
sensors

Article

UIOT-FMT: A Universal Format for Collection and
Aggregation of Data from Smart Devices

Mats Seljeseth †, Muhammad Mudassar Yamin *,† and Basel Katt

Department of Information Security and Communication Technology, Norwegian University of Science and
Technology, Teknologivegen 22, 2815 Gjøvik, Norway; matsse@stud.ntnu.no (M.S.); basel.katt@ntnu.no (B.K.)
* Correspondence: muhammad.m.yamin@ntnu.no
† These authors contributed equally to this work.

Received: 30 September 2020; Accepted: 14 November 2020; Published: 20 November 2020 ����������
�������

Abstract: Information Technology (IT) has become an essential part of our lives and due to the
emergence of the Internet-of-Things (IoT), technology has encompassed a majority of things that
humans rely on in their daily lives. Furthermore, as IT becomes more relevant in daily lives, the need
for IT to serve public emergency services has become more important. However, due to the infancy
status of IoT, there is a need for a data consortium that would prove to be best used in servicing
policing in a technological driven society. This paper will discuss the plausibility of creating a
universal format for use in carrying out public services, such as emergency response by the police
and regular law maintenance. In this research we will discuss what the police requires in their
line-of-duty and how smart devices can be used to satisfy those needs. A data formatting framework
is developed and demonstrated, with the goal of showing what can be done to unifying data from
smart city sensors.

Keywords: IoT; smart city; law enforcement

1. Introduction

The realm of Information Technology has spurred a renaissance in our society, where our
day-to-day devices are becoming interconnected and thus becoming smarter in a way that they
communicate and perform their designated tasks. Manufacturers of commercial appliances strive
towards giving its consumers the best products conceivable, thus promoting more to enable their
products the capabilities of communicating over the Internet. This paradigm shift has impacted almost
all aspects of our society, leaving only a few communities unaffected by this paradigm. One particular
area of our society that has yet to see a shift towards smarter use of appliances is the law enforcement
profession. There has only in recent years been plans to develop appliances for use in the police
profession. Proposals for the use of autonomous vehicles and robots to aid law enforcement operators
in the field were only introduced in recent years. However, there is an untouched area of smart
technology that has yet to be used in law enforcement. Data that is constantly being generate by smart
devices can potentially provide field operators and forensics staff with information that would tell
more about a criminal incident/case. In [1] researchers proposed that any form of data captured on an
IoT sensor could potentially be used for collection and analysis. Such capabilities of this data makes it
theoretically possible to use IoT sensor data in a Computer Network Intrusion Detection [2]-like manner.
It is unfortunate, that the feasibility of conceiving such a system is inhibited due to the diversity of
devices that are available on the market today. Manufacturers and developers are at a disagreement of
what data and communication standards should be implemented in their devices.

According to [3] this has led to an IoT landscape, in which the devices are unique from one and
other in a way that they are being “Smart”. Communication and data format are therefore the main

Sensors 2020, 20, 6662; doi:10.3390/s20226662 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20226662
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/22/6662?type=check_update&version=2


Sensors 2020, 20, 6662 2 of 23

obstacle from implementing a mass monitoring system in a smart city. The goal of this research is
to develop a data formatting framework for the use in law enforcement. The focus of this format is
to provide its users with the capabilities of selecting what information gets collected and how it is
handled after being collected. With such a novel concept being developed using a modern technological
landscape to enhance the capabilities of law enforcement, there are a few issues that must be addressed
in order to progress in this area. This research will focus on three main problems relating to how a
city wide policing system is to be developed. As a starting point for creating the format for a smart
policing platform the following concerns must be addressed.

1. What type of information would be necessary for law enforcement agencies to carry out their tasks in a
proactive manner?

2. What category of IoT devices in a Smart City can be leveraged by law enforcement to obtain useful
knowledge of on-going crimes?

3. What data format structure of high-level data will ensure that data output can be processed from different
devices and outputted in a unified format?

The main contribution of the research work is the development of an artifact for data unification
and how it is implemented to handle the challenges of data heterogeneity. An evaluation of the
proposed solution is conducted by comparing the results of this work against competing standards.
For the evaluation, the main focus will be to measure the reliability and performance of the artifacts
and compare them against its competitors. Rest of the paper is structured as fallows, first, we provide
a brief research methodology and related work. Continuing that we will present police needs and
diversity of IOT devices gathered from literature surveys and interviews. After that we will present
the proposed system, its evaluation and finally we will conclude the article with conclusion and
future work.

2. Research Methodology

Design science Research that was introduced in [4] is the chosen methodology for this thesis.
The main goal of this methodology is to develop artefacts to solve real world problems and add
new knowledge, through a process of (1) understanding and identifying the problem, (2) designing
the solution, (3) developing the artefact, (4) evaluating the developed proposed artefact, and (5)
communicating the resulted knowledge. In the beginning of this process the current knowledge
associated with the problem domain is used to understand and identify the problem to be solved,
and at the end, insight to the problem domain and new knowledge is generated and added in a
feedback loop. This process can be done in iterations in order to improve the developed artefact.
The reason DSR is an ideal methodology for this research, is that the development of software will
always require further improvements to be made. Software artefacts are never fully developed on the
first iteration, and there are always ways for improvements. This methodology is therefore ideal to
address how software could be a solution, and how its shortcomings can be improved upon.

3. Related Work

In the area of research on the unification of smart device and smart sensor data, many research
papers were written. Given that the Internet of Things is a recent phenomenon, the degree to which
research has further progressed this phenomenon is extensive. However, given that the age of IoT is
still recent, the amount to which the standardization of some aspects remains untouched. This can be
seen in the vast number of devices that exist today and manufactured by small and large companies,
who all sought to gain a market value. In achieving so, a lot of proposed standards have been published
alongside the devices that merged during the rise in popularity of IoT devices. While one device might
use a wireless protocol such a Zigbee, another similar device might use a protocol such as Z-Wave
or Bluetooth Low-energy (BLE). Another issue that arose during the IoT-boom was the disagreement
revolving around what the devices were to communicate between each other, which led to the creation



Sensors 2020, 20, 6662 3 of 23

of a diverse pool of data formats. Formats that spans along various byte-orders and serializations,
which makes the idea of interoperability difficult. In order to develop a system in which a police force
is to collect data from smart devices, a standardization must be established.

For the sake of developing a data unification framework in pursuit of crime monitoring,
the amount of research is sparse. Mainly, the research activities that revolve around the development
of a unified framework is more focused on the developing such a framework for commercial and
industrial use. For instance, in [5], a novel data aggregation model was proposed for use on
environmental sensors in a smart city. The focus of their research encompassed the use of network
sensor data from industrial-based sensors, which monitors water, electricity and gas-based sensors.
A more concrete implementation of a model that can be used to translate smart city sensor data was
proposed in [6], where they demonstrated how the North Atlantic Treaty Organization (NATO) can
leverage smart city appliances in urban operations. In disaster situations that takes place within
an urban environment, the research group believe that the integration between IoT devices in a
smart city environment could be integrated with the systems in a Federated Mission Network
(FMN). This integration was proposed to aid soldiers in obtaining intelligence for use in their vehicle
systems, urban personnel deployment and Unmanned Aerial Vehicle UAV systems. What makes this
paper relevant for this project is that it outlines a few similar ideas that are aligned with the notion
promoted in this research: to use peripheral data sources in pursuit of a safer execution of tasks in an
urban environment.

In [7], a novel way of integrating crime incidents and police vehicle locations in a smart city was
proposed. This system used smart technology in conjunction with police vehicles in order to supply its
officers with information about the crime in advance. It is not strictly a research into the use of smart
city data, but the paper does illustrate a good point on how technology is used to effectively dispatch
units. Moreover, the project also discussed a relevant point in regard to the use of Global Information
System GIS technology to improve the logistics of dispatching units. Whereas the city is divided into
areas, where the crime model bases itself on the location where crime is the most frequent. This type of
approach to distributing crime events based on the location where they occurred, could be an ideal
way of establishing logistics for a smart policing system.

In [8], researchers explored the prospect of using data mining techniques on heterogeneous data
to provide law enforcement with a bigger picture of the incidents, that takes place within the city of
Newark (New Jersey). They focused more on integrated cooperation between precincts and the use
of government registries to improve crime fighting, but their ideas still shares the same sentiments
towards the use of data mining to aid in the process of ensuring public safety. Further elaboration
on the potential for data fusion of smart city data is discussed in [9], where a comprehensive survey
is conducted on the topic of IoT and Data Fusion. The paper provided an adequate overview over
for the requirements of fusion of data in a Smart city environment. Furthermore, the researchers also
shared data from common devices found in a smart grid, supplied with information pertaining to the
category of the data.

In [10], researchers covered several important concepts in correlation to the Internet of Things and
assembling data into a new set that can provide the consumers with more information. In conjunction
with data fusion concepts, the researchers focused on ideas, such as the construction of incidents, based
on the readings gathered from smart city devices. Moreover, they also focus on context awareness
and its importance in IoT to supply more information about events, using multiple data sources.
As a result of this survey, they propose an evaluation framework for data fusion with 10 points covering
their core topics. Another unified format for smart sensors was proposed in [11], where the authors
translated data from protocols such as CoAP, 6LowPAN, UDP, 802.15.4 to detect anomalies in smart
city sensors. Location tracking technologies were used in conjunction with data from these sensors,
to detect anomalous readings in humidity, light, Carbon Dioxide (CO2) levels. Furthermore, the data
were placed in a timeline using timestamps from the data entries, such that these data metrics were
properly mapped by time.



Sensors 2020, 20, 6662 4 of 23

In [12], researchers proposed a Stream Annotation Ontology model (SAO). This data format was
introduced as a part of the smart city project CityPulse and illustrated a different way of structuring
time-series data from open data repositories that is supplied by the city of Aarhus in Denmark.
As noted in the paper, the main focus of city pulse is the use of open traffic events with timestamps and
location data to form a bigger picture of incidents that takes place in Aarhus. A formatting standard for
use in sharing evidence artefacts that originates from IoT devices were introduced in [13]. Their data
format was presented as a means to which law enforcement could share their findings and experiences
from working with IoT devices. Law enforcement lacks the ability to efficiently share evidence and
experiences from working with IoT devices. Therefore, [13] developed this format for the sole purpose
of allowing Law Enforcement Agencies LEAs to share this information in a manner that does not reveal
sensitive information and also allows for an easier way of reading the accumulated sensor data.

4. Police Needs

Law enforcement can be divided into two groups: first is the group that aims to deter, alleviate
and prevent crime in society and there is the group who is responsible for ensuring that the law is
practiced in a just manner. These two groups makes up the core responsibilities of a Law Enforcement
Agency in Norway. The first of which is referred to a patrols or field-operators, as this group consist
of the men and women that are actively in the field, fighting and preventing crime as they occur.
The second group will be referred to as forensics, since their responsibilities are to procure and analyze
data as they are discovered at the scene of the crime.

4.1. Field-Operator’s Needs

A field operator is the active force of men and women, who are out in the cities, suburbs and rural
areas to protect citizens from harm and loss of property. Their daily routines consist of unpredictable
encounters and situations, that put these operator’s lives in danger to ensure that other’s lives
are protected.

4.1.1. Intelligence

The use of intelligence is arguably not a new practice in risk-related professions. In activities,
such as wildlife preservation, military operations, geological excavations and so on, there is an
element of prior knowledge, obtained by its participants, in light of executing their respective tasks.
Obviously, the tasks being carried out in this manner, is done so, to reduce a reaction from occurring
as a result of the work. It is considered in some way, a risk assessment of the underlying and/or
peripheral environment, in order to arrive at the conclusion, on whether the ensuing task/challenge
will cause an unwanted event to occur. Military work often uses the term intelligence as a term for
information obtained on relevant adversaries that could aid in gaining a significant advantage over
said contenders [14]. In geology, the use of intelligence could be in the form of a conducted risk
assessment of a geological site, to assess the likelihood of there being hazards being present [15].
With no regard to the nature of the profession, whoever uses any form of intelligence, the general
census for using such methods, is to improve upon the quality of the job-outcome, or purportedly
to reduce the likelihood of accidents and injuries. With respect to the police profession, the use of
intelligence is postulated to be a deciding factor, which could affect the outcome of an officer’s work
day, as well as their prowess. Use of intelligence is doubtfully a novel concept for law enforcement
either; given that use of information to point patrols in the right direction has been practiced for
decades with the emergence of telecommunication, such as seen in the use of emergency hotlines.

4.1.2. Deterrence

The previous section have discussed the possibilities of lifting the quality of police work by
reducing risks and improving information flow, there are other potentials ways which can be exploited
in a smart city environment. This part does not include the quality of the information that could



Sensors 2020, 20, 6662 5 of 23

improve the police officer’s work efficiency and safety, but rather reduce the number of crimes to
which they are required to respond to. In order to reduce the number for crimes within a metropolitan
environment, there must be an element present that discourage or deter the perpetrator. In a smart city
there could be a potential for employing various types of devices, which possesses the capability of
warding off potential criminals from carrying out their heinous acts, by simply being installed and
present. In other words, some smart devices, when configured appropriately, can serve the public by
acting as a means of which the crime does not take place, due to the possibility of the crime being
recorded by the device’s sensors. There exist at this time various implementations of IoT devices and
Information and Communication Technology ICT devices which can have this effect on the general public,

by simply being present and visible to the public.

4.2. Digital Forensics

Digital forensics is another aspect of law enforcement which could benefit from using data
from smart devices to investigate a crime. While digital forensics are a well established field of law
enforcement, there are other unexploited data sources which could be used to further infer the extent
to which a suspect is guilty. What sets forensics apart from patrol-duty is the fact that the work
undertaken by forensics staff is oriented towards answering the questions left behind, prior to the
completion of the crime. Police patrols main tasks is the prevent and intervene in an ongoing crime and
does so through direct intervention, rehabilitation (Extent to which rehabilitation of criminals, depends
on a country’s legal system) and deterrence. A crucial distinction must be made when addressing the
need for law enforcement, as these two working-groups require disparate requirements to do their
job. Forensics are an important part of law enforcement which enables the juridical system to fill in
the blank areas, that is the untold stories of a crime, which could play a crucial role in providing the
evidence that would enable the law to be served to the best of its ability. Forensics are a significant
element in juridical process, where forensic analysts conduct investigation of a crime scene. Analysts
in forensics process would observe the scene of the crime for the evidence which could fill in the blanks
of a criminal case, such that the appropriate legal action can be taken against the perpetrator. All work
processes in a forensic investigation differs from how the field related duties are laid out, meaning that
the main focus is not on being able to apprehend the suspect safely, nor is it to be able to prevent a
crime. Rather the main focus of a forensic analyst is to be able to provide evidence that could aid in an
investigation, such that the suspect(s) are apprehended and punished. In order to achieve this goal a
forensic investigator has to examine the evidence that relates to the case and in order to do so they
have to acquire such evidence.

4.3. Identify the Source of the Digital Evidence

In IoT the intermediate layer represents the devices that acts as a connection between smart sensors
and the cloud. For devices and sensors who communicates wireless, through communication protocols
such as 6LowPAN, Bluetooth, Z-wave, Zigbee, 802.15.4, LTE or LoRA, have to connect to an intermediary
element before the data can reach the cloud. For the devices who relies on wired connection the case is
the same, as they would also require some sort of connecting relay. Ref. [16] Some devices that are a
connecting medium includes, conventional computers, smartphones, proprietary smart hubs, routers
and gateways. When it comes to intermediate level, the devices including phones, computers can be
approached using conventional computer forensics. This is due to the fact that research into investigating
these instances of hardware is well documented and commonly practiced. When obtaining access
to these devices, the only requirement is that the credentials to the controller is available. However,
with the inclusion of mediums, such as gateways, smart hubs and routers, the availability of the
evidence relies on whether or not the manufacturer allows its users to access their hardware. In [17]
some devices that communicates with a hub over wireless protocols can be intercepted, using special
hardware that communicates with the same protocol as the device in question. However, depending
on the device, this data could be encrypted. In some cases, the data is not encrypted at all. How



Sensors 2020, 20, 6662 6 of 23

the data is assembled on the device before being sent to the hub is another problem with device to
intermediary interception. If the data is assembled in a way that is not understandable, then additional
steps are required to reverse engineer and implement a decoder for every device who sends data this
way. According to Samsung’s SmartThings documentation [18] on Zigbee, illustrates how a zigbee Join
request is assembled. At first glance, their implementation appears to be similar to JSON, but there
are a few differences. Specifications of what type of device is done with a hex value. This value
would determine what states the device is broadcasting. Moreover, the information regarding which
network that a device belongs to is encoded in the same manner. Without the documentation of this,
the intercepted messages would not be as useful to a forensic investigator. If no useful data can be
obtained through the intermediate devices, then the last option would be to obtain it from the cloud.

Cloud services as the final resting place for sensor data. Depending on the policy set forward by
the provide, the data could be stored indefinitely or for a short duration. However, due to issues
with jurisdictions to which the provider is located at. This could result in the forensics investigator
being barred from obtaining the required evidence, because foreign laws might protect providers
against having to comply with seizure warrants. However, if the cloud service offers a platform for
monitoring it is possible to obtain some information, granted that law enforcement can obtain the
proper credentials. Smart device APIs that connects to a cloud can be accessed remotely, with software
or tools. Depending on how the API is secured by its provider, it could mean that access is only
granted to those who can provide the appropriate authentication. For instance, the Things Network
is a commonly used API that supports gateway devices, such as LoRA gateways from Mikrotik.
Their method of allowing API access, requires that the user provides three pieces of information:
the application key, application id and device id. Without these credentials, no access i given. However,
with the proper access, the data can be access, as well as logs to previous data. Provided that access
is given to the cloud service, the next phase would be to obtain information. Ref. [16] provides a
comprehensive list of manufacturers and also lists which of the devices made by these manufacturers
are obtained by their proposed data acquisition framework. Their proposed framework, however,
does not exclusively gather from just cloud sources, but also from the devices directly or from the
controllers. Moreover, the article further states that the main method of accessing cloud data is done so
through a supplied Application Programming Interface (API). Among the results listed in the tables,
only a few selected candidates were successfully accessed through the by its cloud interface. If the goal
of the investigation is to obtain information off of a device that was generated in the past, the cloud
would be best candidate to examine. Since, nether the sensor, nor the intermediate device keeps
data outside of their volatile memory, the only area to which persistence storage would be the cloud.
However, just obtaining the evidence is not sufficient in forensics. Integrity of the evidence is equally
as crucial as acquisition, and IoT devices poses challenges here as well.

4.3.1. System Preservation

Evidence integrity is crucial for forensic analyst to reach the appropriate conclusions about
their investigation. Integrity of evidence entails that the contents of the evidence is not altered.
Circumvention of integrity in this instance, refers to actions of intentional or unintentional obstruction,
which leads to the evidence becoming ineligible for use by forensic investigators. There are three
main categories of entities that pose a risk to the nature of evidence. The first group is the forensic
investigators themselves. Methods and practices used to procure and analyze evidence is not suited
for all instances of devices. When an established forensic method is used for IoT, there is no guarantee
that the methods are forensically sound and the risk of data becoming useless. For instance, given a
scenario where a suspect is implicated as a suspect due to their cellphone’s location data indicating
their presence at the crime scene; however, whereas the CCTV footage suggests that the suspect was
never in contact with the scene of the crime, but rather in proximity. This particular case would
suggest the potential for additional evidence, discovered in the IoT domain, to be used as a means of
altering the likelihood of a hypothesis. In this case, it is used to eliminate a proven hypothesis, due to



Sensors 2020, 20, 6662 7 of 23

inaccurate location data. A major problem that is related to evidence is the risk to forensic examiner’s
and forensic analyst’s mental health, when exposed to harmful material.

4.3.2. Evidence Searching

Regardless of what is considered important to a forensic analyst, in contrast to a police officer,
the data found on a IoT device, still pose a significant value to the analyst. Regular digital forensic
evidence, meaning what is considered evidence found on computers and mobile devices, can be
strengthened or weakened by introducing evidence that originates from IoT devices. However, as IoT
is not an established means to which evidence is procured by investigators, a couple of challenges
emerges when IoT data is to be acquired for forensic analysis. One of these challenges is on the
unfamiliarity and lack of methods to extract useful information. According to [19] the footing of
forensic methodology in the IoT landscape is lacking. Stating that as more devices are connected to the
Internet and being able to transmit data over it, the challenges of acquiring and handling the data for
potential evidence will worsen. Researchers in [19] further listed the three primary categories in which
data is stored in IoT. The first one being the smart sensors, the second one is the intermediate connecting
devices including hubs, computers and routers and lastly cloud platforms that aggregates and handles
sensor data. All three categories pose challenges to evidence acquisition due to different issues.

4.4. Event Reconstruction

Reconstruction of digital crime incidents from IoT devices can be a difficult task. In Germany
ZITiS [20] has created a physical mobile phone library in which they acquired nearly all known models
of mobile devices from allover the world to be used in digital forensics investigation. In case of IoT
such endeavors are possible but due the the ever expanding IoT landscape achieving such thing would
be very difficult and financially not feasible, as reconstructing a digital replica of a smart city with
physical devices for forensic investigation is not piratical. Cyber ranges [21] can have a valid use case
in this domain for creating the digital twin of the crime scene for crime event reconstruction.

5. Devices

5.1. A City of Devices

It has become more important than ever to integrate the fundamental processes in a urban
environment with contemporary technological solutions. In pursuit of integrating information
technology into a city landscape, a city aims to draw the benefits that the modern tech-solutions
has to offer. One major advantage of introducing technology into a society would be for its sheer
convenience. By introducing a tool as a means of completing a task, the overall difficulty or strain
involved with such a task is reduced. Smart cities pose such as convenience in a multitude of activities,
including automation of payment processes, which were introduced in china in 2019. In this instance,
the payment is proceeded through a facial recognition system, that are facilitated by China’s recent roll
out of a comprehensive camera surveillance system.

Smartphones are another means to which users can use smart technology to commute from point
a to point b. Using a smartphones location tracking capability, mobile applications such as Uber, Lyft,
Juno, ReachNow and Via can connect a passenger with a chauffeur. Furthermore, transportation
services and payments can be done through Near-Field Communication (NFC) on a smartphone,
thus making paying for a train ticket more convenient. In homes, appliances can perform automated
tasks, which could make a morning routine for a person more feasible. For instance, a smart home
can detect when a user wakes up and then the hub could initiate a routine, such as turning on the
coffee machine, adjusting the thermostat or citing news and weather. In industry and agriculture,
smart sensors also can aid in making different processes involved in these sectors more manageable.
Water levels in the soil at a corn farm can for instance be monitored with sensors, and alert when the
soil becomes dry. Industry could use sensors in warehouses to communicate with robots, such as



Sensors 2020, 20, 6662 8 of 23

the automation that was implemented in Amazon warehouses [22]. All of these are made possible
through the use of sensors, which requires input from the user and based on that input would perform
an appropriate task. There are several areas of a city in which smart devices can be applied. In order
to determine what devices can be used in police work and forensic investigations, a division of the
different areas of the city must be divided.

5.2. Small Differences, Sways Applications

Most cities were built with an established ruleset in mind [23], which facilitates how its areas
are arranged, connected and divided, how buildings are structured and placed within each zone
and so on. However, the buildings and facility that are built within each of the cities do differ to a
reasonable extent. For instance, cities built in inn-lands on arid fields, would have a higher need to
build farms to exploit its local resources. Cities built near rivers would likely build mills and bridges.
Meanwhile coastal cities would have harbors and docks for trade and export. What is essential for
a city is what makes a city, but some cities have specific needs that must be satisfied, therefore the
application of IoT technology would differ as well. As point of reference in this article, no city is the
same. Cities do have a plethora of elements in common, which is to be believed to emerge within every
city, due to its necessity by its inhabitants. These elements are expected to be present within every city
as a means to serve a demand by its residents or commuters. In particular, in urban areas, where the
number of inhabitants reaches a significant number, it is not uncommon for these elements to be a
given; a recreational, financial, educational or otherwise required facility that a reasonable portion of
those living in a city is dependent on using to a varying degree of frequency. For instance, most cities
do possess some means of providing medical services to its inhabitants, whereas the extent to which
these services are covered, and capacity may vary. On the other hand, cities also strive to provide
the appropriate level of education, where this also may vary between cities. This may be attributed
to the factors, such as population, public/private funding, the location to which the city were built.
These are some of the reasons as to why a city can provide its citizens with multiple variations of the
same services, whereas some cannot.

Funding, again, can be limited due to the low number of residents, which is the reason as to why
it is less likely to build a large hospital in the middle of a small rural town in Nebraska, as opposed
to building one in the heart of a town in the state of Maryland. It is by that fact, that the roll-out and
planning of a smart city must differ between each city, and those who wish to plan out such a feat must
be able to see the minor differences in facilities and needs. Only then can a city be properly equipped
with state-of-the-art Information Technology installations that would best fit the needs of the citizens
who lives there. What should be taken from this section is that it may be tempting to treat all cities
as the same, based on the core facilities that are found in almost every cities, per definition of such.
However, even those similarities may be different, to the point where servicing those facilities with
smart technology could be considered unnecessary.

5.3. Elements of a City

To provide a complete list of all the elements that is to be expected in a city would be too exhaustive
for this project. What this section aims to achieve is to set the exception of the reader as to what is
most likely encountered and what is occasionally seen within the confines of a city. As a starting point
the most common element of a city i the inclusion of a transportation system. Methods and means
of transportation would vary from place-to-place; however, it becomes quintessential for a city to
have some sort of transportation in place to be able to get citizens from point A to point B. Data that
could surface when introducing smart technology in transportation services, solely relies of the means
of transportation.



Sensors 2020, 20, 6662 9 of 23

5.4. Surveillance

A visual overview of the crime scene can provide an operator or a forensic investigator with
crucial details, which could aid them in performing their tasks. A popular candidate in this category
would be the CCTV camera. IoT technology does not leave behind the technology of the past. In light
of the push towards developing smart devices for use in cities, has reinvigorated discussions about
the possibility of allowing surveillance cameras and surveillance systems of having the capabilities
of more thoroughly observing and analyzing the footage to which they are observing. Cameras for
use in surveillance, were previously only anticipated to be used as a means of detecting presence of
trespassers, or to be used as a means of proving guilt when applicable. For instance, traffic cameras [24]
do to an eloquent degree, aid in a courtroom to prove that a perpetrator did or did not violate the
traffic laws. The use of camera footage in conjunction with license plates and other information
allows for this to be an effective tool of incrimination or vindication. Another example of this being
the case can be seen in convenience stores and shops, where surveillance is used to catch possible
shoplifters and robbers. The main purpose of surveillance cameras being that they can be used as a
means of proving that something unlawful took place at the scene. It becomes a necessity to serve
justice, especially when surveillance makes it challenging for the defendant to prove their innocence
when they have been caught on camera.

However, modern communication technology, coupled with computer vision and machine
learning, has allowed cameras to process more information as they are observing. Technologies that
allows cameras to determine what entity lies within their field-of-view, has allowed for detection of
human faces, objects and animals. In [25] it was shown that the use of machine learning techniques,
a CCTV camera were capable of differentiating between different kinds of wildlife using Convolutional
Neural Networks (CNN). Another example of entity awareness in CCTV systems were demonstrated
in [26], where they demonstrated a way for cameras to search for faces, using cameras on a public
transport system. In essence, the ability to use new technology to re-purpose the old, allows for new
ways of using existing technology for purposes, to which they were not intended to be used for.

In China, the idea of using surveillance to enforce public order has been in the spotlight in recent
years, due to the sovereign state’s introduction of a social credit system. This system entails that the
Chinese citizens are given a score, based on their day-to-day behavior, where inappropriate behavior
is penalized, while good behavior is rewarded. With this system in place, the idea is that civil order is
enforced through the idea of impeding social pressure upon the citizens, with the goal of pressuring
them to become upstanding citizens [27,28]. By social pressure, the norm is set that persons who
surround themselves with others that have lower scores, will also be penalized with a lower score,
for choosing to associate with citizens of a “less desirable character”. One of the main topics raised when
discussing the social credit system and the surveillance system in China is on the extensive roll-out of
smart CCTV systems. What sets these systems apart is that they are interconnected with capabilities of
identifying a person with facial detection. This allows the Communist Party of China (CPC) is able to
keep records of citizens whereabouts at all times [27]. Presence (proximity) sensors is used to detect
the presence of movement within a confined area. There are a multitude of applications, to which
appliances rely on the detection of human presence or movement [29,30], in order to complete its
sequence of actions. For instance, the use of burglar alarm systems relies on the ability for a sensor
to provide the alarm with information about the presence of individuals within a home, when the
alarm is activated. Another application where sensor data is required is to automatically perform
a task whenever human presence is detected. This can be seen, typically in cyber-physical systems,
where escalators, sliding doors and entrance bells are used in conjunction with a proximity sensors to
activate a sequence of responses based on detection.

5.5. Residential Devices

Home door locks that can detect whether a person does require to enter or exit a building has
become more popular in homes. For reasons, such as security, given that some smart door systems



Sensors 2020, 20, 6662 10 of 23

have authentication capabilities, that only allow passage when an authenticated subject is present.
Another aspect of security with smart door systems is the fact that it can allow for a more secure way
of checking to see who is at the door. This would involve either the use of an intercom system or an
interface connected to a camera that is placed on the other side, facing the entry to show who is at
the door. In addition, convenience, since a smart door system also do possess a mechanism which
automates the locking and unlocking of a door.

There are potential for investigating cases in smart homes, where information that is gathered by
a smart door sensor can be used to investigate further into an anomalous incident [31]. In [32], it was
proposed in their smart home test-bed configuration, that the data that is being obtained through a
smart door system, can be used to investigate the events that led up to an incident. In their example,
the state of the door lock during the fire incident is checked for whether the door was locked/unlocked
during the fire incident, or whether it was opened during the event. In [33], the potential for use of
smart door sensors in forensic investigations can be justified due to the timeline capabilities of door
locks. In their research, they inferred the significance of time logging in door system events and what
potential it could have for the forensic investigator in a timeline analysis. For instance, the use of
timestamps would help the investigator in establishing whether the door was opened and when it was
opened during a criminal event.

5.6. Wearable Devices

Given that most forms of communication take place on a handheld device, Smart phones are
relevant subjects for investigation due to its relevancy in every person’s life. In same conjunction to
smart phones, Smart watches holds similar data to what a smartphone does. They have also become a
crucial platform for means of communication, either with apps that are running on a smartphone or
through built in apps [34]. Health monitoring either from a smart watch or from a customized device,
can monitor the health status of an individual who wears the device. Electronic cardiac regulators,
such as the Pacemaker are another example of a wearable device in which useful information is stored.
Pacemakers are used as a medical tool to aid patients with uneven heart rhythms; however, it has
been shown that these can be circumvented. According to [35], certain models of pacemakers have
been proven to be vulnerable to attacks, thus allowing for a cyber criminal to tamper with the device,
which can lead to death of the patient. Another example of a self-regulating medical device is the
smart insulin pump. It is used to measure the patient’s glucose levels and administer insulin to the
automatically. Unfortunately, as with the pacemaker, this device is also shown to have weaknesses.
Researchers in [36] disclosed that there existed three vulnerabilities on the Animas OneTouch pump
system. These three vulnerabilities allowed for eavesdropping, replay attacks and circumvention of
the pairing process between the pump and its remote control.

5.7. Environmental Sensors

Temperature sensors are used in a wide range of applications, stretching as far as the use in
industrial solutions, to agriculture and domestic settings. One of the main attributes as to why
temperature sensors are used across various environments and industries is that it measures an
important environmental value. For instance, in use in agriculture, more specific in a hydroponic
growing facility, the use of thermal sensors are used to measure the levels of heat in relation to the
room. With these measurements, the farmers are able to keep control of the exposed heat to their
plants and can readjust water levels when required. Another example to which temperature is used is
when indoor thermostats are to regulate and maintain their configured temperature settings. Lastly,
a temperature measurement can be used in a fire suppression/alert system to which the sensors are
used to signify the probability of there being a fire present in the building. In similarity to a temperature
sensor, a humidity sensing device can monitor the density of water particulates in the air and is often
used by weather stations to detect outdoor air humidity. Another measuring sensor for air quality is
the various forms of air quality sensors. Depending on what type of gasses the sensors is capable of



Sensors 2020, 20, 6662 11 of 23

detecting, an air quality sensor can be used in applications, such as detecting presence of CO2 in the air
when there is a fire, and the presence of other hazardous gasses. The application of these sensors can
be applied to detecting leaks, possibility of illegal drug laboratories, help in determine a fire present
and so on.

5.8. City Infrastructure

On the transportation side of a smart city, there are a few strides in recent years, made possible
with the use of smart devices. Location tracking and near field communication are two particular
technologies that has impacted the transportation sector in the last few years. Given that being able
to track the location of one’s transport has proven to have impacted the way one use transportation
serviced today. Previously mentioned companies, such as Uber, Lyft, ReachNow, Via and Juno are
among some of the startup companies who leverages location tracking and smartphones to connect
passengers and drivers. In public transportation, trains and the metro are gradually integrating elements
of smart solutions into their business structure. For instance, the state of California implemented a NFC
ticketing system, to reduce paper waste generated by commuters. Smart traffic management systems
using computer vision and artificial intelligence, have been proposed in [37] where cameras could be
used to detect wheel-chair users and provide them with more time to get across a road crossing.

6. Universal Internet of Things Format

A smart city can contain a plethora of different kinds of device. What types of devices a city has
depends on what the city considers to be important. As discussed previously, the types of devices that
can be seen in a city can range from a strongly interconnected one, or a city where smart technology
has little to no influence. Regardless of how a city is built or the extent of embrasure that one has
of smart technology, the coverage of a city that smart technology has is comprehensive. All listed
devices previously is by no means a complete list of all types of devices that do exist today. However,
the purpose was neither to provide one, rather to illustrate some conceptual devices that do exist
and how they can be leveraged in law enforcement. Furthermore, the extent to which these devices
do provide law enforcement with evidence is neither a complete list. The nature of information and
how it can be procured by law enforcement and used to form a hypothesis, solely depends on the
creativity of the examiner and the prerequisite evidence that are present at the time. Information on a
later stage can be used as evidence in different cases, where they apply. It is not a guarantee that the
same data source can be used when investigating different cases. Given below is the proposed system
for integrating heterogeneous data from such devices.

6.1. System Architecture

The Universal Internet of Things Format (UIOT:FMT) comprises of several components,
where each part makes up the whole process of obtaining, formatting and post-processing the data.
In the initial phase of this proposed architecture, the predefined formatting data is collected and loaded
into the program. These formats will serve as recipes for how incoming data is interpreted and handled.
The second, third and fourth component is the phases that involves the collection of data. Currently
this component supports the use of Web-Sockets and Message Queuing Telemetry Transport (MQTT).
The former is a test implementation done in conjunction with IoT device simulations, while the latter
is an implementation done to collect data from The Things Network (TTN) API. Collected data is then
being processed by the program, as shown in the fifth and sixth step, where the format specification
for post-processing is performed. Here it is proposed to implement a system, where the JSON formats
control what the program does to the data, after is has been obtained. Two introduced concepts shown
in this paper is Actions and Chains, where Actions are singular function calls with data as input and
Chains being a consortium of Actions sequenced in order. The overall system architecture is presented
in Figure 1.



Sensors 2020, 20, 6662 12 of 23

Figure 1. System architechture.

6.2. Data Format

The Universal Internet of Things Format (UIOT:FMT) is based on the well-known data serialization
format JavaScript Object Notation (JSON). Given that JSON’s flexible nature and its low demand on
computing resources when being handled by a computer program, makes it an ideal candidate for
this proposed framework. Since data streams from smart devices would suggest the demand for
storing data in different forms, the introduction of JSON would allow for all data to be properly
assembled into this format. When compared against other contemporary serialization formats, such as
Extensible Markup Language (XML), the use of JSON would allow for storing all data, even data in
the form of arrays and matrices. When a user defines the formatting structure for the program to use,
the conventions are the same as used in JSON, where the key and value is entered and separated by a
colon (:). However, there are a few differences in syntactically typed.

First difference as observed in Listing 1 is that the value field holds the specifications needed
to identify and locate the required data entries. There are three primary labels that must be known:
key, path and type. Forward slashes (/) are used to delimit the labels, while colons (:) are used to
separate the label from the argument and lastly if the argument comprises of several parts, a full-stop
(.) will be used to separate these components. A path or a key label is used in this format to locate
the desired entries from the smart devices. When a key label is invoked, the program will recursively
look through the incoming data to see if the key exist. This method is slow, as it requires the program
to look through all fields until a match is found. Moreover, if there are more than one entry with the
same key, the first found instance will be selected. A path label will alleviate these complications,
by specifically defining the direction to which the program should search to find the entry. Paths are
therefore more ideally used for larger datasets, while keys are more suited for smaller sets. The type
label used here is to ensure that the program is able to determine what data type is to be expected.



Sensors 2020, 20, 6662 13 of 23

If the incoming data’s type does correspond with the specified type, the program will attempt to use
type assertion to convert the type accordingly.

Listing 1. Format example.

Sensors 2020, 1, 5 13 of 23

If the incoming data’s type does correspond with the specified type, the program will attempt to use
type assertion to convert the type accordingly.

Listing 1. Format example.

1 "GetCollege": "path:info.skills/type:string/"
2 "GetSkills" : "path:info.skills.languages/type:[]string/"
3 "GetAge" : "key:age/type:int/"

6.3. Post-Processing Functions

Some data input from devices might not just be different in the way it is structured by its origin,
but its very nature might also dictate that the data is represented differently that other data entries.
An example of this can be seen in temperature sensors, where the output of the sensors could either
be in Celsius or in Fahrenheit. Another instance could be that the defined data-type of the data
entry is different to what is expected, for instance an integer represented as a string, a Boolean value
represented by 1 and 0. Alternatively if the output of this framework were to be used in a different
program, the data representation required for that program might dictate that its input is formed in
a particular manner. Therefore, in order to use the output, there must be a set of methods to ensure
flexibility in how the data is treated by the program.

This research introduces two new concepts: first idea is to define processing actions to handle the
data once it has been retrieved. An action comprises of a key and value, where the key signifies that it
is a Action-call, while the value represents the function that is being called. A processing step that has
already been discussed is the type conversion function, where the program will perform type-checking
and conversion. However, when the output must be converted further, the functionalities of Actions is
needed. In Listing 2, the actual output is re-converted to a float before it is forwarded to another node.

Listing 2. Action example.

1 "GetAge" : "key:age/type:int/"
2 "GetAge.Action" : "action:convert2float"

Another important aspect of Actions is that the user can specify arguments for Actions that
requires additional input. In Listing 3 the syntax for specifying arguments, requires a parenthesis
enclosure, a s-type assertion and the input argument. The s-type is proposed here to enable the
program to distinguish between the types supplied by the format file and the types required by the
action function. For instance, a reference to another collected variable would be denoted with sref,
while the current variable is simply self. All literal values (“string”, ‘c’, 69, false and 33.3) will be
denoted by their corresponding s-type notation (sstring, srune, sint, sbool and sfloat64).

Listing 3. Action with arguments.

1 "action:DecryptAES(self#,sref#key,sref#iv,sref#blocksize)"

Chains are introduced in this framework to allow for use of more than one function per entry.
The concept of chains works in the same fashion as Actions, although each separate link (Action) must
be separated by a full-stop. An example as shown in Listing 4, a retrieved number might require
that more than one arithmetic operation to be done to it, therefore a chain will be the best solution.
One benefit of chains is that it is more flexible than hardcoded functions. Where operations are linked
together in a chain, rather than pre-written into the program itself.

6.3. Post-Processing Functions

Some data input from devices might not just be different in the way it is structured by its origin,
but its very nature might also dictate that the data is represented differently that other data entries.
An example of this can be seen in temperature sensors, where the output of the sensors could either
be in Celsius or in Fahrenheit. Another instance could be that the defined data-type of the data
entry is different to what is expected, for instance an integer represented as a string, a Boolean value
represented by 1 and 0. Alternatively if the output of this framework were to be used in a different
program, the data representation required for that program might dictate that its input is formed in
a particular manner. Therefore, in order to use the output, there must be a set of methods to ensure
flexibility in how the data is treated by the program.

This research introduces two new concepts: first idea is to define processing actions to handle the
data once it has been retrieved. An action comprises of a key and value, where the key signifies that it
is a Action-call, while the value represents the function that is being called. A processing step that has
already been discussed is the type conversion function, where the program will perform type-checking
and conversion. However, when the output must be converted further, the functionalities of Actions is
needed. In Listing 2, the actual output is re-converted to a float before it is forwarded to another node.

Listing 2. Action example.

Sensors 2020, 1, 5 13 of 23

If the incoming data’s type does correspond with the specified type, the program will attempt to use
type assertion to convert the type accordingly.

Listing 1. Format example.

1 "GetCollege": "path:info.skills/type:string/"
2 "GetSkills" : "path:info.skills.languages/type:[]string/"
3 "GetAge" : "key:age/type:int/"

6.3. Post-Processing Functions

Some data input from devices might not just be different in the way it is structured by its origin,
but its very nature might also dictate that the data is represented differently that other data entries.
An example of this can be seen in temperature sensors, where the output of the sensors could either
be in Celsius or in Fahrenheit. Another instance could be that the defined data-type of the data
entry is different to what is expected, for instance an integer represented as a string, a Boolean value
represented by 1 and 0. Alternatively if the output of this framework were to be used in a different
program, the data representation required for that program might dictate that its input is formed in
a particular manner. Therefore, in order to use the output, there must be a set of methods to ensure
flexibility in how the data is treated by the program.

This research introduces two new concepts: first idea is to define processing actions to handle the
data once it has been retrieved. An action comprises of a key and value, where the key signifies that it
is a Action-call, while the value represents the function that is being called. A processing step that has
already been discussed is the type conversion function, where the program will perform type-checking
and conversion. However, when the output must be converted further, the functionalities of Actions is
needed. In Listing 2, the actual output is re-converted to a float before it is forwarded to another node.

Listing 2. Action example.

1 "GetAge" : "key:age/type:int/"
2 "GetAge.Action" : "action:convert2float"

Another important aspect of Actions is that the user can specify arguments for Actions that
requires additional input. In Listing 3 the syntax for specifying arguments, requires a parenthesis
enclosure, a s-type assertion and the input argument. The s-type is proposed here to enable the
program to distinguish between the types supplied by the format file and the types required by the
action function. For instance, a reference to another collected variable would be denoted with sref,
while the current variable is simply self. All literal values (“string”, ‘c’, 69, false and 33.3) will be
denoted by their corresponding s-type notation (sstring, srune, sint, sbool and sfloat64).

Listing 3. Action with arguments.

1 "action:DecryptAES(self#,sref#key,sref#iv,sref#blocksize)"

Chains are introduced in this framework to allow for use of more than one function per entry.
The concept of chains works in the same fashion as Actions, although each separate link (Action) must
be separated by a full-stop. An example as shown in Listing 4, a retrieved number might require
that more than one arithmetic operation to be done to it, therefore a chain will be the best solution.
One benefit of chains is that it is more flexible than hardcoded functions. Where operations are linked
together in a chain, rather than pre-written into the program itself.

Another important aspect of Actions is that the user can specify arguments for Actions that
requires additional input. In Listing 3 the syntax for specifying arguments, requires a parenthesis
enclosure, a s-type assertion and the input argument. The s-type is proposed here to enable the
program to distinguish between the types supplied by the format file and the types required by the
action function. For instance, a reference to another collected variable would be denoted with sref,
while the current variable is simply self. All literal values (“string”, ‘c’, 69, false and 33.3) will be
denoted by their corresponding s-type notation (sstring, srune, sint, sbool and sfloat64).

Listing 3. Action with arguments.

Sensors 2020, 1, 5 13 of 23

If the incoming data’s type does correspond with the specified type, the program will attempt to use
type assertion to convert the type accordingly.

Listing 1. Format example.

1 "GetCollege": "path:info.skills/type:string/"
2 "GetSkills" : "path:info.skills.languages/type:[]string/"
3 "GetAge" : "key:age/type:int/"

6.3. Post-Processing Functions

Some data input from devices might not just be different in the way it is structured by its origin,
but its very nature might also dictate that the data is represented differently that other data entries.
An example of this can be seen in temperature sensors, where the output of the sensors could either
be in Celsius or in Fahrenheit. Another instance could be that the defined data-type of the data
entry is different to what is expected, for instance an integer represented as a string, a Boolean value
represented by 1 and 0. Alternatively if the output of this framework were to be used in a different
program, the data representation required for that program might dictate that its input is formed in
a particular manner. Therefore, in order to use the output, there must be a set of methods to ensure
flexibility in how the data is treated by the program.

This research introduces two new concepts: first idea is to define processing actions to handle the
data once it has been retrieved. An action comprises of a key and value, where the key signifies that it
is a Action-call, while the value represents the function that is being called. A processing step that has
already been discussed is the type conversion function, where the program will perform type-checking
and conversion. However, when the output must be converted further, the functionalities of Actions is
needed. In Listing 2, the actual output is re-converted to a float before it is forwarded to another node.

Listing 2. Action example.

1 "GetAge" : "key:age/type:int/"
2 "GetAge.Action" : "action:convert2float"

Another important aspect of Actions is that the user can specify arguments for Actions that
requires additional input. In Listing 3 the syntax for specifying arguments, requires a parenthesis
enclosure, a s-type assertion and the input argument. The s-type is proposed here to enable the
program to distinguish between the types supplied by the format file and the types required by the
action function. For instance, a reference to another collected variable would be denoted with sref,
while the current variable is simply self. All literal values (“string”, ‘c’, 69, false and 33.3) will be
denoted by their corresponding s-type notation (sstring, srune, sint, sbool and sfloat64).

Listing 3. Action with arguments.

1 "action:DecryptAES(self#,sref#key,sref#iv,sref#blocksize)"

Chains are introduced in this framework to allow for use of more than one function per entry.
The concept of chains works in the same fashion as Actions, although each separate link (Action) must
be separated by a full-stop. An example as shown in Listing 4, a retrieved number might require
that more than one arithmetic operation to be done to it, therefore a chain will be the best solution.
One benefit of chains is that it is more flexible than hardcoded functions. Where operations are linked
together in a chain, rather than pre-written into the program itself.

Chains are introduced in this framework to allow for use of more than one function per entry.
The concept of chains works in the same fashion as Actions, although each separate link (Action) must
be separated by a full-stop. An example as shown in Listing 4, a retrieved number might require
that more than one arithmetic operation to be done to it, therefore a chain will be the best solution.
One benefit of chains is that it is more flexible than hardcoded functions. Where operations are linked
together in a chain, rather than pre-written into the program itself.



Sensors 2020, 20, 6662 14 of 23

Listing 4. Chain example.

Sensors 2020, 1, 5 14 of 23

Listing 4. Chain example.

1 "GetAge" : "key:age/type:int/"
2 "GetAge.Action" : "chain:convert2float64.sum.times.save"

7. Evaluation

This research artifact comprises of two methods of communication, the first one is Message Query
Telemetry Transport, which is the one utilized by the TTN Api hook, while the second protocol is
based on websockets and is implemented through Golang’s standard library. The reason why this
evaluation focuses more on assessing its own performance against protocols, rather than assessing the
formatting of these frameworks, is that measuring data value to a community would be subjective.
Assessing the value of data as evidence for police, in comparison to the value of medical data for
physicians or financial data for a stockbroker, is that there are uncertainties as to how such a value
could be measured. Values of data has that inherent nature of being a metric that has no definite and
established definition of what could be considered valuable to a profession. In [38] it was discussed
that an evaluation that bases itself on metrics that are inherently subjective, are metrics that are prone to
be established on biased terms. In Law Enforcement, such a bias would exist in conjunction with how
data is perceived to be to the individual investigator and field operator. For instance, while forensics
have well-known sources of data that could be used as evidence, phone-call history, chat messages,
video surveillance footage, server logs and so on. The fact still remains that other types of data from
lesser known sources and that are infrequently sought to be of use, could be applicable in some
instances, while in other cases it does not. Intrinsically the value of data cannot be measured due to its
subjective nature, while intrinsically this subjective metric would make the results of such a metric in
one domain different from another. The candidates that are chosen to be used in this evaluation are
based on research conducted in the area of creating a formatting framework for IoT data for various
purposes. The target of these proposed frameworks is their use of Application Layer IoT Protocols
and these will be used to compare against the protocols used in this program. Since this program
uses two different types of protocols, which are applied in two different ways, the testing done on
these cannot be equivalent for all metrics measured. The measured metrics in this case are in part
based on performance measuring of the program and the reliability of the protocol in terms of being
able to handle large amount of traffic. This way, the proposed program is assessed for scenarios,
which reflects that of a real-world scenario.

7.1. Application Layer Protocols

There are a multitude of different protocols that can be used in transferring information
between endpoints. Ref. [39] proposed a unified data framework for electronic health devices.
Their proposed framework uses Contrained Application Protocol (CoAP) to tranfer data to and
from the program. Another project that uses CoAP was proposed in [40] and later developed further
in [41]. Their introduction to a formatting standard uses CoAP in conjunction with ThingSpeak API
and Mobile Crowd Sensing. Other application layer protocols, such as Message Query Telemetry
Transport (MQTT) is proposed in [6], where they implemented an intelligence gathering framework
for use in a smart city. When these frameworks were evaluated in this chapter, the main target for their
evaluation will be on the protocols that they use. However, in order to test the proposed framework
against other protocols, a test scenario for this application must be created.

7.2. Testing Framework

In order to show that this program is capable of handling a multitude of requests at once, a test
scenario were created to demonstrate the overall power of this application. Since this program uses a
combination of Websockets and MQTT, the testing has to be done separately on these two protocols.

7. Evaluation

This research artifact comprises of two methods of communication, the first one is Message Query
Telemetry Transport, which is the one used by the TTN Api hook, while the second protocol is based on
websockets and is implemented through Golang’s standard library. The reason this evaluation focuses
more on assessing its own performance against protocols, rather than assessing the formatting of these
frameworks, is that measuring data value to a community would be subjective. Assessing the value of
data as evidence for police, in comparison to the value of medical data for physicians or financial data
for a stockbroker, is that there are uncertainties as to how such a value could be measured. Values of
data has that inherent nature of being a metric that has no definite and established definition of what
could be considered valuable to a profession. In [38] it was discussed that an evaluation that bases
itself on metrics that are inherently subjective, are metrics that are prone to be established on biased
terms. In Law Enforcement, such a bias would exist in conjunction with how data is perceived to be to
the individual investigator and field operator. For instance, while forensics have well-known sources
of data that could be used as evidence, phone-call history, chat messages, video surveillance footage,
server logs and so on. The fact still remains that other types of data from lesser known sources and that
are infrequently sought to be of use, could be applicable in some instances, while in other cases it does
not. Intrinsically the value of data cannot be measured due to its subjective nature, while intrinsically
this subjective metric would make the results of such a metric in one domain different from another.
The candidates that are chosen to be used in this evaluation are based on research conducted in the area
of creating a formatting framework for IoT data for various purposes. The target of these proposed
frameworks is their use of Application Layer IoT Protocols and these will be used to compare against
the protocols used in this program. Since this program uses two different types of protocols, which are
applied in two different ways, the testing done on these cannot be equivalent for all metrics measured.
The measured metrics in this case are in part based on performance measuring of the program and
the reliability of the protocol in terms of being able to handle large amount of traffic. This way,
the proposed program is assessed for scenarios, which reflects that of a real-world scenario.

7.1. Application Layer Protocols

There are a multitude of different protocols that can be used in transferring information
between endpoints. Ref. [39] proposed a unified data framework for electronic health devices.
Their proposed framework uses Contrained Application Protocol (CoAP) to tranfer data to and from
the program. Another project that uses CoAP was proposed in [40] and later developed further in [41].
Their introduction to a formatting standard uses CoAP in conjunction with ThingSpeak API and
Mobile Crowd Sensing. Other application layer protocols, such as Message Query Telemetry Transport
(MQTT) is proposed in [6], where they implemented an intelligence gathering framework for use in a
smart city. When these frameworks were evaluated in this section, the main target for their evaluation
will be on the protocols that they use. However, in order to test the proposed framework against other
protocols, a test scenario for this application must be created.

7.2. Testing Framework

To show that this program is capable of handling a multitude of requests at once, a test scenario
were created to demonstrate the overall power of this application. Since this program uses a
combination of Websockets and MQTT, the testing has to be done separately on these two protocols.
The test devices used for the scenario are presented in Table 1.



Sensors 2020, 20, 6662 15 of 23

Table 1. Tested devices.

Device Type Protocol Data

Arduino MKR 1300 Hardware MQTT Humid/Temp (float64 x2)

Lightswitch Software Websocket On-state (boolean)

Light bulb Software Websocket RGB (int, int, int)

Code pad Software Websocket key 1–4 (int x4)

Temp sense Software Websocket Humid/Temp (float64 x2)

The first test conducted on this program is a simulation of scenario where there a is high volume of
activity at once. For this test, a concurrent network handling function were implemented observe how
the program would handle a large volume of data arriving at once. Additionally, a second function
were created that automatically generates a pool of randomly generated devices. These devices can
be assigned one of the following four test devices: Temperature/Humidity Sensor, key-pad lock,
lightswitch and Light bulb. The first device is a temperature and humidity sensor that are configured
to broadcast random sensor readings to the program. The second device is a simulation of an output
key-code entry that a user would enter into a keypad to unlock a door. Third device is a light switch
that can either have the value of on or off to indicate the state of the light switch. The last device in this
test stores the color values of a colored light bulb, thus simulating the same values broadcasted by
a smart light bulb. What each of these devices are assigned is solely dependent on a random value
that are assigned upon the initialization phase of each device. In total there will be approximately
2000 devices created in this test scenario and for each of these devices, a respective function will spawn
a concurrent routine to instantiate a websocket connection to the main program’s socket handle.

One important factor to take note of is that both the simulated client and server are run on the
same host. In other words, these measurements do not take into account the extra time it would take
for traffic to travel over a plethora of additional gateways. Moreover, due to the multitudinous amount
of performance spent on creating new devices, randomly assigning new data to it and send it over to
the server, there will be some additional overhead to the measuring of the program’s performance.
Another important thing to take note of is that a single machine can only handle so much processing
before a bottleneck occurs. Therefore an additional time penalty is implemented in the testing to
reduce the overall chances of there being a bottle neck on the server side of this test bench. Each device
connection is assigned this penalty value right after establishing a successful connection to the server.

The MQTT protocol that is being used in this program is used in conjunction with a API that
limits the connection bandwidth between a client/device and the cloud. For that reason, the total
number of devices that can exist on a cloud application is limited to a 100 devices. However, as the
number of devices increases, the latency of response from the server increases as well, and therefore
the reliability of issuing uplink messages from simulations becomes less feasible. For all intents and
purposes, to test the performance of the MQTT is less conceivable so due to the limitations set by the
associated cloud service. To address the performance of MQTT cannot be reliably done in the same
manner and therefore related research must supplement the measurements used when assessing the
MQTT aspects of this evaluation.

7.3. Performance Testing

To conduct a performance test on this program, the proposed testing program will count the
overall time taken by the program to finish a single execution cycle. Since this program does not
implement counting of all operations conducted across all functions in all files, the best option in this
case is to observe the total execution time. As described above, the total requests made to the server
from the client side is approximately 2000 devices, with some being expected to not send information,
due to the limitations put on the current testing environment. In order to test this program properly,



Sensors 2020, 20, 6662 16 of 23

a single cycle (with 2000 devices) are repeated several times over on the same connection, to see if the
duration skews towards lower or higher value in a different cycle.

The functions shown in Listing 5 illustrates how the start and end times of the program are
captured by the test cycle. These are placed in the program to set the time stamp before the networking
sequences are called and one after the sequences are called details of which is presented in Table 2.

Listing 5. Time difference calculation.

Sensors 2020, 1, 5 16 of 23

a single cycle (with 2000 devices) are repeated several times over on the same connection, to see if the
duration skews towards lower or higher value in a different cycle.

The functions shown in Listing 5 illustrates how the start and end times of the program are
captured by the test cycle. These are placed in the program to set the time stamp before the networking
sequences are called and one after the sequences are called.

Listing 5. Time difference calculation.

1 start := time.Now()
2 ...
3 currentTest.ServerTime = time.Since(start)

Table 2. Time tests results.

Test Bytes (Serv) Time

1 130,986 2.1778662 s

2 135,021 2.1551524 s

3 137,697 2.1518888 s

4 129,978 2.1647948 s

5 132,836 2.1436297 s

6 128,906 2.1359591 s

7 133,325 2.6300981 s

8 138,069 2.1260972 s

9 129,365 2.5924328 s

10 132,910 2.5893287 s

As shown, in the table, the duration recordings on ten execution cycles have similar values to
each other. There are a few cases where the execution of the program takes anywhere from 0.5 to 1 s
more than the values here, and this could be attributed to the volatile nature of the go routines that are
not entirely running in parallel. Moreover, the added penalty time imposed on all the 2000 devices
created, the additional 1 second would also be accounted for here. It cannot be counted off for the time
being, as the nature of this delay is to make sure that the program does not crash, due to a limitation
set on the total amount of concurrent connections allowed in go networking. Measurements of time
efficiency of protocols, such as MQTT and CoAP is demonstrated in [42]. In this paper, the researchers
attempt to measure the time of sending and receiving packages with these two protocols, among others.
The testing involved sending packets of differing lengths and quantities, ranging from 25, 100, 250,
500 and 1000 bytes in length and at quantities of 5, 10, 20 and 50 consecutive packets. Using the
measurements on the packets that are of the similar size to the packets generated by this project,
such that the compared results are more appropriate. The generated packets in the program has the
respective byte sizes.

The best option for a comparison would be to measure the packet timings for packets of 100 bytes
in length. Could also be feasible to use the 25 bytes as well, but for simplicity’s sake, the 100 bytes
packets will be the chosen packets to measure. However, from the results shown in this article,
the time difference between 100 to 250 bytes is not that significant, nor is the time threshold between
25 to 100 bytes that significant different. However, this is only the case for MQTT and CoAP.
In [42] the average time for these packets 0.24 s to 0.39 s for 100 byte MQTT packets at a quantity
range from 5 packets to 50 packets. Meanwhile the time range for CoAP is between 0.23 s to 0.34.
As shown there is a minor difference in speeds when juxtaposing these two protocols alongside each
other. According to [43] the CoAP protocol is based on User Datagram Protocol (UDP), which does

Table 2. Time tests results.

Test Bytes (Serv) Time

1 130,986 2.1778662 s

2 135,021 2.1551524 s

3 137,697 2.1518888 s

4 129,978 2.1647948 s

5 132,836 2.1436297 s

6 128,906 2.1359591 s

7 133,325 2.6300981 s

8 138,069 2.1260972 s

9 129,365 2.5924328 s

10 132,910 2.5893287 s

As shown, in the table, the duration recordings on ten execution cycles have similar values to each
other. There are a few cases where the execution of the program takes anywhere from 0.5 to 1 s more
than the values here, and this could be attributed to the volatile nature of the go routines that are not
entirely running in parallel. Moreover, the added penalty time imposed on all the 2000 devices created,
the additional 1 second would also be accounted for here. It cannot be counted off for the time being,
as the nature of this delay is to make sure that the program does not crash, due to a limitation set on the
total amount of concurrent connections allowed in go networking. Measurements of time efficiency of
protocols, such as MQTT and CoAP is demonstrated in [42]. In this paper, the researchers attempt to
measure the time of sending and receiving packages with these two protocols, among others. The testing
involved sending packets of differing lengths and quantities, ranging from 25, 100, 250, 500 and 1000 bytes
in length and at quantities of 5, 10, 20 and 50 consecutive packets. Using the measurements on the packets
that are of the similar size to the packets generated by this project, such that the compared results are
more appropriate. The generated packets in the program has the respective byte sizes.

The best option for a comparison would be to measure the packet timings for packets of 100 bytes
in length. Could also be feasible to use the 25 bytes as well, but for simplicity’s sake, the 100 bytes
packets will be the chosen packets to measure. However, from the results shown in this article,
the time difference between 100 to 250 bytes is not that significant, nor is the time threshold between
25 to 100 bytes that significant different. However, this is only the case for MQTT and CoAP.
In [42] the average time for these packets 0.24 s to 0.39 s for 100 byte MQTT packets at a quantity
range from 5 packets to 50 packets. Meanwhile the time range for CoAP is between 0.23 s to 0.34.
As shown there is a minor difference in speeds when juxtaposing these two protocols alongside each
other. According to [43] the CoAP protocol is based on User Datagram Protocol (UDP), which does
not care for ordering of arriving data and puts less stress on reliability of the messages to arrive.



Sensors 2020, 20, 6662 17 of 23

Its lack of Acknowledgements (ACK) of transferred data makes data arrive faster on the opposing
end-point (Granted the packet reaches its destination). Now, the MQTT protocol does require that
acknowledgment messages to be fed back to be able to ensure that packets do arrive as intended and
this is slightly taxing on the overall efficiency with respect to duration. Moreover, these authors also
demonstrated that regular HTTP protocol performs closely to MQTT on small packets, mainly due to
the fact that MQTT does not employ additional threading and fault handling features. When measuring
these protocols for performance times when sending a 100 byte packet 5, 10, 20 and 50 times over.
Default byte sizes of non-randomized data entries are presented in Table 3.

Table 3. Default byte sizes of non-randomized data entries.

Data Entry Bytes (Data)

Code Pad 75

Light Bulb 86

Light Switch 53

Temp/Humid 91

Table 4 shows the results shown for the research results discovered in [42]. The results show that
the time spent sending and receiving packets takes much longer to do for all of the other packets
contrary to resulting average time gained in this work. The way average was calculated in this
demonstration was done by summing the 10 results together and then divide by the number of cycles.
Furthermore, the value of 1 were subtracted from the average to adjust for the 1 s penalty that was
implemented to prevent goroutines from racing to finish too fast. Much of the reason this framework
works more efficient is attributed to two plausible causes: the first reason for this is that the testing
does not implement any form of assurance that information is sent, thus allowing for dropping packets.
The other attribution to why these performance results comes out with such a low number could be
that this program actively perpetuates the use of concurrency for all methods to reduce overhead
on the main thread. While it is clear that the use of goroutines pose some advantage in the area of
efficiency and lower latency, the question would then be if this is a safe way of transporting and
handling data on a day-to-day operation. It might appear to be more efficient in some aspects, but this
program does not take into account the packet re-transmission times, which is prevented by only
allowing one transmission attempt. The next metric that should be addressed in this research is on the
consequences of doing packet handling in such a manner.

Table 4. Protocol time comparison.

Protocol 5 10 20 50

MQTT [42] 0.23 0.26 0.27 0.39

CoAP [42] 0.23 s 0.25 s 0.25 s 0.35 s

HTTP [42] 0.2 s 0.3 s 0.41 s 0.79 s

UIOT-FMT [44] 0.0011 s 0.0022 s 0.0034 s 0.0058 s

7.4. Reliability Evaluation

As discussed previously in Section 6, with lacking sources of information about device fingerprints
present for the program to use, there is little information that would enable this project to employ
more automation. Therefore, this program cannot measure for this What the program can measure,
however, is the extent to which it is capable of maintaining information that is fed through it. This test
will therefore be conducted on the overall capability of the program to receive packets from the clients
and how much of the information will not make it to the client. The first limitation imposed upon



Sensors 2020, 20, 6662 18 of 23

the program is a policy to which the packet is not re-submitted to the server if it failed to send. If the
packet for any reason fails to send, the amount it presumably had sent is logged on the client side and
stored. On the server side, all packets that has been received by the server is stored in a buffer with the
number of bytes received.

After each of the components in the program has terminated their cycles, the total number of
bytes logged on each side is calculated to find the percentage of loss.

Packetloss(p) = (Device(P)−Server(p)
Device(p) )× 100 (1)

This formula will measure the percentage of loss in bytes occurring in the program. The formula
takes the fraction of the counted bytes on the server and the counter bytes from the devices. The way
that these bytes are counted is done through the net.write and the net.read command, which both have
a bytes processed return values. When network connections send and receives these bytes, the functions
that handles these operations would confirm the amount of data sent and this is how the exact amount
of data was found.

Listing 5 shows the resulting packet loss experienced over ten consecutive executions of the
program. The number of devices is set to the default test value, with approximately 2000 devices
broadcasting data to the server. No confirmation of delivery is supplied to the devices, nor is there a
mechanism to enable a device to resend the data if a failure is detected. The only check conducted is the
sending mechanism on the device side of the communication, which requires that the dispatch function
supplies the amount of packets that were sent. The loss rate is calculated using the above-mentioned
formula. It is shown that the current loss rate varies between the 10 cycles. In some cycles, the overall
loss rate is below 1%, while in other cases the loss rate of the program can reach as high as 3.2%.
This rate of packet loss in a testing that simulates a traffic burst over a short amount of time is deemed
reasonable. In [45] it was concluded that if a system manages to maintain loss rates at a level of 3.6% or
lower, then that system will be able to serve its purpose with minimal impact to its Quality of Service
(QoS). The loss rate seen in this scenario could be attributed to the fact that the amount of traffic is
large and because of the lack of re-transmission mechanisms, which causes the jump in loss rate.

According to [46] protocols such as CoAP that are based on UDP have a tendency to lose more
packets when the amount of ongoing traffic is too high. They demonstrated this in a similar test
scenario to the one demonstrated in this paper. They showed that the loss rate on different topologies
that use CoAP will experience high rates of loss when the volume of traffic increases. This can further
be seen in [47] where Packet Loss Rate (PLR) is directly affected by the amount of traffic on the
destination. For the MQTT protocol, the same correlation can be drawn between reliability of packets
and their timeliness. Ref [48] tested different 4-way handshake methods in MQTT to see where the
reliability of information will change when activity on a connection increase. They showed, that when
enforcing a regular 4-way handshake, the overall packet loss decreased slower than what it would
when less strict handshakes were used. The percentage on a regular 4-way handshake on a wired
connection to be around 0.20% when the load is around 16,000 bytes. When calculating the average
packet loss rate of the program, using the same method that generated the cycle values in Table 5
amounted to a value of 2.18%. However, with the given discovery that large traffic generates lower
successful transmission, the question would be what would happen if the delay penalty were to be
randomized, instead of being a constant.

In Listing 6 it is proposed to modify the current testing framework, by changing the persistent
penalty value that is being used on goroutines, to a value that is non-constant. The idea here is that
when a random time delay is being introduced the distribution of which these routines are to proceed
is more scattered. This would hypothetically in effect make the server experience less simultaneous
traffic and become more capable of serving the devices as a whole. By introducing a randomized
additional time penalty to each and every device the overall loss of packets is reduced and resulting in
an average packet loss rate of 0.042% as presented in Table 6. Moreover, the overall number of devices



Sensors 2020, 20, 6662 19 of 23

could be increased to 5000 devices with this random delay. While 10,000 devices were also feasible,
but with some cycles crashing on occasion. The changing of this value have shown that while the
reliability of the program can be improved, but the overall speed is affected as a result.

Table 5. Packet loss results.

Test Bytes (Serv) Bytes (Dev) Loss (Byte) Percent

1 137,496 139,647 2151 1.54031%

2 139,517 140,353 836 0.59564%

3 136,745 137,905 1160 0.84115%

4 130,142 132,780 2638 1.98674%

5 133,362 136,300 2938 2.15553%

6 133,127 133,519 467 0.34976%

7 127,592 129,836 2319 1.78609%

8 131,885 134,884 2999 2.22339%

9 133,955 135,656 1701 1.25390%

10 130,923 135,204 4333 3.20478%

Table 6. Packet loss result.

MQTT [48] CoAP [46] HTTP [45] UIOT UIOT (With Randomized Time Penalty)

Loss (%) 0.20% 7.24% 3.6% 2.18% 0.042%

Listing 6. Random time penalty.

Sensors 2020, 1, 5 16 of 23

a single cycle (with 2000 devices) are repeated several times over on the same connection, to see if the
duration skews towards lower or higher value in a different cycle.

The functions shown in Listing 5 illustrates how the start and end times of the program are
captured by the test cycle. These are placed in the program to set the time stamp before the networking
sequences are called and one after the sequences are called.

Listing 5. Time difference calculation.

1 start := time.Now()
2 ...
3 currentTest.ServerTime = time.Since(start)

Table 2. Time tests results.

Test Bytes (Serv) Time

1 130,986 2.1778662 s

2 135,021 2.1551524 s

3 137,697 2.1518888 s

4 129,978 2.1647948 s

5 132,836 2.1436297 s

6 128,906 2.1359591 s

7 133,325 2.6300981 s

8 138,069 2.1260972 s

9 129,365 2.5924328 s

10 132,910 2.5893287 s

As shown, in the table, the duration recordings on ten execution cycles have similar values to
each other. There are a few cases where the execution of the program takes anywhere from 0.5 to 1 s
more than the values here, and this could be attributed to the volatile nature of the go routines that are
not entirely running in parallel. Moreover, the added penalty time imposed on all the 2000 devices
created, the additional 1 second would also be accounted for here. It cannot be counted off for the time
being, as the nature of this delay is to make sure that the program does not crash, due to a limitation
set on the total amount of concurrent connections allowed in go networking. Measurements of time
efficiency of protocols, such as MQTT and CoAP is demonstrated in [42]. In this paper, the researchers
attempt to measure the time of sending and receiving packages with these two protocols, among others.
The testing involved sending packets of differing lengths and quantities, ranging from 25, 100, 250,
500 and 1000 bytes in length and at quantities of 5, 10, 20 and 50 consecutive packets. Using the
measurements on the packets that are of the similar size to the packets generated by this project,
such that the compared results are more appropriate. The generated packets in the program has the
respective byte sizes.

The best option for a comparison would be to measure the packet timings for packets of 100 bytes
in length. Could also be feasible to use the 25 bytes as well, but for simplicity’s sake, the 100 bytes
packets will be the chosen packets to measure. However, from the results shown in this article,
the time difference between 100 to 250 bytes is not that significant, nor is the time threshold between
25 to 100 bytes that significant different. However, this is only the case for MQTT and CoAP.
In [42] the average time for these packets 0.24 s to 0.39 s for 100 byte MQTT packets at a quantity
range from 5 packets to 50 packets. Meanwhile the time range for CoAP is between 0.23 s to 0.34.
As shown there is a minor difference in speeds when juxtaposing these two protocols alongside each
other. According to [43] the CoAP protocol is based on User Datagram Protocol (UDP), which does

7.5. Functionality Comparison

Although this research focused on defining a structured data format for IoT device, such structured
data has potential in digital forensic applications. One such potential was investigated by Garfinkel [49]
in which the researcher developed Digital forensics XML DFXML language which enables the exchange
of structured forensic data. DFXML contains the information related to forensic evidence such as
document location, document type, file system information, and relevant information to forensic
analyst. DFXML provides a necessary abstraction for understanding interchangeable forensics
evidence. Compared to DFXML our proposed concrete syntax is JSON and our approach provides
abstraction to format data from multiple IoT devices. We discussed the data format in Section 6.2 to
highlight the differences between XML and JSON. In term of digital evidence DFXML provide more
concrete prepossessed digital evidence information compared to UIOT which only focuses on raw
data of IoT devices which can be used for identification of forensic evidence in future research.

8. Discussion and Conclusions

In order for the developed artifact be able to adapt to a diverse IoT landscape, there must exist a
defined rule set which is used to conform the data when it is not of the correct type. It is proposed that an
automatic type checking is enforced on the data when it has arrived, such that no misappropriated input
is being processed and dispatched. Whether or not this is an appropriate measure is dependent on the
person who are using it, as their intentions could require that data is outputted in a particular manner.
For instance, a data scientist would require that data output is done in a particular integer/float type for



Sensors 2020, 20, 6662 20 of 23

use in machine learning, while on the other hand, some intentions for use of this program might not require
any operations to be performed on the data at all. The proposed use of actions and chains would reduce
the limitations set on what a user can do with the data, but it requires the user to define what they require
of the data. Another topic equally as important is the ability to handle a vast amount of data at once.

Scaling the application to be able to handle as much information as possible is very important for this
project, given that the area of application will contain a large number of devices that needs to be processed.
In the evaluation it was identified that the problem with the proposed Websocket server is attributed to an
imbalance between performance and accuracy. When the priority is set to favor performance, by making
the program execute as fast as it can without interruptions, the reliability of that program would be
severely reduced. An increase in reliability was achieved, but at the cost of performance, as the methods
used to decrease lost packets involved setting a higher threshold on the total time that the devices had
to wait. However, with the introduction of added delays at a random distribution, the overall load on
the server was reduced. With a reduced load, the ability to scale up the number of devices was possible,
which increased the number of total devices by a factor of five. An alternative proposal to handle the
reliability problem would be to implement an acknowledgement of received package. For instance,
instead of assigning random time delays between 3–10 s, the overall wait threshold could be reduced
if the system has a way to verify transactions and re-transmit lost packets. However, this would only
reduce some constraints on the performance, as the requirement fro re-transmission would require one or
more additional dispatch attempt. With a proposed application that creates a format for use in a society in
need for improved crime fighting, there are inevitable impacts that must be discussed.

In this paper, research wasconducted to discover whether it is conceivable to develop a solution
that can create a common format for the heterogeneous data sets that are being created in the IoT
landscape. It was shown that with the introduction of Actions and Chains, the user is more free to
adapt the data to their specific needs. The capabilities of this program was tested and evaluated
against other application layer protocols. It was demonstrated that this framework performs well
against its competitors when there is a balance of performance versus reliability. As described in [1],
this research work can be used for a proposed criminal activity detection system that draws some
parallels with the fictional Artificial Intelligence surveillance system, from the TV-show Person of
Interest. Both systems are based on an automated program, to which only the anomalous incidents get
reported to the operators, leaving all other benign information a secret. Future research should provide
the justification for deploying an intrusive automated surveillance application in a smart city and why
it would be less damaging to one’s rights to privacy. When developing a detection system, it is also
important to establish a baseline as to what is considered relevant for raising an alarm [2]. Given that
this project is to establish an automated system to detect anomalous incidents that are detected through
smart devices, it is also important to define what is considered to be anomalous. In undertaking this
research problem, the researcher has the opportunity to discuss whether the next iteration of this
detection system is to operate as a signature-based or an anomaly-based detection system.

Author Contributions: Writing–original draft preparation, M.S.; concept, M.M.Y.; supervision, M.M.Y. and B.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding and the APC was funded by NTNU open access.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yamin, M.M.; Shalaginov, A.; Katt, B. Smart Policing for a Smart World Opportunities, Challenges and Way
Forward. In Proceedings of the Future of Information and Communication Conference, San Francisco, CA,
USA, 5–6 March 2020; pp. 532–549.

2. Yamin, M.M.; Katt, B.; Sattar, K.; Ahmad, M.B. Implementation of insider threat detection system
using honeypot based sensors and threat analytics. In Proceedings of the Future of Information and
Communication Conference, San Francisco, CA, USA, 5–6 March 2019; pp. 801–829.



Sensors 2020, 20, 6662 21 of 23

3. Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in Internet of Things: Taxonomies and Open
Challenges. Mob. Netw. Appl. 2019, 24, 796–809. [CrossRef]

4. Vaishnavi, V.; Kuechler, B. Design Science Research in Information Systems. Assoc. Inf. Syst. 2004, 28, 75–105.
5. Nayaka, R.J.; Biradar, R.C. Data aggregation and routing scheme for smart city public utility services

using WSN. In Proceedings of the 2017 Second International Conference on Electrical, Computer and
Communication Technologies (ICECCT), Coimbatore, Tamil Nadu, India, 22–24 February 2017; pp. 1–8.
[CrossRef]

6. Pradhan, M.; Suri, N.; Fuchs, C.; Bloebaum, T.H.; Marks, M. Toward an Architecture and Data Model to
Enable Interoperability between Federated Mission Networks and IoT-Enabled Smart City Environments.
IEEE Commun. Mag. 2018, 56, 163–169. [CrossRef]

7. Junior, A.A.; Cacho, N.; Thome, A.C.; Medeiros, A.; Borges, J. A predictive policing application to support
patrol planning in smart cities. In Proceedings of the 2017 International Smart Cities Conference (ISC2),
Wuxi, China, 14–17 September 2017; pp. 1–6. [CrossRef]

8. Ghosh, D.; Ae Chun, S.; Shafiq, B.; Adam, N.R. Big Data-based Smart City Platform. In Proceedings of
the 17th International Digital Government Research Conference on Digital Government Research-dg.o ’16,
Shanghai, China, 8–10 June 2016; pp. 58–66. [CrossRef]

9. Ding, W.; Jing, X.; Yan, Z.; Yang, L.T. A survey on data fusion in internet of things: Towards secure and
privacy-preserving fusion. Inf. Fusion 2019, 51, 129–144. [CrossRef]

10. Wang, M.; Perera, C.; Jayaraman, P.P.; Zhang, M.; Strazdins, P.; Ranjan, R. City Data Fusion: Sensor Data
Fusion in the Internet of Things. arXiv 2015, arXiv:1506.09118.

11. Cenedese, A.; Zanella, A.; Vangelista, L.; Zorzi, M. Padova Smart City: An urban Internet of Things
experimentation. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks 2014, Sydney, NSW, Australia, 19 June 2014; pp. 1–6.

12. Kolozali, S.; Bermudez-Edo, M.; Farajidavar, N.; Barnaghi, P.; Gao, F.; Intizar Ali, M.; Mileo, A.; Fischer, M.;
Iggena, T.; Kuemper, D.; et al. Observing the Pulse of a City: A Smart City Framework for Real-Time
Discovery, Federation, and Aggregation of Data Streams. IEEE Internet Things J. 2019, 6, 2651–2668.
[CrossRef]

13. Zhang, X.; Choo, K.K.R.; Beebe, N.L. How Do I Share My IoT Forensic Experience With the Broader
Community? An Automated Knowledge Sharing IoT Forensic Platform. IEEE Internet Things J. 2019,
6, 6850–6861. [CrossRef]

14. Yamin, M.M.; Katt, B. A survey of automated information exchange mechanisms among certs.
In Proceedings of the 5th Collaborative European Research Conference (CERC 2019), Darmstadt, Germany,
29–30 March 2019.

15. Yingran, L.; Hailing, S.; Jian, G. Geologic hazard susceptibility and disaster risk mapping based on
information value model for the MianChi county, China. IOP Conf. Ser. Earth Environ. Sci. 2018, 199.
[CrossRef]

16. Meffert, C.; Clark, D.; Baggili, I.; Breitinger, F. Forensic State Acquisition from Internet of Things (FSAIoT).
In Proceedings of the 12th International Conference on Availability, Reliability and Security, Reggio Calabria,
Italy, 29 August–1 September 2017; pp. 1–11. [CrossRef]

17. Jang, S. A Study on Internet of Things (IoT) Forensic. Master’s Thesis, Hallym University, Chuncheon,
Gangwon, Korea, 2019.

18. SmartThings, S. SmartThings Classic Documentation: Zigbee Primer. Available online: https://docs.
smartthings.com/en/latest/device-type-developers-guide/zigbee-primer.html (accessed on 11 July 2020).

19. MacDermott, A.; Baker, T.; Shi, Q. Iot Forensics: Challenges for the Ioa Era. In Proceedings of the 2018
9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France,
26–28 February 2018; pp. 1–5. [CrossRef]

20. ZITiS—Startseite. Central Office of Information Technology: ZITiS. Available online: https://tinyurl.com/
y2twmesp (accessed on 11 July 2020).

21. Yamin, M.M.; Katt, B.; Gkioulos, V. Cyber ranges and security testbeds: Scenarios, functions, tools and
architecture. Comput. Secur. 2020, 88, 101636. [CrossRef]

22. Digiteum. Internet of Things for Smart Warehouses. Available online: https://tinyurl.com/yyfkju3x
(accessed on 11 July 2020).

http://dx.doi.org/10.1007/s11036-018-1089-9
http://dx.doi.org/10.1109/ICECCT.2017.8117949
http://dx.doi.org/10.1109/MCOM.2018.1800305
http://dx.doi.org/10.1109/ISC2.2017.8090817
http://dx.doi.org/10.1145/2912160.2912205
http://dx.doi.org/10.1016/j.inffus.2018.12.001
http://xxx.lanl.gov/abs/1506.09118
http://dx.doi.org/10.1109/JIOT.2018.2872606
http://dx.doi.org/10.1109/JIOT.2019.2912118
http://dx.doi.org/10.1088/1755-1315/199/2/022039
http://dx.doi.org/10.1145/3098954.3104053
https://docs.smartthings.com/en/latest/device-type-developers-guide/zigbee-primer.html
https://docs.smartthings.com/en/latest/device-type-developers-guide/zigbee-primer.html
http://dx.doi.org/10.1109/NTMS.2018.8328748
https://tinyurl.com/y2twmesp
https://tinyurl.com/y2twmesp
http://dx.doi.org/10.1016/j.cose.2019.101636
https://tinyurl.com/yyfkju3x


Sensors 2020, 20, 6662 22 of 23

23. Marcus, L.; Koch, D. Cities as implements or facilities—The need for a spatial morphology in smart city
systems. Environ. Plan. B Urban Anal. City Sci. 2017, 44, 204–226. [CrossRef]

24. Ullah, H.; Ullah, M.; Afridi, H.; Conci, N.; De Natale, F.G. Traffic accident detection through a hydrodynamic
lens. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC,
Canada, 27–30 September 2015; pp. 2470–2474.

25. Chen, R.; Little, R.; Mihaylova, L.; Delahay, R.; Cox, R. Wildlife surveillance using deep learning methods.
Ecol. Evol. 2019, 9, 9453–9466. [CrossRef]

26. Mileva, M.; Burton, A.M. Face search in CCTV surveillance. Cogn. Res. Princ. Implic. 2019, 4, 37. [CrossRef]
[PubMed]

27. Orgad, L.; Reijers, W. A Dystopian Future? The Rise of Social Credit Systems. SSRN Electron. J. 2019.
[CrossRef]

28. Wei, Y.; Yildirim, P.; Van den Bulte, C.; Dellarocas, C. Credit Scoring with Social Network Data.
SSRN Electron. J. 2014. [CrossRef]

29. Ullah, H.; Altamimi, A.B.; Uzair, M.; Ullah, M. Anomalous entities detection and localization in pedestrian
flows. Neurocomputing 2018, 290, 74–86. [CrossRef]

30. Ullah, H.; Ullah, M.; Uzair, M. A hybrid social influence model for pedestrian motion segmentation.
Neural Comput. Appl. 2019, 31, 7317–7333. [CrossRef]

31. Yamin, M.M.; Katt, B.; Torseth, E.; Gkioulos, V.; Kowalski, S.J. Make it and break it: An IoT smart home
testbed case study. In Proceedings of the 2nd International Symposium on Computer Science and Intelligent
Control, Stockholm, Sweden, 21–23 September 2018; pp. 1–6.

32. Babun, L.; Sikder, A.K.; Acar, A.; Uluagac, A.S. IoTDots: A Digital Forensics Framework for Smart
Environments. arXiv 2018, arXiv:1809.00745.

33. Servida, F.; Casey, E. IoT forensic challenges and opportunities for digital traces. Digit. Investig. 2019,
28, S22–S29. [CrossRef]

34. Yamin, M.M.; Katt, B. Mobile device management (MDM) technologies, issues and challenges. In Proceedings
of the 3rd International Conference on Cryptography, Security and Privacy, Kuala Lumpur, Malaysia,
19–21 January 2019; pp. 143–147.

35. U.S. Food and Drug Administration. Cybersecurity Vulnerabilities Identified in St. Jude Medical’s Implantable
Cardiac Devices and Merlin@home Transmitter: FDA Safety Communication; FDA: Silver Spring, ML, USA, 2017.

36. Beardsley, T. Multiple Vulnerabilities in Animas OneTouch Ping Insulin Pump: Rapid7 Available online:
https://tinyurl.com/y54qfpxd (accessed on 11 July 2020).

37. Ananthanarayanan, G.; Bahl, V.; Cox, L.; Crown, A.; Nogbahi, S.; Shu, Y. Video Analytics—Killer App
for Edge Computing. In Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services, Seoul, Korea, 12–21 June 2019; pp. 695–696. [CrossRef]

38. Aranda, A.; Dieste, O.; Juristo, N. Evidence of the presence of bias in subjective metrics. In Proceedings
of the 18th International Conference on Evaluation and Assessment in Software Engineering—EASE ’14,
London, UK, 13–14 May 2014; pp. 1–4. [CrossRef]

39. Balakrishna, S.; Thirumaran, M.; Solanki, V.K. IoT Sensor Data Integration in Healthcare Using Semantics and
Machine Learning Approaches, A Handbook of Internet of Things in Biomedical and Cyber Physical System. Intelligent
Systems Reference Library; Springer: Cham, Switzerland, 2020; Volume 165, pp. 275–300._11. [CrossRef]

40. Chiappari, A.D. A Collaborative Mobile Crowdsensing System for Smart Cities. Master’s Thesis, Universita
di Bologna, Bologna, Italy, 2016.

41. Montori, F.; Bedogni, L.; Bononi, L. A Collaborative Internet of Things Architecture for Smart Cities and
Environmental Monitoring. IEEE Internet Things J. 2018, 5, 592–605. [CrossRef]

42. Kokkonis, G.; Chatzimparmpas, A.; Kontogiannis, S. Middleware IoT protocols performance evaluation
for carrying out clustered data. In Proceedings of the 2018 South-Eastern European Design Automation,
Computer Engineering, Computer Networks and Society Media Conference (SEEDA_CECNSM), Kastoria,
Greece, 22–24 September 2018; pp. 1–5. [CrossRef]

43. Prayogo, S.S.; Mukhlis, Y.; Yakti, B.K. The Use and Performance of MQTT and CoAP as Internet of Things
Application Protocol using NodeMCU ESP8266. In Proceedings of the 2018 2019 Fourth International
Conference on Informatics and Computing (ICIC), Semarang, Indonesia, 16–17 October 2019; pp. 1–5.
[CrossRef]

http://dx.doi.org/10.1177/0265813516685565
http://dx.doi.org/10.1002/ece3.5410
http://dx.doi.org/10.1186/s41235-019-0193-0
http://www.ncbi.nlm.nih.gov/pubmed/31549263
http://dx.doi.org/10.2139/ssrn.3491179
http://dx.doi.org/10.2139/ssrn.2475265
http://dx.doi.org/10.1016/j.neucom.2018.02.045
http://dx.doi.org/10.1007/s00521-018-3527-9
http://xxx.lanl.gov/abs/1809.00745
http://dx.doi.org/10.1016/j.diin.2019.01.012
https://tinyurl.com/y54qfpxd
http://dx.doi.org/10.1145/3307334.3328589
http://dx.doi.org/10.1145/2601248.2601291
http://dx.doi.org/10.1007/978-3-030-23983-1_11
http://dx.doi.org/10.1109/JIOT.2017.2720855
http://dx.doi.org/10.23919/SEEDA-CECNSM.2018.8544929
http://dx.doi.org/10.1109/ICIC47613.2019.8985850


Sensors 2020, 20, 6662 23 of 23

44. Seljeseth, M. SmartPolice-Interface: Github Available online: https://github.com/Matsse/SmartPolice-
Interface (accessed on 11 July 2020).

45. Borella, M.; Swider, D.; Uludag, S.; Brewster, G. Internet packet loss: Measurement and implications for
end-to-end QoS. In Proceedings of the 1998 ICPP Workshop on Architectural and OS Support for Multimedia
Applications Flexible Communication Systems, Minneapolis, MN, USA, 14 August 1998; pp. 3–12.

46. Suwannapong, C.; Khunboa, C. Congestion control in CoAP observe group communication. Sensors 2019,
19, 3433. [CrossRef]

47. Ancillotti, E.; Bruno, R. Comparison of CoAP and CoCoA+ congestion control mechanisms for different IoT
application scenarios. In Proceedings of the 2017 IEEE Symposium on Computers and Communications
(ISCC), Heraklion, Greece, 3–6 July 2017; pp. 1186–1192. [CrossRef]

48. Lee, S.; Kim, H.; Hong, D.-K.; Ju, H. Correlation analysis of MQTT loss and delay according to QoS level.
In Proceedings of the International Conference on Information Networking 2013 (ICOIN), Bangkok, Thailand,
28–30 January 2013; pp. 714–717. [CrossRef]

49. Garfinkel, S. Digital forensics XML and the DFXML toolset. Digit. Investig. 2012, 8, 161–174. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/Matsse/SmartPolice-Interface
https://github.com/Matsse/SmartPolice-Interface
http://dx.doi.org/10.3390/s19153433
http://dx.doi.org/10.1109/ISCC.2017.8024686
http://dx.doi.org/10.1109/ICOIN.2013.6496715
http://dx.doi.org/10.1016/j.diin.2011.11.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Research Methodology
	Related Work
	Police Needs
	Field-Operator's Needs
	Intelligence
	Deterrence

	Digital Forensics
	Identify the Source of the Digital Evidence
	System Preservation
	Evidence Searching

	Event Reconstruction

	Devices
	A City of Devices
	Small Differences, Sways Applications
	Elements of a City
	Surveillance
	Residential Devices 
	Wearable Devices
	Environmental Sensors
	City Infrastructure

	Universal Internet of Things Format
	System Architecture
	Data Format
	Post-Processing Functions

	Evaluation
	Application Layer Protocols
	Testing Framework
	Performance Testing
	Reliability Evaluation
	Functionality Comparison

	Discussion and Conclusions
	References

