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Abstract

This master's thesis in psychology examines task complexity in an attempt to meet industry needs of 

creating a stronger theoretical foundation for the complexity performance shaping factor (PSF) in 

Petro-HRA and better guidelines for HRA methods. Petro-HRA is a Human Reliability Analysis 

(HRA) method being developed for the petroleum industry based on SPAR-H.  In this  thesis,  a 

literature review is performed to identify factors contributing to task complexity. Based on this 

review a conceptual framework of 13 complexity factors is created and described. Seven of these 13 

factors;  goal  complexity,  size,  complexity,  step  complexity,  connection  complexity,  dynamic 

complexity, variation complexity, and structure complexity, are found to be usable in a description 

of  the  PSF  complexity  in  Petro-HRA.  These  seven  factors'  effect  on  operator  performance  is 

discussed and the factors are integrated into an easy-to-use guideline for users of Petro-HRA. This 

guideline offers a description of the seven complexity factors and a recommendation for assigning 

the PSF. The guideline in this thesis may provide greater inter-rater reliability and greater accuracy 

in calculating the human error probabilities when performing Petro-HRA.

Keywords:  task  complexity,  framework,  HRA,  SPAR-H,  PSF,  petroleum,  offshore,  Petro-HRA,  

guideline.
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Introduction

On April 20th, 2010 the Deepwater Horizon drilling rig in the Gulf of Mexico experienced a 

blowout  explosion.  The  accident  killed  11  workers,  injured  16  and  caused  one  of  the  largest 

environmental disasters in the United States history (Lehr et al., 2010).

More than thirty years earlier, on March 28th, 1979 the Three Mile Island nuclear plant in 

Pennsylvania experienced a partial nuclear meltdown in one of its reactors. The accident had no 

fatalities but is considered the biggest disaster in United States nuclear history (US NRC, 2013).

Both of these accidents had pre-existing problems leading up to the point of the accidents 

that can be traced partly back to human or organizational factors such as poor procedures, human-

machine  interaction  (HMI),  or  the  complexity  of  the  operation  (Meshkati,  1991;  Skogdalen  & 

Vinnem, 2012).

As  we  can  see  from  these  accidents,  human  error  can  contribute  to  devastating 

consequences. Some of the installations used, such as oil rigs or nuclear power plants, demand a 

very high reliability due to the potential fatal and disastrous consequences of accidents (Hollnagel, 

1998). As such, these high reliability systems demand a very low probability of error, from both 

human and technical causes (French, Bedford, Pollard & Soane, 2011).

The Three Mile Island accident had a big impact on nuclear safety with regards to human 

and organizational factors (US NRC, 2013). The reliability of the technical components that are 

used in nuclear plants or oil rigs has improved to the point where they have very low chance of 

failing. As a consequence, the relative reliability of human operators has decreased (Marseguerra, 

Zio & Librizzi, 2006). After the Three Mile Island accident the Nuclear Regulatory Commission 

realized they needed more focus on human reliability. This signaled the start of the creation of the 

first Human Reliability Analysis (HRA) methods (Hollnagel, 1998). 

Now, 30 years later, the petroleum industry is coming to the same realization. Skogdalen and 
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Vinnem (2011) stated that even though reliability analyses have been used in the petroleum industry 

for several decades, almost none of them take into account the human and organizational factors 

and their influence on risk. 

Computerized automation has been adopted into the systems of many high-risk industries 

such as nuclear power, aviation, and the oil and gas industry. Humans do, however, still play an 

important role in the design, maintenenance, operation and supervision of such systems (Kim & 

Jung,  2003).  Human  reliability  analyses  try  to  take  into  account  the  human  operator  in  these 

complex systems.  These  methods attempt to  estimate and quantify the  probabilities  of  error  in 

human operated tasks.

One of  the most  frequently used HRA methods in nuclear  power plants  is  the SPAR-H 

(Standardized Plant Analysis Risk – Human Reliability Analysis) method.  This method has been 

developed by the Idaho National Laboratory (INL) in collaboration with the United States Nuclear 

Regulatory Commission (Gertman, Blackman, Marble, Byers & Smith, 2005). SPAR-H calculates 

the  probability of  human error  based on eight  performance  shaping  factors  (PSF).  These PSFs 

represent the contextual situation or environment where the operators perform their tasks. The PSFs 

are given numerical weights and combined with a nominal human error probability (HEP) they 

estimate  the  likelihood  of  human  error.  The  eight  PSFs  in  SPAR-H  are  «available  time», 

«stress/stressors», «complexity», «experience/training», «procedures», «ergonomics/HMI», «fitness 

for duty», and «work processes» (Gertman et al., 2005). This thesis will examine one of these PSFs, 

complexity, and attempt to create a better theoretical foundation for this PSF.

Prior to the SPAR-H calculation of error probabilities, the risk analysts must describe and 

collect data about the task or situation being examined. This is usually done by performing task 

analysis and human error identification. Task analysis describe the operator's role in the system and 

the tasks performed by the operator, and human error identification describe the possible causes and 

types  of  errors  in  the  situation  (Kirwan,  1994a).  Performing  task  analysis  and  human  error 
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identification yields qualitative data that can be used to determine the PSF multipliers, and thus the 

HEP for the SPAR-H calculation. This means that the SPAR-H method quantifies the HEP in a risk 

analysis based on more qualitative data collected earlier in the analysis.

A  joint  research  project,  funded  by  the  Norwegian  Research  Council,  between  the 

Norwegian energy company Statoil, research foundations Det Norske Veritas and SINTEF,  project 

owner Institute for Energy Technology (IFE) in Halden, the Norwegian University of Science and 

Technology, and Idaho National Laboratory, have started the task of developing guidance for a HRA 

method suitable for use in the petroleum industry as such a method do not exist at this point. This is 

called the Petro-HRA project. The quantification in the Petro-HRA method will be based on SPAR-

H. SPAR-H is preferred over other existing HRA methods because it provides some guidance on 

assigning the PSFs, is not very resource demanding compared to other HRA methods, and provides 

worksheets that promote inter-analyst consistency. Other methods were also tested but were found 

to be too resource demanding, give unreliable error estimates, or be too cumbersome in use (Gould, 

Ringstad & van de Merwe, 2012).

This  master's  thesis  will  perform  a  literature  review  on  complexity  to  examine  the 

complexity PSF in SPAR-H and look at how this PSF can be described in a petroleum setting as 

part  of  a  Petro-HRA method.  At  the  moment  there  is  an  industry  need  for  better  theoretical 

foundations for the HRA methods and improved guidelines on using these metods. This masters 

thesis will attempt to meet some of these needs with three main contributions:

1. A literature review of complexity culminating in a theoretical framework of factors 

that contribute to the complexity of a task.

2. A description of these complexity factors, as well  as a discussion regarding their 

suitability for a Petro-HRA method, and the factors' effect on operator performance. 

This  will  also  make it  easier  for  users  of  Petro-HRA to  identify the  appropriate 

complexity factors for the situation being studied.
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3. A table that outline how the complexity factors affect the performance of operators. 

This will provide users of Petro-HRA with an easy-to-use guideline for identifying 

and assigning the complexity PSF in a Petro-HRA analysis.

As the situation is today there is little guidance on how to handle the PSFs associated with 

the HRA methods (Kariuki  & Löwe,  2007).  Stated earlier,  the contributions of this  thesis  may 

provide a better theoretical foundation and a guideline for the complexity PSF in Petro-HRA and 

may provide higher inter-analyst reliability when performing HRA in the petroleum industry.

The problem statements for this thesis are:

What is complexity?

Which task characteristics contribute to the overall complexity of a task?

How should the complexity PSF be described in a Petro-HRA method based on SPAR-H?

Is it possible to provide some advice on how to assign the PSF multipliers in Petro-HRA?

In this master's thesis, complexity is used as task complexity. This is because the majority of 

research on complexity looks at the complexity of various tasks, and also because the complexity 

that SPAR-H and Petro-HRA is concerned with is the complexity of operator tasks.

This thesis aim to give a greater understanding of what complexity is and how this construct 

can  be  used  in  a  HRA method  in  the  petroleum industry.  The  thesis  consists  of  a  review  of 

complexity and a conceptualization of complexity factors for Petro-HRA. The review part will start 

by explaining quantiative reliability analysis (QRA), HRA, and their role in the petroleum industry. 

Then a brief explaination on how HRA methods are used follows along with a description of the 

SPAR-H method, its PSFs, and how the HEP values are used in this method. Finally in the review 

part a thorough examination of the literature on complexity is undergone. The conceptualization 

part  is  started by a methods section explaining how the literature review was performed. Then 
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factors that contribute to the complexity of a task are presented. The factors are then discussed for 

their suitability in the Petro-HRA method, and their effect on operator performance is presented. 

Based on the factors and performance effects, a guideline-table for Petro-HRA users is developed. 

Finally, strengths and weaknesses of the thesis are discussed and suggestions for future research are 

provided.

This thesis will not examine or evaluate whether or not the HEP values of SPAR-H will be 

appropriate for Petro-HRA. These values and their cutoff ranges might be needed to review as the 

method being developed is in a completely new domain, however this is outside of the scope of this 

thesis. The guideline-table developed here will nonetheless be just as useful should the HEP values 

of a Petro-HRA method be different from the values used in SPAR-H.
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Theory

Quantitative Reliability Analysis and Human Involvement

Quantitative Reliability Analysis (QRA) are approaches that look at accident scenarios and 

evaluate the overall safety of a system probabilistically. The accident scenarios are composed of two 

failure components, human failure events (HFEs) and hardware (system/component) failure events 

(Kim & Jung, 2003).

QRA processes  has  been  used  by  the  offshore  industry  for  more  than  three  decades. 

Traditionally, QRA has focused on technical systems and capabilities. Human and organizational 

factors have been given less attention. Over the last ten years however, a growing research effort 

has been aimed to reveal, isolate and measure human and organizational factors and their influence 

on risk (Skogdalen & Vinnem, 2011).

The  trend  in  the  offshore  petroleum industry  is  toward  more  extensive  use  of  floating 

production systems and operations in the arctic and deepwater areas. This suggests that in order to 

mitigate  hazards  and control  risks,  operational  aspects  of  safety will  be more important  in  the 

future. Revealing the human and organizational error factors are therefore of great importance to the 

oil and gas industry (Skogdalen & Vinnem, 2011). While human and organizational malfunctions 

are inevitable, their occurance can be reduced and their effects mitigated by improving how systems 

are designed, operated and maintained (Bea, 2002).

Experience  has  shown that  the  primary hazard is  not  the ocean environment  itself.  The 

industry has learned how to engineer, build, operate and maintain structures that can endure the 

extreme weather, temperatures and sea floor soil movements that frequent the offshore environment. 

The  primary  hazard  is  associated  with  human  and  organizational  factors  that  develop  during 

installation lifecycles (Skogdalen & Vinnem, 2011). Human beings are arguably the weakest link in 

most engineering systems (Kariuki & Löwe, 2007). Even structural and equipment failure can be 
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traced back to the design phase (Reason, 1990a; Skogdalen & Vinnem, 2011). Statistics from the 

1990s show that half of the leaks from hydrocarbon systems on the Norwegian Continental Shelf 

were caused by human interventions in the system (Vinnem, Seljelid, Haugen, Sklet & Aven, 2009). 

Regulators  have realized that  the role  of  humans in system safety is  not  sufficiently addressed 

(Kariuki & Löwe, 2007). The Norwegian Petroleum Safety Authority stated that it is not sufficient 

to only focus on the improvement of technical solutions if human and organisational factors are not 

considered as well (Jernæs et al., 2005).

Even in systems that are largely technological, research shows that in the majority of cases 

there is a human element involved (French et al., 2011). Although technological innovations have 

made many tasks easier to perform, their effects have also made other tasks more complex than 

ever,  especially  in  safety  critical  systems  in  dynamic  environments  (Liu  &  Li,  2011;  2012). 

Statistics show that human error is implicated in 90% of failures in the nuclear industry (Reason, 

1990b), 80% of failures in the chemical and petro-chemical industries (Joschek, 1983; Bea, 2002), 

over 75% of marine casualities (Rothblum, 2000), 70% of aviation accidents (Helmreich, 2000), 

and over 62% of failures in drinking water distribution and hygiene (Wu, Hrudey, French, Bedford, 

Soane  & Pollard,  2009).  These  data  show how vulnerable  our  systems  are  and also  show the 

importance of understanding how human behavior affect  the risk in our systems (French et al., 

2011). This illustrate the need to include probabilities for human error in quantitative reliability 

analyses, as the QRA methods generally are limited in their abilities to characterize human and 

organizational factors (Bea, 2002).

Human Reliability Analysis

To predict human reliability in the QRA processes, Human Reliability Analyses (HRA) are 

often used (Skogdalen & Vinnem, 2011). HRA takes part i QRA in trying to estimate the human 

failure  events  (Kim  &  Jung,  2003).  Even  though  human  factors  are  seen  as  an  important 
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contribution  to  accidents,  research  show that  very few reliability  analyses  include  HRA in  the 

analysis  process  in  the  petroleum  industry  (Skogdalen  &  Vinnem,  2011).  HRA are  methods 

developed to calculate how the behavior of an operator can lead to system conditions that are in 

conflict  with  the  expected  or  desirable  (Hollnagel,  1998).  In  short,  HRA methods  are  used  to 

estimate the likelihood that humans make errors (Fujita & Hollnagel, 2004), also called the human 

error probability (HEP).

In HRA methods, the HEP is calculated by looking at the task at hand and how various 

aspects of it affect the probability for human error. HRA methods are either holistic or atomistic. 

Holistic  methods  make  judgments  based  on  the  overall  event,  while  atomistic  methods  make 

judgments on subcomponents that are combined into a final HEP (Boring, Gertman, Joe & Marble, 

2005). Atomistic HRA methods calculate the HEP by factoring in environmental conditions, which 

are called performance shaping factors (PSF) (Marseguerra,  Zio & Librizzi,  2006). These PSFs 

usually  include  variables  such  as  available  time,  the  complexity  of  the  task,  training  of  the 

operators, among others (Hollnagel, 1998).

SPAR-H

SPAR-H is a HRA method developed by the Idaho National Laboratory. This method was 

initially called Accident Sequence Precursor Standardized Plant Analysis Risk Model (ASP/SPAR) 

and was developed for use in nuclear power plants in 1994 (Gertman et al., 2005). ASP/SPAR was 

developed as a closely related alternative to two popular HRA approaches at the time, THERP and 

ASEP. THERP required considerable training to perform and ASEP was a simplified THERP that 

was most often used as a screening HRA (Blackman, Gertman & Boring, 2008). The model was 

updated  in  1999  and  renamed  to  the  current  name:  Standardized  Plant  Analysis  Risk-Human 

Reliability method (SPAR-H) (Gertman et al., 2005). This method was a further simplification and 

generalization from THERP and ASEP and uses performance shaping factors to generalize human 
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performance (Blackman et al., 2008). The U.S. Nuclear Regulatory Commission has since then used 

SPAR-H to perform various risk analyses in nuclear power plants (Gertman et al., 2005).

The SPAR-H is an atomistic cognitively based HRA method that calculate HEPs associated 

with operator crew actions at nuclear power plants (Gould et al., 2012) on the basis of a nominal 

HEP and eight performance shaping factors (PSFs). A PSF is an aspect of the human's individual 

characteristics, environment, organization, or task that decrements or improves human performance, 

thus  respectively increasing or  decreasing the likelihood of  human error  (Boring & Blackman, 

2007). The use of mapping error probabilities related to PSFs instead of mapping whole scenarios 

brought greater generalizability to HRA and greater inter-analyst reliability (Lois et al., 2009). The 

eight PSFs in SPAR-H are available time, stress and stressors, complexity, experience and training, 

procedures, ergonomics and human-machine interface (HMI), fitness for duty, and work processes. 

The PSFs multiply the HEP based on their influence on the error probability (Gertman et al., 2005; 

Lois et al., 2009). When there is no indication that the PSF has a significant contribution, or there is 

not enough information to rate the PSF, the PSFs multiplier  is set to the nominal value of 1.0, 

indicating that this PSF does not affect the overall HEP. When there is an indication that the PSF 

contributes to the HEP, the multiplier is either set as greater than 1.0, indicating an increase in error 

probability, or less than 1.0, indicating that there is a decrease in error probability and thus the PSF 

contributes positively to the overall HEP (Lois et al., 2009). 

SPAR-H is used for analyzing two kinds of tasks, diagnosis tasks and action tasks. Diagnosis 

in  SPAR-H  refers  to  cognitive  processing,  from  the  very  complex  process  of  interpreting 

information to the very simple process of deciding to act, while action refers to a physical action 

such as pressing a button or turning a lever (Whaley, Kelly, Boring & Galyean, 2011). The nominal 

baseline HEP is 0.01 for a diagnosis task, and 0.001 for an action task (Boring & Blackman, 2007). 

This means that the probability for human error if all PSFs also are nominal is one in a hundred for 

a diagnosis task and one in a thousand for an action task. As stated earlier, the PSFs contribute to 
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the  nominal  HEP by  increasing  or  decreasing  the  likelihood  of  error  based  on  the  operator's 

contextual situation.  The contributions of HEP values for the different PSFs are determined using 

expert  judgment,  something that  has  been  cited  as  a  problem for  inter-rater  reliability in  HRA 

methods (Swain, 1990).

Using SPAR-H

SPAR-H is a method that is used in post-initiating events. An initiating event is a scenario 

that may cause an undesirable system state (Gertman et al., 2005), such as the loss of well control or 

a gas leak. In the bow-tie model (e.g. Mokhtari, Ren, Roberts & Wang, 2011; see Figure 1), which 

illustrate the causes leading up to an initiating event (here called «Top Event») on the left side of the 

bow-tie, and the potential consequences of the event on the right side of the bow-tie, SPAR-H is 

concerned with the right side of the bow-tie. SPAR-H attempt to identify where the probabilities for 

human error is greatest after an initiating event has occured, so improvements can be made and 

potential consequences can be avoided.

Figure 1. Example of the bow-tie model (Mokhtari et al., 2011)

After  an initiating event,  safety barriers  are  used to  reduce the risk of accidents (Sklet, 
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2006). These barriers can be technical systems that automatically start when sensors indicate an 

initiating event,  or  they can be human operators that  manually try to restore the system. HEPs 

calculated by SPAR-H quantify the probabilities that these human barriers fail, resulting in a human 

failure event (HFE) (Whaley et al., 2011).

A SPAR-H analysis is performed by first categorizing the HFE into diagnosis or action. The 

SPAR-H worksheets (Gertman et al.,  2005; see Figure 2) includes columns for both action and 

diagnosis tasks. Usually both diagnosis and action are identified and either used as seperate HFEs or 

combined into a single HFE (Whaley et al., 2011). Once the HFE has been categorized, the analyst 

should identify the most important performance drivers, i.e., the characteristics of the situation that 

influence  operator  performance,  both  negative  and  positive.  The  eight  PSF's  are  then  rated 

according to the performance drivers that are identified, and the HEP is calculated (Whaley et al., 

2011). The final HEP is a product of the nominal HEP and the PSF multipliers. When action and 

diagnosis are combined into a single HEP, the two HEPs are calculated seperately and then summed 

into a combined HEP (Whaley et al., 2011).

Figure 2. Extract from the SPAR-H worksheet for assigning PSFs (Gertman et al., 2005).

One  of  the  problems  of  HRA in  general  is  that  the  PSF's  are  assigned  using  expert 
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judgments, which are more or less based on arbitrary scales, and lack a solid theoretical foundation 

that guide the experts (Mosleh & Chang, 2004). These disadvantages might result in unreliable HEP 

values that indicate higher or lower risk than the situation warrants. Even so, most risk analysts 

acknowledge that the value of HRA come from not the exact probability values, but the insight into 

sources of vulnerability and risk (Boring et al., 2009). This means HRA can be used as a ranking 

tool to identify which situations and tasks that are most vulnerable to human error. As Bea (2002, p. 

3) so elegantly put it, «[...] the objective is detection and not prediction».

Complexity for Petro-HRA

When developing a HRA method for the petroleum industry it is important to know that the 

method being developed and put to use has a sound theoretical foundation. What works for the 

nuclear industry may not work for the petroleum industry. HRA in general has also been criticized 

for a lack of theoretical basis for the PSFs (Mosleh & Chang, 2004). The concept of complexity is 

one of the building blocks of the SPAR-H method and so it is important that this PSF is thoroughly 

examined if it is to be used in a different domain. 

The  end  users  of  Petro-HRA  are  often  consultants  with  varied  backgrounds.  These 

consultants  might  have  different  views  of  what  complexity  is  or  what  to  add  to  the  term. 

Complexity might be significantly different from a psychology perspective than an engineering or 

chemistry  perspective.  A solid  theoretical  foundation  for  this  PSF  will  contribute  to  a  similar 

starting point for most users of Petro-HRA.

Task complexity is a conceptual construct that is known to influence human performance in 

several  ways,  such as cognitive usage,  mental  workload,  and human error (Ham, Park & Jung, 

2011;   Liu  &  Li,  2012).  A comprehensive  study of  complexity  is  important  if  the  goal  is  to 

understand and improve human performance (Ham, Park & Jung, 2012).
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What is Complexity?

Complexity has shown to be a difficult term to define. There have been many attempts at 

answering the question "What is complexity?", but this question has been very hard to answer and 

the term is often used without definition (Ham et al.,  2011; Liu & Li, 2012). The difficulty exist 

because complexity depends on which aspect you are concerned with (Xing & Manning, 2005). 

Most  definitions  of  complexity  are  operational  and  usable  only in  the  specific  domain  of  the 

researcher  (Xing,  2004;  Xing & Manning,  2005).  Indeed,  some researchers claim that  a  single 

concept  of  complexity  will  not  be  usable  because  it  needs  to  be  approached  from  varying 

perspectives (Ham et al.,  2012). The majority of research on complexity and complex tasks has 

operationalized complexity for its research purpose without trying to generalize the term.

Some researchers argue that most importantly is not the definition of complexity in itself, 

but to identify the underlying factors that contribute to complexity (Ham et al., 2011). A common 

approach to evaluate the complexity of a task has been to identify task complexity factors and 

measuring these factors (Ham et al., 2012). Several studies have tried to identify complexity factors 

that  are  specific  to  their  domain,  such  as  air  traffic  control  (Mogford,  Guttman,  Morrow  & 

Kopardekar, 1995), nuclear power control (Braarud & Kirwan, 2011), auditing (Bonner, 1994), and 

information search (Byström & Järvelin, 1995), but none of these have identified factors that are 

specific to the offshore petroleum domain, and we are still lacking a conceptual framework that can 

be  used  independently  of  domains  (Ham et  al.,  2011;  2012).  The  numerous  studies  that  have 

identified complexity factors have resulted in a confusion of individual and task characteristics (Liu 

& Li, 2012).

Complexity in SPAR-H

SPAR-H's complexity PSF originated from the HRA method THERP, and the multipliers 

used are the same as THERP's levels. THERP does not have a specific complexity PSF, but the 
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method covers tasks involving complexity. SPAR-H has extended these descriptions into a general 

PSF (Boring & Blackman, 2007).

In  SPAR-H the  complexity  PSF  is  divided  into  four  multiplier  levels;  highly  complex, 

moderately complex, nominally complex tasks and obvious diagnosis tasks (Gertman et al., 2005). 

Highly complex  tasks  are  described  as  tasks  that  are  very difficult  to  perform and have  many 

variables with ambiguous and concurrent diagnoses and actions. In SPAR-H, highly complex tasks 

multiply  the  HEP by  five  for  both  action  and  diagnosis  tasks.  Moderately  complex  tasks  are 

described as somewhat difficult to perform, where there is some ambiguity, several variables, and 

perhaps some concurrent diagnoses or actions. The moderately complex tasks multiply the HEP by 

two for both action and diagnosis. Nominal tasks are tasks that are not difficult to perform, with 

little ambiguity, and few variables involved. A nominal task will not affect the overall HEP and thus 

the multiplier is one. Obvious diagnosis is a task where diagnosis is severely simplified. In this 

situation the problem is obvious to the extent that it is difficult for the operator to misdiagnose it. 

Much validating and convergent information is available to the operator and so the HEP multiplier 

is 0.1 for obvious diagnosis tasks, indicating a decrease in HEP. SPAR-H does not have a multiplier 

for obvious action tasks as easy to perform actions tasks are captured under the nominal multiplier. 

If the rater does not have sufficient information to choose a complexity multiplier, the SPAR-H 

manual suggests using a nominal HEP (Gertman et al., 2005).

The SPAR-H manual suggests a guideline of 14 factors that contribute to task complexity 

(Gertman et al., 2005; see Figure 3).
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Figure 3. Factors contributing to complexity in SPAR-H (Gertman et al., 2005).

Subjective and Objective Complexity

Despite  the  many  different  definitions  of  complexity,  the  literature  show  that  many 

researchers  agree  that  task  complexity  can  be  divided  into  two  different  complexity  types: 

Subjective and objective complexity (e.g. Bonner, 1994; Li & Wieringa, 2000; Ham et al., 2012; 

Liu & Li, 2012). According to Ham et al. (2011), the factors that contribute to complexity can be 

covered by either very subjective features that  depend on the knowledge,  training and personal 

attributes of the operator, or objective features that pertain to the characteristics of the task itself, 

such  as  the  number  of  elements,  objectives,  constraints,  and  the  overall  size  of  the  problem. 

Objective complexity is determined by technical features and situational factors, while subjective 

complexity is the operators' perceptions of the objective complexity and is highly dependent on 

their  knowledge  and  experience  (Ham  et  al.,  2012).  Objective  complexity  is  in  other  words 

independent  of  task  performers,  while  subjective  complexity  is  a  joint  property  of  task  and 

performer (Liu & Li, 2012). 
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Review of Literature on Complexity

To  identify  the  most  important  factors  that  contribute  to  task  complexity,  a  review  of 

relevant literature was performed. The list of articles used in this review can be found in Table 1 in 

the methods section. The following paragraphs attempt to outline some of the different approaches 

and findings of earlier research on complexity. This is done to get an overview of how complexity 

has been used or described in previous research.

Campbell  (1988)  examined  task  complexity  in  the  context  of  goal  setting  and  strategy 

development. He classified complexity into three schemes: (a) as a psychological experience, (b) as 

an  interaction  between  task  and person characteristics,  and  (c)  as  a  function  of  objective  task 

characteristics. These three schemes can be divided into the subjective (a and b) and objective (c) 

types of task complexity described previously. Psychological complexity can be described as the 

perceived complexity of the operator that is affected by feelings of significance, autonomy, and 

enrichment. Person-task complexity is the complexity of the task relative to the capabilities of the 

person performing the task. Objective complexity is the characteristics of the task and is described 

as the magnitude, variation, and amount of stimulation (Campbell, 1988). On the basis of earlier 

research on complexity, Campbell (1988) created an integrative framework of objective complexity 

which includes four factors that contribute to task complexity: (a) the presence of multiple paths 

toward a desired end-state, (b) the presence of multiple desired outcomes to be attained, (c) the 

presence of conflicting interdependencies among paths to multiple outcomes, and (d) the presence 

of uncertain or probabilistic links among paths and outcomes.

Bonner (1994) looked at task complexity in the auditing domain. This research divided task 

complexity into difficulty and structure, where difficulty is the subjective qualities and structure is 

the objective qualities of a task.  Bonner argue that those who believe that task complexity is a 

function of objective qualities of the task itself appear to believe that the complexity is perceived 

equally  by  all  persons  at  the  input  stage  and  that  personal  attributes  affect  judgment  and 
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performance differently at the processing and output stages (Bonner, 1994). Input, processing and 

output are the three stages of Bonner's complexity model. These stages are then divided into amount 

and clarity of information at each stage. Factors that contribute to complexity at the input stage 

include  number  of  alternatives  and  number  of  cues  (amount),  and  cue  specification  and  cue 

measurement (clarity). Similar factors are found at the processing and output stages (Bonner, 1994).

Xing and Manning (2005) tried to identify factors relevant for air traffic control. In their 

review of complexity literature, they found that most definitions of complexity correspond to three 

factors of complexity: the numeric size of the basic elements, the variety of the elements, and the 

structural rules of the elements. Three types of complexity appeared from their review: information 

complexity, cognitive complexity, and display complexity. While these three focuses on different 

aspects of human or machine systems, there is an overlap among the types and all three are partially 

concerned with the three basic concepts of size, variety, and structure (Xing & Manning, 2005). The 

researchers do however  feel  that  size,  variety and structure is  a weak definition of  complexity 

factors, and that the structural rules of a system contributes most to complexity (Xing & Manning, 

2005). This can be illustrated with an example of counting peas: Variations in amount and size of 

the peas will require longer time to complete the task, but will not make the task more complex 

(Xing & Manning, 2005).

Endsley and Jones (2004) suggested a framework of complexity types from research on 

situation  awareness.  The  types  range  from  technical  system  complexity  to  human  perceived 

complexity. The authors suggest that several different factors contribute to the degree of complexity 

humans have to cope with when using a system. Endsley and Jones (2004) distingiushed between 

technical  complexity,  operational  complexity,  and  apparant  complexity.  These  three  factors  are 

respectively the system's functional complicatedness, the complexity that the operators have to deal 

with to use the system, and the complexity that is brought about by the system's user interface.

Harvey and Koubek (2000) looked at complexity in their research on team collaboration. 
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From their perspective, task complexity is based mainly on research by Campbell (1988), Wood 

(1986),  Byström & Järvelin  (1995),  and  Rasmussen  (1990),  and  is  determined  based  on  three 

classes of task characteristics: Scope, structurability, and uncertainty (Harvey & Koubek, 2000). A 

task is here defined by products, acts, and information cues, and the complexity of the tasks are 

determined by their variety, uncertainty, amount of information, number of meta-operations, task 

presentation, information presentation, number of acts, number of dependencies between inputs and 

outputs, automaticity of the task, and time to complete the task (Harvey & Koubek, 2000). From 

these, the authors emerge at the three previously mentioned characteristics: Scope, structurability, 

and uncertainty. Scope is the breadth, extent, range or general size of a task, and is affected by the 

number of subtasks and amount of information to be processed. Structurability represents the degree 

of sequence and relationship between subtasks, and is affected by analyzability, alternatives, and 

coordination.  Finally,  uncertainty  attempts  to  measure  complexity  based  on  the  degree  of 

predictability or confidence that can be achieved in a task (Harvey & Koubek, 2000).

Braarud and Kirwan (2011) summarized research in studies of nuclear operator crews in 

complex and realistic scenarios. Based on a brief  literature review, four factors were identified, 

process complexity, task complexity, interface complexity, and subjective complexity (Braarud & 

Kirwan, 2011). Process complexity is the number and relationships of inputs, outputs and system 

variables, state variables, and the number of dynamically changing variables. Process complexity is 

the  most  objectively  definable  as  it  deals  mostly  with  factual  data  about  the  system.  Task 

complexity is  a factor that  relates to  the number of underlying problems in  a scenario such as 

conflicting goals, number of alarms, tasks, goal pathways, time available, and number of decision 

options. Task complexity is found in the diagnostic behavior of the operator that occur between 

system  and  operator  performance. The  third  factor,  the  interface  complexity  of  the  system 

represents the computer screen formats and procedures. This refers to the degree that the operator 

instrumentation is consistent with the operator's information needs and diagnostic approach. Finally, 
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subjective complexity includes the operator's perceived level of complexity. Subjective complexity 

is primarily a function of the operator's training and experience (Kirwan, 1994b). Based on these 

factors a complexity questionnaire was developed and submitted to operators that had completed 

simulated  accident  scenarios  (Collier,  1998).  The  questionnaires  yielded  eight  complexity 

dimensions:  ambiguity,  spread/propogation,  coordination  requirements,  information  intensity, 

familiarity,  knowledge,  severity,  and  time  pressure/stressors  (Braarud  &  Kirwan,  2011).  These 

dimensions were found to be highly correlated (Braarud, 1998), and this point to the discovery that 

complexity factors will be overlapping and dependent of each other (Braarud & Kirwan, 2011). The 

authors tested their complexity dimensions in a simulated nuclear power plant control room and 

found higher variability in complex scenarios, which in some cases lead to differences in outcomes 

(Braarud & Kirwan, 2011).

Byström  and  Järvelin  (1995)  examined  the  effect  task  complexity  had  on  information 

seeking and use from a problem-solving viewpoint. They identified task characteristics related to 

complexity from literature  on task complexity.  These include repetitivity,  analyzability,  a  priori 

determinability, number of alternative paths, ouctome novelty, number of goals and dependencies 

among them, uncertainties between performance and goals, number of inputs, cognitive and skill 

requirements, and time varying conditions (Byström & Järvelin, 1995). These characteristics were 

grouped into two dimensions: characteristics related to the a priori determinability of tasks, and 

characteristics related to the extent of the task. The extent dimension refers to the overall size of the 

task, while the a priori determinability dimension relates to the degree of a priori uncertainty or 

structure of the task. The authors use the dimension of a priori determinability to classify tasks into 

five categories based on how well the task can be determined prior to problem-solving. A task 

where the answer is easily determinable is less complex than a novel and unstructured task where 

the result, process, or information requirements are unknown (Byström & Järvelin, 1995).

Lazzara, Pavlas, Fiore and Salas (2010) started the work of developing a framework for task 
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complexity  with  examples  from  simulated  planning  tasks  of  military  missions.  These  authors 

focused on objective task qualities and used Campbell (1988) and Woods (1986) as their starting 

point. In the framework developed by Lazzara et al. (2010) complexity is divided into coordinative 

complexity, which is the degree of interaction and integration required from team members, and 

component complexity, which is the number of distinct acts and elements that needs to be processed 

in completing a task. Coordinative complexity includes complexity factors such as task ambiguity, 

number of decisions, interdependencies between team members, solution diversity, and number of 

global restrictions of the task. Component complexity includes the number of local restrictions, at 

the individual level, and the amount of information needed and received (Lazzara et al., 2010).

Ham,  Park  &  Jung  (2011)  were  concerned  with  the  lack  of  a  theoretical  basis  for 

categorizing the many complexity factors that previous literature had found. The authors attempted 

to develop a framework with a more systematic approach to the many factors identified by earlier 

research.  In  this  framework  the  task  complexity  term  acts  as  a  bridge  between  objective  and 

subjective complexity as it is seen in relation to human capabilities and limitations (Ham et al., 

2011). The authors also identified other types of complexity than task complexity, such as cognitive 

complexity, system complexity, and operational complexity. Furthermore, each type of complexity 

has its  associated complexity shaping factors that  contribute to the degree of complexity found 

(Ham et al., 2011). Ham et al. (2011) proposed a model where the complexity shaping factors of 

different domains (i.e. knowledge complexity, cognitive complexity, interaction complexity) can be 

identified on the basis of three aspects of the domain concerned: (a) the spatial aspect, relating to 

the  logical  scope  and size  of  the  domain,  (b)  the  relational  aspect,  dealing  with  causality  and 

connections within the domain, and (c) the temporal aspect (Ham et al., 2011). The model is meant 

to be applicable for any domain, context or user (Ham et al., 2012). They noted that the framework 

and  model  does  not  automatically  generate  complexity  factors  or  guarantee  that  the  identified 

factors are complete. As for any conceptual framework, subjective judgment and analysis is needed 
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in  identification.  The  qualitative  identification  of  factors  can  however  be  more  complete  and 

systematic when assisted by this framework (Ham et al., 2011). On the basis of this framework, 

Ham et al. (2012) identified 21 complexity factors based on the three dimensions size, variety, and 

structure/organization. These complexity factors include, among others, number of steps, number of 

goals, number of subjective judgments needed, number of preconditions, and logical relationship 

between steps.

Liu and Li (2012) reviewed operational definitions and models of complexity and organized 

these into three viewpoints. The first viewpoint is the structuralist view, where task complexity is 

understood as the structure of a task. This view implies that task complexity is a function of task 

components and is as such what several other researchers define as objective task complexity. An 

example  here  is  the  number  of  elements  of  which  the  task  is  composed,  and  the  relationship 

between these elements (Liu & Li, 2012). The second viewpoint is the resource requirement of the 

task. In this view, task complexity is affected by its cognitive, physical and mental demands, and 

requirements of memory, knowledge, skill,  and time on the operator (Liu & Li, 2012). The last 

viewpoint  is  the  interaction  view and is  concerned with  the  interaction  between task  and  task 

performer characteristics. This viewpoint is mostly concerned with the task performer's subjective 

complexity. Researchers who hold this viewpoint argue that the performer's perceived complexity 

must be considered because each performer may interpret the same objective task differently (Liu & 

Li, 2012). Based on their reviews the authors grouped the various task complexity definitions found 

in other literature, creating 24 complexity contributory factors. These were again organized into 10 

complexity  dimensions  which  formed  their  task  complexity  model.  These  dimensions  are  size, 

variety,  ambiguity,  relationship,  variability,  unreliability,  novelty,  incongruity,  action complexity, 

and temporal demand (Liu & Li, 2012).

In  addition  to  the  research mentioned here,  several others  have also studied  complexity 

theoretically or experimentally.  Some of these researcher's work can be found in Table 1 in the 
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methods section.

To summarize, the research on complexity constitutes a vast and multidisciplined field of 

work. One simple definition can hardly encompass all that is complexity, thus the construct is best 

understood  with  respect  to  the  specific  domain  in  question.  Many  researchers  agree  that  a 

qualitative distinction can be made between subjective and objective complexity. Those who have 

tried to identify complexity factors usually find similar and overlapping results. A few factors seem 

to be repeated regardless of research domain,  such as size of the problem space,  variety of its 

components, the stucture and logic of the task, its ambiguity, and the uncertainties that the task-doer 

face.
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Method

To find complexity contributing factors, a review of relevant literature was performed. The 

research  method  used  was  thematic  analysis.  This  method  was  chosen  because  it  permits  the 

researcher to use both textual data and interviews (Howitt, 2010) in addition to being a theoretically 

flexible approach to analysing data (Braun & Clarke, 2006), which is useful in a literature review of 

a  psychological  construct  such  as  complexity.  Thematic  analysis attempt  to  describe  the  major 

features of the data to identify the major themes (Howitt, 2010). In this thesis the goal is to identify 

what complexity is and identify the underlying factors that make up complexity. Themes in this 

thesis were defined on two levels: Elements that contribute to task complexity, and the categories 

where these elements fit together.

The literature  search was performed using the search engines  available  in  the PsycNET 

database  (psycnet.apa.org),  Google  Scholar  (scholar.google.com),  and  the  library search  engine 

BIBSYS Ask (ask.bibsys.no), as well as using the reference lists of relevant articles. The keywords 

used  in  the  search  engines  were:  Complexity,  task  complexity,  complexity  review,  complexity 

performance, complexity decision making, complexity framework, what is complexity, complexity 

model. During the literature search, coding was performed in the form of notes that identified the 

complexity  contributing  factors  in  the  articles  used.  The  search  was  ended when the  literature 

yielded no new relevant articles and the author felt that theoretical saturation was acquired.

When the literature review was completed, the notes and codings from the articles were 

analyzed.  This  analysis  presented many different  elements  that  contribute  to  complexity.  These 

elements were organized into factors that identifed the main categorized themes of the literature. A 

list of articles used in the literature review that were subject to the coding process can be found in 

Table 1.

After the complexity factors had been created, a guideline table for Petro-HRA consultants 
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was made based on the factors and their effect on operator performance (see Table 3 in the "Results 

and Discussion" section). To establish the usability of this guideline table, subject matter experts on 

HRA in the petroleum industry were contacted and interviewed about the factors' suitability and use 

in the petroleum industry. Four persons were interviewed; three by telephone, and one face to face. 

The experts were informally consulted on the usability of the guideline table for Petro-HRA. Prior 

to the interviews the experts were given the guideline table and the description of the factors. The 

interviewees were then asked questions on how they determine complexity and the HEP cutoff 

values when performing SPAR-H today, whether or not the factors are covering for tasks in the 

petroleum domain, and whether the guideline table was understandable and practically applicable 

for Petro-HRA analysts. This was done due to the author's lack of knowledge on specifics in the 

petroleum domain such as operator tasks and operations, and if a guideline were to have practical 

use, experts in the field of use had to be consulted. 

Table 1. Research and literature reviewed.

Author and Publication Year Title
Abdolmohammadi & Wright (1987) An Examination of the Effects of Experience and Task 

Complexity on Audit Judgments

Bell & Ruthven (2004) Searchers' Assessment of Task Complexity for Web 
Searching

Bonner (1994) A model of the effects of audit task complexity

Braarud & Kirwan (2011) Task Complexity: What Challenges the Crew and How 
Do They Cope?

Byström (2002) Information and Information Sources in Tasks of 
Varying Complexity

Byström & Järvelin (1995) Task complexity affects information seeking and use

Campbell (1984) The effects of goal-contingent payment on the 
performance of a complex task

Campbell (1988) Task Complexity: A Review and Analysis

Chen, Casper & Cortina (2001) The Roles of Self-Efficacy and Task Complexity in the 
Relationships Among Cognitive Ability, 
Conscientousness, and Work-Related Performance: A 
Meta-Analytic Examination

Chipbarupa, Larson, Brucks, Draugalis, 
Bootman & Puto (1993)

Physician prescribing decisions: The effects of 
situational involvement and task complexity on 
information acqusition and decision making



27

Cummings & Tsionis (2005) Deconstructing Complexity in Air Traffic Control

Endsley & Jones (2004) Designing for Situation Awareness. An Approach to 
User-Centered Design

Gell-Mann (1995) What is Complexity?

Ham, Park & Jung (2011) A Framework-Based Approach to Identifying and 
Organizing the Complexity Factors of Human-System 
Interaction

Ham, Park & Jung (2012) Model-based identification and use of task complexity 
factors of human integrated systems

Harvey & Koubek (2000) Cognitive, Social, and Environmental Attributes of 
Distributed Engineering Collaboration: A Review and 
Proposed Model of Collaboration

Horsky, Kaufman, Oppenheim & Patel 
(2003)

A framework for analyzing the cognitive complexity of 
computer-assisted clinical ordering

Hwang (1995) The Effectiveness Of Graphic And Tabular 
Presentation Under Time Pressure And Task 
Complexity

Jacko & Ward (1996) Toward establishing a link between psychomotor task 
complexity and human information processing

Kanfer & Ackerman (1989) Motivation and Cognitive Abilities: An 
Integrative/Aptitude-Treatment Interaction Approach 
to Skill Acquisition

Kerstholt (1992) Information search and choice accuracy as a function 
of task complexity and task structure

Kirwan (1994) Human error project experimental programme

Kuhlthau (1999) The Role of Experience in the Information Search 
Process of an Early Career Information Worker: 
Perceptions of Uncertainty, Complexity, Construction 
and Sources

Lazzara, Pavlas, Fiore & Salas (2010) A framework to develop task complexity

Li & Wieringa (2000) Understanding Perceived Complexity in Human 
Supervisory Control

Liu & Li (2011) Toward Understanding the Relationship between Task 
Complexity and Task Performance

Liu & Li (2012) Task complexity: A review and conceptualization 
framework

Lois et al. (2009) International HRA empirical study – pilot phase report. 
Description of Overall approach and First Pilot Results 
from Comparing HRA Methods to Simulator Data

Marshall & Byrd (1998) Perceived task complexity as a criterion for 
information support

Mascha & Miller (2010) The effects of task complexity and skill on over/under-
estimation of internal control

Mogford, Guttman, Morrow & Kopardekar 
(1995)

The Complexity Construct in Air Traffic Control: A 
Review and Synthesis of the Literature

Park, Jung & Ha (2001) Development of the step complexity measure for 
emergency operating procedures using entropy 
concepts

Payne (1976) Task Complexity and Contingent Processing in 
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Decision Making: An Information Search and Protocol 
Analysis

Pieschl, Stahl, Murray & Bromme (2011) Is adaptation to task complexity really beneficial for 
performance

Rothrock, Harvey & Burns (2005) A theoretical framework and quantitative architecture 
to assess team task complexity in dynamic 
environments

Sintchenko & Coiera (2003) Which clinical decisions benefit from automation? A 
task complexity approach

Sintchenko & Coiera (2006) Decision Complexity Affects the Extent and Type of 
Decision Support Use

Snowden & Boone (2007) A Leader's Framework for Decision Making

Speier, Vessey & Valacich (2003) The Effects of Interruptions, Task Complexity, and 
Information Presentation on Computer-Supported 
Decision-Making Performance

Tiamiyu (1992) The Relationship Between Source Use and Work 
Complexity, Decision-Maker Discretion and Activity 
Duration in Nigerian Government Ministries

Topi, Valacich & Hoffer (2005) The effect of task complexity and time availability 
limitations on human performance in database query 
tasks

Vakkari (1999) Task complexity, problem structure and information 
actions. Integrating studies on information seeking and 
retrieval

Weingart (1992) Impact of Group Goals, Task Component Complexity, 
Effort, and Planning on Group Performance

Wood (1986) Task complexity: Definition of the construct

Wood, Mento & Locke (1987) Task Complexity as a Moderator of Goal Effects: A 
Meta-Analysis

Xing (2004) Measures of Information Complexity and the 
Implications of Automation Design

Xing (2007) Information Complexity in Air Traffic Control 
Displays

Xing & Manning (2005) Complexity and Automation Displays of Air Traffic 
Control: Literature Review and Analysis

Xu, Song, Li, Zhao, Luo, He & Salvendy 
(2008)

An ergonomics study of computerized emergency 
operating procedures: Presentation style, task 
complexity, and training level

Xu, Li, Song, Luo, Zhao & Salvendy 
(2009)

Influence of step complexity and presentation style on 
step performance of computerized emergency 
operating procedures

Zhang, Li, Wu & Wu (2009) A spaceflight operation complexity measure and its 
experimental validation

Zhang, Wu, Zhang, Quanpeng & Liu 
(2011)

Task Complexity Related Training Effects on 
Operation Error of Spaceflight Emergency Task
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Results and Discussion

The literature review identified many elements that contribute to complexity. These elements 

were organized into 13 categories that grouped similar elements together into parent complexity 

contributing factors, thus creating a conceptual framework – a descriptive model of complexity that 

synthesize  information  from a  variety  of  domains. A similar,  albeit  more  simplified,  task  was 

undertaken by Gertman (2012), where he identified complexity subfactors to guide users of SPAR-

H in assigning the PSF multiplier. Gertman (2012) performed a brief literature review and used the 

factors found by Xing and Manning (2005), quantity, variety and relations. The factors identified in 

this thesis can be seen as an expansion of the work by Gertman (2012).

The 13  complexity factors and  their contributing elements can be seen in Table 2. In the 

coming section of this thesis, these 13 factors are described and a discussion follows regarding the 

different factors' suitability for describing complexity in a Petro-HRA method. Of the 13 factors, 

seven  are  found  to  be  appropriate  for  Petro-HRA.  These  seven  factors  effect  on  operator 

performance is examined, and a guideline table for Petro-HRA is created.

Conceptual Framework of Task Complexity

Table 2. Conceptual framework of complexity factors.

Factor Elements Source
Goal complexity Multiple paths to desired end-state/goal

Multiple end-states/goals
Competing ideas, paths or alternatives 
Competing goals

Conflicting  interdependencies between paths and 
goals
Multiple faults

Number of goals
Number of tasks
Number of parallel tasks

Campbell (1988)
Braarud & Kirwan (2011)
Kirwan (1994b)
Byström & Järvelin (1995)
Payne (1976)
Bonner (1994)
Chinbarupa et al. (1993)
Lazzara et al. (2010)
Snowden & Boone (2007)
Campbell (1988) 
Ham et al. (2011)
Gertman et al. (2005)
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Step complexity Number of unique actions
Number of unique steps 
Number of unique inputs
Number of unique outputs

Weingart (1992)
Lazzara et al (2010)
Ham et al. (2011)
Zhang et al. (2009)
Xing (2004)
Liu & Li (2012)
Gertman et al. (2005)
Braarud & Kirwan (2011)
Park et al. (2001)

Size complexity Number of information cues
Number of task elements/components 

Amount of information
Information intensity

Size of problem space/scope/spread
Number of sub-tasks

Memorization requirements

Speier, Vessey & Valacich (2003)
Bonner (1994)
Ham et al. (2011)
Li & Wieringa (2000)
Lazzara et al. (2010)
Braarud & Kirwan (2011)
Xing (2004)
Xing & Manning (2005)
Harvey & Koubek (2000)
Sintchenko & Coiera (2006)
Liu & Li (2011)
Gertman et al. (2005)

Interaction complexity Amount of interaction/commnication between 
individuals

Coordination demands/interdependence between 
individuals

Woods (1986)
Gertman et al. (2005)
Sintchenko & Coiera (2003)

Braarud & Kirwan (2011)
Lazzara et al. (2010)

Connection 
complexity

Relation between elements/components
Relation between inputs and outputs

Number of connections between elements/parts
Strength of connections between elements/parts

Dependencies between tasks or 
elements/components

Ham et al. (2011)
Xing & Manning (2005)
Xing (2004)
Braarud & Kirwan (2011)
Kirwan (1994b)

Liu & Li (2012)
Li & Wieringa (2000)
Gertman et al. (2005)

Uncertainty Uncertainty of paths/process and end/outcome

A priori determinability
Number of known factors
Number of known connections

Clarity of information/task
Completeness of information

Campbell (1988)
Byström & Järvelin (1995)
Li & Liu (2011)
Vakkari (1999)
Byström (2002)
Ham et al. (2011)
Mascha & Miller (2010)
Bonner (1994)
Kirwan (1994b)
Sintchenko & Coiera (2003)
Kerstholt (1992)
Lazzara et al. (2010)
Braarud & Kirwan (2011)

Dynamic complexity Unpredictability
Environmental predictability / weather

Noise/irrelevant information
Masking of faults

Snowden & Boone (2007)
Jacko & Ward (1996)
Liu & Li (2011)
Mogford et al. (1995)
Wieringa & Stassen (2000)
Gertman et al. (2005)
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Change/stability of task
Dynamics of process/paths

Ambiguity

Braarud & Kirwan (2011)
Kirwan (1994b)
Chen et al. (2001)
Ham et al. (2011)

Variation complexity Outcome novelty
Task novelty

Task variety/diversity

Variety of elements

Byström & Järvelin (1995)
Liu & Li (2012)
Ham et al. (2012)
Xing & Manning (2005)
Li & Wieringa (2000)
Wieringa & Stassen (2000)

Structure complexity Structure of task
Order/organization of task

Rules of task
Conflicting rules

Task logic/logic of component relations

Abdolmohammadi & Wright (1987)
Ham et al. (2012)
Liu & Li (2011)
Harvey & Koubek (2000)
Bonner (1994)
Xing & Manning (2005)
Lazzara et al. (2010)
Zhang et al. (2009)

Temporal complexity Time pressure
Temporal demanad

Sintchenko & Coiera (2003)
Braarud & Kirwan (2011)

Knowledge 
complexity

Domain knowledge
Depth of knowledge
Engineering decision knowledge

Ham et al. (2012)
Braarud & Kirwan (2011)
Kirwan (1994b)

HMI complexity Operation instrument information
Misleading/absent indicators
Presentation homogeneity/logic

Zhang et al. (2009)
Gertman et al. (2005)
Liu & Li (2011)
Kirwan (1994b)

Procedure complexity Number of procedures
Procedure homogeneity
Procedure executability

Bonner (1994)
Kirwan (1994b)
Xu et al. (2008)

The  following  section  is  a  description  of  the  complexity  factors  in  Table  2  and  what 

contributing elements the factors are categorized from. 

Goal complexity can be described as the multitude of paths or alternatives an operator 

can take to reach the goal of a task. The complexity will increase if there are more paths or goals 

(Bonner, 1994), or if the paths or goals are incompatible with each other (Campbell, 1988). This 

increase in complexity is due to an increase in information load on the operator (Campbell, 1988). 

This may happen if there are several parallel paths, competing paths or goals and no clear indication 

to which is the better choice (Bonner, 1994), or if there exists conflicting interdependencies among 

paths  (Campbell,  1988).  Under  conditions  of  high  goal  complexity  the  operators  may observe 

several paths as possibilities but only one lead to goal attainment, or that several paths lead to goal 
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attainment,  but  differ  in  their  efficiency  and  the  operator  must  find  the  most  efficient  path 

(Campbell, 1988). The presence of conflicting interdependencies among paths mean that attaining 

one desired goal will conflict with the achievement of reaching one or more different goals, thus 

also making it a matter of prioritizing. This may for example be that quality will exclude quantity 

(Campbell, 1988). However, not all increase in paths will lead to higher goal complexity. If multiple 

paths lead to the task goal, this redundancy in paths will actually decrease the complexity of the task 

(Campbell, 1988).

Step complexity. This factor refers to the number of unique cognitive acts, actions or steps 

that are required by the operator to complete the task (Lazzara et al., 2010; Sintchenko & Coiera, 

2003). A step is unique when it is qualitatively different from other actions in the same knowledge 

or skill  domain and specific domain knowledge or skills  do not generalize to  that  step (Wood, 

1986). The number of continuous steps will also contribute to the complexity of the task. This is due 

to information requirements for not only the current step, but also for the continuous action steps. 

This increases the amount of information that is needed to perform the actions (Park, Jung & Ha, 

2001). A higher number of steps will make a task more complex.

Size complexity is the overall size or scope of the problem space. This factor is perhaps 

the  most  straightforward measure  on complexity and most  research  use some variation  of  size 

complexity (Xing & Manning, 2005). Size complexity is associated with the numeric size of the 

elements  or  information  cues.  These  are  the  basic  units  of  thought  needed to  complete  a  task 

(Sintchenko & Coiera, 2003). This is related to the amount and intensity of information that an 

operator has to process. A high number of alarms, cues, or information needed to complete the task, 

as  well  as  differentiating  important  from  less  important  information  will  contribute  to  size 

complexity (Lazzara et al.,  2010; Braarud & Kirwan, 2011). Information cues are the pieces of 

information used to make a judgment during problem solving (Harvey & Koubek, 2000; Liu & Li, 

2012). Sometimes task size is described as task scope, which is a function of the subtasks, products, 
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and information processing requirements (Harvey & Koubek, 2000). The two terms, scope and size, 

can be said to describe the same elements, amount of information that needs to be processed. A 

higher amount of information, or high memorization demands (Gertman et al., 2005), will require 

the operator to use more cognitive resources to process the information load, making the tasks more 

complex (Lazzara et al., 2010).

Connection complexity refers to the relationship between the elements of the task. This 

factor depends on the number, strength and dependencies of the connections between the tasks or 

elements  in  a  system (Li  & Wieringa,  2000).  Connection  complexity  increases  when  the  task 

elements or tasks are highly connected and the output of one element depend on the input of another 

(Kirwan,  1994b),  or  if  the  dependencies  of  the  system are  not  well  known or  poorly defined 

(Gertman et al., 2005).

Uncertainty.  The uncertainties an operator face when performing a task is a contributing 

factor to complexity according to several researchers (Campbell, 1988; Byström & Järvelin, 1995; 

Bell & Ruthven, 2004), and is often used as one of the main characteristics of complexity  along 

with task size and structure (Harvey & Koubek, 2000).  Uncertainty can be linked to the number of 

known factors of  a  task (Byström, 2002)  or to  what  extent  the task can be determined by the 

operators prior to undertaking it. Less  a priori determinability of a task yields higher complexity 

(Byström & Järvelin,  1995).  Uncertainty  also  relates  to  how clear,  consistent  or  complete  the 

information about the task is, as well as the clarity of the task itself (Kerstholt, 1992; Bonner, 1994; 

Mascha & Miller, 2010). 

Dynamic  complexity can  be  described  as  the  unpredictability  of  the task  or  the 

environment where  task is performed. According to Woods (1986) this  is the stability of the 

relationships of task components in a changing external world. This factor includes the unreliability 

and inconsistency of the task  (Liu & Li,  2012) and the environmental  noise  where the task is 

performed (Ham et al., 2011). Dynamic complexity is affected by the ambiguity, change or stability 
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of the task  or system characteristics  over time,  which contributes to difficulty in predicting what 

will happen (Snowden & Boone, 2007; Lazzara et al., 2010; Liu & Li, 2012). Inconsistencies and 

masking of faults also fall under the dynamic complexity category. If one fault masks another fault 

task complexity will increase (Gertman et al., 2005; Lois et al., 2009).

Variation complexity refers to the novelty of the task, its components and goals. A task 

that is irregular and not a routine event for an operator will be more complex than one that is a 

frequent  problem in the domain (Liu & Li,  2012).  Similarly,  the variety of  the components  or 

elements of a task will also contribute to complexity (Xing, 2004).

Structure  complexity  can be  described  as  the  order or organization  of  the  task. It 

represents the structural rules of a system or task, and these rules determine the interconnections or 

relationships between the task components (Xing & Manning, 2005; Harvey & Koubek, 2000). The 

logical sequence or relationship of these components will also contribute to the task's structural 

complexity (Zhang, Li, Wu & Wu, 2009). The complexity of a task will depend on whether or not 

the structure of the task is logical, as well as the number of rules and whether or not these rules 

conflict with each other. Tasks that have many or conflicting rules, e.g. requirements of both speed 

and accuracy are believed to be more complex than tasks with fewer rules (Lazzara et al., 2010). 

Interaction complexity can be described as the degree of interdependence among team 

members (Lazzara  et  al.,  2010).  The  amount  of  communication  or  interaction  that  is  required 

between individuals will  contribute  to  the complexity of the task (Sintchenko & Coiera,  2003; 

Gertman et al., 2005). Tasks that rely on distributed knowledge, where individual team members 

only have access to some of the information required to complete the task have more interaction 

complexity than tasks where all participants have all the information required (Lazzara et al., 2010). 

This type of complexity is important in team tasks.

Temporal complexity is the time pressure the operator is subjected to. The temporal 

demand of a task has a significant contribution to task complexity (Liu & Li,  2012).  Both the 
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experience of simultaneous tasks and time pressure will contribute to temporal complexity due to 

the difficulty of coordinating the execution of the tasks (Braarud & Kirwan, 2011; Liu & Li, 2012). 

This is sometimes referred to as temporal load and will contribute to worse information selection 

and decision efficacy by the operator. Temporal demands are often caused by little available time, 

urgency, or risk (Liu & Li, 2012).

Knowledge complexity refers to the knowledge the operators need to have about their 

domain to complete a task (Ham et al., 2012). This factor also includes knowledge depth that 

entails  a  detailed  understanding  of  how the  different  components,  systems  and  subsystems  are 

interrelated  (Braarud  &  Kirwan,  2011).  In  an  accident  scenario  an  operator  needs  to  have 

knowledge about how the fault interacts with neighbouring systems that may be affected (Braarud 

& Kirwan, 2011).

HMI complexity is the complexity of the operation instrument information. This factor 

includes  the  type  and  number  of  monitors  and  controllers  (Zhang  et  al.,  2009)  and  how  the 

information is displayed or presented (e.g. Bonner, 1994). An interface that is less intuitive or hard 

to undestand for the operator will contribute to a higher task complexity. Examples include missing 

or misleading indicators, or unavailable equipment (Gertman et al., 2005).

Procedure complexity referst to the number of and the presentation of procedures that 

the operators use to complete tasks. According to Zhang et al. (2009) it is important to ensure the 

procedure is technically correct, understandable without introducing task overload, and possible to 

execute without mistakes, in order to minimize the complexity of the task.

General Discussion on Complexity in Petro-HRA

As we have seen, complexity is often described as objective or subjective. This distinction 

should be kept  in mind when examining complexity for  the Petro-HRA method.  SPAR-H, and 

Petro-HRA, assumes an average operator and is interested in finding the probability of error of this 
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general or average operator. When assigning the complexity PSF, the method is best served with 

assuming that all operators performing a complex task affect the HEP with the same magnitude, 

thus  assuming  that  all  operators  are  average.  If  there  is  variation  in  the  characteristics  of  the 

operator,  PSFs such as experience/training,  stress/stressors,  or  fitness for duty will  identify this 

variation and the HEP will be altered. Complexity can also be related to task characteristics that 

increase information load and memorization requirements (Campbell,  1988; Collier,  1998). This 

means that complexity can be defined objectively and determined independently of any particular 

task-doer  (Campbell,  1988).  This  does  not  mean however,  that  all  task-doers  or  operators  will 

perform equally well when faced with high information load or a particularly complex task. It just 

means that the complexity PSF is best served with identifying the objective characteristics of the 

task and leave the variance in operator performance to other PSFs. In addition, it is important to 

remember that the HEP is a probability and not a fixed number, and thus it is also susceptible to 

variance.

In the subjective view of complexity, the knowledge, experience and training of the operator 

are  the most  important  determinants  of  complexity (Ham et  al.,  2012).  This  view looks  at  the 

complexity of the task as a "state of mind" and argue that there can hardly be lack of knowledge or 

increased  information  load  without  a  person (Liu  & Li,  2012).  This  can  also  be  described  as 

perceived complexity or difficulty, which can be found in the intersection between task and task-

doer.  It  is  the  task-doer's subjective complexity that  determine  the  performance.  The perceived 

complexity of a task will be in relation to the task-doer's knowledge, skill and motivation. In other 

words how difficult the task-doer finds the task. However, it can also be argued that the complexity 

of a task can be "rated" as objectively more or less complex regardless of the operator. Arguably, 

fifty information cues of a task in constant change is more complex to perform than a more linear 

task with just five information cues regardless of whether an expert or a novice is performing the 

task. The expert however, will probably perceive the tasks as less complex than the novice and will 
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probably perform better. The HRA methods however, do not attempt to identify individuals that 

perform a task well, but rather find situations with high probabilities of human error. This means 

that it is not the performance of the individual, but the objective complexity of the situation that is 

the most important factor for the Petro-HRA method.

 Another point that is worth mentioning is that decision-making in complex domains can be 

viewed as a function of the decision task and the expertise of the decision maker. If the expertise of 

the decision maker is controlled for, e.g. everyone are experts, which often is the case for operators 

in the petroleum domain, the objective task will be the main variable for performance (Sintchenko 

& Coiera, 2006).

Complexity Factors Excluded in Petro-HRA

As mentioned earlier, six of the 13 factors that the literature review identified as important 

for task complexity were found not to be appropriate for the complexity PSF in Petro-HRA. This 

means  that  users  of  Petro-HRA should  not  include  these  when  assessing  the  complexity  of  a 

situation or task.

Five  of  these  excluded  factors  are  procedure  complexity,  temporal  complexity,  HMI 

complexity,  knowledge complexity  and interaction complexity.  The factors  all contribute  to  the 

overall complexity of a task. However, the SPAR-H method include PSFs for all of these factors. 

This means that their effect on the HEP is taken into account in other parts of the HRA and an 

inclusion of these factors into the complexity PSF as well would contribute to double counting these 

factors in the analysis, thus making their contribution to the HEP greater than it should be.

Procedure  complexity is  identified  in  the  "procedures"  PSF  and  this  PSF  includes  the 

existance and usability of operating procedures of the tasks under consideration (Gertman et al., 

2005). Temporal complexity refers to how much time pressure or temporal demand there is on the 

operator. This factor is covered by the "available time" PSF in SPAR-H. Knowledge complexity 
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refers to the depth of knowledge possessed by the operator. This factor is highly dependant on the 

operator's skills and expertise in their domain and is covered by the "experience/training" PSF in 

SPAR-H (Gertman et al., 2005).  HMI complexity is a factor that several researchers include in a 

description of task complexity. This factor refers to the equipment, displays, quality and quantity of 

information available from instrumentation. In SPAR-H, the complexity of HMI is covered by the 

"ergonomics/HMI" PSF (Gertman et  al.,  2005).  The  interaction complexity factor  describes  the 

degree of dependence among team members. Poor or missing communication and a distribution of 

knowledge or  actions  among team members or  shifts  will  decrease performance.  However,  the 

planning, communication, and coordination is covered by the "work processes" PSF in SPAR-H 

(Gertman et al., 2005).

The  sixth  excluded  factor  is  uncertainty.  Uncertainty is  a  factor  that  contribute  to  task 

complexity according to several researchers (Campbell, 1988; Byström & Järvelin, 1995; Bell & 

Ruthven, 2004). It is possible to argue that this factor should not be included into a Petro-HRA 

analysis because it is a subjective measure that is in relation to other aspects of a task and in relation 

to the operator's knowledge. Uncertainty in other aspects of the task can be uncertainty with regards 

to  task  variety  (Vakkari,  1999),  task outcomes,  information  requirements  (Byström & Järvelin, 

1995), or connections between components or sub-tasks (Harvey & Koubek, 2000). It can be argued 

that  uncertainty  affects  the  other  complexity  factors.  This  would  mean  that  uncertainty  in  the 

amount  of  information  available  or  the  size  of  the  problem,  uncertainty  in  processes  or  goal 

achievement, the structural rules, variety, or the dynamic environment of the task will contribute to 

complexity, and not uncertainty in itself. Uncertainty can, in other words, be viewed as a lack of 

knowledge or information about a situation that concludes in the operator not knowing how to 

proceed.  This  means  that  uncertainty  is  tightly  connected  to  the  subjective  and  perceived 

complexity of the operator.
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Complexity Factors for Petro-HRA

 Based on the difference between objective and subjective complexity, the average operator 

in SPAR-H, and the other PSFs of SPAR-H, seven complexity contributing factors were extracted 

from  the  literature  review  as  being  usable  in  a  Petro-HRA method.  These  factors  are  goal 

complexity,  size  complexity,  step  complexity,  connection  complexity,  dynamic  complexity, 

variation complexity, and structure complexity. The structure of these factors and their contributing 

elements can be found in «Figure 4».

These  seven  factors  are  objective  measures  of  a  task  that  all  contribute  to  the  overall 

complexity  of  the  task.  Some  of  the  factors  can  be  viewed  as  both  subjective  and  objective. 

Variation complexity, which include task novelty, is an example. Task novelty can be viewed as a 

subjective quality of a task, given that the novelty of a task is seen in relation to the experience of a 

task doer,  e.g.  if  the task has been performed before.  However,  in Petro-HRA, task novelty or 

variety should be seen as whether or not the task is novel in the operator's domain. For instance, is it 

novel for any operator performing this task in this context? When using the complexity factors for a 

Petro-HRA analysis the average operator should always be kept in mind as the task-doer.

 Most of the complexity factors for Petro-HRA are arguably diagnosis oriented. However, 

there is no indication that these factors can not be used in action tasks. Two HRA experts in the 

petroleum domain also stated that diagnosis is, in the vast majority of cases, the most complex tasks 

facing operators. This is partly due to the problem solving and mental calculation requirements of 

diagnosis tasks, as well as due to the fact that most action tasks in this domain are simple by design. 

The usability of these seven factors in both action and diagnosis tasks were underlined by the HRA 

experts in interview.
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Figure. 4. Complexity factors for Petro-HRA
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Dependancies of the Factors

Even though the factors describe different objective features of a task the complexity factors 

should not be seen as orthogonal to either each other or to the other PSFs in SPAR-H. Collier (1998) 

identified similar complexity factors (ambiguity, spread, information intensity, severity) on the basis 

of questionnaires given to control room operators. The complexity factors were analyzed and these 

analyses showed that the complexity factors were highly correlated among themselves (Braarud, 

1998). We can assume the same for the factors found in the current framework.

The complexity PSF also stands out as a factor that is influenced by and influences other 

PSFs  (Boring,  2010).  Correlations  and  factor  analyses  for  SPAR-H  show  that  complexity  is 

correlated  with  every  other  PSF  in  an  action  task,  and  is  correlated  with  the  stress/stressors, 

experience/training, procedures, and work processes PSFs in a diagnosis task (Boring, 2010). This 

problem was also identified by one of the experts on HRA in an interview, where it was stated that it 

is often hard to know where to classify a performance driver in an analysis. The complexity of a 

task can be influenced by HMI, knowledge, and a high mental workload. Which PSF is then the 

performance driver? The PSFs are often highly related in a task and this leads to similar problems 

when assigning the PSF values. This is also illustrated by the fact that five of the complexity factors 

discovered in this thesis are measured by other PSFs in a SPAR-H analysis.

Performance Effect of the Complexity Factors for Petro-HRA

The  seven  factors  included  for  Petro-HRA,  goal  complexity,  size  complexity,  step 

complexity,  connection  complexity,  dynamic  complexity,  variation  complexity,  and  structure 

complexity, all contribute to task complexity. Based on research performed on complex tasks in 

various domains, indications can be made as to how each of these seven complexity factors affect 

operator performance. From these indications, some general recommendations can be made as to 

the assignment of the HEP multiplier in the complexity PSF.
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Much of the research presented in this section does not measure human error or accuracy, 

but measure time spent to complete a task. It is important to keep in mind that the two variables, 

error rate and time spent, are not the same performance measures. However, time spent can be an 

indication of performance in time pressed situations that occur after an initiating event.

Goal complexity and performance. Elements that contribute to goal complexity has been 

studied by several  researchers.  Payne (1976) studied the effects  of several  alternative goals  on 

choice strategies. He found that subjects spent less time for each alternative goal, in an effort to 

reduce cognitive load, but spent more time overall as the number of goals increased. Onken, Hastie 

& Revelle (1985) did a similar experiment and found that decision time increased almost linearly 

with number of alternatives. Depending on size complexity, the subjects spent 10-25 seconds when 

two alternatives were present, 15-35 seconds when four alternatives were presented, 15-50 seconds 

for six alternatives, and 20-60 seconds for 12 alternatives (Onken et al., 1985). It seems that time 

spent for each alternative is slightly less when the number of alternatives increase, but the overall 

decision time increases due to the need to consider more alternatives. The research of Chinbarupa et 

al. (1993) suggest the same.

Research  on  alternative  paths  and  goals  indicate  that  as  the  number  of  paths  or  goals 

increase, the decision time increase as well. Six alternative paths or goals indicate a large effect on 

performance, while 3-5 alternatives indicate a moderate effect, and two or less alternatives indicate 

low or no effect on operator performance. Based on this, a general recommendation for the goal 

complexity factor's effect on HEP is nominal to high depending on the number of paths or goals, 

while keeping in mind the potential effects of conflicting goals and paths on the mental workload of 

the operators. 

Size complexity and performance.  Research has indicated that task size is an important 

contributor to performance. Bonner (1994) performed a review on complexity and the number of 

information cues in the input and output stages of a task. This research showed an indication that 
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performance was better at lower number of information cues at the input stage, while the output 

stage was not as important. Li and Wieringa (2000) studied students on systems and subsystems that 

varied in their connectability and size. They found that more than 15 unconnected subsystems, or 

eight connected subsystems, dramatically increased the task complexity and lead the students to 

exceed a 30 minute operation time limit. Half the amount of unconnected subsystems, eight, were 

more manageable, while three or less had no effect on performance (Li & Wieringa, 2000). Similar 

results have been found by Park and Jung (2008) who measured size complexity and found a clear 

relationship between task size and time to complete a task.

Sintchenko and Coiera (2006) tested both time spent and decision accuracy in two different 

tasks. They showed that more information (36 information components in the low complexity task, 

and 68 components in the high complexity task) resulted in more time taken for a decision and a 

lower decision quality with 80% correct decisions in 125 seconds in the low complexity task, and 

64% correct decisions in 156 seconds in the high complexity task (Sintchenko & Coiera, 2006). 

Research by Speier, Vessey and Valacich (2003) suggested similar findings. These researchers had 

students do a simple task consisting of 2-8 cues and 1-4 calculations and a complex tasks with 30 

cues  and 15 calculations.  They tested the effects  of  interruptions  on decision time and quality. 

Results showed that accuracy on the simple task was in the 73-80% range and time spent was in the 

42-55  seconds  or  138-165  seconds  range,  depending  on  presentation  format.  Accuracy  on  the 

complex task was between 70-76% or 44-55% depending on presentation format and time spent 

was from 1307 to 1774 seconds (Speier et al., 2003). 

Research on task size indicate that size complexity is an important factor of complexity and 

greater  size  complexity  leads  to  increased  decision  time  and decreased  decision  accuracy.  The 

research showed here also indicate that size complexity is highly connected with other aspects of 

the task, such as connection complexity and presentation format or HMI. Based on this research a 

general recommendation is that size complexity has a nominal to high effect on HEP depending on 
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the number of information cues, elements or subsystems.

Step complexity and performance. Research on step complexity and performance has been 

more inconclusive than size complexity. On one hand research by Park and Jung (2008) indicate a 

relationship between step complexity and time to complete a task. On the other hand, Zhang et al. 

(2009) also measured step complexity and its effect on error rate and operation time. They found 

that out of four measures of complexity (size, step, logic and HMI complexity), step complexity is 

the least important to the overall complexity of the task. Similar results were reported by Weingart 

(1992), who found that  higher step complexity lead to greater uncertainty, but no direct link were 

found between step complexity and performance. Park and Jung (2008) argue that there will be an 

interrelation  between size  complexity (amount  of  information)  and step complexity (amount  of 

actions) because operators have to process a set of information to understand the steps they have to 

perform.

Research indicates that step complexity is not as important as size complexity to the overall 

complexity of a task, and a general recommendation for step complexity's effect on HEP would be 

nominal to moderate, depending on size complexity. In action tasks however, step complexity might 

be a greater contributor to complexity than in diagnosis tasks.

Connection complexity and performance. Li and Wieringa (2000) found that connections 

between subsystems greatly increases complexity. When parts of the system or task are connected, 

task size can be lower while the task is still highly complex. Eight or more connected subsystems is 

similar  to  15  or  more  unconnected  subsystems,  and  the  complexity  increase  from  system 

connectivity lead to an increase in task operating time (Li & Wieringa, 2000).

The indication from Li and Wieringa (2000) is that connection complexity decreases the 

performance of a task and that tasks with smaller size complexity can still be highly complex when 

the components, elements or subsystems are strongly connected.  A general  recommendation for 

connection complexity is a moderate to high effect on HEP, depending on size complexity.
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Dynamic complexity and performance. The elements of dynamic complexity vary in their 

effect on performance. Noise does not seem to be a driving factor of complexity as the operators are 

highly trained specialists, and environmental noise does not challenge their prioritization (Braarud 

& Kirwan, 2011). The masking of faults however, were found to be a dominant factor of operator 

performance, and time spent on a task increased from 7 minutes on a simple task, to 21 minutes on 

a complex task where faults were masked (Braarud & Kirwan, 2011).

Ambiguity of information is also an element that contribute to dynamic complexity. Analysis 

from questionnaire ratings (see Braarud & Kirwan, 2011), as well as studies to identify factors of 

human error identified ambiguity (Lois et  al.,  2009) or salience of information as an important 

performance driver (Follesø, Drøivoldsmo, Kaarstad, Collioer & Kirwan, 1995). Mascha and Miller 

(2010)  also  identified  the  clarity  of  information  as  a  more  dominating  factor  than  amount  of 

information on judgment performance.

Parts of dynamic complexity has a high effect on performance, such as the ambiguity of the 

task and the masking of faults. Other parts, such as environmental noise seems to have a lower 

effect.  Based  on  this,  the  recommendation  for  dynamic  complexity's  effect  on  HEP is  from 

moderate to high, depending on which elements are present in the task. 

Variation complexity and performance.  Task variety does not  appear  to  have a major 

influence on task-doer performance. However, Byström and Järvelin (1995) found that task success 

decreased as tasks became less routine and more unknown and novel. Several researchers refer to 

the problems of task unfamiliarity, which can be viewed as similar to task novelty (Goodman & 

Shah, 1992; Braarud & Kirwan, 2011). Braarud and Kirwan (2011) identifed a complex scenario as 

a task that had not previously been trained,  and as such was unfamiliar  to the crew. Similarly, 

Goodman and Shah (1992) summarize experts as people who excel mainly in their own domain, 

and perceive large and meaningful patterns in their domain. Less familiarity, such as task novelty, 

results  in  operators  being  less  aware  of  making  errors  and  make  less  automated  responses 



46

(Goodman & Shah, 1992). The authors discovered that less familiar tasks had a considerable higher 

accident rate (1,24 accidents per 200 days) than tasks that were more familliar (0,511 accidents per 

200 days). They argue that this is due to lack of knowledge of the tasks, due to unfamiliar work 

processes  such  as  shift  changes,  changes  in  equipment  (Goodman  & Shah,  1992),  or  lack  of 

experience  and  training  (Braarud  &  Kirwan,  2011).  This  could  indicate  that  task  novelty  is 

dependant on other PSFs.

Based on this research there is an indication that variation complexity affects performance 

depending on the  other  PSFs.  Keeping  this  in  mind,  the  general  recommendation for  variation 

complexity  is  from  nominal  to  moderate,  depending  on  the  other  PSF's  involvement.  This 

conservative recommendation is made to avoid the potential problem of double counting factors 

when other PSFs also are performance drivers.

Structure complexity and performance.  Research on task structure has shown that more 

unstructured tasks contribute to greater  perceived complexity by the task-doer (Abdolmohammadi 

& Wright, 1987). More objective measures has also been found, Zhang et al. (2009) identified task 

logic as a more important factor to the complexity of a task than size, instrument (HMI), or step 

complexity. They found that error rate and operation time are linearly related to task logic. Similar 

results were found by Park and Jung (2008), who show a negative relationship between time to 

complete the task and the logic of the task steps. That is, as task logic decreases, time spent on the 

task increases.

These results indicate that the structure of the task, and especially task logic is dependant on 

the size of the task, and affects the complexity of the steps needed to perform. This would mean that 

task structure both influences and is influenced by size complexity and step complexity. A general 

recommendation for structure complexity is an effect on HEP from nominal to high, depending on 

size complexity, and its effect on step complexity should be kept in mind if step complexity is an 

important part of the task.
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Guideline-Table for Users of Petro-HRA

Based  on  the  complexity  factors  that  were  found  to  be  usable  for  Petro-HRA and  the 

performance effect of these factors, a guideline table was created (see Table 3). The first column 

lists the complexity factors. The second column lists the main elements that make up the factors and 

contribute to task complexity. Next, the third column describes the factors so the users of this table 

can identify which factors are present in a task. This column is an abbreviation of the descriptions 

given earlier in this thesis. The fourth column suggests, on the basis of research on similar factors, 

how the elements in this factor affect operator performance. In addition, a general suggestion is 

made as to how much the factor affects the HEP in the complexity PSF. Finally, the fifth column 

refers to which research articles are used for the performance estimates.

The purpose of this table is to assist users of Petro-HRA to identify when the complexity 

PSF is a performance driver, and guide consultants in what multiplier level to assign. The table will 

also  assist  in  determining  the  cutoff  values,  e.g.  when a  task is  highly complex  or  when it  is 

moderately  complex.  According  to  an  interviewed  HRA expert,  the  cutoff  values  are  usually 

determined  by  asking  operators  how  complex  the  task  was.  This  approach  will  be  highly 

determinant on the operator's knowledge, experience and training and will be a subjective measure 

of complexity.  The operator's subjective perception of complexity will be more related to other 

PSFs, and to a less degree be dependant solely on the complexity of the task. 

The table is a quick and easy-to-use tool for time challenged consultants while still retaining 

the potential for high accuracy and stronger inter-rater reliability. It is however important to note 

that the table should still  be used together with the expertise of the HRA analysts. Most of the 

research  used  for  the  performance  estimates  are  from fields  outside  of  the  HRA or  petroleum 

domain and might measure variables other than the complexity factors. It is important that HRA 

analysts use their judgment in assigning the PSF multipliers as the recommendations given in the 

guideline table are not enough on their own to assign a complexity level. However, the use of this 
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table can lead to a more systematic and complete approach to the complexity PSF in Petro-HRA. 

This was also stated by two of the HRA experts in interview as a benefit of having such a guideline.
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Factor Elements Description Effect on performance/HEP Source of HEP estimates

Goal complexity Number of paths.
Number of goals.
Competing goals.
Parallel tasks.

Conflicting 
interdependencies 
between paths and goals, 
or among different paths.

Goal complexity is the multitude of paths or 
alternatives to one or more goals. 

Complexity will increase with more paths or 
goals, and if these are incompatible with each 
other. E.g. parallel or competing paths/goals, 
and no clear indication of the best path/goal.

6 or more alternative paths/goals – high.
3-5 alternatives – moderate.
2 or less alternatives – low.

Linear relationship between number of 
paths/goals and performance.

General recommendation for PSF 
multiplier: nominal to high, depending on 
number of paths/goals.

Payne (1976)
Onken et al. (1985)
Chinbarupa et al. (1993)

Size complexity Number of information 
cues or elements.
Information intensity.

Size of problem space.
Memorization 
requirements.

Size complexity is the numeric size of the 
basic elements or information cues. This 
includes task scope, which includes the sub-
tasks and spread of faults to other areas/tasks.

Complexity will increase as the amount and 
intensity of information an operator has to 
process increases.

15 or more  information cues – high.

8-14 information cues – moderate.

8 or less information cues – nominal. 

General recommendation for PSF 
multiplier: nominal to high, depending on 
number of cues.

Bonner (1994)
Li & Wieringa (2000)
Sintchenko & Coiera (2006)
Mascha & Miller (2010)

Step complexity Number of unique 
cognitive actions, physical 
actions or steps.

Number of continuous 
steps.

Step complexity is the number of acts, steps or 
actions that are qualitatively different from 
other steps in the task, meaning that 
knowledge do not generalize to the steps. This 
includes the number of continuous/sequencial 
steps required.

Complexity increase as the number of steps 
increase, even more so if the steps are 
continuous.

Less effect on HEP than size complexity, 
but similar.

More important for Action than Diagnosis.

Linear relationship between number of 
steps and performance.

General recommendation for PSF 
multiplier: nominal to moderate, 
depending on size complexity.

Park, Jung & Ha (2001)

Weingart (1992)

Zhang et al. (2009)
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Connection 
complexity

Relation between 
elements, inputs, or 
outputs.
Number and strength of 
connections between 
elements.
Dependencies between 
elements or tasks.

Connection complexity is the relationship and 
dependencies of the elements of a task.

Complexity will increase if the elements are 
highly connected and it is unclear or poorly 
defined how the input of one element will 
affect the output of another.

Connections between subtasks or elements 
greatly increases size complexity.

> 8 connected information cues – high.

General recommendation for PSF 
multiplier: moderate to high, depending 
on size complexity.

Li & Wieringa (2000)

Dynamic 
complexity

Unpredictability.
Change/stability of task.
Environmental 
predictability/weather.
Information clarity.
Noise.
Masking of faults.
Ambiguity

Dynamic complexity is the unpredictability of 
the environment where the task is performed. 
This includes the change, stability, or 
inconsistency of task elements.

Complexity will increase as the ambiguity or 
unpredictability of the environment increases. 
This includes the masking of faults.

Noise – low.
Clarity of information – moderate. Less 
important than amount of information.
Masking of faults – high.
Ambiguity of the task – high.

General recommendation for PSF 
multiplier: moderate to high.

Braarud & Kirwan (2011)
Braarud (2000)
Lois et al. (2009)
Mascha & Miller (2010)

Variation 
complexity

Task novelty.
Element variety.
Task diversity.

Variation complexity refers to the regularity or 
similarity of the task compared to other tasks 
in the same domain. Variety of the elements 
and sub-tasks is also included. 

Complexity increases as the novelty of the 
task increases, this includes the variety of sub-
tasks or task elements.

Novelty may cause other factors/PSFs to 
be a problem.

Novelty – low to moderate.

General recommendation for PSF 
multiplier: nominal to moderate.

Braarud & Kirwan (2011)

Byström & Järvelin (1995)

Goodman & Shah (1992)

Structure 
complexity

Order/organization of 
task.

Number of task rules.
Conflicting rules.

Logic relations.

Structure complexity represent the order of the 
task. Order is determined by the number and 
availability of rules. This includes whether the 
rules are conflicting and whether the sequence 
and relationships of elements/sub-tasks are 
logical.

Complexity will increase if there are many or 
conflicting rules, or if the structure of the task 
is illogical.

Task logic – moderate. Higher effect than 
size or step complexity.

General recommendation for PSF 
multiplier: nominal to high, depending on 
size complexity.

Zhang et al. (2009)
Park & Jung (2008)
Abdolmohammadi & 
Wright (1987)

Table 3. Guideline table of complexity factors for Petro-HRA.
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Strengths and Limitations

One of the major strengths of this thesis is that the conceptual framework of complexity 

factors presented in this thesis is based on a thorough review of literature on complexity in a varied 

range of research domains. This means that the factors presented here are important components 

that make up complexity of a task regardless of task domain. The seven factors used in the guideline 

table  for  Petro-HRA are  based  on  the  same conceptual  framework thus  giving  them the  same 

theoretical rigour. A rich selection of factors, or PSFs, will aid the analyst in identifying the correct 

factors that  might  otherwise be overlooked (Boring,  2010).  Another  strength of the complexity 

factors and the guideline table is an increase in inter-rater reliability in the complexity PSF when 

performing Petro-HRA. This is due to the analysts looking at the same complexity factors when 

analysing similar tasks, and will thus find results and HEPs more consistant with other analysts than 

if they worked out of their own preconceptions of complexity.

A limitation of this thesis can be that the factors' effect on performance is based on research 

with variables similar  to the complexity factors in  situations that might not  be relevant for the 

petroleum  industry  or  HRA.  As  a  consequence  of  this,  it  is  difficult  to  make  accurate 

recommendations  for  the  different  factors'  effect  on  performance.  This  means  that  the  expert 

judgment of the HRA analyst should still be the deciding factor when deciding on the complexity 

multiplier. Still, several HRA experts in interviews expressed that having some tangible evidence of 

the performance effects is better than not having any.

Theoritical and Practical Implications

The theoretical implications of this thesis is a greater understanding of what complexity is, 

and  what  factors  complexity  consist  of.  The  framework  of  complexity  factors  should  be  an 

promising starting point  for other researchers to build  on and expand our understanding of the 

construct. The framework and its contributing elements can also contribute to modeling complex 
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behavior and scenarios by using the complexity factors as modifiable experiment variables. This 

will again increase our understanding of the effect of complexity on operator performance.

The practical impliactions of this thesis are that users of the Petro-HRA method may have a 

better understanding in what to look for, and what to exclude, when assigning the complexity PSF. 

In addition, the guideline developed in this thesis may provide greater inter-rater reliability, and at 

the same time reduce analysis time, making the method both more reliable, and more cost-efficient.

Future research

There are several interesting paths to take with regards to complexity in a HRA method for 

the petroleum industry, and for the Petro-HRA method on the whole. The complexity factors found 

here should be validated and their performance effect should be examined in relevant scenarios. 

Ideally, this could be done by creating experiments where one or more factors are varied while 

others are kept constant and then measure operator performance.  In addition,  more research on 

complexity,  decision  making,  and cognitive  psychology should  be undertaken to  identify more 

potential complexity factors, or to eliminate superfluous or erroneous factors.

The PSFs themselves should also be examined and reviewed when the SPAR-H method is 

developed  for  a  new domain.  The  offshore  petroleum industry might  have  other  and  different 

challenges than nuclear power control rooms, and thus the PSFs used in SPAR-H could be different 

than the PSFs required for this new domain. In addition, similar to this thesis, literature reviews or 

other experiments should be performed to create solid theoretical foundations for the other PSFs in 

the Petro-HRA method. 

The HEP values for the Petro-HRA method should also be examined, both for complexity 

and for other PSFs. The HEP values that are identified and validated for the nuclear industry might 

not be as accurate when used in an offshore petroleum domain.
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Conclusion

This thesis has attempted to identify complexity factors for the purpose of strengthening the 

complexity PSF in Petro-HRA, a HRA method being developed for the petroleum industry based on 

SPAR-H. Based on a thorough review of literature on complexity, a conceptual framework of task 

complexity was created. This framework consists of 13 factors that contribute to task complexity. 

The factors are goal complexity, size complexity, step complexity, connection complexity, dynamic 

complexity,  variation  complexity,  structure  complexity,  uncertainty,  knowledge  complexity, 

temporal complexity,  HMI complexity,  interaction complexity,  and procedure complexity.  These 

factors are created based on research in multiple fields and constitute a rich variety of elements, 

making the framework usable in a wide variety of domains.

All  of  the  complexity  factors  in  the  conceptual  framwork however,  are  not  suitable  for 

identifying complexity in a Petro-HRA method based on SPAR-H. This is because the SPAR-H 

method already identifies several of the complexity factors as potential performance drivers in other 

PSFs.  The  complexity  factors  knowledge  complexity,  temporal  complexity,  HMI  complexity, 

interaction  complexity,  and  procedure  complexity  should  not  be  used  when  identifying  task 

complexity for the Petro-HRA method as they are included in others parts of the analysis and an 

inclusion in the complexity PSF would contribute to double counting these factors in the analysis. 

The complexity factor uncertainty should arguably also be excluded from complexity in Petro-HRA 

due to this factor being highly subjective and in relation to the task-doer while Petro-HRA attempts 

to identify the objective features and situations that contribute to task complexity and decreased 

operator performance.

The seven complexity factors found to be suitable for describing complexity in Petro-HRA 

are goal complexity, size complexity, step complexity, connection complexity, dynamic complexity, 

variation complexity, and structure complexity. A guideline table for users of Petro-HRA have been 
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developed on the basis of these seven complexity factors and their effect on operator performance. 

This guideline table might help the users of Petro-HRA in identifying complexity as a performance 

driver and assist in assigning the multiplier of the complexity PSF as well as improve the inter-rater 

reliability of the Petro-HRA. The guideline table will  not identify complexity as a performance 

driver or decide how to assign the PSF multiplier on its own. Expert judgments performed by the 

analyst should still be the main decider when performing HRA. The guideline table can however 

shorten the time an analysis take, help the analyst in identifying complexity factors, and increase 

inter-rater reliability.
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