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Forholdene mellom struktur og funksjon i biologiske nevrale nettverk og
hvordan disse pavirkes av nevrodegenerative prosesser

Fokuset for dette vitenskapelige arbeidet ligger pa de gjensidige og dynamiske forholdene
mellom struktur og funksjon i nevrale nettverk. Det har videre blitt lagt serskilt vekt pa hvordan
disse forholdene pavirkes av nevrodegenerative prosesser, spesielt tilknyttet Parkinsons
sykdom. Gjennom en kombinasjon av strategier har relevante, biologiske nevrale nettverk blitt
etablert in vitro og benyttet som modellsystem i undersekelsen av struktur-funksjonsforhold.
Av de mest sentrale forhold undersekt finner man elektrofysiologisk nettverksaktivitet,
konnektivitet, «small-worldness», og selvorganisert kritikalitet. Videre har disse forholdene
blitt knyttet til uttrykk for Parkinsons-relatert patologi, som nevronal levedyktighet,
proteinaggregering, -degradering, samt mitokondriell dysfunksjon.

I den forste vitenskapelige artikkelen presentert i denne avhandlingen ble induserte pluripotente
stamceller (iPSC) differensiert til nevroner og brukt til & etablere nevrale nettverk pa multi-
elektrode arrayer (MEA). Den tiltredende elektrofysiologiske aktiviteten ble mélt for, og i en
periode pa tre uker etter, pre-formerte fibriller av alpha-synuclein ble introdusert i media for &
indusere Parkinsons-relatert patologi. Disse maélingene ble brukt til analyse av
nettverksaktiviteten, hvorpa utvikling av patologien viste seg & gi uttrykk i nettverkets
kritikalitet, men ikke i standard mal for nettverksfunksjon (som gjennomsnittlig fyringsrate og
kryss-korrelasjon).

I den andre vitenskapelige artikkelen benyttes iPSC-deriverte nevroner med og uten den
Parkinsons-relaterte genetiske mutasjonen G2019S. Mikrofluidiske plattformer ble brukt til &
strukturere parallelle nettverk med og uten integrerte MEAs for maling av nettverksaktivitet.
Struktur og funksjon i nettverkene med og uten mutasjon, samt deres respons til en kortvarig
overstimulering av diskrete nettverksnoder, ble undersekt pa flere niva. Resultatene viste at de
muterte nettverkene hadde avvik bade i struktur og funksjon sammenlignet med nettverkene
uten mutasjon, samt at de responderte ulikt pa perturberingen.

I den siste vitenskapelige artikkelen benyttes nevrale stamceller fra rotter sammen med
biokompatible polymer-partikler for & etablere nevrale nettverk med 3D topologi. Struktur og
funksjon av de resulterende nettverkene ble undersekt og diskutert opp mot det sentrale
nettverksbegrepet «small-worldnessy.

Som bakgrunn for dette forskningsarbeidet ligger hypotesen om at friske og perturberte nevrale
nettverk vil utvise ulike egenskaper nar det kommer til funksjon og konnektivitet, og at de vil
respondere ulikt pa patologiske prosesser. I forbindelse med denne hypotesen har materiell for
in vitro etablering av ulike biologiske nevrale nettverk statt sentralt, samt verktey for
elektrofysiologiske malinger pa nettverksniva, hvilket ble muliggjort av et oppsett for MEA.
Videre har flere metoder for lys-, konfokal og superresolusjonsmikroskopi blitt benyttet for &
identifisere og avbilde cellulaere elementer markert ved hjelp av immunocytokjemi, eller aktive
cellulere prosesser i levende cellekulturer.
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1. INTRODUCTION

1.1 THE CENTRAL NERVOUS SYSTEM (CNS)

1.1.1 SELF-ORGANIZATION, EMERGENCE, AND PLASTICITY

The intricate architecture of the human brain emerges through self-organization principles,
which collectively orchestrate the shaping of about 100 billion neurons (and about the same
number of glial cells), with up to 100,000 synapses each, and 100,000 km of interconnections,
into complex, hierarchical neural networks (Hofman, 2014, von Bartheld et al., 2016). The
highly specific anatomy and function of the human brain develops under tight molecular
control, where inherent, sequential mapping rules dictate the migration routes, differentiation
of subtype specific neurons, and targets of axonal projections (Goodman and Shatz, 1993). The
largest and most intricately connected part of the mammalian brain is the cerebral cortex, the
outermost structure consisting of hierarchically organized, sheet-like arrays of nerve cells in six
distinct layers. Two main neuronal subtypes populate it, namely projection neurons and
interneurons, which send their axons to distal brain target and locally within circuits,
respectively. During early stages of cortical development (corticogenesis), undifferentiated
(progenitor) neuroepithelial cells begin to proliferate and differentiate into radial glia,
establishing the ventricular zone (VZ) (Haubensak et al., 2004). These cells in turn differentiate,
establishing the subventricular zone (SVZ) (Noctor et al., 2004, Noctor et al., 2007) and
additional progenitor classes, each of which have distinct morphological properties, patterns of
cell division, and further differentiation (Molyneaux et al., 2007). Newly born neurons migrate
away from the ventricular zones, establishing the cortex in an inside-out fashion, with early
born neurons populating the innermost cortical layers, and later-born neurons migrating past
them to progressively populate more superficial layers (Tau and Peterson, 2010, Greig et al.,
2013).

Axonal growth and guidance are fundamental parts of the initial establishment of connections
between neurons in the brain (Tessier-Lavigne and Goodman, 1996), where spouting neurites
extend and engage in a dynamical search for connecting partners. This process relies on the
growth cone, a highly specialized structure crucial for cell motility and successful network
wiring, situated at the tip of neurites. The growth cone consists of dynamic cytoskeletal
elements and a membrane embedded with receptors expertly tuned for navigation and
pathfinding based on electrical, chemical- and structural guidance cues present in the
environment surrounding the neuron (Song and Poo, 2001, Dickson et al., 2002, Dent and
Gertler, 2003, Dent et al., 2011, Bellon and Mann, 2018). Once the target is reached, the growth
cone matures into a synapse. Synapses are intercellular junctions specialized for fast, point-to-
point information transfer (Sudhof, 2018). The development of astrocytes is spatially and
temporally coincident with this process of synaptogenesis in developing neurons, and astrocyte-
neuron interactions have been shown to help guide neuronal axons to their destination, as well
as to be necessary for synaptic formation, postsynaptic function, stability and maintenance
(Ullian et al., 2004, Barker and Ullian, 2008, Pfrieger, 2010, Minocha et al., 2015, Allen and
Lyons, 2018). The initial establishment of connectivity is further typified by a transient



overshoot phase, i.e. an overproduction of axons, neuritic branches and synaptic connections
(Innocenti et al., 1977, Innocenti and Price, 2005, Bressoud and Innocenti, 1999, Webster et
al., 1991, Rakic et al., 1986). During subsequent maturation, a process of selection occurs, in
which synaptic pruning and elimination of transient projections ensures the removal of
superfluous contacts while functional synaptic connections are retained and further
strengthened or modified through activity-dependent mechanisms (O'Leary, 1992, Katz and
Shatz, 1996). Microglia serve as “synaptic gardeners” during this process, where they
participate in both the formation and scavenging of synapses (Paolicelli et al., 2011, Miyamoto
et al., 2016, Ikegami et al., 2019).

The self-organizing process during the initial phase of network establishment is largely activity-
independent, while with the emergence of internally generated spontaneous activity, the process
becomes activity-dependent/modulated (Katz and Shatz, 1996). Due to the selectively
permeable membrane and basic electrochemical properties of single neurons and their
interconnections, spontaneous electrophysiological activity emerges and gives rise to a variety
of electrical signals that transmit information. With maturation, the developing brain relies
progressively less on internally generated spontaneous activity, and increasingly on external
experience/ stimuli as the sensory organs mature (Katz et al., 1989, Katz and Shatz, 1996, Hubel
and Wiesel, 1970, Hubel et al., 1977, Wiesel and Hubel, 1963). In turn, experience-dependent
neural activity in turn further shapes the basic structural and functional components of the brain,
i.e. the neural circuits. It guides the formation, elimination and rearrangement of synapses to
establish functionally connected and organized ensembles of neurons that process specific kinds
of information. Furthermore, different regions of the brain are further sub-organized into
discrete structural and functional areas that are specialized for hierarchical and parallel
processing, as well as integration, of different sensory and motor modalities.

Both the anatomical and functional architecture of brain neural circuits are plastic.
Neuroplasticity, i.e. the brain’s innate capacity for adaptation, is key in self-organization and
influences the process of neural network wiring and rewiring at several levels during
development. Moreover, in this capacity for change also lies our ability to acquire and
incorporate new skills, information and experiences into an already existing meshwork of
circuitry, as entire neural circuits can be remodeled, functional areas can be remapped, and the
connections between neurons can be modulated, removed, or created through activity
dependent, Hebbian-like or homeostatic processes throughout life (Hubel and Wiesel, 1970,
LeVay et al., 1980, Lo, 1995, Bear and Malenka, 1994, Turrigiano et al., 1998, Abbott and
Nelson, 2000, Albert and Barabasi, 2000, Turrigiano and Nelson, 2004, Turrigiano, 2008,
Turrigiano, 2012, Majewska and Sur, 2006, Blackman et al., 2012). Hebbian and homeostatic
plasticity work in tandem to refine neural circuit function, where the strengthening and
weakening of synapses determined by coincidence of firing in classical Hebbian mechanisms
are counterbalanced by local and global homeostatic plasticity mechanisms serving to balance
and maintain circuit activity and function (Turrigiano, 2012). Furthermore, glial cells play
major roles in such plasticity processes not only during development, but also in the mature
brain, where microglia continuously regulate the number of functional synapses (Ji et al., 2013),
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oligodendrocytes dynamically regulate myelination and thus conduction velocity in specific
circuits in response to neuronal signals (Almeida and Lyons, 2017, Allen and Lyons, 2018),
and astrocytes stabilize, eliminate, and modify synaptic connections (Pfrieger, 2010, Adamsky
et al., 2018, Allen and Lyons, 2018).

The self-organization and plasticity of the central nervous system (CNS) is of great importance
as the structural connectivity of the brain, i.e. the pattern of anatomical axons interconnecting
local and distal neuronal ensembles, inherently shapes the functional capacity of the neural
networks (Laughlin and Sejnowski, 2003, Avena-Koenigsberger et al., 2017). The length of the
axonal fibers for instance, i.e. the distance a signal has to travel between interconnected distal
nodes in the network, puts physical constrains on the maximum processing speed of the system.
The sharing of information between anatomically and functionally segregated neural circuits or
areas in the brain has been shown to be mediated through a few reciprocal, long-range
connections or pathways, which allow for dynamic interaction between neuronal clusters over
large distances (Gilbert and Wiesel, 1989, Kaiser and Hilgetag, 2006, Sporns et al., 2004).
Structural connectivity thus shapes the functional connectivity, i.e. the large-scale patterns of
temporal correlations and co-activation that can be generated through these dynamical
interactions across the brain. This topic is further discussed in the next section.

1.1.2 STRUCTURE-FUNCTION RELATIONSHIPS AND SELF-ORGANIZED CRITICALITY

Simultaneous capacity for information segregation and integration are the two main neural
network phenomena in the brain that are recognized as the basis of behavior (Zeki and Shipp,
1988, Tononi et al., 1998, Sporns et al., 2000a, Sporns et al., 2000b, Sporns et al., 2004, Tognoli
and Kelso, 2014). These collective network phenomena naturally develop from the spontaneous
electrophysiological activity of neural networks, termed “emergent network behavior”.
Computational functions which are segregated, both spatially and temporally, into functional
modules in the brain are dynamically engaged and disengaged through transient phase or
frequency locking, and thus integrated into transitory coordinated global functions (Tognoli
and Kelso, 2014, Sporns et al., 2000a). Furthermore, the dynamic and plastic self-organizing
processes underlying this function are hypothesized to drive the activity of the brain towards a
“critical state” (Freeman and Holmes, 2005, Rubinov et al., 2011, Shew and Plenz, 2013, Hesse
and Gross, 2014, Valverde et al., 2015, Massobrio et al., 2015, Langton, 1990). This is a
universal feature of any spatially extended dynamic system stemming from the physics of phase
transitions (Bak et al., 1988). Self-organized criticality (SoC) represents the state of optimal
function and computational capability, the critical point between resilience against perturbation
and adaptational flexibility, which appears without the need for fine-tuning of parameters
(Tetzlaff et al., 2010, Hesse and Gross, 2014, Rybarsch and Bornholdt, 2014, Massobrio et al.,
2015, Valverde et al., 2015, Yada et al., 2017, Pasquale et al., 2008, Muifioz, 2018, Hoffmann
and Payton, 2018). This dynamic state is characterized by cascades of spontaneous activity with
power-law size distributions, which is electrophysiologically measurable in neural networks
and termed “neuronal avalanches” (Bak et al., 1988, Beggs and Plenz, 2003, Beggs and Plenz,
2004, Tetzlaff et al., 2010, Friedman and Landsberg, 2013, Moretti and Munoz, 2013).
Although a “true” point of criticality does not exist in any finite system, the brain shows
evidence of a critical-like region (Moretti and Munoz, 2013, Mufioz, 2018), within which



certain qualities diverge and a rapid transition between different states can be maintained, such
as in brain synchronization transition (Tognoli and Kelso, 2014). Several lines of evidence exist
for criticality in the brain (Ribeiro et al., 2010, Tagliazucchi et al., 2012, Gautam et al., 2015,
Stoop and Gomez, 2016, Clawson et al., 2017, Daffertshofer et al., 2018), where functional
advantages in signal detection and processing are gained within such a critical-like activity
region (Shew and Plenz, 2013, Mufioz, 2018).

As already highlighted, the functional dynamics of complex systems like the brain are highly
influenced by the systems underlying structural architecture. Several studies have shown that
the neural networks in the brain exhibit a “small-world” organization, a network configuration
characterized through high local clustering and short path lengths between any distant pair of
nodes (clusters of neurons), the latter arising from relatively few, long-range connections
(Watts and Strogatz, 1998, Zeki and Shipp, 1988, Sporns et al., 2000a, Bassett and Bullmore,
2006, Bassett and Bullmore, 2017). This organization has major implications for the behavior
of the network, allowing for the simultaneous specialization/segregation and
distribution/integration characteristic of information processing in the brain. The majority of
connections are short, reflecting local processing of information as well as spatial and energetic
constraints, while long-range connections enable integration of information between spatially
segregated neuronal ensembles, providing both complexity and redundancies that promote
robustness (Latora and Marchiori, 2001, Betzel and Bassett, 2018). By application of graph-
theory, i.e. treating functional and/or structural clusters in the brain as nodes and their
connections as links in a graph, this topological organization is visible both in structural and
functional measures of the human brain, at several scales (Sporns et al., 2000a, Sporns et al.,
2000b, Bassett and Bullmore, 2006, Bassett and Bullmore, 2017, Bullmore and Sporns, 2009).

1.1.3 CNS DAMAGE AND NEURODEGENERATION

In the healthy mature brain, structural and neurochemical alterations which naturally occur are
compensated for through for instance reorganization and redistribution of functional circuits,
as well as recruitment of additional cortical and subcortical areas, in order to maintain
performance levels (Johansson, 2004, Ward and Frackowiak, 2003, Talelli et al., 2008, Mattay
et al., 2006, Mattay et al., 2002). This natural development is as such dependent on the ability
to adapt, repair and remodel neural circuits, as well as on the capacity for behavioral
compensation (Lo, 2010). However, in the face of damage or disease which disrupts the
structure and function of neural circuits, the regenerative capacity of the adult human brain is
severely restricted. This limited regenerative capacity is partly related to the neurogenic
capability of the mature human brain, i.e. the capacity for producing new neurons to repopulate
affected neural circuits. This capacity is minimal, confined to a few specialized regions, and
decreasing with age (Gage, 2000, Ming and Song, 2011, Zhao et al., 2008). Another limiting
factor to CNS regeneration relates to the intrinsic mechanisms of axonal regrowth, which
contrary to the peripheral nervous system (PNS), where they can lead to spontaneous and robust
regeneration and functional recovery, these intrinsic capabilities are limited while they are also
hampered by and inhibitory factors in the tissue environment and the poor neurogenic capacity
of the adult CNS (Chen et al., 2007, Liu et al., 2011, Schwab and Strittmatter, 2014, Mahar and
Cavalli, 2018). In contrast to adult neurons in the PNS, adult neurons of the CNS fail to



reactivate intrinsic growth programs after injury (Chen et al., 2007, Tedeschi and Bradke,
2017). These regenerative processes are also affected by the complexity and size of the neural
circuit, where newly generated neurons have to migrate from confined neurogenic niches, i.e.
from the SVZ and sub granular zone (SGZ), to local and distal sites of damage in the brain,
while sprouting axons and nerve fibers need to regrow over long distances. Furthermore,
regenerating neurons often have to traverse non-permissive signaling environments expressing
growth inhibitory factors such as Nogo, which collapse the growth cone and stop neurite
elongation (Schwab and Strittmatter, 2014). Other prominent extrinsic barriers also exist, such
as neuroinflammation (Glass et al., 2010) and the glial scar (Silver et al., 2014). Moreover,
regenerating neurons have to form functional synapses with regional specificity and fidelity of
connections, as well as remyelinate, and integrate into already established, complex neural
network circuitry in an adaptive way (Fornito et al., 2015, Lo, 2010, Tedeschi and Bradke,
2017).

Glial cells are also heavily involved in the regenerative capacity of the CNS. The structural
plasticity in white matter (myelinated regions of the brain) for instance, is known to be much
lower than in gray matter (unmyelinated regions), and oligodendrocyte myelin has been found
to be enriched with potent growth inhibitory factors such as Nogo, myelin-associated protein
(MAG) and oligodendrocyte-myelin glycoprotein (OMgp) (Sandvig et al., 2004, Zatorre et al.,
2012, Silver et al., 2014). Furthermore, CNS disruption causes immune cell infiltration and
inflammatory reactions by rapidly responding astrocytes and microglia, which release pro- or
anti-inflammatory factors depending on the evolution of pathology over time (Hirsch and
Hunot, 2009, Lucin and Wyss-Coray, 2009, Glass et al., 2010). Although immunological and
inflammatory responses are part of a tissue repair process, sustained or uncontrolled
inflammation is harmful, where for instance the release of proinflammatory cytokines by
microglia has been linked to precipitation of cell death in several neurodegenerative diseases
such as Parkinson’s disease (PD) Alzheimer’s disease (AD), and Amyotrophic lateral sclerosis
(ALS) (Mount et al., 2007, Boillee et al., 2006, Lucin and Wyss-Coray, 2009).

In the case of neurodegenerative disease, in which neurons and their interconnections are
progressively affected and lost, several homeostatic and regenerative mechanisms may be
initially engaged in maintaining the normal function of the perturbed circuits. However, as
progressively more neurons degenerate, with limited endogenous means of regenerating the
affected circuits, restoring function becomes increasingly difficult. At some point, disease
pathology overcomes these endogenous efforts of compensation and stabilization. As a result,
diagnosis after advanced neurodegeneration is already prominent is a common issue in
neurodegenerative disease, where mainly the homeostatic plasticity mechanisms are believed
to mask the initial development, hindering symptoms of dysfunction from becoming prominent
until later in disease progression (Lo, 2010). In PD for instance, the clinical symptoms have
been shown to lag behind the pathological changes in the brain (Kordower et al., 2013),
resulting in PD patients being diagnosed after a significant proportion (30%) of the
dopaminergic neurons in the substantia nigra pars compacta (SNpc), and an even larger amount
(50-70%) of their striatal terminal (Cheng et al., 2010), have already been lost to degeneration,
posing irreparable damage to both the structure and function of the affected circuitry.



The effect of structural damage on function, and vice versa, in neural networks has also been
investigated within the field of connectomics, which aims to produce a comprehensive map of
all neural elements and connections of the brain, where the level of interconnectivity in the
brain has been shown to inherently shape how it responds to perturbation (Tononi et al., 1998,
Young et al., 2000, Breakspear and Stam, 2005, Bullmore and Sporns, 2009, Fornito and
Bullmore, 2015, Fornito et al., 2015). By using neuroanatomical data for modelling, functional
impairment has been found to be highly correlated with the number of direct projections
between the lesion site and the affected node, and the number of connections in a given neuronal
structure to determine both its impact on other structures as a lesion site, as well as its
vulnerability to lesions originating elsewhere in the network. Importantly, functional
impairments have also been found to spread well beyond the direct projections in a network,
affecting distal nodes indirectly linked to the lesion site (Young et al., 2000), a mechanism
which was termed diaschisis by von Monakow already in 1914 (Wiesendanger, 2006). This
means that the interconnectivity of the particular brain regions affected by damage or disease,
such as the dopaminergic neurons in the SNpc of PD patients, critically affects how the
pathology develops and functionally affects the individual (Honey and Sporns, 2008, Alstott et
al., 2009, Kitsak et al.,, 2010, Raj et al., 2012, Zhou et al., 2012, Fornito et al., 2015).
Furthermore, these findings highlight the importance of understanding network disturbances,
such as those posed by neurodegenerative diseases, as disruptions of complex interconnected
systems, not as discrete pathology localized only to a specific sub-region of the brain (Fornito
and Bullmore, 2015).

Further corroborating the importance of the structure-function relationships in the context of
disease development, the small-world architecture of the brain has been shown to propagate
pathology more easily than other network architectures (Moore and Newman, 2000).
Intriguingly, this likely relates to the manifestation and progression of several
neurodegenerative diseases, such as PD, AD, and ALS. Although the mechanistic triggers and
aetiologies of these diseases may be different and largely unknown, a shared feature in all of
the above is the characteristic development of abnormal aggregates of specific proteins, i.e.
proteinopathies, and the progressive patterned spread of pathology through seemingly
selectively vulnerable neuronal populations to other interconnected neural networks (Braak and
Braak, 1991, Braak et al., 2002, Braak et al., 2003a, Braak and Del Tredici, 2009, Kipps et al.,
2005, Arai et al., 2006, Andersen, 2006, Andersen et al., 1996, Ash et al., 2013, Bidhendi et al.,
2016). Proteinopathy refers to the phenomenon in which a native protein misfolds and
undergoes a conformational change, a structural switch from which toxic protein species result
(Verma et al., 2015). In PD, intracellular Lewy bodies and Lewy neurites are characteristic of
the disease, and mainly consist of aggregated forms of alpha-synuclein, while the plaques and
neurofibrillary tangles constituting neuropathological hallmarks of AD mainly consist of
amyloid beta (AP) and hyperphosphorylated tau proteins. In ALS, several different proteins
have been found to accumulate depending on the nature of the mutation (such as tar-DNA-
binding protein 43 (TDP-43), fused-in-sarcoma (FUS) and superoxide dismutase 1 (SOD1) and
C90rf72). Each of these distinct protein aggregates have been hypothesized to act as “seeds of
pathology” that propagate through interconnected areas, causing the progressive spread of
disease between CNS regions in a prion-like fashion (Verma et al., 2015, Goedert et al., 2017).
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These neuropathological protein aggregates have been found to localize, early in disease
progression, to neuronal structures and neuronal subtypes believed to be selectively vulnerable,
such as the SNpc in PD, the entorhinal cortex in AD, and to the upper- and/or lower motor
neurons in ALS. From these selectively vulnerable sites the “seeds of pathology” are
hypothesized to subsequently spread to highly interconnected brain regions in a topographical
progression (Braak and Braak, 1991, Braak et al., 2003a, Braak et al., 2003b). Although several
possible routes exist, axonal and synaptic contacts in particular have been hypothesized to act
as the sites of propagation for such disease processes. In line with this notion, characteristic
staging of CNS pathology has been found in AD, PD, and ALS (Braak and Braak, 1991, Braak
et al., 2003b, Golde et al., 2013, Turner and Swash, 2015, Bidhendi et al., 2016, Ekhtiari
Bidhendi et al., 2018, De Vos and Hafezparast, 2017, Kwiatkowski et al., 2009).

1.2 NEURAL NETWORK MODELLING

In vitro neural networks represent a highly valuable modelling approach when it comes to
elucidating principles governing both the structure and function of brain neural networks in
healthy and diseased states. The following sections focus on the aspects of CNS development
and structure-function relationships that are recapitulated by in vitro neural networks, and the
different sources for establishing human neural networks in vitro.

1.2.1 RECAPITULATION OF SELF-ORGANIZATION AND EMERGENT NETWORK ACTIVITY

In vitro neural networks recapitulate two fundamental principles of neural network behavior in
the developing brain, namely self-organization and emergent network activity. When neural
lineage cells are seeded onto the surface of a cell culture vessel, they undergo a spatiotemporal
organization, where their motile and sprouting neurites are extended within hours and, guided
by the growth cone, dynamically engage in the search of a connecting partner. This innate
neural outgrowth and pathfinding behavior is encoded into neurons, and is part of the initial
phase of both CNS wiring and in vitro network formation. As in CNS development, the initial
phase of establishing connections is followed by a network overshoot phase (Innocenti and
Price, 2005), characterized by strong neuronal outgrowth and synaptogenesis, creating an over-
expression of branches and synaptic boutons that results in a transient phase of overconnectivity
in the network. During subsequent maturation, synaptic pruning and homeostatic scaling occur,
in which superfluous synaptic contacts are removed while functional synaptic connections are
strengthened or modified through activity-dependent mechanisms (Giugliano et al., 2006). As
in the developing brain, this self-organizing process during the initial phase of network
establishment is largely activity-independent, while with the emergence of spontanecous
activity, the process becomes activity-dependent /modulated. Correlated with the phases of
structural self-organization, in vitro neural networks exhibit several forms of spontancous
electrical activity measurable through electrophysiology techniques, such as multielectrode
arrays (MEAs). The initial phase of network formation and wiring is largely characterized
through no or uncorrelated firing. This activity further develops into sporadic or clustered action
potentials from single cells, and is followed by a period of synchronous regular bursting
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activity. After this, a more complicated, non-periodic network pattern emerges, a form of
activity which represents the “mature” state of the network.

Further expanding on the structure-function relationships recapitulated by in vitro neural
networks, there is accumulating evidence of the characteristic small-world organization of the
brain also emerging in maturing neural networks in vitro (Bettencourt et al., 2007, Srinivas et
al., 2007, Massobrio et al., 2015, Poli et al., 2015, Pasquale et al., 2008). As previously
mentioned, this network configuration has major functional implications, and is particularly
relevant in the context of studying neurodegeneration and related spread of pathology, as this
network architecture has been shown to propagate pathology and disease more easily than other
network configurations (Moore and Newman, 2000). Furthermore, certain features of network
activity, such as neuronal avalanches, which are measurable through the use of MEAs, can be
used to determine whether the network is in a critical state (Beggs and Plenz, 2003, Beggs and
Plenz, 2004, Massobrio et al., 2015, Michiels van Kessenich et al., 2016). As in any other
spatially extended dynamic system, in vitro neural networks approach a state of SoC with
maturation (Bak et al., 1988, Tetzlaff et al., 2010, Hesse and Gross, 2014, Massobrio et al.,
2015, Valverde et al., 2015, Yada et al., 2017, Mufoz, 2018).

1.2.2 SOURCES FOR GENERATING NEURAL NETWORKS IN VITRO

In 2006, the retroviral introduction of 4 factors (Oct3/4, Sox2, c-Myc and K1f4) was shown to
successfully reprogram adult mouse fibroblasts into induced pluripotent stem cells
(iPSC)(Takahashi and Yamanaka, 2006). Not long after, adult human fibroblasts were
successfully reprogrammed into iPSCs (Takahashi et al., 2007, Yu et al., 2007), a finding which
has had a significant impact on neuroscience. iPSCs are similar to embryonic stem cells as the
important capabilities of unlimited self-renewal and potential for production of cells originating
from all three germ layers (pluripotency) are retained. Importantly, this successful fate
reversion from terminally differentiated, adult, somatic cells back to a stem cell state has opened
up new possibilities for studying complex human conditions in vitro, as patient-specific iPSCs
can be derived from minimally-invasive skin cell biopsies or blood cells. This morphogenetic
neuroengineering approach has led to the establishment of several methods for induction and
differentiation of iPSCs or embryonic stem cells into neurons (Pereira et al., 2014, Chambers
et al., 2009), and further into subtype-specifications such as dopaminergic-, spinal motor- and
cortical neurons (Doi et al., 2014, Kriks et al., 2011, Kirkeby et al., 2012a, Kirkeby et al., 2012b,
Sanchez-Danes et al., 2012a, Arenas et al., 2015, Sances et al., 2016, Amoroso et al., 2013,
Maroof et al., 2013). Moreover, as neurodegenerative diseases like PD, AD, and ALS are
human-specific conditions that have no naturally existing equivalent in any other species,
basing disease modelling systems on human tissue sources could hold great potential for
knowledge advancement.

By incorporating strategies for targeted genetic alterations such as CRISPR-Cas9 (Horvath and
Barrangou, 2010, Jinek et al., 2012, Pennisi, 2013), identified genetic disease-related mutations
can be corrected or inserted for in vitro modelling purposes (Kime et al., 2016). Furthermore,
such an approach could hold promise for allogenic transplantation (Raikwar et al., 2019), where
the patient’s own genetically corrected cells can be differentiated into subtype-specific cells
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and transplanted back where they are needed. However, concerns are rightfully raised about the
safety of transplanting iPSC-derived cells, as their defining trait of unlimited self-renewal and
potential for becoming every cell type in the body effectively means that they can produce
teratomas, i.e. cancer. Furthermore, reprogramming through the iPSC stage has been shown to
remove the epigenetic and age-related imprint, which rejuvenates the resulting cells by
telomerase lengthening, effectively preventing chromosome aging and allowing for indefinite
expansion in culture (Lapasset et al., 2011, Patterson et al., 2012). The continuous proliferation
makes them very suitable for experiments, however, the characteristics and morphology of the
cells change after several passages, and the cells may eventually express genetic patterns not
found in vivo. Some of these unfavorable characteristics have led to the establishment of several
methods for “direct conversion”, where the intermediate iPSC stage can be circumvented, and
mature somatic cells can be reprogrammed directly into (more fate-restricted) neurons or sub-
type specific neurons (Vierbuchen et al., 2010, Caiazzo et al., 2011, Yoo et al., 2011, Pfisterer et al.,
2011, Karow et al., 2012, Dai et al., 2015). Direct conversion retains the epigenetic imprint of the
source material (Mertens et al., 2015, Huh et al., 2016, Lu and Yoo, 2018), which enables the
in vitro recapitulation and investigation of other key aspect of neurodegeneration, namely
epigenetic mechanisms as well as age-dependency.

1.2.3. MEASURING ELECTROPHYSIOLOGICAL NEURAL NETWORK ACTIVITY USING MULTIELECTRODE

ARRAYS (MEAS)

The most widely used MEAs for measurement of neural network activity in vitro, are planar
MEAs, the first of which was described as early as 1972 (Thomas et al., 1972). MEAs usually
consist of a substrate coated cell culture chamber embedded with an array of electrodes, on top
of which neural networks can be seeded and their spontaneous, extracellular
electrophysiological activity can be simultaneously recorded with minimal interference in vitro.
These platforms allow for long-term, population-based activity measurements with
submillisecond resolution, acquiring electrophysiological signals within the frequency domain
of both local field potentials (1-300Hz) and extracellular action potentials (300-3000Hz), i.e.
spikes, with a sampling rate of up to SOkHZ per second. The spatial resolution of the acquired
signal is determined by the number, spacing, and receptive field of the electrodes. The most
commonly used MEAs have 60 electrodes with 100-200um interelectrode spacing, where each
electrode can detect spikes up to 50um away from the cell body, as well as deliver local
electrical stimulation. Several factors can influence the quality of the recordings and the neural
network activity, however, such as impedance of the electrodes and noise, as well as
physiological factors like temperature and metabolic state of the culture, which need to be
considered when planning MEA based experiments.

1.3. STUDYING NEURAL NETWORK STRUCTURE-FUNCTION RELATIONSHIPS IN THE CONTEXT OF PD-

RELATED NEURODEGENERATIVE PROCESSES

Through a combination of in vitro neural network-based strategies, several aspects of structure-
function relationships, such as network topology, plasticity, criticality, and small-worldness,
have been investigated and applied within the context of neurodegenerative disease processes
for this thesis. PD represents the second most common neurodegenerative disease after AD and
other dementias (Feigin et al., 2017, Dorsey et al., 2018), and its related pathologies in particular

13



have been selected to study neurodegenerative processes and their effect on neural network
structure-function relationships. As highlighted in other sections of the introduction, PD shares
many features with other neurodegenerative diseases such as AD and ALS, including
proteinopathy and topographically patterned development of disease related pathology, which
progressively spreads from seemingly selective vulnerable neuronal populations to other
interconnected neural networks. Furthermore, PD is age-related, idiopathic and primarily
sporadic, three complicating facts shared with most other neurodegenerative diseases.

PD is a heterogenous disease, characterized by a range of neurological symptoms such as
difficulty with initiating and sustaining movement, resting tremors, rigidity, muscle stiffness
and postural changes. Other symptoms include impaired olfactory function, constipation, sleep
disturbances, dementia, depression, apathy and anxiety, as well as impairments in executive
functions such as problem solving and planning (Rodriguez-Oroz et al., 2009, Kouli et al.,
2018). These symptoms arise as a consequence of a neurodegenerative process, wherein the
dopaminergic neurons in the SNpc are particularly affected and progressively depleted.
Although some prodromal mild impairments can be detected up to 10-14 years prior to
diagnosis (Postuma et al., 2012, Darweesh et al., 2017), the motor symptoms of PD only
manifest clearly after about 30% of the SNpc dopaminergic neurons and 50-70% of their striatal
terminals are lost, which complicates and limits treatment options for PD patients as they are
generally diagnosed late in the disease progression (Cheng et al., 2010). This onset of cardinal
motor symptoms further correlates with the point where the dopamine concentration in the
motor region of the striatum falls below 60-70% (Rodriguez-Oroz et al., 2009).

Although the movement related impairments of PD are largely ascribed to the characteristic
loss of dopaminergic neurons in the SNpc, and the degeneration of the nigrostriatal (dorsal
striatal) pathway, the disease is much more systemic, affecting both the mesolimbic
dopaminergic pathway (ventral striatal) pathway, the mesocortical pathway, as well as several
other neuronal populations throughout the brain as it progresses (Verstreken, 2017).
Furthermore, the non-motoric symptoms of PD are linked to widespread alpha-synuclein
inclusions in both central, peripheral and autonomic parts of the nervous system, as well as in
multiple organs, illustrating the multisystem involvement of the disease (Goedert et al., 2013,
Jellinger, 2014).

To reiterate a key point, protein aggregates, such as the fibrillary or misfolded forms of alpha-
synuclein proteins in PD, are hypothesized to act as the pathogenic seeds propagating
neurodegenerative processes through highly interconnected areas, spreading self-propagating
pathology from particularly vulnerable network sites and neuronal subtypes (Spillantini et al.,
1997, Verma et al., 2015, Del Tredici and Braak, 2016, Goedert et al., 2017, Surmeier et al.,
2017a, Surmeier et al., 2017b, Alegre-Abarrategui et al., 2019, Mehra et al., 2019). Perhaps the
most compelling proof of this spread between interconnected brain regions, are the reports from
transplantations of human foetal midbrain tissue into the striatum of Parkinson’s disease
patients, which provide strong evidence for host-to-graft disease propagation. Autopsies
obtained 10 years post-transplantation revealed that 2%-5% of the grafted cells contained alpha-
synuclein inclusions, while as much as 11%-12% of the grafted cells exhibited alpha-synuclein
inclusions after 24 years (Kordower et al., 2008, Li et al., 2008, Li et al., 2016).
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The initial hypothesis of propagating pathology was put forward by Heiko Braak and colleagues
in relation to sporadic PD (Braak et al., 2002, Braak et al., 2003a). “ Braak’s hypothesis” was
based on numerous brain autopsies showing that the characteristic alpha-synuclein inclusions,
i.e. Lewy body (LB) and Lewy neurites (LN), begin developing at early time-points in the brains
of PD patients, before any noticeable somatomotor dysfunction, and that they seemingly spread
to anatomically highly interconnected brain structures in an “evolving topographical
progression”. Subsequently, as the first signs of alpha synuclein inclusions were found in the
nasal cavity and the gut, where the olfactory receptor neurons and gut branches of the vagal
nerve are exposed to exogenous molecules from the outside world, an unidentified pathogen
originating outside the CNS was hypothesized to initiate sporadic PD (Braak et al., 2003b).
Such a pathogen could be taken up in the extraneuronal space and either be carried directly, or
initiate a proteinopathic conformational change in endogenous alpha-synuclein which again
could be carried, via axonal transport and transmitted transneuronally through selectively
vulnerable neuronal subtypes (Braak et al., 2003b, Braak et al., 2006, Hawkes et al., 2007,
Hawkes et al., 2009, Del Tredici and Braak, 2016).

In the first research paper included in this thesis, alpha-synuclein pathology has been induced
in human iPSCs-derived neurons through the addition of alpha-synuclein pre-formed fibril
(PFF) seeds to study the impact of this neurodegenerative process on network function and
network criticality state. Functional network measurements are enabled through the use of
MEAs, which allow for the electrophysiological measurement of network activity. In animal
models of PD, it has been shown that a single synthetic PFF seed is enough to spread
pathological alpha-synuclein through cell-to-cell transmission from the intrastriatal inoculation
site to interconnected frontal-, thalamic- and neocortical areas (Luk et al., 2012a, Luk et al.,
2012b). In vitro studies using primary neuronal cultures from rodents have also shown that
alpha-synuclein PFFs can spread intercellularly between connected neural networks
(Volpicelli-Daley et al., 2014). This neuron-to-neuron transfer or release of alpha-synuclein can
be mediated through different pathways, comprising intracellular axonal transport (Freundt et
al., 2012), intercellular cargo transportation through lysosomes in tunneling nanotubes (TNTs)
(Abounit et al., 2016), and exosome release or direct exocytosis (Bieri et al., 2017).

Moreover, the development of PD is believed to be caused by a combination of both genetic
susceptibility and environmental factors as the vast majority (95%) of cases are sporadic, while
only about 5% of PD cases can be definitely linked to a genetic cause. Age represents the
greatest risk factor with a prevalence of 1% in the population over the age of 60, and 4% in the
population over the age of 85(Lees et al., 2009, Deng et al., 2018). Large cross-cultural
variations also exist, with individuals from Europe, North- and South America having a higher
prevalence of PD than other populations (Kalia and Lang, 2015). Some environmental factors
have also been implicated in PD, where exposure to pesticide and herbicides are correlated with
an increase in the risk of developing PD, while cigarette smoking and coffee drinking is
correlated with a reduced risk (Kouli et al., 2018, Ball et al., 2019). Genetic predisposition also
plays a significant role, where mutations in 23 so called PARK genes have been linked to PD
to date (Deng et al., 2018).
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Although several genes have been linked to PD, the pathogenic variants of one gene in
particular, the leucine-rich repeat kinase 2 (LRRK2), have been termed a potential “Rosetta
stone” of the disease, as it exhibits (i) all the major pathologies related to parkinsonism, as well
as (ii) end-stage variability in pathology even within families carrying the same pathogenic
variant (Zimprich et al., 2004, Joanne Trinh et al., 2006, Wider et al., 2010, Cookson, 2015,
Lewis, 2019). In the second research paper presented in this thesis, the particular G2019S
mutation in the ROC-COR domain of the LRRK2 protein, which has been linked to both
familial and sporadic forms of PD, and which is common in certain populations (Ozelius et al.,
2006, Djaldetti et al., 2008, Lewis, 2019), was chosen as a basis for investigating structure-
function relationships in human neural networks carrying a PD-related genetic modification.
Equivalent neural networks with and without this mutation were structured using microfluidic
chips interfaced with MEAs, a set-up which allowed for the simultaneous observation of both
structural and functional network aspects. Furthermore, in line with the notion that PD might
develop though a combination of genetic and environmental factors, confined parts of these
structured neural networks were transiently subjected to chemical overexcitation, and micro-
and mesoscale responses were monitored.

The third research paper presented in this thesis relates more directly to network topology. As
disease has been shown to spread more effectively within networks with a small-world
architecture (Moore and Newman, 2000), we investigate the topological effect of structuring
neural networks using surface-grafted polymer particles.
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2. AIMS AND OBJECTIVES

The overarching aim of this thesis was to investigate dynamic structure-function relationships
in biological neural networks at the micro- and mesoscale with special focus on the influence
of neurodegenerative processes on such relationships in the context of Parkinson’s disease.

The work is based on the underlying hypothesis that healthy and perturbed neural networks
demonstrate different emergent behavior in terms of function and connectivity and also respond
differently to pathology in terms of critical states.

Thus, the main objectives of this work were (i) the application of advanced disease modelling
for the recapitulation and study of relevant pathological processes in vitro, and (ii) the
identification and extraction of key morphology-activity relationships at the micro- and
mesoscale. Identification and extraction of such relationships in the face of ongoing
pathological neurodegenerative processes in biologically relevant neural networks is highly
relevant for understanding early disease onset and mechanisms and, as such, can significantly
improve our ability to develop novel, clinically relevant interventions.
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3. SYNOPSIS OF RESULTS

PAPER 1: CRITICALITY AS A MEASURE OF DEVELOPING PROTEINOPATHY IN BIOLOGICAL HUMAN

NEURAL NETWORKS
Authors: Vibeke D. Valderhaug, Kristine Heiney, Ola Huse Ramstad, Geir Brathen, Wei-Li
Kuan, Stefano Nichele, Axel Sandvig, and loanna Sandvig

Submitted to Frontiers in Neural Circuits (19.11.2019)

Background

The presence of proteinopathy and the patterned spread of pathology through selectively
vulnerable neuronal populations represent commonalities in neurodegenerative diseases such
as PD, AD and ALS. The aim of this study was to investigate whether the developing alpha-
synuclein proteinopathy characteristic of PD was reflected in functional measures of network
activity, and whether they could be related to the network state of self-organized criticality.

Methods

Human iPSCs were reprogrammed in vitro into neurons (Kirkeby et al., 2012b, Kirkeby et al.,
2016, Doi et al., 2014), and seeded onto multielectrode arrays (MEAs) (n = 8). Seeds of pre-
formed alpha-synuclein fibrils (PFFs) were introduced to the media of mature networks to
induce alpha-synuclein pathology, while control neural networks received either PBS or alpha-
synuclein monomers (Volpicelli-Daley et al., 2011, Volpicelli-Daley et al., 2014, Polinski et
al., 2018, Tanik et al., 2013). The developing activity of all neural networks was monitored
prior to, and for three weeks following this point of perturbation.

Results

Induced pathology was verified ultrastructurally by transmission electron microscopy through
the identification of intracellular fibrils and inclusion bodies, as well as necrotic and apoptotic
extracellular elements. Analysis of developing electrophysiological network activity revealed
no clear difference between PFF treated and control cultures in standard functional
measurements such as mean firing rate, cross-correlation, inter-spike intervals, or population
inter-spike intervals. Assessment of criticality however, revealed a trend in alteration of
network criticality states between the PFF and PBS controls, where the PFF networks largely
ended up in a critical state, while the PBS controls ended up in a largely non-critical state.

Conclusions

This study shows that although the developing pathology is not clearly manifest in standard
measurements of network function, it is expressed in network criticality states. Furthermore,
the results suggest that induction of PD-related proteinopathy alters the developmental
trajectory of the neural networks in relation to SoC.
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PAPER 2: STRUCTURAL AND FUNCTIONAL ALTERATIONS RELATED TO THE LRRK2 G2019S

MUTATION REVEALED IN STRUCTURED HUMAN NEURAL NETWORKS
Authors: Vibeke Devold Valderhaug, Rosanne van de Wijdeven, Ola Huse Ramstad, Kristine
Heiney, Stefano Nichele, Axel Sandvig, and loanna Sandvig

Manuscript under revision by The European Journal of Neuroscience (EJN) (submitted
18.07.2019)

Background

The pathogenic variants of the leucine-rich repeat kinase 2 (LRRK2) gene has been termed a
potential “Rosetta stone” of PD. Although rare, the particular G2019S variant has been shown
to contribute uniquely to both familial and sporadic forms of the disease. The aim of this work
was to study the effect of the G2019S mutation on the structure-function relationships of
developing neural networks in vitro, and to investigate whether possible mutation-related
features would emerge following a stressful challenge.

Methods

Human iPSC-derived neural stem cells with and without the LRRK2 G2019S mutation were
structured using three-nodal microfluidic chips, some of which were also interfaced with
MEAs. Following baseline neuronal activity measurements, a single, transient, confined
overexcitation event was elicited in the networks using kainic acid (KA) (or PBS for controls),
and the resulting structural and functional network responses were monitored immediately
after, and at 24 hours following the stressful challenge.

Results

Baseline electrophysiology measures revealed a consistent difference in activity between the
two groups, with LRRK?2 neural networks exhibiting a 2-fold mean firing rate (MFR) compared
to the control neural networks (average 4.5 vs 2 spikes/sec), while simultaneously displaying a
lower total network correlation (r =0.085 vs r =0.12). Furthermore, light microscopy,
immunocytochemistry, as well as live imaging of active mitochondria (using
tetramethylrhodamine) revealed a much greater density of neurites and number of active
mitochondria within the axonal compartments of the LRRK2 networks compared to the
controls. Following the sublethal KA stimulation, the control neural networks displayed a more
prominent reduction in active mitochondria and MFR, as well as increased neuritic remodeling
and synaptic alterations 24 hours later, compared to the LRRK2 neural networks.

Conclusions

We provide the first evidence of increased neuritic density related to the G2019S mutation,
where the aberrant neuritic profile interconnecting these neuronal networks likely affects
neurotransmission efficacy, perhaps explaining the elevated MFR and simultaneous low
correlation observed compared to controls. Together with the difference observed between the
mutated and control neural networks following the KA stimulation, these results suggest
impaired axonal growth, guidance, and synaptic plasticity, related to the G2019S mutation.
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PAPER 3: FORMATION OF NEURAL NETWORKS WITH STRUCTURAL AND FUNCTIONAL FEATURES

CONSISTENT WITH SMALL-WORLD NETWORK TOPOLOGY ON SURFACE-GRAFTED POLYMER PARTICLES
Authors: Vibeke D. Valderhaug, Wilhelm Robert Glomm, Eugenia Mariana Sandru, Masahiro
Yasuda, Axel Sandvig and loanna Sandvig

Published in the journal Royal Society Open Science (23.10.2019); Vol.6, issue 10;
https://doi.org/10.1098/rs0s.191086

Background

Although standard in vitro neural network modelling systems capture many qualities of neural
networks in vivo, the basic three-dimensionality of the brain represents a largely disregarded
feature. In this study, we combine in vitro neural cell culture with a biologically compatible
scaffolding substrate, surface-grafted polymer particles (PPs), to develop neural networks with
3D topology, and investigate the resulting structure and function of the neural networks within
context of small-worldness.

Methods
Rat neural stem cells were seeded onto PPs, differentiated and subsequently matured over a
period of 4 weeks. The developing neural network activity was monitored using MEAs with
3D electrodes. Scanning electron microscopy (SEM), lipophilic tracers, and standard
immunocytochemistry were used to assess the structural profile of the PP structured neural
networks.

Results

Long-term culture of neural networks structured on PPs was demonstrated through attachment,
differentiation, maturation, and survival of the neural networks for over four weeks. 3D MEA
measurements of the developing PP structured neural networks demonstrated the spontaneous
emergence of network activity consistent with computational capability, i.e. activity patterns
suggestive of information segregation (desynchronized spikes and local bursts) and information
integration (network spikes). Furthermore, SEM investigations of the structural connections
revealed suspended axonal bundles interconnecting nodes of neurons on otherwise distant and
independent surface areas, providing topological “shortcuts” between remote neuronal clusters,
consistent with a small-world topology.

Conclusions

The application of neural interfaces such as the presented PPs has the potential of recapitulating
an important aspect of self-organization and connectivity, namely the 3D character of biological
neural networks. PP structuring increases the possible connectedness between remote, local
neuronal clusters through suspended axon bundles, i.e. ‘structural shortcuts’, thus capturing a
topological feature consistent with the small-world architecture of the brain.
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4. DISCUSSION

The overarching aim of this thesis was to investigate dynamic structure-function relationships
in biological neural networks at the micro- and mesoscale, with special focus on the influence
of neurodegenerative processes on such relationships in the context of Parkinson’s disease.
Through a combination of in vitro neural network-based strategies, several mesoscale aspects
of structure-function relationships, such as network activity, connectivity, small-worldness, and
criticality have been investigated. These mesoscale network features have in turn been
considered in relation to microscale expression of dysfunction and pathology in the context of
PD-related perturbations. The following discussion will focus and expand on some key
observations from the presented experimental studies, as well as on their relationship to
neurodegenerative disease and PD pathology.

4.1 How DOES SOC IN IN VITRO NEURAL NETWORKS RELATE TO EVOLVING NETWORK PATHOLOGY?
SoC has been proposed by other investigators to be a mechanism that guides the spontancous
activity of developing neural networks into transient and homeostatically regulated patterns of
activity, or into “meta-stable dynamics” (Haldeman and Beggs, 2005, Pu et al., 2013) and brain
state transitions (Freeman and Holmes, 2005). These dynamics are in turn part of the regular
developmental trajectory of in vitro neural networks, and have been found to occur only in
neural networks with activity propagating within the critical mode (Pu et al.,, 2013).
Furthermore, some reports of in vitro neural network criticality (using dissociated rat cortical
neurons) have found most, but not necessarily all, of the neural networks investigated to mainly
stay within the critical regime after a certain point in their development (Pu et al., 2013,
Pasquale et al., 2008, Tetzlaff et al., 2010). Some mature neural networks fall into the super- or
subcritical regime. Nevertheless, the difference in the trend of network criticality state alteration
found (in Paper 1), with the PFF neural networks largely displaying activity consistent with
SoC, and the control neural networks largely ending up in a non-critical state, suggests a
perturbation of the developmental trajectory as a result of the induced alpha-synucleinopathy.

A partial explanation for the direction of network criticality state alterations found after
pathology induction, and the baseline measurements showing fluctuating criticality states in all
neural networks, could lie in the slower development and maturation of iPSC-derived neural
networks suggested by some recent studies, compared to the more commonly used primary
neural networks (Marom and Shahaf, 2002, Kirwan et al., 2015, Cotterill et al., 2016). The main
body of research used to characterize the stages of spontancous electrophysiological activity
development in neural networks in vitro (as described in the introduction), is based on cultures
of primary cortical neurons (mainly from mice and rats) (Giugliano et al., 2006), and has been
reviewed in detail in (Marom and Shahaf, 2002). However, following the advancements of
morphogenetic neuroengineering, this picture has become more multifaceted, and the dynamics
of emergent network activity may vary substantially in their time of onset and persistence based
on the distribution of cell types and sup-type specificity of the neurons comprising the in vitro
neural network (Kirwan et al., 2015, Cotterill et al., 2016). The heterogeneous cell composition
of the resulting iPSC-derived neural networks likely also produces variable time courses of
maturation for sub-type specific cells. As the neural networks in our experiment were found to
fluctuate between critical and non-critical states within the baseline measurements (prior to any
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pathology induction), this points towards the neural networks not having reached the “certain
point in development” where activity mainly stays within the critical regime (Pasquale et al.,
2008, Stewart and Plenz, 2008, Yada et al., 2017, Tetzlaff et al., 2010, Pu et al., 2013), or that
the developmental trajectory in itself was different in our iPSC-derived neural networks
compared to the more commonly used primary neural networks.

Some authors argue that biological neural networks produce “dirty criticality”, as neural
network activity hovers around a critical region, rather than a true point of criticality, a situation
which can never be fully compatible with standard SoC (Kinouchi et al., 2018, Muiioz, 2018).
As a result, two variants of SoC have been proposed as better suited models for biological
neural networks, models which could fit with our observations of fluctuating network states of
criticality. The first variant, self-organized quasi-criticality (SogC), describes a mechanism
which drags the system back and forth around a stretched region of criticality (Bonachela et al.,
2009, Bonachela and Munoz, 2009, Moretti and Munoz, 2013, Kinouchi et al., 2018). The
second variant, adaptational criticality, is similar to SoqC, but also takes into consideration the
changing structural dynamics in biological neural networks, via simple local rewiring rules,
creating a co-adaptive process between network architecture and dynamics, resulting in
nonrandom network configurations (Bornholdt and Rohl, 2003, Bornholdt and Rohlf, 2000,
Rybarsch and Bornholdt, 2014, Nykter et al., 2008). Based on this variant, an explanation for
moving from a non-critical to a critical regime following perturbation could lie in the neuronal
loss that results from the induced proteinopathy. Loss of connections could lead to this direction
of alteration if the network was in a supercritical, overconnected state prior to perturbation, as
a loss of connections in this situation has been found to pull the network towards criticality
(Rybarsch and Bornholdt, 2014). Furthermore, in a recent related study involving our lab, it
was demonstrated that developing neural networks that have settled into a supercritical state
can be brought into a state of criticality through chemical manipulation of the inhibitory-
excitatory balance (Heiney et al., 2019).

In in vitro neural networks, the state of criticality represents the borderline between two
qualitatively different types of network behavior, where the behavior of a subcritical network
is characterized through highly ordered, oscillating activity fluctuating between few network
states, while supercritical behavior is best described as disordered, displaying chaotic and
largely random activity (Muifioz, 2018). Avalanche activity, which is used as a basis for
determining criticality, is defined as any number of consecutive time bins where a sequence of
continuous activity is recorded, and which is preceded and superseded by a quiescent time bin
(Beggs and Plenz, 2003). This measure speaks to the propagation of activity within a network,
where the size of an avalanche is determined by the number of electrodes activated during the
continuous activity sequence. This definition captures a large variety of spatiotemporal activity
patterns, where its scale-free nature makes it less sensitive to the choice of time bin and
threshold for spike detection compared to other measures of network activity (Beggs and Plenz,
2003, Tagliazucchi et al., 2012, Massobrio et al., 2015, Mufioz, 2018). Other commonly used
measures of network activity, such as temporal correlation of single spikes across nodes and
synchronized bursts, are more discrete and can be related to established biological rules for
information coding. A physical connection, a transfer of information, as well as potential for
synaptic plasticity between nodes in a network is inferred from the coincident timing of spikes
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across different nodes. Furthermore, the number and duration of synchronized bursts have been
associated with the degree of network connectivity, synapse formation, facilitation and
depression, as well as LTP and LTD, among other things (Maeda et al., 1995, Lisman, 1997,
Thomas et al., 1998, Krahe and Gabbiani, 2004, Froemke et al., 2006). The biological rules
underlying avalanche-like propagation of activity however, are less clear. The temporal
organization of neural avalanches might be caused by the alternation of high and low activity
states, as well as the balancing of the excitation and inhibition in a critical network (Lombardi
et al., 2012). Furthermore, during cortical maturation, the repetitive formation of neural
avalanches has been suggested to provide an intrinsic template for selectively linking external
inputs to spatially diverse, but synchronized neuronal groups in developing superficial cortical
layers (Gireesh and Plenz, 2008). Nevertheless, the biological relevance of avalanche-like
propagation of activity within the context of neural network criticality has been demonstrated
multiple times, as this network activity has proven optimal for maximal dynamic range,
information storage/capacity, transmission capability, processing, and variability of phase
synchronization (Beggs and Plenz, 2004, Shew and Plenz, 2013, Yang et al., 2012).

The trend of altered network criticality states found following the induced proteinopathy (in
Paper 1) is important as it points towards the assessment of criticality being useful in the
identification of early stage pathology development. As was highlighted in the introduction,
homeostatic plasticity mechanisms are likely to mask the underlying pathology developing in
PD patients, such that clear behavioral symptoms surfacing only after significant
neurodegeneration has already occurred. As other neurodegenerative diseases such as AD and
ALS are also commonly diagnosed after substantial neurodegeneration has already occurred,
and they share the neuropathological traits of proteinopathy early in disease development, as
well as the patterned spread of diseases processes through interconnected neural networks, it is
reasonable to suggest that the assessment of criticality could be used to identify early pathology
development in these diseases as well. Although further corroborating studies are needed to
conclude on the usefulness of this approach, these results give us reason to be optimistic about
possible new avenues for early identification of neurodegenerative processes, as the state of
criticality could potentially be assessed in the brains of humans through non-invasive
measurements ~ such  as  functional magnetic resonance imaging  (fMRI),
magnetoencephalography (MEG), electroencephalography (EEG), and electro-corticography
(ECoQG) (Poil et al., 2008, Tagliazucchi et al., 2012, Alonso et al., 2014). Furthermore, the
criticality assessment should unbiasedly reflect disease development irrespective of what the
source(s) of neurodegeneration turn out to be.

4.2 MICROSCALE SIGNS OF DYSFUNCTION: THE PROTEIN DEGRADATION AND MITOCHONDRIAL

LINKTO PD

Modelling neural networks in vitro enable the simultaneous investigation of ongoing micro-
and mesoscale processes across several different time scales. These process “snapshots”
represent observation windows which would not be obtainable in vivo, and open up the
possibility for investigating the interplay between several different coincident small- and large-
scale processes. Microscale investigation of active mitochondria, ROS production and synaptic
modification, as well as nanoscale investigation (TEM) of intracellular fibrillization and
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vacuolization conducted in paper 1 and 2 for instance, could all be related to mesoscale
measures of functional network activity, suggesting potential causal relationships between
these observations and alterations in functional network activity. Some of our observations
support the growing body of evidence suggesting that dysfunctional mitochondrial homeostasis
(Hsieh et al., 2016, Verma et al., 2017, Verma et al., 2018) and impairments in the protein
degradation machinery, may play pivotal roles in neurodegeneration (Kopito, 2000, Todde et
al., 2009, Friedman et al., 2012a, Abeliovich and Gitler, 2016, Bieri et al., 2017). Whether these
processes represent primary causes of disease or downstream consequences of other underlying
disease-causing processes however, remains to be clarified. The next sections will focus on the
observations relating to protein degradation and mitochondrial dysfunction in our studies, and
how they relate to PD.

The super-resolution investigation of intracellular elements conducted as part of the criticality
article (Paper 1) revealed both fibrillization and high activation of the protein degradation
pathway in the condition with induced alpha-synuclein pathology (PFF condition). Although
alpha-synuclein aggregates are considered the main constituent, and the prime suspect in the
formation of the hallmark Lewy pathology of PD, proteasome analysis has revealed the
contribution of over 300 proteins in LBs. This profile implicates several different processes,
where 90 of the identified proteins are associated with alpha-synuclein, the protein degradation
system, and mitochondria (Goedert et al., 2013, Wakabayashi et al., 2013). Moreover, in a
recent publication, Shahmoradian and colleagues used correlative light and electron
microscopy to study and compare the Lewy pathology in brain tissue from several PD brain
donors (Shahmoradian et al., 2019). They demonstrated that LBs and LNs are heterogenous
structures with various morphology, and, importantly, that they contain an abundance of
membranous material (primarily alpha-synuclein, filaments, lipids, lysosomal and
autophagosomal structures, as well as mitochondria) crowded together. Reasonable
explanations for the co-occurrence of all these materials exist, where lipids for instance have
been reported to be caused by alpha-synuclein aggregation, as well as to have various effects
on alpha-synuclein aggregation once present, ranging from inhibition of aggregation to
triggering of fibrillation and apoptotic signaling (Zhu and Fink, 2003, Zhao et al., 2004,
Ruiperez et al., 2010, Galvagnion et al., 2015, Flagmeier et al., 2017). Our superresolution
electron microscopy observations are well in line with these reports, as an abundance of fibrils
and filaments, lysosomes, autophagosomes, vesicles, and lipid bodies were observed crowding
the intracellular space of intact neurons, as well as within the necrotic and apoptotic elements
with high filament condensation, in the induced alpha-synuclein pathology condition (Paper 1,
Fig. S4-S7).

There are strong links tying the protein degradation system and intracellular organelle
trafficking to alpha-synuclein and processes of neurodegeneration. Firstly, alpha-synuclein has
been shown to interact with specific ubiquitin and Rab proteins, as well as with the lysosomal
pathway through interaction with the SNARE protein family (Gitler et al., 2008, Benskey et al.,
2016, Hunn et al., 2015, Calo et al., 2016, Sacino et al., 2017). Secondly, studies suggest that
alpha-synuclein plays a regulatory role in autophagosome synthesis, as depletion leads to
autophagy enhancement (Winslow et al., 2010), and targeted disruption of autophagy results in
accumulation of abnormal alpha-synuclein at the presynaptic compartment, dystrophic axons
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and dendrites, and the formation of somatic and dendritic ubiquitinated inclusions (Friedman
et al., 2012a). Interestingly, the mentioned effects of targeted autophagic disruption correspond
with the initial signs of alpha-synuclein pathology, where dystrophic terminals, axonal and
synaptic swelling, as well as small presynaptic aggregates have been observed prior to the
formation of LBs and LNs (Kramer and Schulz-Schaeffer, 2007, Calo et al., 2016). Activation
of the autophagic and lysosomal machinery regulates cellular homeostasis, and their function
of degrading and recycling cell constituents becomes particularly important in the face of
aggregate-prone protein forms, such as the PFF seeds used to induce alpha-synuclein pathology
in the neural networks of the criticality article (Paper 1). Furthermore, lysosomes have been
shown to mediate intercellular transfer of fibrillar alpha-synuclein though tunneling nanotubes,
providing a possible route of pathology propagation (Abounit et al., 2016, Bieri et al., 2017).
Abnormal protein aggregation is believed to eventually saturate the protein degradation
machinery, where the resulting failure in autophagic and lysosomal function precipitates
pathological inclusion formation, ultimately leading to neuronal death (Meredith et al., 2002,
Tanik et al., 2013, Ragagnin et al., 2013). The ultrastructural investigation of neural networks
from the PFF condition, and from the monomer alpha-synuclein control condition, fits well
with this outlined route of neurodegeneration. As alpha-synuclein in itself affects autophagic
activation, it comes as no surprise that the mean number of autophagosomal/lysosomal elements
observed in both the PFF and monomer condition was high (15-16 per neuron, Fig.S5).
However, as there was a significant difference observed in apoptotic and necrotic elements,
with a clear reduction in health and survival of the neurons in the PFF condition compared to
the monomer condition, this points towards the most affected neurons in the PFF condition
already having succumbed to neurodegeneration and died at the time of ultrastructural
assessment.

Intriguingly, although alterations at the synapse and neurites in the neural networks from the
PFF condition were observed in super-resolution, together with poor health and survival of the
neurons, the induced alpha-synuclein pathology did not result in identifiable functional
impairment in any of the most commonly used network activity measures (mean firing rate,
cross-correlation, inter-spike intervals, or population inter-spike intervals). In line with our
observations, some in vivo studies have reported a lack of behavioral deficits despite moderate
to robust propagation of inclusion pathology after PFF infusion (Sacino et al., 2014, Nouraei et
al., 2018, Luk et al., 2012a). This raises the question of whether development of proteinopathy
actually has a causal, or just a correlative, relationship with the development of cognitive
deficits in PD. However, some functional measures might just be more efficient in identifying
disturbances elicited by this type of pathology, where Volpicelley-Daley and colleagues (2011)
for instance found impaired neuronal activity after PFF addition in alpha-synuclein
overexpressing neurons using calcium imaging (Volpicelli-Daley et al., 2011), which has
already been discussed in some previous sections, we found differences in the mesoscale
measure of network criticality states.

Mitochondrial instability or dysfunction is also heavily linked to alpha-synuclein and PD. As
already noted, many of the proteins found within LBs are related to mitochondria, and
mitochondria are found contained within and surrounding LB in brain tissue from PD patients
(Wakabayashi et al., 2013, Shahmoradian et al., 2019). Alpha-synuclein has also been found to
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influence mitochondrial homeostasis through interaction with the mitochondria membranes
well as with the mitochondria-associated endoplasmic reticulum membranes (Viennet et al.,
2018, Wong and Krainc, 2017). Furthermore, mitochondria can usually be found at the
presynaptic terminal, where alpha-synuclein is heavily involved in mediation of membrane
interactions and remodeling, in binding lipids, in modulation of synaptic vesicle release and
recycling, as well as in maintenance of the synaptic vesicle pool (Gitler et al., 2008, Bellani et
al., 2010, Boassa et al., 2013, Burre, 2015, Calo et al., 2016). Importantly, the interaction of
alpha-synuclein with vesicles and mitochondrial membranes has been shown to be able to
catalyze the formation of alpha-synuclein filaments, and its membrane association to modulate
aggregation propensity (Zhu et al., 2003, Fusco et al., 2016). This might give a pointer as to
why synapses often represent the initial site of observable alpha-synuclein pathology, with
dystrophic terminals and small aggregates forming at the presynaptic compartment prior to LBs
and LNs (Kramer and Schulz-Schaeffer, 2007, Calo et al., 2016).

This leads us to the microscale investigation of active mitochondria in equivalent networks
from healthy and LRRK2 mutated neural populations (Paper 2), which was conducted both
before and after a transient KA stimulation. Signs of mitochondrial dysfunction are prominently
displayed in tissue samples from PD patients, and faulty mitochondrial motility and function
have been widely linked to PD related mutations, including the particular G2019S mutation
investigated in this study (Singh et al., 2019, Mortiboys et al., 2010, Li et al., 2014, Esteves et
al.,, 2014, MacLeod et al., 2006, Lin and Beal, 2006, Yue et al., 2015), as well as to
neurodegenerative disease at large (Valko et al., 2007). Thus, as we found a statistically
significant reduction in active mitochondria contained within the neurites of the healthy
(control) neural networks after KA stimulation, but not within the neurites of the LRRK2 neural
networks, this could reasonably be interpreted as a sign of mitochondrial dysfunction in the
latter population (Paper 2, Fig.31). As cell metabolism required for maintenance of neuronal
activity and presynaptic integrity relies on the ATP production of mitochondria, such a
mitochondrial dysfunction could underlie the two-fold mean firing rate and simultaneously low
cross-correlation measured in the LRRK2 neural networks compared to the healthy neural
networks.

As a final note relating to mitochondrial dysfunction, some of the most interesting microscale
data obtained during these experiments were not presented in the LRRK?2 article due to ongoing
practical challenges with data analysis, namely the live movement of active mitochondria
contained within the neurites of the structured neural networks. The mitochondrial motility in
neurites of LRRK2 and control neural networks was captured through live fluorescence
imaging every second for the duration of 1 minute, where qualitative inspection of the time-
lapse videos created from the image series suggested impaired mitochondrial motility in
LRRK?2 compared to the control neural networks, especially following the overexcitation event.
This could explain some of the morphological and electrophysiological differences observed
both at baseline and 24 hours post overexcitation, as healthy mitochondrial function and
transport are essential for cell metabolism, maintaining neuronal activity and structural integrity
through production of required ATP molecules (Saxton and Hollenbeck, 2012). Dysfunctional
mitochondrial motility could as such also underlie the impaired synaptic plasticity indicated
through the immunocytochemistry investigations of the LRRK?2 networks. However, these data
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will be the subject of a future paper as a method for reliable mitochondrial movement tracking
is still under development.

4.3. HOW CAN STRUCTURING IN VITRO NEURAL NETWORKS HELP US UNDERSTAND

NEURODEGENERATIVE DISEASE PROCESSES?

As has been extensively highlighted in the introduction, the physical structure of the neural
networks in the brain shapes their function, and vice versa. The strategy of physically
structuring the in vitro neural networks in the presented studies, either through tailor made
microfluidic chips or PPs, made it possible to study several aspects of neural network formation
and related functional consequences. In the LRRK?2 study (Paper 2), the intranodal correlation
of the structured neural networks was found to be consistently greater that the between-nodal
correlation. Furthermore, greater MFR were consistently found in the outermost nodes
compared to the middle node, illustrating the reproducible functional connectivity pattern
created by the physical structuring. This is in line with other studies using microfluidic chips,
which have found the microfluidic structure to influence the developmental process of the
patterned networks. For instance, structuring has been found to result in more robust electrical
activity and greater synaptic density when compared to random networks during the first three
weeks of network development (Chang et al., 2001, Chang and Wheeler, 2006). This means
that through structuring neural networks, a more complex, reproducible, and realistic model can
be approached, where both the structural and functional connectomes of target brain micro-
circuits can be better recapitulated.

The experimental setup in the LRRK2 study combining physical structuring with
electrophysiological measurements was mainly used to assess the structural and functional
consequences of the G2019S mutation, as well as the short-term outcome of a stimulation
confined to a single node in the network. However, it opens up the possibility of assessing more
long-term functional consequences of developing pathology selectively initiated at a single
node in the network, for instance to induced alpha-synucleinopathy, to model the patterned
spread of proteinopathy characteristic of many neurodegenerative diseases. Initially, a major
part of the criticality study (Paper 1) was directly related to this, as microfluidic chips were
used to structure the iPSC-derived neural networks. Confined nodes in the networks were also
used to selectively induce alpha-synucleinopathy through the addition of PFFs, and the
anterograde-retrograde pattern of propagation, as well as the order of interconnected neurons
the pathology spread through, would be investigated using immunocytochemistry. However, as
the microfluidic chips were not interfaced with the MEAs at this point, and the immunostaining
efforts for showing pathological alpha-synuclein were inconclusive due to consistent
background and unspecific labelling in the control conditions, this part of the study was not
pursued further. Nevertheless, the cumulative findings from these two studies show that this
would indeed be a feasible approach for studying the more long-term functional consequences
of such a pathological process. Moreover, the principle of diaschisis, i.e. the functional
consequences of disease to indirectly linked nodes in a network, could be studied by separating
the electrophysiological measures originating from each of the nodes in the microfluidic chip
structured networks.
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Furthermore, the defining trait of the small-world architecture characteristic of brain neural
networks, namely high local clustering and short path-lengths between any distant pair of nodes
in the network (Watts and Strogatz, 1998), seems to be structurally recapitulated by the three-
nodal microfluidic chip set-up, as well as functionally based on the correlation maps and MFR
distribution of the neural networks in the LRRK2 study. As highlighted in Paper 3,
recapitulating this feature might be of great importance when it comes to understanding
neurodegenerative disease processes, as such a network configuration propagates pathology
more easily than other network configurations (Moore and Newman, 2000). In further support
of this, one study found the degree of small-worldness to determine the transition from
subcritical to critical activity in in vitro networks (Massobrio et al., 2015), which intuitively
makes sense as the promotion of both information segregation and integration through this
network architecture should favor the generation of neuronal avalanches of all sizes, and thus
criticality (Friedman et al., 2012b). Thus, forcing key structural features of small-worldness
through physical patterning of neural networks reproduces functional aspects of small-
worldness, which in turn might push the network activity towards criticality. Moreover, this fits
with the aforementioned finding that neural network structuring influences the developmental
process, resulting in a more mature profile with greater synaptic density and more robust
electrical activity at an earlier timepoint compared to unstructured networks (Chang et al., 2001,
Chang and Wheeler, 2006). This has clear practical implications for in vitro disease modelling,
as for instance the slower maturation of iPSC-derived neurons could perhaps be compensated
for by physical structuring of the developing neural networks, reducing the necessary
maturation time and thus also the chance of contamination.

Another interesting aspect which emerged with neural network structuring relates to the striking
difference in neuronal morphology between the G2019S mutated and control neural networks
in Paper 2. Based on the findings of previous studies of this mutation, which contrary to our
results, have either found reduced arborization or no difference in neuritic profile (West et al.,
2005, Smith et al., 2006, MacLeod et al., 2006, Plowey et al., 2008, Nguyen et al., 2011, Chan
etal., 2011, Winner et al., 2011, Sanchez-Danes et al., 2012b, Cherra et al., 2013, Reinhardt et
al., 2013, Qing et al., 2017, Dagda et al., 2014, Greggio et al., 2006), physical structuring,
combined with the particular surface coating substrates used, has likely influenced the
phenotypic expression of the G2019S mutation when it comes to neurite morphology
(Sepulveda et al., 2013). In line with axonal guidance mechanisms underlying initial
connectivity establishment of brain neural networks during development, structural cues have
been found to influence the orientation and morphology of neurons and their arborizations in
vitro, and might also enhance or reduce morphological traits in the context of mutations
(Dowell-Mesfin et al., 2004, Micholt et al., 2013, Bugnicourt et al., 2014, Tomba et al., 2014).
The aberrant neuritic outgrowth profile observed in the G2019S population compared to
controls, with bundles of neurites crossing perpendicular to the axon tunnels in the synaptic
chambers, as well as massive ramification of neurites in the inlet and outlet chambers (Paper 2,
Fig.S1,S2,S6), suggests a connection between impaired axonal guidance and the specific PD-
related mutation. Some morphological and functional characteristics of developing neural
networks are thus facilitated through structural cues, and might never become apparent using
solely standard, unstructured in vitro neural networks. This part of the work thus adds to the
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body of research investigating normal and abnormal structure and function in in vitro neural
networks. Importantly, it highlights how the choice of culture vessel can influence multiple
aspects of neural network formation and maturation, and thus the neurodegenerative processes
under investigation.

4.4 THE PROBLEM OF REPRESENTATION

From a philosophical perspective, a model is a functional representation of a feature in the real-
world system it tries to model. It depicts what something is, in terms of some of its measurable
aspects, to gain insight into how it works (Teller, 2001, Frigg and Hartmann, 2018, Bassett et
al., 2018). It is thus important to consider the implications of a model-based approach to
neuroscience in terms of realism, reductionisms, and the possible accuracy and translational
value of the results. In the introduction, a substantial portion of text was allocated to
highlighting the degree of similarity or “likeness of nature” between in vitro neural networks
and neural networks in the brain. Self-organization, emergence of electrophysiological network
activity, SoC and small-worldness represent important measurable features of in vitro neural
networks that can be justified in terms of actual brain neural network data, providing construct
and explanatory validity of the in vitro neural network model (Bassett et al., 2018, Calabrese,
2018).

However, in the reductionist in vitro approach, one is looking at a limited set of properties in
an isolated population, where one might also be stripping away properties of real brain neural
networks which might be relevant to the problem at hand. One such property, which is regularly
disregarded in in vitro neuroscientific models, is the three-dimensional character of brain neural
networks, a feature which was highlighted and addressed in paper 3 through PP structuring of
the networks. Considering all of the findings presented in this thesis, there can be no doubt that
there is a reciprocal relationship between physical structure and function of a network.
However, the particular simplification provided by reducing the network dimension from 3D
to 2D might be a necessary step in order to be able to extrapolate basic information on how
neural networks develop and work in healthy and disease states, a problem which is too
complicated to address and observe in developing brain neural networks. Nevertheless, it is
important to keep this dimension limitation in mind when investigating features of neural
networks which are likely affected by it.

Another important feature which needs consideration is the lack of classical “behavior” as a
system output in in vitro neural networks. With this lack of behavior as an observable, it is
difficult to determine, for instance, whether a plasticity response is adaptive or maladaptive.
Assumptions can be made based on the electrophysiological and morphological characteristics
of the networks, as more abstracted measures of network structure and function can be used to
determine a network “normal” at baseline, and a network “abnormal” following for instance a
perturbation. Based on these assumptions, and accumulated knowledge on neural networks in
general, an evaluation of functional or structural “recovery” or compensation after perturbation
can be made. However, one should be careful with translating such an evaluation to, or equated
it with, the behavioral observation of in vivo models, or as such, the behavioral symptoms of
patients.
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4.5 METHODOLOGICAL CONSIDERATIONS

In the criticality article (Paper 1), the electrophysiological recordings should ideally have been
longer. Due to low avalanche activity, several of the recording time points did not contain
enough avalanche samples for criticality assessment, and the data points were thus not
represented in the final graph or considered in the main discussion. The picture would perhaps
be more complete if we had performed longer and more frequent recordings. However, our final
dataset consisted of over 100 recordings with a duration of about 7 minutes for each individual
recording, collected with a standard 10kHz sampling rate, which amounts to over 200GB of
raw-data. The massive accumulation of data was part of the reason for the relatively short
recording durations, as the increasing complexity of file storage, moving, sharing, and
processing cannot be overstated. Furthermore, the neural networks were intentionally not
recorded for 48 hours after a media change, as major fluctuations in over-all network activity
were consistently observed as a result.

Moreover, it is important to note that in the TEM investigations of intracellular elements and
induced pathology for the criticality article (Paper 1), it was impossible to distinguish alpha-
synuclein filaments from abundant cytoskeletal filaments as they are morphological similar and
exist within the same size range (5-15nm vs 10nm, respectively) (Arima et al., 1998, Spillantini
et al., 1998). Furthermore, this ultrastructural indistinguishability between cytoskeletal
filaments and alpha-synuclein filaments is a common cautionary element in studies of Lewy
pathology as was, for instance, most recently reported a publication by Shahmoradian and
colleagues (Shahmoradian et al., 2019). However, as other well documented hallmarks of
neuropathology co-occurred with the abundant and condensed filaments observed in the PFF
condition only, such as lipids and multilamellar bodies, it is reasonable to assume that this was
a result of pathology induction through PFF addition (Hariri et al., 2000, Zhu and Fink, 2003,
Zhao et al., 2004, Galvagnion et al., 2015).

Although some structural and functional aspects of small-worldness were recapitulated in the
PP structured neural networks (Paper 3), there were several methodological complications
which limit the potential usefulness of PPs in combination with neuronal cells, especially with
regard to their potential for longer-term studies of neural networks. These limiting factors
include variability in cell attachment, variable mechanical stress due to movement of the PPs,
poor cell viability, visibility, and general reproducibility due to difficulties with handling the
PPs. The influence of such factors on neural network establishment and maintenance can
therefore not be excluded.

30



5. CONCLUSION

The main objectives of this work were (i) the application of advanced disease modelling for the
recapitulation and study of relevant pathological processes in vitro, and (ii) the identification
and extraction of key morphology-activity relationships at the micro- and mesoscale. In
accordance with these objectives, the experimental studies presented in papers 1 and 2
incorporate different advanced disease modelling approaches, which enabled the study of PD-
related pathological processes, and the extraction of key morphology-activity relationships, in
biologically relevant neural networks. Based on the developing principles of in vitro
chemotemporal neural differentiation and morphogenetic neuroengineering, iPSC-derived
neural networks were established and applied in the investigation of developing alpha-synuclein
pathology induced through addition of PFF seeds in paper 1. This approach allowed for the
extraction of several morphology-activity relationships key to PD, such as standard measures
of network function and, importantly, in network criticality states, as well as ultrastructural
investigation of alpha-synuclein pathology. In paper 2, iPSC-derived neural stem cells with and
without the PD-related CRISPR-Cas9 inserted G2019S mutation were used to establish
structured neural networks in microfluidic chips. This approach enabled the investigation of
micro- and mesoscale effects of a PD-specific mutation, where microscale aspects relating to
mitochondrial dysfunction and impaired synaptic plasticity was revealed. Perhaps most
interestingly, this approach enabled the linking of aberrant neuritic outgrowth to “abnormal”
network function, observed as elevated MFR and reduced cross-correlation, compared to
controls. The third and final paper presented in this thesis was more directly relevant to the
second objective, by investigating the neural network topology within the context of small-
worldness.

Based on the finding from these experimental studies, we can conclude that:

1) Network criticality states can be extracted from electrophysiological recordings and
applied to identify developing alpha-synuclein pathology in in vitro neural networks;

2) The aberrant neuritic outgrowth observed in microfluidic chip structured neural
networks with the G2019S mutation likely underlies the consistent deviations in both
morphology and function of these neural networks compared to healthy controls;

3) Important features of self-organization and connectivity, such as small-worldness and
3-dimensionality, can be recapitulated in vitro by application of interfaces such as the
presented PPs, however, the applicability and potential usefulness of this particular
approach in combination with neural cells is currently limited by methodological issues.

Combined, these approaches have enabled the identification of key morphology-activity
relationships in biologically relevant neural networks, as well as the extraction of such
dynamics in the face of PD-related neurodegenerative processes. The resulting findings add to
the body of investigations aimed at understanding micro- and mesoscale dynamics underlying
early disease onset and mechanisms in neurodegeneration. Furthermore, these findings
highlight the relevance of robustness of advanced in vitro modelling approaches as a tool for
investigation in preclinical research. The relevant insights can thus be utilized to further
improve our ability to develop novel, clinically relevant interventions.
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Abstract

A patterned spread of proteinopathy represents a common characteristic of many
neurodegenerative diseases. In Parkinson’s disease (PD), misfolded forms of alpha-synuclein
proteins aggregate and accumulate in hallmark pathological inclusions termed Lewy bodies
and Lewy neurites, which seems to affect selectively vulnerable neuronal populations and
propagate within interconnected neuronal networks. Research findings suggest that these
proteinopathic inclusions are present at very early timepoints in disease development, even
before strong behavioural symptoms of dysfunction arise, but that these underlying
pathologies might be masked by homeostatic processes working to maintain the function of
the degenerating neural circuits. This study investigates whether inducing the PD-related
alpha-synuclein pathology in biological human neural networks can be associated with
changes in network function, and particularly with alterations in network criticality states.
Self-organised criticality represents the critical point between resilience against perturbation
and adaptational flexibility, which appears as a functional trait in self-organising neural
networks, both in vitro and in vivo. By monitoring the developing neural network activity
through the use of multielectrode arrays (MEAs) for a period of three weeks following
proteinopathy induction, we show that this developing pathology is not clearly manifest in
standard measurements of network function, but rather expressed in network criticality states.



Introduction

Neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and
amyotrophic lateral sclerosis (ALS), represent a common cause of morbidity and cognitive
impairments in older adults. Although characterised through complex pathologies and unknown
aetiologies, some prominent commonalities, such as the presence of proteinopathy and the
patterned spread of pathology through selectively vulnerable neuronal populations, cannot be
ignored (1-9). Focusing on the second most common neurodegenerative disease, PD, the
implicated proteinopathy mainly consists of misfolded and aggregated forms of alpha-
synuclein. These intracellular alpha-synuclein inclusions are termed Lewy bodies or Lewy
neurites, and can be found propagating throughout central, peripheral and autonomic parts of
the nervous system, as well as in multiple organs, as the disease progresses (6, 7, 10-14).
Furthermore, the neurodegenerative process characteristic of PD particularly affects and
progressively depletes the dopaminergic neurons in the substantia nigra pars compacta (SNpc),
a process which is thought to underlie most of the movement-related symptoms.

The neurodegenerative process underlying PD inevitably affects both the structural and
functional connectivity of local and distal circuitry in the brain. As already noted, the
movement-related impairments in PD are largely ascribed to the characteristic loss of
dopaminergic neurons in the SNpc, and the degeneration of the nigrostriatal (dorsal striatal)
pathway. However, the disease is much more systemic, affecting both the mesolimbic
dopaminergic (ventral striatal) pathway and the mesocortical pathway, as well as several other
neuronal populations throughout the brain as it progresses (15). As clusters of neurons and their
interconnections degenerate, homeostatic plasticity mechanisms likely compensate to maintain
stable function through regulation and rearrangement of synapses and synaptic elements in local
and distal neural networks (16-19). The network disturbances likely imposed by the
degeneration of neurons and their interconnections are thus counterbalanced, keeping clear
symptoms of dysfunction from arising at early stages of disease development and thus patients
from being diagnosed before advanced neurodegeneration is already present (20).

Interestingly, the high interconnectivity of the brain has been shown to inherently shape how it
responds to perturbation, and the particular sites affected, as well as their level of connectedness
to other brain regions, to determine how pathology can spread (21-24). This relates directly to
the hallmark pathology of PD, namely the widespread alpha-synuclein inclusions, which have
been suggested to propagate between anatomically highly interconnected areas in an “evolving
topographical progression” (6, 7, 25). Based on this, neuroscientific research has narrowed in
on two likely pathological mechanisms that could underlie the propagating pattern of
neurodegeneration seen in PD (as well as in AD and ALS), namely selective neuronal
vulnerability and pathological proteinopathic seeds (2, 3, 6, 23, 26-28). At this point, research
efforts have uncovered several mechanisms of neuron-to-neuron transfer of pathological seeds
of alpha-synuclein pre-formed fibrils (PFFs) (29-33), both in vitro and in vivo (11, 13),
highlighting its contribution as a source of pathological propagation, however, the functional
consequences of this interneuronal spread remain to be elucidated.

How can the functional consequences of such pathological mechanisms be studied? As
mentioned, fundamental homeostatic plasticity mechanisms, which serve to maintain stable
function in neural circuits in the face of perturbation, likely help mask the ongoing pathological
processes underlying the progressive neurodegenerative pattern of PD (16, 17). However,
although early network disturbances caused by the presence of pathological aggregates and the
degeneration of neurons and their interconnections might be concealed in terms of behavioural



symptoms, they may be detectable as fluctuations or deviations in some measures of the
network function and activity state. As such, the universal attribute of neural network
development towards the state of self-organized criticality (SoC) seems a logical point of focus
and of particular interest. SoC represents the critical point between resilience against
perturbation and adaptational flexibility, which appears without the need for fine-tuning of
parameters through basic self-organizing processes in neural networks, both in vivo and in vitro.
This dynamic state is characterized by cascades of spontaneous activity with power-law size
distributions, activity which is electrophysiologically measurable and termed “neuronal
avalanches” (34-46). As damage spreads within a neural network, it is highly conceivable that
the system approaches a “damage threshold”, where restoring network function becomes
increasingly difficult, and which represents a deviation from the criticality state (43, 47). Since
SoC also appears in neural networks in vitro (48), functional network alterations resulting from
induced pathology such as proteinopathy can be studied within this paradigm.

To investigate whether a developing PD-related proteinopathy can be associated with
alterations in network criticality states, we have induced proteinopathy in engineered human
neural networks in vitro and applied computational analysis to identify criticality in
electrophysiological microelectrode array (MEA) recordings of the resulting network activity.
Specifically, we measured the developing network activity prior to and for three weeks
following exogenous addition of alpha-synuclein PFF seeds, and aimed to investigate how this
induced PD-related pathology is reflected in several measures of network function and in the
network criticality states compared to control neural networks. Our results suggest that
induction of proteinopathy alters the developmental trajectory of the neural networks in relation
to SoC. To the best of our knowledge, this is the first study to investigate SoC in biological,
human induced pluripotent stem cell (iPSC)-derived neural networks.

Materials and methods

Reprogramming of human iPSCs to neural progenitor cells

Human induced pluripotent stem cells (iPSCs) (ChiPSC18, Takara Bioscience) were
reprogrammed using a protocol for midbrain dopaminergic neurons adapted from Kirkeby et.
al 2012 (49) and 2016 (50) and Doi et al. 2014 (51) (Fig.1, Supplem.1). Briefly, the human
iPSC were seeded on human recombinant laminin 111 (LN111, BioLamina) at a density of
10.000 cells/cm?, where they were exposed to dual-SMAD inhibition (LDN1931892 and
SB43152), followed by Wnt signalling activation through the GSKf inhibitor CHIR99021, and
sonic hedgehog introduction (Shh C2511) (day 0-9). On day 11 the cells were dissociated using
accutase and reseeded on LN111 at a density of 50.000cells/cm?. FGF8b was added from day
9-16, at which point the reprogramming was concluded and the human iPSC-derived neurons
were left for maturation.

Day 0 Day 11 Day 16 Day 37 Day 46 Day 60

Neural induction Caudalization Ventralization Maturation PFF addition Immunocytochemistry

Seed iPSCs on Lam- Reseed iPSCs on Reseed neurons MEAs and Start MEA recordings
Lam-111 and platforms for ICC of neural networks

Fig.1 Experiment layout. The timeline shows the chemotemporal reprograming protocol for the human
iPSC-derived neurons, followed by the establishment and maturation of the neural networks on
multielectrode arrays (MEAs). Following 30 days of maturation, sonicated pre-formed alpha-synuclein
fibrils were added to the engineered neural networks.



Formation of alpha-synuclein pre-formed fibrils (PFFs)

Alpha-synuclein PFFs were formed following a modification of the procedure described in the
Volpicelli-Daley et al. protocol (31). Briefly, Img alpha-synuclein monomers (S-1001-1,
rPeptide) was resuspended in 1mL MilliQ water, giving lmg/mL in 20mM Tris-HCL, pH7.4,
100mM NaCl. The suspension was then centrifuged at 3600xg for 60 minutes in an Amicon
Ultra 3K membrane device, which was then inverted and spun down in a tube for 1000xg for 2
minutes to transfer the concentrated sample. The concentrated solute was then resuspended to
a final volume of 500ul (5mg/mL) in 10mM Tris-HCL (1.576g/L), pH 7.6, 50mM NaCl
(2.922g/L), and shaken for 7 days at 1000r.p.m. in a 37°C theromixer. The PFFs were
subsequently aliquoted into 5ul tubes and stored in -80°C until used for in vitro assays.

UV-visible spectroscopy of alpha-synuclein PFFs

Absorbance of alpha-synuclein PFFs in phosphate buffered saline (PBS) was measured on a
NanoDrop One/One® UV-visible absorbance spectrophotometer in the range 200-300nm. A
dilution of 0.1ng/uL was prepared from a PFF stock solution of 5pg/ul, and added as a droplet
(2uL) to the pedestal after different timepoints of ultrasonication (Branson CPXH Series
Ultrasonic bath, 2.8L) (37, 40, 21°C). Data was collected with OneViewer Software.

Atomic Force Microscopy (AFM)

AFM was performed with ScanAsyst Air tapping mode using an AFM Veeco, Multimode V.
Samples were applied on mica and spread out to dry. Results were analysed with NanoScope
Analysis 1.5 software.

Microelectrode array (MEA) based electrophysiology

The spontaneous electrophysiological activity of the neural networks was recorded using an
MEAZ2100 in vitro system together with the MEA suite software (Multi Channel System). The
engineered neural networks were maintained on 60-clectrode planar microelectrode arrays
(MEAs) (60MEA200/30iR-Ti; Multi Channel Systems) with ring covers. Prior to seeding, the
MEAs were briefly washed with 65% ethanol, incubated in sterile water and UV-treated.
Subsequently, they were treated with foetal bovine serum for 30-60 minutes to make the surface
hydrophilic, before being coated with 0.01% poly-L-ornithine (PLO) solution and L15/laminin.
Each MEA (n=8) was seeded with 100,000 iPSC-derived neurons and kept in a standard
humidified air incubator (5% CO?, 20%0?, 37°C). 50% of the media was changed every 3-4
days. Following 34 days of maturation, the PFFs were added to the neural networks. A Spg/uL
aliquot was thawed in room temperature and diluted in 245ul sterile PBS (0.1pg/uL). A water
bath ultrasonicator (Branson CPXH Series Ultrasonic bath, 2.8L) was used to sonicate the PFFs
for 1 hour (37, 40, 21°C), before 10uL of the PFF seeds (0.1ug/uL), or equivalent amounts of
alpha-synuclein monomers or PBS, were added directly to the culture media. The MEA cultures
were randomly assigned to the different test conditions: PFF group (n=4), PBS (n=2) and alpha-
synuclein monomers (n=2). Network activity was sampled throughout the experimental period
(7-minute recordings), where 5 baseline recordings, and 13 recordings after intervention was
performed per MEA. To avoid inadvertent fluctuations in electrophysiological activity directly
related to media changes, no recordings were performed in the first 48 hours following a media
change.

MEA data analysis

All data analysis, including the criticality analysis described in the following section, was
carried out in MATLAB R2018b (The MathWorks, Inc.). The raw data from the MEA system
was first bandpass filtered with a second-order Butterworth filter with a passband of 300 Hz to
3 kHz, and spike detection was performed on the filtered data using a threshold of 5 standard



deviations below the median of the signal. After visual inspection of the filtered waveform-
signal from each electrode, clear artefactual signals (outlier electrodes) were identified and
removed from further analysis. A total of 11 such instances were identified, 9 of which were
caused by the same electrode across multiple MEAs.

Four basic parameters were evaluated in an attempt to identify different functional behaviours
in the different types of networks: the mean firing rate (MFR), inter-spike interval (ISI),
population inter-spike interval (PISI), and cross-correlation (XC). All of the parameters were
obtained from spike trains generated for each recording channel, where a spike train is given as
a series of impulses with each impulse occurring at the time at which the peak voltage was
recorded for each detected spike. The MFR for each recording channel was calculated as the
total number of spikes detected on that channel divided by the total recording time. The MFR
for a given network at a given time point was then taken as the average over all recording
channels. The ISI for each recording channel was calculated as the average time interval
between consecutive spikes detected on the same channel, and this was then also averaged over
all channels for a given network at a given time point, excluding any intervals greater than 100
ms. The PISI was calculated by obtaining a population vector of the unique spike timings on
all recording channels and averaging the intervals between them, excluding any intervals
greater than 100 ms. The XC was obtained by computing the autocorrelation-normalized
magnitude of the cross-correlation of pairs of spike histograms for each pair of recording
channels and averaging over all possible pairs. Spike histograms were obtained by temporally
binning the spike trains with a bin size of 10 ms. The maximum lag considered in the XC
calculation was 50 ms.

Computational analysis of criticality
A flowchart showing the main steps of the criticality analysis can be found in Fig. 2.
Preliminary analysis using the same method has been previously reported for one of the control
networks from this dataset (52). Filtering and spike detection were first performed as described
in the previous section (step 1, Fig. 2).

Avalanche detection was then performed using the following procedure, based on the method
originally described by Beggs and Plenz (35) (step 2, Fig. 2). The spike data were binned with
a bin width of 1 ms, and avalanches were detected as any number of consecutive active time
bins (bins containing one or more spikes) bounded before and after by empty time bins (bins
containing no spikes). Typically, the average PISI is used to define the bin size; however, this
fixed smaller bin size yields a larger number of avalanches, which provides a better basis for
the fitting. Additionally, as the current analysis is not concerned with the actual value of the
slope but instead only with whether a network can be classified as critical, the selection of the
bin width may be set arbitrarily (35, 48). The avalanche size was computed as the number of
active recording channels in the avalanche. (See the schematic in step 2 of Fig. 2 for an
example.) The size probability distribution was then obtained by creating a histogram of the
number of avalanches of each possible size (1 to 60 electrodes) and normalizing it with respect
to the total number of avalanches.

As described by Beggs and Plenz (35), a hallmark of criticality is the avalanche size distribution
following a power law. Thus, to determine whether or not the networks were in the critical state
at a given time point, power law fitting was performed on the avalanche size distributions using
the method described by (53). The fitted power law takes the form

P(x) oc x~¢,



where x is the avalanche size, P(x) is the probability of an avalanche having size x, and « is the
exponent of the power law. The fitting was performed for avalanche sizes ranging from 2 to 59
electrodes, following previous studies (e.g., (48)). Beggs and Plenz (35) originally reported o
as taking a value of 1.5 in slice cultures, and this has been supported by other studies on
dissociated cultures (e.g., (48)). When the fitted power law is plotted in log—log space, it appears
as a line with a slope of —a. The goodness of fit was determined by generating N = 1,000
synthetic datasets from the fitted power law and computing the Kolmogorov—Smirnov (KS)
distances for the empirical distribution and each of the synthetic distributions, where a greater
KS distance indicates a poorer fit. The fraction p of synthetic distributions that had a KS
distance greater than that of the empirical distribution (i.e., the fraction of cases where the
empirical data were better described by the power law fit than were the synthetic data) was then
calculated, and the fitting was rejected if p < 0.1. Thus, in the case where the fitting satisfied p
> 0.1, the network was presumed to be in a critical state.
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Fig.2 Step-by-step Criticality assessment

Immunocytochemistry

The engineered neural networks were fixed at room temperature with either 4%
paraformaldehyde for 15 minutes, or 4% paraformaldehyde/4% sucrose/1% TritonX-100
(Sigma-Aldrich), as described in (31, 54) for protein extraction, at ranges between 10-20
minutes, followed by 3x15min washings with DPBS. TritonX-100 extraction should leave only
insoluble inclusions, not showing any of the remaining presynaptic alpha-synuclein that has not
converted to aggregates (15,20). Blocking was performed with a solution of 5% normal goat
serum and 0.6% TritonX-100 in DPBS for 1 hour on a rotator at room temperature. Primary
antibodies were subsequently applied overnight at 4°C, on a rotator, in a solution containing
2.5% normal goat serum and 0.3% TritonX-100. The following primary antibodies were used:
rabbit polyclonal anti-alpha synuclein antibody 1:200 (ab131508, Abcam), mouse monoclonal
anti-tyrosine hydroxylase antibody 1:300 (MA1-24654, Invitrogen), rabbit monoclonal anti-
alpha synuclein (phospho S129) antibody 1:750 (ab51253, Abcam), chicken polyclonal anti-
neurofilament heavy polypeptide 1:150 (ab46800, Abcam), and mouse monoclonal anti-beta-3



tubulin antibody 1:800 (ab119100, Abscam). The samples were then washed 3x15 min in DPBS
at room temperature before being incubated in secondary solution containing 2.5% normal goat
serum, 0.3% TritonX-100 and fluorophore-conjugated secondary antibodies 1:1000
(AlexaFluor 488, 568, 647, Life Technologies) for 3 hours. During the final 5 minutes of
incubation, Hoechst was added at a final concentration of 1:10000. The samples were then
washed 3x15 min in DPBS on a rotator. Some samples were also incubated with Phalloidin-
iFluor 647 reagent — cytopainter 1:100 (ab176759, Abcam) for 20 minutes, before being washed
3x15min in DPBS again. Subsequently the samples were briefly washed in MilliQ-water, and
mounted on Menzel glass-slides (Thermo Scientific) using FluorSave reagent (EMD Millipore
USA).

Transmission Electron Microscopy (TEM)

The neuronal cultures from two MEAs (one from the PFF group, one from the monomer control
group) were detached from the surface of the MEAs by light suction using a 1000ul pipette and
washed in DPBS, and immersed directly in 2.5% glutataldehyde without dissociation. The
samples were subsequently stored at 4°C until further processing. In preparation for TEM,
samples were gelatine embedded, dehydrated, infiltrated and blocked. A detailed description of
the process can be found in the supplementary section.

Following processing for TEM, the embedded samples were sectioned (Ultramicrotome, Leica
EM UC7) into 45-55nm thin sections, placed on grids, viewed with a Transmission Electron
Microscope FEI Tecnai 12, and imaged with a Morada digital camera. Image processing was
done using iTEM and Fiji.



Results

Formation and characterization of engineered neural networks on MEAs

After concluding the reprogramming protocol for human iPSC-derived neurons, the cells were
seeded on MEAs and ibidi chips, where they spontaneously formed interconnections and
extensive neural networks throughout the maturation period (Fig.3). Immunocytochemistry
revealed neurons positive for beta-III tubulin, neurofilament heavy, and tyrosine hydroxylase
in the engineered neural networks after 30 days of maturation. Importantly, the neural networks
also expressed endogenous alpha-synuclein, which is a prerequisite for the induction of alpha-
synuclein aggregation and pathology (Supplementary Fig.S1) (31).
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Fig.3 Formation and maturation of human neural networks on MEAs. A) shows a tiled microscopy
image overviewing the electrode area of a newly seeded MEA (day 2 post seeding). B) shows how an
extensive interconnected neural network has developed on the MEA surface 20 days post seeding. C)
shows the spike shape cut-outs (relative axis) recorded from each of the electrodes during a single

recording session, demonstrating the electrophysiological activity obtained from a neural network as
shown in B).

Inducing alpha-synuclein pathology in neural networks

UV-visible absorbance spectra and AFM verified the breaking up of alpha-synuclein PFFs into
smaller seeds by water bath ultrasonication, as a clear difference in both absorbance and
structure of the PFFs was visible before and after sonication (Supplementary Fig.S2). Two
weeks after the addition of sonicated PFF seeds, neural networks on ibidi chips were fixed and
stained with the antibody for alpha-synuclein phosphorylated at S129 (ab51253) to visualize
intracellular alpha-synuclein aggregates by immunofluorescence (Supplementary Fig.S3).
Although consistent positive intracellular labelling by the S129 antibody was observed in the
PFF treated neural networks, both perinuclearly and at distal neuronal sites, background
staining and unspecific labelling was also consistently observed in the control conditions, even
following TritonX-100 protein extraction, rendering the immunocytochemistry inconclusive.

Verification of induced pathology in super resolution

Ultrastructural analysis of the neural networks collected from the MEAs showed evidence of
perinuclear fibrillization in the samples from the PFF condition (Fig.4), but not in the samples
from the monomer control condition. Signs of neuritic atrophy, as well as several fibrillous
structures were observed in the cytosol and within neurites of samples taken from the PFF
condition. Furthermore, an abundance of membrane-enveloped “inclusion bodies” in line with
recent publications (55), were observed in the PFF condition, but not in samples from the
monomer control condition (Supplementary S4).



Fig. 4 Perinuclear fibrillization. Ultrastructural image of perinuclear fibrillization in neural network
samples from the PFF condition (not observed in monomer control condition). (A, C) overview of single
cell together with highlighted intracellular features of interest, (B, D) ultrastructure of perinuclear fibril.
Nucleus (green), perinuclear fibrils (red), autophagosomal/lysosomal activation (purple), lipid body
(yellow).

Furthermore, the ultrastructural analysis revealed a significant difference in observed necrotic
and apoptotic elements in the extracellular environment surrounding neurons in the samples
taken from the PFF treated condition and in the samples taken from the monomer control
condition (t14=2,481, p<.05). In addition, the intracellular environment of single neurons
revealed prominent autophagosomal and lysosomal vacuolization in samples from both the PFF
treated condition and from the monomer control condition (with no significant differences
between the conditions (tisss=-.111, p>.05). (Supplementary Fig.S5). Representative
overview images of samples used for ultrastructural analysis of extracellular necrotic/apoptotic
elements, as well as intracellular autophagosomal and lysosomal vacuolization, can be found
in the supplementary (Fig.S6,S7).

MEA recordings and analysis
After 3 weeks of maturation on the MEAs, the baseline activity of the engineered neural
networks (n=8) was recorded for 5 sessions until the point of PFF/monomer/PBS addition. After
this point, 13 recordings (spanning across a total of 3 weeks) were made from the neural
networks on each MEA (Fig.5).
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Fig.5 Timeline depicting the recordings from the engineered neural networks on the
microelectrode arrays. # numbers indicate each recording time point, with the axis displaying the
corresponding culture age (days post seeding). The arrow indicates the point of experimental
intervention, where either PFFs, monomers or PBS were added to the neural networks after the 5™
baseline recording.

Four basic parameters were evaluated to observe how the networks matured: the MFR, ISI,
PISI, and XC. The MFR describes the overall amount of activity in the network, and the ISI
gives an indication of burstiness or the degree to which spikes from the same neuron occur in
close temporal proximity. The PISI reflects network-wide spiking intervals and thus is expected



to give an indication of connectivity or synchrony. Similarly, the XC describes the similarity
between the spike trains from two recording channels and thus also gives an indication of
connectivity or synchrony within the network.

Fig. 6A shows the mean baseline values of these parameters obtained for each group, and Fig.
6B-E shows plots of the time evolution of the parameters as percentages of the baseline values.
The error bars represent the standard deviations among each group. One outlier recording from
a neural network in the PFF group (MEA 16, time point 15) was eliminated because it had a
high level of noise and appeared to yield many false positives in the spike detection, producing
a spurious peak in the MFR and XC values. As shown in the results in Fig. 6, no significant
difference was observed among the evolution of these parameters, and thus no strong
conclusions could be drawn about the difference in behaviour among the three groups.

A Baseline values PBS PFF Monomers |
Average std Average std Average std
MFR [spike/s] 0.29 0.10 0.36 0.16 0.60 0.26
ISI [ms] 51.25 4.51 50.49 6.84 54.52 7.55
PISI [ms] 36.34 2.51 32.72 2.60 28.98 3.58
XC 0.17 0.03 0.17 0.02 0.17 0.02
B Mean firing rate D Inter-spike interval
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Fig.6 Descriptive electrophysiological values obtained throughout the recording period for all
neural networks A) table showing the average measures of the mean firing rate (MFR), inter-spike
interval (ISI), population inter-spike interval (PISI), and cross-correlation (XC) measured across the 5
baseline time points for each group (PBS, PFF, and Monomer conditions), with standard deviations
(std). B-E) shows a graphical representation of the MFR, XC, ISI, and PISI development, respectively,
of all groups after the baseline period, with error bars representing the standard deviation across the
networks in each group. Each value is given as a percentage of the baseline measures listed in table A).

Assessment of Criticality

Criticality assessment of the 8 neural networks (2 monomer controls, 2 PBS controls, 4 PFF
condition) revealed two clear outliers which were subsequently excluded, both of which were
from the monomer control condition. One of these networks consistently displayed non-critical
activity (during all 18 recording time points, both at baseline and following monomer addition),
while the other network either displayed too few neuronal avalanches for criticality assessment
or non-critical activity.



Recording time points where more than half of the neural networks did not exhibit enough
neuronal avalanche activity for computational analysis of criticality have been omitted from the
graphical representation in Fig.7 (recording numbers 3, 8-11, 16- 18). The absence of robust
neuronal avalanche activity at recording number 8-11 is perhaps particularly noteworthy, as
this equals day 5-10 after perturbation. Nevertheless, the criticality assessment at 4 baseline
time points, as well as 6 time points following PFF addition are presented for 2 MEAs in the
PBS condition (control), and 4 in the PFF condition (Fig.7). Analysis of criticality revealed
fluctuating neural network states in both the PFF and PBS conditions. As can be seen from
Fig.7, all neural networks (with the exception of network number 2 and 3 in the PFF condition)
show probability size distributions of neuronal avalanche activity consistent with both critical
and non-critical states during baseline measures, that is, before any perturbation. Furthermore,
although some data points are missing (due to too few avalanches during the recording), most
measurements during the baseline period are consistent with non-critical states (10/17 data
points). After addition of alpha-synuclein PFF seeds to the neural networks in the PFF condition
(represented by a black separation line in Fig.7), the majority of these perturbed neural
networks (with the exception of PFF 4) mainly display critical activity states (11/17 data
points). Contrary to this, the two neural networks in the PBS condition collectively display
mostly non-critical activity during these time points (6/9 data points).
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Fig.7 Criticality analysis. A) Shows the probablility distribution of the avalanche size for the 10
recording timepoints included (4 baseline, 6 after PBS addition) from the PBS 1 (control) neural
network, with the power law exponent « values indicated for each time point where the power law fitting
results indicated criticality. B) shows the cumulative criticality assessment for each of the 6 neural
networks (2 from the PBS condition, 4 from the PFF condition) during the 10 recording time points
included in the assessment. The point of perturbation (addition of PFF seeds, or PBS in the control
condition) is indicated by the horizontal separation line. The green columns indicate neural network
activity with avalanche size distributions following a power law distribution, consistent with a critical
state (p > 0.1), while red columns indicate a poor power law fit consistent with non-critical activity (p <
0.1). During the baseline time points, all neural networks (with the exception of PFF 2 and 3) fluctuated
between citical and non-critical activity. Furthermore, collectively, most of the data points at baseline
are consistent with non-critical states (10/17 data points). After the point of perturbation, the control
neural networks (PBS 1 and 2) collectively display mainly non-critical activity states (6/9 data points),
while the PFF neural networks mainly display critical activity states (with the exception of PFF 4) (11/17
data points).



Discussion

Self-organized criticality

To investigate whether development of PD-related proteinopathy can be associated with
alterations in network states of criticality, we induced alpha-synuclein proteinopathy in
engineered human neural networks in vitro, and applied computational analysis to identify SoC
in electrophysiological MEA recordings from the resulting network activity. As hypothesized,
a difference between the PFF condition and the PBS control condition was observed in
criticality states following perturbation (Fig.7). However, contrary to what was expected, the
analysis showed that the PFF perturbed neural networks largely ended up within the critical
regime (10/17 data points), consistent with SoC, while the PBS controls ended up in a largely
non-critical regime (6/9 data points). SoC has been proposed as a mechanism that guides the
spontaneous activity of developing neural networks into transient and homeostatically regulated
patterns, or “meta-stable dynamics” (56, 57). These meta-stable dynamics are in turn part of
the regular developmental trajectory of neural networks in vitro, and have been found to occur
only in neural networks where the activity propagates within the critical mode (57). The
surprising result is thus the direction of the alteration in criticality, where the networks with
PFF induced pathology displayed neuronal avalanche activity largely consistent with SoC,
while the control neural networks largely displayed non-critical activity. Nevertheless, this
trend in alteration points towards a difference in developmental trajectory between the neural
networks with PFF-induced pathology and the PBS control neural networks, highlight the
potential relevance of SoC in unveiling functional alterations resulting from such an evolving
pathology within the networks.

Evaluation of SoC through neuronal avalanche size distributions has been shown to provide a
good representation of “damage spread” in perturbation experiments where identical replicas
of the same system have different conditions and are investigated over time, even if the actual
underlying dynamics are much more complicated (43). As can be seen from Fig.5 summarizing
the results of the standard electrophysiological analysis for the neural networks (MFR, XC, ISI
and PISI) after perturbation, there is no clear trend separating the neural networks in the PFF
condition from the networks in the control conditions, although the ultrastructural analysis
revealed clear signs of induced pathology in the former (Fig.3, S4-7). This lack of a pathology
expression in the functional activity of the perturbed neural networks is well in line with the
aforementioned compensatory network mechanisms, such as homeostatic plasticity and circuit
reconfiguration, which will work to maintain the functional capacity and present state of the
network for as long as possible, effectively masking the developing PD-related pathology.
However, as already noted, our results indicate a trend in alteration of the network criticality
state, where the assessment of criticality should reflect the actual pathological development,
whether it produces a linear, abrupt, or fluctuating change in the system dynamics, if enough
time points and samples are incorporated (43).

Furthermore, the criticality analysis of neuronal avalanche activity revealed that the neural
networks fluctuated between critical and non-critical states, both at baseline and after
perturbation, for networks in both the PFF condition and the PBS control condition. Some other
reports of in vitro neural network criticality (using dissociated rat cortical neurons) have found
that most, but not all, of the neural networks investigated tend to stay within the critical regime
after a certain point in their development (48, 57). The baseline activity of our human iPSC-
derived neural networks mostly display activity consistent with a non-critical regime,
suggesting a different developmental trajectory from networks derived from rodent primary
neurons. This is indeed conceivable as the epigenetic and age-related imprint is removed



through cell reprogramming through the iPSC stage (58, 59), resulting in a population of
rejuvenated cells, from which our human neural networks were derived. Some studies indicate
a slower development and maturation of neural networks derived from iPSCs compared to
primary neurons (60-62), which could point towards a partial explanation of the largely non-
critical activity observed at baseline in our neural networks. On the other hand, the non-
homogenous population of cells represented within the iPSC-derived neural networks produces
a more complex environment for development than pure neuronal cultures, which likely speeds
up the developmental trajectory. For instance, the presence of astrocytes facilitates the
formation and maturation of synaptic connections (63). However, as no other published study
has investigated criticality in iPSC-derived neural networks, this remains to be elucidated, while
other currently unknown influencing factors cannot be excluded at this point.

Inducing pathology through alpha-synuclein PFFs

In a recent publication, Van den Berge et al., (13) showed that alpha-synuclein PFF seeds
injected into the duodenum wall of a transgenic rat model induce an alpha-synuclein pathology
which propagates transynaptically and bidirectionally through the parasympathetic and
sympathetic nervous system to the brain stem in a pattern which fully recapitulates Braak’s
hypothesis (6) of the development of a patterned pathological propagation in PD. This finding,
together with the seminal demonstration of PFF induced pathology propagating from the
gastrointestinal tract to the brains in rats (11), strengthens the growing suspicion of idiopathic
PD originating from a yet unidentified pathogen capable of passing the mucosal barrier (64).
Thus, our investigation of alpha-synuclein PFF induced pathology in human iPSC-derived
neural networks is highly relevant and in line with the current direction of PD research.

As has been reported by several other studies investigating alpha-synuclein PFF induced
pathology (65-70), we experienced issues with unequivocal identification of pathological
alpha-synuclein aggregates using immunocytochemistry (Fig.S3), even after TritonX-1000
protein extraction, which should leave only insoluble inclusions (31, 32, 70). Although neural
networks from the PFF condition consistently displayed positive immunolabeling of alpha-
synuclein phosphorylated at S129, unspecific labelling and background staining were also
consistently observed in control conditions, rendering the immunoassays inconclusive. We
therefore aimed to identify alpha-synuclein inclusions based on ultrastructural morphology and
localization using TEM. In samples from the PFF condition, but not in samples from the
monomer control condition, we observed several intracellular structures whose shape, size, and
localization are consistent with alpha-synuclein aggregates found in previous studies (31, 65,
71)(Fig.3, S4). Furthermore, our neural network samples were analysed with respect to
additional structural/morphological characteristics associated with reduced cell health and
viability, and which are heavily linked to pathological intracellular aggregates (55). These
include extracellular residual elements of apoptosis, necrosis and necroptosis (Fig. S5, S6), as
well as intracellular elements of autophagic and lysosomal activation (Fig. S5, S7). The latter
is of particular interest as they are key regulators of cellular homeostasis, degrading and
recycling proteins and cell constituents. As neurons are faced with disease related and
aggregate-prone protein forms such as alpha-synuclein PFFs, this regulatory function becomes
even more critical, as failure precipitates inclusion formation (72, 73). As pathological protein
aggregation eventually saturates the autophagic machinery, the resulting imbalance in
autophagic flux is believed to lead to neurodegeneration and cell death (74). This corresponds
well with our results, as significantly more apoptotic and necrotic residues were found in the
samples from PFF condition compared to the monomer control condition (Fig.S5).
Furthermore, many of these apoptotic and necrotic elements showed signs of pathological fibril
condensation (Fig. S4). As no significant difference in autophagic and lysosomal activation



was found between the two conditions, these results suggest that most of the neurons affected
by the PFF induced pathology had already succumbed to neurodegeneration and cell death at
the point of ultrastructural analysis (38 days post perturbation).

Limitations

Although our dataset was relatively large (>>100 different recordings), some of the recording
points contained too few neuronal avalanches for computational analysis. This relative lack of
avalanche activity is likely a result of low baseline activity in the neural networks combined
with “short” (7 minute) recording sessions. Furthermore, it should be noted that the monomer
condition might be a poor control, particularly for the feature of lysosomal and autophagic
activation, as it has been recently shown to produce some level of toxicity by itself (70, 75, 76),
and samples from both the PFF and monomer condition displayed relatively high numbers of
autophagic/lysosomal elements.

Conclusion

Our study shows that developing PD-related proteinopathy can be associated with alterations
in network criticality states. Furthermore, the results suggest that induction of proteinopathy
changes the developmental trajectory of the neural networks in relation to SoC. Although the
evolving pathology was not visible through common functional activity measures such as MFR,
XC, ISI and PISI, a clear trend in criticality separates the PFF neural networks from the control
neural networks, where the former largely displayed neuronal avalanche activity consistent with
criticality, while the latter mainly displayed non-critical activity, after the point of perturbation.
Although the direction of this criticality alteration was contrary to our expectations, the slower
development and maturation of iPSC-derived neural networks compared to more commonly
used primary neural networks suggested by some recent studies likely underlies this finding.
Nevertheless, this first report associating network criticality state alterations with induced
proteinopathy in human iPSC-derived neural networks opens up exciting new avenues for
identifying and understanding developing pathologies underlying neurodegenerative diseases.
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Supplementary materials and results

Materials and methods
iPSCs to neural networks reprogramming protocol:

Day 0 - 4 |eB formation DAY 4-11 coat: Lam-111

INIM - media Stock (mg/ml) Jorking conc. [rotal 100 mL [NPM - media Stock (mg/mt) forking conc. frotal 100 mL
DMEM/ F12 Media 1X X 48ml DMEM/F12 Media X X 48ml
Neurobasal x x agml Neurobasal Media X X 48ml
I-Glutamine 200mM 2mm 1000ul I-Glutamine 200mM 2mM 1000ul
NEAA (Non Essential Amino acids) 100X x 1000ul NEAA (Non Essential Amino Acids) 100X 1x 1000ul
2-mercaptoethanol 25mM | 125uM s0ul Pen-Strep X x 10000l
Pen-Strep 1X 1xX 1000ul N2 100X 0.5X 500ul
N2 supplement 100X 1X 1000ul Day 4-9

DAYO-1 ROCK inhibitor Y-27632 10mM (50X) 20um 200ul
ROCK inhibitor Y-27632 10mM 20uM 200ul *5B43152 10mM (1000X) SuM 50ul
*SB43152 10mM (1000X) 5uM 50ul *LDN1931892 2mM (10 000X) 100nM Sul
*LDN1931892 2mM (10 000X) 100nM SLI\I * Shh (2511) 10ug/ml (1000X) 100ng/ml 100ul

DAY 1-4 *CHIR99021 (light sensitive) 10mM | 0.7-0.8uM 7.5ul
ROCK inhibitor Y-27632 10mM (S0X) 20uM 200ul Day9-11
*SB43152 10mM (1000X) SuM 50ul *FGF8b 10ug/ml (1000X) 50ng/ml 50ul
*LDN1931892 2mM (10 000X) 100nM Sul B27 Supplement minus AO 50X 1X le‘
* Shh (2511) 10ug/ml (1000X) 100ng/ml 100ul
*CHIR99021 (light sensitive) 10mM | 0.7-0.8uM 7.5u

DAY 11-16 Dissociate using Accutase, replate on Lam-111 Day 16------ > Optional Maturation PLO/lam

INDM - media Stock (mg/mL) forking conc. [Total 100 mL
Neurobasal 1X X 97ml
|-Glutamine 200mM 2mM 1000ul
NEAA 100X X 1000ul
Pen-Strep x x 1000ul
ROCK inhibitor Y-27632 10mM (50X) 20uM 200ul 50X
BDNF 10ug/ml (1000X) 20ng/ml 200ul Ascorbic acid (A) 4mg/ml (1000X) 0.4ug/ml 100ul
AA .4mg/ml (1000X) 0.4ug/ml 100ul ROCK inhibitor (RI) 10mM (50X) 20uM 200ul
*FGF8b 10ug/ml (1000X) S0ng/ml 50ul BONF 10ug/ml (1000X) 20ng/ml 200ul
827 Supplement minus AO 50X X 2mi] * Patterning factors

TEM preparation of neural network samples.

Gelatine embedding: All samples were washed for 2x10 min in 0.1M phosphate buffer, mixed
1:1 with gelatine (6% porcine, dissolved in 0,1M phosphate buffer) and incubated for 15-20min
in 37-40°C. The samples were then centrifuged, cooled off, and post fixed with glutataldehyde.
Surplus gelatine was cut away and the samples were cut and shaped into 1x1mm (or smaller)
pieces.

Dehydration: The samples were washed 2x10min in 0.1M cacodylate buffer, and post-fixed in
the dark for 1 hour in 2% OsO4 + 1.5% potassium ferrocyanide in 0,1M cacodylate buffer. A
series of washing and dehydration steps followed: 2x5min 0,1M cacodylate buffer, 2x5 min
phosphate buffer, 1x10 min in 50% alcohol, 1x10 min in 70% alcohol, 1x10 min in 90%
alcohol, 4x10 min in absolute alcohol, and 2x15min in ABS acetone.

Infiltration and embedding: 10ml epoxy was mixed with 0,15ml DMP-30. The samples were
then placed in acetone and epoxy in the following dilutions: (2:1) for 2 hours, (1:1) for 2 hours,
and (1:2) overnight. The samples were then placed in epoxy for 8 hours on a rotator, where the
solution was replaced every 2 hours for better infiltration. The samples where then placed in
plastic moulds, labelled, and polymerized at 60°C for 3 days.)



Supplementary Result
Immunocytochemistr

Figure. S1 Antigenic profile of engineered neural networks after 30 days of maturation.
(A) Immunostaining with the neuron-specific cytoskeletal antibody beta-3 tubulin (red), the
catecholamine neurotransmitter precursor antibody tyrosine hydroxylase (TH) (green), and
counterstaining with hoechst (blue) (40X). (B) Immunostaining with the mature axonal
antibody neurofilament heavy (red), TH (green) and counterstaining with hoechst (20X). (C).
Image showing immunostaining with an antibody for endogenous alpha-synuclein (red) and
TH (green), together with hoechst counterstain (blue) (40X). Images D, E and F are the single
channel versions of C, showing endogenous alpha-synuclein, TH and Hoechst, respectively.

Verification of alpha-synuclein PFF seeds

UV-visible absorbance spectra and AFM of the PFFs showed a clear difference in both
absorbance and structure of PFFs before and after water bath ultrasonication, indicating that the
ultrasonication is effective in breaking the PFFs into smaller seeds.



UV-vis absorbance and AFM of a-synuclein PFFs before and after water bath ultrasonication
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Figure S2.: UV-visible absorbance spectra and atomic force microscopy (AFM) of pre-
formed fibrils (PFFs). A) UV-vis absorbance of a-synuclein PFFs show that before
ultrasonication, the PFFs display a doublet absorption peak between A4 - A2s0. Absorption
between Ao - A2so stems from m—m* transitions of the pyrimidine and purine rings in
nucleobases. After ultrasonication, the absorption at 240nm — 250 nm is reduced, which suggest
less stacking of aromatic rings. AFM images B) before (t=0) and C) after (t=120 min)
sonication show that treatment with ultrasonication disintegrates the branched structure of the
PFFs.

Verification of the presence of intracellular alpha-synuclein aggregates after PFF addition
in engineered neural networks

The antibody for alpha-synuclein phosphorylated at S129 (ab51253) was used to visualize
intracellular aggregates by immunofluorescence in PFA-fixed and protein-extracted samples
(TritonX-100) 2 weeks or more after addition of PFF seeds to the neuronal media. Although
consistent positive intracellular labelling by the S129 antibody was observed in the PFF treated
neural networks, both perinuclearly and at distal neuronal sites, background staining and
unspecific labelling was also consistently observed in the control conditions (both in the DPBS
and in the monomer control). Positive control labelling with the S129 antibody was observed
at a range of different dilutions (1:100-1:750), with 3 different secondaries (488nm, 568nm,
647nm), for two different antibody batches, and after 10, 15, and 20 minutes’ protein extraction
by TritonX-100. Representative images of these results are shown in S3. The
immunocytochemistry was thus inconclusive.
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Figure S3. Immunostaining of intracellular alpha-synuclein  aggregates.
Immunofluorescent images displaying the detection of anti-alpha-synuclein phosphorylated at
S129 antibody after different lengths of protein extraction in PFF cultures (A,C,E and F) and
in control cultures (B,D,G and H). A,B) Immunocytochemistry of the mature engineered neural
networks fixated without TritonX-100 extraction, displaying immunofluorescence with
antibodies for tyrosine hydroxylase (green), for alpha synuclein phosphorylated at S129 (red)
and with the nuclear counterstain hoechst (blue) (100um scale bar). C,D)
Immunocytochemistry of cultures which were TritonX-100 extracted for 10 min prior to
fixation, displaying immunofluorescent labelling with a phalloidin probe (green), the S129
antibody (red) and the nuclear counterstain hoechst (blue) (10um scale bar). E and F) Confocal
image of a PFF treated culture which was TritonX-100 extracted for 15 min prior to fixation,



displaying immunofluorescent labelling with a phalloidin probe (red), the S129 antibody
(green) and the nuclear counterstain hoechst (blue) (10um scale bar) F) Side-view of E) created
by confocal stacking (white arrow indicates intracellular localization of the S129 antibody). G
and H) Confocal image of a control culture which was TritonX-100 extracted for 15 min prior
to fixation, with immunofluorescent labelling with a phalloidin probe (grey), the S129 antibody
(green) and the nuclear counterstain hoechst (blue) (10um scale bar) H) Side-view of G) created
by confocal stacking (white arrow indicates intracellular localization of the S129 antibody).
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Figure S4 Ultrastructural observations of fibrillization, inclusion bodies and neuritic
atrophy A) shows fibrillization within a neurite from the PFF condition. Upper right corner
shows an overview image of the area, with red highlighting fibril structures, and blue indicating
an axo-dendritic synapse. B) shows another cell from the PFF condition containing cytosolic
fibrils. Upper right corner shows an overview image of the area, with red highlighting fibril
structures C) Ultrastructural sample showing an abundance of membrane-enveloped “inclusion
bodies”, both in the cytosol and within neurites of a neuron from the PFF condition (green =
nucleus). D) shows a neuron from the PFF condition with signs of membrane degradation and



atrophic neurites (arrow = swelling). E) and F) shows dead cells observed in the PFF condition
with clear signs of fibril condensation. G and H) shows comparable neurons from the monomer
control samples (green = nucleus).
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Figure S5 Necrotic/apoptitic elements and autophagosomal/lysosomal activation. Results
from the ultrastructural image analysis, where the amount of necrosis-apoptosis (A) and
autophagic/lysosomal elements (B) was compared between samples taken from the PFF treated
condition and samples taken from the monomer control condition. The bar graphs display the
results of the independent samples T-tests (group means with standard error of means). A) Mean
number of apoptotic/necrotic elements surrounding single neurons in the PFF samples and the
monomer control samples. n is the number of ultrastructural images analyzed for each
condition, where the number of necrotic/apoptotic elements counted was divided by the number
of morphologically intact neurons in the image (a total of 42 neurons from the PFF samples,
and 39 from the monomer control samples). * significant at p<.05 B) No significant difference
was found between the PFF samples and the monomer control samples in observed intracellular
autophagic/lysosomal events. n denotes the number of single neurons analyzed.

Fig.S6 shows representative overview images of samples used for ultrastructural analysis of
extracellular necrotic/apoptotic elements. The regions of interest were selected based on the
presence of a homogenous distribution of neurons.

Figure S6 Examples of ultrastructural 1mages used for the assessment of extracellular
necrotic/apoptotic elements: A representative overview image from a monomer control
sample (A) and a PFF treated sample (B), illustrating the observed differences in the
extracellular environment surrounding the neurons. Red = highlighted residues of
apoptotic/necrotic elements.



Fig.S7 shows representative images used for the ultrastructural assessment of intracellular
autophagic/lysosomal activation. The images analyzed were selected based on the presence of
anumber of neuron-specific ultrastructural features (axon/dendrites, synapses, nucleolus, shape
and color of nucleus, as well as cytoplasmic electron density and heterochromatin condensation
relative to other cell types identified in the preparation) (Peters and Folger; Rhodin 1974).
Notice also the extracellular (filamentous) necrotic/apoptotic elements immediately adjacent to
the neuron from the PFF condition displayed in Fig.S5.

Figure S7 Examples of ultrastructural images used for the assessment of
autophagosomal/lysosomal activation: Representative overview image of a single neuron
from the monomer control samples (A) and from the PFF samples (B) illustrating the observed
intracellular autophagic and lysosomal activity. Nucleus (green), purple autophagic/lysosomal
activity (purple), lipid body (yellow).
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Abstract

Mutations in the LRRK2 gene have been widely linked to Parkinson’s disease. The G2019S
variant has been shown to contribute uniquely to both familial and sporadic forms of the disease.
LRRK2-related mutations have been extensively studied, yet the wide variety of cellular and
network events directly or indirectly related to these mutations remain poorly understood. In
this study, we structured multi-nodal human neural networks carrying the G2019S mutation
using custom-designed microfluidic chips coupled to microelectrode-arrays. By applying live
imaging approaches, immunocytochemistry and computational modelling, we have revealed
alterations in both the structure and function of the resulting neural networks when compared
to controls. We provide first evidence of increased neuritic density associated with the G2019S
LRRK?2 mutation, while previous studies have found either a strong decrease, or no change,
compared to controls. Additionally, we corroborate previous findings regarding increased
baseline network activity compared to control neural networks. Furthermore, we can reveal
additional network alterations attributable to the specific mutation by selectively inducing
transient overexcitation to confined parts of the structured multi-nodal networks. These
alterations, which we were able to capture both at the micro- and mesoscale manifested as
differences in relative network activity and correlation, as well as in mitochondria activation,
neuritic remodelling, and synaptic alterations. Our study thus provides important new insights
into early signs of neural network pathology significantly expanding upon the current
knowledge relating to the G2019S Parkinson’s disease mutation.



1. Introduction

Mutations in the leucine-rich repeat kinase 2 (LRRK2) (PARKS locus) gene are linked to both
late-onset familial and sporadic forms of Parkinson’s disease (PD) (Healy et al., 2008).
Although rare, LRRK2 gene mutations have been termed a potential “Rosetta stone” of
parkinsonian disorders as all of the major pathologies related to parkinsonism have been
observed, in addition to there being end-stage variability, within families carrying the same
pathogenic variant (Joanne Trinh et al., 2006). Moreover, the Lewy body and Lewy neurite
pathology commonly observed in brain autopsies from PD patients, are rarely observed in
relation to LRRK?2 mutations (Moore, 2008). The LRRK2 gene is expressed both in the brain
and in other tissues throughout the body and is translated into the LRRK2 protein, which has
enzymatic kinase activity involved in a range of cellular processes (Joanne Trinh et al., 2006).
Pathogenic variants are postulated to augment this kinase activity, resulting in a toxic gain-of-
function through an increase in both autophosphorylation and phosphorylation of LRRK2
substrates (Joanne Trinh et al., 2006, Sheehan and Yue, 2018, Jaleel et al., 2007, Zhao et al.,
2012, Smith et al., 2006, Greggio et al., 2006, Steger et al., 2016).

Studies using both in vitro and in vivo models of PD suggest that synaptic alterations and axonal
dysfunction represent the earliest detectable signs of the disease (MacLeod et al., 2006, Cheng
et al., 2010, Dagda et al., 2014) and that initiation of pathology at the axon terminals might
signify the start of the retrograde degeneration of the neurons (Tagliaferro and Burke, 2016,
Sheehan and Yue, 2018). This also fits with the latest estimates compiling observations from
several independent studies, concluding with 50-70% loss of striatal terminals at symptom onset
of PD, while “only” 30% of dopaminergic neurons in the substantia nigra are lost at the same
timepoint (as opposed to the often reported 60-80% dopaminergic neuron loss) (Cheng et al.,
2010). Moreover, there is now abundant evidence that the molecular mechanisms of axonal
degeneration are distinct from those of programmed cell death, implying that the two
mechanisms should be considered separately, both in disease modelling and therapeutics
(Cheng et al., 2010, Tagliaferro and Burke, 2016). Dendritic spine loss and shortening and
simplification of the dendritic arbor are also regularly observed in post mortem tissues from
patients with Alzheimer’s disease and amyotrophic lateral sclerosis (Brizzee, 1987, Stephens
et al., 2005, Baloyannis, 2006, Sasaki and Iwata, 2007, Cherra et al., 2013, Dagda et al., 2014,
Genc et al., 2017). Such changes are often accompanied by a loss or impairment of dendritic
mitochondria, a feature which is central in PD pathogenesis (Bose and Beal, 2016, Verma et
al., 2017, Singh et al., 2019). Furthermore, these alterations have been linked to increased
excitatory stimulation and calcium handling (Caudle and Zhang, 2009, Verma et al., 2018).

The advancement and availability of tools for morphogenetic neuroengineering now enable
modelling of selected pathological aspects of neurodegenerative disease in human neural
networks in vitro. In this study, we utilize healthy human cortical neural networks and
equivalent networks carrying the Parkinson’s related LRRK2 G2019S mutation to study early
expression of pathology, both at the micro- and mesoscale. Among the LRRK?2 mutations, the
particular G2019S mutation represents the most commonly identified cause of late-onset PD,
and has been shown to contribute uniquely to both familial and sporadic forms of the disease
(Kachergus et al., 2005, Bouhouche et al., 2017, Joanne Trinh et al., 2006, Moore, 2008).
Moreover, it has been shown to result in differential regulation of a variety of cellular pathways
highly relatable to several aspects of PD pathology, among which are axonal guidance,
cytoskeletal transport, cell growth, differentiation and communication (Habig et al., 2013,
Habig et al., 2008).



In this study we investigate whether in vitro neural networks carrying the LRRK2 G2019S
mutation display a different structural and functional profile compared to healthy controls
during development and in response to induced perturbation consistent with excitotoxicity. To
address these aims, we structured human neural networks with and without the LRRK2
G2019S mutation using tailor-made multi-nodal microfluidic chips (van de Wijdeven et al.,
2018, van de Wijdeven et al., 2019). These microfluidic chips incorporate axon tunnels and
synaptic compartments interconnecting three cell chambers, thus allowing selective
manipulation of the neural network. Furthermore, each microfluidic chip incorporates a
microelectrode-array (MEA), which enables electrophysiological recording of neural network
activity within different interconnected nodes. We have subsequently monitored early network
structure, function and dysfunction related to the G2019S LRRK?2 mutation using this platform.
Importantly, based on the two-hit hypothesis of PD, according to which a combination of
genetic susceptibility and environmental factors may contribute to the onset and progression of
the disease, we have selectively induced a transient, topologically confined neural
overexcitation event, monitored network responses and revealed associated alterations at the
micro- and mesoscale.

2. Materials and Methods

Structuring cortical neural networks using microfluidics chips with directional inter-
nodal connectivity

Control human induced pluripotent stem cell (iPSC)-derived HIN neural stem cells (NSCs)
(ax0019) and iPSC derived HON NSCs homozygously carrying the LRRK2 G2019S
(GGC>AGC) mutation (ax0310) (Axol Bioscience, Cambridge, United Kingdom) were
cultured and expanded on 0.01 % poly-L-ornithine (PLO) (Sigma) and L-15 laminin (L15
medium containing 1:60 natural mouse laminin and 1:41 sodium bicarbonate) coated culture
vessels in neural expansion medium (ax0030) supplemented with human FGF2 and EGF
(ax0047 and ax0047X), and kept in a standard humidified air incubator (5% CO?, 20%0?, 37°C)
(full cell culture protocol, as well as further information on each cell line available in the
supplementary data). Each microfluidic chip was coated with the same combination of PLO
and L-15 laminin and seeded with 1.1x10° NSCs (37000 cells per cell chamber), from which
point synchronous differentiation and maturation of the NSCs into cortical neurons was carried
out until day 15, using an NSC reagent bundle and media (ax0101) in accordance with the
manufacturer’s protocol.

Excitatory stimulation of structured neural networks using Kainic Acid

Fifteen days post seeding, the cortical networks in the microfluidics chips were stimulated with
Kainic acid (KA) and subsequently investigated with live staining assays. KA (10uM) was
applied to the top cell chamber for 30 minutes, after which all cell chambers were washed 3x
with Dulbecco’s phosphate buffered saline (PBS) and resupplied with media. A flow barrier
created by a 10ul media level difference between the stimulated chamber and the non-
stimulated chambers ensured the confinement of the KA to the top cell chamber only. The same
procedure was carried out for each cell line using only PBS as a control condition. A total
reactive oxygen species (ROS) assay kit 520nm (Thermo Fisher Scientific) fluorescently
labeling ROS production was applied to verify a cellular response and the confinement of the
stimulation by fluorescence microscopy (EVOS FL auto 2, Invitrogen, California, United
States), where the microscope was set to image simultaneously in each of the microfluidics
chips chambers every 10 minutes for 1 hour immediately following KA stimulation.

Axonal mitochondrial distribution in structured neural network



To investigate the mitochondria distribution in the control and LRRK2 neural networks, 0.1%
Tetramethylrhodiamine (TMRM, T668, Invitrogen) was applied for 30 minutes at 37°C to all
microfluidic chip chambers, rinsed in PBS, and imaged using a Zeiss 510 META Live confocal
scanning laser microscope in a heated chamber (37°C). As a baseline measure, 3 image series
were taken every 10 minutes, where an image was taken every second for 1 consecutive minute.
Thirty minutes after a confined KA stimulation of the cortical neurons in the top chamber (as
described in the previous section), the imaging procedure was repeated.

Cell viability assay

On day 16 (i.e. 24 hours post KA stimulation), a LIVE/DEAD viability/cytotoxicity kit
(MP03224, Invitrogen) was applied to the neural networks in the microfluidics chips to
determine whether the KA stimulation was sublethal. 0.8ul Ethidium homodimer-1 (2mM in
DMSO/H:0 1:4) and 0.4ul Calcein AM (4mM in anhydrous DMSO) was diluted in 2ml PBS
and applied to all chambers in the microfluidic chips for 15 minutes in 37°C. The fluorescently
labelled neural networks were then washed with PBS and imaged (EVOS FL auto 2).

Immunocytochemistry of the structured neural networks

24 hours post KA stimulation (or PBS as a control condition), structured neural networks from
both the control and LRRK?2 group were fixed and used for immunocytochemistry assays to
assess the neurite and spine morphology. For fixation, 2% paraformaldehyde (PFA) was applied
for 15 minutes followed by 4% PFA for 10-minutes and 3x15 minute washes at room
temperature (RT). Blocking solution consisting of PBS with 5% normal goat serum (NGS) and
0.3% Triton-X was applied for 2 hours at room temperature and was followed by overnight
incubation in primary anti-body solution (PBS with 1% NGS, 0.1% Triton-X) in 4°C. The
following antibodies were used: Rabbit anti-Piccolo antibody (1:400) (ab20664), mouse-anti
PSD95 (1:200) (ab13552), rabbit anti-CaMKII (1:250) (ab134041), rabbit anti-GRIKS5 (1:200)
(PA-5-41401), rabbit anti-Glutamate receptor 1 (AMPA) (1:500) (ab109450), mouse anti-
MAP2 (1:400) (131500, Thermo Fisher Scientific), mouse anti-beta III tubulin (1:400)
(ab119100), rabbit anti-total alpha synuclein (ab131508), mouse anti-mitochondria (ab3298),
and chicken anti-neurofilament heavy (1:1000) (ab4680). The structured neural networks were
then washed 3x15 minutes in PBS, and incubated for 3 hours in secondary antibody solution
(PBS with 1% NGS, 0.1% Triton-X) in the dark, at RT. A combination of Alexa Fluor™ 488,
568, 647 secondary antibodies (Thermo Fisher, MA, USA) were used at a dilution of 1:1000.
CytoPainter Phalloidin 647 (1:500) (ab176759) was added for the final 20 minutes of
incubation, and Hoechst (1:10000) was added for the final 5 minutes before another 3x15 min
wash in PBS was conducted. To avoid dilution of the solutions used for these
immunocytochemistry procedures by the media already present in the axon tunnels of the
microfluidic chips, some of the appropriate solution was used to flush through the tunnels prior
to the actual incubation with each relevant solution. Images used for separate quantification of
the fluorescently immunolabeled neural networks were taken using either a Zeiss Axiovert 1A
fluorescent microscope (Carl Zeiss, Germany) with a 100x/1.3 oil objective or a Zeiss (510
META Live) confocal laser scanning microscope with a 63X/1.4 oil objective. ImageJ, MatLab
and PowerPoint were used to post-process the images.

Image analysis

Analysis of ROS expression was done using the Fiji plugin Particle analyzer. The two-channel
fluorescent images from the viability assay were merged, adjusted for brightness/contrast for
maximal separation and clarity of both signals, and the cells manually counted using the Cell
counter Fiji-plugin. The area close to the active zone in the microfluidic chip was selected for
analysis as this area showed better separation of the signals due to a consistent lower cell density



across all conditions. The number and size of the TMRM-labelled mitochondria within the
axonal tunnels were extracted using a simple image analysis pipeline implemented in
MATLAB. First, nonuniform background illumination was removed by applying a top hat
filter. The image was then binarized by Otsu thresholding, and the 8-connected components
were extracted from the resulting binary image. Artefacts at the edges of the images, which
tended to be large and elongated, were removed by eliminating components if their size
exceeded 5 pm? or eccentricity exceeded 0.995. The number of mitochondria was then
extracted as the number of remaining 8-connected components in the image. The size of each
detected mitochondrion was computed from the number of pixels comprising each as-detected
component. Additional analysis of fixed samples from this experiment were analyzed in Fiji
using ROI manager. Two channel 100X images of fluorescent mitochondria and total alpha
synuclein in the neural networks were binarized by Otsu thresholding, and the area covered by
the fluorescence in each channel was selected and measured using the ROI manager. A ratio of
the area covered by mitochondria/total alpha synuclein was calculated and used for statistical
analysis in Prism8 (GraphPad, California, United States).

The fluorescence images of Piccolo-immunolabelled neurites were analyzed using a semi-
automated process implemented in MATLAB and Fiji to count the number of neuritic boutons
present in the images. Most boutons were counted in an automated fashion in MATLAB. Top
hat filtering was applied to suppress nonuniform background illumination before the contrast
of the resulting images was enhanced using adaptive histogram equalization. The contrast-
enhanced images were binarized using Otsu thresholding, and salt noise in the binarized images
was removed by median filtering. Neurite fragments were then joined by morphological
closing, and any remaining small fragments were removed by applying hole filling to the
inversion of the resulting image. Thinning was then applied to obtain a skeleton of the neurites
in the image. From this thinned image, endpoint detection was used to obtain a preliminary
bouton count. Because the automated analysis missed some boutons, the endpoint labelled
images were visually inspected and the missed boutons were manually counted using the Cell
counter in Fiji and added to the final results. The area covered by the neurites was calculated
by means of the Particle analyzer after binarization with Otsu thresholding. Together, the
boutons counted divided by the area covered with neurites created a ratio used for statistical
analysis. For the measure of co-occurring Piccolo and PSD95 immunolabelling, an automatic
threshold was applied for each channel (Otsu for Piccolo and Triangle for PSD95) in Fiji, the
thresholded areas selected as ROIs, and areas containing both ROIs were selected for particle
analysis. A cut-off at 15um was set as an upper limit, and the number and average size
measurement from each image were used for statistics.

Electrophysiological investigation of the structured neural networks

Using an identical microfluidic chip design interfaced with a custom-made microelectrode array
(MEA), the electrophysiological activity of the structured neural networks and their response
to KA stimulation were recorded through the MEA2100 in vitro Headstage, interface system
and suit software (Multi Channel Systems; Reutlingen, Germany). Similar to the procedure
described earlier, the MEA-interfaced microfluidic chips were coated with a combination of
PLO and L15-laminin and seeded with 5x10* NSCs per chamber (i.e. a total of 1.5 x10° per
microfluidics chip), from which point synchronous differentiation and maturation of the NSCs
into cortical neurons was carried out according to the manufacturer’s protocol until day 15. The
electrophysiological activity of each MEA-interfaced structured neural network was recorded
for a duration of 7 minutes immediately before KA stimulation, during stimulation, and at 24
hours post stimulation (10kHz sampling rate, 300Hz high-pass filter, with a £ 5 standard
deviations upper- and lower spike detection threshold). For each of the two experimental groups



(control neural networks vs LRRK?2 neural networks) 6 MEA-interfaced neural networks were
recorded and analyzed (3 controls, 3 KA stimulated). All raw data recordings are published in
Mendeley Data Repository (doi: 10.17632/dnjv26msvk.4, doi: 10.17632/92568tpp39.4 ).

Statistical analyses

Analyses were performed and visualized using Prism8 (GraphPad, California, United States).
Quantifications from each assay were assessed for normality and homoscedasticity before being
assigned a two-tailed parametric or non-parametric statistical test for comparing groups.

Post-processing and analysis of electrophysiological data

Electrophysiological data analysis was performed with NeuroExplorer 4 (Nex Technologies,
Colorado, United States) and MATLAB (MathWorks 2018, Massachusetts, United States).
Following filtering and spike detection, the spikes were binned (1 sec) and the electrodes
ordered according to chamber or channel of origin. Mean firing rates (MFRs) were estimated
across conditions and recording time points as both total MFR and relative percentage deviation
from baseline. Correlation was mapped using Pearson’s correlation coefficient r for concurrent
spiking across 1-second spike binnings. Schemaballs (MATLAB central File Exchange,
Komarov, Oleg, retrieved 2017.01.15) and heatmaps were used to display inter-electrode spike
correlation ordered by chamber. Total network correlation was computed as mean r across
electrodes per recording.

To illustrate the electrophysiological behavior of the LRRK?2 neural networks in response to
KA stimulation, a single electrode (electrode 63) was randomly selected for more detailed
analysis. As before, spikes were detected by applying a simple thresholding approach to the
electrophysiological data after bandpass filtering (passband: 300 Hz to 3 kHz). The spikes were
then sorted using principal component analysis (PCA) to distinguish spikes from a single
neuron that showed a period of enhanced firing rate accompanied by attenuation in spike
amplitude, followed by an abrupt silencing. The firing rate was computed by convolving an
alpha function kernel (a=1s7!, size = 10 s) with a spike train consisting of Dirac delta impulses
at each spike time. The attenuation rates of the negative and trailing positive phases of the
spikes were computed by fitting a line to the amplitude data during the period of high firing
rate.

3. Results

Neural networks derived from both the control and LRRK2-mutated NSCs were successfully
structured using the microfluidic chips (Fig.1, see also Fig.6 is STAR Method for detailed
microfluidic chip layout). Following 15 days of differentiation and maturation,
immunocytochemistry confirmed the presence of neurons (MAP2), with neuron specific
microtubules (beta-III tubulin) and mature axons (neurofilament heavy) containing both pre-
and post-synaptic elements (Piccolo and PSD95, respectively), as well as expressing
calmodulin-dependent protein kinase II (CamKII), a marker related to synaptic connectivity
and long-term potentiation. Importantly, both kainic acid receptors (GRIKS) and AMPA
receptors (GluR1) were also present (Fig.1D, E and I).



Fig.1 Structured neural networks. Following 15 days of NSC differentiation and maturation,
immunocytochemistry confirmed the presence of mature neural networks in the microfluidic chips. A)
Tiled image of a fluorescently labelled cortical neural network structured within a microfluidic chip,
overlaid by a schematic of the design. B) Brightfield image of the developing neural network in a
microfluidic chip, showing the area containing the axon tunnels, synaptic compartment and active zones,
while C) Brightfield image from the cell chamber area. D) Fluorescently labelled LRRK2 neural
network with markers for neurons (MAP2, green), neuron specific microtubules (beta-III tubulin, red),
and kainic acid receptors (GRIKS, magenta) together with the counterstain Hoechst (blue), with E)
showing equivalent markers in a control neural network (10um scale bar). The remaining images show
the neural networks fluorescently labelled with markers for F) neurons (MAP2, red) expressing
(CaMKII, green), G) with presynaptic vesicles (Piccolo, green), postsynaptic densities (PSD95, red) and
F-actin (Phalloidin, blue) expressed in the axon tunnels and synaptic area, H) neuronal specific
microtubules (beta-III tubulin, red) together with CaMKII (green), and I) neurofilament heavy (green)
together with AMPA receptors (red) and Hoechst counterstain. S0pum scale bars.

Sublethal induction of overexcitation in structured neural networks by confined KA
stimulation

Following a 30-minute KA stimulation targeting the neurons in the top cell chamber of a
structured neural network, live microscopy of fluorescently labelled ROS production confirmed
that the stimulation was successfully confined to the top cell chamber (Fig.2A-E). Furthermore,
24 hours post KA stimulation, the structured neural networks were fluorescently labelled with
a live/dead viability assay kit, imaged and manually counted to determine whether the KA
induced overexcitation was sublethal (Fig.2F-H). Two areas from each cell chamber were
counted in two separate structured neural networks (a total of >2000 cells/network) for each
condition (PBS condition vs KA) in each group (control vs LRRK?2 neural networks), where
the percentage of live cells found in each image was used for statistical analysis. To investigate
whether there was a difference in cell viability between the KA-receiving and non-KA receiving
chambers of the same neural networks, and between the different conditions in each group, a
repeated measures two-way ANOVA was used. No statistically significant differences were



found between chambers, indicating that the viability of the cells was not altered by the KA
stimulation (p=0.3063). A statistically significant difference was found between the groups
however (F3,12=25.3,7 p<0.0001). A post hoc Tukey’s multiple comparisons test found no
significant difference between the KA stimulated and PBS condition within the same group
(n1=np=12 for both control and LRRK2 neural networks, with p=0.9996 and p=0.1921,
respectively), confirming that the level of KA stimulation was sublethal. Interestingly, a
significant difference was found for the PBS condition between the different neural populations
(p=0.0004, DF=18.17), where a consistently higher percentage of viable cells was found in the
LRRK2 neural networks compared to the control neural networks (Fig.2H).
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Fig.2 Confined sublethal kainic acid (KA) stimulation of neural networks in microfluidics chips.
A) Microfluidic chip design, with a red circle indicating the top cell chamber used for confined KA
stimulation (10uM). B) Line-graph where the reactive oxygen species (ROS) production of a structured
neural network following a targeted KA stimulation has been analysed, with a clear difference between
the ROS production in the top cell chamber compared to the two other chambers. Images (10X) were
taken from each of the cell chambers every 5 minutes over the course of one hour following a KA
stimulation. C, D and E) Representative images of fluorescently labelled ROS from each of the cell
chambers, 45 minutes after the targeted KA stimulation. F) Tiled image of the middle cell chamber of
a structured neural network fluorescently labelled with Calcein-Am (green) and Ethidium homodimer-
1 (red) 24 hours post KA. G) Close-up of the area selectively chosen for analysis. H) Bar-graph showing
the percentage of viable cells counted in each chamber, for each condition with standard deviation bars.
A statistically significant difference was found between the control and the LRRK2 groups in the PBS
condition (p=0.0004, N1=N2=12, DF=18.17) by post hoc Tukey’s multiple comparisons test, where N=
the number of images counted. No significant difference was found between the KA and control
condition within the same group, nor between the different chambers, demonstrating that the KA
stimulation was sublethal as intended.



Mitochondrial distribution in the axonal tunnels and synaptic compartments

Active mitochondria were successfully labelled with TMRM and could be visualized live in the
structured neural networks using a Zeiss 510 META live confocal scanning microscope with a
heated incubator. Single z-stacks containing all of the TMRM labelled mitochondria enclosed
within a representative segment of the synaptic compartment were obtained at baseline for both
the LRRK2 (n=6) and control (n=6) neural networks. Volumetric figures were produced for
visualization of these data, and can be seen in Fig.3A,B. Height measures calculated from the
z-stacks showed a statistically significant difference between the control and LRRK2 neural
networks (two-tailed, independent samples t-test, ti0=7.96, p<0.0001), with the LRRK2 neural
networks containing mitochondria spanning on average over 3 times the height of the control
neural networks (meanka=35.38um vs meanneainy=10.83um) (Fig.3A-E). As the axonal tunnels
restrict the movement of the mitochondria in the z-plane to a much greater extent than the
synaptic compartment, they were chosen as the area for further imaging. The active
mitochondria contained within a 145um long segment of four axon tunnels (63X objective)
were analyzed for the 6 control neural networks and the 5 LRRK2 neural networks, both at
baseline and after KA or PBS addition. A statistically significant difference was found in the
number of TMRM labelled mitochondria contained within the axon tunnels (Mann-Whitney
U=659.5, Ni=48, N>=40, p= 0.0114) between the control and LRRK2 neural networks at
baseline, showing that the LRRK2 networks were characterized by the presence of a greater
number of active mitochondria (median=164.5 vs 136) (Fig.3F). To investigate whether the
number of active mitochondria was influenced by the KA stimulation, Wilcoxon matched-pairs
signed ranks test was applied for the baseline and after KA stimulation timepoints in each group.
A significant difference was found (pairs=24, p=0.0432) for the control neural networks, with
a reduced number of active mitochondria measured after the KA stimulation. Although not
statistically significant (pairs=24, p=0.1578), the same trend was observed for the KA
stimulated condition in the LRRK?2 neural networks, with fewer active mitochondria measured
at the second timepoint than at baseline (Fig.3I). To control for potential degradation of the
TMRM labelling over the time-course of the imaging, or a reduction of active mitochondria
due to temperature changes moving from the incubator to the heated imaging-stage, or due to
PBS-washing following the KA stimulation, networks (receiving only PBS) from each group
were also imaged at the same timepoints. No significant difference was found between the two
timepoints in the PBS condition for the control neural networks (pairs= 24, p=0.214) (Fig.3H).
For the LRRK2 neural networks, a significant difference was found for the PBS condition,
however, this time there were more active mitochondria at the latter timepoint (pairs=16,
p=0.029). The mitochondrial sizes were also assessed for each condition; however, no
significant differences were found between the baseline measures of mitochondrial size
between the control and LRRK2 neural networks, nor between the baseline and KA stimulated
condition in either group (data not shown).
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Fig.3 Mitochondrial distribution in the synaptic compartment and axon tunnels of the structured
neural networks. The structured neural networks were labelled with TMRM, and the active
mitochondria contained within 4 axonal tunnels were imaged live at two time points (baseline and after
KA or PBS) for 3 neural networks from both groups, i.e. the control and LRRK2 neural networks.
Additionally, image z-stacks were taken from the synaptic compartment at baseline for both groups to
capture the height span of the active mitochondria. A and B) Volumetric view of the area containing
fluorescently labelled mitochondria in the synaptic compartment from an A) LRRK2 neural network
(height = 44um) and a B) control neural network (height = 9um). One of the z-slices from each of the
stacks making up the volumetric figure in A and B are shown in C and D, respectively. Some
autofluorescence in the PDMS walls of the microfluidic chips outline the structure of the synaptic
compartment and axon tunnels (30um scale bars). E) shows a bar-graph with scatter plots of the mean
height in the synaptic compartment measured to contain fluorescently labelled mitochondria in each
group, with standard deviation bars. An independent samples t-test showed that the LRRK2 neural
networks contained active mitochondria within 3 times the height span of the control neural networks
(p<0.0001, N=6) where N equals the number of networks investigated in each group. G) shows
fluorescently labelled mitochondria contained within a single axonal tunnel in a control neural network,
at baseline (20um scale bar). F) Bar-graph with the median number of mitochondria counted within
single axonal tunnels at baseline for both control and LRRK2 neural networks, with range bars and
scatter plots. The LRRK2 neural networks displayed significantly more TMRM labelled mitochondria
contained within the axonal tunnels compared to the control neural networks at baseline (p=0.0114,
U=659.5, N1=48, N,=40) by Mann-Whitney U test. H and I) Bar-graphs with the median number of
mitochondria measured at each timepoint, with range bars and scatter plots, for both the PBS and KA
stimulated condition, within both groups. H) The control neural networks were found by Wilcoxon
matched-pairs signed rank test to have significantly fewer active mitochondria after KA stimulation
compared to the baseline (p=0.0432, pairs=24), while the LRRK?2 neural networks I) showed the same
trend without it being statistically significant. A statistically significant difference was found between
the two timepoints in the PBS condition of the LRRK2 neural networks however (p=0.029, pairs=16),
with more active mitochondria being measured after PBS addition.

Furthermore, to get an indication of whether the significant difference in number of TMRM
labelled mitochondria observed at baseline between the control and LRRK?2 neural networks
(Fig.3F) was due to a greater mitochondrial content within each neurite in the LRRK2 neural
networks compared to the control neural networks, a supplementary investigation of
fluorescently labelled mitochondria was conducted in fixed samples from both groups. No
statistically significant difference was found between the groups (p=0.4293, Nrrrk2=8,
Neontroi=10) by independent samples t-test in this measure, indicating that the baseline difference



in TMRM labelled mitochondria might be due to a larger number of neurites containing TMRM
labelled mitochondria being visible, rather than a greater number of mitochondria being
contained within each neurite, in the LRRK2 networks (Supplementary Fig.S1).

Neurite morphology and internodal synaptic contacts

High-magnification microscopy images of the control neural networks fluorescently labelled
with the anti-Piccolo antibody were used for morphological investigations of the neurites in the
synaptic compartment, as well as for quantification of synaptic contacts through co-occurrence
with the fluorescently labelled anti-PSD95 antibody, 24hours post KA stimulation (or PBS)
(Fig.4A-D). Based on semi-automated image processing (see method section), a ratio of
neuritic boutons/neurite was used to assess the morphology of the neurites, where a statistically
significant difference was found between the PBS condition and the KA stimulated condition
in the control neural networks (Mann-Whitney U=73, n1=22, n»=18, p=0.0004), with
substantially fewer boutons observed after KA stimulation (medianpes=10.24 vs medianka=
6.32). Furthermore, image analysis quantifying the number and size of co-occurring Piccolo
and PSD95 labelling revealed a significant difference in size (um) between the PBS and KA
stimulated condition in the control neural networks (Mann-Whitney U=153.5, n1=26, n,=24,
p=0.0017), with larger synaptic contact areas in the KA stimulated condition
(medianpes=0.1915 vs medianka= 1.651), but no significant difference in number of contacts
(medianpgs=314.5 vs mediangka=493.5, p=0.2504) (Fig.4C, D). Due to the high density of
neurites contained within the synaptic compartment of the LRRK2 neural networks, z-stacks
were taken to capture morphology of the neurites and the co-occurring Piccolo and PSD95
labelling (Fig.S2 and S3). The bottommost image slice from each stack was used for
quantification of synaptic contacts through co-occurring Piccolo and PSD95 labelling
(Fig.4E,F), while investigating the morphology of single neurites proved not feasible due to
the overall compactness and density of the neurites in this group (Fig.4G, Fig.S2). No
statistically significant differences were found in size (medianpss= 0.1190pum vs medianka=
0.1060pm) or number (medianpps=832 vs medianka=677) between the PBS and KA stimulated
condition in the LRRK2 neural networks in co-occuring Piccolo and PSD95 (Mann-Whitney U
test).
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Fig.4 Neurite morphology and internodal synaptic contacts in the structured neural networks.
Images were taken from the synaptic compartment area and show cortical neural networks fluorescently
immunolabelled with Piccolo (green) and PSD95 (red). A and B Representative images from the two
conditions (KA and PBS) in the control neural networks, where A) shows immunolabelling in the
synaptic compartment of a KA stimulated neural network and B) from the synaptic compartment of a
PBS neural network. Both images are enlarged (with representative full-view images in the top right
corner) (10pm scale bars). E) Similarly, representative image from the KA stimulated condition in an
LRRK2 neural network (20pum scale bar), illustrating the lower level of morphological detail available
due to the density of neurites contained within the synaptic compartment. C) Bar-graph with the median
ratio of neuritic boutons contained within the synaptic compartment for each condition in the control
neural networks, with range bars. A statistically significant reduction of neuritic boutons was found in
the KA stimulated condition (Mann-Whitney U=73, n;=22, n,=18, p=0.0004) compared to the PBS
condition, where n equals the number of images analysed. D and F) Bar-graphs with the median size of
the synaptic contacts (Piccolo/PSD95 co-occurrence) with range bars, measured within the synaptic
compartment for both the control and LRRK2 neural networks, respectively. For the control neural
networks, a statistically significant difference was found in the synaptic size measurements between the
conditions (Mann-Whitney U=153.5, n;=26, n,=24, p=0.0017), with much larger areas of co-occurrence
between Piccolo and PSD9S5 found at the neurites of the KA stimulated condition compared to the PBS
condition. For the LRRK2 neural networks, no significant difference was found between the conditions
in synaptic contact size. Furthermore, to illustrate the difference in neuritic density G) shows 10pm
thick z-stack volume projections of the LRRK?2 neural network in E, with Piccolo and PSD95 merged
(top), followed by Piccolo (green) and PSD95 (red) alone.

Electrophysiological activity of the structured neural networks

Electrophysiological measurements of the structured neural networks at baseline revealed a
consistent trend in network activity and functional connectivity across all networks, both for
control and LRRK?2 neural networks, reflecting reproducible structure-function traits imposed
on the networks through the physical structuring of the microfluidic chip. Higher mean firing
rates (MFR) were consistently found at the top and bottom cell chambers relative to the middle
cell chamber, and within-chamber (intra-nodal) correlations (Pearson’s correlation) were found
to be consistently higher than between-chamber correlations, for both the LRRK2 and control
neural networks (Fig.S4). Interestingly, the average MFR of the LRRK?2 neural networks was
far greater than that of the control neural networks at baseline (4.5 spikes/sec vs 2 spikes/sec)
(Fig.S4, Fig.5A), while at the same time, the total network correlation was lower for the LRRK?2
neural networks (r=0.085) than that of the control neural networks (r=0.12). Furthermore,
average MFR and total network correlation measures from the PBS condition for both the
LRRK2 and control neural networks (where some media was moved to create a flow barrier



during the stimulation timepoint) follow each other quite closely (Fig.5B, D), with a
comparable 33-39% drop in average MFR and a 43-44% increase in total network correlation
at the 24 hours post-stimulation timepoint, relative to the baseline measures. The neural
networks receiving KA produced differential responses however.

The KA addition successfully produced a transient overexcitation. The activity measured at a
randomly chosen electrode (number 63) in the top chamber of an LRRK2 neural network during
KA stimulation has been used to illustrate this in Fig.5C and Fig.S4., in which a transient period
of substantially increased firing rate (i.e. from 2Hz to 14Hz) followed by an abrupt activity drop
can be seen. Overall however, the average MFR during the entirety of the stimulation timepoint
was reduced relative to the baseline, for both the LRRK2 and control neural networks (Fig.5A).
The relative MFR calculated from the baseline measures showed that the LRRK2 neural
networks had a greater percentage drop in MFR during KA stimulation (38%) compared to the
control neural networks (11%) (Fig.5B). At the same time, the LRRK2 neural networks
exhibited a minor relative increase in total network correlation (3%) while the control neural
networks displayed a relative reduction (64%) in total network correlation during the KA
stimulation (Fig.5D). Although the overexcitation as demonstrated in Fig.5C was not observed
in the PBS condition, the MFR and correlation measures from the networks in this condition
also display large variations from the baseline during the stimulation timepoint, indicating that
the simple procedure of creating a flow barrier alters the network activity.

24 hours later however, the neural networks in the PBS condition from both groups follow each
other quite closely with comparable drops in MFRs and increases in total network correlations,
as noted. The neural networks in the KA stimulated condition from both groups also display
very similar, but reduced correlations at this timepoint, with the LRRK2 neural networks
exhibiting a total network correlation of 85% and the control networks 83% relative to their
baselines (Fig.5D). Interestingly, the KA stimulated networks differed widely in their relative
MEFR at this timepoint, where the LRRK2 neural networks exhibited a 57% drop, and the control
neural networks exhibited a drastic 83% drop in MFR, relative to their baselines (Fig.5B). A
representative KA stimulated LRRK2 neural network is used to visualize the overall network
trend with correlation scheme balls from each of the timepoints in Fig.SE-D.
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Fig.5 Electrophysiological measurements of the structured neural networks during baseline, KA
stimulation, and 24 hours post stimulation. A) Bar graph of mean MFR with standard deviations
measured for each group at the three different experimental timepoints (baseline, stimulation, 24hours
post), with each group consisting of measurements from 3 different networks in each condition (PBS
and KA) from both the control and LRRK2 group. The average MFR of the LRRK2 neural networks
are consistently higher at all timepoints compared to the control neural networks, particularly at baseline.
B) The same data as in A) but plotted as a line graph displaying the variation of the measures from the
baseline condition. 24 hours post KA stimulation both the LRRK?2 and control neural networks display
a drop in MFR, however, the difference from the baseline is much larger for the control networks. C)
Network overexcitation induced by the KA stimulation. The graph on the left shows the activity
measured at a single electrode located in the top cell chamber of an LRRK2 neural network during the
KA stimulation, with the red line indicating the threshold set for spike detection. The firing rate (Hz)
profile of a single neuron recorded by the same electrode is plotted on the right (see Suppl.fig.4 for spike
sorting details), where a drastic increase in firing can be observed from 350-500 seconds into the
recording, followed by an abrupt activity drop. D) Line graph of the relative total network correlation
change measured for each group at the three experimental timepoints in relation to the baseline values.
At the 24 hours post KA or PBS addition timepoint, a similar increase in total network correlation change
can be observed for the PBS condition of both the LRRK2 and control neural networks (+44-48%)
relative to the baseline, while the KA stimulated networks display a similar decrease in total network
correlation (-25-27%). E-G) Schemaball correlation maps of a representative LRRK2 neural network
during the baseline, KA stimulation, and 24 hours post, respectively. Colour intensity of the lines
interconnecting each channel indicates the correlation between their activity (from r 0-1), with 0 being
black and 1 being bright yellow.



4. Discussion

Baseline network activity measurements

One of the most striking findings in this report is the major difference in neuritic density
observed at baseline between the neural networks carrying the G2019S LRRK2 mutation and
the control neural networks (Fig.3 and 5, Fig.S2, S3). Several other studies have reported the
involvement of the LRRK2 gene in neurite process morphology (West et al., 2005, Smith et al.,
2005, MacLeod et al., 2006, Smith et al., 2006, Plowey et al., 2008, Dachsel et al., 2010,
Gillardon, 2009, Meixner et al., 2011, Cherra et al., 2013, Habig et al., 2013, Sepulveda et al.,
2013), where the specific G2019S PD-associated LRRK?2 mutation has been found by most to
increase kinase activity, resulting in a progressive reduction in neuritic length and branching
(West et al., 2005, Smith et al., 2006, MacLeod et al., 2006, Plowey et al., 2008, Nguyen et al.,
2011, Chan et al., 2011, Winner et al., 2011, Sanchez-Danes et al., 2012, Cherra et al., 2013,
Reinhardt et al., 2013, Qing et al., 2017, Dagda et al., 2014, Greggio et al., 2006), with one
exception demonstrating non-impaired neuritic morphology (Dachsel et al., 2010).
Furthermore, knockdown and knock-out models resulting in LRRK?2 deficiencies present with
a progressive increase in neuritic length in some studies (MacLeod et al., 2006, Dachsel et al.,
2010, Winner et al., 2011, Habig et al., 2013, Sepulveda et al., 2013), while others find the
opposite (Gillardon, 2009, Meixner et al., 2011).

Interestingly, we provide the first evidence of increased neuritic density in human neurons with
the G2019S mutation. This was demonstrated with immunocytochemistry of the neurites in the
synaptic compartment (Fig.4 and Fig.S2) and was further corroborated through several
approaches using brightfield microscopy, Calcein-AM labelled cells (Fig.S3) and fluorescently
labelled mitochondria (Fig.3,S1), all of which indicated a striking increase in neuritic density
in LRRK?2 neurons relative to the control neural networks. One of the studies mentioned above
found the growth substrate to significantly influence the motility and outgrowth of neurites in
culture (Sepulveda et al., 2013), with “fast-growth” coating substrates like laminin masking the
effect of the mutation, and “slow-growth” substrates like poly-L-lysine enhancing them,
something which might explain some of the variation between studies reported in the literature.
Furthermore, structuring the neural networks with microfluidic chips in itself might enhance or
reduce such traits (Dowell-Mesfin et al., 2004, Micholt et al., 2013). Thus, in our study, the
combination of PLO and laminin as a growth substrate, together with structuring the neural
networks in the microfluidic chip are likely to have influenced the resulting neuritic profile and
may also partially explain some of the difference in relation to other studies. These factors do
not explain the difference between our two groups, however, as the neural networks from both
the LRRK2 and control group were treated in the exact same way, using identical protocols for
coating, surface substrates, microfluidic chip structuring, cell differentiation and maturation,
thus excluding differential culturing and handling as a potential source of variation between
these populations. Furthermore, as the neural networks in the control and LRRK2 are derived
from the same iPSC source, differences stemming from cell-line variability can also be
excluded. Other possible influencing factors could be related to the source material, where most
other studies use neural networks derived from rodents, and in some cases more region-specific
cells related to the neurodegenerative pattern of PD, such as midbrain dopaminergic neurons,
all of which might lead to variation in the results (West et al., 2005, Smith et al., 2006, MacLeod
et al., 2006, Plowey et al., 2008, Nguyen et al., 2011, Chan et al., 2011, Winner et al., 2011,
Sanchez-Danes et al., 2012, Cherra et al., 2013, Reinhardt et al., 2013, Qing et al., 2017, Dagda
et al., 2014). Nevertheless, these apparent differences suggest that there are indeed subtleties in



the mechanism underlying neuritic outgrowth and profile relating to the G2019S mutation that
remain to be established.

As expected from the striking difference observed in neuritic profile between the networks, a
significant difference in the average number of active mitochondria contained within the axonal
tunnels in favor of the LRRK2 neural networks was also found (Fig.3F). Further investigation
of fluorescently labelled mitochondria in fixed samples from each group revealed no significant
difference in mitochondrial content within the cells of control versus LRRK?2 neural networks
(Fig.S1), suggesting that the observed difference in active TMRM labelled mitochondria is due
to the larger volume of neurites being visible, rather than a larger number of active mitochondria
within each neurite. Moreover, no significant difference in mitochondrial size was found at
baseline between the two groups.

A greater volume of neurites should in theory provide greater opportunity for synapses to form
and facilitate more efficient signal transduction, thus enabling greater structural connectivity.
However, the LRRK2 neural networks displayed a lower total network correlation (r=0.085) at
baseline compared to the control neural networks (r=0.12) (a difference which was reproduced
in a second trial). Another fascinating observation is the major difference in baseline average
MFR, where the LRRK2 neural networks consistently displayed about twice the MFR of the
healthy neural networks (Fig.5, Fig.S4). In line with our observations, other recent studies have
found the LRRK2-G2019S mutation to cause an increase in neural activity (Sweet et al., 2015,
Volta et al., 2017, Matikainen-Ankney et al., 2016). Interestingly, one study has implicated
increased neural activity as a pathogenic change preceding dendritic alteration in cortical
neurons carrying this mutation (Plowey et al., 2014). Furthermore, G2019S-related
hyperactivity has been shown (in vivo) to appear at an early point during development, which
is proposed to affect the structure and function of the resulting striatal and other developing
neural circuits, likely contributing to the progression of PD (Benson et al., 2018). Together this
suggests a strong timescale-dependence of both the neural activity- and neuritic profile resulting
from this mutation, where a difference in experimental timeframe might underlie some of the
variation observed between studies of these features.

Taken together, our baseline measures show that the LRRK2 neural networks have an increase
in neurites and in neural activity (MFR), which in turn is less well correlated across electrodes,
relative to what is observed in the control neural networks. The elevated MFR and simultaneous
low correlation represent in vitro neural network traits that are generally more prominent at
very early time points, potentially pointing towards an overall impairment in LRRK2 neural
network development. This notion of impaired development may be supported by another
observation, i.e. that of differential growth cone profile at very early stages of LRRK2 neurons
in culture compared to controls (Fig.S6). This may in turn explain what is observed as aberrant
(and resultingly inefficient) network wiring in the microfluidic chips, where in the LRRK2
networks, large numbers of neurites can be seen crossing perpendicular to the axonal tunnels in
the synaptic compartment (Fig.4EG, Fig.S2, S3). Furthermore, within the synaptic
compartment, LRRK?2 neurites show random outgrowth (Fig.S3J), compared to the directional,
fasciculated outgrowth observed in the control networks (Fig.S3E). Taken together, these
observations strongly suggest impaired axonal growth and guidance in the LRRK2 neurons.
Another study also lends merit to this theory by finding altered neural growth cone morphology
and number after knocking down LRRK2 (Habig et al., 2013). Furthermore, the altered neuritic
profile might affect neurotransmission efficacy, resulting in less efficient signal propagation
within the network, which may partially explain the observed increase in neural activity
(assessed as MFR).



Unveiling different network stress responses through transient overexcitation

The two hit-theory of PD postulates that a combination of both genetic susceptibility and
environmental factors contribute to the onset and development of the disease. Based on this and
the variability in disease progression in patients with LRRK?2 associated PD, it is reasonable to
assume that some phenotypic expression of the mutation may become apparent only following
a significant or stressful challenge (Benson et al., 2018). Contrary to what one might expect,
the neural networks carrying the G2019S LRRK2 mutation did not demonstrate a greater
overall response to the transient overexcitation event compared to control neural networks. In
fact, our one-off, sublethal, overexcitation event resulted in larger responses from the control
neural networks in almost all measures, displaying a greater reduction in active mitochondria
contained within the axonal tunnels immediately after the stimulation, as well as a more marked
relative decrease in MFR, a more prominent alteration in neurite morphology, and greater
synaptic remodeling 24 hours post stimulation, relative to the LRRK2 neural networks.

The highly significant difference found in neurite morphology in the control neural networks
24 hours post KA stimulation (Fig.4A-C) suggests neuritic remodeling in response to the
transient excitatory stimulation event, with a retraction/reduction of boutons observed in the
synaptic chambers in response to the KA overexcitation. At the same time, the number of
synapses (co-occurrence of Piccolo and PSD95) in the control neural networks was unaltered,
but the size of their overlapping area was significantly different, with much larger synaptic
areas measured 24 hours after overexcitation (Fig.4D). This rapid, activity dependent alteration
in spine morphology is likely an expression of a regular mechanism for converting short-term
synaptic activity to long term lasting changes in connectivity and function. In line with our
baseline measurements, the size range of the postsynaptic density is usually within 0.2-0.5um,
and can be localized to both spiny and non-spiny structures. Furthermore, this area contains
both the kainate and AMPA receptors (Sheng, 2001), i.e. glutamatergic receptors targeted by
our stimulation. During synaptic plasticity, the PSD increases in size in response to potentiation
events, and the glutamate receptors contained within can be modulated by neural activity on a
timescale from minutes to weeks (Sheng, 2001). In contrast to the observed neuritic alteration
in the control neural networks, no significant alteration in synaptic number or size was found
in the synaptic compartment of the LRRK2 mutated neural networks 24 hours after
overexcitation, suggesting impaired synaptic plasticity. Some in vivo studies have implicated
LRRK2 in the development, maturation and function of synapses, where the G2019S mutation
has been shown to result in impaired long-term depression (Benson et al., 2018, Sweet et al.,
2015). However, since our study investigates immediate and intermediate reactions (focused
within the first 24 hours) to a single KA stimulation, no conclusions can be drawn about longer-
term processes.

Furthermore, other studies have found increased vulnerability to oxidative stress, higher levels
of mtDNA damage, and impaired mitochondrial movement as a result of the G2019S mutation,
indicating compromised mitochondrial function (Cooper et al., 2012, Sanders et al., 2014,
Hsieh et al., 2016, Schwab et al., 2017, Bose and Beal, 2019). Mitochondrial function
alterations have in turn been shown to affect the plasticity of synapses and morphology of
neurites as the availability of mitochondria is both essential and limiting for the support and
maintenance of these structures (Li et al., 2004). In our study, both the control and the LRRK2
neural networks showed a reduction in the number of active mitochondria contained within the
axon tunnels closest to the stimulated chamber immediately following the KA stimulation,
however, only the change in the control networks was statistically significant. The energy status
of the neuron greatly affects the motility and distribution of mitochondria (Saxton and



Hollenbeck, 2012), and a retraction of the mitochondria towards the soma during or following
an overexcitation event is to be expected as this corresponds to the location of greatest
metabolic demand at the time. Loss of membrane potential in some of the mitochondria could
also explain our results, as the TMRM labelling fades when this potential is disrupted. However,
loss of mitochondrial membrane potential is the second observable step in classic excitotoxicity,
preceded by ROS production, and followed by an opening of the permeability transition pore
and induction of programmed cell death. Although our KA stimulation elicited a ROS response
(as demonstrated in Fig.2), it did not result in any observable difference in cell viability 24
hours later, demonstrating a sublethal overexcitation as intended, effectively excluding classic
excitotoxicity as the initiated process. A retraction of mitochondria towards the seat of greatest
metabolic demand thus seems the most likely scenario. The statistically non-significant
reduction in mitochondria observed in the LRRK2 neural networks following the overexcitation
thus suggests an alteration in mitochondrial transport and/or function as a result of the G2019S
mutation. The LRRK2 protein has been found to localize, among other sites, to mitochondrial
structures where it interacts with a number of key regulators of mitochondrial fission/fusion, as
well as to mitochondrial autophagy and motility (Biskup et al., 2006, Wang et al., 2012,
Rosenbusch and Kortholt, 2016). Several other studies have found prominent signs of
mitochondrial dysfunction relating both to size and distribution as a result of the G2019S
mutation (MacLeod et al., 2006, Mortiboys et al., 2010, Li et al., 2014, Esteves et al., 2014,
Yue et al., 2015, Singh et al., 2019), which strongly implies a role for LRRK2 in mitochondrial
homeostasis. The initiating process leading to these mitochondrial alterations, however, are still
elusive. Some possible factors are reduced mitochondrial biogenesis, impaired cytoskeletal
elements and consequently cytoskeletal trafficking, direct functional and structural damage to
the mitochondria by LRRK?2 localized to the organelle, or impairment in the autophagic-
lysosomal machinery resulting in accumulating damaged mitochondria (Yue et al., 2015,
Tagliaferro and Burke, 2016, Franco-Iborra et al., 2018, Verma et al., 2018, Verma et al., 2017,
Singh et al., 2019).

Intriguingly, 24 hours after the overexcitation, both the LRRK?2 and the control neural networks
displayed very well aligned decreases in relative total network correlations. This decrease
becomes even more apparent when compared to the neural networks in the PBS condition from
both groups, which drastically increased their correlations relative to the baseline at this point.
This increase in PBS condition network correlations suggests that the neural networks were still
maturing at the point of intervention, and that their natural trajectory was one towards greater
correlation. The observed decrease in total network correlations is perhaps to be expected
following such a stimulation as the overexcitation indiscriminately excites related connections
that are both functional and non-functional, as well as produces both long-term potentiation and
long-term depression of synapses based on coincidental activity at each connection. However,
it is worth reiterating that these results were obtained after the neural networks were subjected
to a single overexcitation event, while prolonged and/or repeated overexcitations would likely
produce different results. The latter approach was beyond the scope of our current study.
Nonetheless, both the LRRK2 and control neural networks also displayed a great drop in
average MFR 24 hours after the overexcitation, where the relative drop was far greater for the
control neural networks. Although much less prominent, the neural networks in the PBS
condition also exhibited a drop in average MFR at this point, demonstrating that a media change
alone may have created a fluctuation of this measure within our chosen timeframe. Still, the
difference in relative MFR in the KA stimulated condition demonstrates yet another impaired
response in the LRRK2 neural networks comparted to the control neural networks.



In summary, in this study we provide the first evidence of increased neuritic density in
structured, human neural networks carrying the G2019S LRRK2 mutation compared to control
neural networks. At the same time, other network traits reported in the literature to result from
this mutation are corroborated by our study, with the LRRK2 mutated neural networks
displaying an increase in baseline neural activity (MFR) compared to the healthy control neural
networks. Furthermore, eliciting a transient, confined, overexcitation through KA stimulation
revealed different responses between the LRRK2 and control neural networks, both
immediately after stimulation and 24 hours later. The control neural networks demonstrated a
greater reduction in active mitochondria within the neurites immediately after the stimulation,
as well a greater reduction in relative network activity (MFR), greater neuritic remodelling, and
synaptic alterations, 24 hours later, compared to the LRRK?2 neural networks.

It is thus clear that early signs of pathology relating to the G2019S LRRK2 mutation are
captured within our chosen timeframe and reflected through both micro- and mesoscale
investigations. Through a combination of neuroengineering, microfluidics, electrophysiology
and fluorescence imaging strategies, we were able to selectively induce perturbations within
interconnected network nodes and unveil these distinctions in a highly reproducible manner.
Furthermore, as our neural networks were engineered from human cells with a homozygous
Crispr-Cas9 inserted G2019S mutation, containing no artificially inserted gene or forced high
or low levels of LRRK?2, our in vitro setup builds on conditions genetically and physiologically
more relevant to PD than networks engineered from model animal organisms. Moreover, as
individuals homozygously carrying the G2019S mutation do not have more aggressive
phenotypes compared to heterozygous carriers, there does not seem to be a dose-dependent
increase in severity, and the results between studies of these two variants should be largely
comparable (Ishihara et al., 2006, Lewis, 2019). Expanding the current platform to investigate
these traits in even more detail and at greater length thus seems a logical next step. Several
other mechanisms, which were out of the scope of this study, are of interest and might be
involved in G2019S LRRK2 pathology, such as mitochondrial motility (Saxton and
Hollenbeck, 2012, Singh et al., 2019), calcium overload and excitatory mitochondrial
excitotoxicity (Verma et al., 2018, Verma et al., 2017), impaired synaptic endocytosis (Matta
et al.,, 2012, Verstreken, 2017), alterations in the autophagosomal-lysosomal machinery
(Sheehan and Yue, 2018, Verma et al., 2018, Pan et al., 2018, Singh et al., 2019), compromised
AMPA receptor trafficking (Sweet et al., 2015), differential PKA regulation or altered Rab
activity (Benson et al., 2018). Furthermore, as some of the investigated responses might also
rely on cell-type specific mechanisms (Sweet et al., 2015, Pan et al., 2017, Benson et al., 2018),
conducting a similar study with selectively vulnerable dopaminergic neurons or medium spiny
neurons of the striatum might bring us even closer to understanding and unveiling pathological
mechanisms of PD.
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CamKII calmodulin-dependent protein kinase 11
iPSC induced pluripotent stem cell

KA kainic acid

LRRK2 leucine-rich repeat kinase 2
MEA microelectrode array

MFR mean firing rate

NGS normal goat serum

NSC neural stem cell

PBS phosphate buffered saline

PCA principal component analysis

PD Parkinson’s disease
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PFA paraformaldehyde

PLO poly-L-ornithine

PSD post-synaptic density
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Fig.6 Experiment layout. A) Microfluidic chip design, with (1) indicating the top cell chamber/node,
(2) the inlet/outlet connected via the synaptic compartment, and (3) the axonal/dendritic tunnels.
Directionality of the inter-nodal connectivity is imposed on the network through different tunnel lengths,
where mainly the axons from the top and bottom cell chambers connect to the dendrites and axons from
the middle cell chamber in the two synaptic compartments. B) Outline of microfluidic chip interfaced
with the custom made multielectrode array for electrophysiological investigation. C) Electrode layout
in the area connecting the bottom and middle cell chamber through axonal/dendritic tunnels and the
synaptic compartment. D) Timeline of the experiment, indicating the time points and assays used to
assess the LRRK?2 and control neural networks.
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Supplementary figures
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Fig.S1. Supplementary investigation of mitochondria A) shows a LRRK2 neural network
labelled with fluorescent mitochondria (red (ab3298)), total-alpha synuclein (green) and
hoechst conterstain (blue). B) shows an equivalent image of a fluorescently labelled control
neural network (100X objective). C) shows a bar graph of the ratio calculation of mitochondria
contained within samples from both the LRRK?2 and Control neural networks at baseline, with
example images used for the calculation displayed in panel A) and B). No statistically
significant difference was found between the groups in mitochondrial content (ratio = area of
fluorescently labelled mitochondria/ area of fluorescently labelled alpha-synuclein) (p=0.4293)
by an unpaired t-test. Each dot represents a different sample (100X image) investigated, where
Nrrri2=8, and Ncontrol=10.

Fig.S2 Difference in neuritic density. A and B) Example images from the control neural
networks fluorescently labelled with the presynaptic marker Piccolo (green), the post synaptic
marker PSD95 (red) and the f-actin filament marker Phalloidin (blue) (30um scale bar). C and
D) Equivalent example images from the LRRK?2 neural networks. Ci and Di) show the 10um
thick z-stacks compiled into C and D, respectively. E and F show an LRRK2 neural network
labelled with phalloidin, where a z-stack has been taken to capture the entire volume of neurites
contained within this section of the synaptic compartment, where F shows the volumetric
sideview illustrating a neuritic bundle thickness of 44pum.



Fig.S3 Difference in neural network morphology visible at all levels. A-E) Example images
from different control neural networks during each assay, while F-J) Equivalent images from
the LRRK2 neural networks. There is a striking difference in the neurite outgrowth profile
within the synaptic compartments, with clear fasciculation observed in E) control networks as
opposed to J) aberrant growth in LRKK?2 ones. All images have a 30um scale bar, apart from
E and J, which have a 20mp scale bar.
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Fig.S4 Reproducibility of network activity traits and functional connectivity through
structuring using a multi-nodal microfluidic chip. Mean firing rate (MFR) bar graphs
organized by the different microfluidic chip areas, of both the (A) LRRK2 and (D) healthy
neural network control groups clearly demonstrate that the activity of the structured neural
networks is reproducibly influenced by the microfluidic chip physical structuring. Furthermore,
the same trend is visible at the baseline timepoint of both the (B) LRRK2 and (E) healthy neural
networks receiving KA. Although the MFR of the LRRK?2 neural networks is far greater than
the MFR of the healthy neural networks (relative x-axis), they follow the same trend, with much
greater network activity measured at the top and bottom cell chambers than in the middle cell
chamber. This is also visible from the correlation scheme balls presented in C and F of a
baseline measurement from the LRRK2 and healthy neural networks, respectively, where
greater correlations are found between the activity measured within each chamber than
between, and stronger correlation found in the top and bottom cell chamber than in the middle.
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Fig.SS5 Electrophysiological activity in LRRK2 neural network during KA stimulation. A)
shows the correlation map of the activity measured during KA stimulation of the LRRK?2 neural
network shown in Fig.6E-G. B) shows the three distinct spike clusters measured at a randomly
chosen electrode (number 63) of this network during the stimulation period. C and D)
respectively show the trailing positive and negative phase amplitudes of the spikes from the
neuron represented in red in B over time. The firing rate of this neuron can be seen to increase
drastically 300-500 s into the recording session (see also Fig.6C), firing at the maximal rate
allowed by the refractory period. This period coincides with both the negative and positive
amplitudes of its signal becoming progressively reduced, followed by an abrupt silencing. This
electrode is located in the top, stimulated cell chamber. Interestingly, from the MFR map in A
it is clear that it is the only electrode that is negatively correlated (mean r = -0.2) with the
activity of some other electrodes located in the same chamber, as well as some electrodes in the
bottom cell chamber, indicating that the neuron whose spikes are plotted in red in B exerts an
inhibitory effect.

networks versus controls. A,B) show LRRK?2 neural networks labelled with the fluorescent
Calcein-AM, where massive bundles of neurites can be seen exiting at both ends of the synaptic
compartments (the inlet and outlet), where there are no cells to connect up with. These bundles



are perpendicular to the axon tunnels interconnecting the cell chambers. C,D) shows brightfield
images of LRRK2 NSCs, and E,F) of control neural networks after 1 day of differentiation,
demonstrating differences in neurite outgrowth and growth cone profile, i.e. qualitatively more
growth cones and branching neurites present in the LRRK2 neurons compared to controls.

Supplementary information on cell lines and culturing (Materials and Methods)

iPSC-derived HON neural stem cells (ax0019) (control) and iPSC-derived HON neural stem
cells homozygous inserted with the LRRK2 G2019S (ax0310) purchased form Axol Bioscience
were used for the experiments. Both lines are derived from the same donor dermal fibroblasts
(female, 64 yr). General gene expression profiles from Axol’s iPSC-derived NSCs is published
in Gene expression omnibus (GEO) of the National Center for Biotechnology information

(NCB]I) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61358 ).

Furthermore, gene editing and genotyped example data, as well as the CRISPR plasmid donor
scheme for the LRRK2 line (ax0310) is shown below with the permission of Axol Bioscience.
Certificates of analysis (COAs) for each cell line is provided in supplementary materials 3. For
further information on these cell lines, contact Axol Bioscience.

Project # Clones # KI/KI #KI/+ #KI/- other
‘ LARRK2 31 2 6 4 16

> 1 (KI/KI) and 2 (KI/+) clones fully genotyped; example data below:

Clone NHDF7 hiPSC LRKK2 (+/+) NHDF7 hiPSC LRRK2 (G20195/G2019S) NHDF7 hiPSC LRRK2(G2019S/+)

LRKK2
locus- AV WAV A WA MW AN\ A WAL A
spe:lﬁc TACGGCATTGCTCAGTACTGCTGTAGAATGGGGATA TACAGCATTGCTCAGTACTGCTGTAGAATGGGAATA

TACGGCATTGCTCAG TACT GCT GTAG AAT GGGAATA

Targeted

A
allele |

No PCR amplification

Y WY W N YW v Wy NV VWY\AA N\ VY
TACAGCATTGCTCAGTACTGCTGTAGAAT GGGAATA TACAGCATTGCTCAGTACTGCTGTAGAATGGGAATA.

Non- e
targeted | |
allele -

A A A A

VY / YW I\ v YAV Y WAV VA WA A WAL AW W \\ M
TACG GCATTGCTCAG TACTGC TG TAG ARTGGGG ATA TACAG CATTGCTCAGTACTGCTGTAGAATGGGAATA  TACGGCATTGCTCAGTACTGCTGTAGAATGGGGATA

NA bind ite,
Wild-type locus GCTGACTACGECATTGCTCAGTACTGCTGTAGAATGGGGATARARR Jait PInding sice

Targeted locus GCTGACTACAGCATTGCTCAGTACTGCTGTAGAATGGGAATAAAAA silent mutations
G20198



LRRK2 G2019S
» CRISPR + plasmid donor

Wild type locus

CRISPR nuclease i

G2019 i Cas9 + gRNA1039

G20195 + silent mutation

disruption (gRNA1039)

plus plasmid donor
Left homology arm

Targeted Locus

LoxP Selection Marker LoxP Right homology arm
Nuclease stimulated

homologous recombination G2019S + silent mutation

Transcript to be targeted: ENST00000298910
Strategy: CRISPR plus plasmid donor
Description: Heterozygous Kl of G20195

Cell Line: iPSC

Donor: pAAV1120

BRNA: gRNA1039

GCTGACTACGECATTGCT CAGTACT!
~A--D--Y--G~-I--A--Q--Y-~C-~C--R--M--G-~I-—K--T--S--E-

Wild-type locus

Targeted locus

GCTGTAGAA]

GCTGACTACAGCATTGCTCAGTACTGCTGTAGAATGGC
-A

—)

gRNA1039 binds to green site in sequence. Blue indicates the PAM site
which is also required for cutting activity. The plasmid donor contains a
selection cassette and the LRRK2 G2019S (GGC>AGC) mutation. In
addition, the plasmid donor contains a silent mutation (highlighted in red)
which will disrupt the blue region and prevent re-cutting of the donor once
itis integrated.

GGGATAARAACATCAGAG
gRNA1039 binding site

PAM site

SAAT CATCAGAG silent mutation

--D--Y--§--I--A--Q--Y--C--C--R--M--G--I--K--T--8§--E-

Exression of LRRK2 rotei (green) in neurons derived from axolGEM Neural Stem Cells

LRRK2 G2019S HOM. DAPI (blue) stains cell nuclei. The neural stem cells were differentiated
to neurons over a two week period prior to fixation and staining for marker expression.
(Provided with permission from Axol Bioscience webpage)

Protocol for culture of HIN NSCs (ax0019 and ax0310), adapted from Axol Bioscience’s
protocol (Human iPSC-derived Neural Stem Cell master protocol (version 5.0)

System A



List of media and supplements

Neural Expansion -XF Medium (ax0030-500)

Neural Maintenance - XF Medium (ax0032-500)

Neual Differentiation — XF Medium (ax0034-125)

Sure Growth recombinant human FGF2 (ax0047)

Sure Growth X recombinant human EGF (ax0047X)

0.01% Poly-L-Ornithine solution (PLO) (Sigma, P4967)

Natural Mouse Laminin (Thermo Fisher Scientific, 23017015)

L15 Lebovitz medium (Sigma, L5521)

KnockOut serum replacement (KOSR, Thermo Fisher Scientific, 10828010)

L15/laminin coating solution
3ml L15 Medium

48ul Natural mouse laminin (1mg/ml)
75ul Sodium Bicarbonate

Day before seeding:

Coat one well of a 6-well plate with PLO for 2 hours in incubator, wash with sterile MQ water,
and leave overnight with L15-laminin in fridge.

Thaw an aliquot of Expansion medium (from -80 freezer) overnight in fridge

(Protect from light, can be kept for 1 week if supplemented (EGF, FGF2), 2 weeks if not)

Day of seed:
Prepare Neural Expansion medium with supplements (for spinning and seeding).

10ml Neural Expansion medium

2ul FGF2 (20ng/ml) (stock is 100ug/ml)

2ul EGF (20ng/ml)

10ul Rock Inhibitor (only when thawing/ splitting)
100ul Pen-Strep

Aspirate coating and add Neural Expansion medium to the well (ca 1,5ml) and return to
incubator until seeding.

Thaw vial of cells in water bath (no shaking)

Pre-coat pipette with KOSR, (dropwise add cells to tube containing 10ml warm expansion
medium. Spin for 200g x 5 min. Aspirate supernatant, precoat pipette with KOSR, resuspend
cells in 0,5-1ml expansion medium and seed in 6-well.

Expansion:
Every 2 days, replace all the medium with Neural Expansion medium (supplemented with FGF

and EGF). When the culture is 70-80% confluent, they are ready to undergo passage. This
usually takes a long time (> one week). Do not expand more than 3 passages.

1/2 split. Coat 2 6-well wells.
Thaw a vial of Axols “Unlock” (aliquoted and stored in -80 in a box at the bottom).
Prepare Expansion medium (+ Rock inhibitor).



Aspirate media and rinse surface with DPBS--. Add Unlock (1ml /10cm”2), place in incubator
for 5 min. Use 4x (unlock volume) of Neural expansion medium to stop reaction. Spin for 200g
x Smin. Aspirate and resuspend in supplemented Neural Expansion medium, seed 50% in each
of the 6-wells.

Synchronous Differentiation

When you have expanded long enough and are ready to start differentiating:

Full media change to Neural Expansion medium without supplements. Thaw aliquot of Neural
Differentiation medium overnight in fridge.

24 hours later, conduct a full media change to Neural Differentiation medium (no supplements)
Every three days change 50% of the medium with fresh Neural Differentiation medium. A pure
neuronal population takes anywhere between 3-10 days to achieve (dependent on the
confluency, <60% = 3 days ++, >60% confluency takes up to 10 days, fully confluent may
never become pure).

Maintenance

When fully differentiated, thaw an aliqot of Neural Maintenance medium overnight in fridge.
Replace half of the medium with Neural Maintenance medium. 24 hours later, replace half the
medium with Neural Maintenance.

After this, replace 50% of the medium with Neural Maintenance medium every 3 days.
Might have to add extra laminin if the cells start detaching.
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In vitro electrophysiological investigation of neural activity at a
network level holds tremendous potential for elucidating
underlying features of brain function (and dysfunction).
In standard neural network modelling systems, however,
the fundamental three-dimensional (3D) character of the brain is
a largely disregarded feature. This widely applied
neuroscientific strategy affects several aspects of the structure—
function relationships of the resulting networks, altering
network connectivity and topology, ultimately reducing the
translatability of the results obtained. As these model systems
increase in popularity, it becomes imperative that they capture,
as accurately as possible, fundamental features of neural
networks in the brain, such as small-worldness. In this report,
we combine in vitro neural cell culture with a biologically
compatible scaffolding substrate, surface-grafted polymer
particles (PPs), to develop neural networks with 3D topology.
Furthermore, we investigate their electrophysiological network
activity through the use of 3D multielectrode arrays. The
resulting neural network activity shows emergent behaviour

© 2019 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.



consistent with maturing neural networks capable of performing computations, i.e. activity patterns
suggestive of both information segregation (desynchronized single spikes and local bursts)
and information integration (network spikes). Importantly, we demonstrate that the resulting PP-
structured neural networks show both structural and functional features consistent with small-world
network topology.

1. Introduction

Combining in vitro neural network models with tools for electrophysiological investigation is an
established (modelling) approach for exploring the emerging activity and function of neural networks.
Recent advances in morphogenetic neuroengineering have led to a surge of scientific interest aimed at
using these already established tools in novel ways. The well-established, standard neural network
modelling approach has been to create monolayer neural networks from dissociated neural tissue or
from neural stem cells, and to measure the emerging network activity using microelectrode arrays
(MEAs). Some fundamental traits of brain networks, such as self-organization and spontaneous
network formation and activity, are recapitulated by these models, making them attractive reductionist
paradigms for neuroscientific research. Some evidence, however, points towards a prominent activity
feature emerging in these in vitro neural networks that is largely incompatible with the activity of the
brain, namely highly synchronized activity [1-3]. This discrepancy limits the relatability and thus the
potential information that can be gained from this otherwise valuable approach. Knowledge gained in
the field of connectomics, however, suggests that this limitation can be overcome. A highly
interdependent nature of structure and function in the neural networks of the brain has been
uncovered [4-6], which implies that a more realistic topology may need to be recapitulated in our
standard modelling systems if they are to produce networks with activity and function traits more
relatable to those seen in the brain.

The pattern of physical interconnections and the activity of a neural network are critically
interdependent, where the strength and directness of the physical interconnections between neuronal
ensembles have been shown to determine and constrain their functional interactions [4,5]. Several
attempts at structuring in vitro neural networks have therefore been reported [7], as standard monolayer
culture mainly allows connections to form in one plane (X,Y), disregarding the third (Z) dimension
which greatly influences the structure of biological neural networks. A few of these studies have also
compared the electrophysiological network activity of monolayer neural networks and neural networks
structured in three dimensions (3D) using standard two-dimensional (2D) MEAs, where the results
indicate an effect on global network synchrony and random spiking due to the structuring [1,8]. Further
supporting this strategy is the small-world topology of the brain, a characteristic feature which
facilitates the simultaneous capacity of information integration and segregation, the two emerging
network phenomena recognized as the basis of behaviour [2,5,9,10]. Computational functions which are
spatially and temporally segregated into functional modules in the brain are dynamically engaged and
disengaged through transient phase or frequency locking, i.e. oscillations/ synchronization, and thus
integrated into transitory coordinated global functions [2]. Furthermore, the small-world topology,
characterized through its simultaneous high clustering and characteristic short path lengths [5,11], has
been shown to facilitate the spread of disease to a greater extent than other network architectures [12—
15]. This might relate to the development of neurodegenerative disorders such as Alzheimer’s and
Parkinson’s disease, or dementia with Lewy body pathology, which have all been hypothesized to
progress through the propagation of pathological protein aggregates through interconnected brain areas
[16,17]. Thus, basic features of the human brain connectome, such as small-worldness and internodal
connectedness, influence both network function and dysfunction, highlighting the fundamental
importance of capturing these features in our modelling systems.

In this report, we show that we can capture some of the complexity of neural networks in the brain
through interfacing in vitro neural cell cultures with surface-grafted, non-conducting, polymer particles
(PPs) to create neural networks with 3D topology. Previously, these PPs have been successfully
employed as microenvironments for creating 3D bone marrow culture systems, which have been used
for both haematopoietic stem cell studies [18-20] and chemosensitivity studies [21]. In the present
study, we report the structuring of neural networks using PPs combined with 3D MEAs for
electrophysiological network measurements and show how the resulting structural and functional
network traits relate to a small-world network topology.
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2. Material and methods

2.1. Fabrication of polymer particles with surface-grafted chains

Poly(vinyl pyrrolidone) K90 (PVP) of average molecular weight approximately 360000 g mol™,
pentaerythritol triacrylate (PETA), methacrylic acid (MA) glycidyl methacrylate (GMA) and toluene
were purchased from Sigma Aldrich. Methyl methacrylate (MMA) was purchased from Fluka. 2,2’-
Azobis(isobutyronitrile) (AIBN) was obtained from Akzo Nobel. 2,2’-azobis[N-(2-propenyl)-2-
methylpropionamide] (APMPA) was obtained from Wako Pure Chemical Co. (Osaka, Japan). All
reagents were used without further purification.

2.1.1. Synthesis of PPs

PPs with surface-grafted epoxy-containing polymer chains were synthesized via suspension
polymerization using a protocol adapted from Yasuda et al. [20]. Briefly, 56 ml of an aqueous 2% PVP
solution was added to a 100 ml temperature-controlled glass reactor with an impeller, and stirred (500
r.p.m.) at 25°C. In a separate vessel, 0.2 g of AIBN, 0.3 g of APMPA, 3.8 g of MMA and 3.8 g of PETA
were mixed and the resulting monomer mixture was added dropwise to the reactor under stirring
(500 r.p.m.). Polymerization was done in the reactor first at 70°C for 3 h and then at 80°C for 2 h
under stirring (350 r.p.m.). Following synthesis, the particles were washed three times in DI water and
dried using azeotropic distillation prior to further functionalization. Particle size distribution was
analysed via optical microscopy and laser diffraction, and ranged from 100 to 1000 pm, with a volume
average around 300 pm. The stability of the resulting surface-grafted PPs in cell culture medium
(RPMI 1640 with 10% FBS, 1% 1-Glut and 1% PenStrep (1:1 penicillin/streptomycin)) was
subsequently investigated, revealing a 54% reduction in volume average diameter after 24 days.

2.1.2. Functionalization of PPs

Surface grafting of epoxy-containing copolymer chains was done using a protocol adapted from Yasuda
et al. [20]. In a typical procedure, 5 g of PPs, 12.5 g of GMA and 3.1 g of MA were added to a three-neck
flask together with 125 g of toluene. The grafting reaction was carried out for 8 h at 105°C under stirring
(100 r.p.m.), and the reaction mixture was subsequently gradually cooled down to room temperature.
After filtration, the particles were washed three times with ethanol and three times with water and
stored in ethanol at 4°C until use in cell cultures.

2.2. Establishment of 3D neural networks on PPs

Rat fetal neural stem cells (NSCs) (Gibco) were seeded onto CellStart® (Gibco) coated vessels and
maintained in Complete Stem Pro® NSC SFM media (Gibco) supplemented with 1% penicillin-
streptomycin. For seeding together with the PPs, the media were further supplemented with 1% BSA,
0.1% ROCK inhibitor, and 0.5 pg ml™! fibronectin.

The PPs were transferred with a spatula to 1.5 ml Eppendorf tubes (about 200 ul of dry PPs in each
tube), where they were washed three times in PBS, and three times in PBS containing 10% FBS. The
supernatant was then removed, and an equivalent amount of cell suspension (200 pl containing 2 x 10
NSCs) was added to each tube and mixed gently. The mixture was then transferred to the relevant
culture vessel and incubated in 37°C for 1 h before more media were added to the NSC cultures with
PPs. Differentiation towards neural lineage was initiated 2 days post-seeding through the use of a
differentiation medium consisting of Neurobasal supplemented with 2% B27, 1% GlutaMAX and 1%
penicillin-streptomy-cin.

2.2.1. Microelectrode array preparation

Sixty-electrode 3D MEAs (60-3DMEA200/12/50iR-Ti; Multichannel Systems) with ring covers were used
as culture vessels for cell seeding and for recording spontaneous electrophysiological activity of the
developing neural networks on the PPs. Recordings were obtained through the MEA2100 in vitro
system and suite software (Multi Channel Systems; Reutlingen, Germany). In addition, seeding rings
(MEA ALA-inserts; Multi Channel Systems; Reutlingen, Germany) were used to reduce movement
and keep the PPs in place over the electrodes throughout the experimental period.
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Before seeding, the 3D MEAs were washed with 65% ethanol, incubated in sterile water and UV- n
treated. To make the culture surface hydrophilic, the MEAs were subsequently treated with fetal
bovine serum (FBS) for 60 min.

Prior to seeding on 3D MEAs, the NSCs were labelled with a carbocyanine lipophilic tracer, DilC18 (5)
DiD (L7781, Invitrogen) (excitation 644 nm). A 5l cell-labelling solution was mixed into 1ml cell
suspension containing 1 x 10° rat NSCs by gentle pipetting. The resulting solution was then incubated
for 20 min at 37°C, washed and centrifuged three times at 200g for 3 min. The cells were then mixed
with the PPs as described above and transferred into the seeding ring on the 3D MEAs using a spatula.
An additional 100 pl of cell suspension was added once the mixture was in place within the seeding
ring. The resulting NSC cultures with PPs on 3D MEAs were then incubated at 37°C for 1 h for the cells
to adhere, before another 350 pl of media were added. The NSC were differentiated and the derived 3D
neural networks on the PPs were maintained on the 3D MEAs for three to four weeks post-seeding,
throughout which fluorescence microscopy and electrophysiological recordings were obtained.

sosy/Jeuinol/Buo'BuiysgndiGanosiefor

2.2.2. Immunocytochemistry of neural networks on PPs

For fixation, 2% paraformaldehyde (PFA) was added to the 3D neural networks on the PPs for 10 min,
followed by 4% PFA for 10 min and two 15 min washes in PBS. This was followed by a 1 h incubation in
blocking solution consisting of PBS with 5% normal goat serum and 0.3% Triton-X, and an overnight
incubation in primary antibody solution (PBS containing 1% normal goat serum, 0.1% Triton-X) at 4°C.
The following primary antibodies from Abcam were used: rabbit anti-CaMK2 (1:400), rabbit anti-
Synaptophysin (1:250), rabbit anti-GFAP antibody (1:1000), mouse anti-CNPase antibody (1 :500),
mouse anti-PSD95 (1 :300), mouse anti-B 3 tubulin (1:1000) and chicken anti-MAP2 antibody (1 : 1000),
chicken anti-neurofilament heavy (1:500) and chicken anti-GFAP antibody (1 : 1000). The neural networks
on the PPs were then washed twice for 15 min in PBS and incubated in secondary antibody solution (PBS
containing 1% normal goat serum, 0.1% Triton-X) in the dark, at room temperature, with the following
secondary Alexa Fluor™ 568, 488 and 647 antibodies (Thermo Fisher, MA, USA) at a dilution of 1:1000.
Hoechst (1:10000) was added for the final 5 min before another two 15 min wash in PBS was conducted.
Images were taken using a Zeiss Axiovert 1A fluorescent microscope (Carl Zeiss, Germany) and Zen 2.3
Lite, Blue Ed. Software. ImageJ] and PowerPoint were used to post-process the images.
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2.2.3. Investigation of structural topology by scanning electron microscopy of neural networks on PPs

Samples of the 3D neural networks on the PPs were washed twice in PBS before being fixed in a solution of
2.5% glutaraldehyde with 2% PFA in 0.1 M Hepes buffer for 3 h at room temperature, followed by overnight
fixation in 4°C. The samples were then washed twice for 5 min in Hepes bulffer, subsequently dehydrated in
5 min steps using increasing ethanol concentrations (20-50-70-90-100-100% ethanol), and dried in 10 min
steps using hecamethyldisiloxane (HMDS) (50% and 2x 100%) before being air-dried in a desiccator. The
samples were subsequently mounted on aluminium pins with double-sided carbon tape and sputter
coated (Polaron) with Gold/Palladium (30 nm thickness). The samples were then examined using a
scanning electron microscope (SEM) (Teneo SEM, Thermo Fisher Scientific) at 10-15kV with an ETD
detector.

2.2.4. MEA recordings and data analysis

Recordings were obtained through the MEA2100 in vitro head stage, interface system and suite software
(Multi Channel Systems; Reutlingen, Germany), and are available within the Mendeley data repository
(http://dx.doi.org/10.17632/19gd7g8zcy.4 [22]). Samples of the electrophysiological activity of the 3D
neural networks on the PPs were recorded for durations of approximately 90 consecutive seconds
throughout the experimental period, with a sampling rate of 10 kHz, where a waveform amplitude
exceeding a threshold of +5 s.d. from the mean was registered as a spike. An in-house developed MEA
data analysis Toolbox (available for download at https://github.com/helgeanl/MEA _toolbox) was used
to visualize the waveforms of each spike, and activity raster plots were produced based on the
timestamp of each spike. After the final electrophysiological recording, the media were replaced with
PBS, and the 3D neural networks were left to dry on the 3D MEAs at room temperature, followed by an
overnight UV-treatment to terminate the cells. Recordings were subsequently obtained from these 3D
MEAs as a control to test whether the PPs themselves produced any electrophysiological artefacts. In
addition, impedance measurements were made to test whether any damage had been done to the electrodes.



Figure 1. Confocal images demonstrating the emergence of 3D neural networks on the surface-grafted PPs 4 days after seeding,
with different z-planes showing the fluorescently labelled cells (red) attached at different levels/heights of the same PPs (brightfield)
(10X). (a) The bottommost focus level with fluorescently labelled cells attached to the well plate as well as the bottom of the PPs.
(b) The fluorescently labelled cells about 100 pm further up in the z-plane, and (c) 200 um further above that.

100 pm

100 pm

100 pm

Figure 2. ICC of neural networks on surface-grafted PPs. Following one month of differentiation and maintenance of the neural
networks on the PPs, ICC confirmed the presence of mature cells attached to the surface of the PPs. The images show neural
networks expressing fluorescently labelled markers for (a) calcium/calmodulin protein-dependent kinase-IT (CAMK2) (green),
post-synaptic densities-95 (PSD95) (red) and nuclear marker Hoechst (blue), (b) for synaptophysin (red), GFAP (astrocytic
marker) (green) and Hoechst (blue), (c) for PSD95 (red), CAMK2 (green), neurofilament heavy (grey) and Hoechst (blue) and
(d) for synaptophysin (red), GFAP (green) and Hoechst (blue). Scale bar, 100 pm.

3. Results

3.1. Neural network culture

Rat NSCs were successfully seeded and maintained among the PPs. The resulting neural networks could be
imaged with fluorescence microscopy, showing cells labelled with a lipophilic tracer growing underneath,
around and on top of the PPs as early as 4 days post-seeding (figure 1). Although we contend with some
loss of cells with each media change, we were able to maintain the neural cell cultures on the PPs for over
one month. After this point, the cultures were fixed and immunolabelled with neural lineage markers. The
immunocytochemistry (ICC) confirmed the presence of neurons (MAP2"), as well as astrocytes (GFAPY)
and oligodendrocytes (CNPase") attached to the surface of the PPs after one month in culture (electronic
supplementary material, figure S1). Furthermore, the neural networks were positively immunolabelled with
markers for mature axons (neurofilament heavy polypeptide) as well as synaptic vesicles (synaptophysin),
post-synaptic elements (PSD95), calcium/calmodulin protein-dependent kinase-II (CAMK2), which is
involved in neurotransmitter secretion, synaptic connectivity and long-term potentiation, and GFAP (figure 2).

Based on standard morphological characteristics as well as careful comparison with the demonstrated
ICC results, topographical SEM investigation confirmed that the PPs did indeed support the
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Figure 3. Prominent 3D neural network formation on surface-grafted PPs. Topography investigation by SEM confirmed the presence
of extended neural networks with 3D topology on the surface of, and connecting between, the PPs three weeks post-seeding.
(a) SEM image displaying the PPs alone (200 um scale bar) and (b) after establishment of 3D neural networks (200 pm scale
bar). (c) Higher magnification image of the intricate 3D neural network connections spanning the gap between two PPs
(100 pm scale bar). Neuronal cell bodies (red arrowhead) with axonal projections can be distinguished within the network, as
well as glial cell bodies (black arrowhead) with thin membranous extensions covering the particle surface. (d) Image revealing
clusters of neurons (red arrowhead) connected through suspended axonal bundles on different PPs. Glial cell bodies (black
arrowheads) can be distinguished regularly tiling most of the particle surface (200 um scale bar). (e) Detailed image displaying
another neuronal cell body (red arrowhead) with thin neurites and a thicker axonal projection, as well as another glial cell
(black arrowhead) covering the surface with a thin membranous sheath (20 um scale bar).

establishment of prominent 3D neural networks (figure 3). These networks covered the surface of the PPs
as well as interlaced among them. Furthermore, glial cell bodies were observed regularly tiling the
surface and wrapping most of the PPs with thin membranous extensions, while neuronal clusters
connected through axonal projections could be observed on top. Importantly, several suspended axon
bundles interconnecting neuronal clusters on different PPs could be observed, providing structural
‘short-cut’ connections between neuronal clusters located at different levels in the network (figure 34).

3.2. Electrophysiological measurements of the developing 3D neural networks on the
PPs using 3D MEAs

Three-dimensional neural networks on the PPs were successfully developed and maintained on 3D MEAs
for a period of three to four weeks. A lipophilic tracer used to label the rat NSCs prior to seeding and
differentiation on the 3D MEAs made it possible to visualize some of the cells among the PPs during
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Figure 4. Three-dimensional MEA set-up for electrophysiological recording of the developing 3D neural networks on surface-grafted PPs. (a)
Image of a 3D MEA. The cell culture chamber is highlighted in red. The recording area containing the electrodes are boxed in and displayed
magnified in (b), where the red arrowheads indicate two of the 60 recording electrodes (200 pm scale bar). (c) Sideview of the same 3D MEA,
with a ring cover protecting the 3D neural networks on the PPs from contamination during recordings. (d) Cartoon illustrating the PP structured
neural networks together with the 3D electrodes on the MEA. (e) Image displaying developing neural networks labelled with a fluorescent
lipophilic tracer on the PPs 2 days after seeding on the 3D MEAs. The red arrowhead indicates neurites connecting cell clusters (100 pm scale
bar). (f) Image displaying the fluorescently labelled developing neural networks 3 days after seeding on the 3D MEAs. The red arrowhead
indicates weakly labelled neurites extending from a cell cluster centred around a single 3D recording electrode (100 pm scale bar).
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Figure 5. Three-dimensional developing neural network activity on surface-grafted PPs as measured from 3D MEAs. (a—c) Activity
maps (raster plots) from a 3D neural network on an MEA (n = 4) at one, two and three weeks post-seeding, respectively. Each spike
recorded during a 90 s sampling period is indicated for each of the 60 electrodes (numbered on the y-axis). Network spikes, events
in which a spike or several spikes are detected at most of the active electrodes in the network at the same time, are highlighted in
red. (d—f) The spike shape of each recorded spike at electrode 53 for each of the three timepoints (x-axis = ms, y-axis = uV).

the initial culture period (figure 4). Electrophysiological recordings performed throughout a period of three
to four weeks demonstrated the emergence of electrically active, developing 3D neural networks on the PPs
as shown by the activity raster plots of a representative neural network in figure 5a—c. The recordings
performed during the first week showed sporadic, largely unsynchronized spontaneous action potentials
scattered among the electrodes. Sample recordings performed during the second week of development
demonstrated the presence of maturing networks, as patterns of more regular spiking and bursting

980161 19 s tado 205y sosy/jeumolbioBusindiiaostefor [



behaviour emerged. Indeed, even some network spikes (synchronization), i.e. single or multiple spikes [ 8 |
detectable by most of the active electrodes in the culture within the same time period, were observed.
During the third, final week of recordings, transient, regular, local bursting behaviour as well network
spikes interspaced with longer periods of unsynchronized, scattered action potentials typified the
electrical activity of the 3D neural networks on the PPs (11 =4). Furthermore, the shape of each recorded
spike at one of the most active electrodes (electrode 53) is displayed for each of the three timepoints
(figure 54—f). By contrast, as a control measure, no electrical activity exceeding the threshold for noise
was observed with the PPs alone, and no indication of damage to the electrodes could be read from
impedance measurements or visual inspection.

4. Discussion

Several studies employing various scaffolds for 3D neural tissue culture have attempted to capture the
basic structural dimensionality of neural networks in the brain [7]. However, very few of these studies
provide electrophysiological measurements of the resulting network activity, and those that do use
standard planar (2D) MEAs for this purpose [1,8]. Since the 3D MEA electrodes used in this study
can measure electrical activity up to 50 pm away from a cell body along the entire surface area of the
electrode, they cover a much greater area than the electrodes on conventional 2D MEAs, and are as
such better suited to obtaining electrophysiological activity originating from several levels of the
neural network, rather than mainly from the bottommost layers.

Two novel findings have been described in this report: firstly, we show that the presented PPs can
function as long-term scaffolds for 3D neural network structuring, as they allow the attachment,
survival, differentiation and maturation of neural networks for over one month (figures 2, 3 and 5;
electronic supplementary material, S1). Differentiation and maturation were demonstrated with ICC
through the presence of neurons with mature axons containing synaptic vesicles, post-synaptic densities
and proteins involved in long-term potentiation. Furthermore, suspended neuronal connections
interlacing between the PPs (figure 3c,d), connecting remote neuronal clusters on distant and otherwise
independent surface areas at different levels demonstrated the 3D of the structured neural networks.
These structural ‘short-cuts’” provide a much quicker path between the clusters than what would be
possible if the connections were confined to the surface, as in standard monolayer neural networks, and
provide physical connectivity features consistent with small-world network topology. Secondly, we
demonstrate through electrophysiological measurements that these PP-structured 3D neural networks
are functional, i.e. that they spontaneously develop emergent behaviour consistent with maturing neural
networks capable of performing computations through activity patterns suggestive of information
segregation (desynchronized spikes and local bursts) and information integration (network spikes)
(figure 5). Furthermore, some emergent activity features consistent with a developing small-world
topology were revealed in the final week of electrophysiological recordings, where the 3D neural
networks displayed higher local activity clustering interspaced with a few synchronized network events.

Previously, similar PPs have been used as scaffolds for growing a range of non-neural cell types, such
as fibroblasts, osteoblasts and chondrocytes, as well as for growing co-cultures of MS-5 stromal cells and
HeLa cells, haematopoietic stem cell and leukaemic cells [18-21]. However, these cell types are much
more robust and less sensitive to mechanical stress or fluctuations in environmental parameters such
as temperature and pH compared to cells of a neural lineage. It is therefore an important finding that
the PPs support the development and survival of in vitro neural networks as well.
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In the present study, the gain of dimensionality obtained through structuring the neural networks
added complexity to the network connectomes, particularly in relation to the possible ‘shortest path
length” of the structural connections between distant neural clusters/nodes. This can be readily
observed by studying the physical interconnections preserved in the SEM preparation displayed in
figure 3d, where a suspended axonal bundle spans the gap between two PPs and interconnects the
neuronal clusters found on each of them. This suspension provides the shortest possible path between
the remote neuronal clusters, reducing the topographical distance and processing length between the
connected neuronal clusters/nodes, which is a direct result of the structuring. A similar gain of
‘directness’ in the connectivity between neuronal ensembles located on otherwise independent surface
areas can be observed in figure 3c. This directly observable structural connectivity trait of local neural
clusters interconnected with other distant neural clusters through a few axon bundles is highly
consistent with a small-world network topology [11,14,15]. Furthermore, these features can determine
the possible functional interactions of the neuronal clusters/nodes and the overall efficiency of the 3D



neural networks [23], as the shortest path between interconnected nodes in a network has implications [
for the signal propagation speed, computational power and synchronizability [11].

The electrophysiological activity of an in vitro neural network should reflect basic emergent phenomena
of the brain, namely the simultaneous capacity of information integration and segregation [2,5,9,10]. As can
be seen from the raster plots in figure 5 showing electrophysiological development, the 3D neural networks
which emerge among the PPs during the second and third week post-seeding display simple forms of both
unsynchronized, local bursting behaviour, consistent with segregation, as well as single network spikes/
bursts transiently engaging most of the active nodes in the network, suggestive of integration. However,
these electrophysiological neural network traits are also present in in vitro monolayer neural networks
and represent basic emergent behaviour of neural networks in general [24,25]. Nonetheless, in contrast
with the highly synchronized network activity often observed in in vitro monolayer neural networks,
largely desynchronized and local/clustered network activity was observed during the final weeks of
development recorded of the PP-structured neural networks in this study. Together with the observed
structural connectivity showing distant neuronal clusters connected through ‘short-cut’ suspended
connections, these features of higher activity clustering interspaced with a few synchronized network
events suggest that structuring the neural networks with the PPs facilitates the establishment of small-
world topology, both at a structural and functional level.

This initial study has pointed towards key topological features consistent with small-world topology of the
PP-structured neural networks, which are more in line with the in vivo reality than classical monolayer neural
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networks. Nevertheless, further investigations and optimizations are needed before a conclusion can be made
about the utility of this platform. These particular PPs allow for tuning of the cell-surface interaction via the
length and chemical composition of the surface-grafted chains, as well as the available volume for cell growth
and connectivity, via the particle size and polydispersity, which could be further optimized for neuronal
cultures. Furthermore, the biological relevance of the PPs could be increased by harnessing their capacity
for graded compound release through incorporation of programmable degradability. Combined with other
in vitro platforms, such as microfluidic chips, this could be used to model, for instance, the effect of
neuroprotective compounds/new drugs on network degradation in relation to neurodegenerative diseases
in a more biologically relevant manner than what is possible at the moment.
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5. Conclusion

In vitro models for inferring neural activity at a population/network level hold tremendous potential for
elucidating underlying features of neural network function in healthy and perturbed condition. It is
therefore imperative that the basic characteristics of these widely applied in vitro neural network
models capture fundamental structural and functional features of neural networks in the brain as
accurately as possible. As we have shown, the application of neural interfaces such as the PPs
presented in this report has the potential of recapitulating an important aspect of self-organization
and connectivity, namely the 3D character of biological neural networks. Importantly, we have shown
that the PP structuring increases the possible connectedness between remote, local neuronal clusters
through suspended axon bundles, i.e. ‘structural short-cuts’, this paradigm has the capacity of more
realistically capturing features of the small-world architecture of the brain, an attribute which can be
pivotal for elucidating structure-function mechanisms translatable to the actual functional (or
dysfunctional) human brain from in vitro neural network models. Furthermore, although we show
features consistent with both structural and functional small-world topology in the PP-structured
neural networks in this initial study, further investigations and optimizations of the PPs are needed
before a definitive conclusion can be made about the utility of this platform in neural network modelling.

6. Limitations

The electrophysiological data were not post-processed, as the in-house built toolbox for MEA analysis
does not allow for filtering of the recorded signal. Ideally, a bandpass filter of 300-3000 Hz should be
applied to reduce the influence of local field potentials on the recorded signal. In this study, the spike
timestamps used to produce the activity maps (raster plots) were based on a standard thresholding
system available through the Multichannel Systems recording software, which manually sets the
threshold for each channel at the start of each recording (+5 s.d.). Although relatively common, this
approach is not optimal as it does not account for potential signal-drift during the recording period.
However, manual inspection of the spikes measured at each channel post hoc confirmed that the



recorded spikes tend to correspond to expected values of extracellularly measured action potentials
(figure 5) as identified through the signal slope (spike shape) and voltage fluctuation.

Data accessibility. The electrophysiological raw-data files are available within Mendeley as Devold Valderhaug, Vibeke;
Sandvig, Axel; Sandvig, Ioanna (2019), ‘oeRecordings from 3D NSC-derived neural networks’, http://dx.doi.org/
10.17632/1r9gd7g8zcy.4 [22] under a CC-BY licence. The MEA Analysis Toolbox is available for download at
https://github.com/helgeanl/MEA_toolbox.
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Supplementary information

A

Supplementary Figure 1. Immunocytochemistry demonstrating the presence of neural
lineage markers in the neural networks developed on the surface-grafted polymer
particles (PPs). Following 1 month of differentiation and maintenance of the rat NSCs on the
PPs, immunocytochemistry confirmed the presence of differentiated cells attached to the
surface of the particles. A,B) Fluorescently labelled single cells attached to the surface of the
PPs. The anti-CNPase antibody (red) shows oligodendrocytes, while anti-GFAP antibody
(green) shows astrocytes and other glial cells. Anti-MAP?2 staining is also consistent with the
presence of cells of a neuronal fate in B (magenta). The single-color channels are merged and
overlaid by a brightfield image of the same area. C) Fluorescently labelled cells from the same
sample attached to the well-plate surface. 100um scalebars.
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