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Abstract

In this paper, an unscented Kalman filter (UKF) coupled with a nonlinear model-predictive controller
(NMPC) for a hydraulic wellbore model with multi-variable control and tracking is presented. In a
wellbore, high drill string velocities in operational sequences such as tripping might result in surge and swab
pressures in the annular section of the wellbore. To overcome these challenges, a controller incorporating
safety and actuator limits should be used. A second-order model is used to predict axial drill string velocity
downhole. With a NMPC specifying the block position trajectory, choke flow reference, desired back-
pressure pump flowrate and stand-pipe pressure, we can automatically supervise and control the pressure
in the wellbore. To compensate for unmeasured states, an estimator is designed to predict the frictional
pressure forces in the wellbore and filter noisy measurements. A stochastic approach for the hydraulic
model is taken, including variance of the average fluctuations for the flow and pressure states. Comparing
three NMPC configurations, the result of using an integration of the tracking error in the prediction model
gave best offset-free tracking of the bottom-hole pressure. The controller compensates for the unknown
fluctuations, and is shown to be robust towards model mismatch. Including the mechanical system in the
NMPC prediction model, we can effectively constrain the predicted axial drill string velocity to reduce
the pressure oscillations and achieve tracking of bottom hole pressure and choke differential pressure. The
outcome is shown through extensive simulations to be an effective control strategy, reducing the pressure
spikes while tripping.
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1 Introduction

Drilling an offshore well is comprised of sequences to
be executed in a safe and efficient manner to reduce
pressure fluctuations in the wellbore. Tripping, either
running-in or running-out sections of drill string (DS)
pipe, are done to extend or shorten the DS assem-
bly while drilling a well. In these operations, typi-
cally the cost due to time is larger than the production
costs, requiring the highest rate-of-penetration possi-
ble. Furthermore, increasing tripping speed might lead

to instability in the wellbore known as surge, and swab
pressures occurring in the annular section (Rasmussen
and Sangesland, 2007; Lyons et al., 2015). An offshore
drilling process is illustrated in Figure 1.

Automatic pressure control is a measure of stabi-
lizing the transient pressure in the wellbore. Im-
plemented in the process control of the drilling-
rig, the conventional Proportional-Integral-Derivative
(PID) controller is used to control the subsea or top-
side choke valve, creating a back-pressure in the well
to effectively control the bottom hole pressure (BHP)
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(Gravdal et al., 2018). However, as pointed out in
Gravdal et al. (2018), changing conditions in the well-
bore due to well geometry, open-hole sections, forma-
tion and fluid properties, along with changing tempera-
ture profile along the well can limit the PID controller
in terms of required re-tuning during the operations.
These quantities are in many cases dependent on the
movement of the DS, and it is emphasized that the
control law should oppose limitations on the mechani-
cal side of the drilling operation (Cayeux et al., 2014).
Application of automatic control to obtain reference
tracking of the bottom-hole pressure (BHP) with tight
pressure margins is commonly referred to as Managed
Pressure Drilling (MPD). On the other hand, for wider
margins the fluid density is typically adjusted to main-
tain desired well pressure (Nygaard et al., 2007b).

The challenges of maintaining a stable wellbore are
connected to the reliability of the measurement data
and the physical model used for real-time wellbore
state prediction (Cayeux et al., 2014). Sensors used
for well control are mud-pulse telemetry, wired drill-
pipe transmitting pressure measurements to the sur-
face, and the gyro in the bottom-hole assembly (BHA).
Mud-pulse is restricted to cases where sufficient flow
is maintained. Currently, drilling-rigs are equipped
with higher fidelity sensor packages, such that more ad-
vanced control systems can be utilized (Cayeux et al.,
2010). As such, a broad research field on soft sen-
sors is available in terms of observer-based applications
(e.g Stamnes et al. (2008)) and the use of Kalman fil-
ters (KF) (e.g. Nygaard et al. (2006); Gravdal et al.
(2010)). Filtering techniques are methods to provide
additional insight, parameter estimates of unobserved
process variables with minimum variance and bring re-
dundancy in the measurement data.

Control design in MPD applications traditionally re-
strict to the use of the choke valve (Meglio and Aarsnes,
2015). The choke valve is the variable restriction in the
mud return flow from the annulus. A rotating circula-
tion device is included at the top of the well to seal off
the annulus between the DS and borehole wall (Down-
ton, 2012). However, an advantage is to combine the
choke with the mud circulation system and draw works
to further increase the capabilities when tight pressure
margins are present and longer reach wells are drilled
(Godhavn, 2009). In terms of choke control, see for
example Nygaard et al. (2007a); Stakvik et al. (2016);
Zhou (2018).

In multi-variable control, a supervisory control sys-
tem is included to set reference points to sub-level
controllers (typically PID) directly actuating valves,
pumps, etc. In MPD applications for controlling pres-
sures at defined locations, model-based schemes are
commonly applied. Typically, a first-order model com-
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Figure 1: A sketch of an offshore drilling operation.
The variable vs denotes the tripping speed.
Green dashed lines mark the boundary of
each segment in the model.

prised of ordinary differential equations is sufficient for
capturing the transient pressure and flow effects (Kaasa
et al., 2012; Gjerstad et al., 2013).

Linear model-based control schemes have been stud-
ied extensively in Nygaard et al. (2007b); Breyholtz
and Nygaard (2009); Breyholtz et al. (2010) and
Møgster et al. (2013). The latter utilizes the WeMod
high fidelity well simulator with Equinor’s SEPTIC
Model Predicitive Control (MPC) software. In these
studies, the DS velocity is manipulated directly.

In terms of nonlinear multi-variable control, the non-
linear MPC is using a nonlinear model to calculate
the process inputs. A comparsion between a PI con-
troller and a NMPC using a low-order model is given
in Breyholtz et al. (2009), were the control design was
additionally tested on a high-fidelity dynamic model
used in offshore drilling. In Pedersen et al. (2018),
choke pressure, pump flow and the separator are con-
trolled to achieve multi-objective control with no DS
dynamics. The work considers underbalanced drilling
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which is a variant of the MPD, allowing reservoir pro-
duction during drilling. The work of Nandan and Im-
tiaz (2017) includes an NMPC for switching between
tracking of BHP and kick-attenuation in the wellbore,
showing promising results by using the choke valve for
control when performing pipe connections.

In this paper, we combine both the mechanical and
fluid domains by means of a hoisting model for the axial
DS dynamics, along with a first-order lumped parame-
ter model with first-principles mud flow dynamics from
Gjerstad et al. (2013). The frictional pressure forces
in the wellbore and inside DS are inherently coupled
with the DS velocity in this model. To effectively com-
pensate for pressure transients and achieving desired
wellbore conditions, we develop a supervisory control
system in terms of a NMPC, with state and parame-
ter estimates supplied by an UKF. We assume sparse
knowledge of the frictional pressure forces in the annu-
lus, and show the performance of the suggested control
strategy through extensive simulations.

The rest of the paper is organized as follows: Sec-
tion 2 gives the preliminaries of the methods and theory
used in this paper. Section 3 gives an overview of the
hydraulic wellbore model which is extended with dy-
namics of the hoisting system. Section 4 includes a sur-
vey on the aspect of system identification for the well-
bore when the flow is limited through the bit nozzle,
the estimator design and a test case. Section 5 presents
the control design, with nonlinear model-predictive
control. Section 6 shows the result of the work through
extensive simulation case studies with Section 6.3 giv-
ing a discussion on the results. Section 7 gives the
concluding remarks on the work.

The nomenclature used in the paper is summarized
in Table 1.

2 Preliminaries

In this section, we present the preliminaries on mod-
elling of lumped fluid flow in a pipe, the general
stochastic differential equation with continuous Wiener
processes, and finally an overview of nonlinear estima-
tion in terms of the unscented Kalman filter. This is
intended to give the reader some familiarity with the
topics presented and the developed material in this pa-
per.

Conservation of mass in a control volume is defined
by the continuity laws, which are given as (Egeland
and Gravdahl, 2002)

Vc
β
ṗ = −V̇c − q1 + q2 (1)

where Vc is the volume, β is the bulk modulus, p is
the pressure, q2 is flow into the volume and q1 is the

Table 1: Nomenclature

DS Drill string
PID Proportional-integral-derivative
BHP Bottom-hole pressure
BHA Bottom-hole assembly
MPD Managed-pressure drilling
KF Kalman filter

MPC Model predictive control
NMPC Nonlinear MPC
UKF Unscented Kalman Filter
SDE Stochastic Differential Equation
EKF Extended Kalman Filter
SP Sigma Points

RIH Run-in-hole
POOH Pull-out-of-hole
OCP Optimal control problem
NLP Nonlinear programming problem

RMSE Root-mean-square-of-error

flow out of the volume. Using dρ = ρ
βdp, and assuming

equal density at the inlet and outlet of Vc, we con-
sider positive flow direction upwards in the vertically
oriented control volume.

Equivalently, we can express the momentum balance
in terms of the rate-of-change of flow rate as a func-
tion of the net fluid pressure in the control volume (as-
suming that pressure is uniform in the volume) (Kaasa
et al., 2012)

Mq̇ = pf (q) + p1 − p2 (2)

where M is a fluid constant, pf is the frictional pressure
losses, p1 is the upstream pressure in the control vol-
ume and p2 is the pressure downstream of the control
volume.

2.1 Stochastic differential equations

In general, many systems express a stochastic nature
and therefore need to be treated with a deterministic
and a stochastic part. A stochastic differential equa-
tion (SDE) in general form is given as

dx(t) = f(x,u,θ, t)dt+ g(x,u,θ, t)dv(t) (3)

where f is the deterministic part of the SDE, g is the
diffusion term, θ is a system parameter vector, v(t)
is a standard Wiener process (Brownian motion) de-
pending on the time interval t ∈ [t0, tf ]. The difference
v(t)−v(s) is normally distributed with zero mean and
variance σ2 = I(t − s). Then, defining h as the time
step h = (tf−t0)/N and N is the number of increments
from t0 to tf , we have

vj,k − vj,k−1 = dvj,k, v0 = 0, k = 1, . . . , N (4)
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where j is the number of noise variables, dvk ∼
N (0,

√
h) and tk = k h.1 To integrate the second

part, including the diffusion term, an approximation
of the stochastic integral is used due to the nondif-
ferentiable state of dv (the term is not related to any
past or present values) commonly either the Itô or the
Stratonovich form (Chirikjian, 2009).

The SDE in (3), is then approximated numerically by
a Taylor series expansion of defined order (here order
1, Euler or Runge Kutta-Maruyama) to simulate the
stochastic behaviour.

The discrete-time measurement is formulated as

yk = h(xk) + wk (5)

where yk is the sampled measurement values, h is the
observation model, wk ∼ N (0,R) is the zero-mean
discrete-time measurement noise and R is the noise
covariance.

2.2 The unscented Kalman filter

Physical states are in many cases not observable di-
rectly from the measurements. The system identifica-
tion tool to obtain the system states or parameters (or
combined) are the estimator. Estimation schemes ap-
plicable to nonlinear dynamics include the Extended
KF (EKF) and the UKF. The EKF involves lineariza-
tion of the system and observation model, to propa-
gate the state and error covariance in time. However,
divergence of the filter estimates can occur if the lin-
earized model poorly represents the actual model and
when large steps out from the linearized point (x∗,u∗)
are taken (Brown and Hwang, 2012, Chapter 7). The
linearization is performed as

φ =
∂f

∂x>

∣∣∣∣
x̂,u

, H =
∂h

∂x>

∣∣∣∣
x̂,u

where φ is the linearized system transition matrix, H
is the linearized output mapping matrix. To overcome
the challenges, the UKF was introduced in Julier and
Uhlmann (1997).

Using a nonlinear transform, the UKF estimates the
system probability density function through a deter-
ministic, minimal set of sigma points (SP). The use of
SPs enables better approximation of the true mean and
covariance by using a 2nd-order approximation, unlike
the 1st-order approximation of the extended KF.

In this section, we consider the discrete-time dynam-
ics of xk and additive noise in the system. The notation
xk|k−1 denotes the current sample given last sample
time information about the mean. The time-update

1The Wiener process has infinite variance when t→∞.

starts with a new draw of estimator SPs, Xk, calcu-
lated according to the initial estimated mean of x̂k−1

from last sample-time tk as

X 0
k = x̂k−1,

X ik= x̂k−1+
√

(nx+λ) coli(U),

X i+nx

k = x̂k−1−
√

(nx+λ) coli(U)

(6)

where U = chol(P̂)> is the Cholesky factorization of
the state covariance matrix2, coli(U) is the ith column
and nx is the number of system states. The weights,
determining the impact of each SP state is given as

ω0
µ =

λ

nx + λ
, ω0

P = ω0
µ + 1− α2 + β

ωiµ = ωi+nx
µ = ωiP = ωi+nx

P =
1

2(nx + λ)

where ωiµ is the mean weights, ωiP is the covariance
weights, λ = α2(nx +κ)−nx, α determines the spread
around the mean, β = 2 assuming Gaussian distribu-
tion of x̂k, and κ = 3−nx is the scaling factor (Brown
and Hwang, 2012).

The predicted mean xk and covariance Pk are com-
puted based on the nonlinear transformed stochastic
variable, expressed as

xik|k−1 = f̃(X ik,uk), (7)

xk|k−1 =

p∑
i=0

ωiµx
i
k (8)

Pk|k−1 =

p∑
i=0

ωiP (xik−xk)(xik−xk)> + Qk (9)

where f̃ is the nonlinear discrete-time state transition
function, uk is the discrete input, p = 2mx + 1 and Q
is the UKF covariance matrix. Furthermore, the pre-
dicted observation and its covariance and the resulting
cross-covariance are computed according to

yik|k−1 = h̃(X ik,uk), (10)

yk|k−1 =

p∑
i=0

ωiµy
i
k (11)

Pyy,k|k−1 =

p∑
i=0

ωiP (yik−yk)(y
[i]
k −yk)> + R (12)

Pxy,k|k−1 =

p∑
i=0

ωiP (xik−xk)(yik−yk)> (13)

where h̃ is the (nonlinear) discrete-time observation
model, yik is the predicted sigma point measurement,

2U = Chol(P)> ⇐⇒ UU> = P
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yk is the predicted, weighted measurement, Pyy,k is the
observation covariance, Pxy,k is the cross-covariance
and R is the UKF measurement covariance.

When a new measurement sampling from the pro-
cess sensors is obtained, a filter measurement update
is performed. The a posteriori estimates are given by
the Kalman filter update equations (Haug, 2012)

Kk|k−1 = Pxy,kP
−1
yy,k (14)

P̂k+1|k = Pk −KkP
−1
yy,kK

>
k (15)

x̂k+1|k = xk + Kk(yk − yk) (16)

where Kk is the Kalman gain at time tk, P̂k+1 is the
a posteriori covariance estimate of xk, x̂k+1 is the a
posteriori estimate of the system states, and yk is the
measurement obtained at tk. During each measure-
ment sample-time interval, the filter prediction is up-
dated using the current input and last iteration pre-
dicted mean xk−1.

3 System modelling

Referring to Figure 1, the wellbore is discretized into
a 2n− 1 degrees of freedom fluid dynamic model. The
boundaries are q1 = qc and the injection flow rate from
the bit nozzle. The segments are explained as follows:

• segments 1 to n− 1 consist of drill pipes,

• the last wellbore segment is the BHA, consisting of
drill collars, the cutter, and various logging tools,

• positive flow direction is defined upwards in the
annulus,

• the lumped control volume pressure pi is uniform
in each segment.

The wellbore representation is drawn from (Gjer-
stad et al., 2013), which derived a discretized hydraulic
model where the frame of reference is fixed to the well-
bore formation, such that the movement of the DS is
assumed to alter the volumetric flow rate for the two
lowermost segments. These consist of the largest ge-
ometrical changes of the DS assembly, causing larger
flow variations when movement occurs.

The model was also derived considering two different
diameters in each wellbore segment. This corresponds
to two different flow rates and pressure states at these
points in the annulus, which was included to approx-
imate the pressure loss in terms of both laminar and
turbulent flow in the annulus and DS. To reduce the
number of states in the model, being derived from (1)
and (2), the pressure forces for the main and sec-
ondary sections are lumped together. The main sec-
tion (index 1) is either the drill pipe or collar, and the

secondary section (index 2) is either the tool-joint or
BHA. For annular flow, the secondary flow rate is the
difference between the main section flow rate and the
portion following the moving wall, yielding

q2 = q1 − (Af1 −Af2)vs (17)

where Af1 and Af2 are the cross-sectional flow areas.
The averaged flow velocity in each section of the annu-
lar segment is then given as

v1 =
q1

Af1
, v2 =

q2

Af2
(18)

The model in this paper includes the above-
mentioned properties, and we extended it to include
the choke flow rate and the dynamics for the DS. We
consider the case of no influx from the reservoir and
that the wellbore is closed down-hole, i.e., the last con-
trol volume is closed. The normal forces of the fluid is
then assumed to cancel the gravitational forces (also in
the case of inclination), for each control volume. The
length of the wellbore is assumed to be fixed during
the time instant of tripping, such that we do not con-
sider the extension due to drilling (i.e., the number of
segments is fixed during operations).

3.1 Conservation of mass and momentum
in wellbore

From Figure 1, the mass and momentum balances for
each segment can be expressed as

ε

γ

V1

β1
ṗ1 = q2 + qbpp − qc,

ε

γ

V1

βi
ṗi = qi+1 − qi,

γ

ε
Miq̇i = Ff,iγ +Aeq,i(pi − pi−1),

(19)

ε

γ

Vn−1

βn−1
ṗn−1 = −V̇n−1ε+ qn − qn−1, (20)

ε

γ

Vn
βn
ṗn = −V̇nε− qv(pn, pI ,∆pb)− qn (21)

where i ∈ {2, . . . , n}, γ and ε are conversion factors
(Pa and m3·s−1 to bar and l·min−1, p = γp, , q = εq)3,
Vi is the segment volume, βi is the bulk modulus of
the segment, pi segment pressure, qi is the flow rate
out from the segment, q1 = qc is the choke flow, qbpp is
the input flow rate from the back pressure pump unit
topside, V̇i is the volume change due to surge and swab
effects of a moving DS, Mi is a fluid constant, Ff,i are
the frictional pressure forces, Aeq,i is the equivalent
area for the acting pressure forces, and qv is the flow

3The bar over the variables are from here on omitted for con-
venience.
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out from bit nozzle valves into the annular segment n,
which will be further explained in Section 3.2.

The flow rate out of segment 1 is equal to the choke
flow through the valve and is then subject to the pres-
sure downstream, i.e. the pressure in the mud tank
(being atmospheric for open tanks). The valve flow is
expressed as

qc = ucCc
√
|p1 − p0|sign(p1 − p0) (22)

where uc ∈ [0, 1] is the valve control signal and Cc
is the lumped choke valve coefficient. The differential
pressure over the choke is p1 − p0, where p0 is the at-
mospheric pressure in the mud tank.

Drill string movement results in pressure fluctuations
in the annulus. These pressure changes are largest in
the region where the geometrical changes of the DS
are largest, specifically when the DS geometry changes
from pipe to collar and the BHA (Gjerstad et al., 2013).
This is due to the fluid velocity being larger when the
annulus volume in the collar/BHA section is small. To
account for the increase/decrease in rate of change for
the pressure in the control volume for the last two seg-
ments, the time derivative of V is expressed as

V̇n−1 = (Ap −Ac)vs, (23)

V̇n = Acvs (24)

where vs is the axial DS velocity, Ac is the collar cross-
sectional area and Ap is the pipe cross-sectional area.

The pressure forces in each segment are expressed
with the equivalent flow area, defined as

Aeq,i = π(d2
w,i − d2

k,i)/4 (25)

where dw,i is the wellbore diameter and dk,i, k ∈
{p, j, c, b} is the outer string diameter, at segment i.
The constant Mi is expressed as

Mi=Aeq,iρm

(∫ li+1

li

1

Af1,i
dx+

∫ li+1

li

1

Af2,i
dx

)
(26)

where ρmdx = dm1,i is the infinitesimal fluid density
per length in each section of the segment integrated
for the flow path dx in the well. Furthermore, we as-
sume uniform density in the sections, and according
to (Kaasa et al., 2012), the parameter Mi is approx-
imated in lumped hydraulic systems. Hence, in (26)
Mi ≈m1,i/Af1,i+m2,i/Af2,i.

In Gjerstad et al. (2013), the frictional pressure
forces are derived with Herschel-Bulkley fluid proper-
ties. These type of fluids reflect closely the properties
of mud flow, being an approximation with fluid yield
point related to the Bingham plastic and the power law
model (Whittaker and EXLOG Staff, 1985). We will
not repeat the derivations of the wall-shear stresses,

and hence, the reader is referred to the work in Gjer-
stad et al. (2013).

The frictional forces arise from the wall shear stress
from the fluid and is given as

Ff,i = Au1,iτw1,i(v1e, vs) +Au2,iτw2,i(v2e, vs)

where Au1,i is the boundary surface between mud and
the surrounding borehole wall and DS in the main sec-
tion, τw1,i is the corresponding averaged shear stress
value over the main section wall surface area, Au2,i is
the boundary surface between the mud and the sec-
ondary section and τw2,i is the averaged wall shear
stress value for the secondary section, ve is the effec-
tive flow velocity in the annular segment being the sum
of velocity for the moving component in the control
volume and actual flow velocity. The two components
τw1,i and τw2,i are approximated by the laminar and
turbulent flow regime for the mud flow with moving
wall. The transition between these to regimes is mod-
elled as

τiiw,i = τw,i,lamftr + τw,i,turb(1− ftr)

where ii= {1, 2}, and ftr is a transition function de-
pending on the equivalent Reynolds number for Non-
Newtonian fluid.

3.2 Conservation of mass and momentum
in the drill string

The inner volume of the DS is presented in Figure 2.
The inner volume of the DS is lumped into a single

control volume, assuming a uniform pressure inside the
string (Kaasa et al., 2012). The averaged flow velocities
relative to the moving DS are given as

v̄r1 =
qI
Af1

− vs, v̄r2 =
Af1

Af2
v̄r1. (27)

Similar to the dynamics of a control volume in the
annulus, the inner volume of the DS is comprised of
the flow rate and pressure state, given as

ε

γ

VI
βI
ṗI = qv − qI + vsAI1ε (28)

γ

ε
MI q̇I = FI,fγ +Aeq,I(pI − pin) (29)

where subscript I is for inner, the change in pressure
from of DS heave is modelled with V̇I , MI = mI1/AI1+
mI2/AI2, AI1 is the main inner cross-sectional area
and Aeq,I = πd2

p,i/4 is the equivalent area for the inner
section with dp,i being the drill-pipe outer diameter for
segment i. The inner frictional forces are defined as

Ff,I = Au1,Iτw,I1 +Au2,Iτw,I2 (30)
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where Au[1−2],I are the boundary surfaces of the fluid
flow for the main and secondary sections, and τw,I1−2

are the averaged shear stress value. Furthermore, the
transition functions defines the contribution for each
wall shear stress section for the inner control volume,
expressed as

τw,I[1,2] = τw,I,lamftr + τw,I,turb(1− ftr). (31)

In the case of running mud through the DS,
pin = pspp, where pspp is the stand-pipe pressure.
When the stand pipe is disconnected, the pressure at
the inlet of the DS is atmospheric.

The inner DS control volume is defined as a single
section. The diameters for this segment are defined by
dI,k, k ∈ {j, c, b} for the secondary section and dI,p is
the main section diameter (1).

In rotary drilling for high deviation wells, mud-motor
or BHA turbines are applied to achieve high rotation
speeds at the BHA. This is done by high pressure
pumps topside, forcing large amounts of drilling mud
into the string, rotating the turbines in the BHA for
increased bit rotation speed (Black et al., 1986). The
total pressure drop over the BHA is defined by the pres-
sure drop over the turbine in the BHA lumped with
other restrictions. We can then express the pressure
drop over the BHA as

∆pb = KbqI(t) (32)

where Kb is a constant. The nozzle contains check
valves, such that the flow is directed only out from the

pin

dI,p

AI,p

dI,j

AI,j

dI,c

AI,c

dI,b

AI,b

qI

pI

−qv

Figure 2: The inner DS control volume. The dynamics
is lumped to one segment.

DS to the wellbore. Thus, the pressure drop over the
valve is then

∆pv = pI −∆pb − pn. (33)

The flow out from the nozzles is then a conditional
function, which can be expressed by the valve equation
as

qv=

{
−Kv

√
2∆pv
γρI

ε,∆pv>0

0,∆pv ≤ 0
(34)

where Kv is the lumped nozzle valve constant.

3.3 Rig travelling block dynamics

To account for the interaction between the DS and
travelling block, we assume that we can represent the
dynamics of vs as a second-order mass spring damper
model. The rig system is represented as a fixed element
with an attached spring and mass, as seen in Figure 3.

ẋs

keq ceq

mds

ub(0) = 0

g

Figure 3: The rig and DS system.

The sum of forces for the point mass mds with sign
convention equal to what is defined in the previous
sections, the DS dynamics is derived as

−mdsẍs − keq(xs − ub)− ceqẋs −mdsgFb = 0 (35)

where xs is the perturbation in DS position, vs = ẋs,
mds is the mass of the DS, keq is the equivalent DS
stiffness, ub is the position of the travelling block, ceq

is the equivalent damping to the surrounding fluid and
formation, g is the gravitational constant and Fb is the
buoyancy factor.

Using the transform ξ = xs− 1
keq
mdsgFb and dividing

by mds, we can express (35) as

− ξ̈ − keq

mds
(ξ − ub)−

ceq

mds
ξ̇ = 0 (36)
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where ξ is the deviation from the suspended equilib-
rium point, in tension due to the gravitational forces
acting on the DS. We proceed to define the system
s1 = ξ, s2 = ξ̇ and

ṡ =

[
s2

−ω2
ns1 − 2ωnζs2 + ω2

nub

]
(37)

where ωn =
√
keq/mds is the natural frequency of the

system, and ζ = ceq/(2
√
mdskeq) is the relative damp-

ing factor. Increased damping due to increasing mud
flow is not included in this analysis, as we assume a
constant damping factor for the mechanical system.

The reference trajectory controller for the travelling
block can be derived to fully complete the rig dynam-
ics. With a linear system representation for the rig
dynamics, we choose common methods to define ub as

ub = −k1(s1 − ur)− k2s2 − k3σ

σ̇ = s1 − ur
(38)

where k1, k3 and k2 is the proportional, integral and
derivative gains respectively constituting a common
PID control law (Khalil, 1996). The gains are chosen
such that the system P = A− BK is Hurwitz, and

A =

[
Az,0

[1, 0], 0

]
, B = [0, 1, 0]>, K = [k1, k2, k3]

where Az = ∂f(s)/∂s|si,ss,ub,ss
, and f(s) is given by

(37).
Then, following the Routh-Hurwitz Criterion for

a stable characteristic polynomial det(Is − P) = 0
(Khalil, 1996, Chapter 12.4), the gains

k1 >
k3

ω2
nk2 + 2ωnζ

, k2 > 0, k3 > 0

ensures the Hurwitz condition.
Inserting (38) into (37), the DS and travelling block

model constitutes then

ż1 = z2

ż2 =−ω2
n(1+k1)z1+ω

2
nk1ur−ωn(2ζ+ωnk2)z2−ω2

nk3z3

ż3 = z1 − ur (39)

where z1 = s1, z2 = s2, z3 = σ, and the supervisory
control input is actuating the reference ur.

3.4 State-space formulation

The wellbore and DS model from Section 3 can be for-
mulated as a 2n + 1 degrees of freedom state-space
model, where the wellbore is modelled with n pressure
states and n − 1 flow rate states, and the inner DS
contains two states.

Let nx = 2n+ 1, x1 = [p1, q2, p2, . . . , qn, pn]>, x2 =
[qI , pI ]

>, u = [vs, qc, qbpp, pin]> be the state vectors
and input vector, then the wellbore dynamics can be
formulated in state-space form as

ẋ1 =A1x1+B1u+F1f1(z2,x1)+e1qv(x1,x2) (40)

where the system matrices and vectors are derived as

A1 =



0 B1 0 0 . . .
−M̃2 0 M̃2 0 . . .

0 −B2 0 B2. . .
...

...
. . .

...
...

. . . 0 Bn−1 0

. . .−M̃n 0 M̃n

. . . 0 −Bn 0

 ,

B1 =


0 −B1B1 0
...

...
0 0 0 0

−(Ap−Ac)Bn−1ε 0 0 0
0 0 0 0

−AcBnε 0 0 0

 ,
F1 =diag(

[
0,M−1

2 , 0, . . . 0,M
−1
n

]>)ε
f1 = [0, Ff,1, 0,. . . 0, Ff,n]

>
,

e1 = [0, . . . , 0,−Bn]
>
.

Similarly, for the inner DS we have

ẋ2 = A2x2+B2u+
ε

MI
f2+e2qv(x1,x2), (41)

where the x2 system matrices are defined as

A2 =
[

0 M̃I−BI 0

]
, B2 =

[
0 0−M̃I

AI1BIε0 0

]
,

f2 = [Ff,I(z2, qI), 0]
>
, e2 = [0, BI ]

>

where Bk = γβk/(εVk), BI = γβI/(εVI), M̃k =
Aeq,kε/(γMk), M̃I = AIeqε/(γMI), and k ∈ {1, . . . , n}.

The rig dynamics is already in a state-space formu-
lation, and the total system is then given by the vector
x̃ = [z>,x>1 ,x

>
2 ]>

4 System identification

In this section, we address the system identification for
the offshore drilling operations with special attention
to running connections. This is due to having no cir-
culation of mud flow when performing this operation,
which implies that the nozzle flow through the bit is
reduced or zero. We wish to obtain estimates of the sys-
tem states to monitor the pressures in the discretized
wellbore along with the wellbore flow. To design a
state controller, we require full-state knowledge of the
system.

The measured outputs when circulating mud are as-
sumed to be y = {z1,∆p, pn, qI}, and y = {z1,∆p, pn}
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otherwise, where ∆p = p1 − p0 is the differential pres-
sure over the choke. The observation model h during
circulation is defined as

yk = h(x̃k) =


1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

 x̃−


0
p0

0
0

 , (42)

where k is the discrete time index, and in the case of
no circulation, pin = p0 and h is reduced by removing
the fourth row.

In terms of the proposed model for the drilling oper-
ations, linearization of (22) and (34) leads to a singu-
larity. When the pressure difference is negative or zero
in (34), the expression becomes invalid and requires
special numerical treatment when evaluating the sim-
ulation model. Due to this, we design a state and pa-
rameter estimator with the UKF. The UKF uses the
nonlinear model directly in time propagation of the
mean at its covariance from (40) and (41).

4.1 Observability

We must ensure that the deterministic systems (39),
(40) and (41) are observable with (42) at time tk when
sampling is performed. Observability is a measure of
the system property to reconstruct the state xk given
an input-output map yk, uk. For a linear system, this
implies that the observability matrix formed by the sys-
tem and output matrices has full rank (see e.g., Chen
(2013, Chapter 6.3)). For nonlinear systems this is
not a straight forward procedure, and often reduces to
the previously mentioned rank test for linear systems.
The conditions for nonlinear observability is addressed
in Hermann and Krener (1977); Kou et al. (1973)

According to Hermann and Krener (1977), we can
show locally weak observability by calculating the Lie
derivatives4 up to nx − 1, and check the rank of the
resulting Jacobian.

The linear second-order system comprising the rig
dynamics in (37) can be shown to be observable for
the measurement z1. The hydraulic system has a po-
tential observability problem, with too few linearly in-
dependent measurements compared to the number of
estimated states in the x1,x2 system. Therefore, be-
fore designing the estimator we need to ensure system
observability with the limited measurements. Consider
a wellbore DS system with n = 2 (two segments),
annular frictional pressure force are assumed to be
quadratic in flow rate fj = −kfjx2

j , where j = {2, 4}
and kf is a constant (Kaasa et al., 2012). Using
u = [uz2 , (qc+ qbpp), pin], we can arrange (40) and (41)

4For a more detailed description of Lie derivatives, see e.g.,
Slotine and Weiping (1991).

as

ẋ =

[
A1 0
0 A2

]
x+

[
F1 0
0 F2

]
f(x)+

[
B1

B2

]
u+eqv(x)

y =h(x) = [x1 − p0, x3]>
(43)

where x = [x>1 ,x
>
2 ]>, F1 = diag([0,−kf,2, 0]), F2 =

diag([−kf,4, 0]), f(x) = [0, x2
2, 0, x

2
4, 0]>, B1 and B2 are

given as in (40) and (41) by removing the third column,
e = [0,0,−B3, 0,−BI ]>, and qv ∈ C1 from (34) being a
nonlinear function in x. The state x3 then corresponds
to pn and x5 is the inner drill string pressure, pI .

The system in (43) is observable if the following
input-output map exists

H(x) =
[
h(x)> Lfh . . . L

nx−1
f h

]>
(44)

and the Jacobian of H has full rank, i.e rank(O) = nx,
where Lifh = (( ∂Li−1

f h/∂x ) ẋ)> is the ith Lie deriva-

tive and L0
fh = h>.

The system is nonlinear and due to this, the results
only show local weak observability at the operating
point xss. Using the symbolic toolbox in MATLAB we
see that the system in (43) is locally weakly observ-
able for qv > 0 and that O does not have full rank for
qv = 0.

In that case, the state x4 = qI , x5 = pI are nonob-
servable from the output y. This is reasonable, due to
qv(x) connecting the inner DS system to the wellbore
system. Hence, when circulation is off, the system is
only locally weakly observable for cases x5 > Kbx4+x3.

4.2 State and parameter estimator design

The deterministic systems (39)–(41) can be used to
formulate a continuous-discrete SDE state transition
and observation model as in (3) and (5). This is done
to include a diffusion term g, representing the model
errors and fluctuations in the state x capturing random
effects of the wellbore system.

The frictional pressure drop in the annulus is com-
monly estimated by running tests, fitting an n-th or-
der polynomial to the data and using this in the model
(Kaasa et al., 2012; Landet et al., 2012). Due to the
uncertain nature of the wellbore dynamics, we choose
to represent the first-principles friction model in (40)
by a quadratic estimate of the pressure forces arising
from the friction in the annular volumes. The estima-
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tion model is then given as

dz= fz(z, ur)dt+ g(z, t)dvz

dx1=(A1x1+F1f̂1+B1u+e1qv)dt+g(x1,t)dv1 (45)

dx2=(A2x2+
ε

MI
f2+B2u+e2qv)dt+g(x2,t)dv2

f̂1 = [F̂f,2, . . . , F̂f,n]>

F̂f,i = θ̂i|v̄i +Kcz2|(v̄i +Kcz2) (46)

where dθ̂i−1 = dvθi−1
, i = 2, 3, . . . , nx − 3, fz is the

deterministic part from (39), g is the diffusion terms
determining the average fluctuations in x, v are Wiener
processes satisfying v(t) − v(s) ∼ N (0, Idt), F̂f,i is
the annular segment estimated pressure force set up
by friction with θ̂ being the estimated coefficient for
each annular wellbore section, v̄i = qi/Af1,i and Kc

is the clinging constant for the fluid attached to the
moving DS. We assume to have prior knowledge of Kc,
which can be calculated for laminar flow as

Kc =
1

2 lnαi
+

α2
i

(1− α2
i )

(47)

where αi = d1,i/dw and dw is the wellbore diameter,
and d1,i is the main diameter for the segment. The
term between the brackets in (46) is referred to as the
effective velocity (Whittaker and EXLOG Staff, 1985).
The number of parameters to be estimated should cor-
relate with the number of measurements or be driven
by a persistent excitation signal. Hence, we assume full
knowledge of the fluid behavior in the DS volume. The
parameters are assumed to be random walk processes
with equal distribution as the Wiener process.

The measured outputs are given by the criteria for
operation (from Section 4), given as

yk =
[
z1, x1,1 − p0, x1,2n−1, x2,1

]>
+ wk (48)

where w = [w1, w2, w3, w4]>,∼ N (0,σ2
w), σ2

w is the
measurement noise variance.

The discrete-time estimation model in (45) is ob-
tained by using the Runge-Kutta Maruyama order 4 in-
tegration method from Rößler (2006), with step length
equal to the plant simulation model.

The estimator propagates the stochastic state vec-
tor X i through the nonlinear process model. Following
the notation defined in the preliminaries of Section 2.2,
the filtering algorithm is summarized in Alg. 1. The
UKF algorithm runs at the same frequency as the plant
model. However, the UKF measurement update is in
this work set at a different frequency. The measure-
ment sampling time in the UKF is denoted tm.

The algorithm assumes additive uncorrelated white
noise (E[wv>] = E[wx>0 ] = 0 and E[vx>0 ] = 0). This

Algorithm 1 Unscented Kalman filter

1: Initialize: P̂0, x̂0,Q,R
2: while Run-time: do
3: if mod(time, tm) 6= 0 then

4: Time-update: x̂k−1, P̂k−1
5: Compute a new set of sigma points X ik from (6)
6: for i = 0 to p do
7: Predict xik in (7)
8: end for
9: Predict new weighted mean xk (8)

10: Compute the predicted covariance Pk (9)
11: Return: xk,Pk
12: else
13: Measurement-update: yk is sampled
14: Compute Kk, x̂k and P̂k from (14), (16) and (15)

15: Return: x̂k, P̂k
16: end if
17: end while

allows us to simplify the computations by not calcu-
lating additional sigma points for vk,wk to be pro-
jected through the nonlinear transform and observation
model.

4.3 State estimation with no mud
circulation

Consider a wellbore system with n = 4 number of
pressure states (discretizing the wellbore into four seg-
ments). To confirm our predictions on observability,
we sample the plant model in (45) at 100 Hz, running-
in-hole (RIH) with circulation off. The wellbore and
DS data are given in Table 2, based on Lyons et al.
(2015, Ch. 4.6.4), and the scenario is similar to what
is seen in Figure 5 and 6 in (Gjerstad et al., 2013).

The estimator data and initial conditions are given
in Table 3. The measurement noise variance is calcu-
lated as σ2

i,w = (Wiyi,nom)2 where σw is the standard
deviation, yi,nom is a chosen nominal signal value for
the individual measurement and Wi is corresponding
signal noise amplitude.

The pressure at the top of the DS is set to atmo-
spheric pressure, and the choke position is set to 50%.
The imperfect model estimates resulting from driving
the block 28 meters downwards, simulating run-in of
the drill string in the wellbore.

The estimated pressure state and true values are seen
in Figure 4. The pressure estimate p̂I does converge,
but is seen to have a constant bias. It is seen that the
inner DS flow rate is excited by the DS velocity and is
closer to its true value.

The back-pressure pump kept is ramped up at t = 2
min to 400 l/min. The DS velocity is negative when
RIH is performed, and the velocity returns to zero as
the new pipe section is put in place. The estimated
states are seen to converge close to their true values.
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Table 2: Wellbore and drill string data. TJ - Tool joint,
DC - drill collar.

Number of segments n 4 [-]
Length, segment i 1092 [m]
Length, segment n 344.1 [m]
LTJ, LDC, LBHA 0.25, 251.1, 60 [m]

LDS total 3607.8 [m]
dp, dj 0.1270, 0.1684 [m]
dc, db 0.1270, 0.1740 [m]

dws (uniform) 0.245 [m]
dI,p, dI,j 0.1087, 0.0825 [m]
dI,c, dI,b 0.0810, 0.0988 [m]
Aeq, Aeq,I 0.0343, 0.0449 [m]

Kv 5.199·10−4 [-]
Cc 0.0016 [-]
Kb 0.005 bar min L−1

ρm, ρs 1800, 7850 [kg m−3]
βi 6.5 · 109 [Pa]

Parameters modified from Fig. 2 in (Gjerstad et al., 2013):
a, b 0.1, 0.2 [-,-]
aI , bI 0.024, 0.21 [-,-]
τy,I 15 [Pa]
nf , k 0.79, 0.15 [-,-]

Table 3: Noise and estimator parameters.

gp,gq 0.0025, 10 [-]
Wi [1%, 5%, 10%] [-]

yi,nom [1, 1, 1] [m, bar, bar]
qθ [104, 104, 104]> [-]
Q blkdiag([10−5, 10−5, 10−5],g,qθ) [-]
R diag(σ2

w) [-]
tm,
αukf

0.01, 1 [s,-]

The variance and measurement noise of the system gen-
erates a rapidly varying frictional pressure force for the
inner-DS, as seen in Figure 5.

Constant deviations for the estimated frictional pres-
sure forces from the true value are seen, in the right-
most of Figure 5 for F̂f,i. However, the estimates con-
verge but with a significant bias.

From this study, some of the uncertainties in the
process of RIH or making pipe connection to process
disturbances are seen. To properly address the issue of
a nonobservable x2 system, in the specific case of no
mud-circulation, we will have to treat qv as a distur-
bance in the control system when circulation is off.

5 Control design for drilling
operations

This section presents the controller design for the trip-
ping operations in offshore drilling. As discussed in
Section 4, in the case of no circulation (such as running
pipe connections), an estimator control design must be

built around the assumption of a disturbance flow from
the bit nozzle.

We assume that we have all the available measure-
ments (mud circulation is on) and concern this work
with maintaining BHP pressure at reference, while
pulling out or running in the DS. The main focus is
then to control the BHP, actuating the travelling block,
z1, back-pressure pump qbpp, stand-pipe pressure pspp

and choke valve opening uc, keeping the actuator and
process constraints intact. The block position is used
for pull-out-of-hole (POOH) or RIH, maintaining the
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Figure 5: RIH flow rates, and wellbore friction force
estimates.
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constraints on DS velocity in the wellbore. Multi-
variable control, with both ∆p and pn is presented in
the last simulation case study.

A natural choice of control law with the requirements
discussed above is the MPC. The MPC is a widely ap-
plied process control law for both linear and nonlinear
applications. It is an advanced method of optimal con-
trol with receeding horizon control, meaning that the
measured output at sample-time ts together with cur-
rent and future constraints on x, y and u are taken
into account. For a thorough discussion on the topic
of nonlinear optimal control, see e.g., Findeisen and
Allgoewer (2002); Grune and Pannek (2011).

The MPC has become an industry standard in pro-
cess control, with special focus on advanced applica-
tion where process constraints are important (Qin and
Badgwell, 2003). The MPC control algorithm uses
a form of the actual plant model (either true or es-
timated), to predict future behaviour of the process
and optimal inputs. At each sampling instant, process
states are obtained (given by a estimator/observer and
sensors) and the MPC utilizes a state prediction to
form the optimal control input ū on an extended pro-
cess horizon (Findeisen and Allgoewer, 2002). A disad-
vantage is that the MPC can be influenced by modeling
errors (Grune and Pannek, 2011). Vital ingredients in
an MPC algorithm is process and actuator constraints,
a cost function and a model.

5.1 Constrained BHP Control

To constrain the inputs and system, we choose to de-
sign the control law around the MPC framework. We
can either linearize and use the conventional linear
MPC, or use the nonlinear model in predicting fu-
ture process behaviour. The latter seems to be the
better choice due to the nonlinearity of the bit nozzle
and choke valves. Also, a nonlinear version will be ro-
bust on a broader range of operating points than the
linearized MPC. The disturbance from DS heave and
eventually the flow through qv is then included when
predicting future optimal inputs for the process.

The NMPC is based on using a plant model to pre-
dict the future control inputs, leading the measure-
ment values to their respective references. An optimal
control problem (OCP) is defined, based on a nonlin-
ear prediction model, system equality and inequality
constraints. This involves either a continuous or dis-
crete nonlinear programming problem (NLP), which
the NMPC solves to obtain the optimal, constrained
input. An important real-time criterion for the NLP
is that the solution must be obtained before the next
sampling time occurs. For each future sample-time,
the input is open-loop applied in the prediction model
x̃j+1 = f(x̃j ,uj ,θk), in a finite prediction interval.

The NMPC uses the discretized augmented deter-
ministic nonlinear model in (45) to predict future states
and outputs. The discrete-time OCP for the NMPC is
defined as (in the following, the tilde notation on x is
removed for convenience)

min
u, ξ

Np∑
j=0

(
(yj−yref

j )>Wc(yj−yref
j )+ξ>j Tξj

)
+

Nc∑
j=0

(
∆u>j Rc∆uj+(uj−uref

j )>Rr(uj−uref
j )

)
(49)

where j is sample interval index, Np = Tp/ts and
Nc = Tc/ts is the discrete prediction and control in-
tervals respectively, Tp is the prediction horizon, Tc
is the control horizon, ts is the MPC sampling time,
Wc is the set-point weight matrix, ξj are the slack
variables, T is the slack variable weight matrix, Rc

is the weighting matrix for the slew in control input,
Rr is the input reference trajectory weight matrix, and
∆uj = uj −uj−1. The subscript c is used on the MPC
to distinguish its variables from those of the UKF.

The state, output and input constraints are defined
as

s.t., x0 = xk,u0 = uk−1,

xj+1 = f(xj ,uj ,θk) (50)

yj = h(xj), j=0, . . . , Np

u− ≤ uj ≤ u+, j = 0, . . . , Nc

∆u−j ≤ ∆uj ≤ ∆u+
j j = 0, . . . , Nc (51)

uj − uj−1 = 0, j ≥ Nc.

The hard constraints are in this case the upper and
lower bound on the inputs. The rest are subject to
slack variables. The prediction in f(xj ,uj ,θk) is given
by (45). The NLP is then implemented as a sequential
approach, using finite parametrization of the control
inputs (Findeisen and Allgoewer, 2002).

The following additional constraints are defined:

z2,L − ξ1,j ≤ z2,j ≤ z2,H + ξ2,j (52a)

(pn + kbqI)− ξ4,j ≤ pI,j (52b)

∆pn,L − ξ5,j ≤ ∆pj ≤ ∆pH + ξ6,j , (52c)

pn,L − ξ7,j ≤ pn,j ≤ pn,H + ξ8,j , (52d)

0 ≤ ξj ≤ ξmax, j=0,. . . , Np, (52e)

where the subscripts, L,H are the low and high band
control limits, respectively.

In addition to constraining the input change on
the travelling block movement, the first constraint in
(52a) denotes the maximum and minimum DS veloc-
ity, which is calculated from (39). Rapid changes in the
travelling block might result in large pressure spikes. In
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(52b) the requirement is to keep the pressure in the DS
higher than the turbine loss and BHP pressure, such
that flow spikes into the wellbore are avoided while
circulating. The slack variables ξ > 0 define soft con-
straints in (52a)-(52e). These are included to allow
minor violation in short intervals of the constraints on
xj , such that a feasible solution is found. However, it
is important to enforce hard constraints on actuator
limitations. The band control limits on the BHP and
choke differential pressure can be set in (52d).

A PI-controller is used to adjust the choke valve
opening. The NMPC sends the desired choke flow
rate to the controller, adjusting the choke to comply
with the requirement. To constrain the flow control
algorithm, we implement a nonlinear constraint on the
choke flow in the NMPC. The flow constraint given as

qref
c,j ≤ qmax

c,j + ξ3,j

qmax
c,j = Cc

√
|∆pj |sign(∆pj)

(53)

The discrete form of (49) and (50) are approximated
by repeated forward Euler integration on the interval
[tk, tk +Np]. An intermediate step-length for integrat-
ing the differential equation in (45) is implemented,
such that the sampling interval from start to end is
divided into τs = ts/M . The scheme is formulated in
Alg. 2. Similarly, a Runge Kutta method, or any other
discretization scheme, can be used. Exact discretiza-
tion is only applicable if linearization of (45) is done
prior to discretization. The input uj is held constant
on the intermediate integration interval.

Algorithm 2 Euler-discretization of f

1: Input: xa, u, θ, tk, ts, M
2: Set step length τs = ts/M , M : Number of iterations
3: x1

0 = xa
4: for k = 0 to M − 1 do
5: t = tk + kts

6: xa,k+1 =

[
xk
θk

]
+ τs

[
f(t,xk,uk,θk)

0

]
7: end for
8: Return [xa,k+1]

Solving (49) gives the optimal ūk for the process,
based on the initial guess. The initial guess is effec-
tively drawn from the previous sample time control se-
quence. The NMPC is implemented in MATLAB, using
fmincon with SQP. The NMPC algorithm can be sum-
marized as in Alg. 3.

In (50), we utilize the forward Euler integration for
the prediction model as described in Alg. 2. We choose
to distinguish between the prediction and control inter-
vals, and set Nc = Tc/ts. This implies that we use the
linear equality constraint, defined in (51).

The topography of the system is presented in Fig-
ure 6. The NMPC sends the calculated reference flow

Algorithm 3 NMPC

1: Initialization: ū0, x̂0, ts, Tp, Tc
2: while Run-time: do
3: Input: ūk−1, x̂k,yk
4: if mod(time,ts)= 0 then
5: Solve the optimal control problem (49), with

(45), and constraints from (50),(51), and (52a).
6: if Convergence or max MPC iterations then
7: Apply first column of input vector: uk = ūk,1
8: Update ūk by one time shift: ūk,[tk+ts,tsNp]

and pad last element with ūk,Np−1
(Grune and Pannek, 2011)

9: else
10: Try again with relaxed constraints:

Reduce constraints to (52a) and (52d)
and ∆uj , j = 0, . . . , Nc from (51)

11: end if
12: else
13: Use previous sample-time input: ūk = ūk−1

14: end if
15: end while

rate to the PI-flow control law, changing the choke
valve opening. The auxiliary systems, being the mud
circulation system (pumps), draw-works and choke
valve, have been included as first-order transfer func-
tions. The dynamics of these systems are not included
in the NMPC prediction model.

NMPC
Algorithm

r(t)

u0, ts,M, Tp, Tc

prefspp

qrefbpp

ur

qrefc

uc

Estimator
UKF

ŷk,u(tk)

yk, x̂k|k+1, P̂k|k+1 x̂0, P̂0

α, β, κ

Plantu(t)

g(x̃, t), dv(t)

˙̃x

Sensor

wk

hk(x̃k)

Mud
-system
pin, qbpp

Draw
-works
ub(t)

PI
Flow-
Control

Choke valve

Figure 6: The simulation model. The NMPC predic-
tion model comprises of the estimated plant
model from (45), leaving the auxiliary system
dynamics unknown.

6 Simulation study

The wellbore and DS system together with estimator
and controller, were implemented in MATLAB. The pri-
mary goal of the study is to reduce surge and swab
pressures while performing tripping, along with multi-
target tracking of pressures in the annular wellbore. As
seen in Figure 4, the surge pressures while RIH cause
rapid fluctuations in the pressure states. The target is
given as

pn,L ≤ pn(t) ≤ pn,H (54)
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where the upper (H) and lower (L) bounds can repre-
sent the bottom-hole fracture and pore pressures, re-
spectively.

As described in Gravdal et al. (2018), the system un-
der consideration is limited in the sense of sensor mea-
surements, time-delay, and under constant change due
to geo-physical effects in the wellbore. We consider an
ideal setting where measurements are not time-delayed
and are aware that this effect may give a considerable
performance decrease in the system identification and
control of the pressure and flow in the wellbore.

The designed estimator and control configuration
performance is tested in extensive simulation, with four
case studies. The initial conditions in each case study
are equal. The common system parameters are shown
in Table 4, where the auxillary system time constants
(see Section 5.1) are Tdw, Tch, Tbpp and Tspp, denoting
the draw-works, choke valve, stand-pipe pressure, and
back-pressure pump, respectively.

Table 4: System parameters.

gz [0, 0, 0]> [-,-,-]
gp,gq 0.0025, 10 [-]
Wi [1, 5, 10, 10] [%]

yi,nom [1, 5, 10, 100] [m, bar, bar, L min−1]
K [0.0168, 1.2, 0.15]> [-,-,-]

ceq, keq 25.0, 563 [kN s m−1, kN m−1]
kch,p, kch,i 0.08, 2 [-, s]
Tdw,ch,bpp,spp 4, 2, 30, 5 [s]

All the case studies presented here are based on data
from the test well in Table 2. The tuning for predic-
tion, control horizon, sample-time and weighted set-
point tracking Wc,Rc are based on trial and error.
However, we use scaling values, based on the nominal
output values and the individual actuator range. Fur-
thermore, tuning factors are used to adjust the weights
given as

Wc,[i,i] =
w̃c,i
y2
i,span

, Rc,[j,j] =
r̃c,j

u2
j,span

(55)

where yi,span is the span of the output set-point values,
uj,span is the span of the input (actuator incremental
change) and w̃c,i, r̃c,j are tuning factors for the diagonal
elements of Wc and Rc, and Rr = Rc.

The simulation study is broken down in four case
studies. The three first case studies compare the
NMPC performance in three configurations, related to
how model-errors and disturbances are handled. The
first method is adopted from Kwakernaak and Sivan
(1974, Chapter 3.7.2) for offset-free LQR, by augment-

ing the state vector with the tracking error given as

x̃ =


z
x1

x2

e

 , e =

∫ t

t0

 z
x1

x2

−
 zref

x1,ref

x2,ref

dτ (56)

where e is the integral error and zref,x1,ref,x2,ref are
the desired state trajectory for the rig system, wellbore
and drill-string states, respectively. The term e>Qce
is included in (49), where Qc,[i,i] = q̃iWc,[i,i], with q̃
denoting the tuning factor.

The second method includes a disturbance state esti-
mator as proposed in Pannocchia et al. (2015), yielding

x̂k = f(x̂k−1,θk−1,uk−1, d̂k−1) + Kx(yk − ŷk)

d̂k = d̂k−1 + Kd(yk − ŷk)
(57)

where yk is the sampled measurement, d̂k is the esti-
mated disturbance, and Kx, Kd are the Kalman gains
for the estimate error. The estimator design is cho-
sen depending on the application. The advantage of
including integration of the disturbance is to achieve
integral control by capturing the model-mismatch be-
tween the real and estimated plant dynamics (Borrelli
and Morari, 2007). The disturbance state is kept con-
stant over the prediction horizon in the NMPC. The
NMPC for Case 3 uses a linear disturbance model as

xd,j+1 = f(xd,j ,uj ,θk) + Addk

yd,j = h(xd,j) + Cddk
(58)

where Ad and Cd are chosen such that the states are
observable, which applies according to restricting the
dimensions dim(nd) ≤ dim(ny), where nd, ny are the
number of disturbance states and available measure-
ments, respectively. As in Section 4, we utilize the
UKF, and at NMPC sample-time an estimate of the
dk is given to the NMPC before solving the NLP. The
NMPC-disturbance model setup is presented in Fig-
ure 7.

Furthermore, we implement a reference trajectory
specified by the user to predict smooth changes over
the horizon in the NMPC. The trajectory is given as

ympc,ref
i,k+j = αjiy

mpc,ref
i,k + (1− αji )yi,spk (59)

Case 3

From UKF

yk, x̂0, θ̂k

Disturbance
estimator
d̂k−1

d̂k, x̂k
yk, ŷk NMPC

r(t)

uk−1, ts, Tp, Tc

u0

Figure 7: Case 3 NMPC with disturbance model.
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where ympc,ref
i,k is the reference trajectory value from

the last sampling instant, αji ∈ [0, 1] is the smooth-
ing coefficient, and i ∈ [1, 2, 3]. This allows for better
model-mismatch compensation with a less aggressive
controller (Qin and Badgwell, 2003).

A summary of the configurations are presented in
Table 5.

Table 5: Simulation case studies.

Case Description

1 NMPC0: No offset-free implementation

2
NMPC1: Integration of tracking error in pre-
diction model, adding e>j Qcej to (49)

3
NMPC2: Including a disturbance model with,
(yd,j − yref

j )>Wc(yd,j − yref
j ).

4 NMPC1: Tracking of ∆p and pn

6.1 BHP and block position tracking in
Case 1 to 3

The three first case studies comprise of BHP refer-
ence tracking and ∆p band control while performing
a POOH followed by a RIH sequence. Band control is
initiated on ∆p by setting the second diagonal element
in Wc (and Qc, in Case 2) to zero. The NMPC and
UKF parameters are presented in Table 6.

The choice of disturbance model for the NMPC is not
obvious, and is left to the designer having knowledge
over the process or measurement disturbances. The
immediate disturbance for the hydraulic model is the
fluctuations in g, and model-mismatch in the NMPC.
We use an input disturbance model for the configura-
tion in NMPC2, were the fluctuations in x1,pn , i.e., the
BHP state, is estimated. The choice is based on the
disturbance from the DS heave on the BHP, which is
counteracted by the flow rate from the drill-string in
qv.

In Table 6, the NMPC prediction model is dis-
cretized with intermediate step length of 0.1 s. A less
strict constraint is enforced on ∆p, which is allowed to
vary between the lower bound of the BHP band, and
∆pL. The plots of Cases 2 and 3 are given in Figure 8.

For the simulations made in this paper, the biggest
challenge of Case 1 was to compensate for the constant
pressure change when tripping. From the top-most plot
in Figure 8, NMPC1 is closer to achieve overall offset-
free tracking of the BHP. The extra term included in
minimizing the cost-function is tuned to achieve faster
disturbance rejection. The NMPC1 is seen to devi-
ate from the two others in how the choke flow and
DS pressure is controlled. Since tripping out pipe re-
duces the pressure in the wellbore, the NMPC1 requires

Table 6: Case 1–3 parameters. *[m,L/min,L/min,bar].

Cases 1–3

qz [10−5, 10−5, 10−5] [-]
qx1 [gp1 , gq2 , . . . , gqn , gpn ] [-]
qx2 [0.0025, 10] [-]
qθ [104, 104, 104]> [-]
Q diag([qx1 ,qx2 ,qθ]) [-]
R diag(σ2

w) [-]
tm, αukf 0.1, 1 [s,-]
ts,M 1, 10 [s, -]
Tp, Tc 15, 3 [s,s]
αi [0.8 0.8 0.8] [-]
r̃c,j [10, 1, 1, 10] [-]
w̃c,i [10, 0, 50] [-]

diag(T) [100, . . . , 100, 500, 500] [-]
yi,span [14, 15, 20] [m,bar,bar]
uj,span [18.5, 1500, 750, 32.5] []*
uL [−5, 0, 0, 5]> []*
uH [32, 3000, 1500, 60]> []*
∆u [±0.5,±100,±50,±1]> []*

∆pH ,∆pL pn,L,∆p
ref − 5 [bar]

pn,H ,pn,L prefn ± 2 [bar]
z2,L, z2,H ±0.5 [m s−1]
Case 2:Qc Wc · 0.1 [-]

Case 3:
Qx,ukf Q [-]
Qd,ukf 1 [-]
Rukf R [-]

Ad,x1,pn
1 [-]

lower choke flow rate. To fulfill this, the PI flow con-
troller reduces the choke opening in the first seconds
of the sequence and the NMPC1 initiates an increase
the stand-pipe pressure. The NMPC2 seems to require
larger changes to the choke flow and DS pressure dur-
ing tripping.

All configurations are able to create a trajectory for
the travelling block and meet the set-point. No notice-
able requirements in flow rate were made to the back-
pressure pump, by the NMPC0–2, seen in the fifth plot.

NMPC1 including the integrated tracking error is
quicker in the response to changes in set-points. A
disadvantage of this can be larger BHP spikes. This is
also seen from NMPC2 configuration. However, further
tuning of Qc in the cost function can reduce this.

The estimated frictional pressure forces are pre-
sented in Figure 9. The estimated frictional pressure
forces for the wellbore converges during steady-state
and follows the trend of the true friction, seen for all
the case studies. However, a noticeable bias is seen
when rapid changes in the BHP is occuring.

Recall from (46) that we only assume to know the
laminar klinging factor, and base the frictional law on
a quadratic function. The true friction model is based
on predicting the mud laminar and turbulent flow, with
a transition rate. Hence, properties such as fluid yield
stress is not accounted for in the estimated model. A
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Figure 8: Tracking constant BHP and reference tajec-
tory for travelling block.

result of that is that we get a bias, since we can get the
correct magnitude and direction of the fluid effective
velocity but must use θi with large variance to achieve a
value in acceptable range for allowing pressure increase
in the NMPC prediction model.

The root-mean-square values of the tracking error
e = x̃ − xref (RMSE) for z1 and pn, summarizes the
closed-loop performance of the three NMPC configura-
tions. The values are given in Table 7 for comparison.

A general observation from the values in Table 7, is
that NMPC1 configuration performs better than the
two others with the smallest overall tracking error.

Table 7: Case 1–3, mean-of-error and RMSE values for
ey1 , ey3 .

E[e] RMSE(e)

C. 1 [-0.0459 0.0822] [11.370 0.689]
C. 2 [-0.00438 -0.00538] [11.377 0.464]
C. 3 [-0.03805 0.212] [11.389 0.677]

-12000

-10000

-8000

-6000

-4000

-2000

-12000

-10000

-8000

-6000

-4000

0 5 10
-10000

-8000

-6000

-4000

-2000

0 5 10 0 5 10

Figure 9: Case 1–3 frictional pressure forces. Solid blue
lines denote the estimates and dashed black
lines denote the true values.

However, the RMSE error is based on how quickly the
controller meets the reference values, which disregards
violation of critical constraints, overshoot limits, etc.

6.2 Multi-variable tracking in Case 4

The last case study comprises keeping both BHP and
∆p in their band and at their respective set-points
through a sequence of set-point adjustments, with the
block reference at zero during the entire time. We
choose the NMPC1 configuration, which showed the
best results in terms of RMSE. The parameters for the
NMPC in Case 4 are summarized in Table 8. The noise
parameters are the same as in Table 3.

We set a steady-state input goal for the back pressure
pump at 0 l/min, which is implemented by setting the
third diagonal element of Rr nonzero in the cost func-
tion. This allows the NMPC to focus more on using the

Table 8: Case 4 parameters. *[m, L/min, L/min, bar].

ts,M 1, 10 [s, -]
Tp, Tc 10, 5 [s,s]
αi [0.8 0.8 0.8] [-]
r̃c,i [10, 1, 1, 10] [-]
w̃c,i [1, 5, 10] [-]
yi,span [14, 15, 20] [m,bar,bar]
uj,span [18.5, 1500, 1000, 32.5] []*
diag(T) [100, . . . , 100, 400, 400, 500, 500] [-]

uL [−5, 0, 0, 5]> []*
uH [5, 3000, 2000, 80]> []*
∆u [±0.5,±100,±50,±1]> []*

∆pH ,∆pL ∆pref ± 3 [bar]
pn,H ,pn,L prefn ± 2 [bar]
z2,L, z2,H ±0.5 [m s−1]

Qc Wc · 0.1 [-]
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Figure 10: System response to tracking multiple set-
points.

main mud pump and choke to control the down hole
pressures. The tracking result in Case 4 is presented
in Figure 10.

Seen in plot 1–3 in Figure 10, the NMPC1 manages
tracking of the three controlled variables, retrieving the
block at zero position after using it for manipulating
the BHP and ∆p. The velocity of the DS is well be-
low the constraint margins, seen in the fourth plot of
Figure 10.

The estimated frictional pressure forces and the θi
parameter are presented in Figure 11. The same co-
variance properties are used in the UKF for Cases 1–3.

Stepping through both the desired BHP and choke
differential pressure values, NMPC1 manages to
keep both in their respective bands by manipulat-
ing the stand-pipe pressure and choke flow. The
RMSE of the tracking error in Case 4 is RMSE =
[0.00881, 0.322, 0.70039], which for e3 is similar to the
results in Case 1–3 (Table 7).

Since increasing the BHP has a lag effect on the up-
per volumes in the wellbore, the pressure wave must
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Figure 11: Case 4 frictional pressure forces and esti-
mated parameter θi. Solid blue lines denote
the estimates and dashed black lines denote
the true values.

be compensated for in the choke while meeting the set-
point. As also shown in Møgster et al. (2013), control
of multiple locations in the wellbore is an important
feature of efficient MPD.

6.3 Discussion

6.3.1 Estimator performance

The variance of the estimated parameter θi and vari-
ance of the error for the calculated frictional pressure
forces ei = Ff,i − F̂f,i are given in Table 9.

Table 9: Cases 1 to 4, mean and variance-of-error for
estimator for θ̂i, f̂1,i, i = [2, 3, 4].

E[(θi − θ̄i)2]·106 σ2 = E[(e− ē)2]·105

1: [2.34 1.038 1.54] [2.99 0.9035 3.64]
2: [2.81 2.25 2.66] [2.24 0.876 5.45]
3: [1.32 0.385 0.4013] [3.24 0.50305 4.42]
4: [0.554 0.287 1.27] [1.088 8.69 3.79]

From column two to four, the differences in mag-
nitude of the variances for the estimated parameters
are not large, indicating that the UKF is producing
consistent estimates in the case studies. The UKF
and NMPC use the same model, where the annular
frictional pressure forces are treated as an unknown
quadratic function. The bias in the UKF estimates
can be explained by comparing the estimator model
in (46) to the true first-principle fluid model from
Gjerstad et al. (2013) relying on qi and vs. If the fric-
tion force bias becomes too large, the Kalman gain
might not be sufficient to correct the predicted output
and produce reliable estimates of the flow rates and
pressures in the UKF.
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6.3.2 NMPC tuning and constraints

For the NMPC configurations shown in this paper, the
initial tuning has been based on trial and error with
process span variables. The estimator bias due to pre-
dicted frictional pressure forces is a challenge in terms
of increased prediction error over the horizon, and must
be accounted for when performing the tuning of Tp and
M . A more accurate prediction model would allow for
a longer NMPC horizon.

Comparing the three different designs, NMPC0–2,
the nominal design in NMPC0 yields less tuning vari-
ables, and tracking gives acceptable results in our case
studies. However, with knowledge of disturbances in
the system (such as sudden inflow from formation) we
can achieve a better design with NMPC1 and NMPC2
by the advantage of the integrated error states or esti-
mation of the disturbance state.

A measure of improving trajectory control is to in-
clude a full reference path for the hoisting (which can
be a smooth 2nd-order polynomial for example) such
that the NMPC follows this precisely. Then, the veloc-
ity constraint can be removed and the controller only
requires three degrees of freedom for keeping BHP at
its reference. The implementation in this work used po-
sition control for the travelling block. In practice, the
driller adjusts the block velocity, and the block travel-
ling limits are set by the operator in advance (Lyons
et al., 2015).

6.3.3 Controller implementation robustness

Robustness measures in terms of the implementation
has been done, such as iterating over a fixed horizon
until either a limit is met or the MPC converges. This
is done in an ad-hoc way, to at least ensure that more
than one iteration is performed by the optimization
algorithm.

6.3.4 Simulation performance

An averaged of 16.4 s for each NMPC NLP itera-
tion was logged during the simulation study (Case 1
NMPC0). The sampling time was 1 s, as such, the goal
of convergence in that time is not met. The correspond-
ing real-time factor (RTF), given as RTF = tactual/tsim,
was 17.44 for a total of 10 minutes simulation time.

Optimal conditions for real-time applications is when
RTF < 1. The NMPC does not achieve real-time per-
formance for the presented algorithm. We are aware
of better methods of solving the optimization problem,
but as a first implementation MATLABs fmincon gives
an easy way for organizing the NMPC algorithm.

7 Conclusion

In this work, we have presented a multi-purpose con-
trol system used to minimize surge and swab pressures
while tripping in an offshore well, along with track-
ing of choke differential pressure and BHP. The well-
bore fluid frictional pressure forces was parametrized
by a quadratic function in flow-rate and DS velocity.
The unknown parameters in this function were esti-
mated using an UKF, which also estimated the system
states used by a NMPC. The NMPC manipulated the
inputs to the back-pressure flow and stand pipe pres-
sure directly, set the reference trajectory for a linear
state-integrator controlling the block positioning sys-
tem, and supplied a PI choke flow controller with de-
sired reference flow. The actuator dynamics for the
block, choke, back-pressure flow, and mud pump pres-
sure were represented by first-order linear low-pass fil-
ters.

We have presented the results from comparing three
NMPC configurations where two of these included mea-
sures to improve offset-free tracking. The best result
in terms of RMSE values was achieved by NMPC1,
with integrated tracking error implemented in the cost
function. All three NMPC configurations showed good
results in terms of constraining the BHP inside the de-
sired envelope and at the set-point, while tripping.

For multi-target tracking, the NMPC was configured
with a shorter prediction horizon and longer control
horizon with a steady-state input goal for the back-
pressure pump. NMPC1 was used in this case study.
Controlling both BHP and choke differential pressure
was accomplished by the controller.

Since we used an SDE with RK4 Maruyama in
time integration, average fluctuations were included.
For the configurations and case-studies presented here,
the NMPC has shown to be robust towards model-
mismatch and variations in the states due to the nature
of the SDE.

Including the dynamics of a hoisting system we can
predict and constrain the estimated DS velocity to both
manipulate the BHP and prevent excessive surge and
swab pressures. The system presented in this paper is
then automated such that the driller is only required
to supply the desired reference points for BHP, choke
differential pressure and travelling block position.
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tic differential equations with scalar noise. BIT
Numerical Mathematics, 2006. 46(1):97–110.
doi:10.1007/s10543-005-0039-7.

Slotine, J.-J. E. and Weiping, L. Applied Nonlinear
Control. Prentice Hall International Inc., New Jer-
sey, 1991.

Stakvik, J. Å., Berg, C., Kaasa, G.-O., Aamo, O. M.,
and Lehner, U. Adaptive Model Based Choke Con-
trol System for MPD Operations. SPE/IADC Man-
aged Pressure Drilling and Underbalanced Opera-
tions Conference and Exhibition, 2016. pages 1–11.
doi:10.2118/179714-MS.

Stamnes, Ø. N., Zhou, J., Kaasa, G. O., and Aamo,
O. M. Adaptive Observer Design for the Bot-
tomhole Pressure of a Managed Pressure Drilling
System. Proceedings of the IEEE Conference on
Decision and Control, 2008. pages 2961–2966.
doi:10.1109/CDC.2008.4738845.

Whittaker, A. and EXLOG Staff. Theory and Appli-
cation of Drilling Fluid Hydraulics. D. Reidel Pub-
lishing Company, 1985.

Zhou, J. Control of of Bottom Bottom Hole
Control of Pressure during Oil Well Drilling.
IFAC-PapersOnLine, 2018. 51(4):166–171.
doi:10.1016/j.ifacol.2018.06.060.

184

http://dx.doi.org/10.1109/TAC.1974.1100628
http://dx.doi.org/10.2118/150461-MS
http://dx.doi.org/10.1016/j.ifacol.2015.08.043
http://dx.doi.org/10.4173/mic.2013.3.3
http://dx.doi.org/10.1016/j.isatra.2017.03.013
http://dx.doi.org/10.1109/CACSD-CCA-ISIC.2006.4776910
http://dx.doi.org/10.3182/20070606-3-MX-2915.00025
http://dx.doi.org/10.3182/20070606-3-MX-2915.00025
http://dx.doi.org/10.2118/108344-MS
http://dx.doi.org/10.1016/j.ifacol.2015.11.304
http://dx.doi.org/10.1016/j.jprocont.2018.05.001
http://dx.doi.org/10.1016/S0967-0661(02)00186-7
http://dx.doi.org/10.2523/108346-ms
http://dx.doi.org/10.1007/s10543-005-0039-7
http://dx.doi.org/10.2118/179714-MS
http://dx.doi.org/10.1109/CDC.2008.4738845
http://dx.doi.org/10.1016/j.ifacol.2018.06.060
http://creativecommons.org/licenses/by/3.0

	Introduction
	Preliminaries
	Stochastic differential equations
	The unscented Kalman filter

	System modelling
	Conservation of mass and momentum in wellbore
	Conservation of mass and momentum in the drill string
	Rig travelling block dynamics
	State-space formulation

	System identification
	Observability
	State and parameter estimator design
	State estimation with no mud circulation

	Control design for drilling operations
	Constrained BHP Control

	Simulation study
	BHP and block position tracking in Case 1 to 3
	Multi-variable tracking in Case 4
	Discussion
	Estimator performance
	NMPC tuning and constraints
	Controller implementation robustness
	Simulation performance


	Conclusion

