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SAMMENDRAG

Tredjegenerasjons kunstgress (3G kunstgress) er nå i utstrakt bruk både på breddenivå og pro-

fesjonelt nivå, og underlaget nyter status som godkjent for konkurranse av Det internasjonale 

fotballforbundet (FIFA). Ikke desto mindre, til tross for tilsvarende skadefrekvens som på 

naturgress, har det opprettholdt et rykte for dårlig støtdemping og utrygt friksjonsnivå. Den 

største bekymringen er at overdrevent stor, repetert belastning og friksjonskrefter utsetter ut-

øvere for større skaderisiko. Både støtdemping og friksjon påvirkes ikke bare av egenskaper 

ved 3G kunstgress, men også av egenskaper ved fotballskoene som benyttes, der spesielt av-

lange knotter antas å forårsake høy friksjon.

De mest brukte testmetodene innebærer bruk av mekaniske apparater som har til hen-

sikt å gjenskape en idrettsspesifikk menneskelig bevegelse med antatt høy skaderisiko, enten 

gjennom å produsere et isolert sammenstøt eller en rotasjon, selv om utøvelsen av idrettene 

som oftest foregår på 3G kunstgress hovedsakelig innebærer lineære bevegelser. En følge av 

dette er at den nåværende kunnskapen om egenskaper ved 3G kunstgress nesten utelukkende

er basert på tester med mekaniske apparater som, delvis grunnet en manglende evne til å til-

passe seg kontinuerlig, ikke betraktes som nøyaktige for å framstille interaksjonen mellom 

sko og underlag ved menneskelig bevegelse.

Det overordnede målet med dette arbeidet var å tilføre utøver-basert biomekanisk data 

gjennom å undersøke støtdemping og lineær friksjon på forskjellige 3G kunstgressystemer 

(breddenivå, profesjonelt nivå med og uten underliggende støtdempingssjikt) og med vanlige 

fotballsko med forskjellige typer knotter (kunstgressknotter, tradisjonelle runde knotter, av-

lange knotter) ved standardisert menneskelig bevegelse.

Sammenlignet med de to kunstgressystemene for profesjonelt nivå var støtdemping 

dårligere på kunstgressystemet for breddenivå. Generelt sett ble støtdemping påvirket i positiv 

forstand av både et underliggende støtdempingssjikt og en større mengde fyll i underlaget, 

men tilsynelatende i høyere grad av førstnevnte. Dette gjenspeilet seg i at kunstgressknotter 

ga mest støtdemping blant forskjellige typer knotter, muligens grunnet en større mengde så-

lemateriale.

Friksjonskraft var størst på kunstgressystemet for profesjonelt nivå med underliggende 

støtdempingssjikt og med kunstgressknotter. Til tross for enkelte forskjeller i friksjonskraft 

forble imidlertid friksjonskoeffisienten tilnærmet identisk på tvers av alle kombinasjoner av 

sko og underlag, noe som antyder at forsøkspersonene justerte for uønskede friksjonsbetingel-

ser. Det var ingen tegn på at avlange knotter produserte unormalt høy friksjon. Et positivt li-
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neært forhold mellom friksjonskoeffisient og medial rotasjon av skoen i transversalplanet (i

forhold til bevegelsesretning på underlaget) fantes, men den begrensede forskyvingen av 

knotter som forekommer under kontakt med underlaget gjør at bakgrunnen fortsatt er uklar.

Selv om enkelte forskjeller mellom kunstgressystemer ble avdekket, antyder verken 

størrelsen på sammenstøt eller friksjon at ordentlig vedlikeholdt 3G kunstgress kan betraktes 

som et spesielt risikabelt underlag. Denne forestillingen styrkes av en skadefrekvens lik den

som finnes på naturgress.
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Until man duplicates a blade of grass, nature can laugh at his so-called scientific knowledge.
– Thomas Edison
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ABBREVIATIONS AND FREQUENTLY USED PHRASES

1G turf    First-generation artificial turf 

2G turf   Second-generation artificial turf 

3G turf   Third-generation artificial turf 

   Transverse plane shoe angle relative to angle of sliding (degrees) 

Bladed cleats  Long, irregular cleats placed primarily around the edges of the sole 

Cut sprint  Sprint with a 90° cut to the left 

lslide   Displacement of shoe during full sole-surface contact (cm) 

vcut   Total change in velocity during impact in cutting direction (m·s-1) 

vrun Total change in velocity during impact in initial running direction (m·s-1) 

DU42   Duraspine Ultra 42 (turf system with 42 mm fiber height) 

DU50   Duraspine Ultra 50 (turf system with 50 mm fiber height) 

DU60   Duraspine Ultra 60 (turf system with 60 mm fiber height) 

FIFA Fédération Internationale de Football Association (i.e., The International  

Soccer Association) 

ftimp Peak total (vector sum of vertical and horizontal) force relative to body  

weight 

ftrac Peak horizontal force relative to body weight 

fvimp Peak vertical force relative to body weight 

In vivo (lat.) Within the living (i.e., occurring within a living organism) 

In situ (lat.) In position (i.e., an object in its natural or original position) 

 Mean traction coefficient for duration of full sole-surface contact 

SBR Styrene-butadiene rubber (turf system infill from recycled car tires) 

Stop sprint Straight sprint with a rapid deceleration 

tcon Duration of surface contact time (ms) 

TPE Extruded thermoplastic elastomer (synthetically manufactured turf system  

infill) 

Traditional round  Long, conical cleats placed around the edges of the sole and in the 

cleats center of the forefoot 

Turf cleats Dense pattern of short cleats covering most of the sole 

vapp Approach velocity (m·s-1) 

vslide   Sliding velocity (cm·s-1)
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ABSTRACT

Third-generation artificial turf (3G turf) is currently in widespread use at both the recreational 

and professional level, enjoying status as a Fédération Internationale de Football Association 

(FIFA) approved surface for competitive play. Nevertheless, despite the overall injury rate 

being similar to that of natural grass, it has maintained a reputation for poor impact absorption 

and an unsafe level of traction, the main concerns being that excessive repetitive loads and 

traction forces expose athletes to a greater risk of injury. Both impact absorption and traction 

are affected not only by 3G turf properties but also by shoe properties, with bladed cleats in 

particular presumably causing high traction.

The most commonly employed test methods involve the use of mechanical devices in-

tended to replicate a sports specific human movement with an assumed high injury risk, either 

producing an isolated impact or a loaded rotation on the surface, even though performance of

the sports which are most frequently played on 3G turf mostly involve translational move-

ments. Hence, the current knowledge of 3G turf properties is almost exclusively based on 

mechanical devices, which, in part due to their lack of ability to continuously adapt, are not 

considered accurate representations of the shoe-surface interaction during human movement.

The overall aim of the current work was to provide athlete-based biomechanical data 

on 3G turf, investigating impact absorption and translational traction properties of various turf 

systems (recreational-level, professional-level with and without underlying shock pad) and 

typical cleat configurations (turf cleats, traditional round cleats, bladed cleats) during stand-

ardized human movement.

Compared to the two professional-level turf systems, impact absorption was worse on 

the recreational-level turf system. In general, impact absorption was positively affected by 

both an underlying shock pad and a greater infill amount, but seemingly more so by the for-

mer. This was reflected in turf cleats providing the most impact absorption among cleat con-

figurations, possibly due to a greater amount of sole material.

Traction force was greatest on the professional-level turf system with an underlying 

shock pad and with turf cleats. However, despite certain differences in traction force, the trac-

tion coefficient remained almost identical across all shoe-surface combinations, indicating 

that the subjects adjusted for undesirable traction conditions. There was nothing to suggest 

that bladed cleats produced excessive traction. A positive linear relationship between traction 

coefficient and transverse plane medial shoe rotation (relative to direction of movement on the 
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surface) existed, but the limited cleat displacement occurring during surface contact leaves the

reason unclear.

Regardless of the differences discovered between turf systems, the magnitudes of nei-

ther impact nor traction indicate that properly maintained 3G turf can be considered a particu-

larly hazardous surface, a notion which is only strengthened by its injury rate being similar to 

that of natural grass.
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1. INTRODUCTION

Seizing the opportunity to compile and communicate objective research results on a topic 

riddled with myths and anecdotal evidence, an approach much broader than what the experi-

ment performed would dictate has been taken in the introduction.

The majority of artificial turf research has been done on two sports both primarily 

known as football where they, respectively, enjoy widespread popularity. Note that, in the 

current thesis, to avoid confusion, the terms soccer (football) and football (American football) 

are used to differentiate the two, with the exception of proper names.

1.1. The modern stadium

When evaluating a sports stadium as a whole, both the actual construction and the installed 

surface must be considered. Modern sport stadiums constructed primarily for soccer and foot-

ball are designed not only to be able to host games of the respective sports but also to deliver 

an improved spectator experience. The spectators are an important source of revenue – an 

investment that must be protected – so much so that they are even referenced in the Fédéra-

tion Internationale de Football Association’s (FIFA) document on stadium requirements with 

regard to the importance of maintaining a quality surface for game play to remain enjoyable

(FIFA 2011b). A consequence of this is the increased use of roofing, shielding spectators 

from rain and sun alike. Unfortunately, it has been stated (Ekstrand et al. 2006; FIFA 2009a; 

FIFA 2011b; Fuller et al. 2007a), the lack of direct sunlight adversely affects the growth con-

ditions for natural grass (grass), causing uneven growth or, at worst, inhibiting growth alto-

gether. In addition, in certain parts of the world, geographical constraints such as land fertility 

and climatic conditions can prove to be an obstacle when trying to maintain adequate surface 

conditions for game play on grass, regardless of stadium design.

Factors extending beyond sports also come into play when piecing together the specif-

ics of a stadium. With their spectator focused designs, modern sport stadiums are not limited 

to hosting sporting events, as they are also becoming increasingly common venues for events 

such as concerts and trade shows. These types of events draw large crowds, exposing the sur-

face to a great amount of wear through the combination of temporary flooring solutions and

continuous movement of people. A desire to better meet the expected demands for a sustaina-

ble, even profitable, stadium, with the ability to host a multitude of events, can lead to the 

decision to invest in artificial turf.



- 14 -

While artificial turf fails to provide the natural feel many athletes covet (NISO 2007a), 

it does have the advantage of providing an even and predictable surface if properly main-

tained. Despite seemingly being a widespread notion, most likely a relic from its earlier days, 

artificial turf is not maintenance free nor should it be considered low maintenance; it requires 

specific preparation, which may be just as time-consuming (a maintenance time of one hour 

per ten hours of use has been suggested) as for grass (Fleming 2011b), but potentially less 

expensive (FIFA 2011b). However, its major selling point is that it can provide the users with 

an increased number of playing hours, up to ten times that of grass (Fleming 2011b). In addi-

tion, it provides the opportunity to schedule practices or games immediately following preced-

ing use. This is in stark contrast to grass, which must be repaired after each training or match 

(FIFA 2011b). Hence, the cost per hour of use is much lower than for grass. Even though it 

offers high usability, artificial turf does not function as a year-round surface in northern cli-

mates without adequate heating – an additional expense of a magnitude that cannot be ig-

nored. Naturally, the total cost of an artificial turf field will be affected by its effective life, 

which has been suggested to be dependent on initial material and installation quality, intensity 

of use, and maintenance (FIFA 2011b; Fleming 2011b).

1.2. Generations of artificial turf: a brief history

There is no shortage of consistent information on the development of artificial turf, from its 

inception to what is in use today, but actual verifiable sources are scarce. This becomes evi-

dent when even information gathered from review papers published in international, peer-

reviewed journals lacks secondary sources. The first recorded instance of a major artificial 

turf surface installation at the professional level appears to have occurred in 1966, when 

ChemGrass (retroactively named AstroTurf) was installed at the Houston Astrodome in Hou-

ston, Texas (AstroTurf 2012b), home field of the Houston Astros baseball club (Figure 1). In 

fact, this new development came about because of problems with maintenance of grass

growth within the roofed stadium (AstroTurf 2012b). This type of artificial turf, known today 

as first-generation artificial turf (1G turf), consisted of a dense artificial turf carpet (a backing 

material with yarn either woven or tufted into it) with 10-12 mm long fibers (individual 

strands of yarn) usually of nylon (Fleming 2011a). However, it was not the unequivocal suc-

cess which may have been envisioned (Glauber 1991). Probably among the main factors lead-

ing to the demise of 1G turf was its penchant for skin abrasion (Fleming 2011a; Frederick 

1993) and its perceived hardness.
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In the 1970s, roughly a decade later, what is now known as second-generation artifi-

cial turf (2G turf) was introduced. It proved to be a much more sustainable alternative to grass

than its predecessor, which is evident by the fact that it is still in use today. The fibers of 2G 

turf are generally 20-25 mm long and made 

of polyethylene, making it softer than the 

nylon fibers of 1G turf (Fleming 2011a). 

Increased spacing between tufts of fibers in 

the carpet allows for sand infill, providing 

stability while simultaneously aiding per-

formance related qualities such as traction, 

impact absorption, and ball behavior. After 

making its way into top-level soccer in the 

United Kingdom, 2G turf enjoyed a brief period of limited acceptance before being officially 

banned around 1990 by the English Football Association due to the quality of play on the sur-

face and complaints of injuries (Fletcher 2012; The Football League 2012).

Just before the turn of the millennium third-generation artificial turf (3G turf) entered 

the market. It was specifically developed in an effort to replicate grass (FieldTurf Tarkett

2012; FIFA 2011b), with 40-65 mm long fibers (Fleming 2011a), and holds a sizeable amount

of infill for impact absorption purposes. The spacing between tufts of fibers in the carpet on 

3G turf is adequate to accommodate – compared to 2G turf – large quantities of both sand and 

rubber infill, with the former acting as a base layer for stability and the latter chiefly acting as 

an impact absorber and performance facilitator. Due to its multitude of components, 3G turf is 

often considered as a system. A turf system is defined as the synthetic surface and its infill, 

shock pad if applicable, and all the supporting layers that influence the biomechanical re-

sponse and sports performance of the surface (FIFA 2009b). However, the final supporting 

layer is normally a fairly hard leveling course of gravel or even asphalt, effectively limiting 

the influence on surface properties to turf system variations above the leveling layer.

Although they may often look identical to the naked eye, the modern artificial turf sys-

tems consist of various component parts (fiber, stabilizing infill, shock absorbing infill, under-

lying shock pad), each of which may vary in material, size, shape, and/or amount (Figure 2).

Adding to this, variations in the foundation may also occur, but they should, as mentioned, 

have little effect on surface properties. The shape of the individual turf fibers has been devel-

oped toward imitating grass, with the monofilament fiber (single blade, as found in nature)

seemingly having solidified its position as the market leader going forward, likely leaving slit-

Figure 1. The Houston Astrodome with artificial turf on 
April 18, 1966 (AstroTurf 2012b). 
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film fibers (wide, rectangular blades that by design fibrillate during installation) as a thing of 

the past. The most modern monofilament fibers often approximate a v-shape, albeit more 

open, with a “spine” running up the center, the purpose being to increase resilience, improv-

ing their ability to regain standing posture after being temporarily compressed. The number of 

shock absorbing infill types on the market is ever-growing, with both recycled and specifical-

ly manufactured products available. Infill types produced specifically for sports application

are generally more expensive (due to the cost of raw materials and production methods), and 

are hence often viewed as an option for professional sports more so than for recreational 

sports. Among these, common infill types include extruded thermoplastic elastomer (TPE) 

and ethylene propylene diene monomer (EPDM). The infill type in most widespread use to 

date, presumably in part affected by financial reasons, is styrene-butadiene rubber (SBR), 

commonly known as recycled tires (Unisport Scandinavia, personal communication, October 

11, 2011). The industry distinguishes ambient ground SBR from cryogenically processed 

SBR, the latter resulting in a finer particle. A necessary consequence of its primary area of 

application, namely tires, SBR rubber has stronger abrasive properties than its sports-specific

counterparts. However, the weaker abrasive properties of TPE and EPDM only hold true if 

production methods and materials are of high quality.

Figure 2. Left: surface view of a 3G turf system. Right: cross-section illustration of a 3G turf system (FIFA 
2011a). From the bottom: foundation, leveling layer, carpet with turf fibers, sand infill, rubber infill. 

1.3. The current status of artificial turf

Despite its less than stellar reputation after eventual failures in professional sports (Fletcher 

2012; Glauber 1991; The Football League 2012), artificial turf has not always been described 

in negative terms. As a play on words from the famous Ringling Bros. and Barnum & Bailey 

Circus slogan “The Greatest Show on Earth”, the American football team the St. Louis Rams 
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fielded a high-scoring offense so potent from 1999-2001 that the team was dubbed “The 

Greatest Show on Turf” after their artificial turf home field which seemingly magnified their 

speed oriented offense. Today, however, even though its reputation for being a faster surface 

appears to have persisted (AstroTurf 2012a; Meyers & Barnhill 2004), artificial turf is yet 

again largely subject to preconceived notions of a negative disposition. Based on question-

naire data it can be seen that professional soccer players attribute injuries to artificial turf 

without anything to substantiate their claim (NISO 2007b) and subjectively characterize play-

ing on artificial turf as being physically more demanding than playing on grass (Andersson et 

al. 2008), with the latter opinion existing despite a lack of difference in objectively measured 

movement characteristics between the two surfaces (Andersson et al. 2008).

The continued poor reputation is likely to be caused, at least in some part, by the prob-

lems related to 1G and 2G turf. In fact, just a few years prior to the introduction of 3G turf, 

artificial turf was reported to be a key contributor to a significant increase in injuries (Árnason 

et al. 1996; Gorse et al. 1997). However, the development of artificial turf has come a long 

way (in a short time) since these experiments were conducted, hence their results should be 

interpreted with caution concerning their relevance today. Regardless of what previous re-

search shows, a lingering problem in the soccer community with regard to artificial turf is still 

the apparent penchant for relying heavily on anecdotal evidence.

On a detailed level, the chief complaints of artificial turf have been its purportedly 

poor impact absorption and unsafe frictional properties, the main concerns being that it puts 

athletes at risk for overuse injuries as a result of excessive repeated impact forces (Bentley et 

al. 2011; Cole et al. 1996; Eils et al. 2004; Meijer et al. 2006; Queen et al. 2008) and torsion-

related injuries as a result of excessive frictional forces between the surface and the shoe 

(Bonstingl et al. 1975; Shorten et al. 2003). Interestingly enough, an actual cause-effect rela-

tionship between impacts and injuries has still not been established (Derrick 2004; Frederick 

1986; Nigg & Yeadon 1987; Smith et al. 2004; Stiles & Dixon 2007), yet it remains a widely 

held belief, likely due to the apparently obvious connection between the two factors.

Naturally, a certain amount of frictional force is necessary for athletes to be able to ad-

equately perform accelerations, decelerations, rapid directional changes, and other movements 

inherent to most sports that are played on grass or artificial turf. Similarly, impact absorption 

can only reach a certain level before it becomes counterproductive, serving only as energy 

draining and not allowing for rapid movements. Achieving the optimal balance between per-

formance and safety is a challenge that has yet to be resolved.
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1.3.1. A note on friction and traction

For most people, “friction” is a more familiar term than “traction”. In the literature, both fric-

tion and traction are used to describe the resistive forces acting between a surface and the sole 

of a shoe. According to the classic Coulomb laws of friction, relative motion is determined by 

the friction coefficient, which is the relationship of horizontal force to vertical force (or fric-

tion force to normal force). Friction coefficients are traditionally regarded as material-

dependent constants (Shorten et al. 2003; Torg et al. 1974), unaffected by variables such as 

sliding velocity and pressure. The friction present immediately prior to initiation of motion is 

referred to as “static friction” while the friction present during constant sliding motion is re-

ferred to as “dynamic friction”, with the static friction coefficient being greater than the dy-

namic friction coefficient. However, the classic laws of friction generally describe interactions 

between rigid, uniform surfaces, and are thus not suitable to adequately depict the complex 

interactions that occur between the compliant, non-uniform surfaces of artificial turf with par-

ticulate infill and various cleated sports shoes (Nigg & Segesser 1988; Shorten et al. 2003).

The solution has been to use the term traction to indicate shoe-surface interactions, 

with their accompanying friction-like forces, where the classic laws of friction are deemed not 

to apply (Shorten et al. 2003; Villwock et al. 2009a). Hence, the traction coefficient describes 

the relationship of traction force to normal force as the friction coefficient describes the rela-

tionship of friction force to normal force (Shorten et al. 2003). Not bound by the classic laws 

of friction, the traction coefficient is susceptible to be affected by various factors such as load 

(Cawley et al. 2003; Kuhlman et al. 2009; Nigg & Segesser 1988) and cleat material (Bowers 

& Martin 1975), and allows for the dynamic traction coefficient to be greater than the static 

traction coefficient (Kuhlman et al. 2009).

For the remainder of the current thesis, the resistive forces acting at the shoe-surface inter-

face on 3G turf will exclusively be referred to using the term traction.

1.3.2. Population-based studies

As mentioned, throughout its life, artificial turf has been blamed for its perceived contribution 

to injuries, encompassing both acute injuries and overuse injuries. Attributing overuse injuries 

to a specific surface is problematic, since the onset of overuse injuries per definition is gradu-

al (Soligard et al. 2012; Steffen et al. 2007). Hence, most of the research on 3G turf is focused 

on acute injuries, attempting to quantify the incidence of such injuries compared to that on 

grass.
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Varying injury definitions has been the main culprit in preventing valid inter-study 

comparisons. To counteract this problem, a consensus statement has been drafted (Fuller et al. 

2006) in order to improve the uniformity of data collection across studies. Using this as a 

methodological foundation, a majority of population-based studies fail to uncover a signifi-

cant difference in overall injury rate between 3G turf and grass (Aoki et al. 2010; Bjørneboe 

et al. 2010; Ekstrand et al. 2006; Ekstrand et al. 2011; Fuller et al. 2007a; Fuller et al. 2007b; 

Fuller et al. 2010; Soligard et al. 2012; Steffen et al. 2007). However, 3G turf has shown a 

tendency for an increased rate of injury in certain sub-categories, with potentially traction-

related knee sprains (Bjørneboe et al. 2010; Fuller et al. 2010; Steffen et al. 2007) and non-

bone joint injuries (Fuller et al. 2007b) chief among them, as well as skin injuries (Fuller et al. 

2007a). Although indisputably uncomfortable, whether or not abrasions should be considered 

injuries is a matter of opinion; athletes rarely appear to suffer abrasions excessive enough to 

cause them to miss practice or games and the problem can, to a certain degree, be remedied 

through equipment use. That being said, grass has shown a tendency for an increased rate of

muscle strains (Ekstrand et al. 2006; Ekstrand et al. 2011a) and tears (Meyers 2010). In a

sense, this makes the choice of surface type analogous to which type of injury it is preferable 

to risk incurring.

While the consensus statement solved many problems, two important factors are still 

largely overlooked; the degree of detail included when describing the surfaces and the cleat 

configurations employed by the athletes. Rather than provide information about the density, 

hardness, or other potentially influential characteristics of the grass fields or the composition 

of turf systems, surfaces are often simply labeled grass or artificial turf. The entire topic of 

cleat configurations, on the other hand, is generally avoided, despite existing research show-

ing possible effects on both impact absorption and traction (see chapters 1.3.4.2 and 1.3.5.1).

1.3.3. Standardized testing

To remove the subjective component from the evaluation of artificial turf, FIFA, being the 

governing body, sought to develop set standards. In 2001 they launched the Quality Concept 

test program (FIFA 2009b) in an effort to ensure that the newly developed playing surfaces 

would replicate the play-related properties of grass (FIFA 2009a), placing special emphasis on 

avoiding an increased risk of injury. The test program incorporates both laboratory testing and 

in situ field testing and entails the temporary certification of a specific field after its comple-

tion; contrary to how it can often be construed from producers’ own product descriptions 

(i.e., “This turf system meets the demands for FIFA approval”), it is not a universal approval 
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of the product offered by the particular producer (FIFA 2009a). All artificial turf fields in-

tended for use in FIFA governed competition of a certain level are subject to approval by 

FIFA at regular intervals to gain and maintain certified status. The Quality Concept test pro-

gram consists of various mechanical device tests (Figure 3), which were initially derived from 

existing test programs for, among other applications, road works and athletic tracks and sub-

sequently adapted for artificial turf. The current benchmark values for artificial turf are based 

on tests done on grass fields subjectively deemed to be in good condition (FIFA 2011b). 

Among the most fundamental factors influencing surface-athlete interactions are im-

pact-related properties and traction-related properties at the shoe-surface interface. The basic 

principle behind the test intended to measure impact absorption on artificial turf is a mass 

allowed to fall uninhibited onto a spring resting on a load cell over a metal test foot (FIFA 

2009b). This particular mechanical device is commonly known as the Artificial Athlete. The 

maximum force is recorded and force reduction is compared to the corresponding value rec-

orded on concrete. For traction, the test battery distinguishes between rotational and transla-

tional traction. Despite the desire to remove the subjective component, the rotational traction 

test actually has a human element to it, with a loaded, cleated test foot manually rotated on the 

surface (FIFA 2009b). The maximum torque during rotation is recorded. The translational 

traction test consists of a cleated test foot striking the surface in a semi-circular motion by 

means of a pendulum (FIFA 2009b). The deceleration from sliding across the surface is rec-

orded, as well as a unitless sliding value. Where applicable, all tests are carried out with a 

standardized cleat configuration corresponding to that of traditional round cleats (long, coni-

cal cleats placed around the edges of the sole and in the center of the forefoot). However, alt-

hough a consistent cleat configuration for standardized testing is an understandable necessity, 

the multitude of cleat configurations available and in use today makes it difficult to consider 

the traditional round cleat as the standard it once was. Hence, the procedures determining if a 

surface meets the demands for what is by FIFA considered a safe playing environment do not 

take into consideration the corresponding results when using more aggressive cleat configura-

tions.

Traction appears to be the more challenging variable to quantify, as evidenced by 

FIFA removing the translational traction test from the official field test battery, after roughly a 

decade of use, on the grounds that it seemingly had no effect on field performance (FIFA 

2012a). It does, however, remain in the laboratory requirements. Interestingly, the Quality 

Concept test program includes no tests aimed at measuring the traction coefficient, the main 

determinant of relative motion, except with regard to skin friction (FIFA 2009b). Another test, 
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measuring the material components of the infill, has recently been added to protect the buyers, 

ensuring that the infill used for field installation matches that from the laboratory tests (FIFA 

2012a). A peculiar aside is the fact that the laboratory benchmarks and field test benchmarks 

are not identical (FIFA 2009b). Considering purely economic reasons, this poses the question 

of what incentive producers have to install a field with the appropriate amount of infill, as 

used in the laboratory tests, when less may be needed in order to gain the desired FIFA certi-

fication.

Figure 3. A selection of the mechanical test devices in the FIFA Quality Concept test program. From left to right: 
impact absorption, rotational traction (FIFA 2009b), translational traction (FIFA 2012d). 

After roughly 40 years of being officially deemed inferior to grass – with a few tempo-

rary exceptions – it is no exaggeration to say that the 2004 inclusion (FIFA 2009a) of artificial 

turf in FIFA’s “Laws of the Game” (FIFA 2012c) represented a revolution of the game in 

terms of surface standards. After years of development toward a product specifically designed 

for soccer (FIFA 2011b), it was finally considered acceptable. By making it an approved sur-

face for FIFA sanctioned international competition, it has become, for all theoretical intents 

and purposes, the equal of grass. It is worth noting that some exceptions exist, such as the 

Union of European Football Associations (UEFA) Champions League finals, which is still 

exclusively played on grass.

1.3.4. Impact absorption

The most common test methods employed for investigating impact absorption on artificial 

turf involve the use of various mechanical devices producing an isolated impact, often of a 

fairly rigid nature (McNitt et al. 2004; Naunheim et al. 2004). The devices are intended to 

represent the very basics of human movement in the form of a typical situation with an as-

sumed high injury risk, such as a hard landing.
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A surface’s ability to undergo some form of displacement is assumed to be directly re-

lated to its impact absorption properties (Shorten & Himmelsbach 2002; Stiles & Dixon

2007). In theory, the greater the thickness of a surface is, the greater its potential for dis-

placement should be, extending the time of contact and hence distributing the impact force. In 

line with this, the main factors determining the level of impact absorption of 3G turf are 

thought to be the thickness of a shock pad (or lack thereof) and the amount of infill (Alcántara 

et al. 2009; McNitt et al. 2004). Possibly a function of a decreased potential for displacement, 

compaction of the infill through use is considered to have a negative effect on impact absorp-

tion (Alcántara et al. 2009; Meijer et al. 2006; Naunheim et al. 2004). 

Naturally, shoe properties are also able to affect the impact absorption occurring at the 

shoe-surface interface. These are commonly expressed through cleat configurations, being the 

most visible component of the shoe. Serving as the primary link between the surface and the 

athlete during athletic movements, shoes are designated as an important contributor to impact 

absorption since the forces acting on the athlete by necessity are transferred through them 

(Bentley et al. 2011; Smith et al. 2004).

1.3.4.1. Mechanical devices

Following the theory that surface thickness is an important determinant of impact absorption, 

both the presence of an underlying shock pad (McNitt et al. 2004) and an increased amount of 

infill (Alcántara et al. 2009) have resulted in greater impact absorption on 3G turf when 

measured with mechanical devices. However, infill amount does not always dictate impact 

absorption (McNitt et al. 2004), which makes the relationship seem less obvious than initially 

assumed. Infill properties beyond mere amounts, such as infill morphology, have also shown 

an ability to influence impact absorption (Alcántara et al. 2009), with changes in physical 

deformation (i.e., displacement of infill) being uncovered as well.

In addition, a decrease in both impact absorption and physical deformation of the sur-

face with an increase in simulated use has been demonstrated (Alcántara et al. 2009). Coupled 

with the previous discovery of varying impact absorption at different sites of a 3G turf field 

(Naunheim et al. 2004), where decreased impact absorption occurred in conjunction with in-

fill compaction, this lends credence to the notion that infill compaction and the accompanying

decreased surface thickness can be a precursor for greater impact forces.
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1.3.4.2. Biomechanics

Although mechanical devices enjoy the benefits of reproducibility and practicality in a way in 

vivo measurements never will, they are nevertheless limited to mimicking human movement. 

This often leads to a severe simplification of the actions taking place, lacking the constant 

adaptation present in human movement, hence they are not considered to accurately represent 

impact absorption during athletic movements (Dixon & Stiles 2003; Nigg & Yeadon 1987). In 

addition, mechanical devices have been deemed invalid for impact testing on point elastic 

surfaces such as 3G turf, on which the surface material is only deformed at the point where 

force is applied (Nigg & Yeadon 1987). This highlights the need for biomechanical measure-

ments to gain results reflecting genuine movement.

Still far from being considered the standard, investigations of the impact absorbing 

qualities of 3G turf by means of in vivo experiments are not uncommon, in no small part due 

to the possibility of using pressure insoles (Bentley et al. 2011; Ford et al. 2006; Queen et al. 

2008; Wong et al. 2007). However, more often than not, these experiments focus on the pres-

sure distribution over the foot rather than attempt to interpret the results in light of general 

impact absorption. A reason for this might be that the forces registered with pressure insoles 

are lower than those registered with force plates (Barnett et al. 2001), indicating that it might 

be wise to practice caution when interpreting results from pressure insoles with respect to the 

magnitude of impact absorption. Nevertheless, pressure insoles still serve a purpose in evalu-

ating impact absorption on 3G turf. Their consistent decrease in impact force across cleat con-

figurations (Barnett et al. 2001) means they should maintain the ability to detect differences, 

where present, to the same degree a force plate is able to. Biomechanical experiments on 3G 

turf incorporating a force plate do exist, but, despite their advantage of providing accurate 

force measurements, remain rare. Unfortunately, to date, they have either demonstrated a ne-

glect of cleat configurations (Meijer et al. 2006) or limited the surface scope to a singular turf 

system (Müller et al. 2010). This makes it difficult to interpret the results in the context of 

shoe-surface interactions across different turf systems and cleat configurations, both of which 

may affect impact absorption simultaneously.

Impact forces in running typically reach magnitudes of approximately 2-3 times body 

weight (Frederick 1986; Nigg & Wakeling 2001), with sports specific movements producing 

similar results (Stiles & Dixon 2006). Impact forces on 3G turf from in vivo experiments cor-

respond well with these values, generally comprising a range of 2.3-2.6 times body weight for 

running (Meijer et al. 2006; Müller et al. 2010) and rapid changes of direction (Müller et al. 

2010; Queen et al. 2008), suggesting that the impressions ingrained by earlier generations of 
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artificial turf do not do 3G turf justice. Further strengthening the case of 3G turf, impact ab-

sorption does not appear to be affected in a meaningful way by infill type (Meijer et al. 2006), 

meaning that a variety of turf system configurations might prove adequate in providing the 

desired level of impact absorption.

Experiments based on pressure insoles or force plates also tend to place greater em-

phasis on the shoes, something which is often lacking in the mechanical devices. It appears as 

though an important distinction may exist between turf cleats (a dense pattern of short cleats 

covering most of the sole) and cleat configurations with fewer, longer cleats; turf cleats 

demonstrate increased impact absorption (Queen et al. 2008), while it remains difficult to dis-

tinguish more aggressive cleat configurations from each other (Müller et al. 2010; Queen et 

al. 2008). There are even instances of aluminum screw-in cleats, likely considered the most 

aggressive cleat configuration available to date, being used in in vivo investigations of impact 

absorption on 3G turf (Bentley et al. 2011; Müller et al. 2010). However, the specific parts of 

these experiments pertaining to the screw-in cleats would do well to be disregarded, as this 

cleat configuration traditionally is reserved for a soft ground with wet grass, making it a 

strange choice for 3G turf testing (not to mention a wholly unrealistic choice from an athlete’s 

point of view).

1.3.5. Traction

The most common test methods employed for investigating traction on artificial turf involve 

the use of mechanical devices designed to replicate a sports specific movement. Seemingly 

based on the FIFA standardized tests, the mechanical devices are often adapted versions of the 

rotational traction test (Figure 3), seeking to increase the degree to which it corresponds to 

genuine athletic movement, typically with regard to magnitude of force or velocity of move-

ment. The mechanically replicated movement is usually assumed to represent situations in-

volving a high risk of injury, such as a sudden rotation. These types of movements have tradi-

tionally been considered potentially less harmful when performed on grass due to the sur-

face’s inherent ability to allow permanent deformation, whereas artificial turf (regardless of 

generation) offers more resistance, being confined to an elastic response to excessive forces. 

The brunt of the attention has been afforded rotational traction, presumably because of 

its apparent link to torsion-related injuries. The result is a dearth of knowledge concerning

translational traction. Although it might seem counter-intuitive, the shoe does not (or to a very 

small degree) rotate on the surface when a player is performing accelerations, decelerations, 

and rapid directional changes, as the main requirement is translational traction sufficient 
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enough to avoid slipping (Frederick 1993). Hence, these movements, commonly assumed to 

cause injuries (Alentorn-Geli et al. 2009), are predominantly translational in their nature 

(Frederick 1993; Sabick et al. 2009). If isolated rotation of the shoe on the surface occurs, 

which is what most of the mechanical devices attempt to replicate, the movement is already 

inappropriate and high traction accompanied by an elevated risk of injury should not come as 

a surprise. What is most interesting from the point of view of evaluating the properties of 3G 

turf is whether or not the traction during appropriate movements is so high that it predisposes 

athletes for injuries, making the surface itself more harmful than its natural counterpart.

Translational traction is a necessity for performance, allowing athletes to make sudden 

movements without slipping, while rotational traction is generally linked to injuries, making 

the combination of high translational traction and low rotational traction the desired one for 

sports surfaces (Frederick 1993; Shorten et al. 2003; Villwock et al. 2009b). Directly contra-

dictory to this, 1G turf had high rotational traction and low translational traction (Shorten et 

al. 2003), basically meaning that by today’s standards it was made for injuries, not perfor-

mance.

As is the case for impact absorption, cleat configuration has the potential to be an im-

portant factor for traction at the shoe-surface interface. The modern bladed cleats (long, irreg-

ular cleats placed primarily around the edges of the sole) earned a reputation for high traction 

quickly after their introduction (Lambson et al. 1996), the property unequivocally attributed to 

cleat shape. For better or worse, this reputation remains today (Taylor 2010), perhaps aided by 

soccer shoe producers’ penchant for continually advertising traction as an exclusively positive 

property.

1.3.5.1. Mechanical devices

Similar to earlier generations of artificial turf (Bonstingl et al. 1975; Bowers & Martin 1975; 

Heidt et al. 1996; Lambson et al. 1996; Torg et al. 1974; Torg et al. 1996), what is currently 

known regarding 3G turf, shoe-surface interactions, and traction is mostly reliant upon me-

chanical device data (Cawley et al. 2003; Kuhlman et al. 2009; Livesay et al. 2006; Sabick et 

al. 2009; Severn et al. 2010; Severn et al. 2011; Shorten et al. 2003; Villwock et al. 2009a; 

Villwock et al. 2009b; Wannop et al. 2012). However, despite the advantages mechanical 

devices hold regarding factors such as reproducibility, it has not translated to unambiguous 

results, possibly due to the many different adaptations that exist. This becomes apparent when 

rotational traction varies between mechanical devices that are tested directly against each oth-

er (Severn et al. 2011).
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When compared to both grass and 1G turf, the previously mentioned desired combina-

tion of low rotational traction and high translational traction has been identified on 3G turf 

(Shorten et al. 2003). Still, contradictory discoveries, showing 3G turf to display greater rota-

tional traction than grass at both lower (Livesay et al. 2006) and higher (Villwock et al. 

2009a) loads, leave its safety and performance shrouded in questions while failing to reveal a 

consistent pattern with regard to load. Further complicating the interpretation of load is the 

bidirectional manner in which it appears to influence traction on 3G turf when increased, with 

rotational traction increasing (Severn et al. 2010) and translational traction decreasing 

(Kuhlman et al. 2009). The differences uncovered are not caused by the mechanical devices 

alone, though, as rotational traction also varies between 3G turf systems (Severn et al. 2011), 

with greater traction suggested to coincide with increased fiber heights and higher infill densi-

ties. Whereas clear tendencies of how most turf system components affect traction are diffi-

cult to see, infill density appears to be a turf system property with a rare consistency to it. Ro-

tational traction decreases with a base layer of simulated thatch (a so-called “root zone”) and 

increases with the finer cryogenically processed SBR infill (Villwock et al. 2009b), turf sys-

tem components reducing and facilitating infill compaction, respectively. Translational trac-

tion, in the form of traction coefficients, also increases with greater infill density (Severn et al. 

2011), a discovery that is consistent across turf systems.

Despite the reputedly high traction design of bladed cleats, the available literature in-

dicates that much is yet to be resolved. Although bladed cleats have been discovered to pro-

duce higher traction coefficients than traditional round cleats (Kuhlman et al. 2009), the two 

cleat types have also yielded traction coefficients that are comparable at both low (Shorten et 

al. 2003; Wannop et al. 2012) and high (Sabick et al. 2009) loads. Across these experiments, 

greater traction coefficients generally coincide with higher loads, but possible exceptions to 

this tendency are also present (Shorten et al. 2003). A further increase in traction coefficients 

with an even greater load (Kuhlman et al. 2009) provides additional evidence for a potential 

load-dependency.

Interestingly, turf cleats, with a far less aggressive cleat configuration, can provide 

traction coefficients similar to both bladed cleats and traditional round cleats (Shorten et al. 

2003). Turf cleats may even produce traction force of a greater magnitude than more pro-

nounced cleat configurations (Cawley et al. 2003). Perhaps more surprisingly, in some in-

stances the similarity between all three cleat configurations holds true for rotational traction 

(Livesay et al. 2006; Shorten et al. 2003; Villwock et al. 2009a). However, the results are not 

consistent; rotational traction is lower with turf cleats when compared to traditional round 
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cleats at low loads (Livesay et al. 2006) and both traditional round cleats and bladed cleats at 

high loads (Villwock et al. 2009a; Villwock et al. 2009b).

The differing results due to the various adaptations employed indicate that, instead of 

attempting to reproduce a realistic load situation mechanically, it might be wise to conduct 

experiments with genuine athletic movement to ensure that realistic load conditions and hence 

meaningful results are obtained.

1.3.5.2. Biomechanics

Studies on traction fully embracing the biological aspect have been few and far between, de-

spite being advocated for approximately two decades (Frederick 1993; Heidt et al. 1996; 

Sabick et al. 2009). This is somewhat confusing considering the general desire to be able to 

form a conclusive opinion on the extent to which athletes are affected by artificial turf, 

whether it be in combination with a specific cleat configuration or not. Most likely this is a 

result of the lack of absolute control that is introduced when including humans as opposed to 

mechanical devices. However, as is the case for mechanical devices intended for measuring 

impact absorption, what they gain in control they lack in accurate representation of the true 

dynamics of shoe-surface interactions.

An attempt has been made to employ high-speed video analysis of genuine athletic 

movements on 3G turf with the intent to provide a better framework for mechanical devices 

(Kirk et al. 2007), though it remains unsure whether or not the results are suitable for improv-

ing what is currently in use. As for the immediate results, high-speed video analysis proved 

ineffective in detecting any differences between traditional round cleats and bladed cleats 

with regard to traction properties (Kirk et al. 2007). Echoing this is the discovery of similar 

traction coefficients on 3G turf, derived from force plate data, between the two cleat configu-

rations during both running and rapid changes of direction (Sterzing et al. 2010). This last 

experiment is based on the same forces as one presented previously concerning impact ab-

sorption (Müller et al. 2010) and hence is essentially the same one, further illustrating the 

scarceness of in vivo experiments on 3G turf in general.

1.4. Aims

In short, the main objections to the advance of artificial turf with regard to game play remain 

the supposed poor impact absorption and excessive traction, both of which may be influenced 

by surface and shoe properties. The overall aim of the work included in the current thesis was 
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to provide the rapidly growing field of artificial turf research with objective, athlete-based

data at a detailed level, of which there is a surprising lack in the literature, covering these is-

sues. This should help to establish a proper baseline for further in vivo study, encouraging its 

use as mechanical devices do not accurately depict the shoe-surface interactions taking place 

during genuine athletic movement.

More specifically, the aim was to investigate whether or not differences exist between 

various turf systems and commonly used cleat configurations with regard to impact absorp-

tion and translational traction, including the effect of independently chosen cleat orientation 

on traction, when measured in vivo during genuine, albeit standardized, athletic movements

with corresponding forces. Further, the aim was to quantify the in vivo magnitudes of impact 

and traction.
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2. METHODS

Permission to conduct the experiment was given by the Regional Ethical Committee and it 

was conducted in accordance with the Declaration of Helsinki. Although not all parts of the 

experiment and calculated variables were utilized for each paper, they are presented as a 

whole in the current thesis.

2.1. Subjects

Twenty-two male soccer players (mean ± standard deviation (SD) age 23.1 ± 2.8 years, height 

1.81 ± 0.06 m, and body mass 77.5 ± 6.0 kg) were recruited for the experiment. Playing level 

ranged from professional to recreational, encompassing the entire organized division structure 

in Norway. To ensure homogeneity of the group, the following criteria for participation were 

enforced: male, age 18-30 years, right leg dominant (not tested explicitly as part of the exper-

iment), playing at an organized level, a minimum of two years’ experience with 3G turf, free 

of major injuries to the lower extremities for the past six months, no known diagnoses or con-

ditions that could influence the ability to participate (e.g., heart condition), and shoe size from 

42 to 44 (US size 8½ to 9½). All subjects signed an informed consent form prior to participa-

tion and were made aware that they could withdraw from the experiment at any point without 

providing an explanation.

2.2. Laboratory setup: equipment and data collection

Due to the confines of the laboratory situation, the effort to recreate an environment that was 

as realistic as possible was limited to turf-covered wooden running tracks, as opposed to a 

larger general area, constructed around a BP6001200 AMTI 3D force plate (Advanced Medi-

cal Technology Inc., Watertown, MA, USA), on which three FieldTurf (FieldTurf Tarkett, 

Calhoun, GA, USA) 3G turf systems were alternately fastened. To withstand movement, the 

turf systems (0.6 x 1.2 m) were held in place by means of 3M Dual Lock reclosable fasteners 

(3M Norway AS, Skjetten, Norway). They were equipped with hard rubber borders to ensure 

they could be placed isolated on the force plate, complete with infill, without touching the 

adjacent running tracks (Figure 4). All running tracks were secured to the floor with a 

~0.5 cm gap to the force plate to avoid signal distortion resulting from impacts occurring prior 

to contact with the force plate. A designated contact area of 0.6 x 0.6 m was marked on the 

turf systems fastened to the force plate.
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Around the force plate, six ProReflex motion capture cameras (Qualisys, Gothenburg, 

Sweden) were placed, providing a 360° view. In addition, three pairs of photo cells (TC-

PhotoGate A&B, Brower Timing Systems, Draper, UT, USA) were placed along the in-run at 

a height of ~1 m above the running track.

Data from the photo cells were transmitted 

wirelessly to a handheld receiver (TC-Timer,

Brower Timing Systems). The laboratory 

setup, with complete dimensions, can be 

seen in Figure 5.

Force and position data were record-

ed using Qualisys Track Manager 2.5.595

(Qualisys) and processed in Matlab 

7.9.0.529 (Mathworks, Natick, MA, USA). 

Dynamic signals (force), acquired via a 

DSA-6 digital strain gage amplifier (Ad-

vanced Medical Technology Inc.), were recorded at a sample rate of 1000 Hz. Kinematic sig-

nals (position) were recorded at a sample rate of 500 Hz, obtaining a spatial resolution of 

0.3 mm.

Figure 5. Left: picture of the laboratory setup. Right: schematic of the dimensions of the laboratory setup. The 
force plate (dark gray, 0.6 x 1.2 m) is surrounded by running tracks (light gray), with six cameras (c) angled to-
ward the designated contact area (x). Horizontal dotted lines represent photo cell trigger beams. Dashed line 
arrows represent movement directions of running tasks: a straight sprint with a sudden stop (1) and a sprint 
with a 90° cut to the left (2). 

Figure 4. Hard rubber borders ensured that the infill 
was kept in place with the turf systems isolated on the 
force plate. Temporary markers indicated the desig-
nated contact area (one marker not visible in photo-
graph). 
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Ambient temperature in the laboratory was ~20 °C with a relative humidity of ~40 %

throughout the data collection period, as measured by a La Crosse Technology WS-868025

weather station (La Crosse Technology, La Crosse, WI, USA). This is approximately con-

sistent with the guidelines for laboratory environments provided by FIFA, specifying that tests 

should be conducted at an ambient temperature of 23 ± 2 °C (FIFA 2009b).

Table 1. Detailed specifications of the turf systems. 

  Duraspine Ultra 42 Duraspine Ultra 50 Duraspine Ultra 60 

 Turf system producer FieldTurf Tarkett FieldTurf Tarkett FieldTurf Tarkett 

FIBER type monofilament monofilament monofilament 

material polyethylene polyethylene polyethylene 

height (mm) 42 50 60 

weight (dtex) 11500 11500 11500 

thickness (micron) 80 – 240 80 – 240 80 – 240 

tufts/m2 9450 8820 8190 

strands/tuft 6 6 6 

tuft pattern straight straight straight 

height above infill (mm) 15 15 15 

total weight/m2 (kg) 0.956 1.101 1.217 

STABILIZATION 

INFILL 

material Quartz sand Quartz sand Quartz sand 

infill thickness (mm) 5 8 13 

weight/m2 (kg) 8 12 18 

particle size (mm) 0.4 – 0.8 0.4 – 0.8 0.4 – 0.8 

particle shape round round round 

SHOCK  

ABSORBING INFILL 

material SBR SBR SBR 

manufacturing process ambient ground ambient ground ambient ground 

infill thickness (mm) 20 27 32 

weight/m2* (kg) 7.5 10.5 12 

particle size (mm) 1 – 3.15 1 – 3.15 1 – 3.15 

particle shape angular angular angular 

SHOCK PAD type Recticel Rebound -- -- 

material composite foam -- -- 

thickness (mm) 12 -- -- 

weight/m2 (kg) 3.1 -- -- 

* ~75 % of amount detailed in producers specifications, as described in the text. 
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2.2.1. Turf systems

Three different 3G turf systems from FieldTurf were included in the experiment: Duraspine 

ULTRA 42 (DU42), a professional-level turf system with an underlying shock pad; Duraspine 

ULTRA 50 (DU50), a recreational-level turf system without an underlying shock pad; Du-

raspine ULTRA 60 (DU60), a professional-

level turf system without an underlying 

shock pad (Unisport Scandinavia AS, 

Drammen, Norway). 

In accordance with the instructions 

provided by the producer, upon initial instal-

lation in the laboratory the amount of ambi-

ent ground SBR infill was decreased to 

~75 % of what was detailed in the product 

specifications. This was done to ensure 

~1.5 cm of free fiber above the infill. Rather 

opting for additional infill at a later point if 

necessary, this method is customary to avoid 

excess infill at installation. The running 

tracks surrounding the force plate were cov-

ered with DU50 for all three turf system 

conditions on the force plate, making the average difference in height from in-run to force 

plate as small as possible. Complete turf system details are presented in Table 1.

Table 2. Cleat configuration details. 

Cleat type Surface Number of cleats 

(heel/forefoot) 

Cleat height 

range (mm) 

Turf Turf/gravel 20/45 6-9 

Traditional round Firm grass 4/8 9-11 

Bladed Firm grass 4/9 11-13 

Figure 6. Soccer shoe models included in the experi-
ment. From top to bottom: adidas Mundial Team TF, 
adidas Copa Mundial FG, adidas adiPURE 3 TRX FG. 
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2.2.2. Cleat configurations

Three different soccer shoe models manufactured by adidas (adidas, Beaverton, OR, USA) 

were included in the experiment, each representing a typical cleat configuration (Figure 6):

adidas Mundial Team TF (turf cleats); adidas 

Copa Mundial FG (traditional round cleats); 

adidas adiPURE TRX FG (bladed cleats). 

All the shoes were from size 42 to 44 (US 

size 8½ to 9½). Further cleat configuration 

details are provided in Table 2. The right 

shoe of each pair was fitted with six semi-

spherical reflective markers, providing the 

ability to define the orientation of the shoe in space. The markers, one each at the heel and toe 

and the remaining four bilaterally 6 cm in from the heel and toe, respectively, were placed at a 

height of 5 cm from the bottom of the shoe, cleats included (Figure 7).

2.3. Experimental protocol

Testing was carried out over a period of approximately two months, in which every subject 

completed three separate days of testing; one for each turf system. Each day of testing con-

sisted of a self-regulated warm-up of ten minutes running on a treadmill (Woodway, 

Waukesha, WI, USA), a weight measurement, and 30 sprints with maximum effort, for a total 

of 1980 sprints across all subjects, turf systems, and cleat configurations. The sprints were 

divided evenly among two separate running tasks (Figure 5) performed alternately: a straight 

sprint with a rapid deceleration (termed “stop sprint”), in which the subjects were instructed to 

come to a complete stop within two steps after striking the designated contact area with their 

right foot; a sprint with a 90° cut to the left (termed “cut sprint”), in which the subjects were 

instructed to plant their right foot in the designated contact area and perform the aforemen-

tioned change of direction while maintaining velocity.

The subjects were allowed to familiarize themselves with both tasks before data col-

lection commenced. Sprints were performed in groups of ten for each cleat configuration,

comprising five for each running task. Rest periods of 30-45 s between each sprint and 

>2 min between groups of ten sprints were included to minimize fatigue. The sequences of 

turf systems, cleat configurations, and running tasks were all counterbalanced to avoid sys-

tematic order effects.

Figure 7. Placement of reflective markers on shoe 
(pictured: adidas adiPURE 3 TRX FG). 
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At the end of each day of testing, the subjects were asked to rank the shoes from 1 to 3 

(1 being the best) with regard to performance, comfort, and personal preference. If unable to 

distinguish two shoes from each other, they were both given the same rank at the opposite end 

of the scale of the one which could be distinguished from the others.

2.4. Data analysis

Both dynamic and kinematic signals were low-pass filtered at 100 Hz using an 8th order But-

terworth filter. If present, any offsets in the force data were adjusted. Gaps caused by missing 

kinematic data were interpolated. Body mass was determined as the mean of the three weight 

measurements. In an effort to diminish the effect of triggering the photo cells prematurely 

with an outstretched arm when running, approach velocity (vapp) was calculated from the final 

1.5 m of the in-run rather than the final 0.5 m (m·s-1). Across all subjects, 137 of 990 (13.8 %) 

stop sprint velocity files and 31 of 990 (3.1 %) cut sprint velocity files were discarded due to 

equipment error, evenly distributed among all shoe-surface combinations (mean number of 

files discarded was 15.2, range 9-20, and 3.4, range 1-6, respectively).

Impact was determined to occur when vertical force exceeded 2 SDs above the mean 

of baseline force (i.e., unloaded force plate). Impact absorption of turf systems and cleat con-

figurations was indicated by peak total impact (ftimp) relative to subject body weight (W), cal-

culated as

peak
timp

F
f

W
[1]

where Fpeak is the peak of the vector sum of vertical and horizontal force during impact. Time 

of contact (tcon) was defined as the duration of the impact period. Peak vertical impact (fvimp)

and traction (ftrac) force during impact were also determined relative to subject body weight 

(W), as

vpeak
vimp

F
f

W
[2]

and

hpeak
trac

F
f

W
[3]

respectively, where Fvpeak is peak vertical force and Fhpeak is peak horizontal force. The total 

change in velocity (m·s-1) during impact was calculated for both the initial running direction 

vrun vcut), as
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where Fh is horizontal force in the correspond t is sample time, m is subject 

mass, and N is number of samples. In the initial running direction, a negative change in veloc-

ity is indicative of braking. In the cutting direction, a positive change in velocity is indicative 

of acceleration.

Within the impact period, a 2 SD threshold (corresponding to the one used to deter-

mine the impact period) above toe and heel vertical position baselines was used to determine 

the temporal occurrence of full sole-surface contact (see paper II). The vertical position base-

lines were isolated to a period during which it could be assumed that the entire sole contacted 

the surface (25-60 % of impact time). The presence or absence of sliding of the shoe over the 

surface during full sole-surface contact was determined through linear regression, and, if pre-

sent, the angle of movement was determined. The entire coordinate system was then rotated a 

corresponding angle, redistributing the proportions of x and y component forces, such that the 

new x axis and sliding direction coincided. Traction coefficient ( ) was calculated during full 

sole-surface contact, as

1

1 N
h

i v i

F
N F

[5]

where Fh is horizontal force in sliding direction, Fv is vertical force, and N is number of sam-

ples. Sliding velocity (vslide) during full sole-surface contact was calculated as the mean veloc-

ity (cm·s-1). Both and vslide were deemed invalid if sliding of at least 3 mm (ten times the 

resolution) could not be demonstrated or if 90 % of the sliding movement present occurred 

prior to 40 % of full sole-surface contact time (thresholds determined through visual inspec-

tion). Across all subjects, 258 of 990 (26.0 %, mean number of files discarded across all shoe-

surface combinations was 28.7, range 16-44) cut sprint files were unable to provide a valid .

Transverse plane shoe angle ( ) during full sole-surface contact was calculated as the 

mean angle of shoe orientation relative to the angle of sliding. Shoe angle magnitude indicates 

the degrees of medial rotation relative to sliding direction. From positional data, displacement 

of the shoe during full sole- lslide) was determined as the displacement in cm 

in sliding direction. Across all subjects, 304 of 990 cut sprint files (30.7 %), evenly distributed 

among all shoe-surface combinations (mean number of files discarded was 33.8, range 21-46), 

either were unable to provide a valid or could not provide a suitable basis for determining 

shoe angle or shoe displacement due to missing data.
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2.5. Force magnitude test

To validate the experimental method chosen with regard to magnitude of force when placing a 

surface on top of the force plate, simultaneous measurements were conducted with the force 

plate under the surface and an Artificial Athlete device (FIFA 2009b) over the surface. For 

each turf system, five impacts were recorded, each at a different area of the turf system. For 

this purpose, data from both devices were low-pass filtered at 120 Hz using a 2nd order But-

terworth filter, in compliance with FIFA standards (FIFA 2009b).

2.6. Statistical analysis

All statistical analyses were performed in PASW Statistics 18 (SPSS, Inc., an IBM Company, 

Chicago, IL, USA), release 18.0.0. Statistical significance was set at p < .05. Where applica-

ble, data are presented as mean ± SD. Note that although several of the statistical analyses 

utilize estimated marginal means, arithmetic means are presented for ease of understanding, 

as they are close to identical.

The effects of turf system and cleat configuration on ftimp, tcon, fvimp, ftrac vrun, and 

vcut were assessed using two-way analyses of variance (ANOVA) for repeated measures, 

corrected for between-subject effects. Degrees of freedom were adjusted using the Huynh-

Feldt correction if sphericity could not be assumed. Where significant F-values were present, 

a post hoc LSD correction was applied.

The effects of turf system and cleat configuration on vapp, , vslide lslide were as-

sessed using linear mixed models, with turf system and cleat configuration set as fixed effects 

and accounting for intra-individual variance as a random effect, due to random missing values 

resulting from either equipment error (vapp) or a strict calculation process ( , vslide lslide). To 

better assess the main effects, non-significant interaction effects were removed from the anal-

yses where applicable.

The relationships between and across cleat configurations and turf systems, respec-

tively, were assessed using an analysis of covariance (ANCOVA), with as the covariate, 

cleat configuration and turf system as factors, and as the dependent variable. Linearity of the 

data was determined through ordinary least squares regression, while, due to the large sample 

size, normality was assumed if both kurtosis and skewness fell between -1 and 1. Levene’s 

test for equality of error variances supported homogeneity of variance (F8,677 = 1.08, 

p = .372). Any interaction term was removed and the model re-run if the factor-covariate in-

teraction was non-significant. Trials were treated as independent due to the within-subject 
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variation in and since neither exhaustion nor learning effects were expected between the 

first and last repetition within a specific combination of cleat configuration and turf system. 

Hence, subject and repetition were not included as fixed factors in the model. Missing data 

were deleted list-wise.

The subjective ranking of shoes was assessed using separate Friedman’s ANOVAs for 

performance, comfort, and personal preference, respectively. Where significant, Wilcoxon’s 

signed-ranks tests were performed post hoc to assess differences between shoes.
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3. SUMMARY OF RESULTS

Table 3 shows mean ± SD of all impact and traction variables across turf systems and cleat 

configurations, with the exception of the – relationship. Traction results are reported for 

cut sprints only. Across all cleat configurations, the mean vapp was 3.50 m·s-1 for stop sprints 

and 2.93 m·s-1 for cut sprints. In cut sprints, bladed cleats produced a marginally, but signifi-

cantly, slower vapp than both turf cleats and traditional round cleats. 

3.1. Paper I: Impact absorption

For stop sprints, the ftimp range was 2.94-3.18 W and the tcon range 170-194 ms across all shoe-

surface combinations. For cut sprints, the ftimp range was 2.77-3.01 W and the tcon range 326-

341 ms across all shoe-surface combinations. Mean ± SD ftimp and tcon for all shoe-surface 

combinations for both running tasks are presented in Figure 8.

Among turf systems, inferior impact absorption was demonstrated consistently on

DU50, with a greater ftimp and a shorter tcon in stop sprints and a shorter tcon in cut sprints com-

pared to both DU42 and DU60, between which the only difference was a longer tcon on DU42 

in stop sprints.

Among cleat configurations, a more ambiguous response was elicited. Traditional 

round cleats demonstrated a greater ftimp than turf cleats and bladed cleats in cut sprints, while 

bladed cleats demonstrated a shorter tcon in stop sprints, increasing progressively with tradi-

tional round cleats and turf cleats, respectively. In general, superior impact absorption was 

demonstrated with turf cleats.

Significant interactions were present only for tcon: the effect of cleat configuration was 

greater on DU60 in stop sprints and greater on DU42 in cut sprints; the effect of turf system 

was greater when using turf cleats in stop sprints and when using traditional round cleats in 

cut sprints.
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Table 3. Impact and traction variables across turf systems and cleat configurations (mean ± SD). Note that vari-

ables exclusive to traction are presented for cut sprints only. 

Running 

task 

Turf system (T)  DU42  DU50  DU60 

Cleat configuration (C)  Turf cleats  Round cleats  Bladed cleats 

vapp (m·s-1) Stop T 3.46 ± 0.52 3.50 ± 0.49 3.53 ± 0.58 

  C 3.51 ± 0.55 3.47 ± 0.52 3.50 ± 0.52 

 Cut T 2.92 ± 0.36 2.93 ± 0.34 2.94 ± 0.37 

  C * 2.97 ± 0.35 b 2.94 ± 0.35 b 2.89 ± 0.37 

tcon (ms) Stop T ***  191 ± 45 a b  175 ± 36 b  185 ± 46 a 

  C ***  189 ± 47 a b  183 ± 44 b  179 ± 36 a 

 Cut T **  337 ± 74 a  328 ± 76  335 ± 73 a 

  C  333 ± 76  333 ± 73  333 ± 75 

ftimp (W) Stop T ** 3.01 ± 0.74 a 3.12 ± 0.81 3.02 ± 0.75 a 

  C 3.01 ± 0.76 3.06 ± 0.77 3.08 ± 0.77 

 Cut T 2.89 ± 0.60 2.93 ± 0.64 2.88 ± 0.60 

  C *** 2.84 ± 0.54 a 2.99 ± 0.68 2.87 ± 0.61 a 

fvimp (W) Stop T ** 2.88 ± 0.66 a 3.01 ± 0.76 2.91 ± 0.70 a 

  C * 2.87 ± 0.69 a b 2.96 ± 0.72 2.97 ± 0.72 

 Cut T 2.49 ± 0.54 2.54 ± 0.59 2.51 ± 0.55 

  C *** 2.42 ± 0.48 a b 2.62 ± 0.62 b 2.51 ± 0.56 a 

ftrac (W) Cut T * 1.61 ± 0.38 b 1.61 ± 0.35 b 1.57 ± 0.34 

  C *** 1.63 ± 0.38 b 1.60 ± 0.36 b 1.56 ± 0.33 

 (-) Cut T 0.65 ± 0.07 0.65 ± 0.07 0.65 ± 0.07 

  C 0.66 ± 0.07 0.65 ± 0.07 0.65 ± 0.07 

vrun (m·s-1) Cut T ** -1.98 ± 0.36 a -1.94 ± 0.30 -1.98 ± 0.36 a 

  C * -1.98 ± 0.34 b -1.97 ± 0.34 b -1.95 ± 0.35 

vcut (m·s-1) Cut T *** 1.90 ± 0.37 a b 1.84 ± 0.34 1.83 ± 0.34 

  C ** 1.88 ± 0.34 b 1.86 ± 0.37 1.84 ± 0.34 

vslide (cm·s-1) Cut T 6.69 ± 4.21 7.56 ± 5.03 7.02 ± 4.25 

  C *** 6.69 ± 3.95 a 7.66 ± 5.05 6.77 ± 4.30 a 

lslide (cm) Cut T 1.34 ± 0.59 1.34 ± 0.64 1.33 ± 0.59 

  C *** 1.29 ± 0.56 a 1.46 ± 0.65 1.24 ± 0.58 a 

* Significant differences between turf systems/cleat configurations (* p < .05; ** p < .01; *** p < .001). 
a Significantly different from DU50/round cleats. 
b Significantly different from DU60/bladed cleats. 
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Figure 8. Left: mean ± SD peak total impact (W) for all shoe-surface combinations for stop sprints (A) and cut 
sprints (B). Impacts were significantly greater on DU50 in stop sprints and with traditional round cleats in cut 
sprints. Right: mean ± SD contact time (ms) for all shoe-surface combinations for stop sprints (A) and cut sprints 
(B). Contact time differed between all turf systems and cleat configurations in stop sprints and was shorter with 
traditional round cleats in cut sprints. 

3.2. Paper II: Traction

Across all shoe-surface combinations, the ftrac range was 1.55-1.68 W and the range 0.64-

0.66. Mean ± SD ftrac and time normalized traction coefficient traces for all shoe-surface com-

binations are presented in Figure 9 and Figure 10.

Among turf systems, DU42 consistently demonstrated higher traction, with greater ftrac

vrun vcut than both DU50 and DU60. For vslide,

fvimp, and , no significant differences between the three turf systems were discovered.

Among cleat configurations, turf cleats consistently demonstrated higher traction, with 

greater ftrac vrun vcut than bladed cleats and slower vslide than traditional round cleats. 

Bladed cleats consistently demonstrated the opposite effect, with lesser ftrac vrun than turf 

vcut than turf cleats, the lone exception being 
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vslide. Traditional round cleats produced the 

greatest fvimp, decreasing progressively with 

bladed cleats and turf cleats, respectively. 

Only remained unaffected by cleat config-

uration, although a tendency was observed 

for greater with turf cleats.

For vslide and ftrac, significant interac-

tions were also present: the effect of cleat 

configuration on vslide was lesser on DU42 

and the effect of turf system on vslide was 

greater when using traditional round cleats; 

the effect of cleat configuration on ftrac was 

lesser on DU60 and the effect of turf system 

on ftrac was lesser when using bladed cleats.

Figure 10. Mean ± SD time normalized traction coefficient traces for all shoe-surface combinations. No signifi-
cant differences in mean traction coefficients between turf systems or cleat configurations were present. 

Figure 9. Mean ± SD traction force (W) for all shoe-
surface combinations for cut sprints. Traction force 
was significantly lesser on DU60 and with bladed 
cleats. 
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3.3. Paper III: The relationship between traction and shoe angle

A significant positive – relationship was discovered (F1,680 = 57.46, p < .001), with a pre-

dicted increase in of .0017 per degree of (medial rotation). The relationship, presented in 

Figure 11, did not differ across cleat configurations (F2,680 = 1.29, p = .277) or turf systems 

(F2,680 = 0.05, p = .950). Th lslide range was 1.24-1.46 cm across cleat configurations and 

1.33-1.34 cm across turf systems. lslide than turf 

cleats and bladed cleats, but no differences between turf systems were found. Across all shoe-

s lslide was 1.33 ± 0.60 cm.

Figure 11. Significant relationship between traction coefficient ( ) and shoe angle ( ) for all turf systems and 
cleat configurations. The slope of the regression line is .0017. 

3.4. Subjective ranking of shoes

Table 4 shows mean ± SD subjective ranking of shoes for performance, comfort, and personal 

preference across cleat configurations (unpublished). Bladed cleats were ranked significantly 

higher than turf cleats for performance (z = –2.83, p = 0.005) and personal preference 

(z = 2.95, p = 0.003). There was a tendency for bladed cleats to rank higher than traditional 

round cleats as well for both performance (z = –1.92, p = 0.055) and personal preference 

(z = 1.90, p = 0.058). No significant differences in ranking of shoes with regard to comfort 

were discovered.
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Table 4. Subjective ranking (1-3) of shoes (mean ± SD). 

 Turf cleats Round cleats Bladed cleats df 2 P value 

Performance 2.34 ± 0.78 2.09 ± 0.84 1.65 ± 0.74* 2 6.49 0.038 

Comfort 1.73 ± 0.85 2.26 ± 0.77 2.03 ± 0.78 2 4.49 0.105 

Personal preference 2.36 ± 0.74 2.15 ± 0.85 1.62 ± 0.78* 2 8.58 0.012 

* Significantly different from turf cleats.
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4. DISCUSSION

Detailed discussions on the degree to which impact and traction are affected by turf systems, 

cleat configurations, and – in the case of traction – shoe angles are presented in papers I-III. 

Hence, the following discussion is rather focused on providing a “big picture” view, high-

lighting how the variables are connected and what the possible implications of the results are 

when placed in a larger framework, as well as a broader perspective on methodological con-

siderations when conducting experiments on 3G turf.

4.1. Methodological considerations

Although the element of striving to conduct the perfect experiment is ever-present in research, 

it is rarely, if ever, feasible. Quite often, time constraints or financial constraints – or a com-

bination of the two – force the necessity of making certain choices potentially narrowing the 

scope or basis of comparison of the research (even with unlimited resources it is debatable 

whether or not a perfect experiment is achievable).

4.1.1. Man versus machine

In essence, the methods employed in artificial turf research boils down to the age-old argu-

ment of man versus machine. As previously mentioned, new adaptations of mechanical test-

ing devices are seemingly continually developed with the purpose of reproducing human 

movement more accurately than their predecessors. A major limitation of most current me-

chanical devices is the application of a constant, static load. Considering the innate ability of 

humans to adjust loading conditions, these fixed energy devices are contended to represent an 

insufficient replication of actual surface-athlete loading conditions and may produce invalid 

interpretations (Fleming 2011a).

In an effort to solve one of the main problems encountered by purely translational or 

rotational mechanical devices when attempting to replicate realistic movements and corre-

sponding loads occurring at the shoe-surface interface, a device capable of executing a com-

bined drop and translational movement has recently been developed (Kent et al. 2012). Its 

intention is to mimic a landing with a subsequent cutting move. Mechanical devices such as 

this have to be viewed as a step in the right direction with regard to replicating genuine athlet-

ic movement. However, despite managing to incorporate vertical and horizontal velocity sim-

ultaneously, some problems persist with the suggested method of combined movement. In a 
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drop, the mass is subject only to gravitational forces, meaning there is no active adjustment of 

force during impact; it is completely passive. During impact, horizontal force is only arrested 

by the shoe-surface interaction, meaning there is no active force working in the direction of 

movement after impact; it too is passive. These factors make it difficult to consider the device 

representative of dynamic movement.

The device uses a mass of 42 kg and a horizontal velocity 1.5 m·s-1, achieving a target 

peak impact force of approximately three times body weight (~3000 N, target athlete mass 

95 kg). This adheres to the American Society for Testing and Materials (ASTM) standard 

F2333-04, “Standard test method for traction characteristics of the athletic shoe-sports surface 

interface”, which specifies a normal load of 3000 N for replicating stopping movements and 

2200 N for replicating cutting movements, along with a minimum sliding velocity of 

30 cm·s-1 for reporting traction coefficients (Kuhlman et al. 2009). Results from paper II show 

that, using human subjects, relative impacts of a similar magnitude (i.e., three times body 

weight) were obtained with a mean mass of 77.5 kg and mean horizontal velocities of 

3.50 m·s-1 and 2.93 m·s-1. The fact that approximately twice the mass and horizontal velocity 

uncovered similar relative impacts indicates that athletes actively affect the forces in genuine 

movement. This is an important factor which seemingly cannot, at least to date, be replicated 

with mechanical devices.

Even with the constant development of mechanical devices, paramount to large-scale 

testing, there is still a long way to go toward reaching the ideal of accurately reproducing sur-

face-athlete interactions under realistic, dynamic load conditions. In fact, this might not even 

be attainable considering the uncertainty regarding the specifics of the dynamic behavior ex-

hibited by athletes.

4.1.2. Disregarding grass

Lying at the heart of almost every topic related to artificial turf is the conflict of how it 

measures up to grass. For laboratory experiments concerned with mechanical surface charac-

teristics, a range of 3G turfs would ideally be compared against a range of grass fields, allow-

ing for a direct comparison of the two surface types. However, while a turf system can be sep-

arated by layers (Figure 2) there is no standard for, e.g., the amount of soil that should be in-

cluded under the surface when performing experiments on grass. This is not to say that the 

task is impossible. Instances of grass being successfully introduced in a laboratory setting do 

exist (Smith et al. 2004; Stiles et al. 2006), but it is difficult to ascertain their validity with 

regard to in situ conditions. Regardless, the concept of using grass as a benchmark for com-
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parison appears somewhat flawed, as the characteristics of different species vary widely (Or-

chard & Powell 2003) and it is highly variable between different climates and regions, even to 

the point of inconsistencies between different parts of the same field (Ekstrand & Nigg 1989; 

Stanitski et al. 1974; Theobald et al. 2010). This forces the issue of basically being limited to 

comparisons between different turf systems.

4.1.3. Surface-covered force plate

The setup employed in the current experiment, affixing a surface (such as 3G turf) to a force 

plate, has been criticized for its alleged inaccuracy, as it purportedly alters the data registered 

by the force plate (Pedroza et al. 2010). Synchronous measurements with the force plate and 

an Artificial Athlete device (FIFA 2009b) revealed that, across all turf systems, the mean peak 

force registered by the force plate (underneath the surface) was 98.7 ± 1.2 % (range 98.0-

99.8 %) of that registered by the Artificial Athlete (above the surface). In addition, force pro-

files failed to display signs of being distorted with regard to shape for any of the turf systems. 

Concerning the validity of the general magnitude of force registered, the experimental condi-

tions are similar to what athletes are subjected to on regular 3G turf fields, where the turf sys-

tem is installed over a number of fairly hard base layers with purposes such as drainage and 

leveling.

4.1.4. Turf systems

The three turf systems used in this experiment only represent a segment of what is obtainable 

on the market since they all come from the same manufacturer. Nevertheless, they do largely 

cover what is in extensive use across manufacturers today, both at the professional (DU42 and 

DU60) and the recreational (DU50) level.

Perhaps due to the industry being comparatively smaller and hence the alternatives 

fewer, research done on 1G and 2G turf rarely emphasized the particular surface employed. 

Unfortunately, the problem of insufficient surface specifics, previously mentioned with regard 

to population-based studies, was apparently carried over into both mechanical device studies

and biomechanical studies on 3G turf. This has yet to be fully resolved, as there is still re-

search being published where the surface in question is simply referred to as “3G turf” or by 

brand name alone without any further specification (Cawley et al. 2003; Kuhlman et al. 2009). 

Although the level of detail tends to be much greater than the gross label of “artificial turf” 

commonly employed in population-based studies, the information provided on the turf sys-

tems tested often leaves a lot to be desired, in some cases possibly caused by manufacturers’ 
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unwillingness to divulge this information (Theobald et al. 2010). This is especially devastat-

ing in such a, relatively speaking, small field of research, as it leaves few direct comparisons 

between studies. To counteract this problem and make future comparisons easier, a conscious

effort was made in the current work to present turf system specifications as detailed as possi-

ble.

4.1.5. Cleat configurations

Since the cleat variations in existence today can appear almost limitless, a deliberate choice 

was made to exclude any cleat configuration which, at the time of the experiment, could be 

considered a potential novelty. Hence, the cleat configurations that were included represent 

the major categories in most common use, with a seemingly secure position in the market. 

Despite the existence of inter-brand variations (e.g., bladed cleats from one brand do not nec-

essarily have the exact same shape as bladed cleats from another brand), the cleat configura-

tions of the shoe models chosen provide a good baseline for comparison due to their classic 

cleat shapes within their respective categories.

In the current experiment, adidas Copa Mundial FG was initially chosen as it is, where 

applicable, the market-available shoe of choice for FIFA testing (FIFA 2012b). To ensure the 

shoes were as similar as possible with the exception of their cleat configurations, its artificial 

turf-counterpart, adidas Mundial Team TF, was a natural choice. Unfortunately, a correspond-

ing version of the shoe with bladed cleats does not exist, forcing the need to settle for the next 

best thing in adidas adiPURE TRX FG, being the shoe model with bladed cleats closest to the 

general make-up of adidas Copa Mundial FG as per adidas Norway (personal communication, 

September 3, 2010).

4.1.6. Determining impact force

Although the standard for describing surface-athlete impacts has generally been vertical force, 

total impact force (i.e., vector sum of vertical and horizontal force) is rather reported from the 

current experiment in an effort to more completely reflect the load imposed on the athlete. 

However, vertical impact is presented in paper II as it may aid in the interpretation of the trac-

tion coefficient. Note that peak vertical impact can only be used indirectly to understand the 

traction coefficient, considering the latter is not derived directly from peak values of vertical 

and horizontal force. Across turf systems and cleat configurations, relative impacts increased 

by 3.7 % (range 3.4-4.9 %) in stop sprints and 15.5 % (14.1-17.4 %) in cut sprints with the 

inclusion of horizontal force.
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4.1.7. Determining traction coefficient

Contrary to the FIFA standardized tests, the traction coefficient has not been an uncommon 

measure from various adapted mechanical devices, recognizing its importance for describing 

functional traction. However, although the general calculation of the traction coefficient (the 

ratio of horizontal force to vertical force) is devoid of controversy, a variety of methods for 

reaching a single value to denote it can be found in the literature, some complicating interpre-

tation more than others. Examples of determining the traction coefficient at peak traction 

force (Newton et al. 2002), at peak vertical force (Lloyd & Stevenson 1990), as the peak static 

coefficient (Wannop et al. 2012), as the peak coefficient found (Wannop et al. 2010), as the 

mean coefficient during initial motion (Shorten et al. 2003), and as the mean coefficient dur-

ing constant velocity (Kuhlman et al. 2009; Sabick et al. 2009) all exist, whereas others simp-

ly omit further details altogether (Andréasson et al. 1986; Bowers & Martin 1975; Severn et 

al. 2011). 

In the current work, a novel method was employed in an effort to quantify the transla-

tional traction at the shoe-surface interface, by means of the traction coefficient, as accurately 

as possible. Since the dynamic traction coefficient is dependent on sliding of the shoe over the 

surface, this was set as a requirement. Peak vertical force is generally gained later than peak 

horizontal force, making the traction coefficient, derived from the relationship of horizontal to 

vertical force, artificially large in the initial stages of shoe-surface contact (Fong et al. 2009). 

As part of isolating the sliding period, this initial contact was excluded. Traction coefficients 

calculated from sprints where sliding could not be demonstrated did not appear to differ from 

the remaining traction coefficients, hence it could probably be argued that these are equally 

valid, with the problem situated in the method used for determining movement. However, 

only sprints where sliding of the shoe over the surface could be established with certainty 

were included in the statistical analysis. Further, only the component of horizontal force 

working in the same direction as the sliding movement was used, removing the contribution 

of other forces not providing resistance to the final traction coefficient. Lastly, to quantify the 

traction coefficient, the mean value during sliding was used. As discussed in paper II, there 

exists no consensus on how to most accurately report traction coefficients, leaving any meth-

od chosen ripe for criticism. Due to the inherent variation present in human-induced force, the 

traction coefficient over a period of time will necessarily contain fluctuations diminishing the 

accuracy of selecting a specific point in time to denote the surface-athlete interaction that is 

occurring (see paper III for graphical presentation). This does not mean that the behavior of 

the traction coefficient is completely random, but more so it represents a natural limit to the 
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precision with which the traction coefficient can be established. By using the mean value the 

interaction over the entire period, also accounting for the effect of the peak, is reflected in the 

traction coefficient.

This could all be considered moot, as the entire premise of utilizing a traction coeffi-

cient has been criticized for relying upon a linear relationship between vertical and horizontal 

force that does not exist (Kent et al. 2012). Based on tests with a mechanical device it is fur-

ther concluded that the traction coefficient is an unsuitable measure due to its highly transient 

nature. However, as shown in paper II, the transient nature of the traction coefficient might 

not always be as pronounced as assumed, indicated by both the magnitude and the stability of 

SDs over the course of shoe-surface interaction (Figure 10). Hence, as discussed both in the 

current thesis and in paper III, it is possible to obtain traction coefficients that adequately re-

flect the shoe-surface interaction occurring. In addition, a separate regression analysis (un-

published) revealed the existence of a linear relationship (F1,988 = 460.36, p < .001) between 

relative body weight (vertical force, fvimp) and traction force (horizontal force, ftrac).

4.2. Magnitude of force and what it means for injuries

At the core of the alleged greater injury risk on artificial turf is the excessive magnitude of 

force an athlete will encounter when interacting with the surface. As mentioned earlier, both 

impact and traction must achieve a balance between being excessive with regard to injuries 

and being insufficient to the point of being detrimental to performance.

Excessive impacts, although potentially beneficial for energy reutilization during run-

ning, are widely assumed to be related to injuries (Bentley et al. 2011; Cole et al. 1996; Eils et 

al. 2004; Meijer et al. 2006; Queen et al. 2008) despite the lack of an established cause-effect 

relationship (Derrick 2004; Frederick 1986; Nigg & Yeadon 1987; Smith et al. 2004; Stiles &

Dixon 2007). However, it is important to remember that this assumption has not been refuted 

either, its persistence likely derived from existing knowledge of the structural limitations of 

the human body. Albeit outside the scope of the current work, it is worth mentioning that sub-

stantially different views also exist, with the proposed paradigm that impact forces are related 

to muscle tuning rather than being important in an injury perspective (Nigg & Wakeling

2001).

Excessive traction may cause injuries as a result of the shoe being temporarily fixed to 

the surface. Conversely, insufficient traction will lessen the likelihood of shoe fixation. Grant-

ed, insufficient traction may be hazardous in its own right by disposing athletes to injuries 
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caused by slipping, but these will normally be regarded as less severe. Although potentially 

hazardous, excessive traction can in some instances even be beneficial for performance, mak-

ing rapid changes of direction easier to accomplish at high speeds. In theory, the main dilem-

ma that presents itself is that athletes are essentially forced to choose between performance 

and safety. Taking factors beyond the athletes’ control into account, such as both home and 

away game surface and shoe sponsor deals entered into by team management, they may not 

even be given the choice.

4.2.1. Surface-athlete impact

The impacts presented in paper I, comprising a range of magnitude of approximately 2.8-

3.2 W, generally correspond well with typical impact forces of 2-3 times body weight found in 

both running (Frederick 1986; Nigg & Wakeling 2001) and sports specific movements (Stiles 

& Dixon 2006). Compared to previous in vivo experiments on 3G turf, producing a range of 

impacts of 2.3-2.6 times body weight for both running (Meijer et al. 2006; Müller et al. 2010) 

and cutting (Müller et al. 2010; Queen et al. 2008), they are slightly higher, albeit not alarm-

ingly so.

There are several reasons for this apparent increase from previous 3G turf experi-

ments, the most notable of which is the choice to utilize total force rather than just vertical 

force, which is more common, to denote the impact. Whereas the range of ftimp across turf 

systems and cleat configurations was 2.9-3.2 W for stop sprints and 2.8-3.0 W for cut sprints, 

the range of fvimp was 2.8-3.1 W for stop sprints (unpublished) and 2.4-2.6 W for cut sprints 

(paper II). Although stop sprints generally produced impacts of higher magnitudes than cut 

sprints regardless of calculation method, the difference between the two running tasks was 

greater when only vertical force was considered. Not surprisingly, the inclusion of horizontal 

forces had more of an effect on impact force in cut sprints than in stop sprints. A likely reason 

for the comparatively high impacts in stop sprints with both calculation methods is the nature 

of the task. It is fair to assume that sudden changes in acceleration, such as a sprint with an 

abrupt stop – a movement commonly utilized in both soccer and football – will produce im-

pact forces that are not consistent with those achieved during continuous running (Stiles &

Dixon 2006). In theory, this should hold true also for cutting movements, which it does when 

considering ftimp. However, the magnitudes of fvimp in cut sprints were similar to those found in 

previous experiments on both running and cutting. A probable explanation is that the propor-

tion of horizontal force is greater in cut sprints due to the necessity of working akin to cen-

tripetal force, leaving a smaller proportion of vertical force. Finally, the equipment used to 
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gather impact forces might also be a factor, since pressure insoles generally register lower 

forces than force plates (Barnett et al. 2001).

The ftimp presented in paper I was slightly higher than what has previously been deter-

mined on 3G turf, while the fvimp presented in paper II and in the current thesis was quite simi-

lar. Compared to the typical impact of 2-3 times body weight during running, which usually 

considers vertical force only, there is nothing in the current work to indicate that the 3G turf 

systems employed expose athletes to any excessive danger with regard to impacts.

4.2.2. Shoe-surface traction

No optimal level of traction for performance or safety has been determined to date, but the 

presented in paper II, approximately 0.65 across turf systems and cleat configurations, corre-

spond to the lower end of the spectrum (0.5-1.2) of what has previously been recommended to 

ensure the ability to perform athletic movements (Frederick 1993; Lloyd & Stevenson 1990; 

Nigg & Segesser 1988; Pedroza et al. 2010; Valiant 1993). Traction coefficients beyond the 

recommended range are generally considered unnecessary at best and hazardous at worst. 

Interestingly, on 3G turf, results from mechanical device tests are more often than not indica-

tive of theoretically hazardous conditions, producing traction coefficients of 0.6-0.8 (Wannop 

et al. 2012), 1.2 (Sabick et al. 2009), 0.8-1.3 (Shorten et al. 2003), and 1.3-1.4 (Severn et al. 

2011). In contrast, an experimental setup similar to the one employed in the current work 

yielded lower force ratios (relationship of peak horizontal force and peak vertical force) of 

0.56-0.57 (Sterzing et al. 2010).

For the positive relationship that was observed between and , the predicted increase 

in for every degree of medial rotation was .0017. This means that, according to the model, 

for every 30° of rotation, increases by ~.05, in theory corresponding to an additional traction 

force of .05 times body weight. The majority of measured spanned a range of ~60°, making 

the total increase in ~.1. When viewed in conjunction with the range of previously recom-

mended traction coefficients, a change of ~.1 does not appear likely to have any meaningful 

effect on the traction force working against the athlete. This is especially true when the mag-

nitude of discovered in the current work is considered, in no way indicating that the 3G turf 

systems employed expose athletes to any excessive danger with regard to traction. 

Unfortunately, there is not a lot of data on 3G turf in the existing literature that allows 

for direct comparison to the ftrac presented in paper II, which was of a magnitude of approxi-

mately 1.6 W across both turf systems and cleat configurations. However, taking the typical 
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magnitude of fvimp and the relatively low into account, there is nothing to suggest that ftrac is 

particularly high.

4.3. Interpreting the interaction between impact and traction

Whereas the interpretation of impacts can often be considered more or less straightforward, 

the interpretation of traction is potentially a more difficult task due to the fact that it is inher-

ently influenced by the normal load. This might be more of a clouding issue in mechanical 

testing; even though the load is not only predetermined but also constant, there is no discerni-

ble pattern between load and traction coefficient at loads under 900 N (Sabick et al. 2009; 

Severn et al. 2011; Shorten et al. 2003; Wannop et al. 2012), while a negative relationship has 

been identified at loads above 900 N (Kuhlman et al. 2009). For in vivo experiments the 

equivalent to the normal load is the magnitude of impact. As such, for genuine athletic 

movement, the traction coefficient, comprised of both impact force and traction force, pro-

vides possibly the most accurate representation of functional traction.

It has been argued that the traction coefficient fails to provide information on the mag-

nitude of forces involved (Kent et al. 2012). If viewed in isolation, this is true. To relate the 

traction coefficient to magnitude of force, it should be interpreted in light of the impact occur-

ring. However, for certain movements, such as running, we can generally predict the approx-

imate magnitude of this based on previous research (Frederick 1986; Nigg & Wakeling 2001). 

Hence, if body mass is included, a traction coefficient can provide useful information on the 

magnitude of forces as well, on the condition of trust in the linearity between vertical force 

and horizontal force presented earlier (chapter 4.1.7).

Further, it is important to note that there may be instances where the relationship be-

tween forces is of greater interest than the magnitudes. For a given movement, we can assume 

with a fair degree of confidence that the impact forces involved normally will be within a cer-

tain range. Thus, a high traction coefficient will indicate high traction force. This might make 

the need for a traction coefficient seem counter-intuitive, since traction force is already a part 

of the traction coefficient and could therefore be presented outright. However, due to their 

relation, the magnitude of traction force provides information of limited usefulness if we do 

not know the magnitude of the impact. Hence, the traction coefficient provides a measure of 

functional traction, accounting for the magnitude of the impact. That is not to say that traction 

force is not an important determinant of surface or shoe properties, but it does not fully reflect 

the interaction taking place between surface and athlete. The relationship reflected in traction 
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coefficients also allows for comparisons across different normal loads or impacts, making it a 

useful tool considering the variety of mechanical devices and their continual development.

Naturally, when utilizing total force to denote the impact experienced by an athlete, 

this interaction works in the opposite manner as well, with horizontal force inevitably influ-

encing impact force. The effect of traction on impact, although often understated, is deserving 

of attention, considering the notion that the degree of sliding allowed by a surface during im-

pact is related to its ability to absorb force (Stiles & Dixon 2007). This relationship is not evi-

dent from the results presented in paper II, showing fvimp to be similar for all turf systems 

while ftrac is lower on DU60 than the other turf systems. Interestingly, the magnitudes of fvimp

and ftrac do coincide for traditional round cleats, with both situated at the high end of the com-

parison, but no pattern is evident for turf cleats and bladed cleats. However, the general theory 

might not be applicable to cleat configurations as much as it is to surfaces. The possibility 

exists that these variables must be viewed at trial-by-trial level in order to detect the presence 

of coinciding relative magnitudes of force, but if there was any consistency, the same pattern 

should be found at group level. A potential reason for the lack of any consistent pattern is the 

multitude of factors seemingly able to affect the relationship between traction and impact 

force; in the literature, normal load (Kuhlman et al. 2009; Lloyd & Stevenson 1990; Valiant 

1993), body mass (Pedroza et al. 2010), surface properties (Nigg & Yeadon 1987; Severn et 

al. 2011; Shorten et al. 2003; Wannop et al. 2012), shoe sole properties (Kuhlman et al. 2009;

Nigg & Yeadon 1987; Shorten et al. 2003; Wannop et al. 2010), transverse plane shoe angle 

(Sabick et al. 2009), shoe-surface contact area (Valiant 1993), and velocity (Andréasson et al. 

1986; Lloyd & Stevenson 1990; Nigg & Yeadon 1987) have all been identified to influence 

the traction coefficient.

4.4. The relative effects of turf system and cleat configuration

Even though the magnitudes of neither impact nor traction appeared to reach presumably haz-

ardous levels in the current work, differences between turf systems and cleat configurations 

with regard to both impact absorption properties and traction properties were still present.

As detailed in paper I, DU50, the turf system intended for recreational-level use, gen-

erally demonstrated less impact absorption than DU42 and DU60, its two professional-level 

counterparts. While this was not a surprising outcome, it is still, despite the relatively low 

absolute magnitude also on DU50, an important observation that might be worth keeping an 

eye on as the development of artificial turf progresses. With media attention often focused on 
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the professional level, it is important to remember the vast number of athletes potentially af-

fected at the recreational level. In the current experiment, all three turf systems had the same 

infill type, namely ambient ground SBR, effectively removing supposed high-level infill types 

that are synthetically manufactured with sports application in mind as the cause for greater 

impact absorption on the professional-level turf systems. Regardless, previous research has 

shown impact absorption to be unaffected by infill type, with no differences being detected 

between SBR and TPE (Meijer et al. 2006). The results from the current work, as argued in 

paper I, indicate that the presence or absence of an underlying shock pad seems likely to be 

the main determinant of impact absorption, more so even than the height, and corresponding 

infill amount, of the turf system.

Infill amount might play a more pivotal role in influencing traction, as evidenced by 

the lower rotational traction found on 3G turf than on 2G turf (Shorten et al. 2003). The infill 

depth on 3G turf, much greater than that of its predecessor, allows for a greater degree of 

physical displacement of surface components, not unlike grass where the soil undergoes semi-

permanent deformation when subjected to large forces. As detailed in paper II, lower traction 

measures were consistently found on DU60, the turf system with the greatest infill amount. In 

theory, a greater infill amount should facilitate compaction, increasing traction (Severn et al. 

2010; Severn et al. 2011). However, the current experiment was conducted on newly installed 

3G turf, continuously maintained throughout data collection. Hence, the infill was never al-

lowed to compact, resulting in DU60 actually providing the greatest potential for infill dis-

placement. In line with this, DU42, the turf system with the lowest amount of infill to dis-

place, consistently proved to be at the high end of the turf system comparisons across various 

measures of traction, lending support to the theory that a decreased potential for infill dis-

placement (as is the case with compaction) might increase traction. The consistently loose 

state of infill across all turf systems could also contribute to the lack of effect on the –

relationship, as discussed in paper III.

The results presented in the current work are all based on ambient ground SBR, which 

might be an important factor since it has previously been identified to produce lower rotation-

al traction than cryogenically processed SBR (Villwock et al. 2009b). It is unknown whether 

or not this difference is transferable to translational traction, but the proposed explanation, 

being that cryogenically processed SBR results in a finer particle which facilitates compaction 

and increases cleat-surface contact, provides no fundamental reason why it should not be. Due 

to the continuous turf system maintenance in the current experiment, ensuring similar condi-

tions for all combinations of turf system, cleat configuration, and subject, interpretation of the 
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results in light of turf system compaction is limited to theoretical compaction potential based 

on what has previously been quantified (Severn et al. 2010; Severn et al. 2011).

The differences between turf systems presented in paper I and paper II clearly illus-

trate the importance of not reducing the scope of artificial turf research to comparisons with 

grass. Although seemingly often forgotten, perhaps increasingly so with regard to grass, varia-

tions in surface properties exist within both groups. Hence, especially in research, care must 

be taken not to treat 3G turf (or grass, for that matter) as one uniform group with identical 

properties. That being said, when selecting the components of a 3G turf system, ambient 

ground SBR seems to be a perfectly adequate alternative regardless of level of play, providing 

suitable magnitudes of impact absorption and translational traction with regard to both safety 

and performance. Note that this does not take into account potential environmental aspects, 

which are outside the scope of the current work (but should remain an important factor in the 

decision-making process).

Although undoubtedly a factor, surface properties alone do not dictate impact absorp-

tion or traction. Shoes, acting as a necessary link between surface and athlete during competi-

tion at all levels, play an important role as well. Results from paper I indicate that turf cleats 

generally provide greater impact absorption than traditional round cleats and bladed cleats, a 

discovery which is also present, although only of secondary interest, through fvimp in paper II. 

It is conceivable that the cause is unrelated to the cleat configuration itself, rather being a re-

sult of a more extensive shoe sole construction than what is typically found in shoes with

more aggressive cleat configurations (Figure 6), a parallel of sorts to the effect of an underly-

ing shock pad.

Interestingly, as shown in paper II, turf cleats also generally produced higher traction 

measures than traditional round cleats and bladed cleats. This discovery is strengthened by the 

tendency for a higher with turf cleats. At the other end of the spectrum, bladed cleats con-

sistently produced the lowest values across various measures of traction. This goes against 

what has come to be regarded as conventional wisdom, only in part aided by objective re-

search (Kuhlman et al. 2009; Villwock et al. 2009b). The expected greater traction with blad-

ed cleats is usually attributed to the relatively sharp cleat shape coupled with a large cleat sur-

face area, which is a potential influence on rotational and translational traction alike. Despite 

certain traction-related differences between cleat configurations, they all, somewhat surpris-

ingly, responded in similar fashion to varying degrees of transverse plane rotation, as detailed 

in paper III. A potential clue to why vastly different cleat configurations did not appear to be 

affected by shoe angle is the low coefficient of determination of the – relationship 
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(R2 = .086, unpublished), a “byproduct” of the ANCOVA model. It indicates that only 8.6 % 

of the variation in can be explained by the variation in , perhaps signifying that shoe angle, 

and within it cleat surface area working against the resistance of the turf system, is not as im-

portant for traction as theoretically assumed. This could be related to the limited cleat dis-

placement or, as mentioned previously, the loose state of turf system infill. However, a more 

likely explanation for the low coefficient of determination is simply that it reflects the large 

number of trials and high level of variation in the data combined with a relatively small slope. 

This does not compromise statistical inferences, but caution should be practiced when using 

the model to predict at an individual level.

When considering recommendations for athletes, it is important to recognize that 

across all shoe-surface combinations, , the measure of functional traction, remained almost 

identical despite differences in several traction-related properties between turf systems (ftrac,

vrun vcut) and between cleat configurations (ftrac, fvimp, vslide vrun vcut). As argued 

in paper II, this does not mean that the differences that were uncovered are not indicative of 

actual variations between turf systems or cleat configurations, but rather introduces a human 

element, opening up for the possibility that undesirable traction conditions are adjusted for in 

an effort to maintain a specific level of performance and/or safety. Athletes have previously 

been noted to have a notion – nonspecific in nature – of desired traction (Stanitski et al. 1974), 

supporting the idea that they might subconsciously, based on past experience, alter certain 

variables to achieve the desired result. Considering the variety of factors previously deter-

mined to affect the traction coefficient, it seems logical to assume that it is not determined 

exclusively by material properties, but rather is dependent on human behavior.

4.4.1. Assumed culprit: surface or shoes?

Based on the current work, it is difficult to discern whether turf system or cleat configuration 

has a greater potential effect on injuries than the other. As presented in paper I, both turf sys-

tem and cleat configuration influenced impact absorption. The same was true for traction, 

presented in paper II, although a greater number of traction variables were affected by cleat 

configuration than by turf system. The results from paper II also revealed a tendency for cleat 

configuration to affect , whereas no such tendency was present for turf system. However, to 

counter this, a tendency to affect the – relationship was present only for turf system in the 

initial model used in paper III (unpublished), effectively rendering the previous argument 

moot.
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Total injury occurrence is largely similar between 3G turf and grass (Aoki et al. 2010; 

Bjørneboe et al. 2010; Ekstrand et al. 2006; Ekstrand et al. 2011; Fuller et al. 2007a; Fuller et 

al. 2007b; Fuller et al. 2010; Soligard et al. 2012; Steffen et al. 2007). Supporting this, results 

from in vivo studies on 3G turf, including those presented in paper II, do not indicate hazard-

ous levels of traction (Sterzing et al. 2010). In fact, research based on mechanical devices is 

seemingly alone in concluding that 3G turf increases traction and hence the risk of injury 

(Livesay et al. 2006; Villwock et al. 2009a). Considering the results from the current work, 

adjustments for desired traction performed by athletes might be an underlying cause of why 

epidemiological studies fail to detect a difference between the two surface types, further 

strengthening the notion that mechanical devices are unable to capture the interaction that 

takes place between surface and athlete. Unfortunately, missing from the literature – disre-

garding one ultimately failed attempt (Aoki et al. 2010) – are epidemiological studies where 

cleat configurations are accounted for. Such studies would aid tremendously in shedding light 

on the role cleat configurations play, both in an isolated manner and in combination with cer-

tain surface types, with regard to injuries. Their absence is most likely due to methodological 

difficulties, since monitoring would have to be done at an individual level as opposed to team 

level.

Paper I and paper II, respectively, show turf cleats to produce not only greater impact 

absorption but also greater traction than traditional round cleats and bladed cleats across dif-

ferent 3G turf systems. Such a combination of properties indicate that this cleat configuration 

should be preferred over the other two, as it does not sacrifice one property for the sake of the 

other. However, the current experiment was conducted exclusively under dry conditions, 

making it easier for turf cleats to excel with regard to traction. Under wet conditions, which 

are routinely found at the professional level where artificial turf fields are watered prior to 

competition, the need for a certain degree of surface-penetrating cleats to counteract the lower 

traction may show itself more clearly. Interestingly, due to the interaction between impact and 

traction (Stiles & Dixon 2007), a wet 3G turf system might in theory also provide improved

impact absorption as a consequence of the lower traction.

Observations at all levels of play indicate that turf cleats are often discarded in favor 

of more aggressive cleat configurations on 3G turf, which may be a reflection of a desire to 

ensure sufficient traction regardless of playing conditions (disregarding other factors that in-

evitably influence choice of shoes, at least at the recreational level, such as fashion, adver-

tisements, and finances). Under dry conditions, this may result in choosing a cleat configura-

tion with inferior impact absorption because of a perceived superior traction which in reality 
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is not present. These perceived cleat configuration properties are clearly illustrated in the sub-

jective shoe rankings presented earlier; bladed cleats ranked first for performance despite 

there being no differences in functional traction. In fact, a recent survey on soccer shoe prop-

erties revealed comfort, stability, and traction to be of highest priority while injury protection 

was deemed far less important (Hennig 2011). This basically indicates that performance takes 

precedence over safety, coinciding fairly well with the subjective shoe rankings from the cur-

rent experiment; bladed cleats ranked first for both performance and personal preference, 

whereas turf cleats generally, although not statistically, received the highest ranking for com-

fort. It is tempting to suggest the athletes as the main culprits in injury situations on 3G turf 

by citing their responsibility in selecting an appropriate cleat configuration. In short, the sur-

face should not be blamed for incidences occurring when using cleat configurations designed 

for another surface. However, the cleat configurations typically used on both 3G turf and 

grass, namely traditional round cleats and bladed cleats, were originally designed for grass 

(with the exception of some recently developed cleat configurations). Hence, attributing po-

tentially hazardous conditions simply to the misuse of equipment relative to its intended area 

of application serves little purpose until sustainable alternatives exist on the market.

There is no apparent difference in the degree to which turf system and cleat configura-

tion affect impact absorption and traction. Rather, the discovery that turf cleats generally pro-

duce greater traction than more aggressive cleat configurations under dry conditions points 

toward the potential effects of a specific combination of turf system and cleat configuration 

properties. Strengthening this notion is the absence of any effects on the – relationship; 

not only must the necessary parameters be provided by both cleat configuration (i.e., cleat 

surface area) and turf system (i.e., infill density), but the presence of any potential effect 

might, as argued in paper III, be contingent on certain conditions (i.e., sufficient displace-

ment). Regardless, taking the relatively low overall magnitudes into consideration further di-

minishes the rationale behind attempting to associate either turf system or cleat configuration,

or a specific combination of the two, with a greater injury risk. Nevertheless, the reputations 

of both 3G turf and bladed cleats will undoubtedly persist beyond the publication of the cur-

rent work. Changing an attitude that has been ingrained in a vast sports population is not done 

overnight, but hopefully the current work can be a step toward a more objective view on the 

advance of artificial turf.
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5. CONCLUSIONS

The intention behind the current work was never to analyze athletic movements at an individ-

ual level, but rather to employ standardized human movement, with a reasonably homogenous 

subject group (i.e., homogenous with regard to the movements performed, yet not identical on 

a trial-by-trial basis), as a method to obtain objective data on in vivo shoe-surface interactions, 

not forced to rely on mechanical devices.

Both an increased amount of infill and the inclusion of an underlying shock pad im-

proved impact absorption on 3G turf, with the latter seemingly being of greater effect. This 

was paralleled by turf cleats, aided by a greater amount of sole material, providing improved 

impact absorption relative to traditional round cleats and bladed cleats.

Differences in several traction-related properties were discovered between turf systems 

and cleat configurations. Still, functional traction remained almost identical across all shoe-

surface combinations, suggesting the presence of a human component in acquiring suitable 

traction conditions, something which has previously been afforded little attention. Notably, 

this is a factor which cannot be detected by mechanical devices. The magnitude of functional 

traction was positively related to transverse plane shoe angle (relative to the direction of 

movement on the surface), but the underlying reason for this relationship remains unclear due 

to the limited cleat displacement that occurs during surface contact. 

Not addressed in the current thesis were potential long-term effects. Even though func-

tional traction was similar across all shoe-surface combinations, the possible adjustments 

made by the subjects might still be important. If they indeed, whether subconsciously or not, 

perform some action to obtain the desired traction, the physical cost of doing so could mani-

fest itself over time as being greater on a specific turf system or with a specific cleat configu-

ration.

Relative to existing benchmarks, neither the absolute magnitudes of impact nor the ab-

solute magnitudes of traction, including the increase in traction over a large range of shoe 

angles, that were discovered for any of the turf systems or cleat configurations can be consid-

ered excessive with regard to potential injuries. As yet, taking the similar overall injury rates 

on 3G turf and grass into consideration, any scientific rationale to support the notion that 3G 

turf is a particularly hazardous surface with regard to genuine human movement is missing.
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5.1. Practical implications and further research

The sheer number of variations – and continual development – of each component of a 3G 

turf system and the resulting number of possible combinations makes it difficult to obtain a 

complete overview of surface properties. Hence, the current work does not propose to provide 

the definitive answers, but is rather a piece of the puzzle, providing knowledge that is current-

ly missing from the literature. Due to the potential effects of infill compaction on both impact 

absorption and traction, the validity of the results from the current work are contingent on 

proper maintenance of 3G turf systems. Note that while the results presented in theory should 

be transferable to a wet surface with regard to safety (not accounting for injuries caused by 

slipping), the same is not necessarily true for performance.

Further research on 3G turf should make a conscious effort to utilize genuine athletic 

movement as a test method, as it reveals information that simply cannot be provided by me-

chanical devices, and focus on turf system characteristics at different levels of maintenance, 

particularly with regard to infill compaction, as well as financially sustainable improvements 

of surface conditions at the recreational level. Experiments on rotational traction in human 

movement would also be of interest, although likely not feasible from an ethical point of 

view.

Grass has been the preferred surface for sports such as soccer and football for the ma-

jority of their history because it was the available surface best suited to their demands. As a 

result of this, the development of artificial turf has continually worked toward replicating the 

properties of grass. However, grass is the default surface not because it is necessarily the best 

possible, but because it is the best available, which begs the question: should the goal be to 

make a product that is as similar to grass as possible or should it be to make a product that is 

the best possible for the sport?
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Paper I





Biomechanical Analysis of Surface-Athlete
Impacts on Third-Generation Artificial Turf

David McGhie,*yz MSc, and Gertjan Ettema,y PhD
Investigation performed at the Department of Human Movement Science,
Norwegian University of Science and Technology, Trondheim, Norway

Background: Excessive repetitive loads are widely believed to be the cause of overload or overuse injuries. On third-generation
artificial turf, impacts have been found to vary with surface and shoe properties. Mechanical devices are considered not repre-
sentative for measuring impact absorption during athletic movements, and pressure insoles have been shown as inaccurate with
regard to magnitude of force.

Purpose: To compare impact properties between different third-generation artificial turf systems in combination with various
cleat configurations in vivo using force plate technology.

Study Design: Controlled laboratory study.

Methods: Twenty-two male soccer players (mean 6 SD: age, 23.1 6 2.8 y; height, 1.81 6 0.1 m; body mass, 77.5 6 6.0 kg)
performed 10 short sprints, 5 straight with a sudden stop and 5 with a 90� cut, over a force plate covered with artificial turf
for each combination of 3 turf systems and 3 cleat configurations.

Results: During stop sprints, peak impact was significantly higher on a recreational-level turf system than professional-level turf
systems with and without an underlying shock pad (3.12 body weight [W] vs 3.01 W and 3.02 W, respectively). During cut sprints,
peak impact was significantly higher with traditional round cleats than with turf cleats and bladed cleats (2.99 W vs 2.84 W and
2.87 W, respectively).

Conclusion: The results indicate that both an increase in assumed impact-absorbing surface properties and a larger distribution
of shorter cleats produced lower impacts during standardized athletic movements. Regardless, none of the shoe-surface combi-
nations yielded peak impacts of an assumed hazardous magnitude.

Clinical Relevance: The study provides information on the extent to which various third-generation artificial turf systems and
cleat configurations affect impact force, widely believed to be a causative factor for overload and overuse injuries.

Keywords: artificial turf; biomechanics; cleats; impact; soccer

The development of third-generation artificial turf (3G
turf) in the late 1990s led to a resurgence of artificial sur-
faces, now in widespread use at both the recreational and
professional level. In 2004, the Fédération Internationale
de Football Association (FIFA) allowed 3G turf to be used
for official match play,9 a clear sign of endorsement from
the governing body. However, 3G turf still struggles to
gain acceptance as a legitimate alternative to natural grass

(grass), partly because of its continued reputation, despite
the absence of epidemiological evidence,7 for causing inju-
ries.24,25 Overload or overuse injuries are widely believed
to occur because of excessive repetitive impacts,3,4,8,19,27

with surface properties,12,23 shoe properties,3,29 and move-
ment type8,32 all having been suggested as important con-
tributors. Although the connection between impacts and
injuries seemingly is evident, a clear cause-effect relation-
ship has yet to be confirmed.5,13,22,29,30 Unfortunately,
since overuse injuries per definition cannot be connected
to a single, identifiable event,14 they are difficult to attri-
bute to a specific surface. Consequently, long-term effects
of 3G turf play are to date undocumented.

Based mainly on research done before its introduction,
3G turf is thought to provide decreased impact absorption
compared with grass.30,31 Recent research does not support
this notion.12 Impact absorption is assumed to be influ-
enced by the maximum possible displacement of a sur-
face,28 a property related to surface thickness. Greater
surface displacement will typically extend the time of con-
tact, allowing force to be distributed over a larger time
frame. Hence, factors such as infill type and amount and
the presence or absence of a shock pad underneath the
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surface are thought to be among the determinants of 3G
turf impact properties.1,18 A greater potential for displace-
ment should result in increased impact absorption,28,30

which has been demonstrated on 3G turf with both an
underlying shock pad18 and an increased amount of rubber
infill.1 Contrary to the latter, impact absorption has also
been found to be unaffected by infill depth.18 In addition,
impact absorption has been shown to remain similar
between infill types.19 Compaction of the infill, however,
is thought to be detrimental to the impact absorption of
3G turf,1,19,21 with various sites within a field providing
decreased impact absorption as a result of excessive use.21

During athletic movements, shoes are considered to play
a vital role in the transmission of forces from surface to ath-
lete3,29 and have been suggested to have a greater influence
on impact absorption than the surface.6 Turf cleats (short
cleats covering the entire sole) have been found to display
increased impact absorption compared with longer, more
aggressive cleats on both 3G turf 27 and grass,29 whereas
a selection of more aggressive cleat configurations have
been shown to be unable to affect impact absorption.20,27

The role of 3G turf components and cleat configurations
with regard to impacts has yet to be resolved.

Despite their obvious advantages in practicality and
reproducibility, mechanical devices constructed to mimic
human movement in a simplified manner are considered
not representative in predicting impact absorption during
athletic movements,6,23 in part because they lack the self-
regulating component of human movement. In addition,
they have been deemed invalid for impact testing on point
elastic surfaces (surface material is deformed only at the
location of applied force),23 such as 3G turf. Hence, biome-
chanical analysis is needed to properly examine the inter-
action between surface and athlete under conditions
reflecting actual human movement. However, existing
force plate–based biomechanical studies have either dis-
played a lack of control over shoes19 or focused solely on
shoes, including only 1 turf system.20

The aim of the present study was to compare impact
properties between different 3G turf systems with various
cleat configurations during standardized athletic move-
ments and quantify the magnitude of impacts during these
movements. It was hypothesized that the turf system with
an underlying shock pad would provide the most impact
absorption and that turf cleats would produce lower impact
forces than traditional circular cleats and bladed cleats on
all turf systems.

METHODS

Subjects

Twenty-two male soccer players (mean 6 SD: age, 23.1 6
2.8 y; height, 1.81 6 0.1 m; and body mass, 77.5 6
6.0 kg) from recreational to professional playing level
were recruited for the study. Participation was contingent
on the following criteria: male, age 18 to 30 years, playing
at an organized level, dominant right leg, a minimum of 2
years’ experience with 3G turf, free of major injuries to the

lower extremities for the past 6 months, no known diagno-
ses or conditions that could influence the ability to partic-
ipate (eg, heart condition), and shoe size between 42 and 44
(US size, 8½-9½).

The Regional Ethical Committee assessed that the
study was outside its authority and hence granted permis-
sion for the study to be carried out without its specific
approval. All subjects signed an informed consent form
before the experiment and were made aware that they
could withdraw from the study at any point without pro-
viding an explanation. The study was conducted in accor-
dance with the Declaration of Helsinki.

Equipment and Data Collection

Running tracks were constructed around a BP6001200
AMTI 3D force plate (Advanced Medical Technology, Inc,
Watertown, Massachusetts), with 3 FieldTurf (FieldTurf
Tarkett, Calhoun, Georgia) 3G turf systems (Table 1) alter-
nately fastened to the force plate with 3M Dual Lock
reclosable fasteners (3M Norway AS, Skjetten, Norway).
The turf systems were Duraspine ULTRA 42 (DU42, pro-
fessional level with underlying shock pad), Duraspine
ULTRA 50 (DU50, recreational level), and Duraspine
ULTRA 60 (DU60, professional level without underlying
shock pad) (Unisport Scandinavia AS, Drammen, Norway),
all installed with ~75% of the amount of ambient ground
styrene-butadiene rubber (SBR) infill detailed in the pro-
ducer’s specifications, in accordance with the producer’s
instructions to ensure ~1.5 cm of free fiber above the infill.
This method is customary to avoid excess infill at installa-
tion, rather opting for additional infill at a later point.
Running tracks were all covered with DU50.

Three pairs of photo cells (TC-PhotoGate A&B; Brower
Timing Systems, Draper, Utah) were placed along the in-
run ~1 m above the turf, transmitting running time data
to a handheld receiver (TC-Timer; Brower Timing Sys-
tems). Force data were recorded using Qualisys Track
Manager version 2.5.595 (Qualisys, Gothenburg, Sweden)
at a sample rate of 1000 Hz, obtained through a DSA-6
digital strain gage amplifier (Advanced Medical Technol-
ogy, Inc) and processed further in MATLAB 7.9.0.529
(MathWorks, Natick, Massachusetts). Measured by a La
Crosse Technology WS-868025 weather station (La Crosse
Technology, La Crosse, Wisconsin), ambient laboratory
temperature was consistently ~20�C. The dimensions of
the laboratory setup can be seen in detail in Figure 1.
Three soccer shoes (Figure 2), each representing a differ-
ent cleat configuration (Table 2), were included in the
study: the Adidas Mundial Team TF (turf cleats), Adidas
Copa Mundial FG (traditional round cleats), and Adidas
adiPURE 3 TRX FG (bladed cleats) (Adidas, Beaverton,
Oregon).

Protocol

For each turf system, the subjects completed a separate day
of testing consisting of 10 minutes of self-regulated warm-
up running on a treadmill (Woodway, Waukesha, Wiscon-
sin), weight measurement, and 30 short maximum-effort
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sprints. Two different running tasks were included in the
study: a straight sprint with rapid deceleration (stop
sprint) and a sprint with a 90� cut to the left (cut sprint).
The subjects were instructed to come to a complete stop
within 2 steps after making contact with the force plate
for stop sprints and to perform a 90� cut to the left for
cut sprints, striking the designated contact area (60 3
60 cm) with their right foot for both tasks. After the sub-
jects were allowed to familiarize themselves with both
tasks, 10 sprints (5 of each task) were performed with
each shoe. To avoid fatigue, the subjects rested 30 to 45
seconds between sprints and .2 minutes between groups
of 10 sprints. The sequences of all factors (turf system,

cleat configuration, running task) were counterbalanced
to avoid systematic order effects.

Data Analysis

Dynamic signals were low-pass filtered at 100 Hz using an
eighth-order Butterworth filter, after which an offset was
removed if necessary. Body mass was determined from
the mean of the 3 weight measurements. Impact was iden-
tified using the standard deviation (SD) of force during
baseline measurements. The impact period was defined
as the time when vertical force exceeded 2 SD above the
mean of the force baseline. Peak impact (fimp) relative to

TABLE 1
Detailed Specifications of the Turf Systemsa

DU42 DU50 DU60

Fiber
Type Monofilament Monofilament Monofilament
Material Polyethylene Polyethylene Polyethylene
Height, mm 42 50 60
Weight, decitex 11,500 11,500 11,500
Thickness range, micron 80-240 80-240 80-240
Tufts per m2 9450 8820 8190
Strands per tuft 6 6 6
Tuft pattern Straight Straight Straight
Height above infill, mm 15 15 15
Total weight per m2, kg 0.956 1.101 1.217

Stabilization infill
Material Quartz sand Quartz sand Quartz sand
Infill thickness, mm 5 8 13
Weight per m2, kg 8 12 18
Particle size range, mm 0.4-0.8 0.4-0.8 0.4-0.8
Particle shape Round Round Round

Shock-absorbing infill
Material SBR SBR SBR
Manufacturing process Ambient ground Ambient ground Ambient ground
Infill thickness, mm 20 27 32
Weight per m2, kgb 7.5 10.5 12
Particle size range, mm 1-3.15 1-3.15 1-3.15
Particle shape Angular Angular Angular

Shock pad
Type Recticel Rebound — —
Material Composite foam — —
Thickness, mm 12 — —
Weight per m2, kg 3.1 — —

aTurf system produced by FieldTurf Tarkett (Calhoun, Georgia). DU, Duraspine ULTRA (Unisport Scandinavia AS, Drammen, Norway);
SBR, styrene-butadiene rubber. —, not applicable.

bApproximately 75% of amount detailed in producers’ specifications, as described in the text.

TABLE 2
Detailed Specifications of the Cleat Configurations

Shoe Model Cleat Type Surface Number of Cleats, Back/Front Cleat Height, Min/Max, mm

Adidas Mundial Team TF Turf Turf/gravel 20/45 6/9
Adidas Copa Mundial FG Traditional circular Firm grass 4/8 9/11
Adidas adiPURE 3 TRX FG Bladed Firm grass 4/9 11/13
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body weight (W) was used to indicate impact absorption of
turf systems and cleat configurations, calculated as

fimp5
Fpeak

W
;

where Fpeak is the peak of total force (ie, vector sum of ver-
tical and horizontal force) during impact. Time of contact
(tcon) was defined as the length of the impact period.
Approach velocity (vapp) was calculated based on the last
1.5 m before the force plate in an effort to diminish acciden-
tally distorted recordings from triggering the photo cells
with, for example, an outstretched hand. As a result of
equipment error, 137 of 990 (13.8%) stop sprint recordings
and 31 of 990 (3.1%) cut sprint recordings were discarded
across all subjects and cleat configurations with regard to
vapp analysis. The discarded recordings were distributed
evenly among cleat configurations.

Statistical Analysis

Data are presented as mean 6 SD. Statistical analyses
were performed using PASW Statistics 18 (SPSS, Inc, an
IBM Company, Chicago, Illinois), release 18.0.0. The
effects of surface and shoe on fimp and tcon were analyzed
using a 2-way analysis of variance (ANOVA) for repeated
measures, corrected for between-subject effects. Degrees

of freedom were adjusted using the Huynh-Feldt correction
in cases where sphericity could not be assumed. Post hoc
least significant difference correction was applied where
a significant F value was present. Because of random miss-
ing values as a result of equipment error, a linear mixed
model with turf system and cleat configuration as fixed
effects was applied to vapp to analyze their respective over-
all effects. Statistical significance was set at P\ .05.

RESULTS

Tables 3 and 4 show mean 6 SD fimp and tcon across turf
systems and cleat configurations for both running tasks.
Mean vapp of 3.50 m�sec–1 and 2.93 m�sec–1 were achieved
for stop and cut sprints, respectively (Table 5), with bladed
cleats producing slower running velocities than turf cleats
and traditional round cleats in cut sprints. For all combi-
nations of turf system and cleat configuration, fimp ranged
from 2.94 to 3.18 W in stop sprints and from 2.77 to 3.01 W
in cut sprints (Figure 3), and tcon ranged from 170 to 194
milliseconds in stop sprints and from 326 to 341 millisec-
onds in cut sprints (Figure 4). Among turf systems, DU50
consistently displayed inferior impact absorption com-
pared with DU42 and DU60, with an increased fimp in
stop sprints and a decreased tcon in both running tasks.
The only statistical difference found between DU42 and
DU60 was a longer tcon on DU42 in stop sprints. The

Figure 1. Dimensions of the experimental setup. The 0.6 3
1.2-m force plate (dark gray square) is surrounded by running
tracks (light gray squares), with 6 cameras (c) angled toward
the designated contact area (x). Horizontal dotted lines rep-
resent photo cell trigger beams. Dashed line arrow repre-
sents movement direction of both running tasks: (1) stop
sprint and (2) cut sprint.

Figure 2. Soccer shoe models included in the experiment.
From the top: Adidas Mundial Team TF (turf cleats), Adidas
Copa Mundial FG (traditional round cleats), and Adidas adi-
PURE 3 TRX FG (bladed cleats) (Adidas, Beaverton, Oregon).
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responses to changes in cleat configurations were more
varied, although turf cleats consistently indicated greater
impact absorption where differences were found. Tradi-
tional round cleats produced an increased fimp in cut
sprints compared with turf cleats and bladed cleats,
whereas tcon progressively increased from bladed cleats to
traditional round cleats to turf cleats in stop sprints.

For tcon, significant turf system–cleat configuration
interactions were also discovered (Table 4): in stop sprints,
there was a larger effect of cleat configuration on DU60
and a larger effect of turf system with turf cleats; in cut
sprints, there was a larger effect of cleat configuration on
DU42 and a larger effect of turf system with traditional
round cleats.

DISCUSSION

To the best of the authors’ knowledge, this study is the first to
analyze the surface-athlete impacts of different 3G turf sys-
tems in combination with various cleat configurations in
vivo using force plate technology. The main findings reject
the hypothesis that an underlying shock pad would result
in the most impact absorption and confirm the hypothesis
that turf cleats produce lower impact forces (fimp), albeit
with some reservations. Although significant differences
between the use of an increased infill amount (DU60) and
a shock pad (DU42) were not discovered, the turf system
with an increased infill amount had the aid of a greater total
height of components subject to deformation. Turf cleats

TABLE 3
Impact (Relative to Body Weight) Across All Turf Systems and Cleat Configurationsa

Turf System

DU42 DU50 DU60 df F P Value

Stop sprint 3.01 6 0.74 3.12 6 0.81b 3.02 6 0.75c 2, 176 5.64 .004
Cut sprint 2.89 6 0.60 2.93 6 0.64 2.88 6 0.60 2, 176 1.59 .208

Cleat Configuration

Turf Cleats Round Cleats Bladed Cleats df F P Value

Stop sprint 3.01 6 0.76 3.06 6 0.77 3.08 6 0.77 2, 176 1.96 .144
Cut sprint 2.84 6 0.54 2.99 6 0.68b 2.87 6 0.61c 2, 176 20.79 \.001

Interactions (Turf System 3 Cleat Configuration) df F P Value

Stop sprint 4, 352 1.89 .112
Cut sprint 4, 352 2.24 .064

aValues are expressed as mean 6 standard deviation. DU, Duraspine ULTRA (Unisport Scandinavia AS, Drammen, Norway).
bSignificantly different from DU42/turf cleats.
cSignificantly different from DU50/round cleats.

TABLE 4
Time of Contact (in Milliseconds) Across All Turf Systems and Cleat Configurationsa

Turf System

DU42 DU50 DU60 df F P Value

Stop sprint 191 6 45b 175 6 36c 185 6 46b,c 2, 176 59.02 \.001
Cut sprint 337 6 74 328 6 76c 335 6 73b 2, 176 7.50 .001

Cleat Configuration

Turf Cleats Round Cleats Bladed Cleats df F P Value

Stop sprint 189 6 47b 183 6 44c 179 6 36b,c 2, 176 30.27 \.001
Cut sprint 333 6 76 333 6 73 333 6 75 2, 176 0.01 .990

Interactions (Turf System 3 Cleat Configuration) df F P Value

Stop sprint 4, 352 4.11 .003
Cut sprint 4, 352 2.71 .030

aValues are expressed as mean 6 standard deviation. DU, Duraspine ULTRA (Unisport Scandinavia AS, Drammen, Norway).
bSignificantly different from DU50/round cleats.
cSignificantly different from DU42/turf cleats.
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produced impacts that, although being lower, were not signif-
icantly different from those produced with bladed cleats. The
turf system intended for recreational use (DU50) provided
the least impact absorption among the turf systems in stop
sprints. This may be an important finding because of the
vast number of players potentially affected.

Artificial Turf and Experimental Challenges

Performing experiments on existing 3G turf fields effec-
tively circumvents the difficulties of constructing proper
fields in a laboratory and is important to the ever-growing
knowledge base on 3G turf. However, the approach used

TABLE 5
Approach Speed (m�sec–1) for All Combinations of Running Task and Cleat Configurationa

Turf Cleats Round Cleats Bladed Cleats df F P Value

Stop sprint 3.51 6 0.55 3.47 6 0.52 3.50 6 0.52 2, 828.76 0.60 .550
Cut sprint 2.97 6 0.34 2.93 6 0.35 2.89 6 0.37b,c 2, 935.13 6.40 .002

aValues are expressed as mean 6 standard deviation.
bSignificantly different from turf cleats.
cSignificantly different from round cleats.

Figure 3. Mean 6 standard deviation peak impacts (W) for
all combinations of turf system and cleat configuration for
stop sprints (A) and cut sprints (B). See Table 3 for statistical
comparisons. DU, Duraspine ULTRA (Unisport Scandinavia
AS, Drammen, Norway).

Figure 4. Mean 6 standard deviation time of contact (msec)
for all combinations of turf system and cleat configuration for
stop sprints (A) and cut sprints (B). See Table 4 for statistical
comparisons. DU, Duraspine ULTRA (Unisport Scandinavia
AS, Drammen, Norway).
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here was chosen to acquire the desired data while main-
taining genuine, although standardized, athletic move-
ments. A common criticism of the setup chosen for the
current experiment is the claim that placing a 3G turf sys-
tem over a force plate will alter the data registered.26 Syn-
chronous Artificial Athlete10 and force plate measurements
revealed that the force plate recorded a mean peak impact
across all turf systems that was 98.7% 6 1.2% (range,
98.0%-99.8%) of the mean peak impact recorded by the
Artificial Athlete. Complying with FIFA standards,10

data from both devices for this purpose were low-pass fil-
tered at 120 Hz using a second-order Butterworth filter.
Force profiles also failed to show signs of being influenced
by any added surface, maintaining normal shapes through-
out data collection. It is worth noting that the experiment
was carried out solely under dry conditions. Force may be
affected under wet conditions, as players possibly modify
their movement.

The turf systems chosen here represent only part of
today’s wide selection, but they still largely cover what is
in extensive use at both the recreational (DU50) and pro-
fessional (DU42, DU60) level. Unfortunately, attributing
results to specific turf system components is challenging,
as proper surface specifications are often absent in
research on 3G turf.3,12,27,32 The potential effect of a con-
stant running track surface on intersurface reliability
should be negated not only by the outward similarity of
the 3 turf systems, illustrated by the fact that none of
the subjects displayed the ability to discern between
them, but also by previous findings showing humans run-
ning at velocities similar to those recorded in the current
experiment to adjust leg stiffness for the first step on
a new surface without affecting ground reaction force.11

In the present study, relative impact forces derived from
the vector sum of vertical and horizontal forces are used,
despite vertical impacts alone being the traditional method
of choice, in an attempt to more accurately assess the total
force working on the athlete. A significant effect of cleat
configuration was found in stop sprints when considering
only the vertical impact, with turf cleats displaying
a decreased impact force compared with traditional round
cleats and bladed cleats, an effect that was not present for
total force. By including horizontal force, the relative
impacts increased on average across turf systems and cleat
configurations by 3.7% in stop sprints (range, 3.4%-4.9%)
and by 15.5% in cut sprints (range, 14.1%-17.4%).

Impact

For the most part, research regarding impacts on 3G turf
not based on mechanical devices has been performed with
pressure insoles,3,12,27,32 the focus usually being on pressure
distribution. Impact forces typically reach 2 to
3 W in running13,22 and have been recorded in a similar
range during sports-specific athletic movements.31 On
both 3G turf 19,20,27 and grass,29 impact forces have gener-
ally been found to be between 2.3 and 2.6 W. These results
are either based on straight running,19,20,29 with one
instance of cutting,20 or derived from pressure insoles.27

When compared with force plate data, pressure insoles

register lower forces2 and consequently do not provide an
accurate assessment of the impact experienced by the ath-
lete. However, this in itself does not make pressure insoles
a useless tool for comparing impacts on 3G turf. For exam-
ple, using pressure insole measurements, passive impact
peaks have been found to decrease consistently across dif-
ferent shoes.2 The results from the present study show
impacts ranging from roughly 2.8 to 3.2W, with stop sprints
generally producing impacts of higher magnitudes than cut
sprints. Note that the increased impact in stop sprints holds
true despite the inclusion of horizontal forces, which consti-
tute a greater proportion in cutting. It is reasonable to
believe that the straight sprint with a stopping motion
employed here, a common movement in sports typically
played on 3G turf such as soccer or American football, is
more forceful than a straight run more reminiscent of a jog-
ging motion. The impacts resulting from athletic move-
ments with, for example, sudden changes in acceleration
or direction are not necessarily consistent with those experi-
enced during continuous running.31 The increased vapp in
stop sprints compared with cut sprints may also be a factor
leading to comparably lower impacts in cutting.

In stop sprints, fimp was significantly higher on DU50
than DU42 and DU60. To some degree, this contradicts the
theory that a greater potential for deformation of a surface
leads to improved absorption of impact forces,28,30 as only
DU60 has a markedly higher total height of components
that are subject to deformation (shock pad, sand, and SBR)
than DU50 (45 mm vs 35 mm, respectively), whereas
DU42 (37 mm) is similar to DU50 in this regard despite dem-
onstrating significantly improved impact absorption. Based
on this, it appears as though the underlying shock pad
may have a greater effect on impact absorption than the
infill. In line with higher fimp, tcon was shorter on DU50
than DU42 and DU60 in stop sprints. This was also true
for cut sprints, where no difference was found in fimp. The
fact that the turf system generally intended for use at the
recreational level, DU50, provides less impact absorption
(ie, greater impact force, shorter contact time) than the 2
turf systems marketed for the professional level, DU42 and
DU60, may be an important finding, as recreational playing
fields normally affect a greater amount of people at a much
higher rate of use than professional playing fields. However,
it is worth mentioning that the accumulated time spent on
3G turf for each individual is far greater at the professional
level. In a sense, these differences illustrate the problem of
routinely comparing 3G turf to grass as if either surface is
devoid of variation within its respective group. Contact
time has been shown to not differ between 3G turf and grass
in cutting,12 whereas the present results suggest that tcon
varies between different 3G turf systems. Although compar-
isons with grass may be beneficial, it appears obvious that
3G turf systems merit being evaluated on an individual basis
as opposed to as a uniform group.

The use of bladed cleats was found to result in signifi-
cantly slower vapp than turf cleats and traditional round
cleats in the cutting task. In general, faster running should
result in increased impact force15,17,19,29 and shorter con-
tact time. However, this does not hold true as there was
no significant difference in tcon between the different cleat
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configurations for cut sprints. This is in agreement with
previous findings of similar contact time between turf
cleats, traditional round cleats, and bladed cleats in cut-
ting.27 The greatest difference in vapp was between bladed
cleats and turf cleats at 0.08 m/sec, though, and presum-
ably not of a magnitude great enough to influence force
measurements in a meaningful way. Shoe comfort was
shown in a recent survey16 to be the feature holding high-
est priority among players when selecting soccer shoes.
Interestingly, injury protection was considered a low prior-
ity, perhaps pointing to players not viewing the shoes as
a possible source of injury. Yet, the present results show
that turf cleats and bladed cleats provided significantly
lower fimp in cut sprints than traditional round cleats.
Whether this was a function of the cleat configuration or
additional impact-absorbing qualities of the shoe construc-
tion is impossible to decipher from these results. Given the
effect of an underlying shock pad on the turf system, it
seems plausible that for turf cleats, the shoe construction
was the deciding factor rather than the cleat configuration.
This notion is further strengthened by the fact that tcon
was longer with turf cleats than traditional round cleats
and bladed cleats, although only for stop sprints. However,
the somewhat surprising results of bladed cleats rather
point toward a lack of impact-absorbing qualities in tradi-
tional round cleats, whether related to cleat configuration
or general shoe construction.

Even though differences between both turf systems and
cleat configurations were found, it is worth noting that the
magnitudes of fimp discovered in the present study are not
indicative of the 3G turf systems being playing surfaces of
increased danger, despite what may be widely believed.
Peak impact and time of contact were chosen here to repre-
sent impact absorption. Naturally, other factors may also
prove important in shedding light on the impacts trans-
ferred from surface to athlete. To gain a more complete
understanding of how surfaces and shoes affect the athlete,
it has been postulated that impact properties should be
viewed in the context of traction properties, as a surface
that allows the athlete to slide also acts to absorb forces
during impact.30

CONCLUSION

Theoretically increasing the impact-absorbing properties
of a 3G turf system resulted in improved impact absorption
in the form of lower impact forces during standardized ath-
letic movements. This was achieved through the inclusion
of either an underlying shock pad or an increased amount
of infill. Increased shoe material and a larger distribution
of cleats also appeared to aid in impact absorption. How-
ever, the impacts were not of an order of magnitude indic-
ative of hazardous shoe-surface combinations with regard
to impact absorption. Future research should investigate
the differences in horizontal force components between
3G turf systems, because of the potential injury implica-
tions, and focus on ways to improve surface conditions
for the vast number of recreational players.
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Abstract

Background: Based on mechanical device testing on third-generation artificial turf (3G turf) 

it has been theorised that transverse plane rotation of cleated shoes increases the number of 

separate cleats forced to carve unique paths through the infill, thus increasing translational 

traction. The aim of the study was to investigate whether shoe angle affected traction across 

cleat configurations and 3G turf systems during a standardized in vivo change of direction 

movement.

Methods: Twenty-two male soccer players (mean ± SD: age, 23.1 ± 2.8 y; height, 1.81 ± 0.06

m; body mass, 77.5 ± 6.0 kg) performed five short sprints with a 90° cut over a turf covered 

force plate for each combination of three turf systems and three cleat configurations. The 

relationship between traction coefficient and transverse plane shoe angle across cleat 

configurations and turf systems was determined with an ANCOVA and shoe displacement

was assessed with a linear mixed model.

Results: There was a significant positive slope of the traction coefficient – shoe angle 

relationship, with a predicted increase in traction coefficient of .0017 for every degree of 

medial shoe rotation. The relationship did not differ between cleat configurations or turf 

systems. Across all shoe-surface combinations, mean ± SD shoe displacement was 1.33 ±

0.60 cm.

Conclusion: During a standardized in vivo change of direction movement, an increase in shoe 

angle was accompanied by an increase in traction coefficient. The order of occurrence of

these variables in such a movement makes it reasonable to assume that the increase in shoe 

angle causes the increase in traction coefficient. However, the magnitude of shoe 

displacement makes it difficult to support the abovementioned theory for controlled human 

movement.

Keywords: artificial turf; biomechanics; cleats; shoe angle; shoe-surface interaction; traction
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Introduction

Due to the development of new cleat configurations and the ever increasing use of third-

generation artificial turf (3G turf), the traditional round cleat can no longer be considered the 

default for soccer shoes. Irregular cleat shapes, among them bladed cleats, are rapidly gaining 

ground, despite having previously been deemed a contributing factor to severe soccer injuries 

(Lambson et al. 1996). In line with this, bladed cleats provide greater traction coefficients

than traditional round cleats on 3G turf (Kuhlman et al. 2009), with the results, as previously 

(Lambson et al. 1996), attributed to cleat shape. However, recent research on 3G turf fails to 

distinguish bladed cleats from traditional round cleats (Sabick et al. 2009, Wannop et al. 

2012, McGhie and Ettema 2013b) and turf cleats (McGhie and Ettema 2013b) with regard to

traction coefficient.

When subjected to excessive forces, 3G turf fields are for all practical purposes limited 

to an elastic response, resisting deformation. Natural grass fields, on the other hand, possess 

the ability to undergo deformation that is, at the very least, semi-permanent in nature (i.e.,

kicking up dirt). Nevertheless, bladed cleats have also been accused, in professional circles, of 

being dangerous in combination with firm grass fields (Taylor 2010). However, cleat shape 

alone does not dictate the resulting traction. While the geometry of traditional round cleats 

makes the optimum cleat orientation for maximum penetration into the surface perpendicular 

to the shoe sole due to their symmetrical, conical shape, bladed cleats may achieve maximum

surface penetration at other orientations (Kirk et al. 2007). Likewise, the effects of shoe 

orientation in the transverse plane could also differ between cleat configurations.

In an attempt to mimic a cutting movement, the relationship between traction and 

angle of transverse plane shoe orientation on 3G turf has previously been investigated by 

means of a mechanical testing device, showing shoe angle to affect traction to a greater 

degree than cleat configuration (Sabick et al. 2009). Traction coefficient approximately 

doubled with an increasing angle of medial rotation from 0° to 60° while remaining similar 

across a range of cleat configurations, with a further increase to 90° resulting in a slight 

decrease in traction coefficient. Since a change in transverse shoe angle cannot be

accompanied by a change in the number of cleats or, for some cleat configurations, of cleat 

surface area in contact with the surface, it was deduced that the most obvious explanation was 

the alignment of cleats relative to movement direction. The cleats generally align when a shoe 

is placed at 0° relative to the direction of movement on the turf system, which results in few 

unique pathways in the turf system infill and hence reduced resistance for the trailing cleats. 

Rotation of the shoe forces a greater number of cleats to carve their own path through the 
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infill (Figure 1), potentially increasing the resistance to linear translation. This was termed the 

“trench effect” (Sabick et al. 2009). However, the “trench effect” theory only holds true to a 

certain degree of rotation. Rotating the shoe as much as 90° may realign several cleats, 

explaining the decrease from 60°. It is important to distinguish shoe angle when cutting from

cutting angle (i.e., the change in whole body movement direction), as they are not necessarily 

related but rather dependent on individual technique. E.g., it is possible to perform a 90° cut

with the shoe at 0° relative to pre-cut movement direction, i.e., a completely lateral

movement.

Another factor that needs to be taken into consideration is cleat shape. With the shoe at 

a 0° angle relative to the direction of movement on the turf system, bladed cleats have a small 

surface area working against the resistance of the turf system. As the angle of the shoe relative 

to movement direction increases, the shape of bladed cleats causes this surface area to 

progressively increase. Conversely, the geometry of traditional round cleats ensures that the 

size of the surface area working against the resistance of the turf system remains identical 

irrespective of shoe angle.

Figure 1. Graphic presentation of the principle behind the “trench effect” theory (Sabick et al. 2009): as medial 
rotation of the shoe progresses, the number of cleats forced to carve their own path through the turf system 
infill increases. Arrow indicates direction of shoe displacement.

A concept similar to the “trench effect” has been alluded to from mechanical device 

testing of various 3G turf systems (Severn et al. 2011), with traction coefficient increasing

with infill density, which in turn can increase with a greater infill amount and frequent use 

(Severn et al. 2011). Contrary to this, traction coefficient has also been found to decrease in 

areas of a field which are subject to excessive use (Wannop et al. 2012). The result is an 



Footwear Science 

5

unclear picture of infill with regard to the supposed “trench effect”, although it seems 

reasonable to assume that infill characteristics play a role in determining the resistance 

encountered by the cleats.

The aim of the present study was to investigate whether shoe angle affected traction 

for various cleat configurations and 3G turf systems when performing a standardized in vivo

change of direction. In line with the aforementioned “trench effect”, it was hypothesized that 

an increase in shoe angle is accompanied by an increase in traction. Keeping with the “trench 

effect” theory, bladed cleats were hypothesized to increase traction with increasing shoe angle 

at a higher rate than traditional round cleats and turf cleats as a function of their irregular 

geometry leading to an increased cleat surface area with increased horizontal rotation. No 

specific hypothesis regarding turf systems was formulated, since it remains unclear whether 

fibre density or infill density provides the most resistance.

Methods

Subjects

Twenty-two healthy, right leg dominant, male recreational to professional soccer players 

(mean ± standard deviation (SD) age 23.1 ± 2.8 years, height 1.81 ± 0.06 m, and body mass

77.5 ± 6.0 kg) participated in the study. Permission to conduct the study was given by the 

Regional Ethical Committee. Prior to the experiment, all subjects signed an informed consent 

form and were made aware that they could withdraw from the study at any point without 

providing an explanation. The study was conducted in accordance with the Declaration of 

Helsinki.

Equipment and Data collection

Details of the experimental setup have previously been published elsewhere (McGhie and 

Ettema 2013a). In short, three FieldTurf (FieldTurf Tarkett, Calhoun, GA, USA) 3G turf 

systems (Table 1) were alternately fastened to a BP6001200 AMTI 3D force plate (Advanced 

Medical Technology, Inc., Watertown, MA, USA), around which running tracks consistently 

covered with one turf system were placed. Photo cells (TC-PhotoGate A&B, Brower Timing 

Systems, Draper, UT, USA) were placed along the in-run for monitoring of approach velocity

during the last 1.5 m of the in-run (mean ± SD approach velocity 2.93 ± 0.19 m·s-1). Six 

motion capture cameras (ProReflex, Qualisys, Gothenburg, Sweden) were strategically placed 

around the force plate. Dimensions of the laboratory setup can be seen in Figure 2. Force data 
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were sampled at 1000 Hz. Synchronously, position data were sampled at 500 Hz, obtaining a 

spatial resolution of 0.3 mm. Three shoe models with typical cleat configurations (turf cleats, 

traditional round cleats, and bladed cleats) were tested, each fitted with six reflective markers 

on the right shoe (Figure 3). For turf cleats, traditional round cleats, and bladed cleats, 

respectively, the number of cleats at the back/front of the shoe was 20/45, 4/8, and 4/9 and 

cleat height range was 6-9 mm, 9-11 mm, and 11-13 mm. All shoes used in the experiment 

were between size 42 and 44 (US size, 8½-9½) and manufactured by adidas (adidas, 

Beaverton, OR, USA).

  

Figure 2. Dimensions of laboratory 
setup. The 0.6*1.2 m force plate (dark 
grey square) is surrounded by running 
tracks (light grey squares). Six cameras 
(c) are angled towards the designated 
contact area (x). Dashed line arrow 
represents movement path. Horizontal 
dotted lines represent photo cell trigger 
beams. Figure 3. Cleat configurations included in 

the experiment. From the top: Turf 
cleats (adidas Mundial Team TF); 
Traditional round cleats (adidas Copa 
Mundial FG); Bladed cleats (adidas 
adiPURE 3 TRX FG); Placement of 
reflective markers on shoe (pictured: 
adidas adiPURE 3 TRX FG). All markers 
were placed at 5 cm height: one at the 
heel, one at the toe, and four bilaterally 
6 cm in from both heel and toe. Note: 
sixth marker (back left side) not visible in 
photograph. 
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Table 1. Detailed specifications of the turf systems. 
  DU42 DU50* DU60 
Fibre     
 type monofilament monofilament monofilament 

material polyethylene polyethylene polyethylene 
height (mm) 42 50 60 
weight (dtex) 11500 11500 11500 
thickness (micron) 80 – 240 80 – 240 80 – 240 
tufts/m2 9450 8820 8190 
strands/tuft 6 6 6 
tuft pattern straight straight straight 
height above infill (mm) 15 15 15 
total weight/m2 (kg) 0.956 1.101 1.217 

Stabilization infill     
 material Quartz sand Quartz sand Quartz sand 

infill thickness (mm) 5 8 13 
weight/m2 (kg) 8 12 18 
particle size (mm) 0.4 – 0.8 0.4 – 0.8 0.4 – 0.8 
particle shape round round round 

Shock absorbing infill    
 material SBR SBR SBR 

manufacturing process ambient ground ambient ground ambient ground 
infill thickness (mm) 20 27 32 
weight/m2* (kg) 7.5 10.5 12 
particle size (mm) 1 – 3.15 1 – 3.15 1 – 3.15 
particle shape angular angular angular 

Shock pad     
 type Recticel Rebound -- -- 

material composite foam -- -- 
thickness (mm) 12 -- -- 
weight/m2 (kg) 3.1 -- -- 

Turf systems produced by FieldTurf Tarkett (Calhoun, GA, USA). DU, Duraspine Ultra (Unisport Scandinavia AS, 
Drammen, Norway); SBR, styrene-butadiene rubber; --, not applicable. 
* Turf system used for running tracks surrounding the force plate. 
** Approximately 75% of amount detailed in producers specifications, as per producer’s instructions (McGhie 
and Ettema 2013b).

Protocol

As part of a larger experiment (McGhie and Ettema 2013a), the test protocol included a 

warm-up of ten minutes self-regulated treadmill running (Woodway, Waukesha, WI, USA), 

weight measurement, and 15 sprints at close to maximum speed (five with each cleat 

configuration) for each turf system. In an effort to avoid systematic order effects, the 

sequence of turf systems and cleat configurations were counterbalanced. The subjects were 

instructed to strike the designated contact area (60 x 60 cm) on the force plate with their right 
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foot and execute a 90° cut to the left. They were afforded 30-45 s rest between each sprint and 

>2 min rest after every change of cleat configuration to avoid fatigue.

Data Analysis

Force and position data were low-pass filtered at 100 Hz using an 8th order Butterworth filter. 

After adjusting for minor force offsets if necessary, impact was determined to occur where 

vertical force exceeded mean baseline force by 2 SD and the period of full sole-surface

contact was identified from the vertical position of the toe and heel (as detailed in McGhie 

and Ettema 2013b). The angle of sliding direction (relative to initial running direction) was 

estimated from positional data as the angle of displacement from the beginning to the end of 

sole contact. Traction coefficient ( ) during sole contact was calculated as

1

1 N
h

i v i

F
N F

(1)

where Fh is horizontal force in sliding direction, Fv is vertical force, and N is the number of 

data points during sole contact, and deemed invalid if sliding of 3 mm (ten times the 

resolution) did not occur as determined through linear regression (for specifications, see 

McGhie and Ettema 2013b). Transverse plane shoe angle ( ) was determined as the mean 

angle of shoe orientation during sole contact relative to the angle of sliding. The magnitude of 

the shoe angle indicates the degree of medial rotation relative to sliding direction. Shoe 

displacement during sole contact was determined from positional data as the displacement in 

cm in sliding direction. A total of 304/990 files (30.7 %), distributed evenly among turf 

systems and cleat configurations, either did not meet the demands for valid traction 

coefficients or were unable to provide a proper basis for determining shoe angle or shoe 

displacement due to missing data.

Statistical Analysis

Statistical analyses were performed using PASW Statistics 18 (SPSS, Inc., an IBM Company, 

Chicago, IL, USA), release 18.0.0. The relationship between and

configurations and turf systems were assessed with an ANCOVA, with 

variable, and cleat configuration and turf system as factors. Linearity of the 

data was assessed through ordinary least squares regression. Due to the large sample size, 

normality was assumed if both skewness and kurtosis fell between -1 and 1. Homogeneity of 

variance was supported (F8,677 = 1.08, p = .372), assessed with Levene’s test for equality of 
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error variances. If any non-significant factor-covariate interaction was present, the interaction 

term was removed and the model re-run. Repetition was not included as a fixed factor in the 

model since neither learning effects nor exhaustion was expected from the first to the last 

repetition within a specific combination of cleat configuration and turf system. Missing data 

were deleted list-wise. Due to random missing values, shoe displacement was assessed with a 

linear mixed model with cleat configuration and turf system as fixed effects, accounting for 

intra-individual variance as a random effect. To better assess the main effects, the interaction 

effect was removed from the model if non-significant. Statistical significance was set at 

p < .05.

Results

The results from the ANCOVA revealed a significant positive relationship between 

(F1,680 = 57.46, p < .001), with the predicted increase (i.e., – )

being .0017 per degree of medial rotation (Figure 4). This relationship was neither affected by 

cleat configuration (F2,680 = 1.29, p = .277) nor turf system (F2,680 = 0.05, p = .950).

Mean ± SD shoe displacement across all shoe-surface combinations was 1.33 ± 0.60 cm. The 

displacement was significantly greater with traditional round cleats than with turf cleats and 

bladed cleats, but remained unaffected by turf system (Table 2).

Table 2. Comparison of shoe displacement (cm) between cleat configurations and turf systems 
    df F P value 
 Turf cleats Round cleats Bladed cleats    
Mean ± SD 1.29 ± 0.56 * 1.46 ± 0.65 1.24 ± 0.58 * 2, 662.22 13.01 <0.001 
Median 1.15 1.33 1.07    
Range 0.48 – 3.86 0.45 – 3.69 0.44 – 4.27    
 DU42 DU50 DU60    
Mean ± SD 1.34 ± 0.59 1.34 ± 0.64 1.33 ± 0.59 2, 662.50 0.20 0.822 
Median 1.17 1.18 1.14    
Range 0.48 – 4.27 0.45 – 3.86 0.44 – 3.34    
* Significantly different from round cleats/DU50; † Significantly different from bladed cleats/DU60 

Discussion

The main findings confirm the hypothesis that an increase in shoe angle is accompanied by 

increased traction. Notably, this relationship was not affected by cleat configuration, rejecting 

the hypothesis that bladed cleats would increase traction with increasing shoe angle at a 

higher rate than traditional round cleats and turf cleats, nor was it affected by turf system. In 

general, shoe displacement appears insufficient for the “trench effect” to be a factor.
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Figure 4. Correlation between traction coefficient ( ) and shoe angle ( ). No significant differences were 
identified between cleat configurations or turf systems. Solid line represents least squares regression for all 
cleat configurations and turf systems (slope = .0017). 

Comparing mean values of traction coefficient and shoe angle

At first glance, it may seem unorthodox to utilize the mean values of traction coefficient and 

shoe angle to highlight the relationship between the two. To date, there is no consensus in the 

literature on how to report traction coefficients to achieve the most accurate result (as 

discussed in McGhie and Ettema 2013b). Hence, one can point to both positive and negative 

aspects of any method chosen. Neither shoe angle at peak traction coefficient nor traction 

coefficient at peak shoe angle fully represents the interaction that is present. On the contrary, 

the entire movement throughout sole contact time is important. However, comparisons at 

every instant captured in the measurement process are unsuitable due to the inherent variation 

that exists within both force and movement, and possibly other influencing variables, leaving 

the interaction between traction coefficient and shoe angle without pattern (Figure 5). That 

does not mean that no pattern exists. Rather, it’s a function of a natural limit to the level of 

accuracy that is possible to achieve. Using mean values allows for evaluating the relationship

taking the entire movement into account while still including the effect of the peak.

Illustrating the relative accuracy of utilizing the mean value of shoe angle (which may not be 

as common), the mean ± SD range of shoe angle during sole contact was 3.83 ± 1.75°, with 

similar ranges across both cleat configurations and turf systems; 4.25 ± 1.74° for turf cleats, 
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3.73 ± 1.71° for traditional round cleats, and 3.56 ± 1.74° for bladed cleats; 3.86 ± 1.86° on 

DU42, 3.70 ± 1.75° on DU50, and 3.92 ± 1.62° on DU60. Note that the range of shoe angles

during sole contact is substantially smaller than the range of shoe angles presented in the main 

results (Figure 4).

Figure 5. Illustration of the interaction between traction coefficient and shoe angle during sole contact. Top: 
time course examples of variation in traction coefficient and shoe angle. Bottom: relationship between traction 
coefficient and shoe angle. The natural variation occurring in each of the variables makes comparisons at each 
instant unsuitable. 

Shoe Angle and Traction

A significant positive relationship between As is the nature of 

correlation analysis, more insight in a potential cause and effect relationship is not provided. 

Hence, variation in may cause variation in or variation in may cause variation in .

However, in this particular instance, it is reasonable to assume that variation in causes 

variation in rather than vice versa, as is largely determined prior to surface contact (with
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limited variation during surface contact) whereas necessarily is determined during surface 

contact.

In the present study, a predicted increase in 017 was found for every degree of 

medial rotation. For a player with a body mass of 70 kg, this means that a difference in medial 

rotation of 60° (roughly the range of the majority of measured shoe angles; Figure 4)

potentially corresponds to an additional ~70 N, or ~0.1 times body weight, of traction force

(Fh = Fv = 0.1 * 70 kg * 9.81 m·s-2). Taking the magnitude of into account, a change in 

traction coefficient of 0.1 does not appear impactful compared to previous recommendations 

for suitable traction coefficients (Frederick 1993, Lloyd and Stevenson 1990). Further, 

considering a previous analysis has shown traction forces to be ~1.6 times body weight 

(McGhie and Ettema 2013b), an increase of ~0.1 body weight, corresponding to a ~6 % 

change, seems unlikely to affect the traction force working on the body in a meaningful way. 

It is worth noting that it remains unclear if subjects intentionally chose a particular shoe angle 

in an effort to obtain (and within it, a desired friction force), which would render 

the previous statements somewhat redundant.

In the present study the majority of was between 40° and 100°, exceeding the angle

of 60° at which the threshold for increase in traction coefficient has been identified previously

using a mechanical device (Sabick et al. 2009). Following the “trench effect” theory, a further 

increase in traction coefficient above shoe angles of 60° relative to sliding direction should 

not occur due to the directional specifics of cleat configurations, realigning a number of

cleats. This does not hold true for in vivo measurements, where continued to increase with 

above 60°. On a side note, it is interesting that in the present study no subjects chose a medial 

rotation relative to initial running direction greater than ~60°, regardless of whether this was 

done on the basis of anatomical constraints or for traction related reasons, and that, despite a

shift of roughly 40°, the range of chosen was similar to the range of shoe angles supposedly 

eliciting an increase in traction coefficient using a mechanical device.

A likely explanation for the discrepancy between mechanical device testing and in 

vivo testing can be found in the shoe displacement. The “trench effect” originated from an 

experiment where a displacement of 20 cm was employed (Sabick et al. 2009), allowing the 

distance between a number of different cleats at different angles to be covered. In contrast,

with human subjects a mean displacement of 1.33 cm was uncovered. Simply put, for 

controlled human movement the shoe displacement appears insufficient for the “trench effect” 

to ever be a factor. Hence, there is no obvious reason why shoe angles exceeding 60° should 

produce results following a different pattern. That is not to say that the principle behind the 
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“trench effect” theory is not valid, but rather that it may be more so for mechanical device 

tests than for controlled human movement where the required shoe displacements do not 

appear to occur. Still, this leaves the question of why increases with , even when 

disregarding the “trench effect”, without an apparent answer. It is possible that further 

analyses including joint-specific variables at the different shoe angles is needed to uncover the 

underlying reasons behind the relationship.

Cleat Configuration

Bladed cleats have, as mentioned previously (Lambson et al. 1996, Taylor 2010), been 

blamed for being harmful due to injuries resulting from increased traction caused by the cleat 

configuration, and could be expected to produce greater resistance with increasing shoe angle 

as a function of cleat shape resulting in a progressively increasing surface area in the direction 

of movement. Traditional round cleats, on the other hand, maintain an identical cleat surface 

area irrespective of transverse plane orientation, and hence traction should increase with 

increasing shoe angle only as a result of an increased number of cleats carving their unique 

path through the turf system. However, even considering it was significantly greater with 

traditional round cleats, shoe displacement does not appear sufficient for this to be a factor.

Regardless, and in this case more importantly, there were no significant differences in the 

– ,

leaving no evidence of cleat surface area in movement direction as a likely cause behind the 

increase in . Acting as something of a mediating factor, a previous analysis found to be 

similar across all three cleat configurations (McGhie and Ettema 2013b). Perhaps most 

surprising was the fact that turf cleats didn’t differ from the two more pronounced cleat 

configurations with regard to – , since turf cleats can be assumed to 

penetrate the turf system to a much smaller degree. This goes against the notion that a 

reduction in penetration depth is accompanied by a reduction in traction force (Kirk et al. 

2007).

It might be that the limited displacement that occurs is the reason why, defying 

conventional wisdom, none of the quite dissimilar cleat configurations affect the –

relationship. The properties of the infill in the turf system, with its combination of loose state 

and capacity for continuous adjustment, could play an important role in ensuring that, due to 

the relatively speaking diminutive magnitude of displacement, it maintains a fairly consistent 

resistance across various cleat surface areas.
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In line with previous results derived from a mechanical device (Sabick et al. 2009), the 

present findings indicate that shoe angle is of greater effect than cleat configuration with 

regard to traction coefficient also when measured with a standardized movement. Coupled 

with the recent finding that cleat configuration doesn’t appear to dictate traction coefficient 

(McGhie and Ettema 2013b) it can be argued that injuries that are conventionally attributed to 

cleat shape should perhaps rather be attributed to the spatial specifics of the interaction 

between playing surface and shoe. However, it is important to reiterate that the change in 

traction across the range of shoe angles does not appear to reach a magnitude warranting 

concern.

Turf System

Disregarding purely material differences between turf systems, of which there are none 

between those included here, the two main components capable of influencing resistance are 

fibre density and infill density. As can be seen in Table 1, DU42 has the highest number of 

tufts per area (i.e., fibre density), followed by DU50 and DU60. With fibre height (minus 1.5 

cm free fibre) factored in, the amount of infill per area (i.e., infill density) estimated from the 

surface specifications is slightly greater on DU50 than DU42 and DU60, which are equal. In 

the present study, a statistically similar – was observed on all 

three turf systems, singling out neither fibre density nor infill density as a possible reason for 

the increase in with . Further, the lack of support for one of the basic premises of the 

“trench effect”, namely sufficient displacement, seems likely to diminish any potential effect 

of fibre density or infill density on resistance, especially when considered in conjunction with 

the previously discussed adaptive properties of infill.

Using other turf system characteristics to assess the absence of differences in the slope 

– highlights further similarities. The three turf systems exhibit similar

impact absorption (a variable related to, among other things, infill properties) during player-

surface impacts (McGhie and Ettema 2013a), which could be assumed to have an effect on .

In any case, in theory, the impact absorption of a turf system does not change depending on 

transverse plane –

direct manner. Adding to this, also similar across the three turf systems during player-

surface interactions (McGhie and Ettema 2013b). One possible reason behind the similarity 

between the three turf systems, briefly mentioned previously, is the fact that their material 

composition, a factor which may influence resistance (Villwock et al. 2009), is identical.

Nevertheless, the lack of any observed mechanisms, besides potentially the limited cleat 
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displacement, that could cancel out the existing differences in fibre density and infill density 

between the turf systems leaves their effect on the – still uncertain.

Conclusion

During a standardized cutting movement, an increase in shoe angle was accompanied by an 

increase in traction coefficient. Due to the order of occurrence of these variables in a cutting 

movement it is reasonable to assume that the increase in traction coefficient is caused by the 

increase in shoe angle. However, shoe displacement was not sufficient to support the “trench 

effect” theory. The reason why the traction coefficient – shoe angle relationship persists 

despite limited displacement remains unclear, as neither cleat configuration nor turf system

appeared to affect the slope of the relationship. Future research on this relationship should 

attempt to uncover further details on what may be the underlying causes during human 

movement. In any case, it is worth noting that the increase in traction coefficient over a large 

range of shoe angles is seemingly not substantial enough to cause any practical implications.
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