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For a 2nd-countable locally compact Hausdorff étale groupoid G with a continuous

2-cocycle σ we find conditions that guarantee that �1(G, σ) has a unique C∗-norm.

1 Introduction

Given a reduced (Banach) ∗-algebra A, the enveloping C∗-algebra C∗(A) plays a funda-

mental role in the representation theory of A. However, any faithful ∗-representation

of A will yield a C∗-completion of A, and one may ask if this completion is isomorphic

to the enveloping C∗-algebra. In the particular case of a locally compact group G, we

may for example consider the ∗-algebras Cc(G) or L1(G). There are then two canonical

C∗-norms, namely the one arising from the left regular representation and the maximal

C∗-norm. It is well known that G is an amenable group if and only if these two C∗-

norms coincide. However, even for amenable groups we can not rule out that there

are C∗-norms on Cc(G) and L1(G) that are properly dominated by the norm induced

by the left regular representation. Examples of this are given in [8, p. 230]. This

invites the notion of C∗-uniqueness. A reduced ∗-algebra A is called C∗-unique if C∗(A)

is the unique C∗-completion of A up to isomorphism. This was extensively studied

in [6] for ∗-algebras. Moreover, a more specialized study for convolution algebras

of locally compact groups was conducted in [8], where C∗-uniqueness of L1(G) was

studied by considering properties of the underlying group G. These two papers spawned
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2 A. Austad and E. Ortega

investigations on C∗-uniqueness in the following decades, see for example [5, 9, 11, 13].

In later years, algebraic C∗-uniqueness of discrete groups has garnered some attention

[1, 10, 16]. This is the study of C∗-uniqueness of the group ring C[�] for a discrete group

� and is not equivalent to the study of C∗-uniqueness of �1(�), see Remark 2.8.

We will in this paper study the C∗-uniqueness of certain Banach ∗-algebras

associated to groupoids. To be more precise, given a 2nd-countable locally compact

Hausdorff étale groupoid G with a normalized continuous 2-cocycle σ , we will study the

C∗-uniqueness of the I-norm completion of Cc(G, σ), which will be denoted by �1(G, σ),

see (3). Here, Cc(G, σ) denotes the space Cc(G) equipped with σ -twisted convolution

and involution, see (1) and (2), and similarly for �1(G, σ). Associated to �1(G, σ) are

two canonical C∗-norms, namely the one coming from the σ -twisted left regular

representation, see (6), and the full C∗-norm. If these coincide, we say G twisted by σ

has the weak containment property. The technicalities will be postponed to Section 2.3.

Letting Iso(G)◦ denote the interior of the isotropy subgroupoid of G, we will first find

that for �1(G, σ) to be C∗-unique, it is sufficient that �1(Iso(G)◦, σ) is C∗-unique. If we

further let Iso(G)◦x denote the fiber of Iso(G)◦ in the point x ∈ G(0), and let σx denote the

restriction of σ to this fiber, we have the following main result.

Theorem 1.1 (cf. Theorem 3.1). Let G be a 2nd-countable locally compact Hausdorff

étale groupoid with a continuous 2-cocycle σ . Suppose that G twisted by σ has the weak

containment property. Then �1(G, σ) is C∗-unique if all the twisted convolution algebras

�1(Iso(G)◦x, σx), x ∈ G(0), are C∗-unique.

The theorem allows us to deduce C∗-uniqueness of �1(G, σ) by considering

C∗-uniqueness of the (twisted) convolution algebras of the discrete groups Iso(G)◦x,

x ∈ G(0). The latter has been studied earlier, the untwisted case in [8] and the twisted

case in [5]. Using this we obtain several examples of groupoids G for which �1(G, σ) is

C∗-unique in Section 4. Additionally, we are able to deduce C∗-uniqueness of some

wreath products using our groupoid approach, see Example 4.4.

We will proceed in the following manner. In Section 2, we will collect all

results we will need regarding C∗-uniqueness of Banach ∗-algebras, C∗-algebra bundles,

as well as cocycle-twisted convolution algebras associated to 2nd-countable locally

compact Hausdorff étale groupoids. In Section 3, we first present our main theorem,

Theorem 3.1. The remainder of the section will be dedicated to its proof. Lastly,

in Section 4 we present examples of C∗-unique convolution algebras coming from

groupoids, as well as deducing C∗-uniqueness of some wreath products.
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C∗-uniqueness for Groupoids 3

2 Preliminaries

2.1 C∗-uniqueness for Banach ∗-algebras

A ∗-representation of a Banach ∗-algebra A is a ∗-homomorphism π : A → B(H), where

B(H) are the bounded linear operators on a Hilbert space H. We say A is reduced if

AR = {a ∈ A : π(a) = 0 for every∗−representationπofA} = {0}. All Banach ∗-algebras we

consider in the sequel will be reduced. The enveloping C∗-algebra of a reduced Banach

∗-algebra A is the unique C∗-algebra C∗(A) that admits the following universal property:

there exists an injective ∗-homomorphism � : A → C∗(A) with dense range so that for

every ∗-representation π : A → B(H), there exists a unique ∗-representation π̂ : C∗(A) →
B(H) so that π = π̂ ◦ �. In order to ease notation in the sequel we will identify A with

the Banach ∗-subalgebra �(A) of C∗(A) whenever it is natural to do so. The enveloping

C∗-algebra of a Banach ∗-algebra always exists [15, Section 10.1].

Definition 2.1. Let A be a reduced Banach ∗-algebra. We say that A is C∗-unique if the

C∗-norm given by

‖a‖ := sup{‖π(a)‖ : π : A → B(H) is a *-representation}

for every a ∈ A, is the unique C∗-norm on A. In other words, A is C∗-unique if C∗(A) is

the unique C∗-completion of A up to isomorphism.

We will make repeated use of the following result on C∗-uniqueness of Banach

∗-algebras, see [15, Proposition 10.5.19].

Proposition 2.2. Let A be a reduced Banach ∗-algebra with enveloping C∗-algebra

C∗(A). Then A is C∗-unique if and only if for every nonzero two-sided closed ideal

I � C∗(A) we have A ∩ I �= {0}.

2.2 C∗-algebra bundles

The notion of a C0(X)-algebra will be of importance in the proof of the main theo-

rem. Hence, we briefly revise some basic notions and results on C0(X)-algebras and

C∗-bundles.

Definition 2.3. Let X be a locally compact Hausdorff space. A C0(X)-algebra is a C∗-

algebra A together with a non-degenerate injection ι : C0(X) → Z(M(A)), where the latter

denotes the center of the multiplier algebra of A.
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4 A. Austad and E. Ortega

We shall also need to consider (upper semi-continuous) C∗-bundles.

Definition 2.4. Let X be a locally compact Hausdorff space and let {Bx}x∈X be a family

of C∗-algebras. A map f defined on X such that f (x) ∈ Bx for all x ∈ X, is called a section.

An upper semi-continuous C∗-bundle B over X is a triple (X, {Bx}x∈X , �0(B)), where �0(B)

is a family of sections, such that the following conditions are satisfied:

1. �0(B) is a C∗-algebra under pointwise operations and supremum norm,

2. for each x ∈ X, Bx = {f (x) : f ∈ �0(B)},
3. for each f ∈ �0(B) and each ε > 0, {x ∈ X : |f (x)| ≥ ε} is compact,

4. �0(B) is closed under multiplication by C0(X), that is, for each g ∈ C0(X) and

f ∈ �0(B), the section gf defined by gf (x) = g(x)f (x) is in �0(B).

The two above concepts can be combined to obtain the main theorem of [14],

which we present shortly for the reader’s convenience. Suppose X is a locally compact

Hausdorff space, and suppose A is a C0(X)-algebra with map ι : C0(X) → Z(M(A)). For

x ∈ X, denote by Jx := C0(X \ {x}) and realize Jx ⊆ C0(X) in the natural way. Moreover, we

define Ix := ι(Jx)A, which is a closed two-sided ideal of A. We then have the following

result that will play a major role in the proof of Theorem 3.1.

Proposition 2.5 ([14, Theorem 2.3]). Let X be a locally compact Hausdorff space and

let A be a C0(X)-algebra. Then there exists a unique upper semi-continuous C∗-bundle B

over X such that

i) the fibers Bx = A/Ix, and

ii) there is an isomorphism φ : A → �0(B) satisfying φ(a)(x) = a + Ix.

2.3 Groupoids, cocycle twists and associated algebras

Given a groupoid G we will denote by G(0) its unit space and write r, s : G → G(0) for the

range and source maps, respectively. We will also denote by G(2) = {(α, β) ∈ G×G : s(α) =
r(β)} the set of composable elements. In this paper, we will only consider groupoids

G equipped with a 2nd-countable locally compact Hausdorff topology making all the

structure maps continuous. A groupoid G is called étale if the range map, and hence

also the source map, is a local homeomorphism. A subset B of an étale groupoid G is

called a bisection if there is an open set U ⊆ G containing B such that r : U → r(U) and

s : U → s(U) are homeomorphisms onto open subsets of G(0). Second-countable locally

compact Hausdorff étale groupoids have countable bases consisting of open bisections.
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C∗-uniqueness for Groupoids 5

Given x ∈ G(0) we define by Gx := {γ ∈ G : s(γ ) = x} and Gx := {γ ∈ G : r(γ ) = x}.
Observe that if G is étale the sets Gx and Gx are discrete for every x ∈ G(0). The isotropy

group of x is given by Gx
x := Gx ∩ Gx = {γ ∈ G : s(γ ) = r(γ ) = x}, and the isotropy

subgroupoid of G is the subgroupoid Iso(G) := ⋃
x∈G(0) Gx

x with the relative topology from

G. Let Iso(G)◦ denote the interior of Iso(G). We then say that G is topologically principal

if Iso(G)◦ = G(0).

We will consider groupoid twists where the twist is implemented by a con-

tinuous 2-cocycle. To be more precise, let G be a 2nd-countable locally compact étale

groupoid. A normalized continuous 2-cocycle is then a continuous map σ : G(2) → T

satisfying

σ(r(γ ), γ ) = 1 = σ(γ , s(γ ))

for all γ ∈ G, and

σ(α, β)σ(αβ, γ ) = σ(β, γ )σ (α, βγ )

whenever (α, β), (β, γ ) ∈ G(2). The set of non-normalized continuous 2-cocycles on G will

be denoted Z2(G,T). Note that this is not the most general notion of a twist of a groupoid

(see [17, Chapter 5]).

Let G be a 2nd-countable locally compact Hausdorff étale groupoid. We will

define the σ -twisted convolution algebra Cc(G, σ) as follows: As a set it is just

Cc(G, σ) = { f : G → C : f is continuous with compact support},

but equipped with σ -twisted convolution product

(f ∗σ g)(γ ) =
∑

μ∈Gs(γ )

f (γμ−1)g(μ)σ (γμ−1, μ), f , g ∈ Cc(G, σ), γ ∈ G, (1)

and σ -twisted involution

f ∗σ (γ ) = σ(γ −1, γ )f (γ −1), f ∈ Cc(G, σ), γ ∈ G. (2)

We complete Cc(G, σ) in the ”fiberwise 1-norm”, also known as the I-norm, given by

‖f ‖I = sup
x∈G(0)

max{
∑
γ∈Gx

|f (γ )|,
∑

γ∈Gx

|f (γ )|} (3)
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6 A. Austad and E. Ortega

for f ∈ Cc(G, σ). Denote by �1(G, σ) the completion of Cc(G, σ) with respect to the I-norm.

This is a Banach ∗-algebra with the natural extensions of (1) and (2). For later use we

record the following lemma.

Lemma 2.6. Let G be a 2nd-countable locally compact Hausdorff étale groupoid. Then

for any f ∈ �1(G), the map defined by

G(0) � x �→ max{
∑
γ∈Gx

|f (γ )|,
∑

γ∈Gx

|f (γ )|}, (4)

is continuous.

Proof. By density it is enough to show this for f ∈ Cc(G). It is well-known that Cc(G) =
span{g ∈ Cc(G) : g is supported on a bisection}. Hence, we may assume f is supported

on a bisection U, that is, supp(f ) ⊆ U. Furthermore, for f we denote the assignment of

(4) by F. We thus wish to show that F ∈ C(G(0)).

To this end, fix x ∈ G(0). As f (x) = 0 if x �∈ s(U), we assume x ∈ s(U). Since

s(x) = x and s : U → s(U) is a homeomorphism, we therefore have x ∈ U. Moreover, let

(xi)i ⊆ G(0) be such that xi → x. Then eventually xi ∈ s(U) for all i large enough. For

such i we have F(xi) = |f (γi)|, where γi is the unique element of U with s(γi) = xi. Now,

as s : U → s(U) is a homeomorphism and xi → x, we have γi → γ ∈ U, where γ is the

unique element of U such that s(γ ) = x. As f ∈ Cc(G), it follows that f (γi) → f (γ ), and

hence F(xi) → F(x). Hence, F ∈ C(G(0)), and the result follows. �

We wish to understand when �1(G, σ) is C∗-unique, that is, when it only permits

one separating C∗-norm. To do this it will be of importance to use Proposition 2.2.

The (full) twisted groupoid C∗-algebra C∗(G, σ) is the completion of Cc(G, σ) in

the norm

‖f ‖ := sup{‖π(f )‖ : π is an I-norm bounded *-representation}, (5)

for f ∈ Cc(G, σ). It was observed in [4, Lemma 3.3.19] that if G is étale, then every ∗-

representation of Cc(G, σ) is bounded by the I-norm. Then, since we are completing with

respect to a supremum over ∗-representations, C∗(G, σ) is just the C∗-envelope of �1(G, σ).

Now we will construct a faithful representation of �1(G, σ) called the σ -twisted

left regular representation. In particular, we have that �1(G, σ) is reduced. The comple-

tion of the image of �1(G, σ) under the σ -twisted left regular representation is called the
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C∗-uniqueness for Groupoids 7

σ -twisted reduced groupoid C∗-algebra of G and will be denoted C∗
r (G, σ). Let x ∈ G(0).

Then there is a representation Lσ ,x : Cc(G, σ) → B(�2(Gx)) that is given by

Lσ ,x(f )δγ =
∑

μ∈Gr(γ )

σ (μ, μ−1γ )f (μ)δμγ , for f ∈ Cc(G, σ) and γ ∈ Gx. (6)

We then obtain a faithful I-norm bounded ∗-representation of Cc(G, σ) given by

⊕
x∈G(0)

Lσ ,x : Cc(G, σ) →
⊕

x∈G(0)

B(�2(Gx)) ⊂ B(
⊕

x∈G(0)

�2(Gx)). (7)

C∗
r (G, σ) is then the completion of the image of Cc(G, σ) under the σ -twisted left

regular representation. As the ∗-representation is I-norm bounded, C∗
r (G, σ) is also the

completion of �1(G, σ) in the same norm. Therefore, since C∗(G, σ) is the C∗-envelope

of �1(G, σ), by universality, there exists a natural (surjective) ∗-homomorphism λ :

C∗(G, σ) → C∗
r (G, σ).

Definition 2.7. Let G be a 2nd-countable locally compact Hausdorff groupoid and let

σ ∈ Z2(G,T). We say that G twisted by σ has the weak containment property when the

natural map λ : C∗(G, σ) → C∗
r (G, σ) is an isomorphism.

If G is an amenable groupoid [3], we have that C∗
r (G, σ) = C∗(G, σ) for every

σ ∈ Z2(G,T) [3, Proposition 6.1.8], and hence G twisted by σ has the weak containment

property for every σ ∈ Z2(G,T). In [18] it was proved that amenability is not equivalent

to having the weak containment property. On the other hand, it is not known to the

authors whether the weak containment property is equivalent to the weak containment

property with respect every σ ∈ Z2(G,T).

Remark 2.8. While both �1(G, σ) and Cc(G, σ) complete to the same C∗-algebras

C∗(G, σ) and C∗
r (G, σ) in the above setup, the question of C∗-uniqueness of �1(G, σ) is not

equivalent to C∗-uniqueness of the ∗-algebra Cc(G, σ). To see this, let G = Z, the group

of integers and consider the trivial twist σ = 1. Then �1(Z, 1) = �1(Z) is C∗-unique by [7],

while Cc(Z) = C[Z] is not C∗-unique by [1, Proposition 2.4].

Denoting the restriction of σ to Iso(G)◦ ⊆ G also by σ , we define the Banach

∗-subalgebra �1(Iso(G)◦, σ) of �1(G, σ). We then have the following result.
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8 A. Austad and E. Ortega

Proposition 2.9 ([4, Proposition 5.3.1]). Let G be a 2nd-countable locally compact

Hausdorff étale groupoid and σ ∈ Z2(G,T). There is a ∗-homomorphism

ι : C∗(Iso(G)◦, σ) → C∗(G, σ)

such that

ι(f )(γ ) =
⎧⎨
⎩

f (γ ) if γ ∈ Iso(G)◦,

0 otherwise,

for all f ∈ Cc(Iso(G)◦, σ). This homomorphism descends to an injective ∗-homomorphism

ιr : C∗
r (Iso(G)◦, σ) → C∗

r (G, σ).

We observe that the homomorphism ι is an isometry at the �1-level, that is, that

ι : �1(Iso(G)◦, σ) → �1(G, σ) is an isometric ∗-homomorphism.

We then also have the following result from [4], which will be key to our

approach to study C∗-uniqueness of twisted groupoid convolution algebras in Section 3.

Proposition 2.10 ([4, Theorem 5.3.13]). Let G be a 2nd-countable locally compact Haus-

dorff étale groupoid and let σ ∈ Z2(G,T). Let ιr : C∗
r (Iso(G)◦, σ) → C∗

r (G, σ) be the injective

∗-homomorphism of Proposition 2.9. Suppose A is a C∗-algebra and that � : C∗
r (G, σ) → A

is a homomorphism. Then � is injective if and only if � ◦ ιr : C∗
r (Iso(G)◦, σ) → A is and

injective homomorphism.

3 C∗-uniqueness for Cocycle-Twisted Groupoid Convolution Algebras

We begin this section by presenting our main theorem. The remainder of the section will

be dedicated to proving it.

Given a 2nd-countable locally compact Hausdorff étale groupoid G and σ ∈
Z2(G,T), denote the restriction of σ to the fiber Iso(G)◦x by σx. Note that σx is continuous

as Iso(G)◦x is discrete, that is, σx ∈ Z2(Iso(G)◦x,T). The following then constitutes our

main theorem.

Theorem 3.1. Let G be a 2nd-countable locally compact Hausdorff étale groupoid and

σ ∈ Z2(G,T). Suppose that G twisted by σ has the weak containment property. Then
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C∗-uniqueness for Groupoids 9

�1(G, σ) is C∗-unique if all the twisted convolution algebras �1(Iso(G)◦x, σx), x ∈ G(0), are

C∗-unique.

As a 1st step towards proving Theorem 3.1 we relate C∗-uniqueness of �1(G, σ)

to C∗-uniqueness of �1(Iso(G)◦, σ).

Proposition 3.2. Suppose G is a 2nd-countable locally compact Hausdorff étale

groupoid with the weak containment property when twisted by σ ∈ Z2(G,T). If

�1(Iso(G)◦, σ) is C∗-unique, then �1(G, σ) is C∗-unique.

Proof. Suppose �1(Iso(G)◦, σ) is C∗-unique. Then in particular C∗(Iso(G)◦, σ) =
C∗

r (Iso(G)◦, σ). Let {0} �= J � C∗(G, σ) = C∗
r (G, σ) be a closed two-sided ideal. By

Proposition 2.2 it suffices to show that J ∩ �1(G, σ) �= {0}. By Proposition 2.10 we

have C∗(Iso(G)◦, σ) ∩ J �= {0} as the ∗-homomorphism C∗(G, σ) → C∗(G, σ)/J is not

injective. Now define I := J ∩ C∗(Iso(G)◦, σ). It is straightforward to verify that I is a

two-sided ideal in C∗(Iso(G)◦, σ), and as both J and C∗(Iso(G)◦, σ) are closed in C∗(G, σ),

I is also closed in C∗(Iso(G)◦, σ). By C∗-uniqueness of �1(Iso(G)◦, σ) it then follows that

I ∩ �1(Iso(G)◦, σ) �= {0}. From this we get

{0} �= I ∩ �1(Iso(G)◦, σ) = J ∩ �1(Iso(G)◦, σ) ⊂ J ∩ �1(G, σ),

from which we deduce by Proposition 2.2 that �1(G, σ) is C∗-unique. �

Having related the question of C∗-uniqueness of �1(G, σ) to a question regarding

C∗-uniqueness of �1(Iso(G)◦, σ), we proceed to further relate this to C∗-uniqueness of

�1(Iso(G)◦x, σx) for x ∈ G(0). To do this we will show that for any ∗-representation

π : �1(Iso(G)◦, σ) → B(H), the resulting C∗-algebra C∗
π (Iso(G)◦, σ) is a C0(G(0))-algebra.

This is the content of Lemma 3.3. However, we first do some preparatory work.

First observe that there exists a ∗-homomorphism φ : C0(G(0))→Z(�1(Iso(G)◦, σ)),

the latter meaning the center of �1(Iso(G)◦, σ). Indeed, as G(0) is open in Iso(G)◦, we may

take φ to be the inclusion where we extend functions in C0(G(0)) by zero. The map φ is

clearly isometric. As φ can be viewed as an inclusion, we omit writing it from now on to

ease notation. Then given g ∈ C0(G(0)) and f ∈ Cc(Iso(G)◦, σ) we have that

(g ∗σ f )(γ ) = g(r(γ ))f (γ )σ (r(γ ), γ ) = g(r(γ ))f (γ )

= f (γ )g(s(γ ))σ (γ , s(γ )) = (f ∗σ g)(γ ) ,
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10 A. Austad and E. Ortega

for every γ ∈ Iso(G)◦. The resulting action of C0(G(0)) on �1(Iso(G)◦, σ) can then be viewed

as pointwise multiplication in the fibers of G(0). By continuity we can extend φ to a

continuous ∗-homomorphism from C0(G(0)) to Z(�1(Iso(G)◦, σ)). Let π : �1(Iso(G)◦, σ) →
B(H) be a faithful ∗-representation and let C∗

π (Iso(G)◦, σ) denote the completion in the

operator norm of B(H). Define the map ι := π ◦ φ : C0(G(0)) → π(Z(�1(Iso(G)◦, σ))). We

have that

π(Z(�1(Iso(G)◦, σ))) = Z(π(�1(Iso(G)◦, σ))) ⊆ Z(M(C∗
π (Iso(G)◦, σ))) .

The following is then immediate.

Lemma 3.3. Let G be a 2nd-countable locally compact Hausdorff étale groupoid and

σ ∈ Z2(G,T). Let π be a ∗-representation of �1(Iso(G)◦, σ). Then C∗
π (Iso(G)◦, σ) is a C0(G(0))-

algebra.

Now fix x ∈ G(0) and denote by Jx = C0(G(0) \ {x}) the space of continuous

functions of G(0) vanishing at both infinity and x. As C0(G(0)) is central in �1(Iso(G)◦, σ)

and Jx is a closed two-sided ideal of C0(G(0)), the space Ix := Jx · �1(Iso(G)◦, σ) is a closed

two-sided ideal in �1(Iso(G)◦, σ). Recall that we denote by σx the restriction of σ to the

fiber Iso(G)◦x. We then have the following result.

Lemma 3.4. Let G be a 2nd-countable locally compact Hausdorff étale groupoid and

let σ ∈ Z2(G,T). For every x ∈ G(0) the map ψx : �1(Iso(G)◦, σ) → �1(Iso(G)◦x, σx) given

by restriction of functions is a continuous ∗-homomorphism inducing an isometric ∗-

isomorphism between �1(Iso(G)◦, σ)/Ix and �1(Iso(G)◦x, σx).

Proof. For f ∈ Cc(Iso(G)◦, σ) we have

‖ψx(f )‖�1(Iso(G)◦x) =
∑

γ∈Iso(G)◦x

|f (γ )| ≤ sup
y∈G(0)

∑
μ∈Iso(G)◦y

|f (μ)| = ‖f ‖I

for all f ∈ Cc(Iso(G)◦, σ). Thus, ψx is a I-norm decreasing map, so it extends to a

continuous ∗-homomorphism ψx : �1(Iso(G)◦, σ) → �1(Iso(G)◦x, σx). It is surjective by

Tietze’s extension theorem.
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Next we want to show that ker ψx = Ix. First observe that given g ∈ C0(G(0)) and

h ∈ Cc(G, σ) we have that

ψx(g ∗σ h)(γ ) = (ψx(g) ∗σ ψx(h))(γ ) =
∑

μ∈Iso(G)◦x

g(μ)h(μ−1γ )σ (μ, μ−1γ )

= g(x)h(xγ )σ (x, γ ) = g(x)h(γ ) ,

for every γ ∈ Iso(G)◦x.

Now let f ∈ Ix. We may then assume that f is the norm limit of elements fn

of the form fn = ∑n
i=1 gi ∗σ hi, where gi ∈ Jx and hi ∈ Cc(Iso(G)◦, σ) for all i ∈ N. It

suffices to prove that ψx(gi ∗σ hi) = 0 for all i ∈ N. For any γ ∈ Iso(G)◦x we then have

ψx(gi ∗σ hi)(γ ) = gi(x)hi(γ ) = 0 since gi(x) = 0. Then it follows that ψx(fn) = 0 for every

n ∈ N, and by continuity ψx(f ) = 0. Thus, Ix ⊂ ker ψx.

Conversely, suppose f ∈ ker ψ . Then f = lim fn for some fn ∈ Cc(G, σ) ∩ ker ψx,

and hence fn(x) = 0 for every n ∈ N. Let {ρλ}λ∈� ⊂ C0(G(0) \ {x}) be a partition of the

unit of G(0) \ {x}. Then given n ∈ N there exists a finite subset �n of �, such that gn :=∑
λ∈�n

ρn ∈ C0(G(0) \ {x}) = Jx and gn(y) = 1 for every y ∈ r(supp(fn)) = s(supp(fn)), and

hence

fn(γ ) = gn(r(γ ))fn(γ )σ (r(γ ), γ ) = (gn ∗σ fn)(γ )

for every γ ∈ G. Therefore, we have that

f = lim
n→∞ fn = lim

n→∞(gn ∗σ fn) ∈ Jx · �1(Iso(G)◦, σ) = Ix,

as we wanted. We would like to see that the isomorphism �1(Iso(G)◦, σ)/Ix ∼=
�1(Iso(G)◦x, σx) is isometric. To do that, it is enough to check that

inf{‖f + h‖ : h ∈ C0(G(0) \ {x}) · Cc(G, σ)} = ‖ψx(f )‖

for every f ∈ Cc(G, σ). Observe that by continuity of ψx we have ‖f + h‖ ≥ ‖ψx(f )‖ for

every h ∈ C0(G(0) \ {x}) · Cc(G, σ). As G is 2nd-countable locally compact Hausdorff, so

is G(0) \ {x}. Hence, it is paracompact, and we can guarantee that there is a countable
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12 A. Austad and E. Ortega

partition of unity {ρi}∞i=1 for G(0) \ {x}. For n ∈ N let Un := G(0) \ ⋃n
i=1 supp(ρi). Then we

have

‖f − (

n∑
i=0

ρi)f ‖ ≤ max
y∈Un

‖ψy(f )‖ .

By Lemma 2.6 the assignment G(0) � x �→ max{∑γ∈Gx
|f (γ )|, ∑γ∈Gx |f (γ )|} is continuous.

It follows that for every ε > 0 there exists n such that |‖ψy(f )‖ − ‖ψx(f )‖| < ε for every

y ∈ Un. As Uk ⊃ Uk−1 for all k, it follows that ‖f − (
∑k

i=0 ρi)f ‖ ≤ ‖ψx(f )‖ + ε for all k ≥ n.

As ε was arbitrary, this finishes the proof. �

We may finally prove Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.2 it suffices to show that the condition

implies that �1(Iso(G)◦, σ) is C∗-unique. As above, denote by Jx = C0(G(0) \ {x}) and

by Ix := Jx · �1(Iso(G)◦, σ) the resulting closed two-sided ideal in �1(Iso(G)◦, σ). Let

π : �1(Iso(G)◦, σ) → B(H) be a faithful ∗-representation and denote by C∗
π (Iso(G)◦, σ)

the completion of π(�1(Iso(G)◦, σ)). Moreover, let Iπ
x denote the closure of π(Ix)

in C∗
π (Iso(G)◦, σ). By Proposition 2.5 and Lemma 3.3 there is an isomorphism

C∗
π (Iso(G)◦, σ) ∼= �0(Bπ ), where the fibers Bπ

x , x ∈ G(0), are given by

Bπ
x = C∗

π (Iso(G)◦, σ)/Iπ
x .

We will show that there is an injective ∗-homomorphism

�x : �1(Iso(G)◦x, σx) → Bπ
x

for every x ∈ G(0). To do this, fix x ∈ G(0). First, we show that the composition

�1(Iso(G)◦x, σx) ∼= �1(Iso(G)◦, σ)/Ix → C∗
π (Iso(G)◦, σ)/Iπ

x
∼= Bπ

x

given by first applying the isomorphism of Lemma 3.4 and then applying the map f +
Ix �→ f + Iπ

x for f ∈ �1(Iso(G)◦, σ) is a well-defined continuous ∗-homomorphism. This is

our candidate for the map �x. Denote by Iπ
x also the image of the ideal Iπ

x � C∗
π (Iso(G)◦, σ)

in �0(Bπ ). It then suffices to show that if F ∈ Iπ
x , then F(x) = 0.
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To see this, note that we can let C0(G(0) \ {x}) act on C∗
π (Iso(G)◦, σ) by pointwise

multiplication to obtain a have a continuous ∗-homomorphism

C0(G(0) \ {x}) = Jx → Z(M(C∗
π (Iso(G)◦, σ))),

which leaves Iπ
x invariant, and as a result Iπ

x becomes a Banach Jx-module. It is even

non-degenerate as

JxIπ
x = JxJxC∗

π (Iso(G)◦, σ) ⊃ JxJxC∗
π (Iso(G)◦, σ) = JxC∗

π (Iso(G)◦, σ) = Iπ
x ,

since Jx, being a C∗-algebra, has an approximate identity. It then follows by Cohen–

Hewitt factorization that if F ∈ Iπ
x , then F = f · H, where f ∈ Jx and H ∈ Iπ

x . Then

F(x) = f (x)H(x) = 0, and the map �x is a well-defined ∗-homomorphism.

As �1(Iso(G)◦, σ) is dense in its C∗-completion C∗(Iso(G)◦, σ), it follows that the

image of �x is dense.

Lastly, if �x(f ) = 0, then �x(f ) ∈ Iπ
x , and so f |Iso(G)◦x = 0 by the above argument.

Thus, ψx is injective. Hence, we have a continuous dense embedding

�x : �1(Iso(G)◦x, σx) ↪→ C∗
π (Iso(G)◦, σ)/Jπ

x .

Now C∗
π (Iso(G)◦, σ)/Jπ

x becomes a C∗-completion of �1(Iso(G)◦x, σx). Since π is an arbitrary

faithful ∗-representation of �1(Iso(G)◦, σ), we deduce that this holds for all faithful ∗-

representations. But as �1(Iso(G)◦x, σx) is assumed C∗-unique, we may then deduce

C∗
π (Iso(G)◦, σ)/Jπ

x
∼= C∗(Iso(G)◦, σ)/Jfull

x , (8)

where C∗(Iso(G)◦, σ) and Jfull
x denotes the completions in the maximal C∗-norm. As

x ∈ G(0) was arbitrary, we deduce that this holds for all x ∈ G(0). Now let Bfull
x =

C∗(Iso(G)◦, σ)/Jfull
x . By Proposition 2.5 and (8) we then have

C∗
π (Iso(G)◦, σ) ∼= �0(Bπ ) ∼= �0(Bfull) ∼= C∗(Iso(G)◦, σ).

From this we deduce that �1(Iso(G)◦, σ), and hence also �1(G, σ), is C∗-unique. �

4 Examples

In this section we present some (classes of) examples of C∗-unique groupoids. Due to the

nature of our main result, Theorem 3.1, our examples will draw upon previously proved
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14 A. Austad and E. Ortega

results on C∗-uniqueness of locally compact groups. We begin with a class of examples

in the case of trivial cocycle twists.

Example 4.1 (The untwisted case). If we consider a 2nd-countable locally compact

Hausdorff étale groupoid G with the trivial 2-cocycle σ = 1, then C∗-uniqueness of

�1(G, 1) = �1(G) can by Theorem 3.1 be deduced by C∗-uniqueness of the Banach

∗-algebras �1(Iso(G)◦x, σx) = �1(Iso(G)◦x) for x ∈ G(0). C∗-uniqueness of untwisted

convolution algebras has been studied before, and it is known that for a locally compact

group G, the Banach ∗-algebra �1(G) is C∗-unique if G is a semidirect product of abelian

groups, or a group where every compactly generated subgroup is of polynomial growth

[8, p. 224]. Hence, if for every x ∈ G(0) the discrete group Iso(G)◦x is of one of these types,

�1(G) will be C∗-unique.

In the case of locally compact groups it is well-known that amenability of

the group is equivalent to the group having the weak containment property. Indeed,

amenability is even equivalent to the weak containment property when twisted for all

continuous 2-cocycles σ of the group. Moreover, it is easy to see that if a group is C∗-

unique, then it is amenable. The converse is however not true [8, p. 230]. In stark contrast

to the case of locally compact groups, the following example shows that groupoids can

be C∗-unique without even being amenable.

Example 4.2 (Non-amenable C∗-unique groupoid). In [2, Theorem 2.7] the authors

constructed a 2nd-countable, locally compact, Hausdorff non-amenable étale groupoid

G such that Iso(G)◦ = G(0) and C∗
r (G) = C∗(G). Then since �1(Iso(G)◦) = C0(G(0)) ⊆ �1(G),

we have by Proposition 2.10 that every nonzero two-sided ideal I of C∗(G) has nonzero

intersection with C0(G(0)), and hence with �1(G). Therefore, by Proposition 2.2 we have

that �1(G) is C∗-unique.

In this particular case we may also deduce C∗-uniqueness of �1(G) in another

way. Namely, as Iso(G)◦ = G(0), we have that Iso(G)◦x is the trivial group for every x ∈ G(0).

Hence, �1(Iso(G)◦x) is C∗-unique by Example 4.1. This argument of course carries over to

any topologically principal groupoid. Indeed, this approach shows that whenever G is a

2nd-countable, locally compact, Hausdorff topologically principal étale groupoid, then

�1(G, σ) is C∗-unique for any σ ∈ Z2(G,T).

We also have classes of examples that includes more general cocycle twists.

Example 4.3 (The twisted case). Let G be a 2nd-countable locally compact Hausdorff

étale groupoid, and let σ ∈ Z2(G,T). By Theorem 3.1 C∗-uniqueness of �1(G, σ) can be
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deduced by C∗-uniqueness of the Banach ∗-algebras �1(Iso(G)◦x, σx), for x ∈ G(0), where

σx as before denotes the restriction of σ to Iso(G)◦x. C∗-uniqueness of twisted convolution

algebras of locally compact groups was studied in [5]. In [5, Theorem 3.1] it was found

that if G is a locally compact group and c ∈ Z2(G,T), then L1(G, c) is C∗-unique if L1(Gc)

is C∗-unique, where Gc denotes the Mackey group associated to G and c. As a topological

space Gc is just G × T, but the binary operation is given by

(x, τ) · (y, η) = (xy, τηc(x, y)).

Thus, we may relate C∗-uniqueness of �1(Iso(G)◦, σx) to C∗-uniqueness of �1(Iso(G)◦σx
),

where Iso(G)◦σx
denotes the Mackey group associated to Iso(G)◦x and σx, and we deduce

that �1(G, σ) is C∗-unique if �1(Iso(G)◦σx
) is C∗-unique for every x ∈ G(0). This happens if,

for example, Iso(G)◦σx
is a group of one of the types discussed in Example 4.1.

In the following example we are able to deduce C∗-uniqueness of a locally

compact group not of the form discussed in Example 4.1 by relating the question to

C∗-uniqueness of a groupoid.

Example 4.4 (The wreath product). Let � denote the wreath product H �G := (⊕
G H

)
�G

where H is a finite abelian group and where G is a countable discrete amenable group.

We will show that �1(�) is C∗-unique.

To do this, let G = X �ϕ G be the transformation groupoid where X = ∏
G Ĥ, and

ϕ is the shift homeomorphism of X by G. G is amenable since G is amenable. Then we

have that

C∗(�) ∼= C∗(
⊕

G

H) �ϕ G ∼= C(X) �ϕ G .

Now recall that by the Fourier transform �1(
⊕

G H) ∼= A(X), where A(X) is a dense

subalgebra of C(X). Indeed, it becomes a Banach ∗-subalgebra of C(X) when equipped

with the induced �1-norm through the Fourier transform, and then the isomorphism

is also an isometry. It also follows that C(X) is the completion of �1(
⊕

G H) with

respect to some C∗-norm. We have that �1(�) ∼= �1(�1
(⊕

G H
)

, G) ∼= �1(A(X), G) (see

for example [13, Remark and Notation 2.4]). Then there exists an isometric embedding

ι : �1(A(X), G) ↪→ �1(G) defined as follows. If F ∈ �1(A(X), G), we define ι(F) to be

ι(F)(x, g) = f̂g(x),
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16 A. Austad and E. Ortega

for x ∈ X = ∏
G Ĥ and g ∈ G, where fg is the unique element of �1(

⊕
G H) with

f̂g = F(g). Therefore, by the isomorphisms C∗(�1(�)) ∼= C∗(�1(A(X), G)) ∼= C∗(�1(G))

it would be enough to check that any nonzero two-sided ideal I of C∗(G) has a non-

trivial intersection with the image of �1(A(X), G) by the inclusion ι. Observe that then

�1(
⊕

G H) ⊆ �1(�) can be identified with ι(A(X)) in C(X) ⊆ C∗(G). The groupoid G is

clearly topologically principal, and hence �1(G) is C∗-unique. Moreover, for every closed

two-sided ideal {0} �= I � C∗(G) we have that {0} �= J := I ∩ C(X) [12, Theorem 4.1].

But since
⊕

G H is locally finite, then �1(
⊕

G H), and hence A(X), are C∗-unique by [10].

Thus, J ∩ A(X) �= {0}, which further implies J ∩ �1(A(X), G) �= {0}. It follows that �1(�) is

C∗-unique.

Acknowledgments

The 1st author wishes to thank Petter Nyland for valuable discussions during the development of

this article.

References

[1] Alekseev, V. and D. Kyed. “Uniqueness questions for C∗-norms on group rings.” Pacific J.

Math. 298, no. 2 (2019): 257–66.

[2] Alekseev, V. and M. Finn-Sell. “Non-amenable principal groupoids with weak containment.”

Int. Math. Res. Not. IMRN 8 (2018): 2332–40.

[3] Anantharaman-Delaroche, C. and J. Renault. Amenable Groupoids, vol. 196. Geneva:

L’Enseignement Mathematique, 2000.

[4] Armstrong, B. “Simplicity of twisted C∗-algebras of topological higher-rank graphs.” PhD

Thesis, University of Sydney.

[5] Austad, A. “Spectral invariance of C∗-representations of twisted convolution algebras with

applications in Gabor analysis.” arXiv.org: 2002.02235.

[6] Barnes, B. “The properties C∗-regularity and uniqueness of C∗-norm in a general C∗-algebra.”

Trans. Amer. Math. Soc. 279 (1983), no. 2, 841–59.

[7] Boidol, J. “C∗-regularity of exponential Lie groups.” Invent. Math. 56, no. 3 (1980): 231–8.

[8] Boidol, J. “Group algebras with a unique C∗-norm.” J. Funct. Anal. 56, no. 2 (1984): 220–32.

[9] Dedania, H. and H. Kanani. “A non-unital C∗-algebra has UC∗NP if and only if its unitization

has UC∗NP.” Proc. Amer. Math. Soc. 141, no. 11 (2013): 3905–9.

[10] Grigorchuck, R., M. Musat, and M. Rørdam. “Just-infinite C∗-algebras.” Comment. Math.

Helv. 93, no. 1 (2018), 157–201.

[11] Hauenschild, W., E. Kaniuth, and A. Voigt. “∗-regularity and uniqueness of C∗-norm for

tensor products of ∗-algebras.” J. Funct. Anal. 89, no. 1 (1990), 137–49.

[12] Kawamura, S. and J. Tomiyama. “Properties of topological dynamical systems and corre-

sponding C∗-algebras.” Tokyo J. Math. 13, no. 2 (1990): 251–7.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa225/5901311 by N

orges Teknisk-N
aturvitenskapelige U

niversitet user on 07 Septem
ber 2020



C∗-uniqueness for Groupoids 17

[13] Leung, C. and C. Ng. “Some permanence properties of C∗-unique groups.” J. Funct. Anal. 210

(2004): 376–90.

[14] Nilsen, M. “C∗-bundles and C_0 (X)-algebras.” Indiana Univ. Math. J. 45, no. 2 (1996): 463–77.

[15] Palmer, T.W. Banach Algebras and the General Theory of ∗-Algebras, Vol. 2. Encyclopedia

of Mathematics and its Applications, 79. Cambridge University Press, Cambridge, 2001,

pp. i-xii and 795–1617. ISBN: 0-521-36638-0

[16] Scarparo, E. “A torsion-free group with unique C∗-norm.” (1984). arXiv:2003.04765.

[17] Sims, A. “Étale groupoids and their C∗-algebras.” arXiv:1710.10897.

[18] Willett, R. “A non-amenable groupoid whose maximal and reduced C∗-algebras are the

same.” Münster J. Math. 8, no. 1 (2015): 241–52.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa225/5901311 by N

orges Teknisk-N
aturvitenskapelige U

niversitet user on 07 Septem
ber 2020


	C*-uniqueness Results for Groupoids
	1 Introduction
	2 Preliminaries
	2.1 C*-uniqueness for Banach *-algebras
	2.2 C*-algebra bundles
	2.3 Groupoids, cocycle twists and associated algebras

	3 C*-uniqueness for Cocycle-Twisted Groupoid Convolution Algebras
	4 Examples


