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ABSTRACT: Single-molecular systems are a test bed to analyze
to what extent thermodynamics applies when the size of the system
is drastically reduced. Isometric and isotensional single-molecule
stretching experiments and their theoretical interpretations have
shown the lack of a thermodynamic limit at those scales and the
nonequivalence between their corresponding statistical ensembles.
This disparity between thermodynamic results obtained in both
experimental protocols can also be observed in entropy
production, as previous theoretical results have shown. In this
work, we present results from molecular dynamics simulations of
stretching of a typical polymer, polyethylene-oxide, where this framework is applied to obtain friction coefficients associated with
stretching at the two different statistical ensembles for two different system sizes, from which the entropy production follows. In the
smallest system, they are different up to a factor of 2, and for the bigger system, the difference is smaller, as predicted. In this way, we
provide numerical evidence that a thermodynamic description is still meaningful for the case of single-molecule stretching.

■ INTRODUCTION

Small systems, unlike those that are in the thermodynamic
limit, do not have an extensive internal energy.1 Because of the
small number of particles, they are subjected to large
fluctuations. Consequently, it becomes more challenging to
obtain relations for average quantities, which are standard in
thermodynamics and statistical mechanics of large systems.
Gibbs thermodynamics, as we know it from standard texts,2

ceases to apply for such systems. In view of the numerous and
important applications in nanotechnology, for instance, in
nanofluidics3,4 and biology,5 this situation poses a problem:
there is a need to describe energy conversion on the small
scale, but a lack of sufficient theoretical understanding. At the
most extreme end of the small scale, we are not able to
properly describe statistical averages for single molecules.
Doubt has thus been raised on the applicability of standard
thermodynamic equations to the stretching of single molecules
under all conditions.6

In general, the energy involved in the stretching of a
sufficiently small polymer depends on whether one controls
the stretching length or the stretching force. The average force
for isometric stretching differs from that for isotensional
stretching. In the long polymer limit, they are the same,
however, which has been verified experimentally, computa-
tionally, and theoretically. A very good discussion of this is
given by Süzen et al.7

In an earlier paper,8 some of us extended Hill’s theory for
thermodynamics of small systems1 to time-dependent
stretching processes, by deriving expressions for the entropy

production for isometric and isotensional stretching. This leads
to rate laws with friction coefficients that depended on the
control variables. The aim of the present work is to calculate
such friction coefficients and the corresponding entropy
production using computer simulations and to verify that
they depend on the control variables. This is the first example
of a dynamic coefficient in molecular stretching.
We investigate the molecular stretching numerically using

molecular dynamics simulations.9 As a model, we have chosen
to use a united-atom model of poly-ethylene oxide (PEO), cf.
Figure 1, well-documented in the literature.10 This molecular
model has all standard modes of movement under tension,
translation, rotation, torsion, and, eventually, the breaking of
bonds, and lends itself to a testing of the theoretical
description.
In our simulations, the stretching process can be controlled

by the environment in two different ways. The endpoints of
the hydrocarbon chain can be controlled by either an external
force, i.e., fext is a constant, or by fixing the terminal positions of
the molecule, i.e., l is a constant. These isometric and
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isotensional ways to operate are illustrated in Figure 1a,b. The
figures show molecules that are not fully stretched.
Typically, torsional degrees of freedom are associated with

lower energies and forces than bending, which in turn is
associated with lower energies and forces than bond stretching.
We thus expect the response to the environment to change as
each of these different modes of elongating the molecule
becomes accessible. From the simulation results, we shall find
the appropriate dynamic description and relate the molecular
properties to the dissipation.
In the thermodynamic limit, the rate laws of the two modes

of operation are the same. Here, we present for the first time
detailed numerical evidence that there is a difference in the
dynamics in the two cases, as predicted from the method of
Hill.8

■ THEORY
The thermodynamic basis for our numerical single-molecule
stretching experiments was worked out earlier,8 when we
derived the governing equations for isometric and isotensional
experiments on single molecules. In the classical thermody-
namic limit, the same set of equations applies to both cases.
For small systems, however, there are different sets, as each set
depends on how the system is controlled by the environment.1

An introduction to the general idea of Hill and a more
extensive explanation on the structure of nano-thermody-
namics can be found in a recent book.11 In the present work,
our system is always just one polymer. The length and
therefore the number of monomers and the degrees of freedom
vary. A bar will be used above a symbol to denote the average
property of an ensemble of systems. We recapitulate the results
of earlier8 to provide a basis for the present step, how the
equations can be applied to understand simulations andin a
possible next stepexperimental results.

Isometric Experiments. In this experiment, we control the
temperature T and the length of the molecule, l. The change in
the average internal energy of a system is U̅, given using the
Gibbs equation

̅ = + ̅U T S f ld d d (1)

where S is the system entropy and f ̅ is the average internal force
working on the terminals, see Figure 1a. The average internal
energy can also change by adding heat and work to the system,
dU̅ = dQ + fe̅xtdl. The length change is a result of a change in
the average external force on the terminals, fe̅xt. By introducing
these relations in eq 1, we can identify the entropy change in
the surroundings by dS = dQ/T, while the average entropy
production per unit of time for the system (one molecule)
becomes

= ̅ − ̅
S
t T

f f
l
t

d
d

1
( )

d
d

irr
ext (2)

We now denote the velocity by v ≡ dl/dt and the average
change in the force by Δf ̅ ≡ fe̅xt − f.̅ The rate law for the
isometric case becomes

ξΔ ̅ =f l v( )l (3)

Here, ξl = ξl(l) is the friction coefficient specific for the length-
controlled case. This is now of primary interest, one of the two
coefficients we want to find.
Once we know the friction coefficient, we can compute the

entropy production from eq 2, that is, dS/dt = v2ξl(l)/T. The
entropy production is proportional to the friction coefficient of
the length-controlled case. The entropy production is zero
when the external force is balanced by the internal force, fe̅xt =
f.̅

Isotensional Experiments. In isotensional experiments,
we control the temperature T and the force of the molecule,
fext. The average internal energy changes as

̅ = + ̅U T S f ld d d (4)

The length of a single molecule is now fluctuating, and l ̅
indicates its average. The first law takes the form dU̅ = dQ +
fextdl.̅ By the same reasoning as above, we obtain the entropy
production per molecule

= − ̅S
t T

f f
l
t

d
d

1
( )

d
d

irr
ext (5)

The controlled change in the force is Δf = fext − f, resulting
in the average stretching velocity v̅ = dl/̅dt. The rate law in the
force-controlled regime becomes

ξΔ = ̅f f v( )f (6)

where ξf = ξf( f) is the friction coefficient under isotensional
conditions, the second target of this study. The entropy
production then follows as dS/dt = v̅2ξf( f)/T. The entropy
production is now proportional to the friction coefficient of the
force-controlled case.
In the thermodynamic limit, the two friction coefficients are

the same. Away from the limit, this is not the case, as the rate
laws depend on the set of the environmental control variables
in use.
We shall find below that the stretching simulations of PEO

with the smallest molecule under investigation gives a friction
coefficient for the case of Figure 1a which is around twice the
value of the coefficient for Figure 1b, confirming the prediction

Figure 1. Illustration of the isometric (a) and isotensional (b)
simulation mode. Each monomer is composed of three beads, two
methylene groups (gray), and one oxygen atom (red).
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from the theory that we can expect differences between the
two coefficients.
Force in the Entropic Regime. Figure 1 illustrates the

molecule for relatively small forces, when it is in the entropic
regime. In this regime, the molecule behaves similarly to the
thermodynamic limit because it has numerous degrees of
freedom for movements.
We assume that the molecule to a good approximation can

be modeled as a freely jointed chain in the entropic regime
with an effective bead length beff and an effective number of
beads Neff, with an unfolded length lunf = Neffbeff.

12 In a system
with a solvent, this would correspond to an assumption of
theta conditions, that is, the solvent is exactly poor enough to
increase the intramolecular forces to perfectly balance out the
steric effects. The statistics of the configurations of the system
then becomes similar to a random walk, and the radius of
gyration, Rg = lunf/6Neff, gives rise to the entropic force f S

=f
k Tl

N b
18

S
B

eff eff
2

(7)

The length beff is expected to be close to the length of each
monomer.
At larger extensions, the forces will first become dominated

by unfurling of the torsional degrees of freedom, then the
bending, and finally the stretching of the bonds.13 In these
regimes, the force and dynamics typically display non-
linearities.

Helmholz’ and Gibbs’ Energies. Away from the entropic
regime, we expect to be in the small-system regime. In this
regime, there is a nontrivial size dependency of properties
which is normally extensive. This is due to the fact that
fluctuations in the different ensembles are different and lead to
different size effects.
For the isometric experiments, there is a fluctuating force for

each length. If we let

Figure 2. Force−elongation curves from the isometric and isotensional simulations for N = 12 (a), N = 24 (b), and N = 51 (c) as a function of the
length per bond. The region for the torsional unfolding is marked with an orange background, and the transition region to the monomer-stretching
regime is shown more clearly in the insets. In (d), we see that the entropic region for N = 51 is well-described by a freely jointed chain with Neff =
10 and beff = 4 Å.
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⟨ ⟩ = ̅f t f l( ) ( )l (8)

we can compute the Helmholtz energy from

∫= ̅ ′ ′A l f l l( ) ( )d
l

l

0 (9)

That is, the integral along the length axis of the force−
elongation curves is shown in Figure 2, giving the area below
the curves.
For the isotensional experiments, there is a fluctuating length

for each force. If we let

⟨ ⟩ = ̅l t l f( ) ( )f (10)

the Gibbs energy is given by

∫= ̅ ′ ′G f l f f( ) ( )d
f

f

0 (11)

That is, the integral along the force axis of the force−
elongation curves is shown in Figure 2, giving the area above
the curves.
In the thermodynamic limit, A and G are related by a

Legendre transformation. With Δl = l − l0 and Δf ̅ = f(̅l) − f(̅l0),
we obtain

+ = ̅ = Δ ̅ ΔA l G f f l f l( ) ( ( )) (12)

for sufficiently large systems.8 Small systems in general deviate
from this, and the entropy production in the two ensembles is
different. However, eq 12 is still valid when the force is linear
in the elongation, like it is in the entropic regime.
The nonequivalence between the isometric and isotensional

statistical ensembles is the result of the difference between the
work done to stretch the molecule, fl̅ and fl̅, respectively.
Considering the nonlinear force−elongation relationship f = al
+ bl2 + ..., with a and b two constant parameters, we can easily
show that up to a linear order, both works coincide. The
nonlinear term, however, breaks down the equality, thus
indicating the failure of the thermodynamic limit.
For the entropy production, it is useful to evaluate the

expression ̅ − ̅f fl
t

l
t

d
d

d
d

from eqs 2 and 5, which is greater than

or equal to zero in the second order of l for a specific set of
lengths and velocities. From this, one would expect the entropy
production for the isometric ensemble to be larger than for the
intensional ensemble when the force elongation is nonlinear.

■ MODELS AND METHODS
Although the theory presented above is of general applicability,
we choose a specific system for our numerical experiments: a
chain of poly-ethylene oxide (PEO) of the form CH3−[O−
CH2−CH2]n−O−CH3, modeled with a united atom model

where each carbon is grouped with its bonded hydrogen
atoms. The PEO monomer consists of one oxygen and two
carbons along with their hydrogens. As stated above and
illustrated in Figure 1, the endpoints of the chain are controlled
by either length (Figure 1a, N, l, T is controlled) or by fixing
the endpoints in space (Figure 1b, N, fext, T is controlled).
The potential energy as a function of the coordinates of the

coarse-grained particles has contributions from stretching,
bending, and torsion. Using a model that includes these
different dynamics allows us to examine the effect of the
different modes of stretching and the nonlinearities on the
results. The force field is compatible with the LAMMPS14

simulation package that has been used for all of our
computations.
The bond stretching is given using a Morse potential

{ = } = [ − ]α− − ̅U i N DR( , 1, ) 1 eij
r r

ibond
( ) 2ij ij ij

(13)

which saturates to a finite value at large separations. The
parameters used for the dissociation energies Dij were obtained
from density functional computations,15 and the parameters
for αij were found by requiring the Morse potential to have the
same curvature as the harmonic bond, that is, α = K D/2ij ij ij

s .

The harmonic force field parameterization is taken from van
Zon et al.,16 based on a modification of the explicit atom force
field of Neyertz et al.17 The potentials for the bending and
torsion of bonds are

∑ θ θ{ } = [ − ̅ ]
{ }

U KR( )
1
2 ijk

ijk ijk ijkibend
b 2

(14)

and

∑ ∑ ϕ{ } =
{ } { }

−U KR( ) cos ( )
ijkl c

ijkl
c

ijkl
c

itors
t, 1

(15)

where i, j, k, and l are the atoms joined by consecutive covalent
bonds and Kij

s , Kijk
b , and Kijkl

t and ri̅j and θ̅ijk are force constants
and reference values, respectively, of stretching (s), bending
(b), and torsion (t) energy contributions, selected to
reproduce molecular properties measured by spectroscopy or
computed by ab initio methods. Note that the sum of the
torsional coefficients includes every possible dihedral. Non-
bonded interactions were not taken into account, which means
that our model polymer is surrounded by an implicit theta
solvent. We make this choice because an ideal chain of
interacting subunits would deviate from a Gaussian chain even
in the thermodynamic limit.12 The force field parameters we
used are presented in Table 1.10,16,17

The temperature was controlled with a Langevin thermostat,
which mimics the viscous aspect of a solvent. During sampling,
the relaxation time was set to 1 ps and the temperature was set

Table 1. Force Field Parameters for the Stretching, Bending, and Torsion,10 with Disassociation Energies15

bonds Kij
s [kJ (mol Å2)−1] Dij [kJ mol−1] ri̅j [Å]

C−C 2587.4 370.8 1.54
C−O 3094.0 344.5 1.43

bends Kijk
b [kJ mol−1] θ̅ijk [Å]

O−C−C 727.7 110.0
C−O−C 1070.1 112.0

torsion [kJ mol−1] Kijk
t,1 Kijk

t,2 Kijk
t,3 Kijk

t,4 Kijk
t,5 Kijk

t,6 Kijk
t,7

O−C−C−O 2.211 15.194 17.844 −32.460 −13.871 −1.189 12.322
C−C−O−C 5.183 5.610 6.272 −15.428 −0.678 −4.568 3.567
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to 300 K. The time step used in the simulations was 1 fs. All
quantities presented were averaged over 200 samples.
We obtain initial conditions with a low potential energy

using a simulated annealing approach. After the initialization
setup, all samples are heated up to 2000 K during 0.1 ns before
the temperature is slowly decreased during 1 ns.
Case Studies. In the present paper, we present

investigations of three different molecule sizes, N = 12, N =
24, and N = 51. Some simulations were also performed with N
= 102. The forces varied from 0.01 up to 5 nN or up to the
failure limit of the molecule. The length-controlled simulations
were sampled evenly in the length, while the force-controlled
simulations were sampled evenly on a log scale in the force.
This was done to distribute the data points more evenly along
the force−elongation curve. To ease the comparisons between
system sizes, the molecule length will be presented in units of
the longitudinal length divided by the number of bonds lb ≡ l/
(N − 1) and lb̅ ≡ l/̅(N − 1).

■ RESULTS AND DISCUSSION
To obtain an intuitive understanding of the behavior of the
molecule during stretching, it is useful to study the cylindrical
radius Rc, defined here as the radius of the smallest longitudinal
cylinder that can envelop the molecule, shown for N = 24 in
Figure 3. There is a sequence of collapses, to be elaborated on
below. Four snapshots illustrate the molecular conformation in
these regimes. At small lengths, we have a regime dominated
by the entropic elasticity, here, the radius Rc is 2.3 Å and
relatively constant. When the molecule is stretched above lb =
0.5 Å, the torsional degrees of freedom are the first to be
confined, and the molecule is unfolded from a helical to a
planar configuration. This transition where the C−O−C−C
backbone changes from a trans-gauche (ttg) order to an all-
trans configuration (ttt) is elaborated in section Torsional
Unfolding. This is followed by the unbending and finally the
bond stretching. Especially, in regions where several types of
dynamics are at play, there is a nonlinear response to stress.
Various Stretching Regimes. In the force−elongation

curves shown in Figure 2 for the systems with N = 12 (a), N =
24 (b), and N = 51 (c), we can again identify the different
regimes. The entropic regime is shown more clearly for N = 51,

see Figure 2d, where lengths below 0.05 Å are considered to be
close to zero. The data in this region are consistent with a
linear curve. The range where torsion plays a role is indicated
by an orange background. The nonlinear transition zone to the
monomer-stretching regime is also displayed in more detail in
the insets.

Entropic Regime. A predominantly linear relation between
force and length develops when 0.05 Å < lb,lb̅ < 0.47 Å. This is
the entropic regime, for which results for N = 51 are enlarged
in Figure 2d. From the slope of this curve, we find the effective
length beff of the neighboring units of the ideal chain that gives
the correct force−elongation behavior of the molecule in this
regime. Within the accuracy of the data presented in Figure 2d,
we see that the elongation behavior in this regime is well-
described by an ideal freely jointed chain for forces up to about
0.05 nN. With a persistence length beff/2 of 2 Å,18 we
effectively have Neff = 10 beads. The persistence (Kuhn) length
beff corresponds to approximately twice the length of the
individual monomers, explained by the bending and torsion,
which effectively stiffen the chain. The force- and length-
controlled cases appear identical in this regime, as the force−
elongation curve here is well-described by a linear function.
These findings are in line with eq 12.

Torsional Unfolding. As the molecule is stretched further,
the degrees of freedom are reduced, and the freely jointed
chain model is no longer applicable. The torsional degrees of
freedom are the first to be confined, and this occurs in the
region 0.47 Å < lb,lb̅ < 1.1 Å, marked with an orange
background in Figures 3 and 2. The beginning of the interval
was found by looking at the deviation from linearity in Figure
2d, and the end of the interval was found from the inflection
point of Figure 3. PEO strands are known to attain a helical
shape in the crystalline state, in which the bonds of the C−O−
C−C backbone are folded in a trans-gauche (ttg) order.19 This
can be seen in the first two snapshots in Figure 3 and is also
the case for PEO dissolved in water.20 An increase in the force
gives rise to a transition from a helical ttg order to an
elongated, planar all-trans configuration (ttt), as seen in the last
two snapshots in Figure 3.
From Figure 2a−c, we can see a systematic deviation that

varies with molecular size. This is emphasized in the insets. For

Figure 3. Cylindrical Rc as a function of the length of the molecule. Four snapshots of the molecule are provided to illustrate the different stretching
regimes for a molecule of length N = 24. The region for the torsional unfolding is marked with an orange background, where the end of the range is
found from the inflection point of the shown curve. One can see that in the first two snapshots, the molecule attains a helical ttg order, while in the
last two snapshots, the molecule is in a planar all-trans configuration.
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N = 12, we observe pronounced oscillations in the force−
elongation curve; for N = 24, we observe smaller oscillations;
and for N = 51, we observe no oscillation. These oscillations in
the length-controlled ensemble are finite size effects that
originates from local maxima in the potential of mean force
associated with the unfolding of the molecule. Here, the
molecule is mechanically unstable, and these modes are not
accessible in the force-controlled ensemble.5 This leads to
different fluctuations in the two ensembles.
Monomer-Stretching Regime. As the molecule is extended

above lb̅ > 1.1 Å, the individual monomers are elongated. The
molecule is unbending, and the potentials for the stretching,
bending, and torsion give rise to a molecule-specific segment
elasticity,13 increasingly dominated by the stretching of the
covalent bonds.
In this region, a small systematic difference appears in the

force−elongation curves between the length-controlled and the
force-controlled stretching experiments. This can be seen in
the inset of Figure 2a−c. The molecule is straightened out
further, illustrated by the cylindrical radius in Figure 3
eventually falling to a value less than half of the shortest
bond length. The nonlinear contributions in the Morse
potential for the bond stretching become increasingly
prominent. From the derivative of the force−elongation
curve, shown in Figure 4, we observe a maximum around lb̅

= 1.2 Å. The probability for the bonds to rupture completely is
increasing, explaining the force dropping to zero for the last
points from the length-controlled simulations, as shown in
Figure 2a−c.
These nonlinearities from the stretching of the Morse

potentials give rise to different fluctuations in the two
ensembles, and we expect to see an effect of the small system
size. The differences between the force−elongation curves
shown in Figure 2a−c are the largest in the transition regime to
the monomer-stretching regime, emphasized in the insets. The
differences are small but they are finite and systematic.
Gibbs and Helmholtz Energies. The free-energy differ-

ences, and the deviation from the Legendre transform in eq 12,
are computed from the force−elongation curves shown in

Figure 2a−c, according to section Helmholz’ and Gibbs’
Energies, and shown in Figure 5. We divide by the work

required to stretch the molecule completely, in order to
compare the different system sizes. The largest free-energy
difference is observed in the transition from the torsional-
unfolding regime to the monomer-stretching regime, see the
insets of the force−elongation curves in Figure 2a−c. Both in
the case of N = 12 and N = 24, there is a clear correspondence
between the deviations in the force−elongation curves in this
region and the peak in the free-energy difference, as shown in
Figure 5. There is a significant deviation from eq 12, with the
smallest system showing the largest deviation, as expected.

Friction Laws. Force-Controlled Simulations. We can
now use our simulations to estimate the friction coefficient ξf =
ξf( f) in eq 6. This was done for the systems with N = 24 and N
= 51 by perturbing the force and determining the rate of
change in the average length. To this end, we first generated
200 independent samples, each equilibrated at 150 different
constant forces f 0 for 5 ns. At time t = 0, the force on each of
these samples was increased by 140 different force increments
in the range 4−28%. The length as a function of time before
and after the increase in the force is shown in Figure 6 for three
force increments in the system with N = 51, averaged over 200
samples.
From these results, we find that the time scale for the initial

linear force response is 0.5 ps for N = 51. As one can see in
Figure 6, this does not appear to depend on the magnitude of
the force increment. The ratio of the force increment to the
increase in the linear response is equal within the accuracy of
the data points. A similar investigation of N = 24 results in a
time scale of ∼0.2 ps. The time scale for the linear regime is
related to the relaxation time of the system, which depends on
the length of the molecule. Other time scales in the range 0.1−
1 ps was explored and was found to give similar results,
although with increased fluctuations, indicating a reasonably
good robustness on this parameter. Continuing with the
chosen time scales, the linear response dl/̅dt was then

Figure 4. Derivative of the force−elongation curve from the length-
controlled simulations, df/̅dl for N = 12, N = 24, and N = 51. The
region for the torsional unfolding is marked with an orange
background. We see that the maximum values coincide at about lb
= 1.25 Å.

Figure 5. Percentage-wise difference in the Gibbs and Helmholtz
energies for N = 12, N = 24, and N = 51 found by integration of the
force−elongation curves shown in Figure 2a−c. We see that there is a
significant deviation from eq 12, and the relative difference is the
largest for the smallest system.
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estimated for a range of force increments Δf, as shown in
Figure 7 for molecules with N = 51 equilibrated at f 0 = 0.33,
0.67, and 1.00 nN. The friction coefficient ξf = ξf( f) was found
from the slope of the force−velocity curves, cf. eq 6. Unlike

what is the case in the thermodynamic limit, the friction
coefficient was largely dependent on the value of the force and
the length of the polymer.

Length-Controlled Simulations. To estimate the friction
coefficient ξl = ξl(l) in eq 3 for N = 24 and N = 51, we stretch
the molecule in a range of velocities and estimate the increase
in the force Δf ̅ associated with each stretching velocity for each
sample. A total of 200 independent samples were first
equilibrated at 150 different constant lengths l0 for 5 ns, and
at time t = 0, the samples were stretched at 80 different
constant velocities v = dl/dt in the range 20−100 m/s for 1 ps.
The force response from the molecule Δf ̅ for each stretching
velocity was then averaged over the same time scale as used for
estimating the linear response in the force-controlled
simulations. The resulting force−velocity curves for molecules
N = 51 with initial lengths of lb = 0.824 Å and lb = 1.192 Å can
be seen in Figure 7. Again, we found the friction coefficient ξl =
ξl(l) using eq 3 from the slope of these force−velocity curves.
The variation in the coefficient with the length of the molecule
or the force applied was similar to the results from the
isotensional experiments, but the coefficients for force-
controlled systems were systematically smaller than those for
the length-controlled systems. As the fluctuations increased
significantly for shorter lengths, only lengths per bonds larger
than 0.4 Å are shown. Both curves showed a maximum near
the relative length 1.2 Å per bond, where the Morse potential
for bond stretching is strongly nonlinear.
The difference in the friction coefficient can be expected

from a dynamical investigation of the system, by considering
the time scales and following the approach of Just et al.21 to
obtain the general form of the effective slow dynamics. The
length of the molecule acts as the slow variable, and the
probability distributions of the fast variables of the internal
degrees of freedom of the molecule are different for fixed force
and fixed length. This also leads to two different damping
constants.

Entropy Production. The force-controlled friction co-
efficient ξf = ξf( f) = ξf( f(l)̅) found in the section Force-
Controlled Simulations and the length-controlled friction
coefficient ξl = ξl(l) found in the section Length-Controlled
Simulations are presented as a function of the length in Figure
8 for molecules N = 24 and N = 51. The difference between ξf
and ξl is smaller for the largest molecule, as expected from eq
12.
The entropy production is found by multiplying this

coefficient with the constant velocity squared over the
temperature. The energy dissipation producing heat in the
surroundings is the entropy production times the (constant)
temperature. Apart from this trivial rescaling factor, the basic
properties are considered to be temperature-independent
under the assumption of theta conditions.
For very short lengths, the entropy production by definition

should go to zero. Although the uncertainty in this region is
rather high, we emphasize that zero is within the margin of
error. In the region of torsional unfolding, the ensemble
difference is the largest for the smaller system with N = 24
compared to the bigger system with N = 51. This is as expected
from the discussion of the different stretching regimes. The
entropy production reaches a maximum around 1.2 Å per bond
for both system sizes, well into the monomer-stretching
regime. Again, the ensemble difference is significantly larger for
the smallest system. This can be explained by the nonlinearity
of the Morse potential for the bond stretching, giving rise to

Figure 6. Length as a function of time for chains of length N = 51
before and after the force is increased by 4.8, 6.8, and 8.8% from f 0 =
2.3 nN at t = 0. From this, we conclude that the time scale for the
linear response is ∼0.5 ps for N = 51.

Figure 7. Relation between the force and the stretching velocity,
estimated in the two simulation modes, for molecules of length N =
51. Linear trends are observed, from which the friction coefficient is
estimated.
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different fluctuations in the two ensembles. Comparing the
derivative of the force−elongation curves presented in Figure
4, we see that the maxima appear to coincide. Moreover, any
coupling to low-frequency tangential phonons can also very
quickly dissipate energy in this regime.
We have seen above that the magnitude of the friction

coefficient differs between the two stretching modes, with the
length-controlled process having a higher friction coefficient
than the force-controlled process. It follows that the first
process dissipates more energy regardless of the length of the
molecule, as expected. Note that the force-controlled
simulations significantly display larger size dependence than
what is seen in the length-controlled simulations.

■ CONCLUSIONS AND PERSPECTIVES
In small-scale systems, away from the thermodynamic limit,
standard thermodynamics is no longer valid. In this case,
thermodynamic potentials become nonextensive and statistical
ensembles are not equivalent. Even if the system is very small,
extensivity can be restored, if one considers the set of replicas
of the original system as a large-scale system. Such a procedure,
proposed by Hill,1 makes it possible to apply the method of
thermodynamics on very small scales. This method, initially
proposed when the system is in equilibrium, was extended8 to
nonequilibrium situations for the case of the stretching of a
polymer.

In this article, we have shown that dissipation generated at
small scales is sensitive to the lack of equivalence between
statistical ensembles at small scales. Based on earlier work,8 we
have carried out simulations well beyond the thermodynamic
limit. We have simulated the stretching of a single PEO
molecule of length N = 12, 24, and 51 under force-controlled
and length-controlled ensembles and have extracted friction
coefficients for the largest two systems.
We have confirmed systematic finite size effects in the two

ensembles of general nature. In the static case, the finite size
effects are most pronounced in the region of torsional
unfolding and originate in local maxima in the potential of
mean force that are accessible only in the length-controlled
ensemble. This is visible for N = 24 and even more for N = 12.
In the dynamic case, the finite size effect originates in the two
ensembles having different fluctuations. This is predicted by
theory and confirmed for the first time for the dynamical
coefficient. For short polymers with N = 24, the friction
coefficient of isometric stretching is roughly twice the value of
that of an ensemble with isotensional stretching. The
difference between the friction coefficients decreases when
the length of the polymer is increased to N = 51.
Our study shows how nonequilibrium properties are affected

by the absence of the thermodynamic limit. The method
presented could be applied systematically to the study of
irreversible processes that take place at small scales.
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