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Abstract  

Objectives: Evaluate selection methods among published SNPs associated with rheumatoid 

arthritis (RA) to construct predictive genetic risk scores (GRS) in a population-based setting.  

Methods: The Nord-Trøndelag Health Study (HUNT) is a prospective cohort study among the 

whole adult population of northern Trøndelag, Norway. Participants in HUNT2(1995-1997) 

and HUNT3(2006-2008) were included (489 RA cases, 61,584 controls). The initial SNP 

selection from relevant genome-wide studies included 269 SNPs from 30 studies. Following 

different selection criteria, SNPs were weighted by published odds ratios (OR). The sum of 

each person’s carriage of all weighted susceptibility variants was calculated for each GRS.  

Results: The best-fitting risk score included 27 SNPs (wGRS27) and was identified using p-

value selection criterion <=5×10-8, the largest possible SNP selection without high linkage 

disequilibrium (r2<0.8), and Lasso regression to select for positive coefficients. In a logistic 

regression model adjusted for gender, age, and ever smoking, wGRS27 was associated with 

RA (OR=1.86 (95% CI:1.71-2.04) for each standard deviation increase, p<0.001). The AUC 

was 0.76 (95% CI:0.74-0.78). The positive (PPV) and negative predictive values were 1.6% 

and 99.7%, respectively, and the PPV was not improved in sensitivity analyses sub-selecting 

participants to illustrate settings with increased RA prevalences. Other schemes selected more 

SNPs but resulted in GRSs with lower predictive ability.  

Conclusion: Constructing a wGRS based on a smaller selection of informative SNPs improved 

predictive ability. Even with a relatively high AUC, the low PPV illustrates that there was a 

large overlap in risk variants among RA patients and controls, precluding clinical usefulness.  

 

Keywords: Rheumatoid arthritis; Genetics; Epidemiology 

 

Key messages 

• A selection of informative SNPs rather than the complete list showed the best predictive 

ability. 

• Despite relatively good discrimination, positive predictive value was low given the low 

RA prevalence. 

• Novel methods are needed for genetic risk prediction to become useful on an individual 

level. 
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Introduction 

RA is the most common autoimmune inflammatory rheumatic disease. Without proper 

treatment, RA may lead to synovial inflammation, cartilage and bone destruction, and severe 

joint destruction (1). In addition to affecting the patient’s quality of life, the disease has 

economic consequences for society due to healthcare needs, treatment, and patients’ reduced 

work participation (2, 3). 

 

Genomic prediction medicine attempts to use a person’s genomic profile to predict her/his 

susceptibility to develop certain diseases more accurately and at earlier stages. Targeting those 

at extreme risk of developing a disease could potentially guide healthcare services in adopting 

more effective preventive and/or interventive measures, as well as motivate high-risk 

individuals to make suitable lifestyle changes. RA is a disease where such prediction is of 

considerable interest.  

 

The heritability of RA is ~50% for anti-citrullinated protein antibody (ACPA)-positive RA and 

~20% for ACPA-negative RA, based on a nation-wide prospective Swedish study using a 

familial aggregation approach (4). The currently known RA susceptibility loci explain 39% of 

the known (50%) heritability (5), and at least 60% of this explained heritability is due to HLA 

(6). Thus, people expressing the “shared epitope” (SE) HLA alleles have a significantly 

increased RA susceptibility (7). 

 

Due to the complex pathogenesis for development of RA, prediction models have been 

developed including genetic, clinical, and serological factors, using different 

statistical/modelling approaches (8-10). Although there have been improvements in the 

discriminative and predictive abilities of such models, they are not currently predictive at an 

individual level. Genome-wide association studies and meta-analyses have identified a more 

comprehensive selection of susceptibility genetic variants for RA, mostly single-nucleotide 

polymorphisms (SNPs). However, there is no general agreement on the best strategy to select 

relevant variations to include in a genetic risk score (GRS).   

 

In general, a predictive score should be parsimonious, give good discrimination (efficiently 

classify individuals as cases or controls) and be well calibrated (correctly predict the observed 

event rates). The variables need not necessarily be causative for the endpoint as long as they 

contribute to prediction. Local models often perform better than general models because they 
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are fine-tuned to the relevant population. Explanatory models, on the other hand, often include 

many factors and preferably causative ones if possible, to explain the reasons for the variability 

in the data. 

 

Our hypothesis was that when genome-wide genetic data are not available, it is preferable to 

develop a predictive GRS for RA based on a smaller selection of informative SNPs rather than 

a combination of all SNPs previously reported from association studies on RA. All reported 

SNPs will not necessarily contribute significantly to prediction, and the proportion of missing 

data is usually smaller when fewer variables are needed for the complete score. Inclusion of 

non-informative SNPs will also tend to decrease the signal-to-noise ratio due to larger variation 

among individuals.  Moreover, we assumed that inclusion of non-genetic risk factors such as 

smoking, gender, and age could further improve the predictive ability of the model. We finally 

hypothesized that the best-fitting model would be associated with RA in a population-based 

setting. 

 

The aims of the present study were twofold, using data from the HUNT population-based study: 

1) To compare different approaches for SNP selection when developing a GRS and 2) To 

evaluate the predictive ability of the best GRS when also including non-genetic factors. 

 

 

Patients and Methods 

The Nord-Trøndelag Health Study (HUNT) is a prospective cohort study conducted in the 

northern region of Trøndelag County, Norway, as previously described (11). All adults (≥20 

years) were invited to take part. The present study used data from participants in HUNT2 

(1995-1997) and/or HUNT3 (2006-2008). Several approaches including questionnaires, 

interviews, clinical examinations, and blood sampling were used to collect data in HUNT (11). 

 

The present study was part of the HuLARS study (HUNT Longitudinal Ankylosing spondylitis 

and Rheumatoid arthritis Study) (12). RA cases were validated by evaluation of hospital case 

files at the three hospitals in the region using the American College of Rheumatology 

(ACR)/European League Against Rheumatism (EULAR) 2010 criteria or for some cases 

diagnosed before 2010, the ACR criteria from 1987 (13, 14). The RA diagnosis was given at 

any time before participation in HUNT or until the end of diagnosis ascertainment, which lasted 

from May till December 2015. Thus, the cases had different disease duration, and 32 cases 
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were diagnosed after participation in HUNT3. Baseline variables were registered at inclusion 

in HUNT, i.e. either at HUNT2 or HUNT3. We excluded participants with self-reported RA 

and missing case files or in a few instances an uncertain RA diagnosis, as well as those with 

ankylosing spondylitis, psoriatic arthritis, juvenile idiopathic arthritis, and other inflammatory 

arthritis. Thus, these cases were not included in the control group. The final dataset included 

578 RA cases and 76,462 controls (Figure 1). After exclusion of participants due to other 

missing data, the main analyses were performed among 489 RA cases and 61,584 controls 

(Figure 1).  

 

The HUNT study was approved by the Regional Committee for Medical and Health Research 

Ethics (REK), the Norwegian Data Inspectorate, and the National Directorate of Health. All 

participants gave written informed consent, and the study was performed in accordance with 

the Helsinki declaration. The HuLARS study was approved by REK (REK Midt 2009/661), 

and the Norwegian Data Inspectorate. 

 

Genotyping using HumanCoreExome arrays from Illumina (HumanCoreExome12 v1.0, 

HumanCoreExome12 v1.1 and UM HUNT Biobank v1.0) and imputation was performed as 

previously described (15). SNPs were selected based on a thorough literature review of 

association studies on RA in PubMed until 29.12.2018. Initially, 48 articles published in 

English including results from large population-based studies based on recent European 

Caucasian ancestry were found. We listed 335 SNPs and excluded 51 SNPs due to lack of 

reported p-value, missing information on the risk allele and/or odds ratio (OR) of the risk allele, 

or missing replication. We lacked genetic data for 15 SNPs, and finally included 269 SNPs 

from 30 papers (Table S1). Two SNPs related to the SE (HLA-DRB1*04 and *0401) were 

available, whereas 5 other genetic variants related to the SE were not. We also lacked data for 

2 SNPs in HLA-DP and 1 in HLA-DOA. Due to the low coverage of genotyped SNPs in the 

HLA region as compared to the Illumina Immunochip which has been used in various other 

studies (16), imputation did not give sufficiently accurate results for use in the study. The 

remaining missing SNPs were not HLA-related. 

 

Alternative approaches for SNP selection for the GRS were as follows: A) Starting with SNPs 

previously reported to have a p-value <=5×10-6 (174 SNPs); B) Starting with SNPs reported to 

have a p-value <=5×10-8 (120 SNPs); C) Starting with SNPs selected in A), and using the 

product of the risk allele frequency and risk allele OR reported in the literature. This product 
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was used as “selection weight” to rank and select risk SNPs of larger effect sizes which are 

more common, as previously suggested for coronary heart disease (17). For each of A) and B), 

a series of three GRS were then developed. 1) after selection of SNPs on each chromosome 

having low linkage disequilibrium (LD, i.e. r2<0.8) using LDlink (18) to choose the largest 

number of non-linked SNPs showing the highest ORs; 2) After selection based on 1) 

additionally using Lasso regression (n=50-fold cross-validation due to the large dataset, using 

random sampling) to select the SNPs showing non-zero coefficients; 3) similar to 2) but 

choosing only SNPs showing positive coefficients in Lasso regression, i.e. removing SNPs for 

which the risk allele in our population was different from that of the previously published 

studies. As a sensitivity analysis, a GRS using Lasso regression starting with all 269 possible 

SNPs without preselection was also developed. The SNPs included in each GRS are listed in 

Table S1. After weighting the risk variants by the natural logarithm of their OR from previous 

studies on RA (references in Table S1), we constructed each final weighted genetic risk score 

(wGRS) for each participant as the sum of the weighted risk variants. The h2-index for variance 

explained by different SNP selections was estimated using the software Genome-wide 

Complex Trait Analysis (GCTA) (19), transforming the estimate to the liability scale assuming 

an RA prevalence in northern Trøndelag of 0.8% (12). 

 

To be able to compare OR of different wGRSs, each wGRS was standardized (hereafter called 

swGRS) by dividing by its standard deviation in the HUNT population. Logistic regression 

was used to develop models including each of the swGRS as a continuous variable. In parallel, 

models were developed including adjustment variables (gender, age, and ever smoking defined 

as self-reporting present or previous smoking). Given that the baseline data were recorded at 

either HUNT2 or HUNT3, we used an additional indicator variable to account for potential 

differences. 

 

Linearity of logits were checked using plots. Calibration (goodness-of-fit) was evaluated using 

the Hosmer-Lemeshow test, and model discrimination was evaluated by AUC (area under the 

receiver operating characteristics curve). The best model was internally validated using 

bootstrapping (n=1000 repetitions). Relative model fit among models was compared using the 

Akaike (AIC) and Bayesian (BIC) information criteria.  

 

For a subset of participants, information on the presence or absence of the SE (20) was available 

(Figure 1). In these participants, models including the best swGRS from the study, the best 
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swGRS after removal of the only included SE-related SNP (rs6457617, which tags HLA-

DRB1*0401), and SE carrier state were evaluated. 

 

Potential clinical usefulness of the best-fitting model was evaluated using the Youden index to 

define the cut-point with the highest sensitivity and specificity, and to determine PPV and NPV 

(positive and negative predictive value) (21). This was first evaluated in the entire study 

population. To investigate how the model would behave in a population with a higher 

prevalence of RA, two subsets of HUNT participants were selected (Figure 1). First, 

participants were sub-selected based on self-report of chronic pain located in hands, knees, 

ankles, or feet (n=414 RA cases and 19,300 controls, Figure 1). Second, the sub-set of control 

participants with self-reported osteoarthritis (OA) in HUNT3 without RA were compared to 

the RA patients (n=489 RA cases and 3,275 controls). We finally also evaluated the model in 

61,584 controls and the RA seropositive cases (anti-CCP and/or rheumatoid factor positive, 

n=350, i.e. 72% of all RA, Figure 1). 

 

Statistical analysis was performed using Stata (v.15, StataCorp, College Station, Texas, USA). 

Data are presented as mean±SD or OR (95% CI) unless otherwise stated. P-values <0.05 

(without adjustment for multiple-hypothesis testing due to different modelling schemes) were 

regarded statistically significant.  

 

Results 

Baseline characteristics of study participants for the main analysis (Figure 1) are given in Table 

1. Table 2 summarizes associations for swGRS and other adjustment variables in the six models 

each including one of the swGRS. All models showed acceptable fit by Hosmer-Lemeshow 

tests.  

 

The swGRS with the highest OR (1.86 (1.71-2.04) for one unit increase in SD, p<0.001) was 

found in Model B3. This was the swGRS with the most limited number of SNPs (27 SNPs), 

hereafter called “swGRS27” (Table 2). The numerical value of swGRS27 ranged from 2.37 to 

10.26, with a median of 6.55 (interquartile range (IQR): 5.85-7.20) in the RA cases, and 5.85 

(IQR: 5.18-6.55) in the controls (Figure 2). This implies that even for the best-fitting model 

developed, there was considerable overlap in the distribution of swGRS27 between RA cases 

and controls (Figure 2). Among models including adjustment variables, model B3 had the best 

fit (lowest AIC and BIC), and significantly better discrimination (AUC=0.76 (0.74-0.78)), than 
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the other models except A3 (p=0.38) (Table 2 and Figure 3). Thus, including adjustment 

variables with swGRS27 resulted in a model with significantly improved discrimination 

(p<0.001, unadjusted model: AUC=0.67(0.65-0.70); Figure 3). Internal validation of the 

adjusted model with swGRS27 demonstrated bootstrapped CI very close to the original ones, 

indicating that the results were unbiased. 

 

Overall, ORs for swGRS and model fit were better in corresponding models when SNPs were 

initially selected by p-value<=5×10-8 rather than p-value<=5×10-6 (Model series B vs A, Tables 

2 and S2). Table S2 summarizes the parallel unadjusted models. The swGRS based on Lasso 

selection from all available SNPs (n=269) included 50 SNPs and had no better predictive ability 

than the model with swGRS27 (p=0.82, data not shown). 

 

The h2-index for the complete selection of 269 SNPs was 5.3 (95% CI: 3.1-7.5)%, 4.5(2.5-

6.6)% for the selection of 174 SNPs associated with RA with a published p-value <=5×10-6, 

and 5.2(2.0-8.3)% for the 27 SNPs in swGRS27.  

 

The models based on both risk allele frequency and OR (“selection weights”) were inferior to 

those from the other selection approaches. A histogram of the selection weights is shown in 

Figure S1. Different selections of SNPs with selection weights higher than arbitrary thresholds 

were investigated, showing no specific trend towards better fit or discrimination (Table S3). 

The best models either included 99 SNPs or all 115 possible SNPs. 

 

The analysis in participants where SE carrier state was available showed that the SE alone was 

a statistically significant predictor (standardized OR 1.48(1.31-1.67), table S4). swGRS26, 

constructed by removal of the only SE-related SNP in swGRS27, had comparable predictive 

ability alone (OR 1.42(1.26-1.59)). The bivariable model including swGRS26 and SE carrier 

state had better fit (Table S4) and discrimination (p<0.001) than the univariable models with 

either swGRS26 or SE, and these variables were both significant, independent predictors of 

RA (SE: OR 1.50(1.32-1.69), swGRS26: OR 1.43(1.27-1.60)).  

 

The subgroup analysis using prior selection of participants for chronic pain or using self-

reported OA to restrict the number of controls while keeping all RA cases increased the 

prevalence of RA from 0.8% in the main analysis to 2.1% and 13%, respectively. Table 3 

summarizes sensitivity, specificity, PPV, and NPV at the cut-point defined by the Youden 
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index for the best-fitting model (with swGRS27). The PPV increased from 1.6% in the main 

adjusted model to 3.3% and 18.3% in the two subsets, respectively. However, the PPV 

decreased to 1.2% when the analysis included only the seropositive RA cases (Table 3). 

 

Discussion 

In this general population-based study using replicated risk SNPs for RA, the best-fitting 

swGRS included 27 susceptibility SNPs (swGRS27) out of 269 possible. It was identified using 

a p-value selection criterion <=5×10-8 and Lasso regression to remove SNPs that did not 

contribute to prediction or had a different risk allele in our population than previously 

published. Including knowledge on population risk allele frequency was of no benefit. Thus, a 

parsimonious model was better than those including all available information. In accordance 

with the non-genetic component of RA development, the addition of gender, age, and ever 

smoking to the swGRS27 model further improved discrimination. The AUC for the adjusted 

model including swGRS27 was relatively high (0.76). 

 

Even if AUC provides information on discrimination, the NPV and especially PPV in the 

relevant study population are more important for practical clinical use. These measures are 

dependent on the disease prevalence, which was 0.8% for RA in the present study population. 

Even with a prevalence as high as 13% in the sub-selection using OA controls, the PPV was 

only 18.3%. Cut-offs could be defined at different thresholds, but the proportion of false-

positives and false-negatives would still be high. Our results are in accordance with previous 

literature reporting that classification based on genetic markers with significant OR is not 

straightforward: For a prediction model with an AUC of 0.79 and disease prevalences of 15%, 

5.5%, or 1.5%, cases among those at high risk are correctly classified in 30%, 12% and 3%, 

respectively (22). 

 

A limitation of our study is that we had few data for the SE. The subgroup analysis indicated 

that the SE and the non-SE-associated SNPs each independently contributed to prediction with 

approximately the same OR. In the main analysis, where information on the SE was missing,   

the marker SNP rs6457617 of the common SE variant HLA-DRB1*0401 was selected in all 

GRS including swGRS27. Thus, rs6457617 may partly have acted as a proxy for the SE. For 

the unadjusted models, it is noteworthy that the variation in OR for different models was 

relatively small (swGRS27, i.e. best model: OR=1.85, swGRS including all 115 SNPs: 
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OR=1.64, swGRS including 3 SNPs using selection-weight-based selection: OR=1.51, SE 

alone in  a subgroup of participants: OR=1.48, Tables S2, S3 and S4).  

 

Furthermore, other SNPs in swGRS27 may have captured some of the same information as the 

SE, in accordance with the finding of many genetic interactions between the SE and variants 

outside of the HLA region (23). We cannot exclude that our results would have changed with 

access to more SE-related data. This would not necessarily influence the findings regarding 

identification of the best SNP selection method, which was the main aim of the present study. 

Furthermore, the AUC for our best model was comparable to 0.74 found for a model including 

45 RA susceptibility SNPs, 5 HLA amino acids, and gender in a case-control study with 11,366 

RA cases and 15,489 controls (24).  

 

Many studies on RA genetics have been restricted to seropositive cases, who have high carriage 

of the SE. This may increase the relative importance of SE-related SNP. One of the highest 

AUCs (0.857) for RA prediction was reported based a computer simulation approach that used 

15 four-digit/10 two-digit HLA-DRB1 alleles, 31 SNPs, and smoking to discriminate ACPA-

positive RA cases from controls (8).  

 

We started with a comprehensive list of potential susceptibility SNPs and also included 

seronegative cases to avoid case loss, which may have influenced the results regarding the 

importance of HLA. Our best model had a slightly higher AUC when evaluated only in 

seropositive cases, but this did not translate to a useful increase in PPV (data not shown). Thus, 

the inclusion of seronegative cases did not seem to substantially have influenced the results for 

the seropositive cases. Furthermore, the distinction between seronegative and seropositive RA 

is becoming more blurred with the findings of autoantibodies with other specificities than 

ACPA (25). The relatively low h2 index may partly be explained by our inclusion of 

seronegative cases, and possibly also by our study capturing less of the heritability due to 

missing SNPs. 

 

We excluded participants with ankylosing spondylitis, psoriatic arthritis and other forms of 

inflammatory arthritis. A previous genetic study has shown relatively small overlap in SNPs 

associated with ankylosing spondylitis/psoriasis and RA (26), but the exclusion may still have 

resulted in somewhat better performance of our risk score than without such exclusion. 
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Recently, several genome-wide polygenic risk scores (GPS) that evaluate thousands to millions 

of genetic variants have been tested for potentially better prediction of complex diseases. To 

our knowledge, no GPS for RA has yet been published. A GPS captures a greater proportion 

of the heritability. As an example, a model based on GPS for coronary artery disease (CAD) 

including 6,630,150 SNPs and adjustment variables identified a larger proportion of CAD 

events in high risk score percentiles than two previous wGRS based on 49,310 and 50 SNPs 

(27). Even with an AUC of 0.81, the risk score distributions for cases and controls showed a 

noticeable overlap, which is another way of illustrating that there would be many false-

positives and false-negatives.   

 

We may speculate that the overlapping scores may be a consequence of the genetic architecture 

of many common diseases, where familial risk through rare variants with moderate effect has 

some importance, whereas non-familial risk is caused by a very large number of common 

variants that each have a small and additive effect (28). Thus, the exact risk profile probably 

differs among individuals, which would lead to noise and overlap in the risk score distribution. 

For explanation of disease pathogenesis, it is important to capture as many risk variants as 

possible. For prediction, on the other hand, it is more useful to capture the largest differences 

among cases and controls; thus, more SNPs will not necessarily perform better. The use of 

selection weights where common risk variants were prioritized has previously been useful to 

select SNPs for prediction of CAD (17). In our study, the definition of a threshold for SNPs to 

include was not obvious and this approach led to worse models for prediction of RA.  

 

In the present study, Lasso regression helped identify a smaller subset of SNPs that improved 

prediction. This approach fine-tuned the selection for our population, at the cost of lower 

generalizability due to differences in genotype frequencies and other characteristics among 

populations. It is well-known from other areas of risk prediction that local scores usually 

perform better. We are not suggesting that the swGRS27 is appropriate for clinical use, so lack 

of generalizability was not an issue when comparing the selection schemes. We did not perform 

internal validation of all the different risk models but bootstrapping of the model including 

swGRS27 indicated little bias.  

 

The inclusion of non-genetic factors improved model performance, as expected because such 

factors play about the same role as heritability for disease development. Smoking had a high 

OR and is an important target for prevention (29). Inclusion of other environmental risk factors 
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would help improve the risk score, but there is a lack of general knowledge about the most 

useful factors and their importance.   

 

Most previous prediction studies on RA were relatively small and did not have a prospective 

cohort design. However, such a design will lead to fewer RA cases than case-control studies 

unless the initial sample size is very large. A strength of our study was that population controls 

may give less selection bias. We did not have information regarding family history of RA, 

which is an important risk factor (30) that would have captured genetic risk specific to each 

individual. We cannot exclude false-positive and false-negative RA diagnoses.  

 

Developing a wGRS based on fewer, but informative SNPs improved the predictive ability. 

Despite an AUC of 0.76, the PPV was low, which precludes clinical usefulness. Our study also 

confirmed previous observations that there was substantial overlap in risk variants among RA 

cases and controls, as expected when individual genetic risk depends on small, additive effects 

from a large number of potential risk variants.  
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Figure legends 

Figure 1: Inclusion and exclusion of study participants  

HUNT2 denotes individuals who participated in HUNT2 only, HUNT2 & HUNT3 denotes 

individuals who participated both in HUNT2 and HUNT3, and HUNT3 denotes individuals 

who participated in HUNT3 only. Combined dataset denotes the sum of these three groups.  

 

Figure 2: Genetic risk score (swGRS27) distributions  

Distributions in RA cases and controls of the best-fitting weighted genetic risk score 

(swGRS27, Model B3 in Table 2), standardized using the population standard deviation. 

 

Figure 3: ROC curve for unadjusted and adjusted models including swGRS27 

Receiver operating characteristic curves (ROC) for models with the best-fitting weighted 

genetic risk score (swGRS27, Model B3 in Table 2), standardized using the population standard 

deviation. Adjusted model also included gender, age, and ever smoking. 
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Table 1: Baseline characteristics of study participants in the main analysisa 

      HUNT2 (n=51,275)   HUNT3 (n=10,798)b 

 RA cases Controls RA cases  Controls 

 (n=443) (n=50,832) (n=46) (n=10,752) 

Seropositive RAc, n(%) 315(73) NA 35(76) NA 

Age years, mean ± SD 57±13 49±17 60±15 40±15 

Women, n(%)             

Ever smoker, n(%) 

297(67) 

294(66) 

26576(52) 

28067(55) 

29(63) 

30(65) 

5715(53) 

5137(48) 

Previous cardiovascular diseased, n(%) 52(12) 3605(7) 6(13) 400(4) 

Diabetes, n(%) 22(5) 1463(3) 5(11) 282(3) 

Hypertensione, n(%) 215(49) 21101(42) 27(71) 2106(22) 

Body mass index (kg/m2), mean ± SD 27±4 26±4 28±4 27±5 

RA: rheumatoid arthritis; HUNT: Nord-Trøndelag Health Study, waves 2 or 3 
aThe main analysis included 489 RA cases and 61,584 controls.  
bIndividuals who participated in HUNT3 only (and not HUNT2). 
cSeropositive:  Positive for rheumatoid factor and/or anti-citrullinated protein antibody  
dPrevious cardiovascular disease: Self-reported myocardial infarction, angina pectoris or 

stroke. 
eHypertension: Either a “yes” response to the question “Are you using medication for high 

blood pressure?”, or measurement of systolic blood pressure ≥140 mmHg and/or diastolic 

blood pressure ≥90 mmHg
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Table 2: Adjusted logistic regression models using different standardized weighted genetic risk scores for rheumatoid arthritisa 

Model Number  

of SNPsb 

swGRSc  

OR(95%CI) 

Female 

gender  

OR(95%CI) 

Age 

OR(95%CI) 

Ever smoker 

OR(95%CI) 

AUC  

(95%CI) 

AIC BIC 

A1d 115 1.65 

(1.51-1.81)* 

2.11 

(1.74-2.57)* 

1.04 

(1.03-1.04)* 

1.85 

(1.53-2.25)* 

0.74  

(0.72-0.76) 

5348.50 5402.72 

A2d 36 1.79 

(1.64-1.96)* 

2.10 

(1.73-2.55)* 

1.04 

(1.03-1.04)* 

1.85 

(1.52-2.24)* 

0.75  

(0.73-0.77) 

5305.39 5359.61 

A3d 30 1.85 

(1.69-2.02)* 

2.10 

(1.73-2.55)* 

1.04 

(1.03-1.04)* 

1.85 

(1.52-2.24)* 

0.76  

(0.74-0.78) 

5287.99 5342.20 

B1d 88 1.69 

(1.54-1.85)* 

2.12 

(1.75-2.57)* 

1.04 

(1.03-1.04)* 

1.85 

(1.53-2.25)* 

0.75  

(0.73-0.77) 

5339.84 5394.06 

B2d 29 1.84 

(1.68-2.01)* 

2.10 

(1.73-2.55)* 

1.04 

(1.03-1.04)* 

1.86 

(1.53-2.26)* 

0.76  

(0.74-0.78) 

5291.57 5345.79 

B3d 27 1.86 

(1.71-2.04)* 

2.10 

(1.73-2.55)* 

1.04 

(1.03-1.04)* 

1.85 

(1.53-2.25)* 

0.76  

(0.74-0.78) 

5282.37 5336.59 
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aAll models included 489 RA cases and 61,584 controls 
bNumber of SNPs in each swGRS 
cWeighted genetic risk score standardized using corresponding population standard deviation 
dA models were based on SNPs with reported p-value<=5×10-6 in association studies in European Caucasian populations. B models were based 

on SNPs with reported p-value <=5×10-8. Model numbers indicate selection based on: 1) the largest selection of SNPs showing low linkage 

disequilibrium (r2<0.8) on each chromosome; 2) SNPs additionally showing non-zero coefficients using Lasso regression; 3) SNPs additionally 

showing positive coefficients in Lasso regression. 

*p<0.001 
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Table 3: Properties of the best-fitting model (with swGRS27)a in different participant 

selections 

Model Sensitivity% Specificity% Positive  

predictive 

value% 

Negative  

predictive  

value% 

All participantsb     

        Unadjusted model   67.3 59.8 1.3 99.6 

        Adjustedc model   78.9 61.3 1.6 99.7 

Seropositive RAd, all controls     

        Unadjusted model   71.7 59.8 1.0 99.7 

        Adjustedc model   82.9 61.3 1.2 99.8 

Participants with chronic paine     

        Unadjusted model   68.6 59.4 3.5 98.9 

        Adjustedc model   79.7 50.4 3.3 99.1 

All RA, controls with osteoarthritisf     

        Unadjusted model   67.3 60.8 20.4 92.6 

        Adjustedc model   78.9 47.4 18.3 93.8 

aswGRS27: best-fitting weighted genetic risk score (Model B3 in Table 2), standardized 

using the population standard deviation 
b489 RA cases and 61,584 controls, using cut-point defined by the Youden index 
cAdjusted for gender, age, and ever smoking  
d350 seropositive RA cases and 61,584 controls 
eParticipants having self-reported pain located in hands, knees, ankles, or feet and lasting for 

three months or more during last year before HUNT participation, 414 RA cases and 19,300 

controls 
fAll available RA cases (n=489) and 3,275 controls with self-reported osteoarthritis 
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Figure 1 
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Figure 2 
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Figure 3 
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Supplement 
SNPs were initially selected based on the reported p-value<5×10-6 or <5×10-8 in previous associations studies among European Caucasian populations. “Non-LD” refer to 
largest SNP selection not showing high linkage disequilibrium (defined as r2>0.8) with other SNPs on the same chromosome. The non-LD selected SNPs were then evaluated 
in Lasso regression to identify SNPs showing non-zero coefficients or positive coefficients. 
SNPs indicated with “*” were included to develop the respective risk scores, and SNPs with empty fields were not included. 
Table S1: Selection of SNPs from previous association studies to develop weighted genetic risk scores for rheumatoid arthritis in HUNT 
   Based on p<5×10-6 Based on p<5×10-8  
Chromosome Position SNP ID p-value 

<5×10-6 
(n=174) 

Non-LD 
(n=115) 

Lasso 
showing 
non-zero 
coefficient 
(n=36) 

Lasso 
showing 
positive 
coefficient 
(n=30) 

P-value 
<5×10-8 

(n=120) 

Non-LD 
(n=88) 

Lasso 
non-zero 
(n=29) 

Lasso pos 
(n=27) 

Reference 

1 2528133 rs2843401 * *   * * * * 1 
1 2553624 rs3890745 *        2 
1 17672730 rs2301888 * *   * *   3 
1 17674402 rs2240336 * * * * * * * * 1 
1 38278579 rs28411352 * *   * *   3 
1 38616871 rs883220 * *   * *   1 
1 38633879 rs12140275 *    *    3 
1 80572058 rs11162922 * *       4 
1 114303808 rs6679677 * * * * * * * * 4 
1 114377568 rs2476601 *    *    3 
1 117263138 rs11586238 * *   * *   5 
1 117263790 rs624988 * * * * * * * * 3 
1 154426970 rs2228145 * *   * *   1 
1 161405053 rs72717009 * * * *     3 
1 161479745 rs1801274 * *       6 
1 167408670 rs840016 * *       7 
1 167411384 rs864537 *        8 
1 173349725 rs2105325 * * * * * * * * 3 
1 198700442 rs10919563 * *       5 
1 198704294 rs7540378 *        6 
2 30449594 rs10175798 * *   * *   3 
2 42080624 rs4305317 * * * *     9 
2 61124850 rs34695944 *    *    3 
2 61136129 rs13031237 * *   * *   10 
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2 61164331 rs13017599 *    *    10 
2 65556324 rs6546146 * *       1 
2 65595586 rs934734 * *   * *   7 
2 65598300 rs1858037 *    * *   3 
2 100672692 rs10209110 * *   * *   1 
2 100806940 rs11676922 *    *    7 
2 100825367 rs9653442 * *   * *   3 
2 100835734 rs10865035 *        11 
2 111607832 rs6732565 * * * * * * * * 3 
2 191933254 rs13426947 * *   * *   1 
2 191943742 rs11889341 *    *    3 
2 191964633 rs7574865 * * * * * * * * 12 
2 191969879 rs10181656 *        13 
2 202154397 rs6715284 * *   * *   3 
2 204610396 rs1980422 * * * * * * * * 3 
2 204693876 rs231735 * *   * *   10 
2 204732714 rs231775 * *       6 
2 204738919 rs3087243 * * * * * * * * 3 
2 204742934 rs11571302 *    *    1 
3 17047032 rs4452313 * *   * * * * 3 
3 17072997 rs4535211 * *       11 
3 27764623 rs3806624 * *   * * * * 3 
3 58183636 rs35677470 * *       1 
3 58302935 rs73081554 * *   * *   3 
3 58556841 rs13315591 * *   * * * * 11 
3 136402060 rs9826828 * *   * *   3 
4 10727357 rs13142500 * *       3 
4 26085511 rs10517086 * *       14 
4 26090862 rs932036 *    *    1 
4 26108197 rs874040 *    * *   11 
4 26120001 rs11933540 *    *    3 
4 48220839 rs2664035 * *   * *   3 
4 123218313 rs13119723 * *       15 
4 123399491 rs45475795 * *       3 
5 55438580 rs6859219 *    *    11 
5 55440730 rs71624119 * * * * * * * * 1 
5 55444683 rs7731626 * *   * *   3 
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5 102596720 rs26232 * * * * * * * * 7 
5 102597292 rs39984 *        1 
5 102608924 rs2561477 *    *    3 
6 426155 rs9378815 * *       3 
6 434364 rs9328192 * * * *     16 
6 28169241 rs13195291 *    *    17 
6 28191288 rs35656932 *    *    17 
6 28201531 rs13204012 *        17 
6 28214698 rs17720293 *    *    17 
6 28225311 rs13208096 *    *    17 
6 28238059 rs67998226 * * * * * * * * 17 
6 32663851 rs6457617 * * * * * * * * 4 
6 32663999 rs6457620 *    *    18 
6 36355654 rs2234067 * * *  * *   3 
6 44233921 rs2233424 * * *  * *   3 
6 90976768 rs72928038 * * * * * * * * 19 
6 106568034 rs548234 * *   * *   5 
6 106667535 rs9372120 * * *  * * *  3 
6 137973068 rs2327832 * * * * * * * * 8 
6 138002637 rs10499194 * * * * * * * * 20 
6 138005515 rs17264332 *    *    3 
6 138006504 rs6920220 *    *    1 
6 138195151 rs5029937 *        7 
6 138196066 rs2230926 *    *    6 
6 138227364 rs7752903 * * * * * * * * 3 
6 159482521 rs394581 * * *  * *   11 
6 159489791 rs212389 * * * *     8 
6 159496713 rs629326 *        1 
6 159506600 rs2451258 *    * * * * 3 
6 167534290 rs3093023 *    *    11 
6 167537754 rs59466457 * *   * *   1 
6 167540842 rs1571878 * * * * * *   3 
7 28174986 rs67250450 * *   * *   3 
7 45899359 rs6972219 *        9 
7 45901549 rs2173035 *        9 
7 45903807 rs6956740 * *       9 
7 92236829 rs4272 * *   * *   3 
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7 92246744 rs42041 * *       2 
7 128580042 rs3778753 * *   * *   3 
7 128580680 rs3807306 *        1 
7 128594183 rs10488631 * *   * *   11 
8 11341880 rs2736337 *        3 
8 11343973 rs2736340 * * * * * * * * 10 
8 11345545 rs4840565 *        1 
8 81095395 rs998731 * *   * *   3 
8 102463602 rs678347 * *   * *   3 
8 129542100 rs1516971 * * * * * * * * 3 
8 129567181 rs6651252 *        19 
9 34710260 rs2812378 * *   * *   1 
9 34710338 rs11574914 *    *    3 
9 34743681 rs951005 * *   * *   11 
9 123636121 rs10985070 *    *    3 
9 123640500 rs1953126 * *   * *   8 
9 123671520 rs2239657 *        6 
9 123690239 rs3761847 * *   * *   21 
9 123695282 rs10739580 *        1 
10 6098949 rs706778 * *   * *   3 
10 6108340 rs10795791 *        1 
10 8095340 rs2275806 * *   * *   1 
10 8104722 rs3824660 * *   * *   3 
10 9049253 rs12413578 * *       3 
10 31415106 rs793108 * *       3 
10 63779871 rs71508903 * *   * *   3 
10 63800004 rs12764378 * *   * *   1 
11 36501787 rs331463 * * * *     3 
11 36525293 rs540386 *        5 
11 60906450 rs508970 *        3 
11 60909581 rs595158 * *   * *   1 
11 61595564 rs968567 * *   * *   3 
11 95311422 rs4409785 * * * * * *   3 
11 107967350 rs138193887 * *   * *   3 
11 118611781 rs10892279 *    *    8 
11 118729391 rs10790268 * * * * * *   3 
11 118741842 rs4938573 *        1 
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11 128496952 rs73013527 * *       3 
12 56394954 rs773125 * * * * * * * * 3 
12 58108052 rs1633360 * * *      3 
12 111833788 rs10774624 * * * * * * * * 3 
12 111884608 rs3184504 *        15 
13 40334852 rs9603612 *    *    22 
13 40350912 rs7993214 *        19 
13 40368069 rs9603616 * *   * *   3 
14 68753593 rs911263 *    *    19 
14 68760141 rs1950897 * *   * *   3 
14 70541026 rs17175346 * *   * *   14 
14 75960536 rs7155603 * *       7 
15 38828140 rs8043085 * *   * *   1 
15 38834033 rs8032939 *    *    3 
15 69991417 rs8026898 * * * * * * * * 3 
16 11839326 rs4780401 * *   * *   3 
16 86019087 rs13330176 * *   * *   3 
17 38031857 rs59716545 *    *    3 
17 38040763 rs2872507 * *   * *   1 
17 38043649 rs12936409 *    *    1 
18 12857758 rs62097857 * *       19 
18 12877060 rs7234029 * *   * *   11 
18 12881361 rs8083786 *    *    3 
19 10463118 rs34536443 * * * * * * * * 3 
19 10771941 rs147622113 * * *  * * *  3 
20 44734310 rs6032662 *    *    1 
20 44747947 rs4810485 * *   * *   7 
20 44749251 rs4239702 *    *    3 
21 34764288 rs73194058 * *   * *   3 
21 35911599 rs2834512 * *   * *   1 
21 35928240 rs147868091 *        3 
21 36715761 rs9979383 * *   * *   1 
21 36738242 rs8133843 *    *    3 
21 42511918 rs2837960 * *       4 
21 43836186 rs11203203 * *       15 
21 43855067 rs1893592 * *   * *   3 
22 21979096 rs11089637 * *       3 



29 
 

22 37551607 rs743777 * *       4 
22 39747671 rs909685 * *   * *   3 
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Table S2. Unadjusted logistic regression models using different standardized weighted genetic risk scores for rheumatoid arthritisa 

Model Number  
of SNPsb 

swGRSc 

OR(95%CI) 
AUC  
(95%CI) 

 AIC BIC 

A1d 115 1.64 (1.50-1.79)* 0.63 (0.61-0.66)  5594.77 5612.85 

A2d 36 1.78 (1.63-1.95)* 0.66 (0.63-0.68)  5550.86 5568.93 

A3d 30 1.83 (1.68-2.00)* 0.67 (0.64-0.69)  5533.17 5551.24 

B1d 88 1.67 (1.53-1.83)* 0.64 (0.61-0.66)  5586.98 5605.06 

B2d 29 1.82 (1.67-1.99)* 0.67 (0.64-0.69)  5538.93 5557.00 

B3d 27 1.85 (1.69-2.02)* 0.67 (0.65-0.70)  5529.20 5547.27 

aAll models included 489 RA cases and 61,584 controls 
bIndicates number of SNPs included in each swGRS 
cWeighted genetic risk scores standardized using the corresponding population standard deviation 
dA models were based on selection of SNPs with reported p <=5×10-6. B models were based on p <=5×10-8 in association studies on recent 
European Caucasian populations. Model numbers indicate selection based on: 1) the largest selection of SNPs showing low linkage 
disequilibrium (r2<0.8) on each chromosome; 2) additionally showing non-zero coefficients using Lasso regression; 3) additionally showing 
positive coefficients in Lasso regression. 
*p<0.001 
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Figure S1: SNP selection weights 

 
Selection weight for each SNP (n=115) refers to the product of the natural logarithm of the risk allele odds ratio and risk allele frequency 
reported in previously published association studies. SNPs were selected based on the largest number of non-linked SNPs (r2 for linkage 
disequilibrium<0.8) reported with p-value<5×10-6 in previous studies (listed in Table S1). 
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Table S3: Logistic regression models for standardized weighted genetic risk scores constructed based on selection weightsa  
Model Selection 

Weight 
thresholda 

Number 
of SNPsa 

OR(95%CI) 
Unadjustedb 

AUC(95%CI) 
Unadjustedb 

AIC 
Unadjustedb 

BIC 
Unadjustedb 

OR(95%CI) 
Adjustedb 

AUC(95%CI) 
Adjustedb 

AIC 
Adjustedb 

BIC 
Adjustedb 

C1 >0.36 3 1.51 
(1.38- 1.65) 

0.61 
(0.59-0.63) 

5635.77 5653.84 1.52 
(1.39- 1.66) 

0.73 
(0.71-0.75) 

5389.63 5443.85 

C2 >0.18 5 1.52 
(1.39- 1.66) 

0.62 
(0.59-0.64) 

5632.59 5650.66 1.53 
(1.40- 1.68) 

0.73 
(0.71-0.75) 

5386.84 5441.05 

C3 >0.14 10 1.51 
(1.37- 1.65) 

0.62 
(0.59-0.64) 

5635.80 5653.87 1.51 
(1.38- 1.66) 

0.73 
(0.71-0.75) 

5390.95 5445.16 

C4  >0.1 19 1.50 
(1.37- 1.64) 

0.62 
(0.59-0.64) 

5638.26 5656.33 1.51 
(1.38- 1.650) 

0.73 
(0.71-0.75) 

5392.83 5447.05 

C5 >0.07 34 1.54 
(1.41- 1.69) 

0.62 
(0.60-0.65) 

5626.16 5644.23 1.55 
(1.42- 1.70) 

0.73 
(0.71-0.75) 

5380.91 5435.12 

C6  >0.06 42 1.63 
(1.50- 1.79) 

0.64 
(0.61-0.66) 

5597.78 5615.85 1.64 
(1.50- 1.79) 

0.74 
(0.72-0.76) 

5352.85 5407.06 

C7  >0.055 47 1.60 
(1.46- 1.75) 

0.63 
(0.61-0.66) 

5608.36 5626.43 1.61 
(1.470- 1.76) 

0.74 
(0.72-0.76) 

5363.04 5417.26 

C8  >0.05 55 1.60 
(1.47- 1.75) 

0.63 
(0.61-0.66) 

5607.15 5625.22 1.61 
(1.47- 1.76) 

0.74 
(0.72-0.76) 

5362.23 5416.44 

C9 >0.03 87 1.63 
(1.49- 1.78) 

0.63 
(0.61-0.66) 

5598.20 5616.27 1.64 
(1.50- 1.80) 

0.74 
(0.72-0.76) 

5351.64 5405.85 
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C10 >0.02 99 1.65 
(1.51- 1.80) 

0.64 
(0.61-0.66) 

5593.67 5611.75 1.66 
(1.52- 1.81) 

0.74 
(0.72-0.76) 

5347.38 5401.59 

C11 >0 115 1.64 
(1.50- 1.79) 

0.63 
(0.61-0.66) 

5594.77 5612.85 1.65 
(1.51- 1.81) 

0.74 
(0.72-0.76) 

5348.50 5402.72 

aAll models included 489 RA cases and 61,584 controls. Selection weight for each SNP was calculated using the product of risk allele frequency and risk allele odds ratio 
reported in previously published association studies. After ranking the SNPs by their selection weights, arbitrary thresholds were used to select for SNPs, thus combining 
information on higher effect sizes and prevalence (Figure S1). Weighted genetic risk scores were standardized using the corresponding population standard deviation. 
bUnadjusted models include only the swGRS; adjusted models included additional variables gender, age, and ever smoking. 
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Table S4: Addition of Shared Epitope variable to the best-fitting logistic regression modela 

Model Number of 
participants 

SNP  
number 

OR (95%CI) 
 

AUC AIC 
 

 BIC 
 

D1 swGRS27b  1720 27 1.74 (1.54-1.96) 0.66 (0.62-0.69) 1657.26  
 

1668.16 

D2 swGRS26c 

 
1720 26 1.42 (1.26-1.59) 

 
0.60 (0.57-0.63) 1705.90  1716.80 

D3 SE only 1720 1 1.48 (1.31-1.67) 0.60 (0.57-0.63) 1699.80  1710.70 

D4 swGRS26c & SE 1720 26+1 swGRS26: 1.43 (1.27-1.60) 
SE: 1.50 (1.32-1.69) 

0.65 (0.62-0.68) 1664.76  1618.11 

aD models include 350 RA cases and 1,370 controls, where information regarding the Shared Epitope (SE) was available. The SE variable 
(carrier vs. non-carrier) was standardized using the population standard deviation to permit direct comparison among models. The models were 
not adjusted for non-genetic variables.  
bswGRS27: best-fitting weighted genetic risk score (Model B3 in Table 2), standardized using population standard deviation.  
cswGRS26 is similar to swGRS27 except that rs6457617 that marks the common SE variant HLA-DRB1*0401 was removed.  
 


