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A B S T R A C T   

The β′′ precipitate is the main hardening phase in age hardenable Al-Mg-Si alloys, and it is therefore of major 
scientific and industrial importance. A full model of the β′′ precipitate cross-section embedded in an aluminium 
host lattice is created for a range of precipitate sizes, and relaxed by first principle calculations. The influence of 
periodic images is avoided by applying a cluster based model with fixed boundary conditions, where the surface 
is corrected by a displacement field calculated by linear elasticity theory. The calculated misfit values between 
the precipitate and the host lattice vectors are consistent with experimental scanning transmission electron 
microscopy results. The misfit area increases proportionally with the cross sectional area, suggesting that the 
lattice parameters of β′′ do not change as the size increases. Both the displacement field and the strain field are in 
agreement with experimental results. The strain field calculated by density functional theory shows a local zone 
close to the precipitate where the chemical contribution to the strain field is dominant. The strong correspon-
dence between the experimental and the modelling results supports the methodology to be used in general to 
study other phases.   

1. Introduction 

Precipitation hardening is the main mechanism responsible for in-
crease in the mechanical strength of the age-hardenable 6xxx-series of 
aluminium (Al) alloys, for which magnesium (Mg) and silicon (Si) are 
the main alloying elements. The 6xxx-series are widely used in industry, 
due to the high strength-to-weight ratio in combination with good 
extrudability. The high mechanical strength for this alloy series is 
typically reached by a large number density of the metastable β′′

precipitates. 
The precipitation sequence of the 6xxx-series has been investigated 

by using transmission electron microscopy in several studies [1–4]. The 
β′′ precipitates are formed early in the precipitation sequence, grow as 
needles elongated in the 〈001〉Al crystallographic directions, and are 
coherent with minor misfit relative to the surrounding Al host lattice. 
The misfit generates a strain field around the precipitate that affects the 
interaction between the precipitate and other defects, such as solutes 

and dislocations [5]. 
Finding a reliable and efficient way of calculating the strain field 

near the interface between the Al host lattice and the β′′ precipitate has 
been attempted by various authors. Ehlers et al. [6,7] calculated the 
strain field by combining linear elasticity theory (LET) and density 
functional theory (DFT). To circumvent the asymmetric strain field of 
the precipitate, different pieces of the interface were separately relaxed 
by DFT. The pieces were then stitched together to form the full strain 
field. They concluded that the strain field calculated by LET is a good 
initial guess. Ninive et al. [8] conducted full DFT calculations of models 
containing β′′ embedded in the aluminium matrix using periodic 
boundary conditions. A consequence of the small simulation box com-
bined with periodic boundary conditions was a high concentration of 
precipitates, which could yield non-physical ionic and electronic 
corrections. 

The strain field surrounding β′′ has also been studied experimentally 
[9,10]. Wenner et al. [9] mapped the displacement and strain fields of 
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the β′′ precipitate by scanning transmission electron microscopy 
(STEM), and from the post-processing they were able to calculate the 
misfit values related to the precipitate lattice vectors. The misfit values 
were calculated for a range of precipitate sizes and showed that the 
relative misfit ratios varied based on the aspect ratio of the precipitate. 

The main focus of this work is to calculate the misfit and strain field 
of the β′′ with accuracy achievable by DFT but without the bias intro-
duced by periodic boundary conditions. The challenge imposed by the 
periodic boundary conditions of plane-wave DFT is circumvented by a 
cluster based model, where the atoms in the fixed boundary are dis-
placed by LET. An additional aim is to establish the approach as a 
general procedure that can be used to study other phases as well. The 
results presented by Wenner et al. [9] are used as a benchmark for this 
investigation, and previous numerical studies are discussed. In addition, 
the displacement and strain fields obtained from DFT and LET calcula-
tions are compared with those obtained by analysis of STEM images. 
This quantitative comparison is used to validate the methodology. The 
investigation in this work will add insight to the precipitate phase, and 
explore the cluster model approach to this problem. An accurate 
framework for calculating strain fields from first principles would be a 
step closer to develop a multi-scale framework for alloy design. 

2. Background 

The atomic structure and composition of β′′ have been explored in 
several studies [11,12,8,2,13], and different chemical compositions 
have been investigated. From energy-dispersive X-ray spectroscopy [13] 
and DFT results [8] it was concluded that the most energetically 
favourable composition is Mg5Al2Si4, which will be used in this work. 
The unit cell is illustrated in Fig. 1, with the relevant lattice vectors. The 
precipitate is monoclinic with β = 105.3◦ [1]. Note that the unit cell 
contains two formula units that are symmetry related by the mirror 
plane perpendicular to the bβ′′ direction. All precipitates consist of a 
whole number of formula units in the plane defined by aβ′′ and cβ′′ . The 
size of the precipitate is therefore described by the number of formula 
units, known as ’eyes’. For instance, a 3x4 precipitate has side lengths 
L3x4

a = 3
2La = 3

2|aβ′′ |, L3x4
c = 4Lc = 4|cβ′′ | and is periodic in the bβ′′ direc-

tion. Fig. 1 also shows the relationship between the precipitate unit 
vectors and the Al unit vectors. The β′′ unit vectors are given by 

aβ′′ = (1 + ma)(2aAl + 3bAl) (1a)  

bβ′′ = (1 + mb)cAl (1b)  

cβ′′ = (1 + mc)( − 3aAl + bAl), (1c)  

where ma, mb and mc are the misfit parameters. The misfit along the 
needle direction, mb, is small and therefore neglected in the DFT cal-
culations in this investigation. In 2D, the misfit area is the additional 
cross-sectional area the precipitate occupies, as compared to no misfit. 

The misfit values in Eq. (1) can be calculated by analysing the lattice 
vectors of the β′′ precipitate. The average lattice vector is calculated by 
identifying the longest lattice vector, in the respective direction, be-
tween each identical atomic site in the precipitate and calculating the 
misfit using (1). The average misfit derived from all the atoms in the 
precipitate is used as the calculated misfit value. 

Strain is a continuum scale quantity and is defined as the gradient of 
the displacement field, where both the direction of the gradient and the 
direction of the displacement field must be defined. To get an accurate 
description of the strain field for an atomic scale model, a discrete 
atomistic strain field must be defined. The interface between β′′ and the 
Al matrix is coherent for small precipitates, simplifying the task of 
finding the displacement field in the vicinity of the interface. The 
displacement field, U = (Ui, Uj, Uk), is simply the deviation of the Al 
atoms from their respective lattice points in an underlying perfect lattice 
defined by the relaxed aluminium lattice constant. The subscript rep-
resents a specification to the direction. The strain is written as 

∊ij =
1
2

(
∂Uj

∂xi
+

∂Ui

∂xj

)

, (2)  

and includes both shear and normal strain. For simplification, a central 
difference scheme is used to perform the differentiation. Using the 
central difference method, the normal strain can be expressed as 

∊ii =
a*

i − ai

ai
, (3)  

where a*
i is the strained lattice vector and ai is the unstrained lattice 

vector. Note that ∊xx, ∊yy, ∊aa and ∊cc are the strain in the aAl-, bAl-, aβ′′ - 
and cβ′′ -directions, respectively. 

3. Method and model 

The DFT calculations are performed using the Vienna Ab Initio 
Simulation Package (VASP) [14,15]. The functional used for the calcu-
lations is the Perdew-Burke-Ernzerhof generalized gradient approxi-
mation [16], which has shown to be accurate for metals and is relatively 
computationally efficient. The plane-wave energy cut-off was 400 eV 
and a gamma sampling of k-points, with maximum distance of 0.18 Å− 1, 
was used to model the Brillouin zone. The k-point density was consistent 
for all calculations, and an independent sensitivity analysis of the k- 
point distance was done for bulk β′′ and Al with consistent results. The 
bulk fcc Al lattice constant was found to be 4.046 Å by an initial DFT 
relaxation of bulk Al. The bulk values of the β′′ precipitate are found 
through periodic bulk calculations of the β′′ phase. 

Defects in crystal structures are often accompanied by an asymmet-
rical strain. This asymmetry imposes a challenge when modelling de-
fects with periodic plane-wave DFT, since the strain field surpasses the 
boundaries of the system. With periodic boundary conditions, the sys-
tem has to be large enough for the stress field to be negligible at the 
boundaries, or the model must be designed in such a way that the 
stresses at the boundaries are cancelled. Alternatively, the system could 
be modelled with non-periodic boundaries to avoid the effect of the 
periodic images, e.g. by applying a cluster model for dislocations as 
explained in the review by Rodney et al. [17]. In it’s simplest form, the 

Fig. 1. Atomic model of the β′′ precipitate. The unit cell consists of two formula 
units called eyes, one of which is marked by a stippled rhomboid. The open 
circles are the atoms in the lower plane, while the full circles are the atoms in 
the upper plane. aAl, bAl and cAl are the lattice vectors in Al, while aβ’’ , bβ’’ and 
cβ′′ are the lattice vectors in the β′′ precipitate. 
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cluster model is surrounded by vacuum in the non-periodic directions, 
creating a free surface. The atoms in this surface must be corrected by a 
displacement field, and then constrained during relaxation. This creates 
a fixed region, where the width ensures that the atoms in the inner re-
gion are unaffected by the free surface, and react as if the atoms are 
enclosed by an infinite matrix containing an isolated defect. An accurate 
model is recognised by a displacement field that has a smooth transition 
from the relaxed region to the fixed region. 

The atomic cluster model adapted in this work is illustrated in Fig. 2. 
The outer region is held fixed during relaxation of the inner region. The 
radius of the inner region is given by R1 = δ + δβ′′ , where δ is the shortest 
distance between the fixed region and the precipitate, and δβ′′ is the 
remaining distance to the centre of the precipitate as illustrated in Fig. 2. 
δ is assumed to be independent of the precipitate size, and based on 
cluster size tests it was determined to be 6.5 Å. In agreement with the 
previous investigation of an edge dislocation [18], it was found that the 
width of the fixed region, Δ = R2 − R1 had to be at least 6 Å. The model is 
periodic along the needle direction, with a slab thickness of one unit 
vector |cAl| = |bβ′′ | = 4.046 Å. 

The displacement field superimposed on the Al atoms surrounding 
the precipitate depends on both the size and the aspect ratio of the 
precipitate. The displacement field can be separated in a chemical part 
and an elastic part. The former is mainly contributing to the strain field 
close to the precipitate, while the latter defines the long-range, 
geometrical effect. The long-range displacement field can be calcu-
lated from linear elastic theory (LET), by using the finite element 
method (FEM). This approach has been used in a previous investigation 
by Ehlers et al. [6] where Eshelby’s methodology for inclusions [19] is 
followed. First, the precipitate is removed from the host lattice and 
relaxed to its bulk structure. Secondly, in order to fit the precipitate back 
into the hole in the Al host lattice, a compressive displacement field is 
applied to the precipitate. The internal surface of the host lattice and the 
external surface of the precipitate are then bonded together to ensure 
fully coherent interfaces. Lastly, the full system is relaxed. Note that 
simulations are performed for the second and third step, while the first 
step is imaginary. All elastic constants used in this procedure were 
determined from DFT studies of the isolated subsystems, see the work by 
Ehlers et al. [7] for further details. The FEM calculation results in an 
elastic displacement field that is dependent on the aspect ratio of the 
precipitate and scaled by the actual size of the precipitate. The results of 
the FEM calculations were superimposed to all atoms in the slab before 
constraining the atoms in the fixed region. 

The experimental results were obtained from scanning transmission 
electron microscopy (STEM) images acquired with a double-corrected 
JEOL ARM-200F microscope, operated at an acceleration voltage of 
80 kV. Images were distortion-corrected using Smart Align [20] and 
analysed with geometric phase approximation (GPA) [21] to extract 
displacement and strain fields. A plugin to the DigitalMicrograph soft-
ware from HREM Research was used to perform the GPA calculation, 
where the chosen mask gives a spatial resolution of 8 Å. A more detailed 
description of the experimental method can be found in [9]. 

4. Results & discussion 

4.1. Misfit 

The calculated misfit values for the β′′ bulk structure with periodic 
boundary conditions are ma = 5.1%, mb < 1% and mc = 5.8%, indi-
cating that the lattice vectors of the precipitate are longer than the 
corresponding lattice vector of Al. Thus, it is expected that the precipi-
tate will be compressed when embedded in the Al matrix. Note that the 
constraint in the bβ′′ -direction in the model with β′′ embedded in the Al 
host lattice, might result in a slightly larger misfit in the remaining two 
directions. However, it is not expected to affect the final result signifi-
cantly since mb is small compared to the misfit in the two other di-
rections. The calculated misfit values for the different sized β′′

precipitates are summarised in Table 1, along with data from other 
selected studies [9,11,6,22]. The results show that the misfit of β′′ is 
reduced compared to the Al bulk values when inserted into the 

Fig. 2. A schematic illustration of the cross-section model of the β′′ precipitate, 
coloured in orange, surrounded by a cylindrical Al slab represented by gray and 
purple. The atoms in the purple region are displaced by an elastic displacement 
field and held fixed during relaxation. R1 is the radius of the relaxed region. 
Δ = R2 − R1 is the width of the fixed region. δ is the shortest distance between 
the precipitate and the fixed region, while δβ′′ is the remaining distance to the 

centre of the precipitate. âAl, b̂Al and ĉAl are the unit vector directions in Al, 
while âβ’’ , b̂β’’ and ĉβ′′ are the unit vector directions in the β′′ precipitate. The 
slab is one unit vector thick and periodic in the ĉAl direction. The white region 
is the surrounding vacuum. 

Table 1 
Summary of the misfit values calculated in this work, along with values collected from different investigations. Na and Nc are the number of β′′-precipitate eyes in the 
aβ′′ and cβ′′ directions, respectively. ma and mc are the misfit value [%] in the aβ′′ and cβ′′ directions, respectively. The values in parenthesis are the difference between 
the calculated values in this work and the values collected from the respective study.  

Size DFT [this work] ADF-STEM [9] DFT[6] DFT[11] DFT [22] 

Na × Nc  ma  mc  ma  mc  ma  mc  ma  mc  ma  mc  

Bulk 5.08 5.76     4.91 5.85 6.15 5.25 
2 × 2 3.21 4.89         
3 × 3 3.30 4.56         
4 × 4 3.34 4.38 3.66 (0.32) 4.29 (− 0.09) 2.45 (− 0.89) 3.07 (− 1.31)     
4 × 5 3.63 3.88 3.59 (− 0.04) 3.36 (− 0.52)       
5 × 3 2.59 5.40 2.62 (0.03) 4.54 (− 0.86)       
5 × 4 3.01 4.74 3.09 (0.08) 4.61 (− 0.13)       
5 × 5 3.32 4.27 3.36 (0.04) 3.69 (− 0.58)        
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aluminium lattice. The misfit values in the cβ′′ direction, mc, are 
consistently larger than the corresponding misfit values in the aβ′′ di-
rection, ma. This is also the case for the bulk misfit values calculated in 
this study, and is in agreement with the DFT investigation by Ehlers et al. 
[6]. Contrary, Hasting et al. [11] predicted a larger bulk ma compared to 
mc. There is a good agreement between the results calculated in this 
work, and the experimental values by Wenner et al. [9]. Note that for 
some precipitate sizes, the results for mc are found to be larger than the 
corresponding experimental values. 

The difference between ma and mc varies based on the aspect ratio of 
the β′′ precipitate. This effect is illustrated in Fig. 3, where the misfit 
ratio, ma

mc
, is plotted as a function of the precipitate length ratio, La

Lc
. This 

observation can be tied to the Poisson effect, where a material expands 
or contracts in the direction perpendicular to the loading direction. A 
precipitate elongated in one direction, having an aspect ratio different 
than one, is unevenly strained. Thus the host Al matrix loads the pre-
cipitate sides differently, resulting in a different misfit ratio. The results 
in Fig. 3 indicate that the relative misfit ratio is inversely proportional to 
the relative length ratio of the precipitate, with a constant multiplier of 

0.85. In contrast, Wenner et al. [9] found a constant multiplier closer to 
1, which means that the misfit ratio of a particle would be inverted if the 
aspect ratio of the particle was inverted. The consequence of a constant 
multiplier < 1, is that mc > ma, for an aspect ratio of 1. The multi-scale 
investigation by Ehlers et al. [22] did not capture this inverse propor-
tionality. The strength of their study was that the interface region was 
improved, but without considering the core of the precipitate. Thus, an 
accurate description of the core region should not be expected from their 
results. Note that the length ratio is not the same as the relative number 
of eyes, since the side lengths of the precipitate are different to each 
other. However, they are close enough so that the number of eyes gives 
an indication of the relative length ratio for small precipitates. 

Fig. 4 shows how the misfit area increases proportionally to the 
cross-section area. This again indicates that the precipitate size does not 
change the lattice parameters of the β′′ precipitate. As a result, the total 
misfit strain increases proportionally with the size of the precipitate 
until the matrix is unable to accommodate the precipitate without 
lowering the strain. The strain can be relieved by different mechanisms, 
e.g. creating a misfit dislocation, changing the precipitate-host interface 
or by chemical adjustments. A study on how large a precipitate must be 
for this to occur would be interesting, but is outside the scope of this 
investigation. 

The results presented in Fig. 4 are in agreement with both the 
experimental data by Wenner et al. [9] and the LET/DFT method by 
Ehlers et al. [22]. The linear fit of the DFT data from this work yields a 
slope of 7.8%, which is very close to the experimental result of 7.2% [9] 
and slightly higher than the LET/DFT results of 5.5% [22]. The higher 
slope indicates that the misfit values are on average larger, which is also 
confirmed by Table 1. 

The numerical data for the misfit values obtained in this investiga-
tion generally give a better fit to experimental results compared to 
previous numerical studies. This is attributed to the cluster model 
approach, where the challenge of a periodic boundary is circumvented. 
A recurring observation is that the misfit in the cβ′′ direction, mc, is 
consistently larger than the experimental values by Wenner et al. [9]. 
This is most likely caused either by the numerical approach used in this 
investigation or it is due to the strain relieving mechanisms that a 
physical β′′ precipitate has. The value of mc could be affected by the 
model geometry of the fixed boundary conditions, or the constraint on 
the bβ′′ direction. The latter is less likely to make a significant contri-
bution, but the former could have an effect on the results. 

4.2. Displacement and strain 

The misfit values give an averaged description of the strain field 
inside the precipitate. A more detailed analysis of the strain field outside 
the precipitate requires an accurate displacement field. Fig. 5 shows the 

radial displacement field, ΔR =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Δa2
Al + Δb2

Al

√
1, of the 5 × 5 β′′ pre-

cipitate. Fig. 5(a) has been calculated by DFT, while Fig. 5(b) is the GPA 
results from the STEM image in Fig. 5(c). The STEM image is cut and 
rotated from a larger STEM image, which is provided in the Supple-
mentary information. Based on the contour lines in Fig. 5(a), the radial 
displacement field has an even transition from the DFT relaxed atoms to 
the fixed atoms. The most rapid change in the displacement field is 
around the Si atoms at the interface between the precipitate and the host 
Al atoms. The displacement field near the precipitate interface clearly 
shows the chemical contribution from the local variations around the 
different elements of the interface. This is not observed in the results 
from STEM since the GPA analysis has a spatial resolution of 0.8 nm. The 
spatial resolution could be increased by using a different mask in the 
Fourier space, but this would be at the expense of accuracy. The 
displacement field given by the experimental work is observed to be 

Fig. 3. The misfit ratio as a function of the length ratio of the β′′ precipitate. 
The blue dots are results from this investigation, while the yellow triangles and 
green squares are data from Wenner et al. [9] and Ehlers et al. [22], respec-
tively. The horizontal solid line represent the bulk misfit ratio calculated in this 
study. La and Lc are the length of the β′′ interface in the aβ′′ and cβ′′ direction.s, 
respectively. 

Fig. 4. The misfit area as a function of the cross-section area of the β′′ pre-
cipitate. The blue dots are results from the present investigation. The line is a 
linear fit to the DFT results from this work. 

1 ΔaAl and ΔbAl are the displacement in âAl- and b̂Al-directions, respectively 
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asymmetrical, which is most likely an artefact either caused by being 
slightly off the zone axis during scanning, or by the strain field of a 
defect outside the field of view of the STEM image. Since the precipitate 
is isolated in the numerical calculations, the displacement field is ex-
pected to be more symmetrical. 

Fig. 6 shows graphs of linescans of the displacement field for the 
different precipitate sizes. The linescans are taken over the atoms 
marked by the red box in the figure, where the reference position is the 
Si atom at the interface. The displacement field displays a significant 
change in the gradient at the transition from the relaxed to the fixed 
region. This indicates that the chemical contribution is of short range, 
and contributes considerably to the displacement field near the inter-
face. The experimental results fit well with the numerical data, except 

for the change in slope near the interface. The value of the displacement 
field near the interface, calculated by GPA, is inaccurate due to the 
limited spatial resolution of the technique, which causes the unphysical 
displacement field inside β′′ to be part of the calculated value. The 
capture of the chemical contribution strengthens the assumption that δ is 
independent of the precipitate size. In addition, the displacement field 
shows a smoother transition from the DFT- to the LET-relaxed region for 
the larger precipitates, further supporting this assumption. 

Ninive et al. [8] investigated the displacement field, and analysed its 
gradient, i.e. the rate at which it changed. They made an exponential fit 
to the displacement field, which was accurate for the smaller pre-
cipitates, but less accurate for the larger ones. They attributed this to be 
a defect caused by the system size. However, the GPA results presented 

Fig. 5. The radial displacement field, ΔR, for a 5 × 5 β′′ precipitate. (a) was calculated from atoms relaxed by DFT, inside the red circle, and atoms relaxed by LET, 
outside the red circle. (b) is the GPA result of the STEM image in (c). The blue bar is the scale bar, common for all subfigures. The coloured dots represent the 
precipitate, where the beige, lime and grey are Si, Mg and Al atoms, respectively. 

Fig. 6. Linescans of the displacement field for different sized β′′ precipitates. The size description follows Na × Nc, representing the number of β′′ eyes. The linescans 
are taken along the atoms marked by the red box. The coloured dots in the inset figure represent the precipitate, where the beige, lime and grey are Si, Mg and Al 
atoms, respectively. The open dots in the graph are the first atom outside the red circle, separating the DFT relaxed region, inside, and the LET relaxed region, 
outside. The black line with cross markers is GPA results from the STEM image shown in Fig. 5(c). 
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in Fig. 5b) and the experimental results by Wenner et al. [9], indicate 
that the displacement field should be ∼0.35 Å at 20 Å away from the 
precipitate 2, and that it decreased at a slower rate than the exponential 
fit predicted by Ninive et al. The displacement field from the larger 
precipitates should be higher due to the misfit area being proportional to 
the cross-section area. The Al atoms just outside the precipitate must be 

displaced equal to the misfit times the β′′ size to accommodate the extra 
space which the particle occupies. 

Fig. 7 shows the strain field, ∊yy, for all the analysed precipitate sizes. 
The features found in the strain maps are consistent for the different 
sizes. Thus, the following discussion will focus on the strain field 
resulting from the largest precipitate, with 5 × 5 β′′ eyes. The strain maps 
for the remaining β′′ sizes can be found in the Supplementary informa-
tion. Note that the strain field in the lower right corner of Fig. 7 is the 
result of the GPA analysis of the STEM image in Fig. 5(c). The 

Fig. 7. The strain field, ∊yy, for different β′′-precipitate sizes, indicated by (Na, Nc), where Na and Nc are the number of β′′ eyes in the aβ′′ and cβ′′ directions, 
respectively. The subfigure in the lower right corner is GPA results of an experimental STEM image. The other subfigures are calculated from atomic positions relaxed 
by DFT, inside the red circle, and LET, outside the red circle. The small grey dots are the Al host matrix. The larger coloured dots represent the precipitate, where 
beige, lime and grey are Si, Mg, and Al atoms, respectively. The yellow upper number is ma, and the red bottom number is mc, where ma and mc are the misfit values 
in the aβ′′ and cβ′′ directions, respectively. 

Fig. 8. The strain fields, ∊xx and ∊yy, for the 5 × 5 β′′-precipitate. The small grey 
dots are the Al host matrix. The larger coloured dots represent the precipitate, 
where beige, lime and grey are Si, Mg, and Al atoms, respectively. The red circle 
separates the DFT-relaxed atoms, inside, and the LET-fixed atoms, outside. The 
blue box encloses the region where the chemical effect of the strain field is 
identifiable. ma and mc are the misfit values in the aβ′′ and cβ′′ directions, 
respectively. 

Fig. 9. The strain fields, ∊aa and ∊cc, for the 5 × 5 β′′-precipitate. The small grey 
dots are the Al host matrix. The larger coloured dots represent the precipitate, 
where beige, lime and grey are Si, Mg, and Al atoms, respectively. The red circle 
separates the DFT-relaxed atoms, inside, and the LET-fixed atoms, outside. The 
blue box encloses the region where the chemical effect of the strain field is 
identifiable. ma and mc are the misfit values in the aβ′′ and cβ′′ directions, 
respectively. 

2 Fig. 1b in reference [9] 
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experimental results are in agreement with the numerical data, but does 
not have as high spatial resolution as obtained in the numerical work. 
Thus, the focus of the following discussion will be on the numerical 
calculations in order to evaluate the finer details in the strain maps 
which are not captured experimentally. 

The strain fields ∊xx and ∊yy are presented in Fig. 8, and the strain 
fields ∊aa and ∊cc can be seen in Fig. 9. The general trend is that the strain 
field can be separated into two contributions. One of these is only 
observed close to the interface and the other dominates further away 
from the precipitate. The former is the chemical contribution, which can 
be observed inside the blue line in Figs. 8 and 9, where there are local 
variations due to the different chemical elements. Here, the strain field is 
concentrated near the Si atoms, with the extreme points closest to the 
interface. The latter is associated with the elastic field, where the ge-
ometry of the precipitate is more important than the chemical envi-
ronment around the interface. This contribution is long range, and thus 
observed outside the blue line, where the strain field is typically ∊ < 1%. 

The strain fields ∊aa and ∊cc show that the Al matrix is compressed in 
the respective directions as expected based on the positive misfit values. 
Since the bulk lattice vectors of β′′ are larger than the Al ones, the Al 
atoms are compressed in the aβ′′ direction near the top and bottom 
interface, and stretched in the left and right interface. Consequently, the 
Al atoms are compressed in the cβ′′ direction near the left and right 
interface, and stretched in the top and bottom interface. There is a good 
agreement with the LET field and the DFT relaxed region, as the contour 
lines are smooth over the boundary to the fixed region, see Fig. 8 and 9. 

5. Conclusion 

Full models of different sized β′′ precipitate cross-sections are relaxed 
by DFT using a cluster model approach. The precipitates are relaxed as 
isolated phases in an Al host lattice with a fixed outer layer and thereby 
avoiding the influence of periodic images. The misfit associated with the 
β′′ precipitates are analysed, and found to be consistent with experi-
mental results. The Poisson effect is observed, as the misfit ratio changes 
based on the aspect ratio of the precipitate. The analysis of different 
precipitate sizes shows that the misfit area is proportional to the cross- 
sectional area, indicating that the lattice parameters of β′′ are not 
changed by the increased size of the precipitate. It follows that strain 
relieving mechanisms must occur at some point as the precipitate cross- 
section area increases. A fully resolved displacement field is presented, 
with accuracy achievable by DFT. A STEM image of the 5 × 5 precipitate 
is analysed, and GPA analysis of the displacement field is compared with 
the simulated result, showing good agreement between experiment and 
theory. This results in an accurately described strain field, where the 
elastic and the chemical contributions can be visually observed. A 
transition from where the two contributions dominate the strain field is 
indicated. As expected, the chemical contribution does not extend 
farther into the host matrix when the cross-sectional area increases. 
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