Long-term Outcomes of Temporomandibular Joints in Juvenile Idiopathic Arthritis: ### 17 years of follow-up of Nordic Juvenile Idiopathic Arthritis (JIA) cohort. Mia Glerup MD¹, Peter Stoustrup Associate Professor, DDS, PhD², Louise Hauge Associate Professor, DDS, PhD³, Veronika Rypdal MD^{4,5}, Ellen Nordal MD, PhD^{4,5}, Paula Frid DDS^{5,6}, Ellen Dalen Arnstad MD^{7,8}, Marite Rygg Professor, MD, PhD^{7,9}, Olafur Thorarensen DDS¹⁰, Maria Ekelund MD^{11,12}, Lillemor Berntson MD, PhD¹², Anders Fasth Professor, MD, PhD¹³, Håkan Nilsson DDS, PhD, Dr. Odont¹⁴, Suvi Peltoniemi MD¹⁵, Kristiina Aalto MD, PhD¹⁵, Sirpa Arte, DDS, PhD ¹⁶, Peter Toftedal MD, PhD¹⁷, Susan Nielsen MD¹⁷, Sven Kreiborg Professor, DDS, PhD, Dr. Odont¹⁸, Troels Herlin Professor, MD, DMSc¹ and Thomas Klit Pedersen Professor, DDS, PhD^{2,19}. ¹Department of Pediatrics, Aarhus University Hospital, Denmark, ²Section of Orthodontics, Aarhus University, Denmark, ³Section of Oral Radiology, Department of Dentistry and Oral Health, Aarhus University, Denmark, ⁴Department of Pediatrics, University Hospital of North Norway, ⁵Department of Clinical Medicine, Faculty of Health Sciences, UIT, The Arctic University of Norway, Tromsø, Norway 6 Department of Otorhinolaryngology and Department and Division of Oral and Maxillofacial Surgery, University Hospital North Norway and Public Dental Service Competence Center of North Norway, Tromsø, Norway, ⁷Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway, ⁸Department of Pediatrics, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway, ⁹Department of Pediatrics, St. Olavs Hospital, Trondheim, Norway, ¹⁰Department of Oral and Craniomaxillofacial Surgery, St. Olavs Hospital, Norway, NTNU, ¹¹Department of Pediatrics, Ryhoy County Hospital, Jönköping, Sweden, ¹² Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden, ¹³Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Sweden, ¹⁴Department of Oral and Maxillofacial Surgery/Stomatognathic Physiology, The Institute for Postgraduate Dental Education, Jönköping, Sweden, 15 Hospital for Children and Adolescents, University of Helsinki, Finland, 16 Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Finland, ¹⁷Department of Pediatrics. Copenhagen University Hospital, Denmark, ¹⁸Department of Pediatric Dentistry and Clinical Genetics, University of Copenhagen, Denmark, ¹⁹Department of Oral and Maxillofacial Surgery, Aarhus University Hospital, Denmark. The study has not received any financial support or other benefits from commercial sources and the authors have no financial interests that could create a potential conflict of interest or the appearance of a conflict of interest. Correspondence to: Mia Glerup, Department of Pediatrics, Aarhus University Hospital, Skejby, Palle Juul-Jensens Blvd. 99, 8200 Aarhus N, Denmark. Phone: +45 61333138. E-mail: miagleru@rm.dk #### Abstract: Objective: To determine the prevalence of orofacial symptoms, dysfunctions, and deformities of the temporomandibular joint (TMJ) in juvenile idiopathic arthritis (JIA) 17 years after disease onset. Methods: Drawn from a prospective, population-based Nordic JIA cohort with disease onset from 1997-2000, 420 consecutive cases were eligible for orofacial evaluation of TMJ involvement. The follow-up visit included demographic data, a standardized clinical orofacial examination, and full-face cone-beam computed tomography (CBCT). For comparison, 200 age-matched healthy controls were used. Results: Of 420 eligible participants with JIA, 265 (63%) were included (mean age 23.5 ± 4.2 years) and completed a standardized clinical orofacial examination. Of these, 245 had a full-face CBCT performed. At least one orofacial symptom was reported by 33%. Compared to controls, the JIA group significantly more often reported TMJ pain, TMJ morning stiffness, and limitation on chewing. Furthermore, among participants reporting complaints, the number of symptoms was also higher in the JIA. The mean maximal incisal opening was lower in the JIA group (p<0.001), and TMJ pain on palpation was more frequent. Condylar deformities and/or erosions were observed in 61% as assessed by CBCT, showing bilateral changes in about 70%. Risk factors of condylar deformities were orofacial dysfunction or biologic treatment; enthesitis-related arthritis was protective. Conclusion: This first study on long-term consequences of TMJ involvement in a population-based JIA cohort reports persistence of comprehensive symptoms, dysfunctions, and damage of the TMJ into adulthood. We suggest interdisciplinary follow-up of JIA patients also in adulthood. #### Introduction: Arthritis of the temporomandibular joint (TMJ) is a well-recognized entity in patients with juvenile idiopathic arthritis (JIA) with a prevalence of 40-86% (1-5) dependent on the cohort and imaging used (6). A prime concern in relation to childhood TMJ arthritis is the development of temporomandibular disorders (TMD) and dentofacial deformities. These deformities develop as TMJ inflammation impacts the condylar growth cartilage uniquely positioned intra-articularly (7). Retrognathia developing into micrognathia is a common finding, unilateral TMJ involvement may cause facial asymmetry (8-10), and arthritis-induced orofacial symptoms or dysfunctions may impair patients' quality of life (2, 3, 11). Long-term (>10 years) outcomes of TMJ arthritis in JIA have been investigated in four cohorts (4, 12-14), all from the pre-biologic era. However, these cohorts have been small, selection biased, and difficult to compare because of different treatment approaches. Hence, long-term orofacial manifestations of JIA in a non-selected JIA cohort in the biologic era remain unknown. In a population-based cohort with a 17-year follow-up the aims were to: 1) estimate the prevalence of orofacial symptoms and dysfunction in JIA compared to age-matched healthy controls, 2) estimate the prevalence of TMJ deformities assessed by cone-beam computed tomography (CBCT), 3) suggest predictors for developing radiological TMJ deformities. #### Materials and Methods Study design: We enrolled eligible JIA subjects from the Nordic JIA cohort 17 years after JIA onset. The cohort consists of consecutive cases with JIA diagnosed by experienced pediatric rheumatologists from particular geographical areas of Denmark, Finland, Norway, and Sweden. Characteristics of the cohort have previously been described (15, 16). The inclusion period was defined as disease onset from 1 January 1997 to 30 June 2000. Initially and during the inclusion period, letters were distributed to all referral institutions (primary care physicians, orthopedic surgeons, and pediatricians) in the catchment areas to ensure inclusion of all potential JIA candidates. The baseline visit took place 6 months (-1/+2 months) after disease onset. In the current study, disease onset was defined as the date of the first symptoms of arthritis described by the patient/parents or by a doctor. The date of diagnosis was the date the pediatric rheumatologist diagnosed JIA. Registration of the active joints including the TMJs was done at baseline and prospectively (15, 16). To ensure a non-selected setting, all eligible patients were invited to participate regardless of their disease course. Last follow-up visit included an update on demographic data, standardized clinical orofacial examination according to consensus-based international recommendations (17), and a CBCT. In the original cohort, 510 JIA patients were included, but some centers had no access to CBCT. They were therefore excluded in the present study (Figure 1). Their exclusion did not hamper the population-based approach of the study. *Inclusion criteria*: Participants fulfilling the International League of Associations for Rheumatology (ILAR) criteria of JIA (18) having had at least two follow-up visits. *Exclusion criteria*: Participants with cleft-lip-palate or other dentofacial and craniofacial anomalies unrelated to arthritis. Disease activity: The validated Juvenile Arthritis Disease Activity Score (JADAS) was used to assess disease activity. JADAS71 includes a physician's global assessment of disease activity (PhysGA)(0-10), the patient's global assessment (PatGA) of general well-being (0-10), an active joint count assessed in 71 joints, and erythrocyte sedimentation rate (ESR) (19) with a range of 0-101 where \leq 1 is equivalent to inactive disease (20). We applied the preliminary remission criteria by Wallace et al (21). Definitions of TMJ involvement: We used the terminology of the standardized, consensus-based recommendations by the Temporomandibular Joint Juvenile Arthritis Work Group (TMJaw group) (22). Assessment of orofacial symptoms: According to the international recommendations on orofacial examination in JIA (17), the participants completed a web-based questionnaire on orofacial pain frequency, intensity, location, and jaw function within the past two weeks. TMJ stiffness referred to morningstiffness in the jaw muscles and joints. Orofacial muscle pain was pain in the masseter and temporalis muscles and chewing limitations when the participants avoided hard or chewy foods because of pain in the face or jaw. Pain frequency was defined as pain from the jaw area within the past 2 weeks categorized as: 1) Never (0 points); 2) Not every week (1 point); 3) Several times a week (2 points); 4) Several times a day (3 points); 5) All the time (4 points). WHO guidelines on cross-cultural translation (25), and questionnaire adaptation were used (23) for translation of the questionnaire to the four Scandinavian languages. Assessment of dentofacial dysfunction: Standardized clinical examinations (17) were performed by eight specially trained investigators (five orthodontists, one orofacial pain specialist, one pediatric dentistry specialist and one oral maxillofacial surgeon). The maximal incisal opening (MIO) was assessed as the distance between the lower and upper right incisal edge accounting for the vertical incisal overlap. Reduced mouth opening was defined as $MIO \le -2$ SD below the mean of age-related normative values of 17-year-olds (24). The same type of ruler was used in all centers. TMJ pain on palpation was documented on a closed and open mouth position with index finger placed on the TMJ. Asymmetric mouth opening was defined as a mandibular deviation ≥ 3 mm to either side in relation to the vertical midface reference line at maximum mouth opening. Radiographic assessment: CBCT examinations were performed using the manufacturer's recommendation on details regarding doses, radiation time, and voxel size. Standardization was optimized using the following criteria: 1) Teeth in habitual occlusion with no protrusion of the mandible; 2) A large field of view, at least 12". The radiological appearance of the condylar head was scored as normal (condylar shape with smooth, intact outline) or abnormal, assessing CBCT volumes in the lateral, coronal, and axial planes. Abnormal condyles were subcategorized based on the predominant radiologic feature: 1) Deformity of the condyle with marked flattening or changes in shape with smooth and intact outline; 2) Erosion of the condyle with disruption of the outline due to cysts or erosions; 3) Deformity plus erosive changes. Importantly, this scoring system of the osseous deformities does not refer to a scale with gradual progression. The same observer (LHM), who is highly experienced in assessing CBCT, performed the evaluations of the condyles in the CBCT volumes. LHM was blinded to all clinical and demographic data. Control group: Non-selected Danish age-matched individuals (N=200) between 18 and 30 years were used for comparison. The control group was composed of young healthy adults (dental students, members of a sports club and trainees within the retail industry) who voluntarily participated in the study. Inclusion criteria for the controls were healthy individuals with no history of arthritis, osteoarthritis, cleft-lip-palate, other craniofacial anomalies or ongoing orthodontic treatment. Orofacial symptoms were reported in the same web-based questionnaire as the JIA group, and the same standardized orofacial examination was used (17). For ethical reasons, no CBCT examination was performed of the healthy controls. *Intra-observer variation in the assessment of the CBCT scans*: 30 CBCT (60 TMJs) examinations were assessed twice with 6 months apart by the same observer (LHM) to test the intra-observer reliability. *Ethics:* Approval was granted by national research committees in all the countries (1-10-72-280-13, 2012/2051, Dnr 2014/413-31, 174/13/03/03/2014), and the participants gave their written consent. Furthermore, Institutional Review Board approval was granted. Statistics: Descriptive statistics of normally distributed data (mean±SD) and non-parametric data (median/interquartile range) were applied to assess the clinical characteristics of the cohort and disease activity. Chi square test was conducted to compare dichotomous data. Mann-Whitney test and standardized test statistics reported as a z score were used to compare medians on ordinal data. A logistic regression model was used to assess baseline predictors and predictors for the development of condylar changes. All candidate variables were dichotomized and odds ratios calculated using a multivariate logistic regression model. Age at onset and gender were included in the model, and the level of significance was p<0.05. Furthermore, to identify high-risk participants at the 17-year follow-up, we performed a logistic regression analysis of treatment, symptoms, dysfunctions, and JIA category. Cohen's kappa coefficient (K) was analyzed to test the inter-rater agreement for categorical measurements. #### Results: Study population: Of 420 eligible participants from the JIA cohort, 265 (63.1%) were included in the present study (mean age 23.5 (SD \pm 4.2) years) (Figure 1). One patient was excluded because of fracture of a condyle. The mean follow-up time from JIA onset to orofacial examination was 17.3 years (SD \pm 1.3 years); 186/265 (70.6%) were girls. The distribution of JIA categories and other clinical data were as described in Table 1. We found no difference in gender, JIA category, number of active joints, or baseline JADAS values between included participants and those lost to follow-up. However, age at onset was lower in the included group (mean 6.0 \pm 3.9 vs. 7.6 \pm 4.3 years in those lost to follow-up (p=0.003). Of the 265 participants completing the clinical orofacial examination, 245 had a full-face CBCT performed with 490 approved high-quality TMJ images. The control group had a mean age of 23.6±2.9 years; 52.5% were girls. Orofacial symptoms: In total, 87 of the 265 JIA participants (32.8%) reported at least one TMJ-related symptom at the follow-up visit, which was similar to the control group (p=0.11) (Table 2). Orofacial pain frequency and number of symptoms, TMJ pain, morning stiffness, and limitation of chewing were observed significantly more frequently in the JIA group and in all categories (Table 2). We found no inter-group difference in pain in the temporal (p=0.51) or masseter area (p=0.17) (data not shown). Overall, 89 (33.6%) participants with JIA reported jaw and/or facial pain within the past two weeks. Of the controls, 61 (30.5%) reported jaw and/or facial pain within the past two weeks, which was similar to the reports in the JIA group (p=0.48), but more controls reported pain less than once a week (71% versus 53%) and less reported pain several times per day or all the time (7% versus 27%) compared to the JIA group. Dysfunction: In total, 136 (51.3%) participants with JIA had at least one clinical sign of orofacial dysfunction, not different from controls (p=0.12) (Table 2). The most frequent clinical findings were TMJ and orofacial pain on palpation in both groups (Table 2). Mean MIO was significantly lower in the JIA group (47.2±7.7 vs. 56.5±6.8 mm, p<0.001). The prevalence of participants with a MIO <-2SD was significantly higher among JIA participants than controls (p<0.001) (Table 2). TMJ pain on palpation was more frequent in the JIA group than in controls (p=0.03,Table 2). However, no inter-group differences were observed for "orofacial pain on palpation" or "asymmetric mouth opening". Disease status and clinical findings: Inactive disease was found in 162 (61.1%) of the 265 participants with JIA, of whom 34 (12.8%) were in remission on medication, and 99 (37.4%) in remission off medication (21), while 29 (10.9%) had inactive disease without fulfilling the remission criteria. Of the participants with inactive disease or in remission on/off medication, 38/162 (23.5%) reported at least one orofacial symptom, and 70 (43.2%) had at least one clinical sign of dysfunction. In the same group, the frequencies of the reported symptoms were: 38/162 (23.5%) orofacial or jaw pain, 16 (9.9%) morning stiffness in the jaws, 11 (6.8%) limitation when chewing, and 7 (4.3%) locking of the jaw. Further, a reduced MIO was found in 22/162 (13.6%), TMJ pain on palpation in 37 (22.8%), orofacial pain on palpation in 28 (17.3%), and asymmetric mouth opening in 26 (16.0%). Radiologic findings: Normal CBCT of both TMJs was observed in 96/245 (39.2%) of participants with JIA (Table 3). Thus, the prevalence of at least one abnormal radiological TMJ appearance was 149/245 (60.8%) participants with JIA. Of these, 104/149 (69.8%) had bilateral TMJ deformities. Of 253 joints with CBCT changes, 119 (47.0%) had score 1 (deformity), 24 (9.5%) score 2 (erosion), and 110 (43.5%) score 3 (deformity and erosion). Abnormal condylar findings were most frequent in the RF-negative polyarticular group (76.5%) and least frequent in the ERA category (33.3%), but TMJ deformities were present in all JIA categories (Table 4). TMJ pain on palpation doubled the odds of having an abnormal TMJ on the CBCT scan (OR 2.1; 95% CI 1.08-4.1), and there was a strong association with MIO < -2SD (OR 7.5; 95% CI 2.7-20.6) and abnormal TMJ on CBCT. Of the 27 (10.2%) participants having at least one intra-articular TMJ injection during the disease course, all had abnormal condylar findings on CBCT, and 17 (63.0%) had erosions and deformities (data not shown). Intra-observer reproducibility of the CBCT assessment: On 30 randomly selected CBCT examinations of 60 TMJs assessed twice 6 months apart, intra-observer agreement was found in 53 (88.3%) of the scans. Cohen's κ=0.83, indicated an almost perfect intra-observer agreement (25). Association between baseline predictors/clinical characteristics and abnormal radiologic condylar appearance at 17 years of follow-up: From the multivariate logistic regression analysis of the baseline predictors of condylar deformities/erosions, we found a positive association with an active joint count of >4 at baseline and a negative association with the presence of HLA-B27 (Table 5). At the 8-year follow-up, a cumulative joint count of >4 and the ERA category was associated with condylar changes (Table 5). Logistic regression analysis on age at onset and gender did not show any association with condylar deformity. Treatment with biologics during the disease course and orofacial dysfunctions 17 years after onset were associated with a significantly higher risk of TMJ deformity (p=0.02 and p<0.01, respectively. The ERA category had a significant lower risk of developing TMJ deformities (Table 5). #### Discussion: This is the first study to report long-term data on temporomandibular symptoms, dysfunctions, and radiological findings in a population-based JIA cohort from the early biologic era compared to controls. The results showed higher prevalence of TMJ pain, TMJ morning stiffness, and chewing limitations in the JIA group. We found a higher prevalence of TMJ pain on palpation and a reduced MIO among the JIA participants; however, the prevalence of orofacial pain on palpation and asymmetric mouth opening was not different from that seen in the control group. The control group's complaints were mild and comparable to what has been reported in TMD unrelated to arthritis (26). It is difficult to compare our results with previous long-term TMJ-related outcome studies from the pre-biologic era due to differences in study designs, terminologies, and definitions. In a questionnaire-based cohort study of 28 JIA patients, Engstrøm et al (13) documented a higher risk of TMJ pain and dysfunction in JIA patients than in healthy controls 15 years after diagnosis with 7% reporting limitation on chewing and 39% facial or TMJ pain, which is close to our findings. In 2001, Bakke et al (12) conducted a 26-year follow-up study on 42 women with JIA of whom 17% experienced orofacial pain. None of the 21 healthy controls reported orofacial pain. In a more recent cross-sectional 17-year follow-up study by Resnick and colleagues (4), 24% of the 21 JIA patients reported TMJ pain, which is consistent with our findings. Our study showed no difference in self-reported orofacial muscle pain. Previous studies on TMD have consistently documented that orofacial pain is a common finding in healthy adults. The American OPPERA study (27) enrolled 4,346 adults and demonstrated a 4% annual incidence of painful TMD, and the prevalence of TMJ and/or facial pain was 19%. In comparison, the frequency of TMJ and/or facial pain in our control group was 33%. This difference may be explained by an older mean age in the OPPERA study considering a peak incidence of TMJ/facial pain in the age group 25-34 years (28). It is not possible to differentiate JIA-associated TMD from other TMD etiologies based on clinical examination. We can only hypothesize that TMD symptoms and dysfunctions reported in the JIA group originate from TMJ involvement. Few studies on long-term outcome of TMJ dysfunctions have been published, and dissimilarities in terminologies used hamper comparison. Prevalence of reduced MIO was 19-29% in two previous long-term studies (4, 12), which matches our findings. TMJ pain on palpation was demonstrated in 17% (12), which is lower than our prevalence (30%); however, their study was small and the methods used were not the same as ours. Unexpectedly, we found the same rate of asymmetric mouth opening in the JIA and the control group. No previous long-term studies have reported an asymmetric mouth opening for comparison. Our findings can partly be explained by the high prevalence of bilateral CBCT-verified deformities in the JIA group, albeit such deformities do not necessarily lead to asymmetric mouth opening. Our findings could also suggest that asymmetric mouth opening can normalize over time. It is also well known that in clinical examinations, deflection can be misinterpreted as asymmetric mouth opening, leading to an uncertain measurement of the latter. The JIA participants and the control group were not evaluated by the same orthodontists, which can also influence the results. A large number of patients experienced continued TMJ symptoms/dysfunctions despite inactive disease/remission indicating a need for continued, standardized orofacial monitoring (17). CBCT is a well-established method to detect TMJ deformity and hard tissue changes. Recently, Kellenberger et al (29) suggested MRI for monitoring TMJ arthritis and published an additive scoring system to assess the osseous deformities. However, it was not published at the beginning of our study, and CBCT has previously been used for assessment of hard tissue changes (4, 30). In total, about 61% of the JIA participants had at least one condyle with abnormal CBCT findings, and about 70% of these subjects had bilateral changes. Importantly, the presence of radiographic condylar changes does not necessarily imply the presence of dentofacial deformity. The association between radiographic TMJ changes and dentofacial deformity will be established in a future study. Using a different CBCT scoring system, Resnick et al found TMJ abnormalities in 55% of their JIA patients at the age of 26 years, of whom 79% had bilateral changes. We found a slightly higher prevalence of radiographic TMJ changes. However, we have to acknowledge that some of the abnormal findings may not be directly attributable to the JIA disease since abnormal CBCT findings of the TMJ have been described in healthy individuals. Using a similar CBCT scoring system as used here, Stoustrup et al reported that 5/19 (26%) healthy controls had abnormal TMJ appearance (30); and Kellenberger et al (31) showed that anterior disk displacement in non-JIA adolescents most often is associated with osseous TMJ changes, mainly erosions, in non-JIA individuals. For ethical reasons, CBCT examinations of the TMJ were not performed in the healthy control group. Study heterogeneity and small sample size have compromised previous studies of predictors of TMJ involvement (32). However, our finding of a lower risk of condylar changes with the presence of HLA-B27 has also been observed in previous studies (2, 33). Likewise, an active joint count of more than four joints as a predictor of TMJ involvement is consistent with the findings in previous, smaller studies (33, 34). The protective effect of the ERA category for developing condylar deformities and/or erosions is a new finding. A high risk of developing condylar changes was associated with a severe disease course, indicated by the use of biologic treatment and a cumulative joint count of more than four. It is highly unlikely that there is a Obviously, a causal relationship between biologic treatment and development of condylar changes do not exist. The strength of our study is the population-based setting, which qualifies it as a non-selected JIA cohort study. Furthermore, the generalizability of the study gains from the use of the consensus-based recommendations for clinical orofacial examination and the use of contemporary terminology regarding orofacial findings in JIA, which facilitates comparison of our findings with those of future studies. Our study is based on an ethnically homogenous Nordic cohort; still, the distribution of the JIA categories is consistent with other European and North American cohorts (35). However, several limitations must be acknowledged. Of the total cohort, 37% was lost to follow-up. Age at onset was lower in the included group, but we found no differences in gender, disease activity at baseline, and JIA category. Considering the fact that most of the participants are not attending pediatric clinics anymore, the response rate after 17 years was considered acceptable. The CBCT scans applied to evaluate condylar changes has also been used previously (30, 36), but does not discriminate graduation of severity. In addition, no knowledge about the time-related association between the development of the erosions and deformities can be provided. As MRI was not performed, we cannot conclude on TMJ arthritis activity at the last visit; however, this was not the aim of our study. In conclusion, our findings underline the fact that extensive symptoms and dysfunctions are seen in JIA even 17 years after disease onset, and also in patients registered with inactive disease/remission. Individuals with substantial condylar damage were found in all JIA categories. We suggest including aspects of TMJ involvement in the general clinical decision-making by including orofacial symptom and dysfunction assessment an integrated part of general health assessment in JIA guided by recent consensus-based recommendations (17). Acknowledgement: We thank the patients, coordinators and investigators of the Nordic Study Group of Pediatric Rheumatology. #### References: - 1. Weiss PF, Arabshahi B, Johnson A, Bilaniuk LT, Zarnow D, Cahill AM, et al. High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum. 2008;58:1189-96. - 2. Cannizzaro E, Schroeder S, Muller LM, Kellenberger CJ, Saurenmann RK. Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J Rheumatol. 2011;38:510-5. - 3. Stoll ML, Sharpe T, Beukelman T, Good J, Young D, Cron RQ. Risk factors for temporomandibular joint arthritis in children with juvenile idiopathic arthritis. J Rheumatol. 2012;39:1880-7. - 4. Resnick CM, Dang R, Henderson LA, Zander DA, Daniels KM, Nigrovic PA, et al. Frequency and Morbidity of Temporomandibular Joint Involvement in Adult Patients With a History of Juvenile Idiopathic Arthritis. J Oral Maxillofac Surg. 2017;75:1191-200. - 5. Kuseler A, Pedersen TK, Gelineck J, Herlin T. A 2 year followup study of enhanced magnetic resonance imaging and clinical examination of the temporomandibular joint in children with juvenile idiopathic arthritis. J Rheumatol. 2005;32:162-9. - 6. Pedersen TK, Kuseler A, Gelineck J, Herlin T. A prospective study of magnetic resonance and radiographic imaging in relation to symptoms and clinical findings of the temporomandibular joint in children with juvenile idiopathic arthritis. J Rheumatol. 2008;35:1668-75. - 7. Enlow DH, Hans M. Growth of the mandible. Essential of facial growth, Philadelphia: Saunders; 1996. p. 57-78. - 8. Larheim TA, Haanaes HR, Dale K. Radiographic temporomandibular joint abnormality in adults with micrognathia and juvenile rheumatoid arthritis. Acta Radiol Diagn (Stockh). 1981;22:495-504. - 9. Fjeld M, Arvidsson L, Smith HJ, Flato B, Ogaard B, Larheim T. Relationship between disease course in the temporomandibular joints and mandibular growth rotation in patients with juvenile idiopathic arthritis followed from childhood to adulthood. Pediatr Rheumatol Online J. 2010;8:13. - 10. Koos B, Gassling V, Bott S, Tzaribachev N, Godt A. Pathological changes in the TMJ and the length of the ramus in patients with confirmed juvenile idiopathic arthritis. J Craniomaxillofac Surg. 2014;42:1802-7. - 11. Frid P, Nordal E, Bovis F, Giancane G, Larheim TA, Rygg M, et al. Temporomandibular Joint Involvement in Association With Quality of Life, Disability, and High Disease Activity in Juvenile Idiopathic Arthritis. Arthritis Care Res (Hoboken). 2017;69:677-86. - 12. Bakke M, Zak M, Jensen BL, Pedersen FK, Kreiborg S. Orofacial pain, jaw function, and temporomandibular disorders in women with a history of juvenile chronic arthritis or persistent juvenile chronic arthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:406-14. - 13. Engstrom AL, Wanman A, Johansson A, Keshishian P, Forsberg M. Juvenile arthritis and development of symptoms of temporomandibular disorders: a 15-year prospective cohort study. J Orofac Pain. 2007;21:120-6. - 14. Arvidsson LZ, Fjeld MG, Smith HJ, Flato B, Ogaard B, Larheim TA. Craniofacial growth disturbance is related to temporomandibular joint abnormality in patients with - juvenile idiopathic arthritis, but normal facial profile was also found at the 27-year follow-up. Scand J Rheumatol. 2010;39:373-9. - 15. Berntson L, Andersson Gare B, Fasth A, Herlin T, Kristinsson J, Lahdenne P, et al. Incidence of juvenile idiopathic arthritis in the Nordic countries. A population based study with special reference to the validity of the ILAR and EULAR criteria. J Rheumatol. 2003;30:2275-82. - 16. Nordal E, Zak M, Aalto K, Berntson L, Fasth A, Herlin T, et al. Ongoing disease activity and changing categories in a long-term nordic cohort study of juvenile idiopathic arthritis. Arthritis Rheum. 2011;63:2809-18. - 17. Stoustrup P, Twilt M, Spiegel L, Kristensen KD, Koos B, Pedersen TK, et al. Clinical Orofacial Examination in Juvenile Idiopathic Arthritis: International Consensus-based Recommendations for Monitoring Patients in Clinical Practice and Research Studies. J Rheumatol. 2017;44:326-33. - 18. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31:390-2. - 19. Consolaro A, Ruperto N, Bazso A, Pistorio A, Magni-Manzoni S, Filocamo G, et al. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 2009;61:658-66. - 20. Consolaro A, Bracciolini G, Ruperto N, Pistorio A, Magni-Manzoni S, Malattia C, et al. Remission, minimal disease activity, and acceptable symptom state in juvenile idiopathic arthritis: defining criteria based on the juvenile arthritis disease activity score. Arthritis Rheum. 2012;64:2366-74. - 21. Wallace CA, Ruperto N, Giannini E. Preliminary criteria for clinical remission for select categories of juvenile idiopathic arthritis. J Rheumatol. 2004;31:2290-4. - 22. Stoustrup P, Resnick CM, Pedersen TK, Abramowicz S, Michelotti A, Küseler A, et al on behalf of the TMJ Juvenile Arthritis Working group (TMJaw). Standardizing Terminology and Assessment for Orofacial Conditions in Juvenile Idiopathic Arthritis: International, Multidisciplinary Consensus-based Recommendations. J Rheumatol 2019;46:518-22. - 23. Beaton DE, Bombardier C, Guillemin F, Ferraz MB. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine 2000;25:3186-91. - 24. Stoustrup P, Kristensen KD, Kuseler A, Herlin T, Pedersen TK. Normative values for mandibular mobility in Scandinavian individuals 4-17 years of age. J Oral Rehabil. 2016;43:591-7. - 25. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22:276-82. - 26. Slade GD, Bair E, Greenspan JD, Dubner R, Fillingim RB, Diatchenko L, et al. Signs and symptoms of first-onset TMD and sociodemographic predictors of its development: the OPPERA prospective cohort study. J Pain. 2013;14(12 Suppl):T20-32 e1-3. - 27. Slade GD, Ohrbach R, Greenspan JD, Fillingim RB, Bair E, Sanders AE, et al. Painful Temporomandibular Disorder: Decade of Discovery from OPPERA Studies. J Dent Res. 2016;95:1084-92. - 28. Isong U, Gansky SA, Plesh O. Temporomandibular joint and muscle disorder-type pain in U.S. adults: the National Health Interview Survey. J Orofac Pain. 2008;22:317-22. - 29. Kellenberger CJ, Junhasavasdikul T, Tolend M, Doria AS. Temporomandibular joint atlas for detection and grading of juvenile idiopathic arthritis involvement by magnetic resonance imaging. Pediatr Radiol. 2018;48:411-26. - 30. Stoustrup PB, Ahlefeldt-Laurvig-Lehn N, Kristensen KD, Arvidsson LZ, Twilt M, Cattaneo PM, et al. No association between types of unilateral mandibular condylar abnormalities and facial asymmetry in orthopedic-treated patients with juvenile idiopathic arthritis. Am J Orthod Dentofacial Orthop. 2018;153:214-23. - 31. Kellenberger CJ, Bucheli J, Schroeder-Kohler S, Saurenmann RK, Colombo V, Ettlin DA. Temporomandibular joint magnetic resonance imaging findings in adolescents with anterior disk displacement compared to those with juvenile idiopathic arthritis. J Oral Rehabil. 2019; 46:14-22. - 32. Kristensen KD, Stoustrup P, Kuseler A, Pedersen TK, Twilt M, Herlin T. Clinical predictors of temporomandibular joint arthritis in juvenile idiopathic arthritis: A systematic literature review. Semin Arthritis Rheum. 2016;45(6):717-32. - 33. Pedersen TK, Jensen JJ, Melsen B, Herlin T. Resorption of the temporomandibular condylar bone according to subtypes of juvenile chronic arthritis. J Rheumatol. 2001;28:2109-15. - 34. Twilt M, Mobers SM, Arends LR, ten Cate R, van Suijlekom-Smit L. Temporomandibular involvement in juvenile idiopathic arthritis. J Rheumatol. 2004;31:1418-22. - 35. Consolaro A, Ravelli A. Unraveling the Phenotypic Variability of Juvenile Idiopathic Arthritis across Races or Geographic Areas--Key to Understanding Etiology and Genetic Factors? J Rheumatol. 2016;43:683-5. - 36. Hatcher D. Progressive Condylar Resorption: Pathologic Processes and Imaging Considerations. Seminars in Orthodontics. 2013;19:97-105. Figure legends Figure 1 Flow-chart of the study population * Excluded were six of the seven Swedish centers because of no access to CBCT. Figure 1 Flow-chart of the study population ^{*} Excluded were 6 of the 7 Swedish centers because of no access to CBCT. Table 1 Demographic and clinical characteristics by JIA categories in the TMJ study of the Nordic JIA cohort at the 17-year follow-up visit. | JIA | | at the 17-year | | | | | | | _ | | |---------------------|-------------|----------------|---------|----------------|-------------|---------------|-----------|-----------|-------------------------|-----------| | | No | Total | sJIA | Oligo | Oligo | Poly | Poly | Psoriatic | ERA | Undiff | | | of
pati- | cohort (n=265) | (n=11) | persist (n=56) | ext (n= 58) | RF-
(n=52) | RF+ (n=4) | (n=14) | (n=27) | (n=43) | | | ents | (11-203) | (11-11) | (11–30) | (11- 36) | (11-32) | (11-4) | (11-14) | $\left(\Pi - ZT\right)$ | (11-43) | | Females (%) | 265 | 186 | 8/11 | 40/56 | 44/58 | 38/52 | 3/4 | 10/14 | 9/27 | 35/43 | | Temates (70) | 203 | (70.6) | (72.7) | (71.4) | (75.9) | (73.1) | (75.0) | (71.4) | (33.3) | (81.4) | | | į. | ` ′ | | , , | , , | | | , , | , , | | | Age at onset | 265 | 6.2 | 5.0 | 5.5 | 4.9 | 5.9 | 11.1 | 6.4 | 9.0 | 7.3 | | mean±(SD) | | (4.0) | (2.9) | (3.5) | (3.9) | (4.1) | (2.6) | (3.7) | (3.4) | (4.0) | | Age at last | 265 | 23.5 | 23.0 | 22.7 | 22.0 | 22.9 | 28.7 | 23.4 | 26.4 | 24.8 | | follow up | | (4.2) | (3.1) | (3.5) | (4.0) | (4.3) | (2.6) | (4.2) | (3.5) | (4.5) | | mean±(SD) | | , , | , , | | | , , | | | | , , | | Disease | 265 | 17.3 | 17.9 | 17.3 | 17.2 | 17.2 | 17.6 | 17.0 | 17.4 | 17.3 | | duration | | (1.0) | (0.8) | (1.1) | (1.1) | (1.0) | (1.0) | (0.9) | (1.1) | (0.9) | | mean±(SD) | | | | 10 | 100 | 4.7 | - | | | | | ANA | 234 | 80 | 2 | 12 | 20 | 15 | 2 | 5 | 8 | 16 | | positive, | | (34.2) | (25.0) | (21.4) | (34.5) | (28.8) | (50.0) | (35.7) | (29.6) | (36.4) | | n (%)
HLA-B27 | 264 | 57 | 0 | 6 | 7 | 8 | 1 | 3 | 21 | 11 | | positive, | 204 | (21.6) | (0.0) | (10.7) | (12.1) | (15.4) | (25.0) | (21.4) | (77.8) | (25.0) | | n (%) | | (21.0) | (0.0) | (10.7) | (12.1) | (13.4) | (23.0) | (21.4) | (77.0) | (23.0) | | CRP >10 | 257 | 14 | 0 | 1/53 | 2/55 | 3/52 | 0 | 2/14 | 4/27 | 2/42 | | mg/L, | 900000 | (5.4) | | (1.9) | (3.6) | (5.8) | | (14.3) | (14.8) | (4.8) | | n (%) | | | | | . , | | | , , | ` ' | | | ESR >20 | 218 | 15 | 0 | 2/48 | 2/48 | 3/47 | 0 | 3/14 | 2/22 | 3/33 | | mm/h, | | (6.7) | | (4.2) | (4.2) | (6.4) | | (21.4) | (9.1) | (9.1) | | n (%) | 2.50 | | | | 1.0 | | | | 1.0 | | | PatPain VAS | 260 | 1.0 | 0 | 0 | 1.0 | 1.0 | 5.0 | 1.5 | 1.0 | 2.0 | | Median | | (0-3.5) | (0-2.0) | (0-2.0) | (0-4.0) | (0-4.0) | (2.0-6.5) | (0-3.0) | (0.5-3.5) | (0.5-4.8) | | (IQR)*
PatGA VAS | 260 | 1.0 | 0 | 0 | 1.0 | 0.8 | 4.0 | 1.0 | 2.0 | 2.0 | | median | 200 | (0-3.0) | (0-1.0) | (0-1.0) | (0-2.5) | (0-2.8) | (1.3-7.8) | (0-2.0) | (1.0-4.5) | (0-4.5) | | (IQR)* | | (0-3.0) | (0-1.0) | (0 1.0) | (0 2.3) | (0 2.0) | (1.5-7.0) | (0.2.0) | (1.0 4.5) | (0-4.5) | | PhysGA | 265 | 0 | 0 | 0 | 0 | 0 | 1.0 | 0 | 1.0 | 0 | | VAS median | | (0-1.0) | (0-0.5) | (0-0) | (0-1.5) | (0-0.8) | (0-2.5) | (0-1.0) | (0-2.5) | (0-2.0) | | (IQR) | | | | | | | | | | | | JADAS 71 | 244 | 97 | 8 | 31 | 19 | 21 | 1 | 5 | 3 | 9 | | ≤1 | | (39.8) | (80.0) | (63.3) | (36.5) | (42.0) | (25.0) | (38.5) | (11.5) | (22.5) | | n (%) | | | | | | | | | | | Values: Age at onset, age at last follow-up and disease duration: years, CRP =mg/L,ESR =mm/h, No = number. IQR = 1^{st} - 3^{rd} inter quartile range, Pat Pain VAS =patient's intensity of pain on a 21-numbered circle visual analog scale (0-100). Pat GA VAS =the patient's global assessment of the overall wellbeing on a 21-numbered circle visual analog scale. PhysGA VAS =the physician's global assessment of disease activity on a 21-numbered circle visual analog scale. PhysGA is reported if a follow-up visit was performed. sJIA = systemic JIA, Oligo persist =oligo persistent JIA, oligo ext =oligo extended JIA, Poly RF- =polyarticular rheumatoid factor negative JIA, Poly RF+ =polyarticular rheumatoid factor positive JIA, ERA =enthesitis-related arthritis, Undiff =undifferentiated JIA. *=Statistical significance (p \leq 0.05) among the JIA categories. **Table 2** Prevalence of orofacial symptoms and dysfunction in the JIA group (n=265) and the control group (n=200) | | JIA
group | Control
group | Measures (95% CI) | p | |--|----------------------|------------------|------------------------|---------| | Orofacial symptoms | | | | | | No symptoms | 178 (67.2) | 148 (74.0) | | | | ≥ one symptom | 87 (32.8) | 52 (26.0) | $OR^4=1.4 (0.91-2.14)$ | 0.11 | | TMJ pain | 65 (24.5) | 14 (7.0) | OR=4.32 (2.30-8.60) | <0.001* | | TMJ morning stiffness | 42 (15.8) | 9 (4.5) | OR=4.02 (1.86-9.60) | <0.001* | | Orofacial muscle pain | 74 (27.9) | 44 (22.0) | OR=1.07 (0.70-1.66) | 0.74 | | Limitation on chewing | 35 (13.2) | 9 (4.5) | OR=3.24 (1.48-7.85) | 0.001* | | Locking of the jaw | 20 (7.5) | 17 (8.5) | OR=0.88 (0.42-1.84) | 0.71 | | Orofacial pain intensity | 25 (5.95) | 10(6,60) | z ⁵ =0.63 | 0.52 | | VAS pain>0; median (1st-3rd quartile) | 25 (5;85) | 19(6;60) | Z ³ =0.63 | 0.53 | | Orofacial pain frequency Pain frequency>0; median (1st-3rd) | 1 (1;4) ¹ | 1 (1;3)1 | z=2.61 | <0.01* | | quartile) | 1 (1,1) | 1 (1,3) | 2 2.01 | .0.01 | | Orofacial pain profile | 30 (5;260) | 20 (6;120) | z=1.53 | 0.13 | | Pain index>0 ² ; median (1 st -3 rd quartile) | | | | | | Number of symptoms | | | | | | Per subject; median (1 st -3 rd quartile) | 2 (1;5) | 1 (1;3) | z=2.26 | 0.02* | | Orofacial dysfunctions | | | | | | No dysfunctions | 129 (48.7) | 112 (56.0) | | | | ≥ one dysfunction | 136 (51.3) | 88 (44.0) | OR=1.34 (0.91-1.97) | 0.12 | | Reduced MIO ³ | 51 (19.2) | 3 (1.5) | OR=15.72 (4.94-79.69) | <0.001* | | TMJ pain on palpation | 79 (29.9) | 42 (21.0) | OR=0.62 (0.40-0.95) | 0.03* | | Orofacial pain on palpation | 67 (25.3) | 50 (25.0) | OR=0.99 (0.64-1.50) | 0.94 | | Asymmetric mouth opening | 29 (10.9) | 32 (16.0) | OR=0.65 (0.36-1.15) | 0.11 | | Number of dysfunctions | | | | | | Per subject; median (1st-3rd quartile) | 1(0;2) | 0 (0;2) | z=2.34 | 0.02 * | Values indicate the number and percentage of patients. 1 Pain frequency =1 indicates not every week; 2 =several times a week; 3 =several times a day; 4 =all the time. 2 Pain index =pain frequency x pain intensity 3 MIO =maximal incisal opening <-2SD below mean of normative values (<40.9mm, ref (27)), 4 OR =odds ratio, 5 z =z score, *= Statistical significance (p \leq 0.05). **Table 3** CBCT appearance of the condylar head of the left and right temporomandibular joints in the Nordic JIA cohort at the 17-year follow-up visit (n=245). | | Normal | Deformity | Erosion | Deformity | Total | |-------------------|-----------|-----------|---------|-------------|------------| | Right TMJ | | | | and erosion | n | | Normal | 96 (39.2) | 11(4.5) | 6 (2.4) | 4 (1.6) | 117 (47.3) | | Deformity | 12 (4.9) | 29 (11.8) | 2 (0.8) | 17 (6.9) | 60 (24.5) | | Erosion | 4 (1.6) | 3 (1.2) | 3 (1.2) | 1 (0.4) | 11 (4.5) | | Deformity/erosion | 8 (3.3) | 16 (6.5) | 2 (0.8) | 31 (12.7) | 58 (23.7) | | Total n | 120(49.0) | 59(24.1) | 13(5.3) | 53(21.6) | 245 | Values indicate the number and percentage of joints. Each TMJ was scored as normal/abnormal and the abnormal joints were subsequently scored with deformity/erosion or with a combination of the two possibilities. The scoring system does not refer to a scale with gradual progression. Normal =normal condylar shape with smooth and intact outline/surface. Deformation =deformity of the condyle, with marked flattening or other changes in shape with smooth and intact outline/surface. Erosion =erosion of the condyle, with disruption of outline or uneven surface due to cysts or erosion. Deformity and erosion =deformities plus erosive changes. **Table 4** Orofacial symptoms, dysfunctions and temporomandibular radiological appearance according to juvenile idiopathic arthritis (JIA) category (n=245) | No patients | Total cohort | sЛА | Oligo
persist | Oligo ext | Poly RF- | Poly
RF+ | Psoriatic | ERA | Undiff | |---|--------------|----------|------------------|-----------|-----------|-------------|-----------|-----------|-----------| | | (n=245) | (n=10) | (n=52) | (n= 53) | (n=51) | (n=4) | (n=13) | (n=24) | (n=38) | | TMJ-reported pain | 65 (26.5) | 2 (20.0) | 8 (15.4) | 14 (26.4) | 12 (23.5) | 1 (25.0) | 4 (30.8) | 10 (41.7) | 14 (36.8) | | TMJ morning stiffness | 42 (17.1) | 1 (10.0) | 8 (15.4) | 6 (11.3) | 12 (23.5) | 0 (0.0) | 2 (15.4) | 4 (16.7) | 9 (23.7) | | Chewing limitations | 35 (14.3) | 0 (0.0) | 5 (9.6) | 6 (11.3) | 8 (15.7) | 1 (25.0) | 3 (23.1) | 4 (16.7) | 8 (21.1) | | MIO<2 SD | 51 (20.8) | 0 (0.0) | 5 (9.6) | 14 (26.4) | 13 (25.5) | 1 (25.0) | 2 (15.4) | 5 (20.8) | 11 (28.9) | | TMJ pain on palpation | 59 (24.1) | 1 (10.0) | 8 (15.4) | 13 (24.5) | 12 (23.5) | 1 (25.0) | 4 (30.8) | 4 (16.7) | 16 (42.1) | | Normal
bilateral
radiological
appearance | 96 (39.2) | 5 (50.0) | 26 (50.0) | 17 (32.1) | 12 (23.5) | 1 (25.0) | 5 (41.7) | 16 (66.7) | 14 (36.8) | | Radiological deformities and/or erosions | 149 (60.8) | 5 (50.0) | 26 (50.0) | 36 (67.9) | 39 (76.5) | 3 (75.0) | 8 (61.5) | 8 (33.3) | 24 (63.2) | Values indicate the number and percentage of joints. sJIA = systemic JIA, Oligo persist =oligo persistent JIA, Oligo ext= oligo extended JIA, Poly RF- =polyarticular rheumatoid factor negative JIA, Poly RF+ = polyarticular rheumatoid factor positive JIA, ERA= enthesitis-related arthritis, Undiff = undifferentiated JIA. **Table 5** Associations between clinical characteristics at baseline, 8-year follow-up or at any time during the disease course and condylar deformities/erosions at the 17-year follow-up. | | Multivariate odds ratio
(95% CI) | P-value | |---|-------------------------------------|---------| | PREDICTORS EARLY IN DISEASE COURSE | | | | n=211 | | | | Age at onset < 6 years | 1.01 (0.52-1.97) | 0.97 | | Female gender | 1.08 (0.54-2.17) | 0.84 | | Active joint count at baseline visit > 4 joints | 2.14 (1.11-4.18) | 0.02* | | ESR > 20 at baseline | 1.88 (0.95-3.70) | 0.07 | | HLA-B27 positive | 0.44 (0.20-0.98) | 0.04* | | Uveitis at baseline | 1.54 (0.48-4.99) | 0.47 | | | | | | PREDICTORS AT 8 YEARS OF FOLLOW-UP
n=234 | | | | Age at onset < 6 years | 1.31 (0.73-2.36) | 0.11 | | Female gender | 1.31 (0.60-2.13) | 0.36 | | Cumulative active joint count >4 | 2.07 (1.05-4.09) | 0.03* | | JADI-A >0 | 1.66 (0.94-2.93) | 0.08 | | MTX | 1.22 (0.62-2.41) | 0.62 | | Biologics | 2.10 (0.75-5.86) | 0.16 | | ERA | 0.35 (0.12-0.97) | 0.04* | | ASSOCIATIONS DURING THE DISEASE COURSE** | | | | I-Z 44 | | | | Age at onset < 6 years | 1.18 (0.65-2.14) | 0.47 | | Female gender | 0.78 (0.40-1.53) | 0.47 | | DMARDs during disease course | 1.18 (0.59-2.36) | 0.60 | | Biologics during disease course | 2.37 (1.18-4.74) | 0.02* | | Cumulative active joints >4 at 17-year FU | 1.94 (0.99-3.80) | 0.06 | | Drofacial dysfunction at 17-year FU | 3.13 (1.74-5.62) | <0.01* | | :RA | 0.17 (0.06-0.50) | 0.01* | ESR= erythrocyte sedimentation rate; HLA-B27= Human leukocyte antigen B27; JADI-A= Juvenile Arthritis Damage Index- Articular; MTX= methotrexate; DMARDs= disease modifying anti-rheumatic drugs; ERA=enthesitis-related arthritis. *= Statistical significance ($p \le 0.05$),** Associations between clinical characteristics at any time of the disease course and condylar deformities/erosions.