-products of wood products (treetops, branches, roots, and chips),
ommute of construction workers and building users, energy use in
peration, construction site (energy use and production of machinery,
eating, temporary barracks, etc.), end-of-life substitution effects of
euse and recycling, and consequential LCA effects of choosing one
roduct over another.

.2. Probability distributed future emissions

The timing of future emissions relates to replacement times. The
xact timing of a replacement is uncertain and uncertainty increases
ith time. To account for this, the years of future emissions can be rep-

esented by a random variable with increasing variance. This study uses
he chi-square distribution, as shown in Fig. 4. The ‘cut-off’ assumes no
eplacements take place beyond the building lifetime. However, a sharp
ut-off at the end of the building lifetime will not reflect that building
ifetime is highly uncertain. The ‘no cut-off’ version, used in this study,
cknowledges that building lifetime is an unknowable parameter by
ncluding parts of the emissions from replacements after the building
ifetime. The effect of choosing other distributions is investigated in
.1 and found the ‘no cut-off’ chi-square distribution to transition

moothly as lifetimes change, and not underestimate, i.e. it includes
he probability of early and late replacements.

.3. Applying dynamic effects

Future climate change effects are adjusted by (1) expected tech-
ological progress, and by (2) their accumulated impact on climate
hange over a TH. Technological adjustments reduce emissions over
uture years, while emission delays reduce their importance. The calcu-
ation and effect on the results are equal for both adjustments: a lower
limate change effect over the TH. Their effects on results are quantified
s percentage reductions in total emissions by the tech factors 𝜔 and
elay factors 𝜏 (see Section 2.8). The exponential 𝑒 is often used to
odel natural decay when a quantity decays continuously by a fixed
ercent. Here, it is used to model both technological progress and the
4

ffect of delay by the functions shown in Table 1. d
Fig. 5. Emission reductions due to technology improvements. Decay factors shown in
parentheses.

2.3.1. Technological progress
Technological progress is implemented by weighing the probability

distributed future emissions by exponential decay functions starting in
the year of construction, see Table 1 and Fig. 5. With a ∼1% yearly
improvement for production of building materials, it takes 69 years for
emissions to be cut in half. This improvement rate will in reality depend
on material category, but distinguishing between types of materials will
only have a noticeable effect on the results if the category makes up a
significant share of the total. Faster development is applied to PV panels
since they represent a large share, and historically, development has
been steeper than average [30]. A ∼ 1% development is also used for
waste processing as reuse and recycling increases, and a lower share
of combustible building waste is expected to be incinerated without
carbon capture and storage (CCS) technology. For transport, the 2%
decay factor cuts emissions in half in 35 years, due to efficiency gains
and electrification. This implementation is a further development of a
method by the authors [25].

The decay functions should not be interpreted as predictions, rather,
they quantify the effect of possible development paths. The sensitivity
of the decay factors was tested in the global sensitivity analysis, where
each decay factor was varied between 0.5 and 4%. Results were sensi-
tive to the decay factor of waste incineration, but not much to those of
production and transport. Further description of these modeling choices
can be found in B.1.

2.3.2. Delayed emissions
A GHG emission will heat the atmosphere as long as it is present,

and its decay rate depends on the type of GHG. Hence, emissions that
occur later in the TH have less time to trap heat in the atmosphere
during that TH, and therefore have lower cumulative radiative forcing.

One way to calculate the cumulative radiative forcing over the TH
(providing high accuracy and flexibility), is to integrate the Impulse
Response Functions (IRF) of each GHG [4]. Without compromising ac-
curacy, we here offer an approximated methodology. There are specific
reasons for this simplification: Building LCAs often rely on EPD data,
making it impossible to separate the different GHGs and therefore not
possible to use IRFs; Simplification facilitates widespread application
in research and the practice of building professionals; It is easy and
computationally efficient to estimate results for a wide range of THs.

All LCA approaches rely on the choice of a TH, even if it is infinite
or not explicitly stated [4]. For coherence, the delay of emissions must
be considered for all emission sources [4,31]. Time-discounting with a
TH of 𝑇 years provides the building’s impact on climate change over the
ext 𝑇 years, thus being consistent with the physics of climate science.

An example TH of 100 years is plotted in Fig. 6. Weighting factors
ere first calculated with IRFs for every tenth year based on the method

n [4], and the analytical function was fitted thereafter. It was found
hat an exponential decay function of 2− 𝑒

ln 2
100 𝑦 fits the curve for a 100-

ear TH. Similar functions are used for other THs, where the decay
actor for a TH of 𝑇 years is ln 2∕𝑇 , making it easy to change TH. A
etailed description including other THs can be found in B.2.
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Fig. 6. Reduction in climate change impact due to delay in 100-year TH.

To test the accuracy of this simplified method, a calculation was
erformed for emissions of 1 kg CO2e every year in a 100-year TH,

with this method and with the original method [4] on which the
simplification is based. The method proposed here achieves results
that are only 0.2% off from an equivalent IRF calculation, making this
accuracy fully acceptable compared to remaining model uncertainty.

2.4. Oxidation of stored carbon

Storing carbon in building products prevents release of that carbon
to the atmosphere as long as it is in use. At the end-of-life stage, the
stored carbon may be released in waste incineration, or stored further
in other reuse and recycle products or landfills, and it may be subject
to CCS technologies.

The carbon can be of biogenic or fossil origin. Although the biogenic
carbon cycle is much shorter than that of fossil-based materials, the
effect of carbon release from a building product to the atmosphere will
be independent of its origin. All carbon stored in building products
is therefore treated equally. The oxidation occurs far into the future,
making both the timing and the fraction released into the atmosphere
unknown. Therefore, timing is statistically distributed and we assumed
that 50% of the stored carbon is released to the atmosphere at the end
of the product life. Technological progress reduces the fraction released
to the atmosphere by ∼ 1% annually. The LCA results were found to
e highly sensitive to these two parameters in the global sensitivity
nalysis (GSA).

.5. Biogenic carbon uptake

Biogenic carbon stored in harvested wood products contributes to
limate mitigation by postponing its release to the atmosphere, while
imultaneously leading to accelerated regrowth of new trees. Over time,
his is a nearly carbon-neutral system, while fossil carbon permanently
dds CO2 to the atmosphere. The net effect of biogenic carbon (emis-
ions minus uptake) can become negative when the effects of delaying
nd avoiding oxidation are considered. This is a benefit that fossil-based
roducts do not have.

The wooden building materials are assumed to originate from sus-
ainably managed forests kept under continuous rotation. Within the
otation period, i.e. the time of a full regrowth and trees ready for
eharvest, the same amount of carbon will have been sequestered as
as cut down. Carbon sequestration is attributed to the regrowth of

he forest after harvest and not to the actual carbon stored in the
uilding materials. Harvesting will not increase the carbon stored in
he harvested trees, but it will increase the sequestration rate of the
orest; it is this consequence we assess here. Alternatively, uptake can
e considered to happen before harvest in the actual trees cut down,
hich would significantly affect results since no effect of emission delay
ould apply and no TH cut-off. The time distribution of the uptake
f CO2 over the years 𝑦 in the rotation period is modeled by the first
erivative of the Chapman–Richards (CR) growth function

(𝑦) = 𝑘𝑝𝑒−𝑘𝑦(1 − 𝑒−𝑘𝑦)𝑝−1, (1)
5

CR d
Fig. 7. Biogenic carbon uptake and release from 1 kg wood product and its replace-
ments every 40 years. Effect of delay in a 100 year TH is considered. Construction
waste omitted.

where 𝑘 = 0.23, 𝑝 = 3 are model parameters describing the growth rate
and catabolism of the trees. Eq. (1) is multiplied by the CO2 content of
he material and then normalized to account for an assumed rotation
eriod of 100 years

bio, 𝑖(𝑦) = 𝑚CO2 ,𝑖 ⋅ 𝑓CR(𝑦)∕
∑100

𝑦=0 𝑓CR(𝑦), (2)

here 𝑚CO2 ,𝑖 is the mass of stored CO2 in inventory product 𝑖. Fig. 7
hows emission profiles of biogenic uptake and release including re-
lacements and the effect of delay. The regrowth profile will de-
end largely on the type of trees and climate, leading to different
arametrizations of this function. The normalization reduces the im-
ortance of parameters 𝑘 and 𝑝, leaving a 100-year rotation period the
ost sensitive parameter. The GSA found results to be highly sensitive

o rotation period when equal to the THs but insensitive in shorter and
onger THs. Further description and figures are presented in B.3.1.

.6. Carbonation of cement

Cement products will, over the building lifetime, bind carbon diox-
de from the ambient air in a process called carbonation. Such a
arbon sequestration mechanism gives negative emissions that may
artly compensate for emissions from production of the materials. It
s uncommon for building LCAs to consider carbonation in cement
ut some studies were briefly reviewed in [3]. The carbonation rate
aries widely between cement-based products and between studies. The
equestration is lower for low-carbon concrete mixed with fly ash or
lag. In general, the review found that the carbonation did not deeply
ffect the net emissions over the product’s service life. When crushed
nd used as recycled aggregate in its next lifecycle, an uptake of ca.
0% of initial emissions can be sequestered. However, that uptake is
ot part of the product lifecycle and Ccem is therefore zero.

Without detailed data on each cement product in the inventory and
heir exposure to ambient air, it is not possible to accurately assess the
arbonation of these products. Nevertheless, a general assumption of
.1 kgCO2 uptake per kg cement over 100 years was made. About half
f the 100-year uptake happens the first 25 years, using an exponential
ecay function 1− 𝑒−.03𝑦 normalized for the years 𝑦 in the building life-
ime. This sequestration model was constructed based on information
rom [32]. Calculation details are given in B.3.2.

Carbonation is modeled for products in the material categories
cement’ and ‘concrete’. The cement content in concrete varies, but a

inimum of 400 kg/m3 concrete is recommended [33]. For a concrete
3
ensity of 2400 kg/m , this corresponds to a cement content of 17%,
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which is the assumed fraction in this study. The cement content was
varied in the global sensitivity analysis from 10 to 23% (upper and
lower values used in [33]) and was found to be one of the least sensitive
parameters.

2.7. Calculation of building material emissions

Building material data is organized in a material inventory where
each item is assigned to a building element and material category. For
calculation, each inventory item must have a specified quantity 𝑞 (per
m2 HFA), density 𝜌 (if the unit of 𝑞 is not kg), emission intensity per
unit 𝑓 , estimated lifetime of the material 𝑙, transport distance from
factory 𝑑, and transport emission per weight and distance 𝑡. When any
of these are not known for a given inventory item in one building
they are estimated by approximation, using the existing data for similar
inventory items in all case buildings. The methodology developed for
imputation of missing data is described in A.4.

The imputed inventory data, together with the global study param-
eters (summarized in Fig. 13 and C.1), are used to calculate emissions
as described above. Further calculation details are given in B.3. Each
emission source is first calculated for every inventory item, for each
year in the TH. To incorporate the dynamic effects, the yearly emissions
for each inventory item are then adjusted by the technology and delay
vectors.

2.8. Aggregation metrics for building subparts

The materials in a building are organized into building subparts.
Subparts are building elements, material categories, or a combination
of the two. The building elements are here organized in the hierarchical
system in NS 3451 [29], shown in Fig. 2. The material categorization
is based on the material groups described in C.2.

Both original and tech- and delay-adjusted inventory results are
aggregated up to building subparts. From these aggregated subpart re-
sults, one can calculate average metrics that, for each subpart, describe
the impact of each emission source and the magnitude of the dynamic
effects.

For each subpart, the total mass is given by quantity 𝑄, and the
mass-weighted mean transport distance by 𝐷. The emission factors 𝛼, 𝛽,
𝛾 are the mass-weighted mean emission intensities, for the construction,
operation, and end-of-life phases, respectively. The tech factors 𝜔 and
elay factors 𝜏 are the emission-weighted average of the functions in
able 1 and Figs. 5 and 6, and describe how much future emissions
phases B and C) are reduced due to technological improvements and

subsequent effect of delay; these are calculated by division of the
djusted and unadjusted subpart results. Analytical equations for these
etrics are given in B.5.

Emissions can be directly recalculated from these aggregation met-
ics; relationships between the metrics and emissions are shown in
able 2.
6

.9. From buildings to building types

General characteristics of the case studies, such as location (cli-
ate, construction practice, etc.), typology (building form, special

equirements, etc.), and type of superstructure (timber, concrete, etc.)
nfluence material use and emissions. Statistical material use and emis-
ion profiles are therefore only representative for buildings of similar
haracteristics.

The case studies are here classified by such building types, for
hich statistics are calculated. The most general building type includes
ll buildings, which is used to analyze subpart emissions by building
lements and by material categories. Another building type groups by
ypology. A third type groups buildings by their timber content; a total
eight ratio of 1/4 or more biogenic materials is considered a timber
uilding and a lower ratio a concrete building. The case studies are
ll from similar climate zones in Norway. Most are designed to reduce
missions from material use.

The average quantity and emission-, tech-, and delay-factors of the
ase buildings are used to calculate building type emissions with the
quations in Table 2. The resulting emission and material intensity
rofiles can be used as reference values or benchmarks for buildings
ith similar characteristics.

.10. Dataset of case buildings

The full inventories from 20 previously reported building LCA case
tudies were collected from sources in academia and industry, pre-
ented in Table A.1. None of the studies had a defined TH for the cli-
ate change impacts, neither did they consider technological progress

only for energy use in operation; some assumed improvements in
roduction of PV panels). All studies used a 60 year building lifetime,
hich is much lower than the national empirical average, but often
sed in LCA studies. These methodological aspects and the ones ex-
lained in the sections above are harmonized in this study. Missing
ata are imputed based on the remaining dataset. A full description
f the dataset and the preparation of it for use in this study is given in
.1–A.4.

.11. Sensitivity analyses

A variance-based GSAs (Sobol analysis) is performed to determine
he influence of changes in the global study parameters (see C.1) on
he final emission results. The SALib Python library [34] is used for
his calculation. Model results are first sampled and then analyzed.
he output, for which the sensitivity is quantified, is the sum of all
mission sources and years in the TH, for the entire inventory from all
uildings in the dataset. It should be noted that the uncertainties of
he inventory (LCI) data for the 20 case studies are not considered. The
ampled results are also plotted and a confidence interval is calculated,
roviding an estimate for the uncertainty due to variation in the global
tudy parameters.

The analysis is performed four times both for a varying TH and for
ixed THs (20, 100, 500 years). This allows for a distinction between
he uncertainty for each TH.
Table 2
Calculation of building subpart emissions [kgCO2e/m2] from aggregation metrics. The emission factors (𝛼, 𝛽, 𝛾) are without dynamic effects,
which are adjusted for by the tech (𝜔) and time (𝜏) factors. Lifecycle phases and emission sources shown in parentheses, e.g Apro.

Const. (A) Operation (B) End-of-life (C) Adjusted future (B+C)

Production (pro) 𝑄𝛼pro 𝑄𝛽pro – 𝑄𝛽pro𝜔pro𝜏pro
Transport (tra) 𝑄𝛼tra 𝑄𝛽tra 𝑄𝛾 tra 𝑄(𝛽tra + 𝛾 tra)𝜔tra𝜏tra
Waste (was) 𝑄𝛼was 𝑄𝛽was 𝑄𝛾was 𝑄(𝛽was + 𝛾was)𝜔was𝜏was
Biogenic uptake (bio) – 𝑄𝛽bio 𝑄𝛾bio 𝑄(𝛽bio + 𝛾bio)𝜏bio
Cement uptake (cem) – 𝑄𝛽cem – 𝑄𝛽cem𝜏cem
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Fig. 8. Cumulative (top) and annual (bottom) climate change effect for different time horizons (TH). The stippled lines show the net climate change effect.
3. Results

3.1. Dynamic emission profiles

Fig. 8 shows the dynamic emission profiles of various THs, for a
building with 80 years’ lifetime. This building makes a good explana-
tory case due to significant future emissions. Results for the other
buildings in the dataset can be found in E.4.2, many of which have
much lower future impacts.

During a 20 year TH, the construction emissions are the only
emissions that matter and the benefits of biogenic uptake are absent. If
the goal is to minimize the climate change effect of the building within
the next 20 years, one should focus solely on reducing construction
phase emissions.

If the goal is to reduce the warming effect during the next 100 years,
operation phase emissions become important for this particular build-
ing and benefits of biogenic uptake are highly present. The end-of-life
phase will barely contribute to warming during those 100 years and
should not be a priority.

With an infinite TH (equivalent to not including the effect of emis-
sion delay) all three phases are relevant. It is worth noting that for the
infinite TH, the future emissions become highly uncertain, to the degree
that these should preferably not be used to guide policy. It is highly
uncertain and not meaningful to predict how the model parameters
will develop over the next centuries. This uncertainty is greatly reduced
in the 20 and 100-year THs, making them better suited for informing
mitigation efforts.

3.2. Statistical emissions of building types and subparts

Figs. 9–12 show emissions for various building types and subparts
with 80 year lifetimes and 100-year THs. Equivalent figures for other
THs can be found in E. With a limited number of buildings, the
material use, design characteristics, and study specifics of individual
buildings will highly influence the emission profile. The building type
and subpart emissions must, therefore, be interpreted together with the
error bars showing the standard deviation (if sample size > 1).

Buildings with larger quantities of wood tend to have lower emis-
sions, both due to biogenic carbon sequestration and lower emissions
from material production, where wood products substitute the use of
higher emission intensity products. The high waste emission factors
(𝛼𝑤𝑎𝑠, 𝛽𝑤𝑎𝑠, 𝛾𝑤𝑎𝑠) for buildings and subparts with large quantities of
wood products is compensated by high uptake factors (𝛽𝑏𝑖𝑜, 𝛾𝑏𝑖𝑜), es-
pecially in long THs. The carbonation factor (𝛽𝑐𝑒𝑚) is low compared
to other emission factors; its mean value for all buildings lies within
−13 and −8.5 gCO2 per kg of all building materials in the buildings
(95% confidence). Carbonation accounts for an average of 4±1% (95%
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confidence) of total construction phase emissions for all buildings,
given a 100-year lifetime and an infinite TH. Shorter lifetimes and finite
THs reduce the importance.

The tech factors cause roughly a halving of future emissions (B-
and C-phases), and the delay factors roughly another halving on top of
that. Two effects explain the variation of tech factors among emission
sources: technological development (Table 1) and timing of replace-
ments. The variation in delay factors is explained solely by the timing
of future emissions.

Fig. 9 shows metrics for each typology and emissions calculated
from the metrics. The comparison is restricted to the buildings’ enve-
lope, foundation, and structure (building element 2) since this is the
system boundary in most case studies. There is no clear correlation
between higher emissions and their quantities and emission factors.
The construction phase (A) dominates, while the future lifecycle phases
operation (B) and end-of-life (C) are much less significant. The average
net emissions in the construction phase are 402 ± 89 kgCO2e, in the
operation phase they are −54 ± 59 kgCO2e, while the end-of-life phase
is barely present at 9 ± 6 kgCO2e (95% confidence). The relative
contributions of A, B, and C will, however, largely depend on the
chosen TH and building lifetime. The construction phase is the same in
all THs, but the equivalents for B and C are −4± 4 kgCO2e and 36 ± 17
kgCO2e in a 20-year TH, and −130± 100 kgCO2e and 284± 208 kgCO2e
in a 500-year TH. The confidence intervals are expected to be smaller
for a dataset with more case buildings of similar characteristics.

Fig. 10 shows metrics for timber and concrete building types and
emissions calculated from the metrics. The comparison is restricted to
building element 2. Although the timber buildings perform better on
average, there is large variation within both building types. The timber
content cannot alone explain this variation.

Figs. 11 and 12 explore building elements and material categories
of all buildings. Fig. 11 shows metrics for each building element and
emissions calculated from the metrics. The figure is split into three
hierarchies, where the top hierarchy 0: ‘Whole building’ shows the
results for all materials included in the system boundaries. The next
hierarchy shows these same emissions split into building elements
(one-digit), that are again split into more specific building elements
(two-digit). The majority of emissions can be attributed to the main
building structure (building element 2; corresponds to ‘All buildings’ in
Fig. 9). ‘Electric power’ is also responsible for a significant proportion
due to photovoltaic panels on some buildings.
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Fig. 9. Emissions and average metrics for building types; building element 2. Average building type metrics used to calculate emissions. Standard deviation shown in error bars.

Fig. 10. Emissions and average metrics for timber (>1/4 biomaterials by weight) and concrete building types (≤ 1∕4 biomaterials); building element 2. Average building type
metrics used to calculate emissions. Standard deviation shown in error bars.

Fig. 11. Emissions and average metrics for building elements; all buildings; all building elements where data exists. Horizontal lines divide the three hierarchies. Average building
type metrics used to calculate emissions. Standard deviation shown in error bars.
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Fig. 12. Average emissions of material categories in all buildings (not calculated from metrics). Material categories with low contribution (positive and negative) omitted. Standard
deviation shown in error bars.
Fig. 12 shows the average emissions of each material category (not
calculated from metrics). Material categories contributing little to total
building emissions are excluded from the figure.2 Of the remaining
material categories, the ones with biogenic carbon have the lowest av-
erage contribution to building emissions. Emissions vary widely within
most material categories, seen as standard deviation in the error bars.
Based on the material use in the case buildings, both promising material
categories for reduced climate change and culprits can be identified.
However, the material categories must be evaluated together with their
structural, functional, thermal, and aesthetic properties.

3.3. Sensitivity of methodological choices

Fig. 13 shows the distributions of sampled results and the resulting
total sensitivity indices of the global parameters. The assumption is
uniform distributions within the parameter ranges shown in the figure.
Only sensitivities of the global study parameters are investigated, not
those of the underlying material inventory data.

Parameter sensitivities highly depend on the TH, which is a norma-
tive choice. GSAs are therefore performed for varying (20–500 years)
as well as fixed (20, 100, 500 years) THs. When TH is allowed to
vary together with the parameters, it is by far the most sensitive
model parameter and is responsible for 61 ± 10% (95% confidence)
of the model variance, followed by building lifetime at 16 ± 3% (95%
confidence). The remaining sensitivities relate mainly to the end-of-life
incineration of construction waste and biogenic carbon sequestration.
The sampled results vary widely, between −0.3 and +0.5 tons CO2e/m2

(95% confidence). Thus, climate change impact cannot be determined
with any meaningful accuracy without specifying TH; results are not
very useful for policy if the sensitive parameters are not precisely
known.

2 The excluded categories contribute less than 10% of the maximum ab-
solute sum of positive and negative emissions, and are ‘Acoustic insulation’
‘Asphalt’ ‘Bitumen roofing’ ‘Brick’ ‘Carpet’ ‘Coating’ ‘Copper’ ‘Doors’ ‘EPS’
‘Elevator’ ‘Flooring’ ‘Flooring, ceramic tiles’ ‘Flooring, tiles’ ‘Glass’ ‘Glass
wool’ ‘Granite’ ‘Gravel’ ‘Gypsum’ ‘Gypsum, plaster’ ‘Heat pump’ ‘Hot water
tank’ ‘Insulation, mineral’ ‘Linoleum’ ‘Membrane’ ‘Paint’ ‘Plastics’ ‘Rubber’ ‘ST
collector’ ‘Sink’ ‘Timber, Gluelam’ ‘Vinyl’ ‘Windows’ ‘Wood wool’.
9

For shorter THs, however, results become much more precise. With
the assumption of an accurate material inventory, 95% of results are
between 0.39 and 0.53 tons CO2e/m2 in a 20-year TH, and between
0.20 and 0.50 tons CO2e/m2 in a 100-year TH. In the 500-year TH, the
variation is on scale with the GSA where TH varies. Thus, shorter THs
yield more precise results, while long THs (i.e. predicting impacts far
into the future) are highly uncertain. Parameter sensitivities change in
short THs: building lifetime is not relevant for THs around 100 years
or shorter. The rotation period is highly sensitive for the 100-year, but
not for other THs.

Independent of TH, carbon content of bioproducts, fraction in-
cinerated, and waste fraction are always highly sensitive. This calls
for refining both the modeling of these effects and the data inputs
used, to reduce these uncertainties. For policy, it suggests that limiting
construction waste and increasing reuse, recycling, and CCS should be
high priorities.

Values of sensitive parameters should be chosen with care. Uncer-
tainties of insensitive parameters do not affect the model output much,
hence, it is less important that these are precise. The TH should be
a deliberate normative model choice defining the temporal scope of
the research question. For the remaining sensitive parameters, more
precise estimates can be obtained empirically, which will reduce their
sensitivities.

Choice of statistical distribution for future events is explored in
D.1: The chi-square distribution and normal distribution with time-
dependent variance are found most fit. Integer numbers of replace-
ments should be avoided since they will lead to abrupt changes in
results when material and building lifetimes change, and fractional
numbers will underestimate replacement emissions. The importance of
choosing an appropriate distribution is especially important if dynamic
effects are not considered or under long THs.

Choice of TH is further explored in D.2: The A-phase is independent
of TH. Longer THs lead to higher emissions from the B-phase. The
importance of the C-phase increases for THs longer than building
lifetime.

Choice of building lifetime is further explored in D.3: In general,
shorter lifetimes lead to lower impact from the B-phase and higher
impacts from the C-phase. The A-phase is independent of building
lifetime, while the B- and C-phases greatly depend on it in long THs.
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Fig. 13. Relative sensitivity of the global study parameters for various THs (left) calculated from sampled model results (right). The black lines (left) are 95% confidence intervals
f the sensitivity indices. The orange bar (right) shows the mean 𝜇 and 95% confidence interval of the 𝑁 sampled results. For the 20, 100, and 500-year THs, parameters that

contribute less than 1% are not shown.
Building lifetime is an unknowable parameter, and under long THs it
contributes to large uncertainty in the results of the future lifecycle
phases, while its contribution to uncertainty is greatly reduced with
shorter THs.

4. Discussion

4.1. Acknowledging uncertainty

In the complex system of processes related to a building and the
quantification of impacts many decades into the future, there are great
uncertainties that one should be aware of. First, the inventory data must
be accurate for its intended purpose, which again must match the pur-
pose of the assessment. This is not always the case for emission intensity
data, inventory quantity data, etc. Secondly, both the timing and the
nature of several future events cannot be known with any certainty.
This should be reflected in the implementation of the dynamic effects,
which is here modeled without adding superfluous complexity. This
makes the method transparent, understandable, and open to scrutiny
while reducing the chance of errors.

A major advantage of the method offered in this study is that the
temporal assessment of dynamic effects reduces model uncertainty. Fu-
ture technological progress is uncertain, indeed, but the assumption of
some development is better than none; including the phenomena of tech-
nological progress improves on previous methods. The inconsistency
of products with different THs is resolved by accounting for delayed
emissions. An additional benefit of factoring in the timing of emissions
is that the discounting is inversely proportional to the uncertainty due
to time. The further into the future, the larger are the uncertainties,
however, these increasing uncertainties will be offset by weighting
emissions by their distance into the future. Technological development
has the same uncertainty-reducing property. Additionally, results are
less sensitive to uncertain parameters such as building lifetime. By
significantly reducing the uncertainty of postulated future impacts, this
is an important step in the direction of more policy-relevant modeling.
The shorter the TH, the more the results can be trusted.
10
Imputation of missing data involves uncertainties. Nevertheless, a
sufficiently good imputation strategy enables use of more data in the
analysis, contrary to excluding that data and accepting underestimation
and weaker analyses. The imputation strategy is based on the expected
value of similar materials, implying that the larger the dataset the
better the strategy will work.

A GSA should be performed for all complex models, especially for
models used to guide policy [8]. The GSA ranks the model’s sensitivity
to changes in parameters. Parameters with high sensitivity indices are
contributing highly to model uncertainty, and are therefore important
to assume accurately. It is less important to have precise values for the
parameters with low sensitivity indices because a change in these will
not change the results much. Additionally, sensitivity was explored by
testing the effect of model assumptions.

4.2. Harmonization of data and assumptions

This study has a unique advantage over previous statistical studies
in literature, since the complete inventory of each building makes it
possible to redefine the system parameters and test assumptions. This
allows for a deep harmonization of assumptions and parameters among
all case buildings. Furthermore, data uncertainties can be mitigated by
statistical power and the representativeness of results improves as the
dataset grows. Results are representative only of the range of typologies
addressed and Norwegian conditions. The method, however, can be
applied to any typologies and geographic conditions.

4.3. Delayed emissions

When using GWP (CO2 equivalents) for emissions that occur far into
the future, it is methodologically and policy-wise inconsistent not to
assess impacts by use of a dynamic framework. A TH is included by
default in the GWP indicator (usually 100 years) and to later ignore
this TH in the LCIA is inconsistent. If there are significant quantities
of GHGs other than CO2 this could invalidate those results. The impor-
tance of this inconsistency will, however, be small in cases where CO2

is the dominant GHG.
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Building LCAs often collect climate change data for building materi-
als from EPDs, where single-valued results make time-profile distinction
between the GHGs impossible. The dynamic time horizon method
presented in this paper can be used even for such aggregated CO2e
emission intensities. A problem remains: the climate change impacts
of inventory data in this study are GWP100, thus, the application and
esults will only be completely consistent for the 100-year TH. Other
Hs will always be consistent for CO2 emissions, but not for the share of
O2e linked to other GHGs. This is a limitation that may be acceptable
onsidering the applicability of the proposition, especially in cases
here CO2 is the dominant GHG. The limitation can be resolved by
atching the TH of the GWP of the inventory with the TH used to

ccount for delayed emissions.
The use of a consistent TH not only ensures methodological quality

nd reduces uncertainty, it also answers a research question much more
elevant for policy than does an infinite TH; namely ‘What will be the
umulative impact over the TH, of choices made today?’ in contrast to the
mpossible question of what will happen in the unforeseeable future.

.4. Subpart metrics

The quantity, distance, emission-, tech-, and delay factors are
eighted average values of the inventory items in the subpart, describ-

ng the subpart’s environmental performance. In this paper, the metrics
re used for generating statistical emission profiles of building types.
dditionally, these metrics are relevant for the interpretation of results,
s design drivers, and for benchmarking and verifying LCA calculations.
nother use is as proxy values in early-phase planning and for emission
ources and building elements outside the study scope. Furthermore,
on-dynamic building LCA results can be adjusted for technology and
elay effects by multiplication with the tech and delay factors.

.5. Limitations

There are some limitations that the reader should be aware of.
limate change effects outside the study scope are listed in the Meth-
ds section; this study focuses on material use in buildings. Emission
ources such as energy use at the construction site and during operation
re also highly important to consider.

This study uses process-based attributional LCA. Input–Output, Hy-
rid, and Consequential LCA are more relevant for answering certain
esearch questions and are compatible with the presented methodology.

A specific indicator is used; dynamic GWP within a TH. Other
spects of the climate system such as feedback mechanisms, temporal
mpacts to radiative forcing and temperature changes are not targeted,
nd results can change when using other indicators.

The GSA results in this study depend upon the inventory; an inven-
ory with different material composition would result in other sampled
istributions and parameter sensitivities. In further work, the GSA
hould incorporate the variability of the material inventory, additional
ariables, mathematical relationships, and boundary conditions for a
omplete assessment of sensitivity. The GSA results also depend heavily
n the uncertainty ranges of the parameters given in its input; further
ork should revise the ranges empirically.

The carbon content of timber products is a highly sensitive param-
ter and should in future studies be determined individually for each
nventory item where possible, instead of assuming a fixed percent for
ll wood products.

Results are only representative for buildings of similar characteris-
ics and are biased by the case-specific conditions and designs of these
uildings. The case studies are designed and constructed according
o Norwegian practice for Norwegian climate and designed for low
ifecycle emissions. This limitation does not hinder the applicability of
he proposed method, just the extrapolation of numerical results.

The proposed solution to account for delayed emissions provides an
stimate of the total radiative forcing during any chosen TH, in units
11

p

f CO2 equivalents. Thus, GHGs other that CO2 must first be converted
to that unit. As discussed in 4.3, the method is accurate for any TH
as long as the GWP of the inventory uses the same TH. When the TH of
the inventory is different from the TH of the study, calculations will
be correct for CO2 emissions, however, inaccuracies will arise for the
hare of CO2e representing GHGs other than CO2. One should therefore
onsider if the share of non-CO2 GHGs is significant, and in that case
djust the inventory to the respective TH or else be aware of this
imitation.

For systems of radical uncertainty, i.e. unknowable uncertainty, as
efined by [35], qualitative judgments are needed. Not all types of un-
ertainties and not all problems can be quantified. Building LCAs over
arge periods involve radical uncertainties that should be investigated
urther.

.6. Implications for building LCA practice

Dynamic effects are obviously important in building LCAs. Techno-
ogical progress is very likely to happen during the coming decades and
hould no longer be ignored in modeling. Time horizons of warming
ffects should also be clearly defined, where the chosen TH should
eflect the goal of the LCA. Future events should be represented by
andom variables with time-dependent variance. Model choices and
arameters should be conveyed and their global sensitivities should be
ssessed.

Biogenic carbon sequestration and end-of-life incineration of stored
arbon in building products have important effects on climate change
hat should always be included, especially for long THs. Carbonation of
ement products seems to play a minor role during the use phase and
ay be ignored.

This paper presents a simplification of the DLCA method [4] for
ncluding effects of delayed emissions, which can facilitate its im-
lementation into building LCA practice. It works for any TH and
nables application with emission intensities from EDPs. This sim-
lification preserves the underlying assumptions and adheres to the
hysics of climate change. Previous research has argued that dynamic
pproaches need to be simple to allow wider use both by academics
nd practitioners, and that methodological developments should aim at
triking a balance between improving accuracy and limiting additional
omplexity [20]. This paper presented a simple method that does not
ompromise accuracy. LCA software should adopt the best available
cientific methodology and not vice versa.

.7. Implications for policy

The proposed method increases policy-relevance. As a consequence
f future technology improvements, reduced climate change effect of
elayed emissions, and less uncertainty, reduction of near-future emis-
ions should be prioritized over distant future emissions. Encouraging
he active choice of a TH forces policymakers to make an important
hoice regarding the rate of mitigation efforts.

Even with equal assumptions and methodology, the differences in
aterial inventories of the 20 case buildings lead to large differences

n results, but despite the variation, there are some trends. Mitigation
f carbon embodied in material use should focus on the emissions hap-
ening in the construction phase, while emissions in the operation and
nd-of-life phases are much less important and much more uncertain.
uildings dominated by wood products have lower impacts, especially
ver long THs. Among the building elements included in the examined
ase studies, emissions from outer walls, slabs, and PV are dominating.
mong the material categories, priority for low-emission products or
lternative materials should be on PV panel, concrete, and steel, to
ention some. Biomaterials can have climate mitigation effects and are

romising alternatives.
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5. Conclusions

A building can operate for centuries and this long lifetime in-
troduces time-dependent effects that dynamic LCA can account for:
technological progress will lead to lower future emission intensities;
postponed emissions have lower warming potentials over a given TH;
carbon stored temporarily in building products and the timing of its
future oxidation can have mitigation benefits; carbon sequestration
happens both in regrowth of trees and in building products containing
cement. These effects are usually ignored in LCA studies of buildings.
This paper proposed a robust methodology for, first, creating a dynamic
inventory, and then, including these effects for any chosen TH.

The IPCC urges nations to rapidly reduce emissions to stay below
the global temperature increase targets. The timing of emissions has
implications for the climate change effect over the TH, and to limit the
warming effect of human activities within the next 20 to 100 years,
these effects can no longer be ignored. Overall, the temporal dimension
is key to climate mitigation in the building sector. We show that
a dynamic TH of 𝑇 years can be modeled by multiplying dynamic
emissions with the simplified function 2 − 𝑒

ln 2
𝑇 𝑦 for each year 𝑦 in the

H. This simplification can potentially make emission delay a default
omponent of building LCA practice.

Future events that are highly uncertain should not be depicted as
qually accurate as near-future events. The introduction of technology
mprovements and delayed emissions greatly reduces uncertainty re-
ated to future events. Decisive parameters such as the building lifetime
lso have less influence on the results, and thus on the conclusions
nd implications for policy. We regard this as an important step in the
irection of more policy-relevant modeling.

The method was applied on the material inventory dataset of 20
ase buildings, harmonized to get a more consistent comparison and
tatistical treatment. The main focus of embodied carbon mitigation
fforts should be on the near-future construction phase impacts since
hese dominate the lifecycle emission profile and can be more imme-
iately influenced in building design as well as by policy. Reducing
missions from waste incineration also has significant mitigation po-
ential. Limiting construction waste and increasing reuse, recycling, and
CS should be high priorities. The use of wood products in buildings
an have mitigation effects, mostly over long THs. Carbon uptake in ce-
ent products is only a fraction of construction phase emissions; hence,

hoosing alternative materials or low-carbon concrete is outweighing
he effect of carbonation. Future technology improvements may lead
o a rough halving of future emissions, and emission delay leads to
nother halving of their climate change effect the next 100 years,
aking these dynamic effects responsible for about a 3/4 reduction of

uture emissions.
Emission results vary widely depending on parameter choices, with

ime horizon, building lifetime (long TH only), and waste related pa-
ameters responsible for most of the model uncertainty. The differences
n material inventories of the 20 case buildings also lead to large
ifferences in results. Statistical inference can be improved by applying
he demonstrated modeling approaches to a larger dataset of building
ase studies.
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