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To improve breakage models in the population balance framework, single octanol droplet experiments
have been performed in a channel flow and recorded by high-speed camera. The study investigates
impact of mother drop size on the breakage time, breakage probability, average number of daughters
and the daughter size distribution for known turbulence characteristics. Each breakage event is associ-
ated with an individual turbulence level, based on the local flow characteristics. A clearly defined statis-
tical analysis is presented. Using 95% confidence intervals, the precision of each of the determined
properties is described quantitatively. Furthermore, the confidence intervals are a tool for determining
whether an increased number of experiments will yield a significant increase in the precision, considered
against the sources of error. It is found that 35–50 breakage events are sufficient to obtain confidence
intervals of desired precision.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access article under theCCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

The dispersed phase properties in multiphase flows are of inter-
est for several fields of industry. Some examples of industrial appli-
cations of low turbulence level flows are channel or pipe flow, bio-
and chemical-reactor flows, as well as phase separation equipment
like gravity separators. To determine the separation of a dispersed
phase, or to determine the interfacial mass transfer of a system,
information on the size distribution of the dispersed phase is crit-
ical. The transient breakage phenomenon must be well understood
for predictive simulation of such systems. Even so, the knowledge
of the turbulent breakage phenomenon is scarce, likely owing to
technological limitations and labor intensive experimental
procedures.

One simulation tool available for multiphase flow systems is the
population balance equation, PBE. There is a need for experiments
on single fluid particle breakage in order to improve or validate
breakage models within this framework. This need has previously
been acknowledged by e.g. Andersson and Andersson (2006b) and
Solsvik and Jakobsen (2015). The experimental data is needed on
the source term constitutive equations, which are given here as:

� The breakage frequency b Dmð Þ. Which is found through
investigating:
– The breakage time tB Dmð Þ, which is the time it takes for a

drop of size Dm to break.
– The breakage probability PB Dmð Þ, which is the probability
that a drop of size Dm will break.

� The average number of daughter drops m Dmð Þ, which is the aver-
age number of drops produced upon the breakup of a drop of
size Dm.

� The daughter size distribution function PDSD Dm;Ddð Þ, which is
the probability that a drop of size Dd is produced upon breakup
of a drop of size Dm.

Here, Dm is the diameter of the mother drop, i.e. the breaking
drop, and Dd is the diameter of a daughter drop. In the context of
this article, a mother drop may also refer to a drop not breaking.
For simplicity, the source term constitutive equations are written
as functions of the drop diameters only. Additionally, they may
depend on the turbulent kinetic energy dissipation rate, TDR, �,
the viscosity, l, the density, q, of each phase, the interfacial ten-
sion, c, and the turbulent kinetic energy, TKE, k, in addition to other
parameters.

Experiments on breakage in dense dispersions, in which many
fluid particles are investigated simultaneously, are challenging or
impossible to use in validation of local breakage functions
(Solsvik et al., 2013). Unfortunately, the number of studies on sin-
gle fluid particle breakage is low. In addition, the use of different
experimental setups and different procedures makes it difficult
to compare the available experimental data. The studies in the lit-
erature vary in the number of considered events, the statistical
procedure employed, the turbulence level and the method of
determination of the turbulence level. The studies also use differ-
ent oils as the dispersed phase and use either tap or distilled water
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Nomenclature

Latin Letters
�b estimated breakage frequency [1/s]
�x mean value
r space coordinate vector [m]
vr velocity vector [m/s]
DN number of breaking drops
DNB true number of drops breaking
DP Pressure drop [Pa]
DPDSD0 discrete daughter size distribution function [1/m3]
DPDSD� dimensionless discrete daughter size distribution func-

tion [-]
DVd daughter size range
P̂ true probability of a favorable outcome
AB separation distance [m]
b breakage frequency [1/s]
BB birth due to breakage [1/(m3 m s)]
BD death due to breakage [1/(m3 m s)]
c parameter
cL model parameter
D� Dimensionless daughter diameter
D�max dimensionless drop, complimentary to D�min in (24)
D�min dimensionless smallest drop breaking in (24)
Dc critical diameter [m]
Dd daughter drop diameter [m]
Dm mother drop diameter [m]
Dmax in (3), largest drop size present [m]
E energy [J]
Ec critical energy [J]
Es Surface energy [J]
F hypergeometric function
f n number density function [1/(m3 m)]
h breakage yield distribution function [1/m]
K Bessel function
k turbulent kinetic energy [m2/s2]
L integral length scale [m]
N number of observations
N total number of drops
P� estimated probability
PB breakage probability
PDSD daughter size distribution function [1/m]
PDSD� Dimensionless daughter size distribution function
Q true probability of an unfavorable outcome

rd model distance [m]
S standard deviation
s function
t time [s]
tB breakage time [s]
Tn function, n = 1, 2, 3, 4, 5
uB characteristic breakup velocity [m/s]
Vd daughter drop volume [m3]
Vm mother drop volume [m3]
za=2 normal distribution coefficient
Rek Taylor scale Reynolds number
We Weber number

Greek Letters
a confidence interval size
b Komogorov constant
Dr surplus stress [Pa/m2]
� turbulent energy dissipation rate [m2/s3]
g Kolmogorov micro scale [m]
C gamma function
c interfacial tension [N/m]
K dimensionless critical diameter [m]
l dynamic viscosity [kg/(m s)]
l true mean
m average number of daughters
m kinematic viscosity, in Section 2.5 [m2/s]
x confidence interval limit
du2 second order longitudinal velocity structure function

[m2/s2]
q fluid density [kg/m3]
qc continouos phase density [kg/m3]
qd dispersed phase density [kg/m3]
r standard deviation
rs surface restoring stress [Pa/m2]
rt turbulent stress [Pa/m2]

Abbreviations
CFD Computational Fluid Dynamics
PBE Population Balance Equation
TDR Turbulent Kinetic Energy Dissipation Rate
TKE Turbulent Kinetic Energy
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for the continuous phase, which results in different fluid and sys-
tem properties. In particular, both the interpretation of the studies
and the comparison between the studies are challenging due to dif-
ferent or unclear definitions of the breakage event. Partly, this is
due to a controversy in the literature regarding the breakage event
definition. Solsvik et al. (2016a) outlined two definitions of the
breakage event. One is the initial breakage definition, in which
the breakage event is considered to end at the first fragmentation.
This is employed in the studies of Maaß et al. (2011); Maaß and
Kraume (2012) and Nachtigall et al. (2016). The other breakage
event definition is the breakage cascade definition, in which the
breakage event end at the final fragmentation of intermediate
daughter drops. The cascade breakage definition is used in the
investigation of Solsvik and Jakobsen (2015) and seemingly also
in the daughter size distribution investigations of Maaß et al.
(2007). The breakage definition employed has a significant impact
on the breakage time, the number of daughters and their size dis-
tribution, as the cascade breakage definition considers the time
after initial breakage.
2

Furthermore, the studies in literature investigate different phe-
nomena of the breakage event. Galinat et al. (2005) investigated
the breakage probability, daughter size distribution and average
number of daughters of single oil droplet breakage in an orifice
flow. The number of experiments performed is unclear, but at least
50 to 80 drops where observed for each of the twelve flow condi-
tions. These different flow conditions were obtained by changing
the orifice opening and the continuous phase velocity. Further,
Galinat et al. (2005) used single drops of heptane or heptane col-
ored with red sudan as the dispersed phase, while the continuous
phase was tap water. Due to fluctuations in the diameter of the
generated mother drop under the same experimental conditions,
the mother drops were divided into classes. The mother drop
diameters were between 1:5 to 3 mm and the classes had a width
of 0:25 mm. From these mother drop diameter groups, groups
based on a Weber number was constructed, where the Weber
number was expressed as We ¼ DPDm=c. Here, DP is the pressure
drop over the orifice, from which the TDR levels can be found to
be between 1 and 20 m2/s3, depending on the flow condition, while



Table 1
Fluid and system properties reported in previous studies.

Reference Continuous phase Dispersed phase c x10�3 [N/m] q [kg/m3] l x10�3 [kg/(m s)]

Galinat et al. (2005) Tap water 996 0.82
Heptane 47 683.7 0.45
Colored heptane 23.6

Galinat et al. (2007) Tap water with glycerin 1100
Colored heptane 24.4

Andersson and Andersson (2006a,b) Dodecane 53 750 1.5
Octanol 8.5 819 6.5

Maaß et al. (2007) and Petroleum 760 1.9
Zaccone et al. (2007) Unspecified water 2

Colored water 28
Maaß et al. (2011) and Unspecified water
Maaß and Kraume (2012) Toluene 32 870 0.55

Petroleum 38.5 790 0.65
Nachtigall et al. (2016) Petroleum 760 1.7

Unspecified water 43.2
Water with SDS 5.9

Paraffin oil 861 127
Unspecified water 53.3
Water with SDS 8.4

Solsvik and Jakobsen (2015) Distilled water
Toluene 33 866.7 0.6
Petroleum 44.5 754 1.14
n-Dodecane 41.5 745 1.38
1-Octanol 8.4 822 7.52

Ashar et al. (2018) Deionized water 988 1
Rapeseed oil 20 920 70
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no TKE values or relations were given. Finally, the results are pre-
sented as functions of the Weber number, although the number of
experiments within each Weber number group is not given. The
breakage probability was also linked directly to the mother drop
size for four different flow conditions. No statistical analysis was
presented for the daughter size distribution and the breakage
probability, but the average number of daughters are presented
as average values with standard deviation. Later, Galinat et al.
(2007) performed additional experiments with water-glycerin as
the continuous phase, and colored heptane as the dispersed phase.
70 experiments where performed for each of the twelve flow con-
ditions, with the TDR level varying between 0:9 and 2:5 m2/s3. In
the study, the mother drop diameter was between 1:4 to 2:0
mm. No breakage definition was given in either studies by
Galinat et al. (2005, 2007). The reported fluid and system proper-
ties of all the considered studies can be seen in Table 1 and a sim-
plified overview of selected studies can be seen in Table 2.

Andersson and Andersson (2006a,b) studied single oil dodecane
or octanol drop breakage in a static mixer. The continuous phase
was water, for which the properties was not specified. In their
study, the breakage time was reported as a function of the TDR
level, and presented as an average value with standard deviation.
However, no further statistical analysis was presented. In addition,
the daughter number distribution of dodecane drops was pre-
sented for two different TDR levels. For each reported value,
approximately 50 breakage events were considered and the
mother drop diameter was kept constant at 1 mm 1. PIV-
experiments and Large Eddy Simulation was used to determine the
turbulent characteristics. Depending on the continuous phase flow
rate, the volume average the TDR levels was found to be 1:13;3:69
and 8:54 m2/s3, while the TKE level was found to be 17;37 and
64 m2/s2. Finally, the employed breakage definition is not
mentioned.

Maaß et al. (2007) and Zaccone et al. (2007) investigated oil
drop breakage in a channel flow with an impeller blade, mimicking
stirred tank flow. They investigated the daughter size distribution
1 Personal communication

3

for different daughter numbers and reported the daughter number
distribution. The dispersed phase was petroleum and the continu-
ous phase was an unspecified type of water, with and without col-
oring by sudan-black. Further, the TDE was determined from CFD
simulations with a k-� model, where the local maximum near
the impeller was found to be 26:1 m2/s3. The TKE was not given.
For each of the mother drop diameters 0:56;1 and 2 mm, the num-
ber of investigated events are given as 284;503 and 184. In addi-
tion, a required number of events were reported, however, it is
not clear what the significance of this number is or how it was
determined. Later, Maaß et al. (2011) and Maaß and Kraume
(2012) used the same setup to investigate the daughter number
distribution and breakage frequency, the latter as breakage time
and breakage probability. The mother drops were toluene with
diameters of 0:62;1:0;2:0 and 3:0 mm, as well as petroleum drops
of 0:54;0:7;1:0;1:3;1:9 and 3:1 mm. For each of the mother drop
sizes, the number of total events where between � 750 and
� 1320, of which the number of breakage were between � 240
and � 780. The results on breakage time and breakage probability
were presented with average values and standard deviation. Addi-
tionally, the development of the mean value with the number of
experiments were investigated. This showed that the values were
stable, thus there were more than enough experiments performed.
Later, and in the same setup, Nachtigall et al. (2016) investigated
the breakage time with emphasis on the deformation process.
The mother drops where all 1 mm in diameter and either petro-
leum or paraffin oil, while the continuous phase was either water
or water mixed with sodium dodecyl sulfate. The different combi-
nations of dispersed and continuous phases allowed for the impact
of the interfacial tension to be investigated. In the study, the num-
ber of events with breakage was between 364 and 917, while the
total number of events was between 1021 and 1486. Furthermore,
the experimental results are presented as whisker-and-box plots,
but no further statistical analysis was presented.

Solsvik and Jakobsen (2015) investigated single oil droplet
breakage in a stirred tank. In their study, the breakage time was
presented as function of the mother drop size, along with the dis-
tribution of daughter drop numbers. Toluene, petroleum, n-



Table 2
Overview of selected single drop experimental studies. *Standard deviation is only shown when determining an average value, e.g. not for breakage probability or daughter size
distributions.

Reference Investigated Mother Drop TDR Statistical Treatment
values Diameter, Dm [mm] � [m2/s3]

Galinat et al. (2005, 2007) PB; m; PDSD 1.5–3 ~1–20 Average values with
standard deviation*

Maaß et al. (2007) PDSD 0.56–2 26:1 None
Maaß and Kraume (2012) tB; PB 0.54–3.1 ~ 2.3–12.3 Analysis of the development

in the mean value
Andersson and Andersson (2006a,b) tB; m 1 1.13–8.54 Average values with

standard deviation*
Solsvik and Jakobsen (2015) tB; m 0.6–4.0 1.14 None
Ashar et al. (2018) PB; m 0.07–0.55 535–2480 Average values with

uncertainty
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dodecane and 1-octanol was used as the dispersed phase and dis-
tilled water was used as the continuous phase. The diameter of the
mother drops was varying between 0:6 to 4 mm, and thus divided
into groups with a width of 0:5 mm. There were between 180 to
250 breakage events for each oil, but greatly varying in numbers
within each mother drop group. Here, the number of breakage
events were between 1 and 71. The TDR level was determined from
the power input and given as a volume average of the entire tank,
at 1:14 m2/s3. No information on the TKE was given. Furthermore,
no statistical method was presented.

Ashar et al. (2018) studied single droplet breakage in a stirred
tank and investigated the breakage probability and the average
number of daughters. The results were reported as functions of a
turbulent Weber number and presented as average values with
uncertainty. However, the statistical procedure was not given. A
deformation time was also presented, which was defined as the
time from turbulent vortex interaction until the maximum defor-
mation. This is believed to be the time of energy transfer from
the turbulent vortex to the breaking drop. As this maximum defor-
mation occurs at an earlier time instance than the instance of first
fragmentation, the deformation time is shorter than the initial
breakage time. While not explicitly defined, the daughter number
appears to be calculated according to the cascade breakage defini-
tion. In the study, the mother drops were rapeseed oil drops with a
diameter between 0:07 and 0:55 mm, and deionized water was
used as the continuous phase. In total, 285 breakage events were
investigated for two different TDR levels, 535 and 2480 m2/s3.
The TDR level was determined from a procedure arising from PIV
analysis, and given as a local average value of the volume near
the impeller. The TKE is not given.

Although it may initially appear otherwise, the studies pre-
sented above follow a similar procedure when reporting their
results. An investigated parameter, e.g. breakage probability, is
plotted against another variable, e.g. mother drop diameter. The
other variables are assumed constant, where the TDR level is taken
to be that of the single phase flow field of the continuous phase. It
should be noted that when reporting the results by Weber number
instead of the drop diameter, it is not possible to regain the depen-
dency on � and Dm, except if either � or Dm is kept constant. Thus,
the data cannot be used to validate most of the currently available
models.

Based on the studies presented here, some generalizations of
the status of single fluid particle breakage investigations are possi-
ble. Firstly, no investigation covers all of the information needed to
model the terms in the PBE. That is, information on the breakage
frequency, b, average number of daughters, m, and daughter size
distribution, PDSD, have not all simultaneously been extracted from
the same experimental data set. Consequently, subsequent model
validation must rely on experimental data from different experi-
4

mental setups and procedures, a strategy which does not ensure
consistency.

Second, most of the previous studies employ a volume average
TDR level, while the breakage models are developed considering
local turbulence characteristics. The regions of breakage in the
employed experimental facilities have large gradients in the turbu-
lence level, thus the difference in local and average turbulence
level may be significant. In turn, the reported turbulence character-
istics may not be sufficiently accurate to represent the turbulence
characteristics responsible for the breakage event. Additionally,
there are two other weaknesses related to the flow conditions.
Weakness one, the regions of breakage have a significant presence
of mean flow shear, which possible impact on the breakage cannot
be distinguished from the impact of the level of turbulence. Weak-
ness two, no value of the TKE is associated with the breakage. Thus,
the impact of the entire range of turbulence cannot be computed,
only the impact of the inertial subrange of turbulence. How to
model the entire range of turbulence has been shown by Solsvik
and Jakobsen (2016a), and a summary is shown in Section 2.5.

Finally, the studies commonly presented the determined aver-
age value with a standard deviation, and no clear statistical analy-
sis is available. As experimental procedures are subject to many
sources of error, the statistical analysis, along with a discussion
on uncertainty, is important in regards to the accuracy and preci-
sion of the results. Accuracy and precision are considered to be dif-
ferent concepts within uncertainty analysis, and the difference is
shown graphically in Fig. 1. If measurements are repeated, a high
accuracy yields values that are near the true value, while a high
precision yields nearly the same value from each measurement.
The statistical analysis, when resulting in a 95% confidence inter-
val, is a tool for describing the precision of the data. However, it
does not address the accuracy. This can be better understood by
considering the plausible errors sources, which are usually divided
into random errors and systematic errors. Random errors are lar-
gely due to changing initial conditions between each experiment.
As the name implies, random errors are considered to be randomly
applied. Systematic errors, on the other hand, arise from the exper-
imental procedure and assumptions, and are generally not consid-
ered to be randomly applied. In a simplified view, the random
errors may be assumed to be accounted for by the statistical anal-
ysis, while the systematic errors are not accounted for. Thus, sys-
tematic errors may skew the data in such a way that the
confidence interval does not contain the true value. That is, while
the experimentally determined value may be precise, it does not
need to be accurate. It is possible to account for systematic errors
if the impact on the results is known and quantified. Unfortunately,
quantification of the systematic errors is rarely possible in complex
experimental procedures. Nevertheless, performing a statistical
analysis is particularly important due to the labor intensive



Fig. 1. The difference between accurate and precise experimental techniques.
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methodology of the state of the art single droplet breakage exper-
iments. The gain in precision from additional experiments must be
considered against the increased workload. An increased number
of experiments may lead to only a small increase in the precision,
but may lead to additional aspects of the breakage phenomenon
not being investigated. This may be part of the reason that no
investigation covers all the information needed to model the
source term constitutive equations in the PBE.

The purpose of this work is to obtain data on and elucidate the
breakage phenomenon in general, and the impact of mother drop
size in particular. An experimental facility has been constructed
with a design that offers low gradients in the turbulence level of
the continuous phase. As the local turbulence level is known, due
to the investigation by La Forgia et al. (2018), each breakage event
may be associated with relevant and local turbulent characteris-
tics. This allows for a quantified difference in turbulence level
between investigated events. Furthermore, the design allows for
video capture of the entire breakage event, such that the videos
may be investigated according to the procedure outlined in Herø
et al. (2019). The resulting data should be consistent, as the break-
age frequency, b, the average number of daughters, m, and the
daughter size distribution PDSD are determined from the same
events. Furthermore, this study employs a transparent statistical
methodology as a tool to discuss the precision of the data. This sta-
tistical procedure is also used to identify whether additional exper-
iments are beneficial.

2. Turbulent breakage models

The PBE is a common and powerful simulation tool. It is a
framework that dynamically describes the change in the number
density distribution of the dispersed phase (Ramkrishna, 2000).
Simplified to consider only accumulation, convection and breakup,
the PBE in terms of the number density function, f n, can be written
as (Jakobsen, 2014)

@f n Dm; r; tð Þ
@t

þr � v r r;Dm; tð Þf n Dm; r; tð Þ½ �
¼ �BD Dm; r; tð Þ þ BB Dm; r; tð Þ ð1Þ
5

BD Dmð Þ ¼ b Dmð Þf n Dmð Þ ð2Þ

BB Dmð Þ ¼
Z Dmax

Dm

mPDSD Dm;Ddð Þb Ddð Þf n Ddð ÞdDd ð3Þ

Here, r is the space coordinate vector, t is the time, v r is the velocity
vector and Dm and Dd are denoting the drop diameters of the mother
and daughter drop. Further, b is the breakage frequency, m is the
average number of daughter particles and PDSD is the daughter size
distribution function. The two latter quantities may be combined to
the breakage yield redistribution function, h. Finally, the terms on
the right hand side of (1) are the sink and source terms that repre-
sent the breakage death, (2), and breakage birth of drops, (3), of
diameter Dm due to breakage events.

In order to use the PBE in simulations, e.g. coupled with compu-
tational fluid dynamics, the terms of (2) and (3) must be modeled.
If experimental data are to improve these models, it is critical to
consider how the models are developed. The mechanisms consid-
ered and the model interpretation of the breakage phenomenon
should coincide with the interpretation of the data from physical
experiments. Thus, two classic and commonly used models are
presented in this section.
2.1. Coulaloglou and Tavlarides

In developing their model, Coulaloglou and Tavlarides (1977)
assumed a drop would break due to local pressure fluctuations
only. Further, they assumed binary breakage, locally isotropic tur-
bulence and that the size of the droplet diameter falls within in the
inertial subrange of turbulence. The basic assumption is that a
breakup occurs if a drop collides with a turbulent eddy of sufficient
energy. The breakage frequency, b Dmð Þ, which is required in both
(2) and (3), is determined as the reciprocal of a breakage time,
tB Dmð Þ, multiplied by the fraction of drops breaking, DN Dmð Þ

N Dmð Þ . This

fraction of drops breaking is interpreted as the breakage probabil-
ity PB Dmð Þ, i.e. the probability that a drop will break. Thus, the
breakage frequency relation becomes

b Dmð Þ ¼ 1
tB Dmð Þ

DN Dmð Þ
N Dmð Þ ¼ 1

tB Dmð Þ PB Dmð Þ ð4Þ

The breakage probability is assumed proportional to the fraction of
the turbulent eddies that collides with the drop, where the energy
of the turbulent eddy is larger than the drop surface energy. Further,
this fraction of turbulent eddies is assumed to be described by the
Maxwell–Boltzmann 2D energy distribution, thus

PB Dmð Þ ¼
Z 1

Ec Dmð Þ
P E Dmð Þð ÞdE ¼ exp � Ec Dmð Þ

E Dmð Þ
� �

ð5Þ

in which E Dmð Þ is the turbulent energy associated with eddies of
size Dm and Ec Dmð Þ is the critical value that the turbulent energy
E Dmð Þ must overcome. Ec Dmð Þ is taken as the surface energy

Ec Dmð Þ / cD2
m ð6Þ

in which c is the interfacial tension and Dm is the diameter of the
drop. The energy of the turbulent eddies is taken to be

E Dmð Þ / qdD
3
mdu2 Dmð Þ ð7Þ

where qd is the density of the dispersed phase. The second order

longitudinal velocity structure function, du2 Dmð Þ, is determined
from Kolmogorov theory

du2 Dmð Þ ¼ ju r þ Dm; tð Þ � u r; tð Þj2 ¼ b �Dmð Þ2=3 ð8Þ
Thus, inserting (6) and (7) in (5) the expression becomes
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PB Dmð Þ ¼ exp � c1c
qd�2=3D

5=3
m

 !
ð9Þ

in which c1 is a parameter. The breakage time was estimated by
assuming the eventual centers of mass of the daughter drops behave
like two turbulent eddies. If AB is the initial separation distance, the
separation distance AB0 of the two masses at time t are given as

AB0 tð Þ½ �2 / AB �ð Þ2=3t2 ð10Þ
Further, if both AB and the distance at breakage are proportional to
the mother drop diameter, the equation can be solved for tB as

tB Dmð Þ ¼ c2D
2=3
m ��1=3 ð11Þ

in which c2 is a parameter. Finally, the breakage frequency was
determined from (4) by combining expressions for the breakage
time, (11), and the fraction of drops breaking, (9)

b Dmð Þ ¼ c�1
2 D�2=3

m �1=3 exp � c1c
qd�2=3D

5=3
m

 !
ð12Þ

In the source term, (3), two additional functions are required;
the average number of daughters, m, and the daughter size distribu-
tion function, PDSD Dm;Ddð Þ. As aforementioned, binary breakage is
assumed, thus the average number of daughters are known. Fur-
ther, the daughter size distribution function is assumed to fit a nor-
mal distribution in which the variance is set so that > 99:6%of
droplets formed lie in the volume range 0 to Dm. The resulting nor-
mal distribution has a maximum for equal sized daughter drops
and a low probability for a significant size difference. In terms of
diameter the expression becomes (Solsvik et al., 2013)

PDSD Dm;Ddð Þ ¼ 2:4
D3

m

exp �
4:5 2D3

d � D3
m

� �2
D6

m

0B@
1CA3D2

d ð13Þ

While in terms of volume, the expression becomes (Coulaloglou and
Tavlarides, 1977)

PDSD Vm;Vdð Þ ¼ 2:4
Vm

exp �4:5 2Vd � Vmð Þ2
V2

m

 !
ð14Þ
2.2. Martinez-Bazan et al.

The Martínez-Bazán et al. (1999a,b) breakage frequency model
represents a novel attempt to represent the fluid particle-
turbulence interaction in terms of the directly measurable turbulent
stress quantity, i.e. the second order structure function. Most of the
predecessor breakage frequency models rely on the more abstract
drop-eddy collision or interactions frequencies which are difficult
to validate due to the vague definition of the eddy concept. The
MB model avoids the eddy concept. Thus, the model may be consid-
ered more fundamental in nature. In developing their model,
Martínez-Bazán et al. (1999a,b) assumed that a bubble deforms
and breaks if the turbulent stresses of the surrounding fluid flow is
sufficiently large. That is, this stress, rt , has to be at least larger than
the bubble surface restoring stress, rs. They assumed locally isotropic
turbulence, that the bubble diameter falls within the inertial sub-
range of turbulence, and binary breakage. As such, the model shares
similarities with the model of Coulaloglou and Tavlarides (1977). The
breakage frequency is given as

b Dmð Þ / 1
tB Dmð Þ ð15Þ

that is, compared to Coulaloglou and Tavlarides (1977), the break-
age frequency is purely determined from the inverse of an expres-
sion for breakage time. This breakage time is defined as
6

tB Dmð Þ / Dm

uB
ð16Þ

in which Dm is the bubble size and uB is a characteristic breakup
velocity. This velocity is assumed proportional to the square root
of the difference between the turbulent stress, rt and the bubble
surface restoring stress rs as

uB / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rt � rs

p ð17Þ
in which rt is found as

rt ¼ 1=2qcdu2 Dmð Þ ¼ 1=2qcb �Dmð Þ2=3 ð18Þ
where qc is the density of the continuous phase. Further, rs is found
as

rs ¼ 6Es Dmð Þ
pD3

m

¼ 6
c
Dm

ð19Þ

where Es Dmð Þ is the surface energy defined as Ec Dmð Þ ¼ pcD2
m. Thus,

the expression for the breakage time becomes:

tB Dmð Þ / Dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b �Dmð Þ2=3 � 12c= qcDmð Þ

q ð20Þ

and finally the expression for breakage frequency becomes:

b Dmð Þ ¼ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b �Dmð Þ2=3 � 12c= qcDmð Þ

q
Dm

ð21Þ

In the event that the bubble surface restoring stress, rs, is larger or
equal to the turbulent stress, rt , breakup is assumed not to occur
and the breakage frequency is set to zero. Thus, for a given system
there is a critical diameter, Dc , where the bubble surface stress is
equal to the turbulent stress. From (18) and (19)

Dc ¼ 12c
bqc

� �3=5

��2=5 ð22Þ

Due to the assumption of binary breakage the only remaining
expression required in (3) is the daughter size distribution func-
tion, PDSD. Martínez-Bazán et al. (1999a,b) postulated that the prob-
ability of forming two bubbles of diameter Dd;1 and Dd;2 is weighted
by the product of the surplus stress associated with the diameters
Dd;1 and Dd;2, defined as

Dr Dd;n

� � ¼ 1
2
qcb �Dd;n

� �2=3 � 6c=Dm ð23Þ

in which n is either 1 or 2 and Dm is the diameter of the mother bub-
ble. If a bubble of diameter Dd;1 is formed, the diameter of the sec-
ond bubble is given from volume conservation. The original
daughter size distribution function was not volume conserving,
thus it was later updated by Martínez-Bazán et al. (2010). Written
in dimensionless form, such that P�

DSD 1;D�ð Þ � Dm ¼ PDSD Dm;Ddð Þ,
the updated daughter size distribution function is given as

P�
DSD 1;D�ð Þ ¼

D�2 D�2=3 �K5=3
h i

1� D�3
� �2=9

�K5=3
	 


R D�
max

D�
min

D�2 D�2=3 �K5=3
h i

1� D�3
� �2=9

�K5=3
	 


dD�

ð24Þ
in which D� ¼ Dd=Dmand K ¼ Dc=Dm. The minimum diameter, Dmin,
is the smallest diameter of a daughter bubble for which the turbu-
lent stress is equal to the restoring surface pressure, i.e.
rt Dminð Þ ¼ rs Dminð Þ. The maximum diameter, Dmax, is the compli-
mentary diameter that conserves the mass of the mother bubble.
From this, the dimensionless quantities are obtained as
D�

max ¼ Dmax=Dm and D�
min ¼ Dmin=Dm. The resulting daughter size dis-

tribution function behave similarly to the model of Coulaloglou and
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Tavlarides (1977) in which equal sizes daughters are the most likely
outcome of a breakage event.

The model of Martínez-Bazán et al. (1999a,b, 2010) were origi-
nally designed considering very high Reynolds number flows, thus
breakage was frequent and PB Dmð Þ � 1. Solsvik et al. (2017) sug-
gested to add a breakage probability to the breakage frequency,
analogous to the model of Coulaloglou and Tavlarides (1977), in
order to expand the model to be valid also for lower Reynolds
number flows. The breakage probability was defined as a shifted
version of (5):

PB Dmð Þ ¼ exp �Ec Dm � Dcð Þ
E Dm � Dcð Þ

� �
ð25Þ

in which Ec and E are defined by (6) and (7), respectively. For bub-
bles smaller than the critical diameter Dc , the breakage probability
was set to zero.

The model of Martínez-Bazán et al. (1999a,b, 2010) was origi-
nally designed considering a gas–liquid system. Later, Eastwood
et al. (2004) investigated liquid–liquid breakage in the same exper-
imental setup. They found that the breakage frequency was under-
predicted for fluid particles with non-negligible density and
viscosity at low Weber numbers. However, model adaptions, e.g.
Revuelta et al. (2006) and Solsvik et al. (2013), have been found
to provide good agreement with data from liquid–liquid experi-
ments. Some examples can be seen in the appendix of Solsvik
et al. (2013).
2.3. Model constraints

In the models of Coulaloglou and Tavlarides (1977) and
Martínez-Bazán et al. (1999a,b, 2010) the breakage frequency goes
trough a maximum for increasing mother drop diameter. This
behavior was criticized by for example Tsouris and Tavlarides
(1994), who argued that the breakage frequency should increase
monotonously. Later, experimental data have suggested that this
maximum is possible, e.g. Maaß and Kraume (2012). Subsequently,
the behavior of the breakage frequency is still a matter of debate.
Further, both the model of Coulaloglou and Tavlarides (1977) and
the model of Martínez-Bazán et al. (1999a,b, 2010) assume binary
breakage. As this assumption is possibly erroneous, other authors
have considered a different average number of daughters in their
model derivations, e.g. Konno et al. (1983) and Han et al. (2011,
2013, 2015). Of particular interest is the framework proposed by
Diemer and Olson (2002) which allows for any average number
of daughters, also non-integers. The main drawbacks of the frame-
work are the prediction of equal sized daughters, which might be
erroneous, and the need for fitting of model parameters to the
specific system in order to be volume and number conserving.

In the available frameworks, the average number of daughters,
m, needs to be known a priori in order to design the daughter size
distribution function, PDSD. The constraints on the daughter size
distribution function must satisfy the normality or number conser-
vation conditionZ Dm

0
PDSD Dm;Ddð ÞdDd ¼ 1 ð26Þ

I.e. all daughters exists in the interval 0;Dm½ �. Further, the breakage
yield redistribution function, h Dm;Ddð Þ ¼ mPDSD Dm;Ddð Þ, should be
volume conserving;Z Dm

0
D3

dh Dm;Ddð ÞdDd ¼ D3
m ð27Þ

which is mass conserving given constant density.
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2.4. Other models

Several adaptations of the model of Coulaloglou and Tavlarides
(1977)(e.g. Konno et al., 1983; Vankova et al., 2007; Maaß and
Kraume, 2012) and the model of Martínez-Bazán et al. (1999a,b,
2010)(e.g. Håkansson et al., 2009; Solsvik et al., 2013) exist. While
the models change parameters values, add some criteria for break-
age or otherwise modify the originally proposed models, they do
not change the concepts and breakage event definition. Thus, the
experimental data needed for validation of the original models
proposed by Coulaloglou and Tavlarides (1977) and Martínez-
Bazán et al. (1999a,b, 2010) may also be used for validation of
the adapted models.

Furthermore, another group of models within the PBM frame-
work exists. Instead of (1), the PBM is formulated considering sec-
tions of the internal coordinate, in what is often referred to
sectional models. Of particular relevance are the models proposed
by Luo and Svendsen (1996) and Andersson and Andersson
(2006b), and recently Xing et al. (2015) and Liao et al. (2018). Spe-
cial care should be taken as to what framework the models are
based on as the models are not directly interchangeable. While
the models are possible to reformulate, the procedure is not trivial.
Interested readers are referred to Lasheras et al. (2002), Mitre et al.
(2010) or Solsvik et al. (2013). However, the if more fundamental
form of the breakage frequency, b, average number of daughters,
m, and daughter size distribution PDSD are investigated experimen-
tally, the results can be used in validating models of both
frameworks.

Reviews of most of the available breakage models have been
published by Lasheras et al. (2002), Liao and Lucas (2009) and
Solsvik et al. (2013).

2.5. Coulaloglou and Tavlarides in the entire range of the turbulence
spectrum

Recently, some authors (e.g. Solsvik and Jakobsen, 2016a,b;
Solsvik et al. 2017; Karimi and Andersson, 2018, 2019) have pre-
sented methods to expand several models from only considering
the inertial subrange of turbulence, into considering the entire
range of the turbulence spectrum. This change in modeling of tur-
bulent stress is of critical importance when comparing model
results with experimental data, in particular when the droplet size
falls outside of the inertial subrange of turbulence.

Solsvik and Jakobsen (2016a) showed that the model of
Coulaloglou and Tavlarides (1977) could be expanded to consider
the full range of turbulence. First, they recognized that the expres-
sion for breakage time, (11), could be written as

tB Dmð Þ ¼ c4
Dmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

du2 Dmð Þ
q ð28Þ

Thus, the breakage time depends on the expression for the second
order longitudinal structure function. The expression for breakage
probability, (9), already depend on the second order longitudinal
structure function through (7). Similarly, the resulting expression
for breakage probability becomes

PB Dmð Þ ¼ exp � c5c
qdDmdu2 Dmð Þ

 !
ð29Þ

Thus, the expressions for breakage time and breakage probability,
and subsequently the breakage frequency, can be expanded to be
valid for the entire range of turbulence if the expression for the sec-
ond order longitudinal structure function is valid in the entire range
of turbulence. Such an expression can be given as, Solsvik and
Jakobsen (2016b),
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du2 Dmð Þ ¼ 4
3
k

D2
m

r2d þ D2
m

 !2=3

� 1� T1 Dmð Þ þ T2 T3 Dmð ÞT4 Dmð Þ � T5 Dmð Þð Þ½ �ð Þ ð30Þ
where k is the TKE and rd is given by

rd ¼ 15bð Þ3=4g ð31Þ
where b is the Kolmogorov constant and g ¼ m=�ð Þ1=4 is the Kol-
mogorov micro scale, in which m is the kinematic viscosity. The dif-
ferent Tn expressions are given as:

T1 Dmð Þ ¼ 2

s Dmð Þ½ �2
F �1

3

� �1
2

;
3
2

� ������ s Dmð Þ½ �2
4

 !
ð32Þ

T2 ¼ 33=2C
2
3

� �
ð33Þ

T3 Dmð Þ ¼ 27 � 21=3 s Dmð Þ½ �2=3C 2
3

� �
ð34Þ

T4 Dmð Þ ¼ 1
352p

F
7
3

� �11
6

;
17
6

� ������ s Dmð Þ½ �2
4

 !
ð35Þ

T5 Dmð Þ ¼ 22=3

2p s Dmð Þ½ �2=3
K4

3
s Dmð Þð Þ ð36Þ

in which F is the hypergeometric function, K is the Bessel function
and C is the gamma function. Further,

s Dmð Þ ¼ Dm= c�1=2
L L

� �
ð37Þ

where cL is a model parameter value which can be estimated from,
Solsvik (2017),

cL Rekð Þ ¼ exp �4:478þ 18:362b
Re1:075�0:070b

k

" #
� 1:913þ 2:169b ð38Þ

Finally, L ¼ k3=2

� is the integral length scale and Rek is the Taylor scale
Reynolds number given as;

Rek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
20
3

k2

�m

s
ð39Þ
3. Experimental setup and procedure

An experimental facility has been constructed to investigate
turbulent breakage of oil droplets in water, as previously described
in La Forgia et al. (2018) and Herøet al. (2019). The facility is con-
structed as a loop, as can be seen from Fig. 2. A pump (numbered 2
in the sketch) is placed downstream from a water tank (1) and
upstream of a droplet generation section 4. In the droplet genera-
tion section, a single oil droplet can be produced, which travels
downstream into the main test section (7), or breakage section.
In the end, the water and oil drop return to the tank, which also
serves as a gravity separator.

The breakage section consists of a square vertical channel in
which droplets may be observed by two cameras (6). To facilitate
this observation, the channel consists of two glass walls. The two
remaining walls have periodic rods in order to increase the turbu-
lence level. The channel itself is 1 m long and has a cross-sectional
area of 30 mm x 30 mm. The rods have a cross-sectional area of
3 mm x 3 mm and are placed every 10 mm in the channel. The
resulting flow pattern and turbulence level has been investigated
using laser doppler velocimetry in La Forgia et al. (2018). In the
8

droplet generation section, downstream of the breakage section,
single spherical 1-octanol (Sigma–Aldrich, product number
472328) droplets are generated from a glass cannula connected
to a syringe pump (5) of the type KDS Legato 180. The oil is dyed
with Sudan Black B (RAL Diagnostics) and the resulting properties
are density q ¼ 825 kg/m3, dynamic viscosity l ¼ 9:09 � 10�3 kg/
(m s) and interfacial tension c ¼ 8:20mN/m. The continuous phase
is clean reverse-osmosis water, where the water pump of type
MDL-0670 from SPX Flow Technology provides an area average
velocity of 1 m/s.

The two cameras are of the type Photron FASTCAM Mini AX100
540 K M3, which have a maximum resolution of 1024 x 1024, which
is only fully used in one direction. The two cameras record from
40 mm to 400 mm above the channel entry for a total section length
of 360 mm, i.e. the full channel length is not recorded. Further, the
two cameras are connected and synchronized in time. The resulting
images are overlapping in a small area and semi-automatically con-
verted to one image through MATLAB. The resolution gives the pixel
size as 0:175 mm by 0:175 mm, thus a drop at 1 mm diameter has
almost 6 pixels covering its diameter. Moving with a speed of 1 m/
s, the centroid of a drop moves 0.25 mm, or � 1:4 pixel side lengths,
between two frames. The cameras records at 4000 frames per second
and this high framerate is beneficial on several accounts. Firstly, the
accuracy of the determined breakage times is dependent on the
frame rate. Secondly, the average number of daughters and the
daughter size distribution in the initial breakage definition can only
be accurately determined at high framerates. Solsvik et al. (2016a)
showed that the number of daughters in the initial breakage defini-
tion was tending towards two for increasing framerate. However,
their setup did not allow for more than 1450 frames per second,
which was not enough to discern exactly two daughters per break-
age. Finally, post processing the images automatically is simpler
when the drops travel a short distance between the frames. There
is often a trade-off between the resolution selected and the framerate
of the camera. In the current study, the framerate at maximum res-
olution was considered sufficient for the accuracy required. At this
framerate, the initial breakage definition always results in two
daughters. Thus, the tradeoff between framerate and resolution has
not been further analyzed.

Three LED lamps, of the type Multiled LT-V9-15 by GS Vitec,
provide the illumination required. The lamps are run continuously,
i.e. not synchronized with the cameras. The light is diffused by opa-
que paper in order to obtain a more even light distribution.

The size of the droplet generated in the generation section is
dependent on cannula tip surface area and the continuous flow
past the cannula tip. Due to fluctuations in the latter, the droplets
are generated with some variation in their size. Such behavior has
previously been reported in comparable setups, e.g. Galinat et al.
(2005) and Maaß et al. (2009). Due to this fluctuation in size, it
was in the present work necessary to divide the experimental data
into four size groups based on the mother drop diameter after the
experiments have been performed. In this way, the impact of
mother drop size on breakage time, tB, breakage probability, PB,
average number of daughters, m, and the daughter size distribution
PDSD, can be investigated. As such, the standard deviation is not as
much an error as it is a measurement of how similar the grouped
drops are. As the smallest drop sizes are most difficult to produce
consistently, as well as the drops that have the lowest breakage
probability, this group is made with the largest size range. The
resulting mean diameter and number of events of each group can
be seen in Table 3. As the number of breakage events are different
in each mother drop size group, the impact of this number on the
statistical precision can be investigated. Furthermore, the number
of breakage events are comparable to the studies discussed in
Section 1.



Fig. 2. Schematic drawing of the experimental setup. 1. Water tank and phase separator, 2. water pump, 3. flow meter, 4. droplet generation section, 5. oil syringe pump, 6.
two cameras, 7. breakage section, 8. illumination.
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All events are interpreted through both initial breakage defini-
tion and cascade breakage definition, as outlined in the following
Sections 3.1 and 3.2. Thus, two sets of interpreted data are pro-
duced from the same experimental raw data. In order to discrimi-
nate between breakup in the center of the channel and the high
shear region near the walls, a region of wall breakage is defined
as drops breaking with their centroid within a horizontal distance
of 1:5 mm from the tip of a rod. The value of 1.5 mm is an estima-
tion based on two criteria. Mainly, a distance of 1.5 mm is 5% of the
channel width. Thus, the two regions, one on each side of the chan-
nel, cover a total of 10% of the channel. Additionally, a spherical
drop with its centroid at the 1.5 mm line would not touch the baf-
fle, unless the drop is 3 mm or larger in diameter. Drops of this size
is much larger than the biggest drops considered in this study. The
breakage events in this region are not included in the data, as the
number of events were too few and the impact of shear forces on
the breakage events cannot be discerned from that of the turbu-
lence level. When interpreting an event through the cascade break-
age definition some daughter drops may enter the wall breakage
region. In this case, any proceeding breakups of this particular
daughter are not considered to be part of the breakage event.
The event is otherwise interpreted following the proposed proce-
dure. Similarly, when a deformed daughter drop leave the field of
view, the breakage event is assumed to have ended for this
daughter.
3.1. Image analysis

The procedure for extracting data from high speed videos have
been described in detail by Herøet al. (2019). In this work, the pro-
cedure is employed with a minor modification in the determina-
tion of daughter drop sizes. This difference is described and
Table 3
Mother diameter with standard deviation and number of events investigated.

Mother diameter
[mm]

Total number of
events

Number of events with
breakage

1:0� 0:2 284 35
1:48� 0:08 379 115
1:87� 0:05 148 53
2:23� 0:06 154 83
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discussed further in Section 4.9, in which a short discussion on
the determination of the breakage event start is included. The pro-
cedure may be outlined as follows. Each frame of the high speed
video is subtracted an image in which there is no drop and the
resulting image is converted to a binary image by a gray-level
threshold. From the pixels of the binary image, the position, sizes
and number of drops in each image can be found. The procedure
is implemented and performed in MATLAB, requiring substantial
manual input.

The image analysis considers both the initial breakage defini-
tion and the cascade breakage definition. First, the start and end
instances of the breakage event must be determined;

� Breakage event start is when a spherical mother drop starts to
deform, and this deformation process is directly related to a
fragmentation of the drop.

� Breakage event end for the initial breakage definition is when
the mother drop fragments.

� Breakage event end for the cascade breakage definition is when
the final intermediary daughter fragments.

When these two instances are known for a breakage event, the
breakage time can be computed as the time period between them.
The number of daughters and their sizes are found at the breakage
end instance. The TDR level is assumed equal to that of the contin-
uous phase. This TDR level has previously been determined by
laser doppler velocimetry, see La Forgia et al. (2018), such that each
position of the channel is associated with a local turbulence level.
In the case of breakage, the TDR level is taken to be that of the posi-
tion at breakage start. Thus, it is assumed that a single turbulent
vortex-drop interaction is occurring at this position and time
instance. For the cases where the drop did not break, the TDR level
is taken as the maximum TDR level along the recorded drop path.

It is noted that, by the breakage event definitions applied in this
study, the breakage end instance is not an equilibrium state. Both
broken and unbroken drops may break, in new independent break-
age events, after leaving the test section.

As an example of the breakage definitions applied, Fig. 3 shows
an image sequence of a binary breakage, in which a mother drop is
broken into two unequal sized drops. In this case the end criteria of
the initial breakage definition and cascade breakage definitions
coincide, and subsequently the determined breakage time, daugh-
ter number and daughter sizes are equal.



Fig. 3. Binary breakup resulting in two daughters of different size. The mother drop was 0.91 mm in diameter.
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Conversely, Fig. 4 shows an example of a sequence of breakups.
The initial mother drop is deformed with a long thin thread
between two forming daughters, this thread later breaking up into
several small daughters. In turn, as the two breakage event defini-
tions differ in the interpretation of the end instance, the resulting
breakage time, daughter number and daughter size distribution
are different. It should be noted that the two definitions always
coincide with regard to the breakage probability.

For completeness, Fig. 5 shows an equal sized breakage, which
is a common outcome of the experiments. As above, the two break-
age definitions differ in the interpretation of the end instance. In
the interpretation according to the initial breakage definition, there
are two near equal sized droplets. In the cascade breakage defini-
tion, there are still two near equal sized daughters, but also an
additional small droplet.

3.2. Interpretation of image analysis data

After the individual videos have been analyzed, the breakage
time, tB, breakage probability, PB, average number of daughters,
m, and the daughter size distribution PDSD must be determined from
the resulting set of data. In this study, these values are determined
for each of the mother size groups seen in Table 3. The breakage
time is found as the average value of all the drops breaking, while
the breakage probability is determined from the fraction of drops
breaking to the total number of drops in the mother size group,
also those not breaking. Afterwards, the determined breakage time
and breakage probability values are combined to the breakage fre-
quency according to (4), i.e. the breakage frequency is not explic-
itly determined. The number of daughter particles are found as
the average number of daughters that are produced from the
breakage events of the corresponding mother drop size group.
Thus, in this procedure, the breakage time, the breakage probabil-
ity and the number of daughter particles are a single average value
for each mother drop size group. The procedure of obtaining the
daughter size distribution function from the experimental data
set is not immediately obvious. The first step is to approximate
the probability of a daughter appearing in a particular daughter
size range with a width of DVd;

DP�
DSD Vm;Vdð Þ ¼ Number of particles in range Vd � DVd=2; Vd þ DVd=2½ �

Total number of particles in range 0; Vm½ �
ð40Þ
Fig. 4. Breakup resulting several daughters after cascading
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Following this procedure, the discrete variable DP�
DSD Vm;Vdð Þ should

sum to one. In order to fulfill the constraints in Section 2.3, (40)
must be divided by the daughter size range, DVd to obtain another
discrete function, DP0DSD Vm;Vdð Þ;

DP0DSD Vm;Vdð Þ ¼ DP�
DSD Vm;Vdð Þ � 1

DVd
ð41Þ

Finally, a continuous function should be fitted to the discrete
DP0DSD Vm;Vdð Þ values to obtain a continuous PDSD Vm;Vdð Þ. It follows
that to compare (40) directly with a PDSD, e.g. a PDSD computed from
a model, the PDSD must be multiplied by DVd. Here, and for the rest
of this work, the daughter size distribution is considered by volume
instead of diameter for two reasons. Firstly, the shape of the daugh-
ter size distribution is in the literature generally discussed on vol-
ume form. Secondly, daughter size distributions by volume are
significantly more intuitive. Two drops each at 50% of the volume
of the mother drop, would correspond two drops both at � 80%
of the diameter of the mother drop. If the daughter size distribution
function is desired as a function of diameter, it may be obtained
through the fundamental relation given by:

PDSD Dm;Ddð Þ dD ¼ PDSD Vm;Vdð Þ dV ð42Þ
which is given in e.g. Martínez-Bazán et al. (2010).

3.3. Statistical data treatment

The state of the art single fluid particle experiments are relying
on manual and often extremely time consuming approaches. Thus,
the statistical treatment of the different parameters are of critical
importance. Historically, statistic relevance are attributed experi-
mental investigations with a high number of repetitions, e.g.
Maaß and Kraume (2012). Obviously, larger data sets provides an
increased precision in the estimates of the quantity investigated,
yet this precision is seldom quantified. While the standard devia-
tion provide much information of the nature of the experimental
data, models and their validation rely on the statistical mean val-
ues. The true mean can be more accurately described by specifying
a suitable confidence interval. Moreover, the statistical treatment
of the data is seldom discussed in previous works, thus the inter-
pretation of error bars and uncertainties are not clear.

In the following procedure, all of the parameters that the esti-
mated quantities may depend on are assumed constant. The
breakages. The mother drop was 0.89 mm in diameter.



Fig. 5. Breakup sequence resulting two near equal sized daughters and a small drop. The mother drop was 0.99 mm in diameter.
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mother drop size, the turbulence level, the interfacial tension, etc.,
are considered constant for each mother drop size group. The con-
cepts applied can be found in text books on experimental statistics
(e.g., Box et al., 2005; Wheeler and Ganji, 2010). Breakage time and
the average number of daughter drops are average values, thus the
mean, �x, and standard deviation, S, of the data sets may be calcu-
lated through the well known relations:

�x ¼

XN
i¼1

xi

N
ð43Þ
S ¼

XN
i¼1

xi � �xð Þ2

N � 1

0BBBB@
1CCCCA

1=2

ð44Þ

in which xi is the value determined in each individual experiment
and N is the number of experiments with breakage events. The
mean can be assumed to be randomly sampled and belong to a nor-
mal distribution of means. That is, the raw data itself may not be
normally distributed, but the mean value is assumed to be normally
distributed. If the standard deviation in the raw data, often denoted
r, is approximated as S, the standard deviation of the distribution of
means are given by Sffiffiffi

N
p . Finally, the 1� a confidence interval can be

found as

l ¼ �x� za=2
Sffiffiffiffi
N

p ð45Þ

In which l is the true mean value and za=2 is a constant denoting
the size of the confidence interval. In a two sided 95%-confidence
interval the value of za=2 is z2:5 ¼ 1:96. In other words, the 95%
confidence interval limits, denoted x, can be computed according
to

x ¼ �z2:5
Sffiffiffiffi
N

p ð46Þ

Breakage probability is a binomial distribution as each experi-
ment is either breaking or not. The mean of a binomial distribution

is l ¼ NbP and the standard deviation is

r ¼
ffiffiffiffiffiffiffiffiffiffiffi
NbPQq

ð47Þ

in which N is the number of experiments, including those without

breakage events, bP is the true probability of breakage occurring

and Q ¼ bP � 1 is the probability of no breakage. At large N and

when bP is not near either of the extrema 0 or 1, the binomial distri-
bution may be approximated by a normal distribution. Assuming
that the calculated experimental probability P� can be used as an

estimate of the true probability bP in the standard deviation, the con-
11
fidence interval of the true number of drops breaking, DNB, can be
given as

DNB ¼ NP� � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NP� 1� P�ð Þ

p ffiffiffiffi
N

p ð48Þ

which, divided by N yields the confidence interval of the breakage
probability;

bP ¼ P� � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� 1� P�ð Þp

N
ð49Þ

Thus, the probability estimate is computed as

P� ¼ Number of favorable outcomes
Total number of experiments

ð50Þ

and the 95% confidence interval limits as

xP� ¼ �z2:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P� 1� P�ð Þp

N
ð51Þ

The estimated breakage frequency can be determined according
to (4) by the use of the mean value for breakage time and the esti-
mated breakage probability:

�b ¼ 1
tB
P� ð52Þ

Then, the 95% confidence interval limits can be determined from the
confidence interval limits of both the breakage time and the break-
age probability. Denoting the interval limits as x, the expression
becomes:

xb

�b
¼ xtB

tB

� �2

þ xP�

P�
� �2" #1=2

ð53Þ

Investigating the daughter size distribution function can be
done in the same way as the breakage probability. If each daughter
size range is considered individually, then the probability that a
daughter will appear in the considered daughter size range is bino-
mial. Thus, (50) and (51) can be applied to the results from (40). In
this procedure, the sample size N is the number of observed
daughters.

In summation, the average breakage time and average number
of daughters are computed according to (43), while the standard
deviation is computed according to (44). Finally, the confidence
interval limits are computed according to (46). The breakage prob-
ability and the probability of a daughter appearing in each of the
daughter size ranges are computed according to (50), with confi-
dence intervals computed from (51).

4. Results and discussion

4.1. Turbulent quantities

As discussed in Section 3, each experimental run must be asso-
ciated with the local TDR level in order to validate the model con-



Table 4
TDR level and standard deviation associated with the droplet size groups. The area
average velocity of the continuous phase is 1 m/s.

Mother Drop TDR TDR Breaking TDR Not Breaking
Diameter [mm] [m2/s3] [m2/s3] [m2/s3]

1.0 � 0.2 0.2 � 0.1 0.19 � 0.09 0.2 � 0.1
1.48 � 0.08 0.1 � 0.1 0.14 � 0.09 0.1 � 0.1
1.87 � 0.05 0.10 � 0.07 0.09 � 0.08 0.10 � 0.07
2.23 � 0.06 0.09 � 0.08 0.06 � 0.07 0.12 � 0.09

Table 5
TKE level and standard deviation associated with the droplet size groups. The area
average velocity of the continuous phase is 1 m/s.

Mother Drop TKE TKE Breaking TKE Not Breaking
Diameter [mm] [m2/s2] [m2/s2] [m2/s2]

1.0 � 0.2 0.02 � 0.01 0.024 � 0.009 0.02 � 0.01
1.48 � 0.08 0.02 � 0.01 0.02 � 0.01 0.02 � 0.01
1.87 � 0.05 0.016 � 0.007 0.015 � 0.009 0.016 � 0.008
2.23 � 0.06 0.01 � 0.01 0.010 � 0.008 0.019 � 0.01

Table 6
TDR level and TKE level, both with 95% confidence intervals. The area average
velocity of the continuous phase is 1 m/s.

Mother Drop TDR TKE
Diameter [mm] [m2/s3] [m2/s2]

1.0 � 0.2 0.15 � 0.03 0.022 � 0.004
1.48 � 0.08 0.13 � 0.02 0.020 � 0.002
1.87 � 0.05 0.10 � 0.02 0.016 � 0.002
2.23 � 0.06 0.09 � 0.02 0.014 � 0.002
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cepts. With the continuous phase area average velocity of 1 m/s,
the corresponding TDR characteristic for the mother drop diameter
groups, as defined in Table 3, are given in Table 4. Table 4 classifies
the TDR level into average of all events, the average of breakage
events and the average of events where the drops are not breaking.
It can be seen that, within each mother drop size group, the TDR
level associated with the breaking drops are comparable to the
TDR level associated with non-breaking. Thus, the average TDR
level of all events within each mother drop size group are hereafter
taken as representative values of the TDR level for the entire group.
It should be noted that the largest mother size group has the lar-
gest difference in the associated TDR level with breaking and
non-breaking drops. The TKE level, found through the same proce-
dure as the TDR level, can be seen in Table 5.

When comparing with models the average turbulence charac-
teristics of each group is of interest, which should be at the highest
precision available. Thus, (46) have been employed on the TDR
level and the TKE level to obtain the average values and confidence
intervals shown in Table 6. While the experimental conditions are
clearer shown in Table 4 and Table 5, the values shown in Table 6
are better suited for comparison with models. The increased preci-
sion allows to discriminate between the value of 0.15 or 0.2, etc.,
which lead to significantly different model results.

To investigate the turbulent stress, rt , compared to the surface
restoring stress, rs, a Weber number, i.e. a dimensionless group,
may be defined as;

We ¼ rt

rs
ð54Þ

in which the turbulent stress may be approximated through the

second order structure function, du2, as:

rt 	 qcdu2 Dmð Þ ð55Þ
where qc is the continuous phase density. In the inertial subrange of
turbulence the second order structure function can be approxi-
mated through the relation:

du2 Dmð Þ 	 b �Dmð Þ2=3 ð56Þ
where b ¼ 2. To account for the entire range of turbulence, the sec-
ond order structure function may instead be approximated by the
expression (30) presented in Section 2.5. Finally, the surface restor-
ing stress can be defined as

rs ¼ c=Dm ð57Þ
where c is the interfacial tension. The Weber numbers of each
mother drop size group, as presented in Table 3, are shown in
Table 7, which considers both the inertial range and the entire spec-
trum of turbulence. To compute the entire spectrum as described by
Solsvik and Jakobsen (2016a) the TKE is needed, as shown in Table 6.
As can be seen from Table 7, the two procedures for determining the
turbulent stress results in relatively similar Weber numbers in the
current setup. Thus, it is likely that the drop sizes are close to the
inertial subrange of turbulence.

Considering that there are breakage events in each mother drop
size group, see Table 3, it can be seen that there are breakages for
Weber numbers below 1. Some models, like that of Martínez-
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Bazán et al. (1999a,b, 2010) in Section 2.2, predict no breakage in
this case. Thus, it is not possible to compare the model prediction
of the breakage time, tB, the breakage probability, PB, the average
number of daughters, m, and the daughter size distribution PDSD

with the experimental results. It is noted that the model of
Martínez-Bazán et al. (1999a,b, 2010) is developed considering
very high TDR levels, in the region of 100� 3000 m2/s3. Thus, it
is not unexpected that the model does not accurately predict
breakage behavior in the low turbulence level of this study. Never-
theless, the data presented in Table 7 show that breakage takes
place also when We < 1. Hence, a breakage model for these fluid
and flow conditions should also predict this outcome.

It is noted that investigations of the Weber number should be
considered an order of magnitude analysis and not an exact limit.
I.e., at large Weber numbers breakage is likely to be prominent,
while less common for lowWeber numbers. It does not follow that
no breakage occurs for We < 1. This can be further illustrated by
considering that the expressions for rt and rs given above are
not universal. As an example, the expression for rs could have a
prefactor of 1, 2, 4 or 6 depending on the derivation, see e.g.
Solsvik et al. (2013).

The continuous phase turbulence characteristics are time aver-
aged in this analysis. Thus, the real dynamic interaction between
the drop and the turbulent vortex is lost. In transient flows, the
TDR level and TKE level experience fluctuations that may be rela-
tively large. In turn, the turbulence level causing breakup may be
higher than the averaged values reported in this article. However,
experimental investigations of the actual dynamic turbulence-
droplet interactions are extremely challenging. An option may be
to employ direct numerical simulations, as suggested by
Andersson and Helmi (2014). Nevertheless, determining the break-
age frequency, b, the average number of daughters, m, and daughter
size distribution, PDSD, based on the local time average turbulence
characteristics are certainly of value for development and valida-
tion of CFD-PBE simulations. Especially as commonly employed
turbulence models, such as Reynolds Averaged Navier–Stokes
models, determine time averaged turbulence characteristics. Even
with the use of Unsteady Reynolds Averaged Navier–Stokes, the
turbulence characteristics are averaged over some time period.

It is noted that the standard deviation within each group of tur-
bulence level in Table 6 is large, thus uncertainty is introduced
when employing the average value as the turbulence level. This
uncertainty is likely also present in previous experimental studies,
where the average TDR level of a finite volume is taken as the tur-
bulence level of all experiments. It is further noted that some



Table 7
Turbulent Weber number associated with the droplet size groups.

Mother drop diameter [mm] 1.0 1.48 1.87 2.23
We - Inertial Range 0.34 0.60 0.75 0.93
We - Entire Spectrum 0.35 0.68 0.84 1.04

Table 8
Selected cascade breakage times taken from regressional fit of the data in Solsvik and
Jakobsen (2015).

Mother drop diameter 1 mm 1:5 mm 2 mm
Petroleum � 10 ms � 20 ms � 35 ms
Octanol � 20 ms � 40 ms � 60 ms
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authors, e.g. Foroushan and Jakobsen (2020), have investigated the
breakage phenomenon through an instability analysis. That is,
instead of considering a single turbulent vortex-droplet interac-
tion, the breakage event is considered to be due to a series of inter-
actions. While this treatment leads to an increased complexity, it
might be the correct interpretation of the turbulence-droplet inter-
action. If that is the case, the determined turbulence characteristics
in this study might not be sufficient to explain the relation
between the turbulence level and the breakage phenomenon.
4.2. Breakage time

Only a limited number of experimental single droplet studies
report breakage time, tB, fewer yet investigate the impact of
mother drop size, Dm. Currently, the effect of mother drop size
on average breakage time is not sufficiently validated by single
drop experiments. A selection of representative values from the
study of Solsvik and Jakobsen (2015) are presented in Table 8. In
their investigation of breakup in a stirred tank, they found that,
for a given stirrer speed and oil, the breakage time is increasing
with increasing mother drop size. This trend is consistent with
the models presented in Section 2. On the other hand, when
Maaß and Kraume (2012) investigated channel flow around a stir-
rer blade, they did not observe a clear trend. Some representative
values from the latter study are given in Table 9. Interestingly, they
found that the longest average breakage times were for the small-
est drop sizes, contrary to the model concepts in Section 2 and to
the results of Solsvik and Jakobsen (2015). Maaß and Kraume
(2012) employed the initial breakage definition with a slight mod-
ification. In their procedure, the breakage event start instance was
taken as the instance of the drop passing the stirrer blade. How-
ever, this instance does not necessarily correspond to the instance
of the beginning of a breakage, see Section 3.1. Due to a recirculat-
ing flow pattern behind the stirrer blade, a drop could pass the stir-
rer blade and stay spherical, before breaking at a later time
instance. Maaß and Kraume (2012) recognized the weakness
themselves. Based on the interpreted videos, it was stated the phe-
nomenon of recirculating drops was more frequent in experiments
on the smallest drop sizes, which was given as the explanation for
why the smallest drop sizes had the longest average breakage
times. Maaß and Kraume (2012) claimed that the distribution of
breakage time was a b-distribution. Thus, the problem of the aver-
age value being saturated by long breakage time was avoided by
utilizing the peak of the b-distribution as the breakage time mea-
surement. This breakage time estimate did follow the trend of
increasing breakage time with increasing mother drop size. In
summary, there is a general belief that, for a given system, an
increase in mother drop size should increase the breakage time.
As noted in Section 1, it is challenging with direct and quantitative
comparison between different experimental studies due to differ-
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ences in the experimental setup, such as flow condition, dispersed
phase and breakage event definition.

In this study, the average breakage time of each mother drop
group, see Table 3, has been determined for both the initial break-
age definition and the cascade breakage definition. The results are
shown in Fig. 6 and Fig. 7, respectively. As expected, due to the cas-
cade breakage definition including the time after the initial break-
age definition, the cascade breakage times are significantly longer
than the initial breakage times.

By both the breakage event definitions, the average breakage
time show a trend of increasing breakage time with increasing
mother drop diameter. This is consistent with the cascade break-
age results of Solsvik and Jakobsen (2015), although the breakage
times of this study are longer. The difference in the determined
breakage time may be dependent on mainly two factors. First,
the discrepancy with the petroleum results may be partly due to
different system properties when working with different oils. Sec-
ondly, Solsvik and Jakobsen (2015) used a stirrer with an volume
average TDR level at 1 m2/s3, which is higher than the values seen
in Table 6 by a factor of approximately 5 to 10. Additionally, the
TDR level in the breakup region near the impeller blade is likely
much higher than 1 m2/s3 (Solsvik and Jakobsen, 2015), as the
TDR level is not uniform in the stirrer. Thus, some of the difference
may be due to the turbulent intensity of the setup in this study
being significantly lower than that of Solsvik and Jakobsen
(2015). This may have an impact on the results, as it is likely that
the breakage time decreases with increasing turbulence levels, as
shown by e.g. Andersson and Andersson (2006a) and consistent
with (11) and (20) of Section 2.

In order to compare the model of Coulaloglou and Tavlarides
(1977) with the experimental results of this study, (11) is com-
puted. First, the mother drop size and TDR level is taken from
Table 6. Then, the parameter c2 is fitted to a linear equation, with
the constant term set to zero. The procedure is performed in
MATLAB by using the fit function and the ”poly1” method. This
yields the value of c2 as 1.54 when employing the initial breakage
definition. This is close to the value determined by Maaß and
Kraume (2012), who found the value of c2 to be � 1:1. Their break-
age definition was similar to the initial breakage definition. When
employing the cascade breakage definition instead, the value of c2
was found to be 2.39. Coulaloglou and Tavlarides (1977) found the
original value of c2 to be � 2:98, when comparing with data from
dense dispersion experiments. As such, neither of the parameter
values are very different from previously determined values.

Additionally, the data is compared to the Coulaloglou and
Tavlarides model adaption of Solsvik and Jakobsen (2016a), which
is valid for the entire range of turbulence. Fitting the parameter c4
in (28) using the same procedure as described above, yields the
values of c4 as 2.30 and 3.57 for the initial and cascade breakage
definitions, respectively. The value of c4 is determined experimen-
tally for the first time. However, Solsvik and Jakobsen (2016a)
showed that the value of c4 is not equal to the value of c2, which
is in line with the present results.

From the Fig. 6 it can be seen that the predictions of the model
of Coulaloglou and Tavlarides (1977) and the model adaption of
Solsvik and Jakobsen (2016a), plotted as triangles and circles
respectively, are very similar. Additionally, the model predictions
are in reasonable agreement with the experimentally determined
initial breakage time. However, the predicted breakage time of
the largest mother drop size group is significantly lower than the
average value of the experimental results. While the predicted
breakage time is within the standard deviation, it is outside the
95% confidence interval. This mother drop size group had a large
difference in the turbulence level associated with breakage events
and non breakage events. Thus, it is possible that the discrepancy
between model prediction and experimental value of the largest



Table 9
Selected average breakage times from Maaß and Kraume (2012).

Mother drop diameter 0:65 mm 1:0 mm 2:0 mm 3:0 mm

Toluene 19:7 ms 12:4 ms 14:3 ms 16:1 ms
Mother drop diameter 0:535 mm 1:0 mm 1:9 mm 3:1 mm
Petroleum 34:0 ms 16:0 ms 13:9 ms 16:6 ms

Fig. 6. Average breakage time considering the initial breakage definition plotted
with 95%-confidence interval in blue and standard deviation in red. The confidence
interval is computed according to (46). The model predictions are computed using
(11) by Coulaloglou and Tavlarides (1977) and (28) by Solsvik and Jakobsen
(2016a). BT denotes model predictions utilizing the turbulence associated with
breakage events only.

Fig. 7. Average breakage time considering the cascade breakage definition plotted
with 95%-confidence interval in blue and standard deviation in red. The confidence
interval is computed according to (46). The model predictions are computed using
(11) by Coulaloglou and Tavlarides (1977) and (28) by Solsvik and Jakobsen
(2016a). BT denotes model predictions utilizing the turbulence associated with
breakage events only.
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mother drop size group is partly due to the procedure employed
when associating turbulence level with the mother drop size
groups. In light of this, an additional model fitting is performed
in which the turbulence level associated with breakage events only
is employed, instead of the average turbulence level of all events.
As such, different values for c2 and c4 are obtained. Considering
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the initial breakage definition values, the value of c2 is found to
be 1.46 and the value of c4 is 2.15. The resulting model predictions
are plotted as squares and exes in Fig. 6. As can be seen from the
figure, this provides a much better fit to every point on the graph.

For the breakage time determined considering the cascade
breakage definition, Fig. 7, the predictions of the model of
Coulaloglou and Tavlarides (1977) and the model adaption of
Solsvik and Jakobsen (2016a) are plotted as triangles and circles.
It can be seen from the figure that the model predictions are sim-
ilar to each other. However, the model predictions are in general
less accurate than for the initial breakage time, as seen in Fig. 6.
In the same procedure as above, the model parameters are fitted
to the turbulence level associated with the breakage events only.
The following model predictions are plotted as squares and exes.
It can be seen from the figure, that these model predictions repre-
sent a better parameter estimation. In this procedure, the value of
c2 is determined to be 2.26 and the value of c4 is found to be 3.35.

Unfortunately, it is not clear how the turbulence level associ-
ated with the breakage events only can be associated with the
breakage probability. The determination of breakage probability
requires consideration of both the events with breakage and the
events in which breakage does not occur. While it is intuitive that
the breakage time is dependent on the turbulence level causing
breakage, a consistent model for the breakage frequency uses only
one turbulence level, i.e. the same turbulence value for both break-
age time and breakage probability. Thus, the turbulence level asso-
ciated with the breakage events only is not further employed in
this study. The good fit obtained when parameter fitting with this
turbulence level may be an indication of a need for improvement of
the procedure, which may warrant further study.
4.3. Breakage probability

The breakage probabilities determined from (50) are shown in
Fig. 8, with the 95%-confidence interval included in red. The stan-
dard deviation from (47) is not shown, as the breakage probability
is determined from the number of drops breaking divided by the
number of experiments. Thus, the standard deviation does not pro-
vide additional insight into the probability investigated. As can be
seen from Fig. 8, the breakage probability is increasing monoto-
nously with droplet diameter. This general trend is in agreement
with previous experimental investigations. Both Galinat et al.
(2005, 2007), for an orifice flow, and Ashar et al. (2018), for a stir-
red tank, showed that there exists a critical Weber number below
which there is no breakage and that the probability increases
monotonously with increasing Weber number. In their experimen-
tal setups, increasing the Weber number translates to either
increasing the diameter of the mother drop or increasing the aver-
age flow conditions, i.e. continuous phase volume flow or stirrer
speed. Maaß and Kraume (2012) reported the same trend; for pet-
roleum the breakage probability was � 0:55 and � 0:8 for mother
drop diameter of 1 mm and 2 mm, respectively, while the breakage
probabilities for toluene drops of the same size were � 0:6 and
� 0:75.

The predicted breakage probability of the models of Coulaloglou
and Tavlarides (1977), given by (9), and Solsvik and Jakobsen
(2016a), given by (29), is also shown in Fig. 8. Following the same



Fig. 8. Breakage probability plotted in blue. The 95%-confidence interval, computed
according to (49), is plotted in red. The model predictions are computed using (9) by
Coulaloglou and Tavlarides (1977) and (29) by Solsvik and Jakobsen (2016a).
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procedure as in the previous section, the parameter c1 is fitted in
MATLAB, yielding the value 0.59. Previously, Maaß and Kraume
(2012) found the value of c1 to be 0.39, while Coulaloglou and
Tavlarides (1977) found the value to be 0.106. The fitted value of
c5 in (29) is 1.25. The value of c5 is determined experimentally
for the first time. However, Solsvik and Jakobsen (2016a) showed
that the value of c5 is not equal to the value of c1. It can be seen
from Fig. 8 that the model predictions are reasonable for the two
smallest mother drop sizes, but less accurate for the two largest
ones. The reason for this behavior is not clear.
Fig. 9. Breakage frequency, computed using (52), plotted with an estimated 95%-
confidence interval, computed using (53). ‘‘IB definition” and ‘‘CB definition”
denotes the breakage frequency determined with breakage time from the initial
breakage definition and the cascade breakage definition, respectively. The model
predictions are computed using (12) by Coulaloglou and Tavlarides (1977), denoted
as ”Original C&T”, and according to the procedure of Solsvik and Jakobsen (2016a),
as presented in 2.5, denoted as ‘‘Ent. Range of Turb.”.
4.4. Breakage frequency function

Even though the breakage frequency, b, is what is used in mod-
eling the breakage death and breakage birth terms of the PBE, the
only single droplet study previously investigating this value is the
study by Maaß and Kraume (2012). In general, their results sug-
gests that when increasing the mother drop size, the breakage fre-
quency trends to rapidly increase at first, before going through a
maximum value and slowly decrease. This was assumed to happen
under the same turbulence conditions. Some representative break-
age frequency values from the study by Maaß and Kraume (2012)
are � 175 s�1 and � 75 s�1 for toluene mother drop sizes of 1 mm
and 2 mm, respectively, and for petroleum the breakage frequency
was determined as � 120 s�1 and � 80 s�1.

The breakage frequency estimated in this study, computed
using (52), can be seen in Fig. 9. Compared to that of Maaß and
Kraume (2012), the breakage frequency is significantly lower.
Which is expected, as the breakage time of this study is longer, Sec-
tion 4.2, and the breakage probability is lower, Section 4.3. This can
likely be attributed to the different flow conditions and fluid prop-
erties employed in this study.

From Fig. 9 it can also be seen that the breakage frequency
based on the cascade breakage time is lower than the frequency
based on the initial breakage time, which is due to the cascade
breakage time by definition being larger than the initial breakage
time. Furthermore, it appears that the breakage frequency is
increasing at first, before it stabilizes or slightly declines, which
in turn is a similar to the trend reported by Maaß and Kraume
(2012). Considering the initial breakage definition, the experimen-
tal results are also in reasonable agreement with the model predic-
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tions of Coulaloglou and Tavlarides (1977) and the model
predictions of Solsvik and Jakobsen (2016a).

Although the breakage time and breakage probability estimates
of the largest mother drop size group was both predicted inaccu-
rately, the breakage frequency of this size group is well predicted.
Of course, this may be a coincidence. Nevertheless, the different
experimental breakage frequency data are well predicted by the
models. A possible reason for the high accuracy is the association
of the local turbulence level with the breakage event instead of a
volume average approach. From the data based on the local turbu-
lence level approach, the disruptive turbulent force is accurately
modeled and the resulting model prediction is close to the mea-
sured values. This result highlights the importance of associating
the turbulence level with local values, even for a low gradient sys-
tem as employed in this study.

4.5. Average number of daughters

Similarly to the breakage time, the average number of daughter
drops produced from a breakage event, m, is significantly depen-
dent on the breakage definition employed. In the current study,
the number of daughters for the initial breakage definition was
always determined to be two. I.e. due to the high frame rate used
in the experiments, it was always possible to identify a frame in
which a drop was broken into two daughters, before possibly con-
tinuing the breakage process. Solsvik et al. (2016a) suggested that
the number of daughters of the initial breakage would tend to two
as the framerate increased, which appears to be supported by the
data presented in this work.

In the cascade breakage definition the average number of
daughters depend on the mother drop diameter, as seen in
Fig. 10. Both the average number of daughters and the standard
deviation is increasing with increasing mother drop diameter.
Interestingly, the number is significantly larger than the binary
outcome determined from the initial breakage definition, even
for the smallest mother drop diameters. The trend of this study
correspond to that of the previous investigations of Galinat et al.
(2005, 2007) and Ashar et al. (2018). Even though these authors
report significantly higher turbulence levels in their setups,
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Galinat et al. (2005, 2007) found the average number daughters to
be � 3 to � 8 and Ashar et al. (2018) found it to be � 3 to � 7.
Galinat et al. (2005) also reported a high standard deviation, which
is increasing with increasing mother drop size.

In the models available in the literature, the average number of
daughter drops produced upon breakage is a constant which must
be given before any simulations are performed. While the binary
breakage assumption appears to hold for the initial breakage
framework, it does not hold for the cascade breakage framework.
If the cascade breakage definition is advantageous in order to
describe the breakage phenomenon, then the breakage models
should determine the average number of daughters as a function
dependent on the mother drop size, the local flow conditions and
the system properties. Additionally, the models should be able to
predict non-integer values for average number of daughters.

The underlying probability distribution of daughter numbers is
of interest in order to elucidate the resulting average number of
daughters and the high standard deviation. Fig. 11 shows the prob-
ability of daughter number for each mother drop diameter. For the
smallest mother drop diameter binary, tertiary and quaternary
breakage are the most frequent outcome and there are no events
of seven or more daughters. As the mother drop increases, cases
with higher number of daughters appear and the curve is flattened
while binary and tertiary breakage are still the most common out-
come of any breakage event. The same trends, i.e. distribution of
daughter number dependent on mother drop size, are previously
reported by Solsvik and Jakobsen (2015) and Solsvik et al.
(2016a). In those studies, all but the smallest drop sizes have an
even distribution in the range 2 to 11 daughter drops.

4.6. Daughter size distribution

In contrast to the breakage frequency and the daughter number,
the daughter size distribution function is not only an average
value, but a function for each mother drop size. The shape of the
daughter size distribution is usually considered from a theoretical
point of view with the assumption of binary breakage. Depending
the strategy employed in model derivation, the daughter size dis-
tribution can be considered to have a variety of shapes. Considered
on volume form, some of the common shapes include bell-, U-,
bimodal- or uniformly-shaped. The discussion of the shape is sig-
nificantly influenced by the binary breakage assumption and few
alternative formulations exists. One alternative is the model by
Fig. 10. Cascade breakage average number of daughters with a 95%-confidence
interval in blue, computed using (46), and standard deviation in red.
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Diemer and Olson (2002), in which any average number of daugh-
ters is possible and the daughters are most likely to be near equal
in size. Other models have been proposed by Han et al. (2011,
2013, 2015) and Solsvik et al. (2016b), in which the daughter num-
ber may be 2, 3 or 4. Also for these models, the daughters are most
likely to be near equal in size.

As with the breakage time and average number of daughters,
the choice of breakage definition greatly impacts the experimen-
tally determined daughter size distribution. First, the initial break-
age definition is considered, and the resulting daughter size
distributions, calculated according to (40), is shown in Fig. 12.
The smallest mother drop size group, Fig. 12a has the highest like-
lihood of equal breakage, but otherwise a near uniform distribu-
tion. Then the two middle size groups, Fig. 12b and c, have
nearly uniform distributions. Finally, the largest mother drop size
group, Fig. 12d, show that it is more likely with a small and a large
drop, i.e. a U-shape. Generalized, the trend in the daughter size dis-
tribution, as the mother drop size increases, appears to be a uni-
form distribution with a weak preference of equal breakage, then
a uniform distribution before eventually obtaining a relatively
small preference for the U-shape. Also from the Fig. 12, it can be
seen that for every mother drop size group there is no daughter
size that is not apparent. The biggest difference is found for the
U-shape of the largest mother drop size group, Fig. 12d, where
the least common outcome is � 6% and the most common out-
come is � 19%.

The model predictions from (14) by Coulaloglou and Tavlarides
(1977) are included in the Fig. 12 for completeness. According to
the procedure in Section 3.2, the model predicted daughter size
distribution function is computed from (41). The model framework
assumes two daughters, which coincides with the experimental
results. However, the assumption of equal sized breakage dominat-
ing is not accurate. While equal sized breakage obviously is present
to obtain a uniform distribution, it is not more frequent than
unequal sized breakage. As such, the model is not accurately pre-
dicting any of the experimentally determined distributions. The
best fit is obtained for the shape of the smallest mother drop size
group and becomes worse for increasing mother drop size. This
behavior is expected based on the discussion above.

The resulting daughter size distributions of the cascade break-
age definition, Fig. 13, are very different from the initial breakage
definition. For each mother drop size group, there is a large prob-
ability of obtaining the smallest class of drops. This probability is
the lowest for the smallest mother drop size group and increases
as the mother drop size increases, which is also related to an
increase in the average number of daughters. Such a large probabil-
ity of small drops are previously not reported in literature(e.g.
Galinat et al., 2005, 2007; Maaß et al., 2007). From the investigated
videos, it appears that breaking drops often deforms into a dumb-
bell shape, with two soon-to-be daughter drops connected by a
thin thread. As the breakup progresses, this results in two larger
drops and a number of smaller drops originating from the thread.
In some cases, the larger daughter drops undergo the process
again, yielding even more small drops.

As for the initial breakage definition, the model predictions
from (14) by Coulaloglou and Tavlarides (1977) are included in
the Fig. 13. For the cascade breakage definition, the discrepancy
between the assumed binary breakage of the model and the exper-
imental data is large. As such, the model fails to predict the exper-
imental data. This is due to the small size of many of the daughter
drops, which is considered unlikely to be produced by the model
prediction. Thus, a different breakage model is needed to deter-
mine the daughter size distribution function in the cascade break-
age event definition. Currently, there are no existing models that
predict multiple unequal sized breakage events. However, such a
model is needed in order to predict the current experimental data.



Fig. 11. Distribution of number of daughters in the cascade breakage definition.

Fig. 12. Daughter size distributions, calculated according to (40) and utilizing the initial breakage definition. Confidence interval calculated from (51). The model predictions
are computed from (14) by Coulaloglou and Tavlarides (1977), in accordance with (41).
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Fig. 13. Daughter size distributions, calculated according to (40) and utilizing the cascade breakage definition. Confidence interval calculated from (51). The model
predictions are computed from (14) by Coulaloglou and Tavlarides (1977), in accordance with (41).
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Neither the initial breakage definition, nor the cascade breakage
definition has one general daughter size distribution curve valid for
all of the mother drop size groups. Considering the cascade break-
age definition the probability of the smallest drops is increasing
significantly with increasing mother drop size. Which is obvious
considering that the average number of daughters is increasing sig-
nificantly, thus the number of smaller drops increase simultane-
ously. Contrary to these experimental data, breakage models give
the shape of the daughter size distribution before any simulations
are performed. However, the shape of the daughter size distribu-
tion is likely dependent on the mother drop size, the local flow
conditions and the system properties. A predictive breakage model
should account for these dependencies.

It is noted that the currently employed procedure for determin-
ing the daughter size distribution is different from previous inves-
tigations. Maaß et al. (2007) grouped the breakage events by the
number of daughters produced upon breakage. As such, one
daughter size distribution function is determined for binary break-
age, one for tertiary breakage, and so on. Thus, Maaß et al. (2007)
obtained unique daughter size distribution functions for each inte-
ger value of the average number of daughters. This approach could
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be used to validate models such as Han et al. (2011, 2013, 2015),
where unique equal size daughter size distribution functions are
available for the average number of daughters as 2, 3 or 4. How-
ever, for a given system, different daughter numbers and sizes
may be the outcome of different breakage events, i.e. there is a
presence of binary breakage, tertiary breakage, quartary breakage
and so on, each with a different daughter size distribution. It is
not clear how the different daughter size distribution functions
of Maaß et al. (2007) should be combined to obtain the daughter
size distribution function corresponding to the average number
of daughters.

In the present study, all daughter drops produced from break-
age events of the given mother drop size group is considered col-
lectively, regardless of whether a given daughter originated from
a binary breakage, tertiary breakage, etc. This results in one daugh-
ter size distribution per mother drop size group. As such, the pres-
ence of different outcomes of the breakage event is incorporated in
the determined distribution function. The current procedure is
similar to that of Galinat et al. (2005), although they did not use
single droplet experiments for this determination.



Fig. 14. Plot of the cascade breakage time of the 1.48 mm mother drop size group
from Table 3. It shows the development in determined mean value, standard
deviation and confidence interval of the cascade breakage time, by the number of
experiments performed. The values are calculated for every two experiments from
the first until the final 115.
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4.7. Statistical treatment

The experimental data might be subject to a number of sources
of error. This may include experimental lab procedure, data pro-
cessing or assumptions, among others. Random errors contributes
to the standard deviation in the experimental data and increases
the size of the confidence interval. Systematic errors are present
regardless of the individual experiment and usually considered
not to be randomly applied. For example, if the thread of oil
between two soon-to-be daughter drops is very thin, the thread
might not be visible by the camera and the breakage assumed to
have ended. Subsequently, some breakage times may be predicted
to be shorter than the true value, but none are predicted to be
longer. As such, it mostly impacts the determined mean value
and not the standard deviation. If the impact of systematic errors
is large enough, the true mean may fall outside the confidence
interval from the statistical analysis. It follows that the employ-
ment of the statistical analysis is no guarantee that the true mean
value is within the confidence interval. Furthermore, performing a
very large number of experiments in order to obtain a small confi-
dence interval is, in most experimental studies, not beneficial. At a
certain number of experiments, the statistical precision is close to
the total uncertainty arising from the experimental procedure,
thus repeating the experiment under the same conditions, e.g. drop
size, oil type and flow conditions, provides limited additional infor-
mation. Instead, other aspects of the breakage phenomenon should
be investigated.

Before investigating the determined statistical uncertainty, a
short discussion on the uncertainties in the experimental proce-
dure is required. While the models are defined as point values,
the experimental data is taken from a volume. Ideally, the experi-
mental data should be determined as representative for points,
which would translate to a very small experimental volumes. This
is practically impossible on several accounts. First, there are prac-
tical limitations. Due to fluctuations in the channel flow and in the
droplet generation channel, the droplets will have an almost ran-
dom horizontal motion. Thus, the droplets are traveling along dif-
ferent trajectories despite having nearly equal initial conditions.
The amount of experiments needed to be able to validate every sin-
gle point would be extremely large. This is even further compli-
cated by the randomness of the turbulence level, which means
that breakage can happen at different vertical positions, even for
droplets transported along the same trajectory. Second, the associ-
ation of each breakage with a single location is disputable, as each
experimental breakage event clearly has a duration in which the
droplet or droplets are transported. While it appears to be natural
to associate the breakage with the position at the breakage event
start instance, this is not determined from the PBE model frame-
work considered. In summation, the procedure of considering a lar-
ger volume is a necessary simplification. It does, however, include
some uncertainty which cannot be quantified.

4.7.1. Breakage time
From the figure showing the initial breakage time, Fig. 6, and

the figure showing the cascade breakage time, Fig. 7, it can be seen
that the standard deviation in breakage time for each mother drop
size group is significant. This is expected, as each mother drop
within each group might be slightly different in size, break in dif-
ferent positions, i.e. turbulence level, or experience different
instantaneous turbulent conditions. On the other hand, the confi-
dence intervals are fairly small. As the trends are similar for the ini-
tial breakage definition and the cascade breakage definition, only
the cascade breakage definition will be considered in the following
discussion. The standard deviation in the breakage time, as seen in
Fig. 7, is 40%;47%;63% and 50% when given in relative values. In
contrast, the 95% confidence intervals are 14%;9%;13% and 10%.
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Thus, the mean values are more precisely determined statistically,
than what appears to be the case when only considering the stan-
dard deviation. Furthermore, it does not appear beneficial to deter-
mine the statistical uncertainty below� 10� 15%with the current
procedure, when considering the large variation in TDR level and
the uncertainties discussed in the start of this section. As such,
additional experiments under the same conditions are not
required. This decision is also influenced by the feasibility of
improving the confidence intervals.

From (46) it can be seen that the size of the confidence interval
limits is dependent on the standard deviation and the number of
experiments. When performing experiments, the standard devia-
tion approaches a constant value. When this constant value is
obtained, the confidence interval is only dependent on the factor
N�1=2, which has a diminishing effect on the confidence interval
limits as N increases. For example, at N ¼ 30, the value of N�1=2 is
� 0:18, while at N ¼ 40, the value of N�1=2 is � 0:16. Assuming that
the standard deviation was constant at 30 experiments, the ten
additional experiments from 30 to 40 experiments only shortened
the confidence interval limits by � 2% of the value of the standard
deviation. This is shown graphically in Fig. 14, which shows the
mean value, standard deviation and confidence interval of the cas-
cade breakage time plotted as a function of the number of experi-
ments performed for the 1.48 mm mother drop size group. As can
be seen from the figure, the mean value appears to be relatively
stable after 20 experiments. However, it is possible to improve
the standard deviation by performing approximately 10 additional
experiments. From this point onward, the standard deviation is
near constant. The confidence interval can still be improved with
additional experiments, but this does have a diminishing effect
per experiment performed, as explained above. The mean value
does experience some oscillation after 20 experiments, but this is
within even the final confidence interval limits.
4.7.2. Breakage probability
Breakage probability, Fig. 8, is the only function in the expres-

sion for breakage frequency that requires data of the drops not
breaking. As such, the experimental value is determined from a lar-
ger set of data than e.g. breakage time. It is therefore expected that
the confidence intervals for the breakage probability are smaller
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than the confidence intervals for the breakage times, i.e. the break-
age probability is more precise from a purely statistical point of
view. The small confidence interval is a strong indication that the
determined breakage probability is unlikely to change significantly
if an increased number of experiments are performed.
4.7.3. Breakage frequency
The breakage frequency is not determined directly, rather it is

determined from the breakage time and breakage probability.
The same is true for the uncertainty in the breakage frequency. It
is directly related to the uncertainty in the breakage time and
breakage probability by (53). As such, it is not necessary with an
additional discussion of the uncertainty in the breakage frequency
when the uncertainty in both breakage time and breakage proba-
bility have been discussed extensively.
4.7.4. Average number of daughters
In the Fig. 10, showing the average number of daughters, there

are sizeable standard deviations and subsequently large confidence
intervals. Which, from Fig. 11 is reasonable, as there is a rather flat
distribution for most of the mother drop sizes. The standard devi-
ation in a flat distribution is always large. Thus, it follows that
additional experiments are not likely to significantly improve the
statistical precision of the average number of daughters. Instead,
different aspects of the breakage phenomenon should be
investigated.
4.7.5. Daughter size distribution
The daughter size distribution is a special case, as it is a distri-

bution for each mother drop size group instead of an average value.
Due to the presentation of the distribution in bins, as in Fig. 12 and
in Fig. 13, there are two precisions to consider; the number of bins
and the confidence interval of each bin. As such, when deciding
whether to continue with the same experimental conditions or
change, one must also consider whether the number of bins is suf-
ficient. As for the breakage time, breakage probability and daugh-
ter number, the choice of precision must be weighted against the
error sources in the experimental work.

In comparison to the initial breakage, the cascade breakage
daughter sizes have increased precision due to the daughters often
being observed in a near spherical shape, as the sequence of break-
ages normally has ended. For the cases where the cascade ends in
many daughters, the determination of the size of the initial break-
age daughters is very challenging, as the initial breakage daughters
often are severely deformed in the few video frames they are visi-
ble. In short, in the current experimental procedure, the initial
breakage definition is not optimal to determine the daughter size
distribution when successive breakages are common. On the other
hand, the procedure of scaled volume, as outlined in Section 4.9, is
accurate if the initial breakage daughter drops of a single breakage
can be assumed to deform in a similar manner. Unfortunately,
based on the investigated videos, this is a course, and not quanti-
fied, assumption.

From the Fig. 13, showing the daughter size distribution when
considering the cascade breakage definition, it can be seen that
the confidence intervals are very small. With the nine bins used
in this study, the statistical precision cannot be meaningfully
improved by additional experiments. With this number of bins,
near equal and equal size breakage end up in the same bin and
the size of each bin is � 11% of the mother drop size, a reasonable
precision considering the uncertainties and error sources discussed
above.
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4.8. Experimental setup design

A survey on the design process of the current experimental
facility is included here to elucidate the main challenges in design-
ing the facility. The facility was designed to obtain experimental
data for increased physical understanding of the breakage process
and validation of breakage models in the PBE framework. A sys-
tematic study of previous experimental facilities, both within dro-
plet breakage experiments and homogeneous turbulence, was
performed. Three main points were identified as critical in order
to obtain the required quality and quantity of data.

1. Observation of the entire breakage event
The entire breakup should be continuously observed for two
reasons. First, this ensures that the breakage definitions are cor-
rectly applied. Second, the obtained experimental results cover
all of the necessary data to validate the breakage time, tB, the
breakage probability, PB, the average number of daughters, m,
and the daughter size distribution PDSD. Thus ensuring a coher-
ent dataset that may be used for validate breakage models.

2. Known local turbulence level
From Section 2 it can be seen that the breakage models rely on
the impact of the local turbulence level. Thus, in order to asso-
ciate the breakages with a representative turbulence character-
istic, the facility should have known local turbulence levels.
Additionally, the accuracy of the determined turbulence level
is increased with low gradients in the turbulence level. In an
ideal facility for investigating turbulent breakage, the breakup
would happen in homogeneous and isotropic turbulence. How-
ever, 3D isotropic turbulence is not experimentally feasible. In
setups with 2D isotropic turbulence, e.g. after static mixer
(Azizi and Al Taweel, 2011) or near oscillating grids (Shy
et al., 1997; Yan et al., 2007), the turbulence level is rapidly
decaying in the third direction. The setups also has high shear
forces in the area generating the turbulence. In conclusion, it
is challenging to inject a droplet into a region of sufficiently
high turbulence level. As an added challenge, the facility would
be challenging to automate.

3. Repeatable and reproducible
In order to obtain enough data within a reasonable time, the
experimental runs should be easily repeatable. Firstly, the facility
operation should be automated. In order to obtain this automa-
tion, it is critical to ensure a reliable injection of dispersed phase
drops. The criterion of repeatability also means that designs
which require substantial cleaning between one or few experi-
ments are disregarded. Likewise, designs in which the continuous
phase cannot be reused, which will lead to a very large consump-
tion of the continuous phase, are disregarded.

Considering only points 1 and 2 above, it would be beneficial to
also observe the breakage in the third dimension. However, this is
challenging due to increased complexity in the facility design,
automation and image analysis. In turn, this significantly increases
the time required to perform each experiment. However, it is noted
that observation of all three dimensions has been performed, for
gas bubbles in a stirred tank, by Krakau and Kraume (2019).

Some important lessons has been learned from the operation of
the facility. First, the facility is designed as a loop with a 1000 liter
tank functioning as both continuous phase storage and gravity sep-
arator, separating the small oil droplets from the water. While the
separation works as intended, the inlet generated air bubbles.
Despite the size of the tank, these bubbles reentered the loop
and interfered with the image analysis. The situation was remedied
by installing a partially holed plate near the inlet of the tank, which
acts as a momentum breaker and redistributes the inlet flow over a
larger area.



Fig. 15. A breakage event with only one oscillation before breakage. The arrow
denotes the instance of the start of breakage. The mother drop area is normalized by
the area of the mother drop in the first frame.

Fig. 16. A breakage event with several oscillations before breakage. The arrow
denotes the instance of the start of breakage. The mother drop area is normalized by
the area of the mother drop in the first frame.
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In order to create the continuous phase flow, the setup uses a
positive displacement pump. This gives a reasonably stable mass
flow, but also give rise to pressure fluctuations. These fluctuations
manly interfere with the size of the injected droplets, giving rise to
a fluctuation in the generated droplet size. The problem can be
mitigated by geometric considerations in the design of the facility,
as some flow patterns dampen pressure fluctuations. In this partic-
ular case, a sudden expansion of the cross sectional area was
installed before the droplet generation section. Additional solu-
tions include installation of a pressure dampener, although no
commercial pressure dampeners are available at such low pressure
levels. A simple solution is to implement a T-section which allows
a volume of air to be compressed. Additionally, an adjustment that
may mitigate pressure fluctuations is to implement a coiled tube in
the loop. As the flow is going through the coil, the pressure fluctu-
ations are dampened by the oscillation of the coil.

The droplet size is also influenced by the surface finish of the
cannula tip area, where a courser surface finish yields a larger fluc-
tuation in the droplet size generated. Due to this dependence on
surface finish, less fluctuation in droplet size is experienced with
regular cleaning of the cannula tip.

Finally, still water is an excellent breeding grounds of algae. In
particular when high intensity light is present, as is the case in high
speed imaging facilities. Thus, it is critical to have a procedure for
easy cleaning of the setup, as well as easy exchanging of water. As
algae settles on the walls, the ability to drain the experimental sec-
tion of water is highly advantageous to avoid algae buildup on the
wall during periods in which the facility is not in use.

4.9. Image analysis algorithm

As mentioned in Section 3.1, the procedure employed in this
paper differentiate from the algorithm presented in Herø et al.
(2019) on the determination of daughter drop sizes. Daughter
drops are often recorded with irregular shapes. Thus, calculating
the diameter from the projected area, assuming the drop to be
spherical, and calculating the volume from this diameter can lead
to a total volume which is larger than the volume of the original
mother drop. In a few extreme cases, this estimated volume is
100% larger than the mother drop volume in the initial breakage
definition, and 50% larger in the cascade breakage definition. In
order to determine the daughter sizes, the daughter drops are asso-
ciated with a fraction, which is subsequently associated to the
mother drop size. In Herø et al. (2019), it was suggested obtain this
fraction from the projected area of each daughter drop divided by
the total projected area of daughter drops. In this work the daugh-
ter drop size is estimated by a volume fraction instead, as volume
scales differently than area and it is the volume that is to be con-
served. For each daughter drop, the projected area is assumed cir-
cular and a diameter is calculated, then this diameter is used to
estimate the volume of the corresponding daughter drop, assuming
it to be spherical. From this, the volume fraction of a particular
daughter drop relative to all the daughter drops is found. Subse-
quently, the daughter drop volume is approximated as the same
fraction of the mother drop volume.

The determination of the breakage event start instance is essen-
tially an attempt to determine the instance of a single critical tur-
bulent vortex-drop interaction, or the start of this interaction. The
application of the described procedure is elucidated here in order
to increase the readers understanding of the video interpretation
process. The procedure is based on determining the start instance
of the oscillation in the projected area, normal to the camera, that
is related to the breakage event. In practice, the determination of
the breakage event start is performed after the determination that
a breakage event has taken place. From the instance of fragmenta-
tion, i.e. when two drops can be discerned, one can move back-
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wards in time on the video until a near spherical drop is
detected. In this procedure, oscillations denote changes to the pro-
jected drop area where the drop is significantly deformed from
spherical, i.e. becoming ellipsoidal or irregularly shaped. Thus, very
small perturbations of near spherical mothers are not considered.
As an example, consider a low complexity breakage event in which
a non-oscillating mother drop starts to deform and break. Such a
breakage event can be seen in Fig. 15. The figure shows the mother
drop projected area, normalized by the initial mother drop pro-
jected area, frame by frame leading up to a breakage of the drop.
The arrow indicates the determined breakage event start instance.
The small changes in projected area before the arrow are not con-
sidered to be related to the breakage event. These oscillations are
assumed either to be due to very small perturbations in the pro-
jected area of the drop, artifacts from the image analysis or a com-
bination of the two effects.

However, in many breakage events, the mother drop is going
through several smaller oscillations before undergoing a signifi-
cantly larger deformation directly before breakage. Subsequently,
the determination of the instance of one vortex-drop interaction
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is less clear. Dampened oscillations are not considered part of the
vortex-drop interaction, as the energy appears to be dissipated.
Thus, another vortex-drop interaction is considered responsible
for the breakage event. An example of such an event may be seen
in Fig. 16. The first oscillations are seemingly dampened, hence
they are considered unrelated to the breakage event, as the drop
undergoes a significantly larger deformation during the breakage
event. This large deformation is assumed to be due to a single
vortex-droplet interaction, therefore the breakage event start
instance is assumed to be at the instance before this deformation.
In Fig. 16 this instance is indicated by the arrow. This breakage
event start instance is also an instance of spherical mother drop,
which ideally, but not always, has been spherical for several
frames. It is noted that the drop in Fig. 16 is visibly oscillating from
around frame 150 until the breakage event takes place.
5. Conclusions

Single octanol drop breakage experiments in turbulent flow
have been performed. The droplets were inserted into a channel
flow and the following breakage events were captured by high
speed cameras. The videos obtained were interpreted by adopting
both the initial breakage definition and cascade breakage defini-
tion. Furthermore, the design of the channel allows for breakage
events to occur in a turbulent flow with low gradients.

The impact of mother drop size on the breakage phenomenon
were investigated. While the flow considered is characterized by
a level of turbulence that is lower than for comparable breakage
investigations previously reported in literature, the results show
similar trends. With a specified constant flow rate in the channel,
an increase in mother drop size induces an increase in breakage
time and breakage probability. Considering the initial breakage
definition, the number of daughter drops was always two and
the daughter size distribution was close to uniform. However,
when considering the cascade breakage definition, the number of
daughters increased with increasing mother drop size. The corre-
sponding daughter size distributions had a large probability of very
small drops which only increase with increased number of daugh-
ters. Due to the various shapes of the daughter size distribution for
the different mother drop size groups, breakage models should
determine the shape of the daughter size distribution dependent
on the mother drop size, the local flow conditions and the system
properties. For the cascade breakage definition, also the average
number of daughters should be determined in this way.

A statistical analysis have been employed in order to quantify
the quality of the data and to address the requirement of statisti-
cally valid data. In particular, the analysis show that adequate sta-
tistical precision could be obtained, in this study, with as few as 35
to 50 breakage events. Due to the uncertainties inherent in the
experimental procedure, further increasing the statistical preci-
sion, i.e. increase the number of investigated events, is not cost
effective. Instead, investigations should focus on obtaining data
with different system properties or, if possible, increase the accu-
racy and precision of the experimental procedure. Furthermore,
the statistical analysis show that, for this study, the breakage prob-
ability is determined with lower uncertainty than the breakage
time, while the average number of daughters is less precise than
the daughter size distribution functions.

Each breakage event is associated with a local turbulence level.
As data from different experiments are combined in order to obtain
the average breakage time, the breakage probability, the average
number of daughter and the daughter size distributions, the result-
ing average turbulence level is relevant to the events considered.
Furthermore, the turbulence level has a quantified standard devia-
tion that can be used to describe the uncertainty of the procedure.
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In general, more single drop breakage data from experiments is
still needed to elucidate the breakage phenomenon. In the experi-
mental facility, different fluid and system properties might be
investigated. For example, investigating different continuous flow
velocities, i.e. turbulence level, or different oils. In addition, efforts
should be made into determining whether the initial breakage def-
inition or the cascade breakage definition best describes the break-
age phenomenon. Finally, the data should be used for
discriminating between breakage models.

Each mother drop size group has a different turbulent kinetic
energy dissipation rate levels associated with it, and the difference
in turbulence level between two events can be large. This may have
an impact on the results and subsequently the investigated trends.
Thus, the impact of mother drop size might warrant further study.
Possibly, the problem could be mitigated by investigating a smaller
volume, such that the breakages happen under less varying condi-
tions. However, decreasing the volume would lead to an increase in
the needed number of experiments, as each volume would need
enough data to be statistically relevant.
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