
Computers and Operations Research 128 (2021) 105158
Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier .com/locate /caor
An exact solution method for a rich helicopter flight scheduling problem
arising in offshore oil and gas logistics
https://doi.org/10.1016/j.cor.2020.105158
0305-0548/� 2020 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: magnus.staalhane@ntnu.no (M. Stålhane).
Gaute Messel Nafstad a, Amund Haugseth a, Vebjørn Høyland a, Magnus Stålhane a,⇑
aNorwegian University of Science and Technology, Department of Industrial Economics and Technology Management, Trondheim, Norway

a r t i c l e i n f o
Article history:
Received 2 January 2020
Revised 31 July 2020
Accepted 19 November 2020
Available online 29 November 2020

Keywords:
Offshore logistics
Helicopter routing
Multi-trip VRP
Multi-depot VRP
Temporal synchronization
a b s t r a c t

This paper studies the problem of creating an optimal flight schedule for a heterogeneous fleet of heli-
copters tasked with transporting personnel to, from, and between offshore installations. The problem
can be modelled as a rich vehicle routing problem and combines the following properties from the vehi-
cle routing literature: pickup and delivery structure, heterogeneous fleet operating out of multiple
depots, multi-trip, and temporal synchronization of transportation tasks. We present compact and
extended mathematical models of the problem, where the extended model is based on generating all
trips apriori. When solving the extended model we apply delayed constraint generation (DCG) to parts
of the model to speed up the solution process. Computational results are presented that show that the
extended formulation and solution method can solve realistic instances of the problem within one hour.
The results further show that the DCG method works significantly better than using lazy constraints from
a commercial solver, especially when the number of transportation tasks requiring temporal synchro-
nization becomes large.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since the discovery of the Ekofisk field in 1969, the Norwegian
oil and gas sector has developed into the country’s largest industry
(Norwegian Petroleum, 2020a). Today, Norway is the seventh lar-
gest producer of natural gas, and the 15th largest producer of oil
worldwide (British Petroleum Company, 2020). The yearly accu-
mulated export value for crude oil, natural gas, and condensate is
almost 435 billion NOK (� 44 billion USD) (Statistics Norway,
2019), and approximately 140,000 people are, directly or indi-
rectly, employed in the petroleum industry (Statistics Norway,
2019). At the end of 2019, there were 87 fields in production on
the Norwegian continental shelf (NCS), while another 95 oil and
gas discoveries are candidates for development (Norwegian
Petroleum, 2020b). The total petroleum resources on the NCS are
estimated to be 15,6 billion standard cubic meter, of which only
7.5 billion has been produced, sold and delivered thus far
(Norwegian Petroleum, 2020b).

These petroleum resources are extracted by offshore installa-
tions that are either fixed oil platforms or floating production ves-
sels. These installations are operated by personnel who needs to be
transported to and from shore. This transportation was earlier con-
ducted by sea vessels, but for the last decades it has almost exclu-
sively been handled by helicopters. In 2018, over 350,000 unique
deployments of personnel were conducted on the NCS according
to the number of bookings made in the Dawinci Industry Hub
(TietoEVRY, 2020). This equals approximately 1000 persons trans-
ported every day, which corresponds to over 50 fully loaded Siko-
rsky S-92 helicopters, with a capacity of 19 passengers (Aerospace
Technology, 2018). Helicopter transportation is expensive, and one
operator on the NCS estimates annual total costs of chartering and
operating helicopters to be around two billion NOK. Today, char-
tering of helicopters, and planning their flights, is done manually
by each company operating installations on the NCS. However,
because of the complexity of the planning problem, it is likely that
significant savings can be achieved by applying operational
research methods to solve the problem.

In this paper we study the problem of operating a heteroge-
neous fleet of helicopters to transport personnel between offshore
installations and/or heliports onshore. Personnel is available at his/
her pickup location at a given time, and has a latest time for when
he/she is to arrive at the destination. The transportation of person-
nel is mainly done from a heliport onshore to an installation off-
shore or vice versa, but transportation between offshore
installations also occur. The latter is typically transportation of per-
sonnel between floating hotel facilities (flotels) and production
platforms, or whenmoving expert personnel between installations.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2020.105158&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cor.2020.105158
http://creativecommons.org/licenses/by/4.0/
mailto:magnus.staalhane@ntnu.no
https://doi.org/10.1016/j.cor.2020.105158
http://www.sciencedirect.com/science/journal/03050548
http://www.elsevier.com/locate/caor

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
Further, there exist temporal dependencies that affect the allowed
pickup and/or delivery time of certain personnel. For key personnel
it is required that the replacement must arrive at the installation at
least a minimum amount of time before he/she can depart to allow
time for a debriefing. It also happens that certain personnel travel
back and forth between a heliport and an installation on a single
day to perform some key task, in which case they must be given
sufficient time at the installation to perform their intended task.

To transport their personnel, each operator has a fleet of heli-
copters at its disposal. The helicopters are stationed at different
heliports along the coast, and each helicopter operates to and from
their assigned heliport. The fleet of helicopters is heterogeneous
with respect to the number of seats available for passengers, the
fixed cost of operating each day, the fuel consumption per hour,
and the capacity of their fuel tanks. Flight time and fuel consump-
tion between locations are assumed to be based the distance
between them and the cruising speed of each helicopter, and not
affected by wind conditions or the number of personnel on board.
It is further assumed that the time spent at each offshore installa-
tion is constant, regardless of the number of personnel (dis)em-
barking, and that helicopters leave the offshore installation
immediately afterwards.

A trip is defined as a flight sequence starting at a heliport, vis-
iting installations in a given order and returning to the initial heli-
port. In addition to the limitations of the helicopter stated above,
each trip is limited by safety regulations stipulating a maximum
number of landings any personnel transported can partake in. Heli-
copters may perform several trips each day, and the sequence of
trips conducted by a given helicopter on a given day is defined as
a route. Between trips the helicopter must wait a given amount
of time to allow for refueling, which can only be done at heliports,
and required rest for the pilots. Due to the limited number of heli-
pads (usually just one) at an offshore installation, it is also neces-
sary to ensure that no two helicopter routes are scheduled to
visit the same installation at the same time.

The objective in this problem is to design a set of routes for the
helicopters to fly, minimizing costs associated with operating a
helicopter and the distance flown, while transporting all personnel
from(to) their intended origin(destination), and adhering to all the
limitations described above.

The purpose of this paper is to present an exact solution method
for the problem of planning helicopter flights that transport per-
sonnel to, from, and between offshore installations. The problem
statement is based on the operations on the NCS, however, the
same (or similar) problems are faced by operators of offshore
installations all over the world. A new mathematical formulation
is presented, that take into account several aspects of the problem
that has previously not been addressed in the literature. Further,
we develop a second mathematical model where all possible trips
are generated apriori, and the concatenation of trips into routes for
each helicopter is handled by the model. We further develop a cus-
tomized labeling algorithm to generate trips and apply delayed
constraint generation when solving this model using branch-and-
bound. To make the solution method even more effective, we pre-
process both arcs and time windows, and add customized branch-
ing strategies. A computational study shows the effectiveness of
the solution methodology.

The remainder of the paper is organized as follows: In Section 2
we give an overview of the literature on helicopter planning, and a
brief overview of the literature on relevant variants of the vehicle
routing problem. Then, in Section 3 we present both a compact
and an extended mathematical model of the problem, before dis-
cussing in detail the different parts of our solution methodology
in Section 4. Finally, we test the computational performance of
the proposed solution method in Section 5, before giving some
concluding remarks in Section 6.
2

2. Related literature

Optimal transportation of personnel to and from offshore oil
installations have been studied since the late 1980s when Galvão
and Guimarães (1987, 1990) presented a heuristic solution
method, and a decision support system utilizing this heuristic, to
optimally transport crew to and from oil platforms off the coast
of Brazil. The first paper presenting a mathematical model of the
operational planning of personnel transport by helicopters
between heliports onshore and offshore platforms is that of
Sierksma et al. (1998), who present both exact and heuristic
approaches for solving the problem. The objective is to route each
helicopter such that a given number of personnel are replaced at
each location, and the total transportation costs are minimized.
The problem is modelled as a split delivery vehicle routing prob-
lem, where more than one helicopter may meet the demand at a
given offshore installation.

Since then, similar problems have been studied by Moreno et al.
(2005), Moreno et al. (2006) and Menezes et al. (2010), who all
consider transportation of personnel from heliports to offshore
oil platforms off the Brazilian coast. Moreno et al. (2005) study
the problem of planning trips for each helicopter for a single day,
where the trips are limited by the number of intermediate landings
for both orders and trips, and the objective is to minimize costs
related to takeoff and landing, distance and hours travelled, and
personnel not transported. To solve this problem they propose a
heuristic that constructs a set of trips and aggregates the trips into
routes for each helicopter. Moreno et al. (2006) extend the work of
Moreno et al. (2005) by adding column generation procedures to
the heuristic, utilizing information from the LP relaxation to con-
struct helicopter routes. The problem also involves the element
of an imposed waiting time between trips. The work is further
extended by Menezes et al. (2010) who use a column generation-
based solution approach for the same problem.

Another aspect of operational offshore helicopter planning is
safety and risk. This has been studied by Qian et al. (2011) and
Qian et al. (2014) who both analyze and propose approaches to
minimize takeoff and landing risk, and suggest new operational
procedures intended to create safer flight schedules for pickups
and deliveries of personnel.

Hermeto et al. (2014) and Fernández-Cuesta et al. (2017) solve
strategic problems where the goal is to minimize the long-term
costs related to opening and operating airfields, and transporting
workers to and from offshore installations. Hermeto et al. (2014)
apply a simple routing system which assume that each helicopter
only visits one platform on each trip, whereas Fernández-Cuesta
et al. (2017) establish a more complex routing component where
a route may visit several offshore installations. In addition,
Fernández-Cuesta et al. (2017) incorporate the possibility of leas-
ing hubs for refueling off the coast.

What separates the problem studied in this paper from earlier
works, is that we consider transportation of personnel between
offshore installations, in addition to between the installations
and the heliport. Further, we consider time dependencies between
transportation of key personnel and enforce that no two heli-
copters can be present at an installation at the same time. We thus
have a richer problem, incorporating more of the real-life con-
straints and dependencies.

The problem studied in this paper can be seen as a rich variant
of the vehicle routing problem (VRP) with time windows. It combi-
nes several variants and extensions of the VRP where each aspect
has a rich body of research literature thoroughly reviewed in ded-
icated surveys. The problem is a pickup and delivery problem
(PDP) (Berbeglia et al., 2007), with multiple depots (Montoya-
Torres et al., 2015), heterogeneous fleet (Koç et al., 2016), multiple
trips (Cattaruzza et al., 2016) and temporal synchronization of

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
operations (Drexl, 2012). In the following we will classify our prob-
lem within the classification schemes presented by the surveys
cited above, and present the most recent papers on exact solution
methods for each variant and extension.

According to the classification scheme of PDPs presented by
Berbeglia et al. (2007), a PDP is categorized as a one-to-one-PDP
(1-1-PDP) if it has exactly one pickup node and one delivery node
for all orders and categorized as a one-to-many-to-one-PDP (1-M-
1-PDP) if orders consist of either pickups at the depot and delivery
to customers, or vice versa. If each customer has both positive
pickup and delivery demands it is categorized as a problem with
combined demands. According to this classification, the problem
studied in this paper is a combination of the 1-M-1-PDP and the
1-1-PDP, however, as seen in Section 3, we model it as a strictly
1-1-PDP. State of the art exact solution methods for the 1-1-PDP are
presented by Ropke and Cordeau (2009) and Baldacci et al. (2011).
The former present a solution method based on branch-price-
and-cut, while the latter is based on dual bounding techniques
combined with enumeration of all routes with reduced cost in
the interval between the best known primal and dual solutions.
Both solution methods use a set partitioning model where each
variable represents a feasible route for each vehicle.

In the survey on VRP with heterogeneous fleet given by Koç
et al. (2016), they divide the literature into categories based on
whether fleet composition is fixed (HF) or a decision variable
(FSM), whether the objective includes fixed costs, variable costs,
or both, and whether the problem includes time windows. Accord-
ing to their classification the problem studied here is a HFTW(D),
where the problem has a fixed fleet, includes time windows and
the variable part of the costs are related to the distance travelled.
Exact solution methods for this problem are presented by
Baldacci et al. (2010) who apply a dual bounding algorithm and
route enumeration, and Pessoa et al. (2018) who combine a route
enumeration scheme for small vehicles with a tailored branch-
price-and-cut algorithm. Both methods rely on set partitioning
models.

A literature review on the multi depot vehicle routing problem
is given by Montoya-Torres et al. (2015), which categorizes the
multi depot VRP into two categories with single or multiple objec-
tives. The problem studied in this paper belongs to the former cat-
egory, for which recent exact algorithms are presented by Baldacci
and Mingozzi (2009) and Contardo and Martinelli (2014). As with
the problem variants described above, dual bounding and
branch-and-price solution methods are used in this paper, both
based on set partitioning models. It is also worth mentioning that
an extension of this problem, known as the location routing prob-
lem, where the location of the depots must also be decided, has
gotten significant attention in the literature (Drexl and Schneider,
2015).

In the survey on multi-trip VRPs given by Cattaruzza et al.
(2016), they identify four main academic extensions of the prob-
lem: time windows, service dependent loading times, limited trip
duration, and profits. The problem in this paper include time win-
dows and limited trip durations, but not the other two. An exact
solution method to the multi-trip VRP is proposed by Mingozzi
et al. (2013), while an exact method for an extension of the prob-
lem which include both time windows and limited trip durations is
given by Hernandez et al. (2016). Both papers base their solution
algorithm on first generating trips for the vehicles and then con-
catenating these trips into feasible routes for each vehicle.

A survey on VRPs with synchronization is presented by Drexl
(2012). According to his classification scheme, the problem studied
in this paper includes temporal operation synchronization with
precedence, both with respect to when personnel is picked up/de-
livered and when the offshore installations are visited. Dohn et al.
(2011) present four different formulations for handling temporal
3

synchronization, including handling the synchronization through
branching on the time windows. All the models are based on a
branch-and-price approach. For the case of synchronized VRP with
pickup and deliveries, a comparison of branch-and-price based
solution methods, is conducted by Gschwind (2015).

Common for all the extensions and variants of the VRP sur-
veyed, is that the solution methodology is based on a (generalized)
set partitioning formulation, where each variable represents a path
through the problem defining network. For the PDP, MDVRP, and
HFTW, the problem can be formulated as a standard set partition-
ing model where each variable represents a feasible path through
the problem defining network, and there is one constraint per cus-
tomer, and one per vehicle. For the synchronization aspect, addi-
tional constraints have to be added to the model to ensure that
the different vehicles interact in accordance with the synchroniza-
tion requirements. For the multi-trip VRP, the complexity of the
model depends on whether the variables in the model represent
single trips, or a complete route for each vehicle. In the former
case, one needs to coordinate the sequence and start times of the
trips for each vehicle, leading to additional constraints in the
model.
3. Mathematical models

When modelling this problem it is natural to aggregate all per-
sonnel going from the same heliport to the same installation (or
vice versa) and that has the same time restrictions and dependen-
cies, into one order. In this section we present two mathematical
models for the transportation of a set of orders using helicopters.
In Section 3.1 we present a compact mathematical formulation of
the problem based on commodity flows along the arcs of the prob-
lem defining graph. Then in Section 3.2 we present a model based
on pregeneration of all possible trips for each helicopter from its
heliport to a set of installations and back to its heliport.
3.1. Compact mathematical formulation

The problem of serving n orders may be modelled on a graph
where the pickup and delivery location of orders are represented
by nodes. Let NP ¼ 1;2; . . .nf g be the set of pickup nodes, and
ND ¼ nþ 1;nþ 2; . . . ;2nf g be the set of delivery nodes, where
iþ nð Þ is the delivery node of the order picked up at node i. Denote
the number of personnel picked up or delivered at node i as Pi, and
let Ti and Ti denote the earliest and latest time a node may be ser-
viced, respectively. Let NC � ND � NP , indexed by i; jð Þ, be the set of
connected nodes, i.e a pair of nodes where node imust be visited at
least TC

ij time units before j. Let NI
i represent the set of nodes located

at the same installation/heliport as node i. Further, we have a set of
refueling nodes NF located at heliports where the helicopters may
refuel between trips during the day, and a set NS � NPSND con-
taining all nodes that are not located at a heliport. Fig. 1 shows
an example of how nodes are distributed across two heliports
and three offshore installations.

Let H be the set of helicopters, indexed by h, where each heli-
copter has a given seat capacity Kh and a fixed cost CH

h that occurs
if the helicopter is being used. Let s hð Þ and e hð Þ be the start node
and end node, respectively, representing the heliport where heli-
copter h starts and ends its day. With each helicopter we associate
a graph Gh ¼ Nh;Ahð Þ where Nh ¼ NPSNDSNF

h

S
e hð Þ; s hð Þf g, and

NF
h � NF is the set of refueling nodes located at the same heliport

as nodes e hð Þ and s hð Þ. Let Fhi and Fhi denote the maximum and
minimum level of fuel on board helicopter h when arriving at node
i, respectively.

Fig. 1. Example of nodes on installations and heliports. The white nodes represent pickup nodes, the grey represent delivery nodes and the black nodes, S; F, and E, represent
start, refueling and end nodes for helicopters stationed at heliport number 1 and 2, respectively.

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
The set Ah � Nh � Nh define the arcs that are feasible for the
helicopter to traverse. First, to avoid sub-tours at an installation,
and ensuring that we deliver before picking up, we remove all arcs
i; jð Þ from Ah if j 2 NI

i and i < j. Second, to enforce refueling every
time the helicopter returns to the heliport, we remove all arcs
between a pickup and a delivery node at a heliport, and ensure that
no arc from a node at another installation can go directly to a
pickup node at a heliport. Thus all helicopters arriving at heliports
must visit (a subset of) the delivery nodes, then the refueling node,
and finally (a subset of) the pickup nodes.

With each arc i; jð Þ 2 Ah we associate a cost Chij, fuel consump-

tion Fhij, and a time Thij for traversing it. Let TL be the landing time

at any installation, and let TL
ij be the landing time at node i when

travelling to node j specifically. Note that both Thij and TL
ij are 0 if

j 2 NI
i , i.e. node i and j are at the same offshore installation. Due

to safety regulations there is a maximum number of legs travelled
between the pickup and delivery of an order, given by L. Let
K ¼ 1; . . . ;K

� �
be the set of possible leg numbers, indexed by k,

where K is an upper bound on the number of legs a helicopter
can fly on a given day.

Let the binary variable xhijk be equal to one if helicopter h travels
from node i to j on leg k, and zero otherwise. Variable phi is the
number of passengers when leaving node i, and f hi is the fuel level
and thi is the time when helicopter h is arriving at node i. The bin-
ary variable zh equals one if helicopter h is used, and zero other-
wise. Further, we introduce the binary variable chij which is equal

to one if helicopter h service both nodes i 2 N and j 2 NI
i and zero

otherwise, while dij is equal to zero if two different helicopters ser-

vice nodes i and j and i is serviced at least TL time units before j.
For ease of exposition, the constraints in the model below are

defined using sets of nodes and may therefore contain combina-
tions of the indices h; i, and j for which the corresponding arc
i; jð Þ 2 Ah does not exist (e.g. when i ¼ j). In these cases the corre-
sponding variable xhijk can be assumed to take the value zero. Using
this notation, the problem can be formulated as follows:
4

min
X
h2H

X
i2Nh

X
j2Nh

X
k2K

Chijxhijk þ
X
h2H

CH
h zh; ð1Þ

subject to:X
h2H

X
j2Nh

X
k2K

xhijk ¼ 1; i 2 NP ; ð2Þ
X
j2Nh

X
k2K

xhijk �
X
j2Nh

X
k2K

xh nþið Þjk ¼ 0; h 2 H; i 2 NP; ð3Þ
X
j2Nh

X
k2K

xhijk �
X
j2Nh

X
k2K

xhjik ¼ 0; h 2 H; i 2 Nh n s hð Þ; e hð Þf g; ð4Þ
X
j2NP

xhs hð Þj1 ¼ zh; h 2 H; ð5Þ
X
i2ND

X
k2K

xhie hð Þk ¼ zh; h 2 H; ð6Þ
X
j2Nh

xhjik ¼
X
j2NI

i

xhijk þ
X

j2NhnNI
i

xhij kþ1ð Þ;

h 2 H; i 2 Nh n s hð Þ; e hð Þf g; k 2 K n jKjf g; ð7ÞX
j2Nh

X
k2K

kxhj iþnð Þk �
X
j2Nh

X
k2K

kxhjik 6 L; h 2 H; i 2 NP; ð8Þ

f hi � Fhij � f hj þMF
hij 1�

X
k2K

xhijk

 !
P 0;

h 2 H; i 2 Nh; j 2 Nh n NF
h; ð9Þ

Fhi 6 f hi;6 Fhi; h 2 H; i 2 Nh; ð10Þ

phi þ Pj � phj � Kh 1�
X
k2K

xhijk

 !
6 0; h 2 H; i 2 Nh; j 2 NP ; ð11Þ

phi � Pj � phj � Kh 1�
X
k2K

xhijk

 !
6 0; h 2 H; i 2 Nh; j 2 ND; ð12Þ

phi � phj � Kh 1�
X
k2K

xhijk

 !
6 0; h 2 H; i 2 Nh; j 2 NF

h; ð13Þ

phi ¼ 0; h 2 H; i 2 NF
h; ð14Þ

Pi

X
k2K

X
j2Nh

xhijk 6 phi 6 Khzh; h 2 H; i 2 NP; ð15Þ

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
0 6 ph iþnð Þ 6 Kh � Piþnð Þ
X
k2K

X
j2Nh

xh iþnð Þjk; h 2 H; i 2 NP; ð16Þ

thi þ TL
ij þ Thij � thj þM0

hij 1�
X
k2K

xhijk

 !
P 0;

h 2 H; i 2 Nh; j 2 Nh n NF
h; ð17Þ

thi þ TL
ij þ Thij � thj þM00

hij 1�
X
k2K

xhijk

 !
6 0;

h 2 H; i 2 Nh; j 2 Nh; ð18Þ
thi þ

X
j2Nh

X
k2K

xhijk Thi iþnð Þ þ TL
i iþnð Þ

� �
6 th iþnð Þ; h 2 H; i 2 NP; ð19Þ

X
h2H

thi þ TC
ij 6

X
h2H

thj; i; jð Þ 2 NC ; ð20Þ
X
h2H

thi �
X
h2H

thj � TL þ TL þ T
�

j

� �
dij P 0; i 2 NS; j 2 NI

i ; ð21Þ
X
i02N

X
k2K

xhii0k þ
X
j02N

X
k2K

xhjj0k 6 2chij; h;2 H; i 2 NS; j 2 NI
i ji < j; ð22Þ

dij þ dji 6 1þ
X
h2H

chij; i 2 NS; j 2 NI
i ji < j; ð23Þ

X
j2Nh

X
k2K

Tixhijk 6 thi 6
X
j2Nh

X
k2K

Tixhijk; h 2 H; i 2 Nh; ð24Þ

xhijk 2 0;1f g; h 2 H; i; jð Þ 2 Ah; k 2 K; ð25Þ
zh 2 0;1f g; h 2 H; ð26Þ
chij 2 0;1f g; h 2 H; i 2 Nh; j 2 NI

i ; ð27Þ
dij 2 0;1f g; i 2 N; j 2 NI

i : ð28Þ

The objective function (1) minimizes the cost related to travers-
ing arcs and utilizing helicopters. The constraints (2) and (3) make
sure that all orders are handled and that the same helicopter visits
both the pickup node and the corresponding delivery node. Con-
straints (4)-(6) ensure continuous flight sequences, while begin-
ning and ending in the correct nodes. The arcs are given the
correct leg index with constraints (7), while constraints (8) limit
the number of legs between a pickup node and the corresponding
delivery node. Constraints (9) and (10) handle fuel consumption
and limit the fuel levels. The big M is given by MF

hij ¼
F
�

hi þ Fhij � Fhj. Embarking and disembarking of personnel at pickup

and delivery nodes are enforced with constraints (11) and (12),
respectively, while constraints (13) and (14) ensure that no per-
sonnel is on board the helicopter when refueling. Constraints
(15) and (16) limit the number of passengers on board a helicopter
when leaving a pickup and delivery node, respectively. Updating
the departure times from each node visited is handled by con-
straints (17) and (18). Note that the refueling nodes are not part
of constraints (17) because, unlike at installation nodes, you are
allowed to wait at the heliports before refueling. The big Ms are
given as M0

hij ¼ Tj þ TL
ij þ Thij and M00

hij ¼ Ti þ TL
ij þ Thij, respectively.

Constraints (19) ensure that the pickup node is visited earlier than
the corresponding delivery node. The minimum time difference
between handling the connected orders is enforced through con-
straints (20). Constraints (21)-(23) ensure that no two helicopters
are present at an installation simultaneously. The upper and lower
limit of the departure time are stated with constraints (24). Finally,
constraints (25)-(28) give the domain of each variable.
3.2. Trip-based mathematical formulation

An alternative to the model presented above, is a formulation
where each variable represents a trip beginning and ending at a
heliport. Let Rh be the set of all possible trips for helicopter h,
indexed by r, and let S ¼ 1; . . . ; jSjf g be the set of trip numbers that
5

a helicopter may perform during a day, indexed by s, indicating
which trip number it is currently performing. The parameter CT

hr

is the cost related to travelling trip r with helicopter h, and the bin-
ary parameter Aihr indicates whether a node i is visited on trip r
with helicopter h or not. The time helicopter h uses on trip r is
denoted Thr , while the time from the start of a trip to a specific
node i is denoted Tihr . Let Thr be the earliest and Thr be the latest
possible time that trip r can be initiated with helicopter h. The
parameter TH is the minimum time consumption at a heliport
between trips. The binary variable khrs equals one if helicopter h
travels trip r on trip number s, and zero otherwise. Variable ths rep-
resents the point in time when helicopter h starts trip number s
from the heliport, while variable ti is the point in time when node
i is visited. With this notation, the the trip-based model is formu-
lated as follows:

min
X
h2H

X
r2Rh

X
s2S

CT
hrkhrs þ

X
h2H

X
r2Rh

CH
h khr1; ð29Þ

subject to:X
h2H

X
r2Rh

X
s2S

Aihrkhrs ¼ 1; i 2 NP; ð30ÞX
r2Rh

khrs 6 1; h 2 H; s 2 S; ð31ÞX
r2Rh

khrs P
X
r2Rh

khr sþ1ð Þ; h 2 H; s 2 S n jSjf g; ð32ÞX
r2Rh

Thrkhrs 6 ths 6
X
r2Rh

Thrkhrs; h 2 H; s 2 S; ð33Þ

ths þ
X
r2Rh

TH þ Thr

� �
khrs 6 th sþ1ð Þ þMh 1�

X
r2Rh

khr sþ1ð Þ

 !
;

h 2 H; s 2 S n jSjf g; ð34Þ
tj � ti P TC

ij ; i; jð Þ 2 NC ; ð35Þ
ti P ths þ

X
r2Rh

Tihrkhrs �Mih 1�
X
r2Rh

Aihrkhrs

 !
;

i 2 N;h 2 H; s 2 S; ð36Þ
ti 6 ths þ

X
r2Rh

Tihrkhrs þ TP
i 1�

X
r2Rh

Aihrkhrs

 !
;

i 2 N; h 2 H; s 2 S; ð37Þ
ti � tj P TL � Tj þ TL � Ti

� �
dij; i 2 NS; j 2 NI

i ; ð38ÞX
r2Rh

X
s2S

Aihrkhrs þ
X
r2Rh

X
s2S

Ajhrkhrs P 2chij;

h 2 H; i 2 NS; j 2 NI
i ji < j; ð39Þ

Ti 6 ti 6 Ti; i 2 N; ð40Þ
dij þ dji 6 1þ

X
h2H

chij; i 2 NS; j 2 NI
i ji < j; ð41Þ

chij 2 0;1f g; h 2 H; i 2 NS; j 2 NI
i ; ð42Þ

dij 2 0;1f g; i 2 N; j 2 NI
i ; ð43Þ

khrs 2 0;1f g; h 2 H; r 2 Rh; s 2 S:ð44Þ
The objective function (29) minimizes the cost of the selected

trips and the fixed cost of using helicopters. Constraints (30)
ensure that all orders are handled. Constraints (31) and (32) make
sure that a helicopter can maximum do one trip for each trip num-
ber, and that a trip can be assigned to a trip number, only if the pre-
vious trip number has already been used. In constraints (33) the
time windows for when a helicopter can initiate a trip are bounded
by which trip the helicopter is using. If a helicopter does not use
trip number s, the starting time of that trip number is set to 0. Con-
straints (34) state the earliest point in time a helicopter can initiate
a trip, with the big M given as: Mh ¼ maxr2Rh Thr þ Thr

� �þ TH . Con-
straints (35) ensure that there is sufficient time between the ser-
vice of two connected orders. Constraints (36) and (37) ensure
that the service time of each order is calculated correctly. The big

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
M is set to Mih ¼ maxr2Rh Thr
� �� Ti. Constraints (38)–(41) ensure

that no two helicopters are present at any installation simultane-
ously. Finally, constraints (42)-(44) state the variable domains.
4. Solution method

Mixed integer programming models such as those presented in
Section 3 may be solved by commercial solvers using the branch-
and-bound (B&B) algorithm. However, a prerequisite for solving
the trip-based model formulated in Section 3.2 is that all possible
trips for all helicopters can be generated apriori.In the following
we describe such a trip generation algorithm in Section 4.1, before
proposing an alternative formulation of parts of the trip-based
model requiring delayed constraint generation in Section 4.2. In
Section 4.3 we describe how the number of arcs in the problem
defining graph may be reduced, and how the width of the time
windows may be decreased, before finally introducing some aggre-
gated branching rules used when solving the trip-based mathe-
matical model in Section 4.4.
4.1. Apriori trip generation

The trips in the trip based model are generated apriori using a
labeling algorithm. Labeling algorithms are commonly used to
solve shortest path problem with resource constraints (SPPRC)
(Irnich and Desaulniers, 2005). For the trip generation algorithm
presented here, a labeling algorithm is run for each helicopter
h 2 H and its corresponding graph Gh presented in Section 3. We
do, however, make one minor modification to Gh: since we are gen-
erating trips, and refueling is done between trips, the set of refuel-
ing nodes NF

h is removed from the graph. A pseudo code for the trip
generation is provided in Algorithm 1.

A label is used to store a partial path through the network, and
the resources accumulated along that path. A label L i;R; L�ð Þ, con-
tains the last node on the path, i, a set of resources,R, and a pointer
to the parent label, L�. The parent label pointer is necessary in order
to retrace the path represented by the label. The labeling algorithm
starts by initiating a set of unprocessed labels, U, only consisting of
the start label L s hð Þ;R0;NULLð Þ. The initial set of resources are
referred to as R0, and the parent label pointer is a zero pointer,
NULL. In the algorithm, a selected label L ¼ i;R; �ð Þ, representing
a partial path from node s to i with accumulated resources R, is
removed from U. This partial path is extended along all arcs
i; jð Þ 2 Ah to create new partial paths, each one represented by a
label L0. The resource consumption of label L0 is calculated accord-
ing to so-called resource extension functions, given by f ij Rð Þ, where
R is the resource consumption of label L. The resource consump-
tion of each extended label is then checked to see if it is within
the resource window aj; bj

� 	
. If it is, then the new label is added to

U unless j ¼ e hð Þ, in which case the label has been extended to
the sink node. The algorithm terminates when there are no unpro-
cessed labels left in U. In the following we describe which
Table 1
Label attributes and initial values.

Resource Description Initial value

O Open orders (started, but not yet completed) £
U Unreachable orders £
Lo Legs travelled for order o 0
f Remaining fuel Fhs hð Þ
t Earliest possible arrival at the current node Ths hð Þ
t Latest possible arrival at the current node Ths hð Þ
tCi Time counter for node i 0

6

resources are stored in R, what the resource extension functions
look like, and what the resource window is for each resource.
Algorithm 1. Label algorithm for trip generation for
helicopter h.
1: Rh ¼ £

2: U ¼ L s;R0;NULLð Þf g

3: while U–£

4: L ¼ i;R; �ð Þ ¼RemoveFirstðUÞ

5: for i; jð Þ 2 A� �

6: L0 ¼ j; f ij Rð Þ; L

7: if aj 6 f ij Rð Þ 6 bj

8: if j ¼ e hð Þ

9: Rh ¼ Rh [L0f g

10: else

11: U ¼ U [L0f g

12: end if

13: end if

14: end for

15: end while
4.1.1. Resources
The resources are used to model constraints (3)-(12), (15)–(19)

and (24)–(25) in the mathematical model. The set of resources kept
in a label is described in Table 1, as well as their value in the initial

label. The resource set, R, is defined as R ¼ O;U;Lo; f ; t;�t; tCi

 �
,

and R0 is the set of initial resource values.
The resources f ; t, and t keep track of the fuel left on board the

helicopter and the earliest and latest feasible arrival time at node i.
Further, the resource O keeps track of the orders on board the heli-
copter when reaching node i, while the resource Lo keep track of
the number of legs travelled for each order o 2 O. The set U keeps
track of orders which can no longer be serviced on the partial path.
This may be because the order has already been served on the (par-
tial) path, or because the time windows of the pickup and/or deliv-
ery node makes it impossible to service the order on any feasible
extension of the path. Finally, the resource tCi keeps track of the
amount of time that has elapsed since the visit at node i. The cost
of travelling a trip can be calculated after a label has reached the
end node, and is therefore not tracked.

4.1.2. Resource extension functions
This subsection presents the resource extension functions used

when extending labels in the labeling algorithm.

fOij O Lð Þð Þ ¼
O Lð Þ [jf g j 2 NP

O Lð Þ n j� nf g j 2 ND

O Lð Þ j ¼ e hð Þ

8><
>: ð45Þ

f Uij U Lð Þð Þ ¼ U Lð Þ [jf g j 2 NP

U Lð Þ otherwise

(
ð46Þ

f Lo
ij Lo Lð Þð Þ ¼ Lo Lð Þ þ 1 j R NI

i ^ o 2 OðLÞ
Lo Lð Þ otherwise

(
ð47Þ

f fij f Lð Þð Þ ¼ f Lð Þ � Fhij ð48Þ
f tij t Lð Þð Þ ¼ max Thj; t Lð Þ þ TL

ij þ Thij

n o
ð49Þ

f tij t Lð Þ� ¼ min Thj; t Lð Þ þ TL
ij þ Thij

n o
ð50Þ

f
tC
k
ij tCk Lð Þ� ¼ max TC

jk; t
C
k Lð Þ � Thij � TL

ij

n o
j; kð Þ 2 NC

max 0; tCk Lð Þ � Thij � TL
ij

n o
otherwise

8><
>: ð51Þ

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
The sets of open and unreachable orders are extended using
Eqs. (45) and (46), respectively. In addition, the set of unreachable
orders can be updated by considering the possible extensions. If an
extension to a pickup node is found to be infeasible due to lack of
fuel, or because the earliest possible arrival time is outside the time
window, the pickup node is added to the set of unreachable orders.
These resource windows cannot become feasible. Thus, it is impos-
sible for any extension to the end node to handle the order. For a
pair of time connected orders, the order related to the service that
must be conducted first is added to the set U, when the service
related to the other order has been conducted. Eqs. (47) update
the number of intermediate landings for each open order, and Eq.
(48) update the fuel level. Eqs. (49) and (50) extend the lower
and upper limits for the arrival at the current node, while Eqs.
(51) update the time counter for all nodes.

4.1.3. Resource windows
An extension to node j is feasible for a label L if criteria (52)–

(58) are met. Criterion (52) states that the extension cannot be a
part of the set of unreachable orders if the evaluated extension is
a pickup node. This criterion ensures that the related order has
to be open in order to extend to a delivery node, and that a label
cannot be extended to the end node if it has any open orders. Cri-
terion (53) states that the maximum leg counters cannot exceeded
their limits. Sufficient fuel level for the helicopter to return to the
heliport is stated in criterion (54). Criterion (55) enforces that the
number of personnel on board the helicopter does not violate its
capacity. Criteria (56) and (57) ensure that the time window at
the last node of the path is not violated. Finally, criterion (58)
enforces that the time counter resource must be zero or negative,
if node j is part of a connected pair of orders.

j R U j 2 NP
h

j� nð Þ 2 O j 2 ND
h

O ¼ £ j ¼ e hð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

ð52Þ

Lk 6 L; k 2 O ð53Þ
f Lð Þ P Fhj ð54ÞX
i2O Lð Þ

Pi 6 Kh ð55Þ

t Lð Þ P Thj ð56Þ
t Lð Þ 6 Thj ð57Þ
tCj 6 0 ð58Þ
4.2. Delayed constraint generation

A drawback of the model presented in Section 3.2 is that there is
a large number of constraints ((36)–(43)), and a large number of
binary variables (d and c) that are needed only to ensure that no
two helicopters visit the same installation at the same time. One
way to handle this, would be to categorize these constraints as lazy
constraints, a concept available in most commercial solvers that
removes the constraints from the model, and re-inserts them as
they are needed throughout the B&B tree. However, these con-
straints are potentially quite weak because of the big-M formula-
tions used in constraints (36)–(38), and constraints (36) and (37)
are quite dense as they sum over the set of trips Rh.

Instead, we can reformulate the part of the mathematical model
covering constraints (37)–(43). First, we re-define constraints (36)
and (37) to only be active for nodes i that are part of a pairing NC ,
by re-writing them as:
7

ti P ths þ
X
r2Rh

Tihrkhrs �Mih 1�
X
r2Rh

Aihrkhrs

 !
; i; �ð Þ; �; ið Þ 2 NC ;h 2 H; s 2 S;

ð59Þ

ti 6 ths þ
X
r2Rh

Tihrkhrs þ TP
i 1�

X
r2Rh

Aihrkhrs

 !
; i; �ð Þ; �; ið Þ 2 NC ;h 2 H; s 2 S:

ð60Þ

This is done in order to handle constraints (35). Note that the
number of connected orders is usually quite small in practice, lead-
ing to few constraints of this type.

Second, to enforce that at most one helicopter is present at each
offshore installation at any given time we introduce an alternative
formulation, using an exponential number of constraints. Let

Hi ¼ h; r; sð Þjh 2 H; r 2 Rh s 2 S; Aihr ¼ 1f g
and for ease of exposition we define hk ¼ hk; rk; skð Þ. Using this nota-
tion we can re-formulate the model as:

th1s1 þ Th1r1 ikh1r1s1 � th2s2 þ Th2r2jkh2r2s2
� � TL P �M2

h2
1� dh1h2
�

;

i 2 NS; j 2 NI
i ; h1 2 Hi; h2 2 Hjjh1–h2 ð61Þ

dh1h2 þ dh2h1 P kh1r1s1 þ kh2r2s2 � 1

i 2 NS; j 2 NI
i ; h1 2 Hi; h2 2 Hjji < j;h1–h2; ð62Þ

dh1h2 2 0;1f g; i 2 NS; j 2 NI
i ; h1 2 Hi; h2 2 Hjjh1–h2: ð63Þ

Constraints (61) correspond to constraints (36)–(38), with
M2

h ¼ maxr2Rh
�Thr

� �� �T i � TL. Note that each of these constraints
contains exactly five variables, making them very sparse. Con-
straints (62) correspond to constraints (39), and constraints (63)
put binary restrictions on the d-variables.

Since there is an exponential number of these constraints, it
would be impractical, and in many cases impossible to add all of
them to the model apriori. To avoid this we instead use delayed
constraint generation, where constraints (37)-(43) are initially
removed from the model, and the B&B algorithm is applied to
the relaxed model. Whenever a potential best integer solution is
found, we check whether it violates any of the constraints (61)–
(63). If it does not, then the solution provides a primal bound,
otherwise the violated constraints are added to make the solution
infeasible, and the B&B node is re-solved.

4.3. Preprocessing

Both the set of arcs for a given helicopter Ah and time windows
of some of the orders can be preprocessed in order to reduce the
number of variables in the arc-flow model, the number of label
extensions in Algorithm 1, and the size of the solution space. This
section proposes a number of conditions that imply that an arc can
be removed from the graph or that a time window can be
narrowed.

4.3.1. Preprocessing of arcs
Consider a helicopter h and the arc i; jð Þ 2 Ah. Under the follow-

ing circumstances may the arc be removed from the problem:

1. Arc is going from a start node or refueling node to a delivery

node. i 2 N F S s hð Þf g ^ j 2 N D

2. Arc from a pickup node to an end node or refueling node.

i 2 N P ^ j 2 N F S e hð Þf g
3. Node i or j, or their corresponding pickup/delivery node, is

located at a another heliport than the one used by helicopter
h.

4. The nodes i and j are at the same installation, and
j 2 NI

i ^ i < j. This also breaks symmetry.

5. Arrival at node j is too late. Thi þ TL
ij þ Thij > Thj

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
6. Arrival at node j is too early. Thi þ TL
ij þ Thij < Thj

7. The nodes are connected in the opposite order. j; ið Þ 2 NC

8. It is impossible to get the required time difference if the arc
is used.
Thij þ TL

ij < TC
ij and i; jð Þ 2 NC

9. Given the maximum amount of fuel it is possible to have
when arriving at node i, it must be possible to fulfill the
orders related to nodes i and j, and travel back to the heli-
copter’s heliport.
Tab
Pre

N

i

j

Fhij þ Fh iþnð Þ jþnð Þ þmin
Fhj iþnð Þ þ Fh jþnð Þe hð Þ
Fhi jþnð Þ þ Fh iþnð Þe hð Þ

 �
> Fhi i; j 2 NP

ð64Þ
Fhij þ Fhj iþnð Þ þ Fh iþnð Þe hð Þ > Fhi i 2 NP ; j 2 ND ð65Þ
Fhij þ Fhj jþnð Þ þ Fh jþnð Þe hð Þ > Fhi i 2 ND; j 2 NP ð66Þ
Fhij þ Fhje hð Þ > Fhi i; j 2 ND ð67Þ

0. Node i is a pickup node at an installation with a related
1
delivery node located at another installation, while j is a
node located on a heliport.

11. Node i is a delivery node located at a heliport and j is a
pickup node.

12. The helicopter does not have enough capacity to handle the
orders related to nodes i, and j simultaneously.

Pi þ Pj > Kh

� ^ : i 2 ND ^ j 2 NP
�

).

13. The helicopter does not have enough capacity to handle the
order size of node i or j. max Pi; Pj

�
> Kh .

Applying all of these rules, we can greatly reduce the solution
space of the compact formulation, and the number of extensions
made in the labeling algorithm.
4.3.2. Preprocessing of time windows
The time dependent orders create the possibility of reducing

their respective time windows. This method is based on the time
window reduction presented by Dohn et al. (2011). The reduction
of the time windows for a given pairing i; jð Þ 2 NC is formulated in
Table 2.
4.4. Aggregated branching variables

The choice of what variables to branch on in each node in the
B&B tree, affects the effectiveness of the algorithm (Gamrath
et al., 2015). Dumas et al. (1991) and Andersson et al. (2011)
include variables in their PDPs for the sole purpose of branching
on them. Dumas et al. (1991) branch on variables related to each
order in a PDP, while Andersson et al. (2011) use aggregated
branching variables, also referred to as constraint branching, in
the maritime pickup and delivery problem with split loads.

Aggregated branching variables have been utilized in the the
trip based model. Here, variables with the highest branching prior-
ity are a set of variables lhs, which equals 1 if helicopter h travels
any trip on trip number s, and 0 otherwise. Eq. (68) provides the
le 2
processing of time windows for connected orders.

ode Pre-reduction Post-reduction

Ti; Ti
� 	

Ti; min Ti; Tj � TC
n oh i

Tj ; Tj
� 	

max Tj; Ti þ TC
n o

; Tj

h i

8

connection between these variables and the original variables in
the model.

lhs ¼
X
r2Rh

khrs; h 2 H; s 2 S ð68Þ

The set of aggregated branching variables with the second high-
est priority, are similar to the binary variables applied by
Andersson et al. (2011). The binary variable jih, equals 1 if heli-
copter h conducts a pickup at node i, and 0 otherwise. The variables
are connected with the original variables through Eq. (69).

jih ¼
X
r2Rh

X
s2S

Aihrkhrs; i 2 NP; h 2 H ð69Þ
5. Computational study

In this section we perform a study of the computational perfor-
mance of the two mathematical models presented in Section 3,
when solved using Gurobi 9.0.0. All tests were conducted on a Len-
ovo NextScale nx360 M5 computer, with an Intel E5-2643v3 six
core 2�3.40GHz processor and 512.0 GB installed memory, run-
ning on a Linux operating system. The test instance generation
and labeling algorithm were implemented in C++.

In Section 5.1 we explain how the test instances used in this
computational study were generated, before we compare the com-
putational performance of the compact and trip-based model for-
mulations in Section 5.2. Further, we test the effect the number
of connected orders in the set NC has on the computational time
in Section 5.3, before finally comparing the computational effect
of solving instances with a single, rather than multiple, heliport
(s) in Section 5.4.

5.1. Test instance generation

The input for the test instance generation was extracted from
flight records for helicopters on the Norwegian continental shelf
in 2018. Selected heliports were Bergen Airport Flesland and Sta-
vanger Airport Sola, which are the two most used heliports on
the NCS. In addition we selected ten installations, which have fre-
quent flights to or from these heliports, and are reachable from
both heliports. This created a network where all locations can be
reached from an arbitrary location in the network. A map showing
the location of the heliports and the offshore installations can be
seen in Fig. 2.

Each instance is characterized by the following features:

� Number of orders, i.e. the instance size.
� Number of personnel in each order.
� Pickup and delivery location of each order.
� Time windows for each order.
� What orders that are time connected orders, and required time
differences.

Three instances were generated per instance size. The number
of personnel per order, was drawn randomly in the interval
between 6 and 10, and the time windows were given widths of
one hour. The number of orders between installations were set
to be 25% of the total orders in an instance, although flight records
suggest that the actual percentage is closer to 5 %. This relatively
high percentage imposes a stronger need for coordination and syn-
chronization between helicopters, as helicopters must conduct
more visits at installations. We thus get test instances where this
aspect is prominent.

The helicopters used in the test instances were the Super Puma
and Sikorsky S-92, which are the most used helicopter types on the

Fig. 2. Overview of the two airports (squares) and the location of the 10 offshore installations (crosses) used to generate the test instances.

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
NCS. The number of helicopters included in each instance depends
on the number of orders. For a given number of orders, n, the num-
ber of helicopters included, jHj, was given by jHj ¼ 2 � dn5e þ 2. This
number just needs to be large enough to make the instance feasi-
ble, since a part of the objective is to minimize the number of heli-
copters used. The helicopters were evenly distributed among the
two heliports.

The testing of the solution methods is divided into three parts.
For the first part, presented in Section 5.2, one pair of time con-
nected orders was included in each instance. In the second part
of the testing, presented in Section 5.3 we increased the number
of pairs of connected orders in each instance from 0 and up to 8.
In both these parts, the time connected orders were determined
by randomly choosing the pickup and the delivery of two different
orders. Finally, in the third part of the testing, presented in Sec-
tion 5.4, we removed the heliport Flesland from each instance
and moved all pickup and delivery nodes, and helicopters, to Sola
Airport.
5.2. Comparison of models

A comparison of the computational effort needed to solve the
compact and trip based models, respectively, using a commercial
solver for instances between 8 and 16 orders is presented in
Table 3. For the compact model we give the optimality gap at the
termination of the B&B search (Opt. gap) and the computing time
in seconds (Comp. time). For the trip-based model we give the
optimality gap, the time spent generating trips (Trip gen. time),
the time spent solving the mathematical model using a commer-
cial solver (B&B time), and the total computing time (Comp. time)
which is the sum of the two. Maximum computing time for both
solution methods was set to 3600 seconds.

As can be seen from the table, the compact model struggles to
solve instances with 10 orders, and once the number of orders is
increased to 12 or more, none of the instances may be solved
within one hour. Most of the instances also have an optimality
gap of 100%, indicating that not even a feasible solution was found
to the problem within the time limit. However, the trip based
model can solve all instances from 8 to 16 orders within two
seconds.
9

It is clear from the results presented in Table 3 that the trip-
based model outperforms the compact model in terms of solution
quality within a limited computing time when applying standard
commercial solvers to both model formulations. To see how the
trip-based model handles larger test instances, we compare three
solution methods based on this model formulation. The first is to
use standard branch-and bound (B&B) to solve the model pre-
sented in Section 3, while the second one is to define constraints
(37)–(43) as lazy constraints during the execution of the B&B algo-
rithm (Lazy). The third is to use delayed constraint generation
(DCG), as described in Section 4.2.

Common for all the solution methods, is that all trips have to be
generated apriori. In Table 4 we report the time used for generating
trips, and the number of trips generated, for instances with 17 to
52 orders. Each row is an aggregation of 9 instances, with 3
instances of each order size. For each of these sets of 9 instances,
we give the minimum, average, and maximum time, and number
of trips, respectively. Unsurprisingly, the general trend is that both
the time and number of trips increase with an increasing number
of orders, however, there are some exceptions. E.g. the maximum
time spent on the instances with an order size in the 44–46 inter-
val is larger than the maximum time spent on instances with an
order size in the 50–52 interval. In general we see that the total
time spent is less than one minute for all the instances up to 40
orders, and even for some of the instances up to 52 orders. In the
worst case over all instances tested, it takes less than 12 min
(720 s) to generate all trips. We further observe that the number
of trips generated varies a lot within each order interval, with
e.g. the instances in the 44–46 interval ranging from 100,000 to
10,000,000 trips. This indicates that the distribution of orders
across heliports and offshore installations, and the possibilities to
remove arcs and reduce time windows, have a large impact on
the number of feasible trips for each helicopter.

The results of running the three solution methods for larger
instances are presented in Table 5. For each of the solution meth-
ods, and each order size interval, we give the number of instances
solved to optimality (# Opt.), the average optimality gap (Opt. gap),
and the total computing time in seconds (Comp. time). The last line
of the table (Tot./Avg.) gives the total number of instances solved,
and the average optimality gap and computing time, respectively,
over all tested instances. For each instance, the maximal time of

Table 3
Table comparing the computational performance of the compact model presented in Section 3.1 and the trip-based model presented in Section 3.2. For the compact model we
present the optimality gap (Opt. gap) and the computing time (Comp. time), while for the trip-based model we present the optimality gap (Opt. gap) the time spent generating
trips (Trip gen. time), the time spent in the B&B search (B&B time) and the total computing time (Comp. time).

compact model trip-based model

Orders Opt. gap Comp. time [s] Opt. gap Trip gen. time [s] TtB&B time [s] Comp. time [s]

8 0.00 % 37 0.00 % 0.01 0.03 0.04
8 0.00 % 11 0.00 % 0.00 0.03 0.03
8 0.00 % 298 0.00 % 0.01 0.12 0.13
10 100.00 % 3600 0.00 % 0.01 0.32 0.33
10 0.00 % 619 0.00 % 0.01 0.09 0.10
10 25.20 % 3600 0.00 % 0.01 0.31 0.32
12 100.00 % 3600 0.00 % 0.01 0.33 0.35
12 100.00 % 3600 0.00 % 0.01 0.04 0.05
12 53.65 % 3600 0.00 % 0.01 0.44 0.45
14 100.00 % 3600 0.00 % 0.03 1.12 1.15
14 100.00 % 3600 0.00 % 0.01 0.28 0.29
14 100.00 % 3600 0.00 % 0.02 0.52 0.54
16 100.00 % 3600 0.00 % 0.04 1.48 1.52
16 100.00 % 3600 0.00 % 0.02 0.86 0.88
16 100.00 % 3600 0.00 % 0.05 1.73 1.77

Table 4
This table gives an overview of the minimum, average, and maximum time spent generating trips using Algorithm 1, and the minimum, average, and maximum number of trips
produced for subsets of 9 test instances with an increasing number of orders.

Time generating trips Number of trips

Orders Min Average Max Min Average Max

17–19 0.01 0.05 0.20 845 4 231 18 115
20–22 0.01 0.11 0.39 1 390 8 427 25 902
23–25 0.03 0.11 0.32 2 868 8 616 22 230
26–28 0.08 0.40 1.97 6 720 21 087 75 117
29–31 0.09 0.74 2.23 6 790 34 368 87 416
32–34 0.19 5.51 18.50 13 472 172 859 535 536
35–37 1.30 7.18 16.14 50 616 198 262 441 960
38–40 1.56 11.56 42.35 53 442 278 478 871 101
41–43 3.66 35.85 82.94 103 800 780 779 1 697 120
44–46 4.36 123.47 696.44 132 187 2 137 780 10 902 628
47–49 16.13 92.33 274.94 762 245 2 021 542 4 945 039
50–52 15.51 218.86 621.90 942 007 3 793 540 9 411 108

Table 5
Table comparing solving the trip-based model with standard B&B, with B&B using lazy constraints (Lazy), and delayed constraint generation (DCG), respectively. For each method
we give the number of instances solved to optimality (# Opt.), the average optimality gap (Opt. gap), and the average computing time (comp. time).

B&B Lazy DCG

Orders # Opt. Opt. gap Comp. time [s] # Opt. Opt. gap Comp. time [s] # Opt. Opt. gap Comp. time [s]

17–19 9 0.00 % 16.36 9 0.00 % 5.49 9 0.00 % 4.73
20–22 9 0.00 % 190.40 9 0.00 % 54.31 9 0.00 % 10.39
23–25 9 0.00 % 275.82 9 0.00 % 33.98 9 0.00 % 44.76
26–28 8 1.58 % 928.97 9 0.00 % 395.29 9 0.00 % 63.68
29–31 7 2.57 % 1541.25 9 0.00 % 969.34 8 0.62 % 772.64
32–34 1 20.61 % 3233.70 3 35.80 % 2540.17 3 16.18 % 2579.32
35–37 1 28.76 % 3413.04 3 28.07 % 2935.91 3 14.84 % 2585.45
38–40 0 23.51 % 3600.00 2 67.07 % 3365.38 2 41.16 % 3151.38
41–43 0 53.18 % 3600.00 0 68.79 % 3600.00 0 39.12 % 3600.00
44–46 0 64.36 % 3600.00 0 48.61 % 3600.00 0 71.34 % 3600.00
47–49 0 90.69 % 3600.00 0 100.00 % 3600.00 0 100.00 % 3600.00
50–52 0 91.34 % 3600.00 0 100.00 % 3600.00 0 100.00 % 3600.00
Tot/Avg 44 31.38 % 2300.0 53 37.36 % 2058.3 52 31.94 % 1967.7

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
the B&B search is adjusted to account for the time spent generating
the trips so that the maximal total computing time is one hour
(3600 s).

As can be seen from the table, all methods solve all instances
with up to 25 orders, though the standard B&B method is signifi-
cantly slower than the other two. For the instances with between
26 and 31 orders, the three methods can solve 15, 18, and 17 out
of 18 instances, respectively. Once the number of orders becomes
greater than 31, less than half of the instances within each order
10
size interval can be solved, and once the number of orders passes
40, none of the methods can solve any instance to optimality
within one hour, though feasible solutions can be found for many
of the instances. Overall, we see that both delayed constraint gen-
eration and applying lazy constraints outperforms standard B&B,
both when it comes to the number of instances solved, and the
average computing time. It is, however, notable that B&B finds fea-
sible solutions to some of the largest instances, which neither of
the other solution methods do. Comparing DCG with Lazy shows

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
that neither outperforms the other. Using lazy constraints we are
able to solve one more instance to optimality than when using
DCG, while the latter has a lower average optimality gap and com-
puting time. Thus, for instances with one pair of connected orders,
both of these methods seem to be equally good at solving the
problem.

5.3. Testing the effect of connected orders

In the tests presented above, the instances contained only one
pair of connected orders. In order to test the effect of the number
of connected orders on the computational performance of the pro-
posed methods, we have generated 5 additional instances with 30
orders each. Each of these instances has been solved 9 times, with
an increasing number of connected orders, from 0 to 8 pairs. The
computational performance of these tests can be seen in Table 6.
Here we have aggregated the results according to the number of
connected orders, and give the number of instances solved to opti-
mality within one hour (# Opt.), the average optimality gap (Opt.
gap), and the computing time (Comp. time). For the DCG method
we also list the average number of times constraints (61)–(63)
were added during the B&B search (# Cons.).

The table shows that the trend from the previous tests, where
the standard B&B performed inferior to the other two methods, is
present in these tests as well. It solves the least number of
instances, and has a higher average computing time than the other
two. What is interesting in Table 6 is that the delayed constraint
generation seems to significantly outperform the B&B with lazy
constraints, which spends, on average, about 50 % longer, and
solves 4 instances less within one hour, compared with the DCG
method. The general trend for all three methods is also that
increasing the number of connected orders, increases the comput-
ing time, however, there are some outliers. E.g. when using lazy
constraints, the instances without any connected orders take, on
average, longer to solve than 1–6 pairs of connected orders, and
it is unable to solve one of the instances.

In Table 7 we give the average number of trips generated (#
Trips), and the average number of B&B nodes generated (# B&B
nodes), when using the three different methods proposed in the
paper. First, we notice that the number of trips is reduced signifi-
cantly, when the number of connected orders increase. This is
due to the preprocessing techniques described in Section 4.3,
where we both remove arcs and narrow time windows for the
nodes representing these orders. There thus exists fewer feasible
paths through the problem defining network, reducing the number
of trips generated by the labeling algorithm described in Sec-
tion 4.1. When the number of connected orders reaches 8, we see
an almost 30 % reduction in the the average number of trips, com-
pared with when there are no connected orders.
Table 6
Table comparing solving the trip-based model with B&B, Lazy, and DCG, respectively, when
instances solved to optimality (# Opt.), the average optimality gap (Opt. gap), and the averag
were added is also listed (# Cons).

B&B Lazy

jN C j # Opt. Opt. gap Comp. time # Opt. Opt. gap

0 5 0.00 % 2595.24 4 0.33 %
1 3 0.95 % 2804.86 5 0.00 %
2 3 0.95 % 2501.21 5 0.00 %
3 3 1.44 % 2368.23 5 0.00 %
4 3 3.15 % 3067.16 5 0.00 %
5 3 4.03 % 2469.74 4 0.72 %
6 4 1.58 % 2223.34 4 0.33 %
7 3 3.27 % 2222.25 4 0.20 %
8 3 4.19 % 2215.46 3 3.47 %
Tot/Avg 30 2.17 % 2496.39 39 0.56 %

11
When comparing the number of nodes in the B&B tree, there is
also a trend that the delayed constraint generation creates a larger
B&B tree than the other two. In some cases, this may be explained
by the fact that the other two methods did not terminate their
search. However, e.g. for 2 connected orders we can see that using
lazy constraints gives roughly 53; 000 B&B nodes on average, while
delayed constraint generation gives 145;000 nodes when all
instances are solved to optimality. Despite generating much larger
B&B trees, we still get significantly shorter computing times, when
using DCG, indicating that less time is used in each node. This is
likely due to the fact that fewer constraints are added to the formu-
lation at a time, and the added constraints are less dense. Both
these factors are known to influence the time it takes to solve a lin-
ear program.

5.4. Testing the effect of one vs two heliports

To show that the presentedmethodology is also viable in the sin-
gle heliport case, and to compare the computational performance,
we have altered the instances presented in Section 5.1 by moving
all pickup and delivery nodes located at the heliport in Bergen, to
Stavanger. The results of using the DCG solution method on the test
instances from 17 to 37 orders are presented in Table 8. Each row is
an aggregation of nine instances, while the first three columns pre-
sents the number of instances solved to optimality (#Opt), the aver-
age optimality gap (Opt. gap), and the average total computing time
(Comp time). The last two columns show the percentage deviation
in objective value (D obj.) and the deviation in the number of trips
generated (D trips), respectively, when comparing the results with
the original test instances with two heliports. When calculating
these deviations, we have only considered the subset of instances
where both versions have been solved to optimality.

As seen in Table 8 we can solve all instances up to 31 order to
optimality, and further 8 of the instances from 32 to 37 orders.
Comparing these results to those presented in Table 3 we can see
that the DCG solution method can solve 3 more instances, and
has, on average, both smaller optimality gaps and shorter comput-
ing times. We also see that the number of trips generated is not
effected much by the reduction from two to one heliports. Thus,
we may conclude that the methodology works equally well for
instances with a single heliport.

Studying the results presented in Table 8, we further see that
the objective values, on average, increase slightly when going from
two to one heliports. This is not surprising, as the helicopters have
to fly a longer distances to service those installations closest to Ber-
gen. Comparing the optimal solutions of the test instances with
one and two heliports, the number of helicopters used are mostly
the same in both cases, however, there are both instances where
it increases and decreases by one.
the number of connected orders is increased. For each method we give the number of
e computing time (Comp. time). For the DCGmethod, the number of times constraints

DCG

Comp. time # Opt. Opt. gap Comp. time # Cons.

1668.36 5 0.00 % 471.59 73.6
1095.65 5 0.00 % 359.72 76.0
1089.97 5 0.00 % 737.95 94.6
1001.42 5 0.00 % 816.27 151.8
1034.59 5 0.00 % 1177.73 99.6
1545.19 5 0.00 % 909.73 137.0
1583.26 4 1.34 % 1194.56 144.0
1722.28 5 0.00 % 737.87 145.2
2058.27 4 0.94 % 1829.65 161.8
1422.11 43 0.25 % 915.01 120.4

Table 7
Table listing the average number of trips generated (# Trips) and the average number of B&B nodes (# B&B nodes) generated when solving the trip-based model with B&B, Lazy,
and DCG, respectively, when the number of connected orders is increased.

jN C j # Trips # B&B nodes

B&B Lazy DCG

0 47695.2 57440.8 77568.0 69721.2
1 45564.4 33261.0 53397.0 55336.6
2 45151.4 29664.0 53671.8 144530.4
3 42890.4 21094.4 59297.4 132799.2
4 41573.0 47016.0 88488.6 345396.4
5 38420.2 30898.8 93327.4 271439.8
6 36524.6 38656.6 207333.6 327316.6
7 33749.8 34993.0 194810.0 147105.4
8 30298.8 35063.6 171104.2 635135.6

Table 8
Table comparing solving the test instances with one and two heliports using the DCG solution method. The table lists the number of instances solved to optimality (# Opt), the
average optimality gap (Opt. gap) and total computing time (Comp time), as well as the average difference in objective value objective value (D obj.) and number of trips (D trips)
when using one instead of two heliports.

Orders # Opt. Opt. gap Comp time [s] D obj. D trips

17–19 9 0.00 % 3.90 1.21 % -5.56
20–22 9 0.00 % 8.51 0.41 % -196.22
23–25 9 0.00 % 59.13 1.38 % -98.00
26–28 9 0.00 % 95.60 1.99 % -597.33
29–31 9 0.00 % 376.69 0.34 % 175.33
32–34 4 14.14 % 2273.47 0.15 % 2199.11
35–37 4 6.20 % 2378.85 1.13 % -4214.44

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
6. Concluding remarks

In this paper we have studied a rich helicopter flight scheduling
problem from the offshore oil and gas industry. The problem con-
sists of designing routes for helicopters to transport personnel
either between heliports onshore and offshore installations or
between offshore installations. The problem can be modelled as a
rich vehicle routing problem, which includes a pickup and delivery
structure, heterogeneous fleet of vehicles, multiple trips, multiple
depots, and temporal synchronization of transportation tasks.

To solve this problem, we have presented a trip-based model,
where all trips are generated apriori, and a mathematical model
that puts these trips together to form feasible routes. To further
improve the solution time when solving these models using
branch-and-bound (B&B), we have re-formulated the model using
an exponential number of constraints which is added to the model
using delayed constraint generation (DCG) during the B&B search.
The computational experiments indicate that when the number of
temporal dependencies in the model become large, the delayed
constraint generation method outperforms both standard B&B,
and using the lazy constraints option built into (most) commercial
solvers. Further investigation of the computational results indicate
that the using DCG generates larger B&B trees than the other two
methods, and thus the explanation for its improved performance
is likely to stem from the fact that it adds fewer and sparser con-
straints to the model, thus affecting the time needed to solve each
node in the B&B tree less than when adding lazy constraints.
Finally, testing of the DCG indicates that there is little difference
in the computational effort needed to solve instances with one
and two heliports.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
12
CRediT authorship contribution statement

Gaute Messel Nafstad: Conceptualization, Methodolody, Soft-
ware, Investigation, Writing - review & editing, Visualization.
Amund Haugseth: Conceptualization, Methodolody, Software.
Vebjørn Høyland: Conceptualization, Methodolody, Software.
Magnus Stålhane: Conceptualization, Methodolody, Supervision,
Writing - original draft, Writing - review & editing.
Acknowledgements

We would like to thank the two referees for their valuable com-
ments and suggestions. We would further like to thank TietoEVRY
for their cooperation and for providing us with industry data.
References

Andersson, H., Christiansen, M., Fagerholt, K., 2011. The maritime pickup and
delivery problem with time windows and split loads. INFOR 49 (2), 79–91.

Baldacci, R., Bartolini, E., Mingozzi, A., 2011. An exact algorithm for the pickup and
delivery problem with time windows. Oper. Res. 59 (2), 414–426.

Baldacci, R., Bartolini, E., Mingozzi, A., Roberti, R., 2010. An exact solution
framework for a broad class of vehicle routing problems. Comput. Manage.
Sci. 7 (3), 229–268.

Baldacci, R., Mingozzi, A., 2009. A unified exact method for solving different classes
of vehicle routing problems. Math. Program. 120 (2), 347.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., Laporte, G., 2007. Static pickup and
delivery problems: a classification scheme and survey. TOP 15 (1), 1–31.

Aerospace Technology, 2018. Norway’s largest industries. URL:https://www.
aerospace-technology.com/projects/s92/..

British Petroleum Company, 2020. bp Statistical Review of World Energy 2020. URL:
https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/
energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf..

Cattaruzza, D., Absi, N., Feillet, D., 2016. Vehicle routing problems with multiple
trips. 4OR 14 (3), 223–259.

Contardo, C., Martinelli, R., 2014. A new exact algorithm for the multi-depot vehicle
routing problem under capacity and route length constraints. Discr. Optim. 12,
129–146.

Dohn, A., Rasmussen, M.S., Larsen, J., 2011. The vehicle routing problem with time
windows and temporal dependencies. Networks 58 (4), 273–289..

Drexl, M., 2012. Synchronization in vehicle routing–a survey of VRPs with multiple
synchronization constraints. Transp. Sci. 46 (3), 297–316.

http://refhub.elsevier.com/S0305-0548(20)30275-6/h0010
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0010
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0015
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0015
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0020
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0020
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0020
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0025
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0025
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0030
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0030
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0045
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0045
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0045
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0055
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0055

Gaute Messel Nafstad, A. Haugseth, Vebjørn Høyland et al. Computers and Operations Research 128 (2021) 105158
Drexl, M., Schneider, M., 2015. A survey of variants and extensions of the location-
routing problem. Eur. J. Oper. Res. 241 (2), 283–308.

Dumas, Y., Desrosiers, J., Soumis, F., 1991. The pickup and delivery problem with
time windows. Eur. J. Oper. Res. 54, 7–22.

Fernández-Cuesta, E., Norddal, I.K., Andersson, H., Fagerholt, K., 2017. Base location
and helicopter fleet composition in the oil industry. In: INFOR: Information
Systems and Operational Research, pp. 71–92. URL:https://doi.org/10.1080/
03155986.2016.1262583.

Galvão, R., Guimarães, J., 1987. An algorithm for helicopter routing in the support of
offshore oil exploration. In: Proceedings of the XX Brazilian OR Symposium, pp.
96–108.

Galvão, R.D., Guimarães, J., 1990. The control of helicopter operations in the
Brazilian oil industry: Issues in the design and implementation of a
computerized system. Eur. J. Oper. Res. 49 (2), 266–270.

Gamrath, G., Melchiori, A., Berthold, T., Gleixner, A.M., Salvagnin, D., 2015.
Branching on multi-aggregated variables. In: Michel, L. (Ed.), Integration of AI
and OR Techniques in Constraint Programming. Springer International
Publishing, Cham, pp. 141–156.

Gschwind, T., 2015. A comparison of column-generation approaches to the
synchronized pickup and delivery problem. Eur. J. Oper. Res. 247 (1), 60–71.

Hermeto, N. d. S.S., Filho, V.J.M.F., Bahiense, L., 2014. Logistics network planning for
offshore air transport of oil rig crews. Computers & Industrial Engineering 75,
41 – 54..

Hernandez, F., Feillet, D., Giroudeau, R., Naud, O., 2016. Branch-and-price
algorithms for the solution of the multi-trip vehicle routing problem with
time windows. Eur. J. Oper. Res. 249 (2), 551–559.

Irnich, S., Desaulniers, G., 2005. Shortest path problems with resource constraints.
In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (Eds.), Column Generation.
GERAD 25th Anniversary Series. Springer, pp. 33–65.

Koç, Ç., Bektas�, T., Jabali, O., Laporte, G., 2016. Thirty years of heterogeneous vehicle
routing. Eur. J. Oper. Res. 249 (1), 1–21.

Menezes, F., Porto, O., Reis, M.L., Moreno, L., Aragão, M.P. d., Uchoa, E., Abeledo, H.,
Nascimento, N.C. d., 2010. Optimizing helicopter transport of oil rig crews at
Petrobras. Interfaces 40 (5), 408–416..

Mingozzi, A., Roberti, R., Toth, P., 2013. An exact algorithm for the multitrip vehicle
routing problem. INFORMS J. Comput. 25 (2), 193–207.
13
Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jiménez, H.F., Herazo-Padilla, N., 2015.
A literature review on the vehicle routing problem with multiple depots.
Comput. Ind. Eng. 79, 115–129.

Moreno, L., de Aragão, M.P., Uchoa, E., 2006. Column generation based heuristic for a
helicopter routing problem. In: Àlvarez, C., Serna, M. (Eds.), Experimental
Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 219–230.

Moreno, L., Poggi de Aragao, M., Porto, O., Reis, M., 2005. Planning offshore
helicopter flights on the Campos Basin. XXXVII Simpósio Brasileiro de Pesquisa
Operacional (SBPO), Gramado, Brazil, pp. 967–976..

Norwegian Petroleum, 2020a. ECONOMY. URL: https://www.norskpetroleum.no/
en/economy/..

Norwegian Petroleum, 2020b. Everything you need to know about norwegian
petroleum activities. URL: https://www.norskpetroleum.no/en/.

Pessoa, A., Sadykov, R., Uchoa, E., 2018. Enhanced branch-cut-and-price algorithm
for heterogeneous fleet vehicle routing problems. Eur. J. Oper. Res. 270 (2), 530–
543.

Qian, F., Gribkovskaia, I., Sr, Øyvind Halskau, 2011. Helicopter routing in the
norwegian oil industry: Including safety concerns for passenger transport. Int. J.
Phys. Distrib. Logist. Manage. 41 (4), 401–415. URL:https://doi.org/10.1108/
09600031111131959.

Qian, F., Strusevich, V., Gribkovskaia, I., Halskau, Ø., 2014. Minimization of
passenger takeoff and landing risk in offshore helicopter transportation:
models, approaches and analysis. Omega 51, 93–106.

Ropke, S., Cordeau, J.-F., 2009. Branch and cut and price for the pickup and delivery
problem with time windows. Transp. Sci. 43 (3), 267–286.

Sierksma, G., Tijssen, G.A., Jan 1998. Routing helicopters for crew exchanges on off-
shore locations. Ann. Oper. Res., 261–286

Statistics Norway, 2019. External trade in goods. URL:https://www.ssb.no/en/
utenriksokonomi/statistikker/muh/aar..

Statistics Norway, 2019. Spillover-effects from the offshore petroleum to the
mainland economy. URL:https://www.ssb.no/nasjonalregnskap-og-
konjunkturer/artikler-og-publikasjoner/_attachment/405655?
_ts=16ecb1da138..

TietoEVRY, 2020. Dawinci industry hub - changing perspectives on oil & gas
logistics. URL:https://www.tietoevry.com/en/industries/oil-and-gas/
Integrated-logistics-management/..

http://refhub.elsevier.com/S0305-0548(20)30275-6/h0060
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0060
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0065
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0065
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0070
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0070
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0070
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0070
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0075
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0075
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0075
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0080
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0080
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0080
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0085
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0085
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0085
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0085
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0090
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0090
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0100
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0100
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0100
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0105
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0105
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0105
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0110
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0110
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0110
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0120
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0120
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0125
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0125
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0125
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0130
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0130
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0130
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0150
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0150
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0150
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0155
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0155
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0155
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0155
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0155
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0160
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0160
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0160
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0160
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0165
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0165
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0170
http://refhub.elsevier.com/S0305-0548(20)30275-6/h0170

	An exact solution method for a rich helicopter flight scheduling problem arising in offshore oil and gas logistics
	1 Introduction
	2 Related literature
	3 Mathematical models
	3.1 Compact mathematical formulation
	3.2 Trip-based mathematical formulation

	4 Solution method
	4.1 Apriori trip generation
	4.1.1 Resources
	4.1.2 Resource extension functions
	4.1.3 Resource windows

	4.2 Delayed constraint generation
	4.3 Preprocessing
	4.3.1 Preprocessing of arcs
	4.3.2 Preprocessing of time windows

	4.4 Aggregated branching variables

	5 Computational study
	5.1 Test instance generation
	5.2 Comparison of models
	5.3 Testing the effect of connected orders
	5.4 Testing the effect of one vs two heliports

	6 Concluding remarks
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References

