
Discussion of ’Virtual age, is it real?’

Bo H. Lindqvist∗

Department of Mathematical Sciences
Norwegian University of Science and Technology

Trondheim, Norway

Abstract

I congratulate the authors on this very interesting article discussing
various aspects of the virtual age concept, which has been in active
use in reliability and lifetime analyses for at least three decades. At
the same time, the authors should be acknowledged for their own long
time research on the subject, some of which is reviewed in their present
article. In my discussion I will elaborate on some of the main issues
in the article, mostly with a view towards my own interests.
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1 Introduction

The authors have chosen a title of the article which at once settles the ques-

tion to be discussed. Their main idea at the outset is that real maintenance

actions do not usually conform with a pure age reduction. It might not be dif-

ficult to agree in such a view, but still virtual age models have proven useful

in modeling and understanding of many complicated maintenance processes.

My focus in the present discussion paper will mainly be on topics from

my own research. This typically applies to the study of repairable systems,

where recurrent events is a keyword. The seminal papers on virtual ages
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of Kijima (1989) and Doyen and Gaudoin (2004) indeed consider repairable

and maintainable systems where event processes are behind the models. The

authors of the article under discussion have, on the other hand, been able to

concentrate on the imperfect repair part of the issue, which essentially plays

the key role in their presentation.

In order not to confuse equation numbers from the article with equation

numbers from the present discussion contribution, I let the former be marked

as (FC1) etc.

2 Age correspondence for recurrent events

In Section 3, the authors discuss what they call the age-correspondence prob-

lem, where a concept of virtual age appears as a means of comparing working

condition of an item to an idealized baseline condition. The idea is to com-

pare an item that operates in a baseline regime, having survival function

F̄b(t), to an identical item operating in a severer environment, having sur-

vival function F̄s(t). Assuming a stochastically larger time to failure under

the baseline conditions than under the severer conditions, there exists an

increasing function W (t) ≥ t such that

F̄s(t) = F̄b(W (t))

for all t ≥ 0. The function W (t) is then interpreted as the virtual age function

of an item in the milder regime that would correspond to the real age of an

item that was operating for time t in the severer regime. Thus, in some sense,

a more severe environment corresponds to time running faster in the baseline

conditions. As noted by the authors, such a relation is commonly the basis

of models for accelerated life testing.

It follows that if the item operating in the severer environment fails at

time Ts ∼ F̄s, then

W (Ts) ∼ F̄b (1)

(indeed, P (W (Ts) > u) = P (Ts > W−1(u)) = F̄s(W
−1(u)) = F̄b(u)).

Suppose then that the item operating in the severer environment fails at

time Ts and is then repaired. How should one model the time to the next
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failure? This problem has not been discussed in the article, where the focus

is on modeling the time to first failure. Obviously, one might think of going

back to the classical virtual age models, and define some direct reduction of

the virtual age resulting from the repair. Instead, the authors, at the end of

Section 3, indicate an interesting connection between the age correspondence

principle and the failure modeling by degradation processes, e.g., the gamma

process.

In the spirit of the authors’ consideration of a baseline condition as com-

pared to a “real life” condition, leading to the connection (1), it is tempting

to extend the age correspondence approach of the article to a consideration

of recurrent events modeled by the trend-renewal process (Lindqvist, 2006).

This would here mean that for the observed failure times in the severer

environment, Ts1, Ts2, . . ., we assume that W (Ts1),W (Ts2), . . . is a renewal

process with inter-arrival distribution given by F̄b. Letting

Tbj = W (Tsj) for j = 1, 2, . . . ,

this implies that the times between failures in the baseline regime, Tb1, Tb2−
Tb1, Tb3 − Tb2 . . ., are i.i.d. with survival function F̄b, and hence that repairs

in the baseline regime are always perfect.

It should be noted (Lindqvist, 2006) that by appropriate choices of the

distribution Fb and the function W (t), the failure process Ts1, Ts2, . . . may

itself be a renewal process (i.e., have perfect repairs), but could also be a min-

imal repair process. The latter property is obtained by letting F̄b correspond

to an exponential distribution.

The ability to model both perfect and minimal repairs, as well as situ-

ations “between” the two extreme repair regimes, makes the trend-renewal

process as a way of modeling imperfect repair (Gámiz et al., 2011, Ch. 4).

3 Component dependent virtual ages

In Section 5 in the article, the authors consider state or component dependent

virtual ages. They show in particular that the virtual age defined for a system

coincides with the component-wise virtual ages when the components have
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i.i.d. exponential lifetimes, while such a property is not generally valid even

in the i.i.d. case when the component distribution is not exponential.

As noted by the authors in the Introduction of their article, both mini-

mal and perfect repairs have clear “physical” meanings in imperfect repair

modeling involving virtual ages. Bedford and Lindqvist (2004) studied a se-

ries system with n components, where at each failure, the failing component

is replaced by a new one while the other components are left as they are.

Thus one can consider that, at each failure, one component (the failed one)

is perfectly repaired and hence its individual virtual age is set to 0, while

the virtual ages of the other components are unchanged. This results in an

n-dimensional vector V(t) = (V1(t), . . . , Vn(t)) of virtual ages, where at each

failure of the series system, one of the component ages is set to 0, while the

other are kept unchanged. Between failures, each component ages according

to calendar time. V(t) is hence a vector of “justifiable” virtual ages according

to the above.

The main result of Bedford and Lindqvist (2004) is that the components’

virtual ages in the long run will mix in such a manner that the individual

failure rates for each component can be estimated for any given vector of

virtual ages for all components. This model is a special case of a more

general model for multivariate virtual ages considered by Lindqvist (2006).

4 Virtual age and heterogeneity

The authors finally discuss the virtual age concept assuming heterogeneous

populations of items, demonstrating an apparent ambiguity in the treatment

of heterogeneity in connection with virtual age. It seems that this ambiguity

comes from the somewhat understated assumption of (FC1), that there is

a conditioning on T > t∗ behind this formula. A precise description of the

situation leading to (FC1) might be as follows.

Consider an item with life distribution function F (t) and corresponding

failure rate λ(t), monitored from time 0 and until failure at time T . Let

t∗ > 0 be an apriori given time such that, if the item is still working at

time t∗, then a maintenance is performed, reducing the age of the item to
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τ ∈ (0, t∗). The (unconditional) survival function of the resulting lifetime T

is then found to be

P (T > t) =

{
exp{−

∫ t
0
λ(u)du} ; t ≤ t∗

exp{−[
∫ t∗
0
λ(u)du+

∫ τ+t−t∗
τ

λ(u)du)]} ; t > t∗
. (2)

Equation (FC1) now follows from

P (T > t|T > t∗) =
P (T > t)

P (T > t∗)
= exp

{
−
∫ τ+t−t∗

τ

λ(u)du)

}
(3)

=
F (τ + t− t∗)

F (τ)
for t > t∗.

Assume now that, conditional on a positive frailty variable Z, the failure

rate of the item is Zλ(t). Then P (T > t) = E[P (T > t|Z)], so we get

from (2),

P (T > t) =

{
E[exp{−Z

∫ t
0
λ(u)du}] ; t ≤ t∗

E[exp{−Z[
∫ t∗
0
λ(u)du+

∫ τ+t−t∗
τ

λ(u)du]}] ; t > t∗
. (4)

Consequently, for t > t∗,

P (T > t|T > t∗) =
E[exp{−Z[

∫ t∗
0
λ(u)du+

∫ τ+t−t∗
τ

λ(u)du]}]
E[exp{−Z

∫ t∗
0
λ(u)du}]

(5)

which is exactly formula (FC26).

The erroneous formula (FC25) is based on (3), which involves a cancel-

lation of the term exp{−
∫ t∗
0
λ(u)du} at the second equality sign. Such a

cancellation is, however, not valid under the above frailty calculations. This

is clearly seen from (5), where we cannot cancel the term exp{−Z
∫ t∗
0
λ(u)du}

in the numerator and denominator unless Z is a constant.

I agree with the authors that the proper consideration of unobserved het-

erogeneities among otherwise identical items, is important. Still, as noted

in the article, they are often ignored in practical imperfect repair analyses

and so far they are not much studied in connection with virtual age models.

Thus it is interesting to note a very recent paper, where Liu et al. (2020)

study the effect of ignoring an unobserved heterogeneity in the failure pro-

cess of a repairable system that undergoes imperfect repairs. They consider

in particular the so called ARA∞ (Doyen and Gaudoin, 2004) process and

consider a limiting state of this process.
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5 Final remarks

The topic of imperfect repair and maintenance is of great importance and

will certainly be so also in the future. The authors are therefore encouraged

to continue their research in this field. While their article is concerned with

various notions of virtual age, there are clearly many related unresolved is-

sues to be considered. In my discussion, I have not been able to cover all

aspects that are treated in the article. I think though that representations

of virtual age-like measures connected with degradation processes and shock

models may prove to be useful in applications. Connecting such approaches

to recurrent events models will then be of particular interest.
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