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Genetisk disposisjon for fedme hos ungdom og voksne og samspillet
mellom arv og miljo under fedmeepidemien: longitudinelle funn fra
Helseundersokelsen i Trondelag

Fra midten pa 80-talet har forekomsten av fedme okt i Trondelag. Sammenlignet med eldre
kohorter, har de som er fodt etter 1970 en vesentlig hayere BMI allerede som unge voksne.
Endringer de siste tiarene pavirker vekten til dem som ikke er sarlig disponert for 4 legge pa
seg, men de genetisk disponerte har okt enda mer i vekt. Dagens miljo forsterker altsa
vektforskjellene mellom mer og mindre genetisk disponerte mennesker. Dette gir sarlig

tydelig utslag pé forskjeller i forekomsten av fedme og alvorlig fedme.

Fedme rammer mer enn 650 millioner mennesker over hele verden med store potensielle
konsekvenser for folkehelsen. Mélet med denne avhandling var & undersgke samspillet
mellom arv og miljo for og etter fedmeepidemien samt & skille mellom genetikken bak fedme
hos barn og voksne. Studiene kombinerer kraftige genetiske verktoy med mélt BMI fra
Helseundersgkelsen i Trondelag (1963-2019) og tuberkulosescreeningen pa 60-tallet for &
undersgke genetisk disposisjon for fedme hos over 60 000 norske ungdom og voksne over

seks tidr. Opplysninger om familiesammensetning er hentet fra SSB.

De forste to studiene viser en skende genetisk ulikhet i bade fedme og alvorlig fedme i et
fedmefremmende milje. Dette bekreftes i analyser av sesken med ulik genetisk tilbayelighet
for heyere vekt. Til tross for at fedme er en arvelig egenskap, virker kroppsvekt modifiserbar
i forhold til graden av fedmefremmende eksponering. Den tredje studien viser en forskjell
mellom genetiske faktorer som driver fedme hos barn og hos voksne. Gjennom & validere en
ny genscore for barnefedme, bekrefter vare funn at barnescoren predikerer kroppsvekt bedre
enn voksenscoren frem til midten av tenarene. Denne genscoren danner utgangspunkt for nye
studier for & underseke konsekvenser av barnefedme pé senere sykdom sé vel som sosiale

utfall.

Selv om det kan vere mulig a identifisere de som er mest utsatt for miljeendring, og som
dermed har mest & tjene pa forebyggende tiltak, vil fersek pa a reversere det

fedmefremmende miljoet komme alle aldrer i hele befolkningen til gode.
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Destigmatising obesity by understanding the impact of genes

BMJ Opinion July 3, 2019

As a young adult I moved from Toronto to Stockholm to start my studies in medicine.
Although the values of Swedes and Canadians are similar, my first impressions revealed
some visible differences in how people live their lives. People ate warm meals for lunch
as well as dinner and processed food seemed less available. People biked or took public
transport as downtown Stockholm is inaccessible for cars. At quick glance, people
walking in the streets of Stockholm seemed one size smaller than in my hometown of
Toronto.

After 20 years of living abroad, I have experienced many differences in the way North
Americans and Scandinavians live their lives. It came as no surprise to find that the
obesity epidemic hit Scandinavia ten years after, and to a lesser extent, than in North
America. Regardless of how much Toronto and Stockholm differ, both places have been
subject to major environmental changes over the past five decades. The obesity
epidemic has changed our view of what is considered normal, something that the
clothing industry has caught on to. As people have become bigger, manufacturers
created a larger range of sizes and altered labelling to accommodate them. A dress made
to fit Marilyn Monroe’s waist would be between a size eight to twelve in 1958 but a size
double zero today.

Although previous research suggested that genetic vulnerability had larger
consequences after the onset of the obesity epidemic than before, our dataset provides
convincing results, with a large sample size and range of years of assessments and ages.
The findings were surprising. On average, genetic predisposition would make a 35-year
old man of average height 3.9 kg heavier than his genetically protected peers in the
1960s. If the same man remained 35-years old but lived in Norway today, his vulnerable
genes would make him more than 6.8 kg heavier. Additionally, both him and his peers
would have gained an extra 7.1 kg simply as a result of living in our obesogenic
environment. This man’s 13.9 kg excess weight is caused mostly by today’s unhealthy
lifestyle, but also by how his genes interplay with the environment.

The obese are often stigmatized for having unhealthy lifestyle choices. Acknowledging
the importance of the obesogenic environment and its amplification of our genetic
differences, can help destigmatise obesity. Perhaps it is time to shift our focus away
from the individual and towards a healthier society.

Maria Brandkvist, Pediatrician and PhD candidate at the Department of Public Health

and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim,
Norway.
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Summary

Background

Obesity has tripled worldwide since 1975 as environments are becoming more
obesogenic. (1-3) The obesity epidemic is largely attributed to over-nutrition and
sedentary behavior, both related to sociodemographic characteristics. However, the
underlying cause is likely a complex combination of globalization, industrialization, and
other societal, economic, cultural, and political factors. Although secular trends can
change the prevalence of obesity in an entire population simultaneously, (4) genetic
differences could make some people more susceptible than others to an obesogenic

environment. (5-8)

Aims

The aim of this thesis is to illustrate how population weight and obesity are modified by
the interplay between genetic predisposition and the obesogenic environment over six
decades and to examine the robustness of the findings using sibling design. Recently, a
powerful polygenic risk score for childhood BMI was developed in an unprecedented
attempt to separate childhood and adult obesity. We aim to validate the childhood
polygenic risk score for BMI and identify at what age the cross-over in terms of strength

of prediction from the early life to the adult score occurs.

Methods

We conducted three studies based on the participants from the HUNT Study (1984-
2019) linked to previous height and weight measurements in the tuberculosis screening
program (1966-69). The first study was based on data from the first three waves of the
HUNT Study while the second and third study were based on data from all four waves.

In the first study, we estimated age adjusted BMI growth trajectories for different birth
cohorts in the total study sample. Then we use the genetic risk score to estimate the

effect of genetic risk of obesity on BMI according to time of measurement and age.

In the second study, we applied the genome-wide polygenic score (GPS) to estimate the
effect of genetic risk of obesity on height-adjusted BMI, obesity and severe obesity

according to time of measurement, age, and sex. One consideration is that genetic



variants are not necessarily distributed randomly in a population. (9) By comparing
differentially exposed siblings, we could provide an efficient adjustment for all shared
confounding factors between siblings, such as assortative mating, dynastic effects and

population stratification. (10)

In the third study, we used summary statistics from the genome-wide association study
in the UK Biobank to construct, validate and then compare the childhood and adult

genetic scores for obesity using data from HUNT participants.

Results

Obesity increased in Norway starting between the mid-1980s and mid-1990s and,
compared with older birth cohorts, those born after 1970 had a substantially higher BMI
already in young adulthood. BMI differed substantially between the highest and lowest
fifths of genetic susceptibility for all ages at each decade, and the difference increased
gradually from the 1960s to the 2000s. Hence, we found statistical evidence for a gene

by environment interaction during the obesity epidemic.

In the second study we translated our novel finding to obesity while still
conceptualizing year of assessment as a broad indicator of the environment. We found
an increasing genetic inequality in obesity and severe obesity in an obesogenic
environment. Despite being a very heritable trait, our study illustrates that body weight
is modifiable proportionate to the degree of the obesogenic exposure. Our findings show
an interplay between genes and the environment that is robust to family-level

confounding using sibling design.

In the third study, we validate the childhood and adult polygenic risk scores for BMI
and identify 16 years as the critical age separating the genetics of childhood and adult
obesity.

Conclusion

This thesis provides evidence that genetically predisposed people are at greater risk for
higher BMI and that genetic predisposition interacts with the obesogenic environment
resulting in higher BMI and prevalence of obesity, as observed between the mid-1980s
and late-2010s. Our findings are robust to family-level confounding using sibling

design. While obesity is a highly heritable trait, (11) we illustrate how it is still



modifiable according to the degree of the obesogenic exposure. This thesis also supports
that genetic factors driving BMI differ at young age and in adulthood. Validating the
new polygenic risk score for childhood BMI, our findings confirm the childhood score
as a better predictor of body weight before the mid to late teens. Whilst it may be
possible to identify those most susceptible to environmental change, who thus have the
most to gain from preventative measures, efforts to reverse the obesogenic environment

will benefit all ages of the whole population and help resolve the obesity epidemic.
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1 Introduction - The impact of nurture on nature

The question of nature versus nurture has riddled mankind for centuries. Now, in light
of recent genetic advances, we know that most human traits result from the effects of
both nature and nurture. (12, 13) We explore how the effect of genetic predisposition to
obesity differs, as environments are becoming more obesogenic over time. We also

question if genetic factors driving BMI differ at young age and in adulthood.

The obesogenic environment could be amplifying the effect of genetic predisposition on
obesity (8) from in utero to agedness. (14) This gene-environment interaction has been
exposed by converging findings from obesity studies considering genetic relatedness,
candidate genes, polygenic scores and clinical syndromes. (14) Earlier studies have
suggested that the association between genetic risk scores and BMI was of greater
magnitude in more recent birth cohorts or in social groups more exposed to an
obesogenic environment. (7, 15, 16) Compared with these studies, our dataset is large
with a wide range of ages containing measured BMI before and after the onset of the
obesity epidemic. Such comprehensive data in adolescents and adult is also appropriate

for separating the genetics of childhood and adult obesity.

My research focuses on obesity conducted within the field of genetic epidemiology.
Genetic epidemiology studies the role of genetic factors in determining health and
disease in families and in populations, and the interplay of such genetic factors with
environmental factors. (17) In all three studies we apply genetic instruments developed
as quantitative measures of inherited susceptibility for obesity. The first study utilizes
the genetic risk score (GRS) based on 97 common genetic variants associated with adult
obesity while the second study utilizes the powerful genome-wide polygenic score
(GPS). The GPS encompasses over two million common genetic variants for obesity
and explains a far greater variation for BMI in the population. (18) In the third study we

attempt to validate a GRS specific to childhood obesity. (19)

Combining the genetic instruments with longitudinal BMI and obesity data from the
Norwegian population over six decades, we study genetic variation at the population

level. Novel to our dataset is the dimension of time. Hence, this thesis represents the



best effort to date to quantify the gene-by-environment interaction, conceptualizing year
of assessment as a broad indicator of environment. Questioning the robustness of our
findings we use sibling design to test for confounding by assortative mating, population
stratification and dynastic effects. Lastly, we consider differences in the genetic
architecture for childhood and adult obesity in attempt to validate a genetic score better
suited for childhood obesity. Although the dimension of time is advantageous also in
the third study, here we concentrate on when in the life-course the negative impact of
obesity can best be alleviated. This thesis is novel in that it captures cohort effects over
four generations, age effects from adolescence to agedness and most importantly, a
period effect from before and after the obesity epidemic. Understanding the genetic
contribution to obesity at different ages and under the influence of a changing

environment is the main implication of this line of work.

In this thesis, I first consider the cause and consequence of the obesity epidemic as a
background to the main aims. Next, I present the methods and findings of my research
project, before I conclude by discussing the validity and interpretations of the novel

findings.



2 Background - The cause and consequence of the obesity
epidemic

2.1 Obesity and obesity related diseases

Obesity is a condition of abnormal fat accumulation to the extent that it may have a
negative effect on health. (1) Obesity is classified using body mass index (BMI) which
is calculated as weight in kilograms per meter squared. While overweight is defined as a
BMI greater than or equal to 25, obesity is defined as a BMI greater or equal to 30.(1)
Severe obesity is referred to as a BMI greater or equal to 35 in this thesis. Although
BMI categories may facilitate research and clinical practice, they are arbitrary cut-offs

on a continuous scale.

Obesity is more than a cosmetic problem. (20) Although several children with obesity
and relatively fewer adults appear to be metabolically healthy, obesity is generally
associated with physical and psychiatric comorbidities. These reduce quality of life and
apply an unprecedented pressure on our health care system. (21-23) Adult obesity is
well-known as a major risk factor for ischemic heart disease, stroke, arthritis, type 2
diabetes and many cancers. (23) Actually, a recent study published in the British
Medical Journal found that obesity is a greater risk factor than smoking for four
subtypes of cancer. (24) Obesity is responsible for 4,7 million premature deaths each
year. (25) It is one of the world’s leading health problems, that has shifted from being a

problem in only rich countries to that which spans across all income levels.

Especially worrisome is that obesity affects the younger age groups to a much greater
extent than in the past. Although it is still unsure whether childhood obesity increases
risk for later disease directly, (19, 26) most children carry their obesity into adulthood.
Gastrointestinal, metabolic, endocrine and orthopedic comorbidities to obesity occur
already in childhood and adolescents. (27) At the age of eight years, the child with
obesity may already experience metabolic syndrome with signs of diabetes, blood
vessel changes, hypertension, hyperlipidemia and fatty liver. (28, 29) However, the
social burden experienced by these youths is usually the heaviest to bear. Knowledge on
the social burden of obesity is needed, as this may have long-term detrimental effects of

later health, social life, educational attainment and employment. (29-33)



2.2 Prevalence of obesity in Norway and around the globe

While obesity has tripled among adults, childhood obesity has increased more than
eight-fold worldwide since 1975. (1-3, 34) According to the World Health
Organization, the obesity epidemic affected more than 650 million people in 2016. (1)
The global prevalence of obesity has increased from 6 to 15% among women and 3 to
11% among men. (35) Today, approximately 60 to 80% of adults and 20 to 30% of
children in the western world have overweight or obesity, (36, 37) while the prevalence
in developing countries is increasing at alarming rates. (23) For example, China has
transitioned from a history of undernutrition to a rapid increase in obesity in over just
two decades (38) and is now the country with most children with obesity in the world.
(39) This overlap of undernutrition and obesity from one generation to the next within

the same household is apparent also in other countries. (40)

Since the mid-1980s, Norway has experience an obesity epidemic. (41) While most
countries continue an upward trajectory, the prevalence of obesity has stabilized in
Norway for children and adults over the last decade. (42) Results from earlier this year
show that 22% of the adult population in the Trendelag region are having obesity while
approximately 70% are having overweight. Correspondingly, 6% of female and 7% of
male adolescents are now having obesity. (42) Similar prevalence are observed in the

rest for Norway. (43)

2.3 Obesogenic environment — the causes of obesity on an individual and
on a population level

What makes an individual gain or lose weight versus why a whole population increases
in weight is important to differentiate. For the individual, this disease is likely an issue
of energy imbalance. (20) While genetic propensities and physical activity levels may
contribute, the change in eating behavior is likely the dominating cause for obesity. (20,

44-48)

In a study where human cafeteria foods were fed to rodents, the animals showed
voluntary hyperphagia, resulting in extensive weight gain, inflammation, and metabolic

and cognitive abnormalities. (49) Similar biological effects of modern food were



observed in humans. In a recent randomized controlled trial, participants were
randomized to eating either an ultra processed diet or a minimally processed one. Both
groups were allowed to eat as little or as much as they wished. Interestingly, the group
with the ultra processed diet consumed 2092 kJ more per day than their counterparts.
(50) Hence, the evidence suggests that ultra processed foods lead to overeating by
changing several endocrine and neurobiological pathways. (51) Ultra processed foods
are characterized by long shelf or freezer time and their ability to manipulate our taste
buds. (52) But what do they actually contain? The answer is complex; too little fiber,
too few ®-3 and way too many -6 fatty acids, too few micronutrients, too many trans-
fats, too many branched-chain amino acids, too many emulsifiers, too many nitrates, too
much salt, too much ethanol, too much fructose. The paper ‘Processed Food — An
Experiment That Failed’ by Robert Lustig provides a detailed explanation of how each
of these harmful ingredients affect the body. (52) A major concern is that so many of
the world’s children are overconsuming foods of poor nutritional quality. The
consequence is that they become undernourished and have obesity simultaneously.
Stunted linear growth and obesity together likely amplify the risk for metabolic disease.
(27) For children and adults alike, taking personal responsibility for healthy lifestyle
choices is difficult if one’s circumstances in terms of social determinants of health

renders this impossible. (53)

In this thesis, we consider the increase in BMI on the population level and not on the

individual level. The origins of the obesity epidemic remain unclear.

In a recent commentary, Anthony Rodgers used prevalence trends to reveal what did not
precipitate the US obesity epidemic. (4) He describes that the increase in prevalence of
obesity began in the late 1970s for all subgroups across the whole US population. This
simple observation makes a simultaneous decline in willpower related to healthy
nutrition or exercise unlikely and rules out intrauterine exposure as a contributing

factor. He also argues that changes in genetic predisposition do not occur over the
period of a few years, nor in all age groups simultaneously. However, this argument
does not take into account a possible gene-environment interaction — which is the aim of
this thesis. (54) Rodgers suggests that the obesity epidemic must have been caused by
“factors that led to rapid population-wide growth’. He highlights an example related to



the American food bill introduced in the 1970s. This political reform might have helped
precipitate the obesity epidemic in the United States by changing food supplies that
ultimately lead to unfavorable dietary patterns affecting the whole population at the
same time. (4) In Norway, the 1980s were characterized by increased prosperity as a
result of new working cultures, increased market consumption and automobile
transport, and feasibly, a comparable change in eating patterns influenced by North

America and the rest of Europe. (55-58)

Obesity has become a global public health emergency. Motivated to tackle this problem,
the Lancet commission report from 2019 describes the global syndemic of obesity,
undernutrition and climate change. (59) Here, overconsumption of foods of poor
nutritional quality can simultaneously lead to obesity and undernutrition while
damaging our natural ecosystems. (27, 59) The three pandemics not only coexist in time
and place but interact with each other and have common underlying societal drivers.
(59) For example, companies responsible for producing unhealthy foods and making
them widely available often target children and other vulnerable populations. (23)
Detrimental to global population health, there are many reasons why fast food is a failed
experiment. (52) Another example is the automobile industry that simultaneously
increases air pollution while decreasing physical activity. (23) These byproducts of
economic development increase population weight by influencing the lifestyle that we
live. China experienced modernization and economic growth in the course of just two
decades. While BMI was strongly associated with urbanicity in the 1990s, these obesity
trends expanded to rural China already in the 2000s. Interestingly, among Chinese
women, the burden shifted towards the lower educated. (38) The byproducts of
economic development also change our biological environment, for example by
introducing toxins and altering microbiota. Reversing the obesogenic environment is
difficult and requires a shared global effort. The Lancet commission report suggests a
strategy to overcome policy and address the global syndemic. This involves five feed-
back loops regarding governance, business, supply and demand, as well as ecological

and human health. (59)



So, what variables caused the obesity epidemic? Adam Briggs sums up the answer in
his British Medical Journal opinions piece advocating taxes on sugary drinks and foods

in Britain (44):

‘Crudely speaking, weight gain is caused by eating too much and moving too little, but
our diet and activity levels are heavily influenced by social, environmental, and
economic conditions, as well as the interplay between these and our genetics and our

physical and mental health.’

2.4 Estimates of heritability

Phenotypic variance for a complex trait such as obesity is an index of how spread out
BMI scores are in a study population. It is calculated as the average of the squared
deviations from the mean. (60) Phenotypic variance is composed of both environmental
and genetic variance. (13) ‘Heritability is the proportion of observed (phenotypic)
differences among individuals that can be attributed to genetic differences in a particular
population.’ (60) Narrow heritability (h?) is the extent to which a child’s phenotype is
determined by the genes transmitted by both parents. This makes up the additive
component of genetic variance. (13) Single-nucleotide polymorphism (SNP) heritability
is the degree to which phenotypic variance for a trait can be explained by the SNPs in
our genome without identifying specific SNP associations. Genome-wide polygenic
score (GPS) heritability is the degree to which phenotypic variance for a trait can be
explained by all common SNPs when combined as a genetic score. SNP heritability and
GPS heritability are both measures of narrow heritability. The concepts of SNPs and
genetic scores will be covered in section 2.6. Comparatively, broad heritability (H?)
includes both additive and nonadditive components of genetic variance. Nonadditive
genetic variance involves effects of gene-gene interactions and gene-environment
interactions. Hence, broad heritability estimates the total variance explained by inherited

DNA differences and can be roughly measured by twin studies. (60)

Twin studies estimate the genetic and environmental components of variance by
comparing the resemblance of identical and fraternal twins. (60) Studying identical

twins separated by adoption at birth is an informative way to test genetic influence.



Identical twins share 100% of their inherited DNA such that if weight was 100%
heritable, they would share the exact same weight. Despite an unshared environment,
studies on identical twins reared apart suggest a correlation for weight of 0.75. (61) This
implies that 75% of the weight difference between people (variance) is shared by the
identical twins who grew up in two different family environments, which in turn, is a

direct estimate of heritability. (12)

The gap between the level of heritability suggested by twin studies and that estimated
using a polygenic score is often referred to as missing heritability (62) Accounting for
the missing heritability between the GPS heritability and SNP heritability would require
a larger genome-wide association study (GWAS) sample size. SNP heritability is the
ceiling for additive effects of SNPs genotyped on SNP chips. Accounting for the
missing heritability between SNP heritability and twin heritability would require other
technologies that capture rare gene variants, gene-gene interactions, effects of
epigenetics and gene-environment interactions. (60, 63) If sufficient, these methods

could reveal whether or not twin heritability is in fact overestimated.

2.5 Distribution of genes in a population

Genetic variation is important for the evolution and survival of a species. It
encompasses the naturally occurring genetic differences among individuals of the same
species. (9) Although the inheritance of genetic variants from parent to offspring is
assumed to be random, this is not always the case at the population level. (64) Non-
random mating may occur if one chooses a partner based on a certain trait. These
specific behavioral choices, also known as assortative mating, will shape the genetic
combinations that appear in the next generations. (9) Another possibility is that the
frequency of genetic variants may differ within subpopulations of a larger population
due to diverse ancestral origins. This is known as population stratification whereby
otherwise unrelated phenotypic differences across a population may become spuriously
associated with genetic variation. (65) A different issue is when parental genes
influence offspring phenotype through other pathways than shared genes. This is known

as dynastic effects. (65, 66) Within-family analysis is an approach that can reduce or



eliminate these spurious or biased associations between gene variants and phenotype.

(65, 66)

2.6 Genetic background of obesity

Heritability estimates for obesity between 0.5 and 0.8 in twin and adoption studies
indicate a strong genetic contribution at the individual level. (67, 68) Until recently,
genome-wide association studies could only identify genetic variants explaining a mere
2-5% of variation in BMI. (69, 70) Novel genetic advances have now led to the
genome-wide polygenic score (GPS) for BMI that explains almost 9% of variation in
BMLI. (18) Still, it is not known whether the remaining heritability for obesity is due to
insufficient tagging of causal variants (the rare causal variants in particular) or if
heritability from pedigree data is overestimated. Interestingly, a study using whole
genome sequencing (WGS) data on over 21,000 unrelated individuals claims to have
recovered the missing heritability of obesity by accounting for the effects of rare genetic

variants associated with BMI. (11)

Although much of the genetics underlying obesity remains unknown, several genetic
variants also denoted single nucleotide polymorphisms (SNPs) have been associated
with BMI. More specifically, a SNP appears when there is a mutation or a change in
one of the three billion weak chemical bonds between nucleotides in the double helix of
DNA. (12) A single SNP can be responsible for obesity if its effect size is large. The
MCA4R gene, for example, is likely involved in biological pathways critical for the
control of appetite and body weight. Mutations in the MC4R gene are the most common
monogenetic cause for obesity in humans. (71) Collectively, rare genetic variants likely

explain a larger variation in BMI than previously anticipated. (11)

For most people however, obesity involves millions of SNPs. Genome-wide association
studies (GWAS) have been a game changer for obesity research. GWAS are studies that
aim to identify SNPs throughout the genome that are associated with an observed trait,
such as obesity, in a large number of people. (13, 60) As GWAS for obesity become

statistically powerful, they discover more and more SNPs associated with body mass



index. Obesity is a complex trait where even the effect of the dominating common SNP
is very small. However, collecting all the SNPs to a genetic score makes it possible to

predict an individual’s genetic propensity for obesity. (12)

Genetic risk scores (GRS) also denoted polygenic risk scores are genetic indices for
each individual that combine the effects of many SNPs associated with obesity. (12)
The polygenic risk score for BMI created by Locke et al. includes 97 independent SNPs
(GRSy7) associated with BMI (p<5x10%) explaining 2.7% variance for BMI. (69) The
following polygenic risk score for BMI created by Yengo et al. has a slightly less
stringent genome-wide significance threshold (p<1x107®) and includes 554 near
independent SNPs explaining 5% variance for BMI. (70) The polygenic risk scores go
beyond pedigree data in that they can predict genetic risk for each individual and can be

used to determine causality in Mendelian randomization (MR) studies. (12)

The GPS is the next wave of prediction in genetics. This polygenic score adds together
the small, sometimes infinitely small contributions of tens to millions of SNPs to create
the most powerful genetic instrument to date. (72) While previous GRSo7 includes only
independent, GWAS significant SNPs, the GPS includes all common SNPs associated
with BMI without conforming to a threshold p-value. Adjustment for dependence of the
different SNPs is required when all common SNPs are included. The GPS for BMI
encompasses 2.1 million common variants and explains roughly 9% of variation in
BMI. Among middle aged adults, this accounts for a 13-kg gradient in weight and a 25-
fold gradient in risk of severe obesity across polygenic score deciles. (18) Individuals in
the top 1,6 percentile of the GPS for BMI have a comparable BMI increase to
individuals with monogenic obesity caused by MC4R mutations. (73) Correspondingly,
a recent study suggests that having a low GPS for BMI may counter the effects of a
pathogenic MC4R mutation. (74) Although the GPS does not account for the effects of
rare gene variants recently recovered by whole-genome sequencing, (11) it is the first
genetic instrument to provide meaningful predictive power. The GPS for BMI was
developed during the course of this PhD and could thus be applied it to the second
study. The third study of this thesis separates the genetic effects of childhood and adult
obesity by validating the new childhood and adult GRSs from the UK biobank. A GPS
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for childhood BMI is not yet available as it requires a genetic material from a large

study sample with measures of BMI in early life.

While most of the mechanisms underpinning the genetics of obesity remain unknown,
some important biological discoveries have been made. For example, the FaT mass and
Obesity-associated protein SNP (FTO) is the SNP with the largest effect size and
explains 0.7% variance in BMI. The FTO SNP alters the expression of several genes in
fat cells and influences how much fat is stored away in reserve. (12) This mutation
likely spread throughout the population as it protected us from starvation when we lived
as hunters and gathers. Today, the FTO mutation has become a disadvantage for most
people. Most of us live in a society with easy access to high energy fast foods yet our

brain is still adapted to the Stone Age. (12)

Both the GRSo7 and the GPS utilize a top down approach to genetics. The scores utilize
inherited DNA differences to predict individual differences in obesity without knowing
anything about the many mechanisms connecting genes and obesity. (12) This approach
is clever considering the overwhelming number of SNPs known to be associated with
BMI. How SNPs relate to BMI is easier to study with the GRSo7 as it contains fewer
SNPs that are all strongly associated with BMI. In contrast, the GPS encompasses

millions of SNPs that may also reflect indirect associations with BMI.

Some people find it much easier to gain weight and much more difficult to lose weight
than others. This is largely on account of our genes as obesity is a highly heritable trait.
The genetic risk scores are however not deterministic. Neither do they account for the
entire genetic component of obesity. Many individuals with high obesity scores are
slim, while others with low scores are obese. Also, everyone will lose weight if they

stop eating.

2.7 Interplay between genes and the environment

The concept of the ‘interplay between genes and the environment’ is composed of two
components; gene-environment interactions and gene-environment correlations. These
terms are often confused and are used interchangeably. Gene-environment interactions

are conditional, where the effects of the genes depend on the environment. (60) For
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example, male pattern baldness is a highly heritable trait yet first when hormones
change in mid-life do the effects of these genes begin to show. (75) This illustrates an
answer to Geoffrey Rose’s famous question “Why did this patient get this disease at this
time?’ (76) Epigenetics has recently become a hot topic and can be paralleled to gene-
environment interactions. Epigenetics is defined as ‘modifications of DNA or associated
factors that have information content, other than the DNA sequence itself, are
maintained during cell division, are influenced by the environment, and cause stable
changes in gene expression.” (77) Gene-environment correlations on the other hand, are
the correlations between genetic predisposition and experiences — how we ‘select,

modify and create environments correlated with our genetic propensities’. (60)

Our genetic propensities for obesity make it easier for some and more difficult for
others to make healthy lifestyle choices. For those with genetic predisposition to

obesity, today’s environment may make these healthy lifestyle choices even more
difficult. We cannot change our genes; however, we can influence the obesogenic

environment in which we live.
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3 Aims

3.1 General aims of the thesis

The aim of this thesis is to illustrate how population weight and obesity are modified by
the interplay between genetic predisposition and the obesogenic environment over six
decades and to examine the robustness of the findings using sibling design. Further, we
aim to validate the childhood polygenic risk score for BMI and identify at what age the

cross-over in terms of strength of prediction from the early life to the adult score occurs.

3.2 Specific aims of the thesis

To study the trajectories of body mass index (BMI) in Norway over five decades and to
assess the differential influence of the obesogenic environment on BMI according to

genetic predisposition. (Paper I)

To utilize the powerful genome-wide polygenic score to illustrate how BMI, obesity and
severe obesity are modified by the interplay between genetic predisposition and the

obesogenic environment over six decades. (Paper II)

To examine whether the interplay between genes and the obesogenic environment is
robust to family-level confounding from assortative mating, population stratification

and dynastic effects using sibling design. (Paper II)

To validate the childhood and adult polygenic risk score using measured BMI data of
individuals in both adolescence and adulthood from the HUNT Study cohort in Norway.
Further, we aim to identify the age at which the predictive performance of the early life

and adult scores crosses over. (Paper I1I)
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4 Study population and methods

4.1 The HUNT Study and the tuberculosis screening program (Paper I-
1)

In this thesis we conducted three studies based on the participants from the HUNT
Study (1984-2019) linked to previous height and weight measurements in the

tuberculosis screening program (1963-75).

The Trendelag Health Study (HUNT, and formerly known as the Nord-Trendelag
Health Study) is a large population-based health study conducted in four waves:
HUNT1 (1984-86), HUNT2 (1995-97), HUNT3 (2006-08) and HUNT4 (2017-19). (42)
The HUNT population is an ethnically homogeneous cohort with an age span from
adolescence to late adulthood. The entire adult population from the age of 20 was
invited to participate in the main HUNT Study. HUNT includes data based on clinical
examinations, self-reported health characteristics, assays of biological samples and
genotyping. Blood samples were drawn at HUNT2, HUNT3 and HUNT4. Despite
participation decline from 88% in HUNT]1 to 70% in HUNT2 and subsequently 54% in
HUNT3 and HUNT4, the HUNT Study is considered representative of the Norwegian
population. Specifically, a non-participation study from HUNT3 shows that the HUNT
Study is representative, also in terms of population BMI. (78)

The Young-HUNT survey is the adolescent counterpart to the adult HUNT surveys,
conducted in 1995-97, 2000-01, 2006-08 and 2017-19. All teenagers aged 13-19 in the
Nord-Trendelag region were recruited to participate. The Young-HUNT survey includes
data based on clinical examinations, self-reported health characteristics and buccal
swabs taken for genotyping. Unfortunately, the buccal swabs have inconsistent quality
and were not included as data in this thesis. BMI data from baseline measurements in all
four waves is likely representative as over 76% of teenagers participated. However, we
expect some selection bias in the adolescents and young adults who participated in

follow-up measurements.

The tuberculosis screening program was established in 1943 and contributed to the
surveillance of tuberculosis in the general Norwegian population. (79) Starting in 1963,

efforts were gradually directed to the surveillance of groups at high risk of tuberculosis.
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Simultaneously, the systematic measurement of height and weight was introduced. We
excluded participants aged less than 14 years as they were not targets for population
surveillance. For the genetic analyses of the first two studies, we used data from the
tuberculosis screening program limited to 1966-69, as this interval contains most

observations.

4.2 Statistics Norway family database

The Statistics Norway family database provides an ongoing account of changes
affecting families and partnership. Population projections are calculated each year and
family composition is monitored closely. (80) Linking the Statistics Norway database to
our HUNT Study data, we included 11,857 sibling groups (29,585 individuals) with
complete data on genotype and measured BMI for the sibling analyses in the second
study. Participants were defined as sibling if they their maternal and paternal ID codes
matched. Sibling pairs with an age difference greater than 30 years were dropped. As
the data is registry based, it may also include non-biological siblings. There was a
substantial amount of missing sibling data especially for the older cohorts. For example,

more than 50% of the sibling data is missing for those born before 1940.

4.3 BMI assessment

BMI was calculated as weight in kilograms per meter squared. Weight was measured to
the nearest half kilogram with the participants wearing light clothes and no shoes, and
height was measured to the nearest centimeter. (81) The World Health Organization
defines overweight as a BMI greater than or equal to 25 and obesity as a BMI greater
than or equal to 30. (25) In the second study, we refer to severe obesity as BMI greater
than or equal to 35. BMI strongly relates to longitudinal growth, and for participants
younger than 18 years we calculated their BMI z score, using the International Obesity
Task Force reference to adjust for age and sex. (82) Each participant’s BMI z score was
subsequently used to estimate the corresponding BMI at age 18 years and to define

overweight and obesity.

BMI may not be the most adequate measure of body fat as it cannot distinguish between

muscle mass and fat mass. Regardless, it is a good indicator of obesity on a population
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level. BMI is common in population studies with big sample sizes as height and weight
are easy to measure accurately. By definition, BMI encompasses adjustments for height.
However, a BMI of 30 does not necessarily have the same significance for a tall person
as for a short person. (83) In the statistical analyses of the second study, we adjusted
BMI for height to account for any effect of the six centimeters height increase in the

population since the 1960s. (84)

4.4 Genotyping and computation of genetic risk score (GRS in Paper 1),
genome-wide polygenic score (GPS in Paper II) and child and adult
polygenic risk scores (Paper I11)

Genotyping of the adult participants in HUNT2 and HUNT3 was carried out with one of
three different [llumina HumanCoreExome arrays (HumanCoreExomel2 v1.0,
HumanCoreExomel2 v1.1, and UM HUNT Biobank v1.0, Illumina, CA), as described
previously. (54, 85) Imputation was performed using minimac3 from a panel combined
from the Haplotype Reference Consortium and 2,202 HUNT low-pass sequenced

individuals with indel calling.

In the first study, the genetic risk score included 96 of the 97 SNPs previously identified
to be associated with BMI in the Giant Investigation of Anthropometric Traits (GIANT)
consortium. (69) We lacked data for one SNP (rs12016871) due to insufficient quality
of genotyping or imputation procedures. The supplementary file for the first paper
provides more details about the quality control procedures. In order to create the genetic
risk score, we performed SNP harmonization whereby we first compared the effect
allele and secondly compared the mean allele frequency (MAF) for palindromic SNPs.
A palindromic SNP is a SNP in which the alleles pair with each other in the double
helix strand such that alleles on the forward strand are the same as on the reverse strand.
(86) Thirdly, we associated the SNPs with BMI in our sample to verify correct
alignment. The number of risk alleles for each of the 96 BMI associated SNPs were
multiplied with the estimated effect size of that particular SNP on BMI published by the
GIANT consortium, (69) and then summarized over all SNPs to create a weighted
genetic risk score. (87) The study population was divided into five equally sized groups,

the top fifth group being the most genetically susceptible to higher BMI and the bottom
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fifth group being the least. Additional analyses were done with a proxy (rs4771122) in
linkage disequilibrium (r>=0.88, DPrime 1.00) replacing the excluded SNP.

In the second study, the GPS was constructed using weights from the polygenic score
for BMI derived and validated by Khera et al. Palindromic polymorphisms were
excluded, but all available variants of sufficient quality were included regardless of p-
value of the association with BMI. Using a Bayesian approach, a posterior mean effect
size was calculated for each variant incorporating the extent to which similarly
associated variants are correlated in a reference population. More detailed information
on the polygenic score derivation and validation is described previously. (18) The GPS
of Khera et al. includes 2.1 million common variants previously identified to be
associated with BML. (69, 88) The GPS used in the second study includes 2.07 million
of the 2.1 million common variants, excluding those with insufficient quality of

genotyping or imputation in HUNT (12<0.8).

In the third study, summary statistics from the genome-wide association study in the
UK Biobank (89) were used to create both childhood and adult genetic risk scores for
BMI with data from the HUNT participants. For the childhood and adult scores
respectively, the number of risk alleles for each of the common variants were multiplied
with the estimated effect size of that particular variant on BMI published by Richardson
et al., (89) and then summarized over all common variants in respective scores to create
a weighted polygenic risk score. Richardson et al.’s childhood and adult polygenic risk
scores include 295 and 557 common variants identified to be associated with childhood
and adult BMI, respectively. 268 of the 295 common variants were included in the
childhood score, excluding 17 common variants due to lacking information in the
HUNT dataset, one with insufficient quality of genotyping or imputation in HUNT (12
<0.8) and nine that were palindromic with allele frequency between 0.4 and 0.6.
Correspondingly, 492 of the 557 common variants were included in the adult score,
excluding 39 common variants due to lacking information, nine with insufficient quality
of genotyping or imputation and 17 that were palindromic with the same exclusion

criteria as above.
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4.5 Study design

The longitudinal study design is applied to all studies in this thesis with exception of
cross-sectional design for the sibling analyses and ROC analyses in paper II.
Longitudinal studies are usually observational and utilize continuous or repeated
measures to follow individuals over longer periods of time. (90) The HUNT Study is a
prospective cohort study where individuals in a defined population are followed from
the mid-1980s to the late 2010s. By linking the HUNT Study to the tuberculosis
screening program in the 1960s, we can follow individuals of the Nord Trendelag
population with repeated standardized BMI measurements over six decades. Hence, this
allows us to follow change in body weight over time in a particular individual and for
the group as a whole. Longitudinal cohort studies can correct for and account for the
influence of the cohort effect (range of birth dates), period effect (current time) and age
effect (at time of measurement) separately. When two of these variables are used

simultaneously, the third variable will be given from the first two.

The within-family analysis of siblings is an optimal approach to test for possible
confounding in the estimates of the second study. Here we adjust for three forms of
confounding that may arise in unrelated individuals; dynastic effects, assortative mating
and population stratification. By design, these forms of confounding are minimized or
eliminated in within-family analysis. On average, siblings with the same mother and
father share 50% of their genes. Since the transmission of alleles from parent to
offspring is random, the siblings have an equal likelihood of inheriting any given gene.
(91) Dynastic effects occur when parental genes influence offspring outcome through
other pathways than shared genes. (92-94) This does not become an issue as ‘siblings
are well matched on all shared familial genetic influences that shape the environment’.
(91) Potential confounding from assortative mating, when partners select each other
based on a specific trait or as consequence of social homogamy, (92, 95) and population
stratification, when allele frequencies differ between subpopulations, (92-94) is
completely eliminated by sibling design. In the second study, we test if the prediction
estimates within and between sibling groups are similar. If this is the case, it supports
that confounding by dynastic effects, assortative mating and population stratification

must be negligible or non-existent.
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4.6 Sensitivity, specificity, ROC curves and AUC

In the third study, Receiver operator characteristics (ROC) curves were used to compare
the ability of the childhood and adult genetic risk scores to predict both overweight and

obesity in the different age categories.

ROC curves are a graphical way of showing the trade-off between sensitivity and
specificity for every possible cut-off for a test or for several tests combined. (96)
Sensitivity is defined as the proportion of positives that are correctly identified by the
test while specificity is defined as the proportion of negatives that are correctly

identified by the test. (97)

The ROC curve is a graph with the x-axis showing 1-specificity (the rate of false
positives) and the y-axis showing sensitivity (the rate of true positives). The area under
the curve (AUC) can thus be used to measure the test’s discriminative ability (96) for
example, the predictive ability of a particular genetic risk score on BMI. ROC curves
are most useful when comparing two or more competing methods (97) like the
childhood and adult genetic risk scores. However, being based on sensitivity and
specificity, the ROC curves do not take into account of the prevalence of the disease

being tested. (96)

4.7 Statistical analyses

The following statistical approaches were used in the three papers: descriptive statistics
(Paper I-111), linear mixed models (Paper I-11I where Paper I and II are multilevel mixed

models) and generalized estimating equations (Paper II).

A linear mixed model is a simple linear model extended to allow for both fixed and
random effects. When the model has multiple levels, the variability in the outcome is
considered as either within group or between group. (98) If both random intercepts and
slopes are fitted, the slope of a predictor can vary based on a separate grouping variable.
(99) Data from all groups are used in random effect models to estimate the mean and the
global distribution of group means. The estimates of their means drift towards global
mean, assuming all group means are drawn from a common distribution. (99) Multilevel

linear regression is less susceptible to outcome driven loss to follow up under the
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assumption of missing at random. (100) Generalized estimating equations (GEE) are
linear models often used to analyze longitudinal and other correlated data, particularly
for binary outcomes. (101) In longitudinal data with repeated measurements within
individuals, the GEE method considers each individual as a “cluster”. (101) A main
strength with GEE is that this method produces reasonably accurate standard errors
resulting in confidence intervals with correct coverage rates. In contrast to linear mixed
models, the GEE does not explicitly model between-cluster variation but rather focusses
on and estimates its counterpart, the within-cluster similarity of the residuals. The
estimated correlation is then used to re-estimate the regression parameters and to
calculate standard errors. (101) One limitation of the GEE approach is that it cannot
handle several levels of clustering yet, this can be accounted for by extension methods.
Another challenges with using the GEE methods are; appropriately accounting for

missing data and handling data spaced unevenly in time. (101)

After performing linear mixed models and GEE analyses, we continued with post-
estimations using the margins, lincom, and user written spost13 command mgen in
Stata. Thus, we presented the estimated marginal means, adjusted predictions and
estimated marginal effects to illustrate the association between the genetic instrument
and BMI and obesity respectively over time. Analyses were performed with StataMP15
(Paper I and II), StataMP 16 (Paper II and III), Plink 2.0 (Paper II) and R version 3.6.2
(Paper I1I).

4.7.1 Paper |
Longitudinal trajectories in BMI were analyzed using linear multilevel mixed models

with observations clustered within individuals, and with a random slope for age.
Analyses were performed separately for men and women. BMI growth trajectories for
different birth cohorts were estimated in the total study sample and included age and the
square of age as continuous covariates. The effect of genetic risk of obesity on BMI was
estimated according to time of measurement and age. Linear splines of age with knots at
every decile were created for optimal age adjustment. The Bayesian information criteria
was used to compare goodness of fit for models with two year, five year, 10 year and 15
year, and 20 year age bands, where 10 year age bands proved to be the most

appropriate. Based on this model, the estimated BMI was plotted for the highest
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compared with the lowest fifth of genetic susceptibility to BMI for chosen ages at each

decade for men and women.

Several additional analyses were performed. Firstly, the association between BMI
measured in the 1960s and availability of genetic data was estimated to investigate the
possibility of a selection bias. Secondly, sensitivity analyses were performed including
only people born after 1940 as there was evidence of lower participation among those
with higher BMI in the older birth cohorts. Thirdly, as the genetic risk score was based
on genome-wide analyses performed in adults, whereas the data also included
adolescents, the impact of excluding people younger than 20 years from the analyses
was assessed. Fourthly, the association using FTO, the fat mass and obesity associated
SNP, was assessed separately. FTO is the dominating BMI associated SNP that is also
associated with BMI in childhood. (102) Fifthly, the analyses were restricted to self-
reported never smokers in the 1990s or in the 2000s to assess whether smoking trends
could affect the results. Sixthly, the association between genetic risk for obesity was
assessed rather than the association between genetic risk and BMI. A linear probability
model was chosen for similarity with the main model and to maintain a population
average effect. Lastly, the association between genetic risk score and the natural
logarithm of BMI was assessed. This was done to approximate the relative difference in

BMI between the top and bottom fifth of genetic predisposition. (103)

4.7.2 Paper
The association between GPS and BMI was assessed using linear multilevel models

with observations nested within individuals. To assess linearity, the association between
the GPS and BMI was modelled using linear splines with nine knots according to
percentiles of the distribution. Adjustments were made for sex and time of measurement
as categorical variables and linear splines were used with knots at every 20 years to
adjust for age. Adjustments were also made for 20 principal components and
genotyping batch. Further, the effect of the GPS could differ according to time of
measurement, sex, and age using interaction terms for each. Although age was adjusted
for with splines, 20-year age categories were used for the interaction terms. The
association between the GPS and BMI was fairly linear justifying a linearity assumption

for GPS (supplementary fig S1, Paper II). Hence, for the main analyses, the study

22



population was divided into ten equally sized groups, the top tenth being the most
genetically susceptible to higher BMI and the bottom tenth being the least genetically
susceptible. The effect of genetic risk of obesity on height-adjusted BMI was estimated
according to time of measurement, age and sex. In addition to the previously described
interaction terms, an interaction term between age and time of measurement was
included.

The association of GPS with obesity and severe obesity was modelled using generalized
estimating equations. The same covariates were included as in the models assessing
height-adjusted BMI. In the main text, results for adults aged 25-55 years are presented,
as this age band shows a relevant age span and was most complete in our dataset.

Based on these models, the estimated height-adjusted BMI and the prevalence of
obesity and severe obesity were plotted for the highest compared with the lowest tenth
of genetic susceptibility to BMI for chosen ages at each decade for men and women.

To assess whether assortative mating, dynastic effects or population stratification
influenced the results, the association of the GPS with height-adjusted BMI as well as
with the prevalence of obesity was analysed within and between siblings. The sibships’
GPS average and each sibling’s deviation from the group GPS average were calculated
and included as independent variables in the regression, where the within sibship
coefficient is an estimate for differentially genetically exposed siblings. Between
sibship coefficients exceeding the within sibship coefficients would indicate
confounding at the sibship level. Unlike the main analyses, these models were
preformed separately by time point with one observation per individual, assuming the
association of GPS with BMI and with obesity to be linear and constant over different
ages.

To assess the possibility of selection bias, the association between obesity status in the
1960s and availability of genetic data was estimated. The estimated BMI and prevalence
of obesity among 38,378 individuals excluded due to lack of genetic data was compared
with the estimated BMI and prevalence of obesity for individuals in our study sample.
Genetic data from first degree relatives was used to evaluate if exclusions due to

missing genetic data biased the results.
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4.7.3 Paper Il
First, in order to check the overlap in genetic predisposition to obesity as defined by the

two scores, we calculated the Pearson’s correlation coefficient between the childhood
and adult genetic scores for all ages combined. The main validation analyses involved
linear regression between measures of BMI with both the childhood and adult scores
adjusted for age, sex, time of measurement, 20 principal components and batch. These
analyses were performed separately by age groups 12-15.9, 16-17.9, 18-23.9, 24-29.9
and 30-70, and we included only the first observation for each individual per age group.
We used BMI measured in the HUNT Study as well as in the tuberculosis screening
program in the 1960s and 1970s both separately and over all times combined. We then
calculated the difference in explained variance by comparing variance explained by
models with and without a genetic score, to evaluate the ability of both scores to predict
BMI overall and at multiple time points. To describe the age of cross-over in strength of
association between each score and BMI, we included all available BMI measurements
and performed mixed linear models with observations nested in individuals. Adjusted
models were similar to the linear models described earlier, but rather than analyzing
separately over age groups, we included interaction terms between genetic scores (as
continuous variables) and age groups (as a categorical variable in three-year bands). In
additional analyses, we also included interaction terms between genetic scores and time
of measurement (as a categorical variable). We subsequently estimated the marginal
effects of genetic scores on BMI over age, using the user written spost13 package for
Stata. We then generated Receiver operator characteristics (ROC) plots as undertaken in
Richardson et al.’s study (89) to investigate the ability of both scores to predict
overweight and obesity in different age categories. Because obesity was rare among
adolescents in our sample, we present ROC plots for overweight in the main results.
The genetic scores were generated using R version 3.6.2 and all subsequent analyses

were performed using Statal6.
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5 Ethics

We obtained ethical clearance from REK for this project through the main project
“Burden of obesity in Norway”, and ethical clearance for additional analyses was
sought correspondingly. The project was approved by the data inspectorate, and
linkages were approved by the data owners. The project is based on observational data
already collected. There is no intervention; there is therefore no known risk for the
participants. The collection of large datasets including genetic information nonetheless
requires scrutiny in handling data. Furthermore, scrutiny in presenting research results

is, as always, needed to avoid adverse outcomes and misinterpretation.
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6 Main results

6.1 Descriptive statistics

In the first study, the sample included 118 959 participants aged 13 to 80 years with a
total of 252 948 BMI measurements (fig 1, Paper I). Of these individuals, 67 305 were
included in analyses of the association between genetic predisposition and BMI, with an
average of 2.6 observations per person. Participants in the 1960s were five to 10 years
younger than those at other time points, except for 2000-01 when only adolescents

participated (supplementary table S1, Paper I).

In the second study, the sample consisted of 67 110 participants aged 13 to 80 years
with a total of 202 030 BMI measurements, with an average of three measurements per
person (fig 1, Paper II). Due to a new SNP delivery, 195 fewer participants were
included in this study. We found an increasing BMI variance and a shift towards a
higher prevalence of obesity over time (supplementary fig S2, supplementary table S1,
Paper II). In the contemporary HUNT population, the GPS explained 8.26% of variance
in BML.

In the third validation study, the sample consisted of 66 963 participants aged 12 to 70
years with a total of 185 078 BMI measurements. By keeping only the first observation
per age category, 97 879 observations were left for inclusion in the analyses of

explained variance.

6.2 Quantifying the impact of genes on body mass index during the
obesity epidemic (Paper I)

Body weight increased in Norway starting between the mid-1980s and mid-1990s and,
compared with older birth cohorts, those born after 1970 had a substantially higher BMI
already in young adulthood (fig 2 and 3, supplementary fig S1 and S2, Paper I).

Men aged 35 in the bottom fifth of genetic predisposition were 2.20 kg/m?* (95%
confidence interval 2.05 to 2.35 kg/m?) heavier in the 2000s compared with the 1980s.
The corresponding difference among 35 year old women was 2.88 kg/m? (95%

confidence interval 2.70 to 3.06 kg/m?). Slightly smaller differences were found among
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the other ages (supplementary table S4, Paper I). We also found a relatively high and
stable BMI among middle aged women in the earliest cohorts (primarily before 1920
and 1920-29) and a subsequent decrease in BMI among this age group from the 1960s
to 1980s.

BMI differed substantially between the highest and lowest fifths of genetic
susceptibility for all ages at each decade, and the difference increased gradually from
the 1960s to the 2000s. For 35 year old men, the most genetically predisposed had 1.20
kg/m? (95% confidence interval 1.03 to 1.37 kg/m?) higher BMI than those who were
least genetically predisposed in the 1960s compared with 2.09kg/m? (1.90 to 2.27
kg/m?) in the 2000s. For women of the same age, the corresponding differences in BMI
were 1.77 kg/m? (1.56 to 1.97 kg/m?) and 2.58 kg/m? (2.36 to 2.80 kg/m?). Hence, the
increased difference in BMI of 0.89 kg/m? (0.63 to 1.15 kg/m?) and 0.81 kg/m? (0.51 to
1.12 kg/m?) for men and women, respectively, in the 2000s, could be attributed to the

gene-obesogenic environment interaction (supplementary table S6, Paper I).

Several additional analyses were performed. Assessing survival bias, we found a weak
association between BMI measured in the 1960s and survival to and participation in
genetic analyses in the 1990s (OR 0.98, 95% CI 0.98 to 0.99, per kg/m?). However, this
was not as apparent among cohorts born in 1940 and later (OR of having genetic data
0.99, 95% CI1 0.98 to 1.0, per kg/m? in the 1960s). Restricting analyses of the
association between time point and BMI to these cohorts revealed estimates similar to
the main results. However, this restriction prevented estimation of BMI in the1960s for

anyone over 27 years of age (supplementary fig S3, Paper I).

Additional analyses showed that restricting the study sample to never-smokers did not
change results substantially (supplementary fig S4, Paper I). As expected, the
associations with FTO alone were weaker than the associations with the GRSy yet

showed the same trends as in the main analyses (supplementary fig S5, Paper I).

Furthermore, we used the natural logarithm of BMI as the outcome and still found
evidence of a small interaction between genetic risk and time (supplementary table S7,
Paper I). The interaction between genetic risk and time was thus evident on a

multiplicative scale, however, the relative difference in BMI according to genetic risk
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was rather constant over time. Among the most genetically predisposed men aged 35 -
45, estimated prevalence of obesity increased from less than 10% in the 1960s to more
than 30% in the 2000s (supplementary fig S6, Paper I). Comparatively for the least
predisposed 35 year old men, the estimated prevalence of obesity increased from nearly
2% in 1960s to 13% in 2000s. For 35 and 45 year old women, the estimated prevalence
of obesity decreased between the 1960s and the 1980s. Starting in the 1980s, the
estimated prevalence of obesity increased steadily by time for both men and women.
We repeated the analyses using a proxy (rs4771122) in linkage disequilibrium (r*> 0.88,
DPrime 1.00) for the one excluded SNP and results were consistent with the main

results (data not shown).

6.3 Genetic associations with temporal shifts in obesity and severe obesity
during the obesity epidemic in Norway verified by sibling design (Paper
1)

From relative stability in the 1960s to 1980s, the weight for both the genetically
predisposed and non-predisposed increased dramatically from the mid-1980s to the
2000s and then stabilized to a higher level over the past decade. Height-adjusted BMI
differed substantially across polygenic score tenths for all ages and at each decade, and
the difference varied proportional to the changes in population weight (supplementary
fig S5 and table S2, Paper II). We found comparable associations between polygenic
risk score and BMI as well as obesity within and between sibling groups with little
evidence of bias from assortative mating, population stratification or dynastic effects
(fig 2, supplementary fig S6, Paper II). HUNT participants excluded due to missing
genetic data had only a slightly higher prevalence of obesity and severe obesity than the
study sample (supplementary table S3, Paper II). Using genetic data from first degree
relatives, we found no evidence that exclusion due to missing genetic data biased results
(supplementary fig S7, S8, S9, Paper II).

The increase in prevalence of obesity and severe obesity was steeper among the
genetically predisposed over the time period (fig 3,4, Paper II). Among 35 year old
men, the prevalence of obesity for the least predisposed tenth increased from 1% (95%
confidence interval [CI] 1 to 1%) to 7% (95% CI 5 to 8%) while for the most
predisposed tenth it increased from 14% (95% CI 13 to 16%) to 40% (95% CI 37 to
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43%). Hence, the absolute change in prevalence of obesity was 20 percentage points
(95% CI 17 to 24 percentage points) greater for the highly predisposed. Equivalently for
women of the same age, the prevalence of obesity for the least predisposed tenth
increased from 1% (95% CI 1 to 2%) to 8% (95% CI 6 to 9%) while the most
predisposed tenth increased from 15% (95% CI 14 to 17%) to 42% (95% CI 39 to 46%).
The absolute change in prevalence of obesity among women was 20 percentage points
(95% CI 17 to 24 percentage points) greater for the highly predisposed (fig 3,
supplementary tables S4 and S5, Paper II). A similar trend is evident for severe obesity
(fig 4, supplementary tables S4 and S5, Paper II); the corresponding absolute change in
prevalence of severe obesity for men and women respectively, was 9 percentage points
(95% CI 6 to 11 percentage points) and 13 percentage points (95% CI 10 to 16
percentage points) greater for the highly predisposed. With a contemporary prevalence
of severe obesity below 2% for most age groups, the least genetically predisposed

people seem relatively protected against severe obesity.

The following is a more comprehensive answer to the rapid response published in the
British Medical Journal concerning assortative mating in the first paper (See

Supplementary materials). This argument applies also to the second study.

If assortative mating exists, one would expect a higher genetic risk score for the high-
risk quintiles among the younger cohorts. This is not the case in our dataset. For all
birth cohorts, we found negligible differences in GRS z-score with corresponding
standard deviations for not only the high-risk quintile but also the top percentile (Table
1, below). When keeping the GRSy z-score constant from the 1960s to 2000s, we found
practically the same increased difference in BMI between the predisposed and non-
predisposed as in our manuscript, 0.89 kg/m? (confidence interval 0.63 to 1.15 kg/m?)

and 0.80 (confidence interval 0.49 to 1.10 kg/m?) for men and women respectively.
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Table 1. Mean and standard deviation of genetic risk score for BMI in the top fifth and

top percent of the genetic risk score for each birth cohort

Top fifth of genetic risk Top percent of genetic risk
Birth Number of | GRSgs z- | Standard Number of | GRSosz- | Standard
cohort participants score deviation participants score deviation
mean mean

Before

1920 326 1.43 0.50 20 2.79 0.05
1920 1525 1.40 0.47 68 2.78 0.05
1930 1716 1.42 0.48 88 2.78 0.06
1940 2534 1.39 0.47 119 2.78 0.06
1950 2710 1.41 0.48 140 2.79 0.06
1960 2461 1.42 0.48 135 2.78 0.05
1970 1531 1.39 0.46 75 2.77 0.04
1980 666 1.42 0.46 31 2.77 0.06

6.4 Validation of genetic scores for childhood and adult body mass index
in adolescence and adulthood in the HUNT Study (Paper 111)

The childhood and adult polygenic risk scores were only moderately correlated in our
dataset, with a correlation coefficient of 0.28. Although there is large overlap in gene
variants associated with obesity in children and adults,(89) there was small overlap the
respective scores. Only independent SNPs with the most significant association to BMI
are included in the childhood and adult scores. There were 21 SNPs that overlapped

between the two scores, of which we could include 20 SNPs.

In the age group 12-15.9 years, the additional variance explained by the childhood GRS
was 4.8% versus 2.3% for the adult GRS (table 1, Paper III). In the age group 16-17.9,
the additional variance explained by the adult GRS was 3.0% versus 2.0% for the
childhood GRS. Thus, the cross-over in terms of explained variance occurs at 16 years

of age. This finding holds true for all years combined and when studying 1963-75 and
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1995-97 separately (supplementary fig 1, Paper III). Correspondingly, the ROC
analyses indicate that the childhood score is superior to the adult score in predicting
overweight in the age group 12-15.9, whereas there is no difference between the two
scores in age 16-17.9 (fig 2, supplementary table S1, Paper III). Interestingly, the
marginal effect of the childhood score on BMI, i.e. to how much BMI increases per
standard deviation of the genetic score, is relatively constant throughout the life-course
while the marginal effect of the adult score on BMI increases with age (fig 3, Paper 3).
The marginal effects of the two scores cross at age 18 to 19 years however, their
confidence intervals overlap from 17 to 26 years. This implies that neither score is

better at predicting BMI in this age range.
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7 Discussion

7.1 Main findings

The HUNT Study is novel in that it captures cohort effects over four generations, age
effects from adolescence to agedness and most importantly, a period effect from before
and after the obesity epidemic. This comprehensive dataset has been instrumental for
the new knowledge brought forth by this thesis. We have followed the development of
obesity in Norway over six decades and uncovered convincing evidence of an
interaction between genes and the obesogenic environment. Further, these findings
reveal a growing inequality in risk for obesity and severe obesity across polygenic score
deciles confirmed by sibling design. Lastly, we used measured BMI over a broad age
range to validate the new genetic risk scores for childhood and adult BMI, also over
time. In doing so, we confirm the age at cross-over in terms of strength of prediction for
the childhood and adult scores. This thesis demonstrates the use of genetics to better

understand childhood and adult obesity in an increasingly obesogenic environment.

7.2 Methodological considerations

While the aim of a prediction study is to optimally predict an outcome based on
available information, the aim of a causal study is to resolve whether a certain
independent variable truly affects the dependent variable and to estimate the magnitude

of the effect, if this exists. (104)

In both forms of studies, the main objective is to obtain accurate estimates with as little
error as possible. (105) Errors in epidemiology can be classified as being random or
systematic. Random error is defined as the variability in observed data that cannot be
readily explained; either due to truly random processes or to yet unidentified causes.
(105, 106) In contrast, systematic errors can be explained either by the way in which
subjects were selected, the way study variables are measured, or by confounding.

Systematic errors are also referred to as biases. (106)
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7.2.1 Validity

Validity is defined as the lack of systematic error and is unaffected by sample size.
(105, 106) External validity, often denoted as generalizability, refers to the validity of
inferences outside of the source population. (105) External validity will be discussed
later in the discussion. Internal validity refers to the validity of inferences regarding the
source population. (105) Internal validity can be threatened by lack of precision,
selection bias, information bias as well as confounding.

7.2.1.1 Precision

Precision is defined as the lack of random error. (105) A precise estimate in an
epidemiological study is preferably indicated by a narrow confidence interval. (106) In
general, 95% confidence intervals will include the true value 95% of the time, if the
study is repeated numerous times and is free of bias. (105) The larger the sample size of

a study, the greater the precision. (105)

Most of our estimates are precise with narrow 95% confidence intervals. Compared
with a British study, (18) our second study does however lack statistical power in the
younger age groups and is unable to replicate findings of an increasing weight gradient
across polygenic score tenths from childhood to adulthood. That being said, our
estimates for adult participants are precise and do not affirm any clear age trends.
Precision is however somewhat limiting for our third study. The results for the change
in BMI over time in adolescents and young adults suffer from low statistical power and
should be interpreted with caution.

7.2.1.2 Selection bias

Selection bias is a systematic error that occurs due to differences in exposure-outcome
associations between those who were theoretically eligible to participate and those who
participated. (105) Non-participation bias and bias from selective survival to date of
genetic testing are two forms of selection bias that could violate the internal validity of
this thesis. This thesis includes BMI data for both individuals who did and did not
participate in genetic testing in HUNT2 and HUNT3. Hence, this enabled us to
investigate the association between missing genetic data and BMI measured at earliest

time points.
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The first wave of the Trendelag Health Study (HUNT1) is considered unselected as
88% of the Nord-Trendelag adult population attended. As in most other population
studies, participation declined to 70% in the second wave (HUNT2) and subsequently
stabilized at 54% for the third and fourth waves (HUNT3 and HUNTA4.) (42, 81, 107)
Non-participation is often associated with lower socioeconomic status and poorer
health. A non-participation study was performed for HUNT3 where non-participants
from the HUNT3 Study were recruited to answer a short questionnaire and registry data
was collected. This study found that non-participants had slightly lower socioeconomic
status, had more chronic diseases, had higher mortality and had a higher risk of
receiving a disability pension. From these characteristics, one would expect non-
participants to have higher BMI than participants. Interestingly, non-participants and
participants shared the same amount of subjective health complaints. Non-participants’
self-reported body heights and weights were slightly higher and lower, respectively
giving them a lower BMI (0.6 and 1.1 kg/m2 lower in men and women, respectively)
when compared with participants. This is likely explained by reporting bias as several
studies show that self-reported BMI is generally underestimated. (108) In turn, lower
participation among lower socioeconomic groups could contribute to reduce the
difference between self-reported and measured anthropometrics.

To summarize, the non-participation study for HUNT3 provided little evidence for
higher BMI among non-participants and any discrepancies in BMI between participants
and non-participants were likely an artefact of reporting bias. (78) We assumed this to
be true also for HUNT1 and HUNT2 with far greater participation as well as HUNT4
with comparable participation. In contrast, the participation in the UK biobank is
comparatively low (5%) and is subject to participation bias where higher levels of

adiposity reduced participation. (109)

Generally, our study sample is little affected by bias from selective survival to date of
genetic testing. In addition, we applied multilevel linear regression that is less
susceptible to outcome driven loss to follow up under the assumption of missing at
random. (100) For the eldest cohorts we acknowledge a weak association between a
higher BMI measured in the 1960s and survival to and participation in genetic analyses

in the 1990s. Still, in the second study we found little evidence of selection bias in
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analyses using genetic data from first degree relatives as a proxy for those who did not
participate in genetic testing. It is however likely that results for 25 year old men and
women in 2017-2019 may suffer from selection bias as estimates are extrapolated from
a broader age range. The lowest observed age was 27 in this age group. We anticipate
that the adolescents who participated in Young HUNT and then returned to participate
in HUNT4 as young adults are selected and likely have lower BML

7.2.1.3 Information bias

Information bias is defined as bias in estimating an effect caused by measurement errors
in the necessary data. (106) For discrete variables, measurement error is called
misclassification and can be either differential (depending on the value of other
variables) or non-differential (independent of the actual values of other variables). (105)
Differential misclassification of the exposure to outcome or outcome to exposure can
both exaggerate or deflate estimated associations. (105) Non-differential
misclassification will cause bias towards the null for dichotomous exposure variables
yet, for exposure variables with three or more categories it can affect estimates in either
direction. The longitudinal study design eliminates recall bias as all BMI measurements
are standardized and collected prospectively. Having these BMI measurements,
particularly in adolescents, is useful when validating Richardson et al.’s genetic risk
scores for BMI in children and adults. (19) Recall bias is a main limitation to
Richardson et al.’s genetic risk score for childhood BMI. The British childhood score
relies on a rough self-reported childhood body size (i.e. ‘thinner’, ‘plumper’, ‘about
average’) recalled by middle aged participants of the UK biobank. (89)

7.2.1.4 Confounding

Confounding is the situation where an apparent association between an exposure and an
outcome is caused by a third factor known as a confounder. A confounder is a variable
associated with but not a consequence of the exposure and is a cause of the outcome.
(106) Confounders should not be confused with mediators (intermediate variables
conveying some or all effect of the exposure on the outcome) and colliders (common
consequence of the exposure and outcome). (105) Commonly, confounding is dealt with
through separate or stratified analyses or by including covariates in regression models

(105). For example, additional analyses for the first study addressed smoking as a
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possible confounder yet restricting the study sample to never smokers did not change
results substantially (supplementary fig S4, Paper I). Three possible confounders
threatening the validity of our novel finding of a gene-environment interaction are

assortative mating, population stratification, and dynastic effects.

Phenotypic assortative mating for quantitative traits such as BMI is indisputable. (110)
We tend to choose partners with similar interests and physical attributes, including body
size. Assortative mating on a phenotype can be direct (i.e. partners select each other
based on a specific trait) or as an indirect consequence of social homogamy (i.e.
partners from the same background are more likely to pair.) (92, 95) It is logical to
assume that children of couples with obesity are likely to inherit a higher genetic risk
for obesity and that variance in genetic risk would amplify for each generation. While
we fully agree that phenotypic assortment for BMI exists, the genetic consequences
remain unknown. The most convincing genetic evidence of assortative mating for BMI
reveals only a slight genetic correlation among couples (0.143, SE: 0.007),
approximately half the value of their phenotypic correlation (0.228, SE: 0.004). (95)
Other studies suggest negligible genetic similarities between couples despite phenotypic
similarities (111) or that genetic similarities disappear when accounting for population

stratification (112).

After publishing the first study we received a rapid response arguing that assortative
mating rather than the obesogenic environment is responsible for the increasing
disparity in BMI between the genetically predisposed and non-predisposed over the last
decades. If assortative mating did exist, one would expect a higher genetic risk score for
the high-risk quintiles among the younger cohorts. This was not the case in our dataset.
For all birth cohorts, we found negligible differences in GRSgs z-score with
corresponding standard deviations for not only the high-risk quintile but also the top
percentile. Hence, we were fairly confident that our findings are not a function of
assortative mating but rather a function of the obesogenic environment. As we lack
information on the whole genome, we cannot fully deny that genetic assortative mating
may still exist in our dataset. We also acknowledge that the parents to many of the
cohorts in our dataset were not affected by the obesity epidemic. We hypothesize that

genotypic assortment for BMI may become a greater issue in the future.
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Other forms of confounding are population stratification and dynastic effects.
Population stratification arises when there are geographic or regional differences in
allele frequency relating to a trait of interest across study populations. (92, 113) As
result of such population structure, spurious association between genetic variation and
otherwise unrelated phenotypic differences may result. (65) Methods that utilize
genome-wide SNP data including principal components (114) or linear mixed models
(115) are unlikely to fully account for population stratification in genome wide
association studies. Dynastic effects arise when parental genes influence offspring
outcome through other pathways than shared genes. (92-94) It is logical that parents
generate family environments agreeing with their own genotypes, which in turn
influences the development of a trait such as obesity in the offspring. This genetic
nurture effect creates a correlation between the offspring genotype and the family
environment. (91) Interestingly, a recent non-transmitted parental alleles study (i.e. the
alleles which are not inherited by the offspring can be shown to relate to offspring

phenotype) did not report genetic nurture effects for BMI. (93, 116)

To adjust for confounding in our second study, we compare the genome-wide polygenic
score predictions for BMI and obesity in the total study sample individuals with
predictions between siblings in a within-family design. Within a family, offspring
inherit genetic variants randomly. Hence, estimates of the SNP-phenotype associations
within families do not suffer from assortative mating. Similarly, sibling in a sibship
share the same ancestry such that estimates of the SNP-phenotype association within
families cannot be biased by population stratification. Lastly, dynastic effects shared
amongst siblings or that are independent of genotype within families will also not bias
the estimates of the SNP-phenotype association within families. (65) By design, within-
family studies may reduce or eliminate these three types of confounding in our study.

(66, 117, 118)

Our analyses showed comparable associations between polygenic risk score and BMI as
well as obesity within and between sibling groups with little evidence of bias from
assortative mating, population stratification or dynastic effects. Formally testing our
novel finding of a gene-environment interaction for confounding is a major strength of

this thesis.
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7.2.2 Strengths and limitations of the longitudinal study design
A major advantage of longitudinal cohort studies is that they can correct for and account

for the influence of cohort effects (range of birth dates), period effects (current time)
and age effects (at time of measurement) separately. Another advantage is that recall
bias does not occur as data is collected prospectively. (90) This is a major strength of
our third study that attempts to validate Richardson et al.’s genetic risk score for
childhood obesity. In contrast to the UK Biobank population with self-reported
childhood body weight recalled in middle age, our study population measured BMI
prospectively from adolescents to agedness. Longitudinal studies are however costly,
demanding and are prone to bias such as interruption or loss of follow-up. Nevertheless,
the longitudinal study design is the main strength of this thesis capturing the change in

population weight before and after the obesity epidemic.

7.2.3 Informativeness of the ROC curve
Generally, the ROC curve is an illustrative way of comparing two competing methods

such as the predictive performance of the childhood and adult genetic risk scores on
overweight or obesity. However, being based on sensitivity and specificity, the ROC
curve does not take into account the prevalence of the disease being tested. This is a
limiting factor for the ROC method when the prevalence of having the disease in
question is similar to that of not having the disease. For example, in the third study, the
ROC plots for overweight from age 18 to 70 appear to show an equal effect for both the
childhood and adult genetic risk scores on BMI. This is somewhat misleading as it is
rather a reflection of the high prevalence of overweight in the adult HUNT Study
population. Hypothetically, if 50% of the study population was overweight and 50%
was not, it would be difficult to determine the respective genetic scores’ ability to truly
predict overweight. In contrast, the adolescent HUNT Study population has a low
prevalence of overweight. This implies that there is a greater contrast between the
proportion of individuals with overweight compared to without. Hence, the ROC curves

for overweight in the younger age groups are much more informative and reliable.
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7.2.4 Limitations specific to genetic epidemiology
Challenges specific to genetic epidemiology can arise when creating a genetic score or

in regard to how well the score fits the target population.

Genetic risk scores are constructed from genome-wide association studies (GWAS).
GWAS require large sample sizes as SNPs often have small effect sizes and are difficult
to detect. (13) Similarly, a large sample size is advantageous when constructing a
genetic score as, in order to be detected, the commons SNPs must be of sufficient mean

allele frequency also in the target population. (86)

Linkage disequilibrium (LD) occurs when ‘the allele of one locus is disproportionately
co-inherited with an allele at another locus.” (86, 119) This may result in confounding
as the loci do not exhibit complete independence from each other. In the first study, we
dealt with this by excluding all SNPs in LD in the first study. In the second study, LD
was dealt with in the derivation of the GPS by using a linkage disequilibrium reference

panel of 503 European samples from 1000 Genomes phase 3 version5. (69)

We undertook harmonization procedures to assure the correct alignment of genetic
variants as this could otherwise be a major source of bias. We dropped palindromic
SNPs when it was not possible to infer the effect allele either using the allele frequency

information or by associating the SNPs with BMI in our sample.

The genetic scores used for prediction of a common trait must be made to fit the
population they are applied on. In the first study we were criticized for using the adult
GRSys for BMI on adolescents in our study population. Curious to explore if this
criticism was warranted, we validated a GRS for childhood BMI in the third study. This
childhood GRS proved to be a better predictor of BMI for children and adolescents up
to their mid to late teens. Regardless, we expect our findings of a gene- environment
interaction to be relatively unchanged when using the childhood GRS on the younger
adolescents in our study sample. Also, it is advantageous if the genetic score consists of
individuals from the same ethnicity as the target population. This reduces any spurious
associations between the genotype and phenotype due to differences in distribution of

genetic variants between subpopulations, also denoted as population stratification. (113)
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Both the GWAS for BMI and the HUNT Study consist primarily of individuals of

recent European decent. (69, 81)

7.3 External validity (generalizability)

External validity is the extent to which the findings of a study can be generalized to
people outside of the study population. (105) Although this thesis is based on a
homogeneous European population, the underlying message seems likely to hold true in

other populations.

Genetic risk is likely to differ slightly among populations as the genetic variants
associated with childhood and adult BMI may vary. Furthermore, environments could
be more or less obesogenic. Interestingly, the magnitude of the interplay between genes
and the environment seem to relate directly to the degree of the obesogenic exposure in
the macroenvironment. This implies that genetically predisposed people are at greater
risk for higher BMI in today’s obesogenic environment. Although the estimates for the
interplay between genes and the environment might differ, the underlying mechanisms
for how genetic variants affect BMI are likely the same. Similarly, the age-related
differences in strength of association between these gene variants and BMI are likely

comparable in respective child and adult populations throughout the world.
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7.4 Discussion of findings

7.4.1 BMI trajectories in the Norwegian population from 1963-2020
Our data suggests that the obesity epidemic was noticeable in Norway between the mid-

1980s and 1990s. This trend was apparent to a greater extent in the US already in the
1970s. (4) In line with previous studies, (120) we find a change in the distribution of
BMI with an increasing positive skew. The population shift towards a higher overall
BMI implies that more people are experiencing the physical and social burdens of
obesity and obesity related diseases. Cohorts born after 1970 have a substantially higher
BMI already in young adulthood and many people are subject to the implications of
lifelong obesity. (23, 29, 30) In contrast to most countries, (23, 121) the prevalence of
obesity in Norway stabilized over the last decade. (42) With BMI measurements
spanning from 1963 to as recent as 2019, this thesis captures time periods with both an
increasing and stabilizing prevalence of obesity. Although obesity is a very heritable
trait, we show that it is still modifiable according to the degree of the obesogenic

environment.

Findings related to the stabilizing prevalence of obesity in the last decade awakens
speculation. While today’s Norwegian environment still fosters genetic propensity for
obesity, it may also foster genetic propensity for weight stability by encouraging health
promoting behavior. It is also plausible that our findings reflect a saturation for the role
of genetics in current society. Replication of our second study in a comparable

population yet with a higher obesity prevalence could help answer this question. (27)

Surprisingly, BMI was relatively high for middle aged women in the 1960s and then
decreased up until the mid-1980s. This result is puzzling and rarely seen in other
countries, yet population based studies across Norway have found similar trends. (122)
BMI for men in the same time period increased gradually, possibly due to increased
market consumption and access to fatty food coinciding with a rapid change to more
sedentary (male dominated) jobs and transport. Although women had access to the same
diet, physically demanding housework and other women-dominated work still
predominated. That new smoking trends among women precipitated the decrease is
unlikely, as additional analysis among never-smokers showed similar results. One

plausible explanation could be that women born in earlier cohorts had on average more
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children. (123) Excess weight due to current and previous multiple pregnancies could
not be accounted for in the BMI measurements. Although difficult to prove statistically,

we must not ignore the new societal trends in female body image to a slimmer ideal.

7.4.2 The dimension of time and the interplay between genes and the environment
The high heritability of obesity should not obscure the fact that heritability is still much

less than 100%. Undoubtedly, the obesogenic environment has had a dominant role in
the development of obesity over the past decades (54). This period effect was
experienced by all groups of the population regardless of age. (4) For a trait with more
than 40% cross-sectional heritability, (11), fat mass, as indicated by body mass index, is
still very modifiable by the obesogenic environment. (54) How the effect of genetic
predisposition to obesity differs as environments are becoming more obesogenic was
until recently, unknown. Novel to this thesis, we use the dimension of time to show the
impact of nurture on nature. Our work provides statistical evidence of the interplay

between genes and the obesogenic environment.

While genetic risk scores for obesity only account for part of the additive heritability,
we incorporate the dimension of time to quantify the interplay between genes and the
obesogenic environment. This is the main strength of our work. The tuberculosis
screening program and the HUNT Study provide a novel and appropriate data source
that links genetic data of participants with their BMI trajectories providing a unique
opportunity to quantify the role of genetics on the development of obesity. While
previous research suggested that genetic variants known to predict BMI had larger
effects after the onset of the obesity epidemic than before, (7, 8, 14) these are the most
convincing results to date, with the largest sample size and range of assessments and
ages. As discussed in the methodological considerations, our results were largely
unchanged after several additional analyses, suggesting that the finding of a gene-

obesogenic environment interaction withstand scrutiny.

Combining this unique dataset with the most powerful polygenic predictor to date is a
principal strength of this thesis. Unlike the genetic risk score based on 97 gene variants
reaching genome-wide significance, (69) the GPS encompasses over the 2.1 million

common genetic variants known to be associated with obesity. It explains 9% of the
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heritability for obesity and suggests a 13kg weight gradient across polygenic score
tenths among today’s middle-aged adults. (18) Interestingly, the difference across the
extremes of the GPS is the same order as the increase in body weight in the US over the
past 40 years. (18) Recently, a whole genome sequencing study recovered the 40%
heritability of obesity estimated by pedigree data. (11) Much of the increase in
explained variance is caused by the accumulation of many rare gene variants. An
instrument created from whole genome sequencing would surely give a better
classification of the genetically predisposed and non-predisposed for obesity. However,
applying such an instrument with the same weights in an external dataset is likely
impossible as rare gene variants are not comparable between the two datasets. This
highlights a limitation of the GPS as it does not account for the effects of rare gene
variants. Regardless, the ‘GPS provides a particularly powerful approach to test for
gene-environment interaction compared with twin studies.” (60) Twin studies implicitly
incorporate gene-environment interactions into their estimates of broad heritability. (13)
For the first time, the ‘GPS offers the possibility of directly assessing genetic
propensities of individuals and to investigate their interplay with the obesogenic

environment.’ (60)

Emphasizing our findings to obesity and severe obesity in the second study is another
principal strength of this thesis. We uncovered a genetic inequality in obesity and severe
obesity that is of clinical importance and that contributes to the understanding of the
disease. Our findings suggest that least genetically predisposed people are relatively
protected from obesity and almost completely protected from severe obesity whereas
the most predisposed people experience a substantial risk for both obesity and severe
obesity in an obesogenic environment. Although our estimates may be slightly
exaggerated by the BMI cut-offs for obesity, the findings agree with clinical suspicion.

To our knowledge, no other study has reported similar findings.

The novel findings of the first two studies comply with a recent twin-study
collaboration suggesting unchanged heritability estimates for BMI over time and
geography as a result of both increasing average BMI and an increasing impact of the
environment on the effects of genetic variation. (68, 124) A possible explanation comes

from another study suggesting that the effect of certain genetic variants associated with
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obesity increases in people with higher BMI and the enhanced genetic effects stem
predominantly from gene by environment interactions. Interestingly, these findings

apply for BMI but not for height. (125)

Our findings of an interplay between genes and the obesogenic environment withstand

scrutiny however, I do acknowledge several limitations to this thesis.

Highlighted by Kim et al. in an accompanying editorial to the first study, the focus on
average changes in population weight limits our understanding of the variation between
people. (126) First, the obesity epidemic is responsible for an increasing dispersion in
BMI that has occurred differently across subgroups of the population. (127) Second, the
obesity epidemic has resulted in a disproportionate number of heavier individuals. This
makes the distribution for weight less normal than before resulting in longer tail on the
right side of the distribution on a bell-shaped curve. (12, 120) Third, using average
population weight does not give a sufficient understanding of other variables, such as
socioeconomic status, that influence variability in BMI across different subgroups. (126,
128) Hence, Kim et al. question the meaning in focusing on population averages and
argue that an exclusive focus on population-wide strategies will unlikely reverse the
obesity epidemic. They also comment that the genetic risk scores only account for a
fraction of explained variance in BMI. This we acknowledged earlier in the thesis.
Ideally, research should be more thorough in identifying sources of within population
variation. (126) Our study does not account for cohort effects developed in different
sociocultural contexts, (129) however it does eliminate any cohort effects of birth year
with data over four generations. Regardless, I would not undermine the implications of
studying change in population averages. Our findings support population-wide
strategies for improving the health of the majority of people. There are many arguments
why ‘population level interventions, such as taxes on sugary drinks, require less agency
and are more effective and equitable than interventions targeting subgroups or the
individuals.” (44, 130-132) ‘Recognizing obesity as a disease can transform public
health policies and clean up the food environment that is harming the health of millions
of people. It can also be cost effective for the economy by reducing healthcare costs.’

(20)
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This thesis considers the interplay between genes and the obesogenic environment in a
general sense without studying the interaction with specific lifestyle factors. Studying
genetic interplay with separate lifestyle factors could shed light on underlying biological
mechanisms and would allow for more tailored preventive strategies. Recently, a gene-
environment interaction study for BMI with data from 360 participants in the UK
Biobank revealed significant interactions between genetic factors and physical activity,
alcohol consumption and socioeconomic status. Interestingly, the effect of the genetic
score for BMI was doubled when comparing participants reporting never drinking
alcohol versus daily drinkers and more than doubled comparing those with a slow
walking style to those with a brisk walking style. (133) Another UK Biobank study with
120 000 participants, also of European decent, showed that the combination of physical
activity, sedentary time, television watching, and Western diets interacted with the
genetic risk score for BMI. (134) Evidence that a specific aspect of the environment or a
certain behavior interacts directly with the genetic risk score for BMI is difficult to
prove. Changes in dietary patterns to unhealthy foods and drink and increased portion
size, sedentary lifestyle, and socioeconomic inequality are possible candidates;
however, the undoing of these changes is less likely without extreme individual
motivation and major societal transformation. (8) Although we lacked detailed
pathophysiological understanding of the influence of SNPs on phenotype, (8) we
suspect that those with a genetic predisposition for obesity will gain more weight by
eating more unhealthy foods when these are readily available. This agrees with our
knowledge of hypothalamic appetite control as there is an enriched expression of genes

near the loci regulating BMI in the central nervous system. (8)

Finally, the fit or appropriateness of the genetic scores to the study population may also
question the validity of the interplay between genes and the obesogenic environment.
One possible caveat is that we apply a contemporary GPS to past time periods. Ideally,
if we had historical data from a separate population, we could create a GPS from the
past to optimize the genetic score’s fit to BMI in a pre-obesogenic environment. By
applying this historical genetic score to the different time periods, we could examine if
the increased effect of genetic risk on BMI still occurs. We are unaware of any existing

historical genetic scores however, we identified the Tromse Study as an appropriate
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external dataset for creating such a score. Unfortunately, such analyses were beyond the
timeframe for this thesis. The genetic risk score for childhood obesity used in the third
study may reflect both historical and age differences in the gene-BMI association as it
was derived using recalled obesity status in childhood from middle age adults. Although
it has not yet been used it to test for an interplay between genes and the obesogenic
environment, we did validate it as a predictor for childhood obesity both in the past and
the present. In our results, it explains similar variance in BMI at all times combined, in

the 1960s and in the 1990s.

In our first study, the use of the adult GRS for BMI also on the adolescent population
was criticized. Admittedly, we were curious to see if this critic was warranted and
questioned whether the underlying genetic architecture for obesity is comparable in
children, in adolescents and in adults. Fortunately, Richardson et al. asked us to validate
their new genetic risk score for BMI in children using data from the tuberculosis
screening program and the HUNT Study. The findings of our third study as well as its
strengths and limitations are discussed in the following section. Testing the childhood
genetic score on adolescents in the first study was not within the time frame of this
thesis. Regardless, the study population consisted mostly of adults and the new score
would unlikely alter our novel findings of interplay between genes and the obesogenic

environment.

7.4.3 Differences in genetic architecture of childhood and adult obesity and the
validation of a genetic risk score for childhood obesity.
Age effects refer to variation in life-course outcome due to chronological age. (135) As

such, it is likely that age effects exist in the underlying genetics of BMI. From a clinical
perspective, infants, children, adolescents, adults and the elderly all have different
growth patterns, body proportions and body compositions. The age groups also differ in
their nutritional needs, their food preferences as well as in their physical capabilities.
(136) Acknowledging considerable variation, healthy children seem intuitively active

while adults become increasingly sedentary with age.

Recent genetic findings could help explain the observed differences between age
groups. While research on polygenic risk scores for BMI in adults has advanced steadily

over the last years, (18, 69, 70) polygenic risk scores for BMI in infancy and childhood
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are now beginning to appear. (89, 137, 138) These childhood scores uncover novel
variants associated with infant and childhood adiposity (102, 137, 139) and show that
many variants represent age-related differences in strength of association with body
mass index. (102, 139-141) Until recently, the childhood scores for BMI were limited

by statistical power.

Richardson et al.’s new polygenic score is unprecedented in its power. (89) It includes
295 gene variants associated with childhood BMI derived from nearly half a million
participants of the UK Biobank. (89) The childhood score predicts body mass index
better at age 10 whereas the corresponding adult score is a stronger predictor of adult
BMI. However, the childhood score is prone to misclassification bias as it relies on
questionnaire-based data for the age 10 variable. Appropriately, the third study accounts
for this limitation and further validates the new childhood and adult genetic scores with
standardized BMI measurements of adolescents and adults in the Norwegian HUNT

Study population.

The British and Norwegian study populations are well matched in terms of ethnicity and
have comparable cohorts that were children and middle aged in the same decades. The
latter accounts for age cohort effects as the British and Norwegian participants in
parallel age groups were exposed to the similar historical cultural events, traditions,

social situations and trends.

Our comprehensive dataset is the main strength of this validation study. It contains both
genetic material and repeated BMI measurements for a large sample of individuals from
12 to 70 years of age over six decades. Hence, our study widens the age range of
assessment for both scores and identifies age 16 as the cross-over in terms of strength of
prediction from the early life score to the adult score. This agrees with the British study
that suggests 17 years as the age of cross-over, likely reflecting the biological effects of
puberty. (89) Utilizing the dimension of time, our study shows that the British childhood
score is associated with childhood BMI also in younger cohorts from the HUNT Study.
This implies that Richardson et al.’s childhood polygenic score for BMI is indeed a
predictor of childhood obesity and not compromised by period effects. One obvious

limitation of our dataset is that it lacks genetic information and BMI data on children
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under the age of 12. Hence, we tested the childhood genetic risk score for BMI on

adolescents and not on children.

Validation of separate genetic scores for adult and childhood BMI will enable us to
study childhood obesity and its relation to later health. The question of whether
childhood obesity has a direct effect on disease risk or if the risk is conferred through
adult obesity is baffling and has led to conflicting results. (142) Previous observational
studies have found associations with high BMI in early life and increased risk for
morbidity (33) including coronary artery disease, (143) type 2 diabetes (144) and
several types of cancer. (145, 146) Other studies imply that high BMI in childhood does
not have a direct effect on risk for later disease unless it is sustained throughout
adulthood. (147, 148) This argument is supported clinically as adolescents with severe
obesity have shown reversal of type 2 diabetes and improvements in cardiovascular risk

factors after surgical weight loss. (149)

Richardson et al.’s attempt to distinguish childhood obesity’s relation to later disease is
the most comprehensive to date. (89) Using the childhood and adult polygenic risk
scores as separate genetic instruments, they distinguish the causal role of childhood
obesity within the framework of multivariable Mendelian randomization. (150, 151)
After validating the childhood and adult polygenic risk scores for BMI with the HUNT
population, Richardson et al.’s analytical approach can now be used to test a multitude
of disease outcomes. The findings will be interesting to compare with other research
such as a recent Phewas two-sample Mendelian randomization study identifying

potential causal effects of childhood obesity on 60 adult traits. (26)

7.5 Implications and future perspectives

The interpretation of heritability estimates for obesity is the main implication of this line
of work. Agreeing with a recent twin study, (152) it seems that the increasingly
obesogenic environment has a minimal impact on heritability estimates for BMI. This
can be explained by a higher genetic variance due to the interplay between our genes

and the environment alongside an increase in the phenotypic variance for BMI.
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From previous research, we know that genetically predisposed people are at greater risk
of higher BMI. Our work suggests that genetic predisposition interacts with the
obesogenic environment resulting in an even higher BMI and prevalence of obesity for
the genetically predisposed people, who thus have the most to gain from preventative
measures. Regardless of obesity being a heritable trait, (67, 68) secular trends have
increased body weight for both genetically predisposed and genetically non-predisposed
people. This reinforces the need for more effective preventive strategies that would
benefit all ages of the whole population and could alleviate the genetic inequalities of
this disease. Future research should focus on specific gene environment interactions that
could identify which preventive strategies and possible treatments are most effective.
Already today, we have sound evidence that population level interventions such as taxes
on sugary foods and drink are ‘more effective and more equitable than interventions

targeting the individual’. (44)

Whether heritability estimates for BMI vary throughout the life-course is still debated.
(12) Validating Richardson et al.’s genetic risk scores for childhood and adult BMI

brings us one step closer to answering this question.

Within the framework of multivariable Mendelian randomization, the validated
childhood polygenic risk score can now be used to determine causality. (89) It could
resolve whether childhood obesity has a direct effect on later disease or if the risk is
conferred through adult obesity. Guided by Richardson et al.’s recent results for type 2
diabetes and coronary artery disease, it is plausible that obesity only presents a risk for
somatic diseases after the mid to late teens. (89) This new knowledge could be an
important clue in uncovering mechanisms underlying the global disease. While efforts
to alleviate obesity should be pursued at all ages, using human genetics to disentangle
the contribution of childhood and adult BMI to disease risk can be an attractive and

cost-effective approach to help improve prevention strategies.
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8 Conclusions - New? True? Important?

Since the mid-1980s, Norway has experienced an obesity epidemic. The population
shift towards a higher overall BMI implies that more people are experiencing the
physical and social burdens of obesity and obesity related diseases. Cohorts born after
1970 have a substantially higher BMI already in young adulthood and are subject to the
implications of lifelong obesity. The HUNT Study is novel in that it captures cohort
effects over four generations, age effects from adolescence to agedness and most
importantly, a period effect from before and after the obesity epidemic. This
comprehensive dataset has been instrumental for the new knowledge brought forth by

our work.

This thesis provides evidence that genetically predisposed people are at greater risk for
higher BMI and that genetic predisposition interacts with the obesogenic environment
resulting in higher BMI and prevalence of obesity, as observed between the mid-1980s
and late 2010s. These findings are robust to family-level confounding using sibling
design. While obesity is a highly heritable trait, (11) we illustrate how it is still
modifiable according to the degree of the obesogenic exposure. This thesis also supports
that genetic factors driving BMI differ at young age and in adulthood. Validating the
new polygenic risk score for childhood BMI, our findings confirm the childhood score
as a better predictor of body weight before the mid to late teens. Whilst it may be
possible to identify those most susceptible to environmental change, who thus have the
most to gain from preventative measures, efforts to reverse the obesogenic environment

will benefit all ages of the whole population and help resolve the obesity epidemic.
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Epilogue - Pandemic perspective

Media compares the Coronavirus disease 2019 (COVID-19) pandemic to a third world
war. While not undermining the severity of today’s pandemic, we must not forget that
we also have other pandemics to fight. Obesity is responsible for 4.7 million premature
deaths worldwide each year (1). This death toll will later be compared to that of
COVID-19. Both death tolls will be underreported. Both diseases expose a growing

inequality in our society.

As the globe frantically races to find a vaccine against COVID-19, blue skies reappear
over New Delhi. Perhaps we shall take time to reflect on how our modern lifestyle
affects our health. How will months of home confinement with record high school drop-
out and unemployment later reflect on the prevalence of obesity? How will this affect
our children? (153) When a vaccine is available and immunity is reached, we will return
to a world different from the one we left. We will reflect upon the immense media
coverage, commercial and political resource and collective human willpower to fight the
COVID-19 death toll. Perhaps we should use this global effort and willpower to fight

another war? To fight next year’s obesity death toll.
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ABSTRACT

OBJECTIVES

To study the trajectories of body mass index (BMI)

in Norway over five decades and to assess the
differential influence of the obesogenic environment
on BMI according to genetic predisposition.
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. R DESIGN
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http://dx.doi.org/10.1136/bmjl4067  SETTING

General population of Nord-Trgndelag County, Norway.

PARTICIPANTS

118959 people aged 13-80 years who participated in
a longitudinal population based health study (Nord-
Trgndelag Health Study, HUNT), of whom 67 305 were
included in analyses of association between genetic
predisposition and BMI.

MAIN OUTCOME MEASURE
BMI.

RESULTS

Obesity increased in Norway starting between the mid-
1980s and mid-1990s and, compared with older birth
cohorts, those born after 1970 had a substantially
higher BMI already in young adulthood. BMI differed
substantially between the highest and lowest fifths of
genetic susceptibility for all ages at each decade, and
the difference increased gradually from the 1960s to
the 2000s. For 35 year old men, the most genetically
predisposed had 1.20 kg/m? (95% confidence interval
1.03t01.37 kg/mz) higher BMI than those who were
least genetically predisposed in the 1960s compared
with 2.09 kg/m? (1.90 to 2.27 kg/m?) in the 2000s. For
women of the same age, the corresponding differences
in BMI were 1.77 kg/m? (1.56 to 1.97 kg/m?) and

2.58 kg/m? (2.36 to 2.80 kg/m?).
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WHAT IS ALREADY KNOWN ON THIS TOPIC

Heritability, syndromic, monogenic, and polygenic studies indicate a gene-
environment interaction in the development of obesity

Previous polygenic studies are limited by a narrow age span, short follow-up, and
self reported body mass index (BMI)

How the effect of genetic predisposition to obesity differs as environments are
becoming more obesogenic is unknown

WHAT THIS STUDY ADDS

Genetic predisposition seems to interact with the obesogenic environment
resulting in a higher BMI in recent decades

Regardless, BMI has increased for both genetically predisposed and non-
predisposed people, implying that the environment remains the main contributor
More effective obesity prevention strategies would benefit the population as a
whole and that could prove to be particularly advantageous among people with a
genetic predisposition to obesity

thebmj | BMJ 2019;366:14067 | doi: 10.1136/bmj.14067

CONCLUSIONS

This study provides evidence that genetically
predisposed people are at greater risk for higher BMI
and that genetic predisposition interacts with the
obesogenic environment resulting in higher BMI, as
observed between the mid-1980s and mid-2000s.
Regardless, BMI has increased for both genetically
predisposed and non-predisposed people, implying
that the environment remains the main contributor.

Introduction

Obesity has almost tripled worldwide since 1975, yet
the origins of the obesity epidemic are still unclear.'”
An altered dietary pattern is the most plausible
environmental factor influencing excess energy
balance® °; however, a more sedentary lifestyle and
possibly changes in the biological environment, such
as toxins and microbiota, could also contribute.®
Although secular trends can change the prevalence of
obesity inan entire population simultaneously,® genetic
differences could make some people more susceptible
than others to an obesogenic environment.”*

Heritability estimates for obesity of between 0.5
and 0.8 in twin and adoption studies indicate a
strong genetic contribution at the individual level.!! *2
In contrast with these estimates, genome-wide
association studies have identified genetic variants
that explain a mere 2-5% of variation in BMIL'> *
Although the biological pathways are still not fully
understood, the identified genetic variants consistently
predict overweightness and obesity and weight gain
throughout life.” ® Genetic variants predisposing to
obesity might also modify behavioural responses
to the environment, creating a gene-environment
interaction.’® '* For instance, dietary components,
physical activity, and socioeconomic status might alter
the association between genetic predisposition and
BMIL,'° ' allowing for a targeted approach to obesity
prevention and treatment.'® Although environmental
changes likely precipitated the obesity epidemic,’
genetic predisposition could also interact with secular
trends, thereby affecting the distribution of obesity
in the population under changing environmental
conditions. Limitations such as self reported BMI,
fewer genetic variants for BMI, short follow-up, or a
selected older population'® prevented previous studies
from quantifying the impact of a gene-environment
interaction during the obesity epidemic.

Our study assessed to what extent recent secular
trends have affected genetically predisposed and
non-predisposed people differently. From 1963 to
2008 we have followed a large Norwegian population
longitudinally with repeated measurements of BMI.
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Methods

The study population is based on data from the Nord-
Trendelag Health Study (HUNT, 1984-2008) linked to
previous height and weight measurements for the same
participants in the tuberculosis screening programme
(1963-75).

Our study sample consisted of 118959 participants
aged 13-80 who participated in HUNT and had
valid repeated measurements for BMI. The HUNT
population is an ethnically homogeneous cohort with
an age span from adolescence to late adulthood and is
representative of the Norwegian population. The entire
adult population was invited and data gathering was
conducted in three waves: HUNT1 (1984-86), HUNT2
(1995-97), and HUNT3 (2006-08)."® HUNT includes
survey information on health, lifestyle, drug treatment,
family situation (eg, cohabiting), and social security,
as well as clinical measures such as blood pressure,
height, weight, and waist-hip circumference.'®
Participation declined from 88% in HUNT1 to 71%
in HUNT2 and subsequently 54% in HUNT3. Blood
samples were collected from adults participating in
HUNT2 and HUNT3. The Young-HUNT survey is the
adolescent part of HUNT, including teenagers aged 13-
19 years. The first Young-HUNT survey was performed
in 1995-97, simultaneous with HUNT2. In 2000-01,
Young-HUNT2 was performed as a follow-up of 2400
participants from Young-HUNT1. Young-HUNT3 took
place with HUNT3.

The tuberculosis screening programme was
established in 1943 and contributed to the surveillance
of tuberculosis in the general Norwegian population.'”
Starting in 1963, efforts were gradually directed to
the surveillance of groups at high risk of tuberculosis.
Simultaneously, the systematic measurement of height
and weight was introduced. As participants aged
less than 14 years were not considered targets for
total population surveillance, we excluded their BMI
measurements. In the analysis studying the effect of
decade, we used data from the tuberculosis screening
programme limited to 1966-69, as this interval
contains most of the observations.

BMI assessment

BMI was calculated as weight in kilograms per metre
squared. Weight was measured to the nearest half
kilogram with the participants wearing light clothes
and no shoes, and height was measured to the
nearest centimetre.'® The World Health Organization
defines overweight as a BMI greater than or equal to
25 and obesity as a BMI greater than or equal to 30.
BMI strongly relates to longitudinal growth, and for
participants younger than 18 years we calculated their
BMI z score, using the International Obesity Task Force
reference to adjust for age and sex.'® Each participant’s
BMI z score was subsequently used to estimate the
corresponding BMI at age 18 years.

Genotyping and computation of genetic risk score
Genotyping of the adult participants in HUNT2
and HUNT3 was carried out with one of three
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different [llumina HumanCoreExome arrays
(HumanCoreExome12 v1.0, HumanCoreExomel2
v1.1, and UM HUNT Biobank v1.0, Illumina, CA), as
described previously.”’ We included 96 of the 97 single
nucleotide polymorphisms (SNPs) previously identified
to be associated with BMI in the Giant Investigation
of Anthropometric Traits (GIANT) consortium."
We lacked data on one SNP (rs12016871) owing
to insufficient quality of genotyping or imputation
procedures. The supplementary file provides more
details about the quality control procedure.

We first multiplied the number of risk alleles for
each of the 96 BMI associated SNPs with the estimated
effect size of that particular SNP on BMI published by
the GIANT consortium," and then summarised over
all SNPs to create a weighted genetic risk score.?! The
study population was divided into five equal sized
groups, the top fifth group being the most genetically
susceptible to higher BMI and the bottom fifth group
being the least. Additional analyses were done with a
proxy (rs4771122) in linkage disequilibrium (r’=0.88,
DPrime 1.00) replacing the excluded SNP.

Statistical analysis

We analysed longitudinal trajectories in BMI using
linear multilevel mixed models with observations
clustered within individuals, and with a random slope
for age. Analyses were performed separately for men
and women. We estimated BMI growth trajectories
for different birth cohorts in the total study sample
and included age and the square of age as continuous
covariates. Then we estimated the effect of genetic risk
of obesity on BMI according to time of measurement
and age. For optimal age adjustment, we created linear
splines of age with knots at every decile. We used
bayesian information criteria to compare goodness of
fit for models with two year, five year, 10 year, 15 year,
and 20 year age bands, and concluded 10 year age
bands to be the most appropriate model. Based on this
model, we plotted the estimated BMI for the highest
compared with the lowest fifth of genetic susceptibility
to BMI for chosen ages at each decade for men and for
women. In the main text we present results for adults
aged 25-55 years, as this age band shows a relevant
age span and was most complete in our dataset. The
supplementary file provides information on estimated
BMI for each fifth of genetic risk, marginal effects, and
the statistical modelling.

We performed several additional analyses. Firstly,
we estimated the association between BMI measured
in the 1960s and availability of genetic data to
investigate the possibility of a selection bias. Secondly,
we performed sensitivity analyses including only
people born after 1940 as there was evidence of lower
participation among those with higher BMI in the
older birth cohorts. Thirdly, as our genetic risk score
was based on genome-wide analyses performed in
adults, whereas our data also included adolescents, we
assessed the impact of excluding people younger than
20 years from the analyses. Fourthly, we assessed the
associations using the fat mass and obesity associated
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(FTO) SNP alone. FTO is the dominating BMI associated
SNP that is also associated with BMI in childhood.?
Fifthly, we restricted the analyses to self reported never
smokers in the 1990s or the 2000s to assess whether
smoking trends could affect the results. Sixthly, we
assessed the association between genetic risk and
obesity rather than genetic risk and BMI. For similarity
with the main model and to maintain a population
averaged effect, we chose a linear probability model.
Finally, we assessed the association between genetic
risk score and the natural logarithm of BMI. This was
done to approximate the relative difference in BMI
rather than the absolute difference in BMI between
the top and bottom fifth of genetic predisposition.?
Analyses were performed with StataMP 15.

Patient and public involvement

No patients were involved in setting the research
question or the outcome measures, nor were they
involved in the design or implementation of the study.
As the study used previously collected data, we did
not ask patients or the public to assess the burden of
participation. We will seek involvement from a patient
organisation in the development of an appropriate
method of dissemination.

Results

The study sample included 118959 participants
aged 13-80 years with a total of 252948 BMI
measurements (fig 1). Of these individuals, 67305
were included in analyses of the association between
genetic predisposition and BMI, with an average of
2.6 observations per person. Participants in the 1960s
were five to 10 years younger than those at other time
points, except for 2000-01 when only adolescents
participated (see supplementary table S1).

Our data showed a noticeable increase in BMI in
Norway starting between the mid-1980s and mid-
1990s. Men and women became heavier with both
age and birth cohort, and, compared with older birth
cohorts, those born after 1970 had a substantially
higher BMI already in young adulthood (figs 2 and 3,
also see supplementary figs S1 and S2). Men aged 35
in the bottom fifth of genetic predisposition were 2.20
kg/m? (95% confidence interval 2.05 to 2.35 kg/m?)
heavier in the 2000s compared with the 1980s. The
corresponding difference among 35 year old women
was 2.88 kg/m? (2.70 to 3.06 kg/m?). Slightly smaller
differences were found among the other ages (see
supplementary table S4). We also found a relatively
high and stable BMI among middle aged women in the
earliest cohorts (primarily before 1920 and 1920-29)
and a subsequent decrease in BMI among this group
from the 1960s to 1980s.

The difference in BMI between the top and bottom
fifth of genetic susceptibility (highest and lowest,
respectively) was substantial for all ages at each time
point, and the difference increased gradually from the
1960s to the 2000s (fig 3, see supplementary table S5).
For men aged 35, the most genetically predisposed fifth
had 1.20 kg/m” (1.03 to 1.37 kg/m?) higher BMI than
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the least genetically predisposed fifth in the 1960s
compared with 2.09 kg/m? (1.90 to 2.27 kg/m?) in the
2000s. For women of the same age, the corresponding
differences in BMI were 1.77 kg/m?(1.56 to 1.97 kg/m?)
and 2.58 kg/m? (2.36 to 2.80 kg/m?). Hence, the
increased difference in BMI of 0.89 kg/m? (0.63 to
1.15 kg/m?) and 0.81 kg/m? (0.51 to 1.12 kg/m?) for
men and women, respectively, in the 2000s, could
be attributed to the gene-obesogenic environment
interaction (see supplementary table S6).

When survival bias was assessed, a weak association
was found between BMI measured in the 1960s and
survival to and participation in genetic analyses in the
1990s (odds ratio 0.98, 95% confidence interval 0.98
to 0.99, per kg/m?). However, this was not as apparent
among cohorts born in 1940 and later (odds ratio of
having genetic data 0.99, 95% confidence interval
0.98 t0 1.01, per kg/m? in the 1960s). When restricting
analyses of the association between time point and
BMI to these cohorts, estimates were similar to those of
the main results. This restriction, however, prevented
estimation of BMI in the1960s for anyone older than
27 years (see supplementary fig S3).

Additional analyses showed that restricting the
study sample to never smokers did not change results
substantially (see supplementary fig S4). As expected,
the associations with FTO alone were weaker than
the associations with the genetic risk score yet
showed the same trends as in the main analyses (see
supplementary fig S5).

Furthermore, we used the natural logarithm of
BMI as the outcome and still found evidence of a
small interaction between genetic risk and time
(see supplementary table S7). This interaction was
thus evident on a multiplicative scale; however, the
relative difference in BMI according to genetic risk
was constant over time. Among the most genetically
predisposed men aged 35-45, estimated prevalence
of obesity increased from less than 10% in the 1960s
to more than 30% in the 2000s (see supplementary
fig S6). In comparison, for the least predisposed 35
year old men, the estimated prevalence of obesity
increased from nearly 2% in the 1960s to 13% in
the 2000s. For women aged 35-45, the estimated
prevalence of obesity decreased between the
1960s and 1980s. From the 1980s, the estimated
prevalence of obesity increased steadily by time for
both men and women. When analyses were repeated
using a proxy (rs4771122) in linkage disequilibrium
(r* 0.88, DPrime 1.00) for the one excluded SNP,
results were consistent with the main results (data
not shown).

Discussion

In the Norwegian population, body mass index (BMI)
increased substantially from the 1960s to 2000s for
both men and women, and the increase was more
evidentin people with a genetic predisposition to higher
BMI. Our study suggests that genetic predisposition
interacts with the obesogenic environment and this has
resulted in higher BMI in recent decades. This finding
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Fig 1 | Flowchart of study participants and criteria for inclusion in study sample. *Linkage to data from tuberculosis screening programme 1963-75
required participation in any part of Nord-Trgndelag Health Study. tOf 52699 people with body mass index (BMI) measured in 1963-75, 48959 had
another valid BMI measurement before age 80. Of the 71 541 people with BMI measured in 1984-86, 43 723 had BMI measured also in 1995-97 and
27536 had BMI measured also in 2006-08. Of these, 25253 had BMI measured in 1984-86, 1995-97, and 2006-08. Of 1695 people who had BMI
measured in 2000-01, 1664 had valid BMI measurements in 1995-97. 36 292 people had BMI measured in 1995-97 and 2006-08. $Of the 26 113
people with genetic data and BMI measured in 1966-69, 26 082 also had another valid BMI measurement before age 80. Of the 41 281 people with
genetic data and BMI measured in 1984-86, 38 888 also had a valid BMI measurement in 1995-97 and 26 927 also had BMI measured in 2006-08. Of
these, 24714 had BMI measured in 1984-86, 1995-97, and 2006-08. 35 408 people had genetic data and BMI measured before age 80 in 1995-97
and 2006-08

provides a novel insight into the role of genetics in the
development of obesity.

Strengths and limitations of this study

The strength of our study is that we followed a large
ethnically homogeneous Norwegian population
longitudinally from 1963 to 2008 with repeated
standardised measurements of BMI. This population
provides an adequate sample size with an age range
from adolescence to late adulthood. The ability to
link genetic data from these participants to their BMI
trajectories provided a unique opportunity to quantify
the role of genetics on the development of obesity.

The first wave of the Nord-Trgndelag Health Study
survey (HUNT1) is considered unselected as 88% of
the Nord-Trondelag adult population attended. As in
most other population based studies, participation
in the surveys declined from the first wave (HUNT1)
to third wave (HUNT3).!® A non-participation study
for HUNT3 with self reported height and weight
provided little evidence for higher BMI among non-
participants.** We assumed this to be true for both

HUNT1 and HUNT2 with far greater participation.
Selective survival to date of genetic assessment in
1995-97 is another potential source of bias. When
limiting the analyses to participants younger than 80
in 1996, those with a higher BMI in the 1960s had a
slightly lower participation in genetic analyses. This
was not apparent among cohorts born in 1940 and
later, however, and additional analyses restricted
to these cohorts did not change the results. Hence,
estimates from the 1960s for those aged 27 years
and older should be interpreted with caution. Current
genome-wide association studies have identified
mutations that explain a mere 2-5% of variation in
BML."? ' We cannot rule out that our estimates could
have been different with a better classification of
genetically predisposed and non-predisposed people.

Comparison with other studies

Our data suggest that the obesity epidemic was
noticeable in Norway between the mid-1980s and
1990s. This trend was even more apparent in the US
in the mid-1970s, and several other countries have
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Fig 2 | Body mass index (BMI) trajectories with 95% confidence intervals for women and
men by birth cohort. Estimates from a linear mixed model of participants in the Nord-

Trgndelag Health Study, Norway. The most recent cohorts are observed at the youngest
ages (on left of graph)

shown similar results.” The obesity epidemic is largely
attributed to over-nutrition and sedentary behaviour,
both related to sociodemographic characteristics.
However, the underlying cause is likely a complex
combination of globalisation, industrialisation, and
other societal, economic, cultural, and political factors.
One example is related to the American food bill
introduced in the 1970s. This political reform might
have helped precipitate the obesity epidemic in the
United States by changing food supplies that ultimately
lead to unfavourable dietary patterns.’ In Norway, the
1980s were characterised by increased prosperity as
a result of new working cultures, increased market
consumption, and, feasibly, a comparable change in
eating patterns, influenced by North America and the
rest of Europe.?® 2 The decrease in BMI primarily in
middle aged women from the 1960s to the 1980s is
puzzling, yet population based studies across Norway
have found similar trends.*” Delayed transitioning to
sedentary work, greater parity, and new societal trends
in female body image to a slimmer ideal could have
contributed.

Genetic predisposition may not have precipitated
the obesity epidemic but may still play an important
role in the development of obesity. Our findings
indicate a substantial difference in BMI between
genetically predisposed and non-predisposed people
in all age groups. This finding is of clinical interest as
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it corresponds to a difference in estimated prevalence
of obesity among the most and least genetically
predisposed people in recent decades. Hence, those
with a predisposition are more likely to be obese and
experience the social and physical burdens of obesity
and obesity related diseases.

The obesogenic environment could be amplifying
the effect of genetic predisposition on obesity®
from in utero to agedness.’® This gene-environment
interaction has been exposed by converging findings
from heritability, syndromic, monogenic, and
polygenic obesity studies.?® Earlier studies have
suggested that the association between genetic risk
score and BMI was of greater magnitude in more recent
birth cohorts or in social groups more exposed to an
obesogenic environment.” 2° 3° Compared with these
studies, our dataset was large and comprised a wide
range of ages containing measured BMI before and
after the onset of the obesity epidemic. We confirmed
a stronger association between genetic risk and BMI in
the years with the most obesogenic environment. The
difference in BMI attributable to the gene-environment
interaction was almost 1 BMI unit, which is of clinical
significance at the population level.

A British study with 120000 participants of
European decent showed that the combination of
physical activity, sedentary time, television watching,
and Western diets interacted with the genetic risk
score for BML."> Evidence that a specific aspect of
the environment or a certain behaviour interacts
directly with the genetic risk score for BMI is difficult
to prove. Changes in dietary patterns to unhealthy
foods and increased portion size, sedentary lifestyle,
and socioeconomic inequality are possible candidates;
however, the undoing of these changes is less likely
without extreme individual motivation and major
societal transformation.'® Although we lacked detailed
pathophysiological understanding of the influence
of SNPs on phenotype,'® we suspect that those with
a genetic predisposition for obesity will gain more
weight by eating more unhealthy foods when these are
readily available. This agrees with our knowledge of
hypothalamic appetite control as there is an enriched
expression of genes near the loci regulating BMI in the
central nervous system.'°

Generalisability of the findings

Geneticriskislikely to differ slightlyamong populations
as the genetic variants associated with BMI may vary.
Furthermore, environments could be more obesogenic
or less obesogenic. Although the estimates for gene-
environment interaction might differ, the underlying
mechanisms for how genetic variants affect BMI are
likely the same. As a result, the interplay between
genes and the environment will exist in populations
worldwide.

Conclusions and implications

Since the mid-1980s, Norway has experienced an
obesity epidemic. The population shift towards a
higher overall BMI implies that more people are
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Fig 3 | Estimated body mass index (BMI) by top (most susceptible, shown in blue) and bottom fifth (least susceptible, shown in orange) of genetic
risk score by age and time point for 31 823 men and 35 482 women who participated in the Nord-Trendelag Health Study, Norway

experiencing the physical and social burdens of
obesity and obesity related diseases. Cohorts born
after 1970 have a substantially higher BMI already in
young adulthood and are subject to the implications of
lifelong obesity. Our study provides statistical evidence
that genetically predisposed people are at greater
risk of a higher BMI and that genetic predisposition
interacts with the obesogenic environment resulting

in the higher BMI in recent decades. Regardless of
BMI being a heritable trait,'* ** secular trends have
increased BMI for both genetically predisposed and
genetically non-predisposed people. This reinforces
the need for more effective preventive strategies that
would benefit the population as a whole and that could
prove to be particularly advantageous among people
with a genetic predisposition to obesity.
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Genotyping and SNP imputation procedures



The genotype quality control and imputation has been conducted by the K.G. Jebsen Center for Genetic
Epidemiology, Department of public health and nursing, Faculty of medicine and health sciences,
Norwegian University of Science and Technology (NTNU). The quality control procedures are outlined in a
fact sheet provided by the KG Jebsen Center for Genetic Epidemiology (1). The following information is
quoted from this fact sheet.

“In total, DNA from 71,860 HUNT samples was genotyped using one of three different Illlumina
HumanCoreExome arrays (HumanCoreExome12 v1.0, HumanCoreExome12 v1.1 and UM HUNT Biobank v1.0).
Samples that failed to reach a 99% call rate, had contamination > 2.5% as estimated with BAF Regress (Jun et
al., 2012), large chromosomal copy number variants, lower call rate of a technical duplicate pair and twins,
gonosomal constellations other than XX and XY, or whose inferred sex contradicted the reported gender, were
excluded. Samples that passed quality control were analysed in a second round of genotype calling following
the Genome Studio quality control protocol“.

“Variants were excluded if (1) their probe sequences could not be perfectly mapped to the reference genome,
cluster separation was < 0.3, Gentrain score was < 0.15, showed deviations from Hardy Weinberg equilibrium
in unrelated samples of European ancestry with p-value < 0.0001), their call rate was < 99%, or another assay
with higher call rate genotyped the same variant. “

“Imputation was performed on the 69,716 samples of recent European ancestry using Minimac3
(v2.0.1,http://genome.sph.umich.edu/wiki/Minimac3) (Das et al., 2016) with default settings (2.5 Mb
reference based chunking with 500kb windows) and a customized Haplotype Reference consortium release 1.1
(HRC v1.1) for autosomal variants and HRC v1.1 for chromosome X variants (McCarthy et al. , 2016). The
customized reference panel represented the merged panel of two reciprocally imputed reference panels: (1)
2,201 low-coverage whole-genome sequences samples from the HUNT study and (2) HRC v1.1 with 1,023
HUNT WGS samples removed before merging.” Imputed variants with Rsq < 0.3 were excluded (1).

Statistical analyses:

We used two different statistical models in our paper. For the growth trajectories, we used a model with
age, age squared and birth cohort. No other covariates were included in this analysis.

In Stata, we used the following commands to estimate the associations among women and men,
respectively:

mixed bmi c.agett#fc.agetti.fcohort if Sex==0, | | PID: age, covariance(unstructured)mixed
mixed bmi c.aget#t#c.age#ti.fcohort if Sex==1,| | PID: age, covariance(unstructured)mixed

bmi denotes the body mass index, for participants under 18 this was adjusted according to the
international task force for obesity as described in the main manuscript. Age was centered at age 45, and
birthcohort was coded from 0 to 8, indicating birth before 1920, 1920-29, 30-39, 40-49, 50-59, 60-69, 79-
79, 80-89 and 90-99, respectively.

The regression was thus run separately for men and women with the following equation estimating BMI
at the it" observation for the j individual:

BMl;j= Bo + B1*age + Bo*age*age + Bs*age*birth cohort; + Ba*age*birth cohort,

+ Bs*age*birth cohorts + Bs*age*birth cohorts + B;*age*birth cohorts + Bs*age*birth cohorts

+ Bo*age*birth cohort; + Bio*age*birth cohorts + B11* age*age*birth cohorti+ B1,* age*age*birth
cohort, + Bis*age*age™ birth cohorts + B1a*age*age* birth cohorts + Bis*age*age™* birth cohorts



+ Bis*age*age* birth cohorts + B17*age*age*birth cohort; + B1s*age*age*birth cohorts
+Ug+ Uy*agej+ e

Modelling age with linear splines gives a better fit according to the Bayesian information criteria,
however, the polynomial model outlined above produced smoother and more legible curves. As the
polynomial model overestimates the BMI for women in birth cohorts born 1930-49 at the observed older
ages, we have included results from a model where age was included as linear splines in this
Supplementary Material Figure S1). The splines were generated with 4 knots placed according to
percentiles of the age distribution.

For the analyses with genetic risk and time, we have used indicator variables to denote the different
calendar times (years of observations). The years 1995-97 were set as reference values, as the number of
observations was greatest these years. The fifth of the population with the lowest genetic predisposition
to obesity (GRSo) was used as reference category for genetic risk. Age is modelled with linear splines,
using age of 20 as the reference value. Knots were placed at each 10" year from 20 to 70. Year was coded
as 0 (66-69), 4 (84-86), 6 (95-97),7 (00-01) and 8 (06-08).

For the i*" observation of the j" individual, we estimate the BMI to be:

BMlij= Bo + B1*Yeares-so+ B2*Yearssos + Bs*Yearoo.o1 + Ba*Yearos-os

+ Bs*GRS; + B6*GRS; + Pr*GRSs + Ps*GRSs

+ Bo*age spline 1 + Bio*age spline 2+ B11*age spline 3+ B1o*age spline 4

+ Biz*age spline 5+ Bis*age spline 6+ Bis*age spline 7

+ B16*Year55-59*GR51 + B17*Yeares.sg*GR52+ Bls*YEaree-eg*G RS;+ B19*Year65.69*GRS4

+ Bao*Yearss.ss*GRS1+ Ba1*Yearssss* GRS, + Bo*Yearss.ss*GRS3 + B2s*Yearssss*GRSa

+ 524*Yeargu.01*G RS; + st*Yearoo.01*GRSz+ st*Yearon.m*G RSz + Bz7*Yearoo.01*GRS4

+ Bas*Yearos.0s*GRS1 + Bao*Yearos0s* GRS, + B3o*Yearos.0s*GRS3 + Ba1*Yearos.0s* GRS,

+ Bs2*age spline 1* GRS+ Bss*age spline 1* GRS, +Bss*age spline 1* GRSs +Bss*age spline 1* GRS,
+ Bss*age spline 2* GRS+ B3y*age spline 2* GRS, +Bss*age spline 2* GRS; +B3¢*age spline 2* GRS,
+ Bao*age spline 3* GRS+ Bai*age spline 3* GRS, +Ba,*age spline 3* GRS; +Bas*age spline 3* GRS,
+ Bas™age spline 4* GRS1+ Bas*age spline 4* GRS, +Bas*age spline 4* GRS; +B47*age spline 3* GRS,
+ Bas*age spline 5* GRS+ Bas*age spline 5* GRS, +Bso*age spline 5* GRS; +Bs1*age spline 3* GRS,
+ Bs2*age spline 6* GRS+ Bss*age spline 6* GRS, +Bss*age spline 6* GRS;3 +Bss*age spline 3* GRS,
+ Bsg*age spline 7* GRS+ Bsy*age spline 7* GRS, +Bss*age spline 7* GRSs +Bso*age spline 3* GRS,
+ Beo*age spline 1* Yearss.sot+ Ber*age spline 1* Yearssgs +Bs2*age spline 1* Yearoo.o1 +Be3*age spline 1
* Yearos.os

+ Bea*age spline 2* Yearss.eot+ Bos*age spline 2* Yearsass +Bss*age spline 2* Yearoe.os

+ Bsr*age spline 3* Yearss.so+ Bes*age spline 3* Yearss.gs +Bso™age spline 3* Yearoe.os

+ Bro*age spline 4* Yearss.eo+ B71*age spline 4* Yearsags +B7,*age spline 4* Yearge.os

+ Br3*age spline 5* Yeargs.eot+ Bra*age spline 5* Yearsass +B7s*age spline 5* Yearoe.os

+ Brs*age spline 6* Yearss.ss +B77*age spline 6* Yearosos+B7s*age spline 7* Yearos.os
+ Ug+ Uy*agej+ e

We assume that error terms Ug;and Uy are normally distributed with mean 0.



Results

Table S1: Descriptive statistics of male and female participants at each time point.

TBC H1 H2 YH2 H3 Total
Year 1963-75 1984-86 1995-97 2000-01 2006-08
Men
No. of participants 24,974 35,309 33,404 780 25,697 120,164
No. of observations 25,396 35,309 33,420 780 120,608
25,703

No. with GRS (%) 13,480 (54.0) 20,447 (57.9) 26431 (79.1) 156 (20.0) 21,267 (82.8) 81,781  (68.1)
Mean Age (SD) 385 (15.5) 47.6  (16.2) 446 (18.3) 182 (0.7) 46.9 (18.7) 44.6 (17.7)
Mean BMI (SD) 244 (3.0) 253 (32) 260 (3.7) 230 (34) 269  (4.0) 256  (3.6)
BMI categories
(%)

<185 0.8 0.6 0.9 3.1 0.7

18.5-24.9 60.3 49.6 40.2 76.9 31.3

25.0-29.9 344 42.1 45.8 15.1 47.7

30.0-34.5 42 6.9 113 3.9 16.9

35+ 0.3 0.9 1.8 1.0 35
‘Women
No. in data set 27,725 36,232 36,898 915 29,946 131,716
No. of obsv. 28,312 36,232 915 29,961

36,920 132,340

No. with GRS (%) 15,872 (57.3) 22,697 (62.6) 29,626 (80.3) 256 (28.0) 25,178 (84.1) 93,629  (71.1)
Mean Age (SD) 39.6  (15.7) 483  (l16.5) 448 (184) 182 (0.7) 46.6 (18.3) 450 (17.7)
Mean BMI (SD) 253 (4.4) 25.1 (4.5) 25.8 (4.6) 227 (3.5 264 (49 25.6 (4.6)
BMI categories (%)

<185 1.8 2.0 1.6 6.5 1.3

18.5-24.9 51.8 54.8 47.6 74.8 42.7

25.0-29.9 32.0 29.8 343 14.5 35.0

30.0-34.5 11.1 10.1 123 34 15.0

35+ 33 34 43 0.9 6.0




Figure S1: BMI trajectories with 95% confidence intervals for the women and men by birth cohort. Estimates

from a linear mixed model, with age modelled using linear splines.
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Table S2: Regression estimates from analyses of association between genetic risk score and BMI at different
ages and time points among men.

Expl y variable Beta SE 95% CI p-values

Year 1967-69 -1.09 0.11 -1.31 - -0.87 <0.001
1984-86 -0.82 0.11 -1.04 - -0.59 <0.001
2000-01 -1.23 0.49 -219 - -0.27 0.012
2006-08 -0.03 0.16 -034 - 0.28 0.857

Genetic risk GRS 1 0.51 0.12 027 - 0.75 <0.001
GRS 2 1.10 0.12 0.86 - 1.34 <0.001
GRS 3 1.12 0.12 0.87 - 1.36 <0.001
GRS 4 1.78 0.12 154 - 2.02 <0.001

Year #gentic risk

Year
1967-69 GRS 1 -0.21 0.10 -0.40 - -0.03 0.024
1967-69 GRS 2 -0.53 0.10 -072 - -0.34 <0.001
1967-69 GRS 3 -0.36 0.10 -055 - -0.16 <0.001
1967-69 GRS 4 -0.60 0.10 -0.79 - -042 <0.001
1984-86 GRS 1 -0.13 0.05 -0.24 - -0.04 0.009
1984-86 GRS 2 -0.26 0.05 -037 - -0.16 <0.001
1984-86 GRS 3 -0.15 0.05 -026 - -0.05 0.005
1984-86 GRS 4 -0.34 0.05 -045 - -0.25 <0.001
2000-01 GRS 1 -0.02 0.39 -0.77 - 0.74 0.954
2000-01 GRS 2 0.21 0.38 -0.54 - 0.96 0.583
2000-01 GRS 3 0.30 0.38 -045 - 1.13 0.325
2000-01 GRS 4 0.25 0.39 -051 - 091 0.677
2006-08 GRS 1 0.13 0.06 002 - 0.25 0.019
2006-08 GRS 2 0.18 0.06 0.07 - 0.30 0.002
2006-08 GRS 3 0.23 0.06 011 - 034 <0.001
2006-08 GRS 4 0.29 0.06 018 - 041 <0.001
Age splines Age spline 1 0.33 0.03 027 - 0.39 <0.001
Age spline 2 0.20 0.01 0.18 - 0.23 <0.001
Age spline 3 0.04 0.01 0.02 - 0.06 <0.001
Age spline 4 0.08 0.01 006 - 0.10 <0.001
Age spline 5 0.00 0.01 -0.02 - 0.02 0917

Age spline 6 0.00 0.01 -0.02 - 0.03 0.742



Age spline 7 0.00 0.02 -0.05 - 0.04 0.871

Age splines # genetic risk

Age spline 1 GRS 1 0.02 0.03 -0.04 - 0.09 0.506
Age spline 1 GRS 2 0.06 0.03 -0.01 - 0.12 0.088
Age spline 1 GRS 3 0.04 0.03 -0.03 - 0.10 0.262
Age spline 1 GRS 4 0.06 0.03 0.00 - 0.13 0.065
Age spline 2 GRS 1 0.00 0.01 -0.03 - 0.02 0.761
Age spline 2 GRS 2 -0.01 0.01 -0.04 - 0.01 0.262
Age spline 2 GRS 3 -0.01 0.01 -0.03 - 0.02 0.565
Age spline 2 GRS 4 0.01 0.01 -0.02 - 0.03 0.617
Age spline 3 GRS 1 0.00 0.01 -0.02 - 0.01 0.772
Age spline 3 GRS 2 -0.02 0.01 -0.03 - 0.00 0.068
Age spline 3 GRS 3 0.00 0.01 -0.01 - 0.02 0.682
Age spline 3 GRS 4 -0.01 0.01 -0.03 - 0.01 0.256
Age spline 4 GRS 1 -0.02 0.01 -0.03 - 0.00 0.056
Age spline 4 GRS 2 -0.01 0.01 -0.03 - 0.00 0.108
Age spline 4 GRS 3 -0.02 0.01 -0.03 - 0.00 0.056
Age spline 4 GRS 4 -0.02 0.01 -0.04 - -0.01 0.009
Age spline 5 GRS 1 0.01 0.01 -0.01 - 0.02 0.487
Age spline 5 GRS 2 -0.01 0.01 -0.03 - 0.01 0.316
Age spline 5 GRS 3 0.00 0.01 -0.02 - 0.01 0.742
Age spline 5 GRS 4 -0.01 0.01 -0.03 - 0.01 0.336
Age spline 6 GRS 1 -0.01 0.01 -0.03 - 0.01 0.380
Age spline 6 GRS 2 -0.02 0.01 -0.04 - 0.01 0.142
Age spline 6 GRS 3 0.00 0.01 -0.03 - 0.02 0.645
Age spline 6 GRS 4 -0.02 0.01 -0.04 - 0.00 0.102
Age spline 7 GRS 1 -0.02 0.02 -0.06 - 0.01 0.212
Age spline 7 GRS 2 -0.05 0.02 -0.09 - -0.02 0.005
Age spline 7 GRS 3 -0.05 0.02 -0.08 - -0.01 0.009
Age spline 7 GRS 4 -0.06 0.02 -0.09 - -0.02 0.002
Age spline 1 1967-69 -0.21 0.03 -0.27 - -0.16 <0.001
Age spline 1 1984-86 15.44 9.09 -2.39 33.26 0.090
Age spline 1 2000-01 -0.35 0.19 -0.72 - 0.03 0.069
Age spline 1 2006-08 -0.47 0.60 -1.64 - 0.70 0.429
Age spline 2 1967-69 -0.02 0.01 -0.05 - 0.01 0.127
Age spline 2 1984-86 -0.06 0.02 -0.09 - -0.03 <0.001

Age spline 2 2006-08 0.09 0.02 0.04 - 0.13 <0.001




Age spline 3 1967-69 0.02 0.01 0.00 0.05 0.031
Age spline 3 1984-86 0.06 0.01 0.03 0.08 <0.001
Age spline 3 2006-08 0.04 0.02 0.01 0.08 0.008
Age spline 4 1967-69 -0.02 0.01 -0.04 0.01 0.207
Age spline 4 1984-86 -0.02 0.01 -0.05 0.00 0.049
Age spline 4 2006-08 -0.06 0.01 -0.09 -0.04 <0.001
Age spline 5 1967-69 0.02 0.08 -0.14 0.18 0.770
Age spline 5 1984-86 0.03 0.01 0.00 0.06 0.022
Age spline 5 2006-08 0.03 0.01 0.01 0.06 0.015
Age spline 6 1984-86 0.01 0.02 -0.04 0.06 0.611
Age spline 6 2006-08 -0.04 0.02 -0.07 0.00 0.036
Age spline 7 2006-08 -0.01 0.02 -0.06 0.04 0.671
Intercept 23.09 0.11 22.88 2331 <0.001




Table S3: Regression estimates from analyses of association between genetic risk score and BMI at different
ages and time points among women.

Explanatory variable Beta SE 95% CI vall:es

Year 1967-69 -1.41 0.13 -1.67 - -1.16 <0.001
1984-86 -1.42 0.13 -1.69 - -116 <0.001
2000-01 -0.16 0.45 -1.04 - 072 0.723
2006-08 -0.21 0.17 -0.54 - 012 0.22

Genetic risk GRS 1 0.48 0.14 020 - 075 0.001
GRS 2 0.71 0.14 044 - 099 <0.001
GRS 3 0.80 0.14 053 - 1.08 <0.001
GRS 4 1.93 0.14 165 - 221 <0.001

Year #gentic risk

Year
1967-69 GRS 1 -0.10 0.11 -032 - 013 0.391
1967-69 GRS 2 -0.15 0.11 -0.37 - 008 0.196
1967-69 GRS 3 -0.16 0.11 -0.38 - 006 0.163
1967-69 GRS 4 -0.47 0.11 -0.69 - -0.24 <0.001
1984-86 GRS 1 -0.04 0.07 -0.17 - 0.09 0.541
1984-86 GRS 2 -0.15 0.07 -0.28 - -0.02 0.028
1984-86 GRS 3 -0.09 0.07 -022 - 004 0.16
1984-86 GRS 4 -0.31 0.07 -044 - -018 <0.001
2000-01 GRS 1 0.24 0.37 -049 - 097 0.52
2000-01 GRS 2 0.39 0.41 -040 - 119 0.33
2000-01 GRS 3 0.62 0.41 -0.19 - 143 0.136
2000-01 GRS 4 0.10 0.40 -0.67 - 088 0.794
2006-08 GRS 1 -0.02 0.07 -0.16 - o011 0.724
2006-08 GRS 2 0.01 0.07 -0.13 - o014 0.914
2006-08 GRS 3 0.11 0.07 -0.03 - 024 0.128
2006-08 GRS 4 0.35 0.07 021 - 049 <0.001
Age splines Age spline 1 0.32 0.04 025 - 039 <0.001
Age spline 2 0.09 0.02 006 - 0.12 <0.001
Age spline 3 0.01 0.01 -0.01 - 004 0.241
Age spline 4 0.13 0.01 011 - 016 <0.001
Age spline 5 0.10 0.01 008 - 013 <0.001
Age spline 6 0.07 0.02 004 - 0.10 <0.001
Age spline 7 0.00 0.03 -0.05 - 005 0.969

Age splines # genetic risk



Age spline 1 GRS 1 0.03 0.04 -0.05 0.11 0.432
Age spline 1 GRS 2 0.06 0.04 -0.01 0.14 0.109
Age spline 1 GRS 3 0.00 0.04 -0.08 0.08 0.964
Age spline 1 GRS 4 0.05 0.04 -0.03 0.13 0.19
Age spline 2 GRS 1 0.02 0.02 -0.01 0.05 0.238
Age spline 2 GRS 2 0.03 0.01 0.00 0.06 0.056
Age spline 2 GRS 3 0.05 0.01 0.02 0.08 0.002
Age spline 2 GRS 4 0.04 0.02 0.01 0.07 0.007
Age spline 3 GRS 1 -0.02 0.01 -0.04 0.01 0.141
Age spline 3 GRS 2 0.00 0.01 -0.03 0.02 0.661
Age spline 3 GRS 3 -0.01 0.01 -0.03 0.01 0.286
Age spline 3 GRS 4 -0.02 0.01 -0.04 0.00 0.064
Age spline 4 GRS 1 0.00 0.01 -0.02 0.02 0.756
Age spline 4 GRS 2 0.00 0.01 -0.02 0.02 0.811
Age spline 4 GRS 3 0.00 0.01 -0.02 0.02 0.834
Age spline 4 GRS 4 -0.01 0.01 -0.03 0.01 0.348
Age spline 5 GRS 1 -0.01 0.01 -0.03 0.02 0.629
Age spline 5 GRS 2 -0.02 0.01 -0.04 0.01 0.15
Age spline 5 GRS 3 -0.01 0.01 -0.03 0.01 0.289
Age spline 5 GRS 4 -0.03 0.01 -0.05 0.00 0.016
Age spline 6 GRS 1 -0.01 0.01 -0.04 0.02 0.404
Age spline 6 GRS 2 0.00 0.01 -0.03 0.02 0.797
Age spline 6 GRS 3 -0.01 0.01 -0.04 0.02 0.449
Age spline 6 GRS 4 -0.04 0.01 -0.06 -0.01 0.006
Age spline 7 GRS 1 -0.01 0.02 -0.05 0.04 0.771
Age spline 7 GRS 2 0.00 0.02 -0.04 0.04 0.968
Age spline 7 GRS 3 -0.04 0.02 -0.08 0.00 0.076
Age spline 7 GRS 4 -0.02 0.02 -0.07 0.02 0.299
Age spline 1 1967-69 -0.26 0.03 -0.32 -0.20 <0.001
Age spline 1 2000-01 0.28 0.19 -0.09 0.64 0.139
Age spline 1 2006-08 -0.27 0.49 -1.24 0.70 0.582
Age spline 2 1967-69 0.01 0.02 -0.02 0.04 0.61
Age spline 2 1984-86 -0.08 0.02 -0.12 -0.05 <0.001
Age spline 2 2000-01 0.64 2.62 -4.51 5.78 0.808
Age spline 2 2006-08 0.12 0.02 0.07 0.17 <0.001
Age spline 3 1967-69 0.17 0.01 0.14 0.20 <0.001
Age spline 3 1984-86 0.12 0.01 0.09 0.15 <0.001



Age spline 3 2006-08 0.04 0.02 0.01 0.08 0.025
Age spline 4 1967-69 0.04 0.02 0.01 0.08 0.006
Age spline 4 1984-86 0.01 0.02 -0.02 0.04 0.451
Age spline 4 2006-08 -0.12 0.02 -0.15 -0.08 <0.001
Age spline 5 1967-69 -0.03 0.09 -0.20 0.14 0.751
Age spline 5 1984-86 0.04 0.02 0.00 0.07 0.046
Age spline 5 2006-08 0.00 0.02 -0.03 0.04 0.924
Age spline 6 1984-86 0.02 0.03 -0.04 0.07 0.569
Age spline 6 2006-08 -0.03 0.02 -0.07 0.01 0.208
Age spline 7 2006-08 0.02 0.03 -0.04 0.08 0.55
Intercept 23.18 0.12 22.93 23.42 <0.001




Table S4: Estimated difference in BMI between 2006-08 and 1984-86 among men and women in the lowest fifth
of genetic susceptibility.

Men Women
Ages BMI difference 95% CI BMI difference 95% CI
Age 25 1.53 1.33- 1.71 2.24 2.03- 245
Age 35 2.20 2.05- 235 2.88 2.70- 3.06
Age 45 1.94 1.79- 2.09 1.85 1.66- 2.03
Age 55 1.75 1.59- 191 1.03 0.83- 1.23

Table S5: Difference in phenotypic BMI between the fifths with the highest (Q5) and lowest (Q1) genetic
susceptibility for chosen ages at each time point for men and women.

Men ‘Women
Ages Years BMI(Q5-Q1) 95% CI BMI(Q5-Q1) 95% CI
Age 15 1966-69 0.88 0.62 - 1.14 1.20 0.89 - 152
1984-86 NA NA
1995-97 1.47 1.16 - 1.79 1.67 129 - 2.04
2006-08 NA NA
Age 25 1966-69 1.22 1.07 - 1.37 1.66 148 - 1.84
1984-86 147 134 - 1.61 1.82 1.65 - 199
1995-97 1.81 1.65 - 1.98 213 193 - 232
2006-08 2.11 1.88 - 2.32 2.48 222 - 274
Age 35 1966-69 1.20 1.03 - 1.37 1.77 1.56 - 197
1984-86 1.45 1.33 - 1.57 1.92 1.77 - 2.08
1995-97 1.80 1.66 - 1.93 223 2.07 - 240
2006-08 2.09 1.90 - 2.27 2.58 236 - 2.80
Age 45 1966-69 1.05 083 - 1.26 1.62 136 - 1.89
1984-86 1.30 1.15 - 1.45 1.78 1.59 - 197
1995-97 1.64 1.52 - 1.77 2.09 193 - 225
2006-08 1.94 1.78 - 2.09 244 225 - 262
Age 55 1966-69 NA NA
1984-86 1.15 095 - 1.36 1.60 135 - 1.86
1995-97 1.50 1.34 - 1.66 1.91 1.71 - 211
2006-08 1.79 1.64 - 1.94 2.26 2.08 - 244
Age 65 1966-69 NA NA
1984-86 1.02 0.74 - 1.30 1.28 0.94 - 1.63
1995-97 1.37 1.14 - 1.59 1.59 131 - 187
2006-08 1.66 148 - 1.84 1.94 1.71 - 2.17
Age 75 1966-69 NA NA
1984-86 0.65 027 - 1.04 0.98 0.50 - 145
1995-97 1.00 0.67 - 1.33 1.29 0.89 - 1.69

2006-08 1.29 1.02 - 1.57 1.64 1.30 - 197




Table S6: Estimated difference in the association between genetic risk and BMI comparing different time

points.

The reported BMI differences are the estimated additional change in the association between genetic risk and
BMI, comparing more recent time points to the association found in 1966-69. In other words, the differences
attributable to the gene-by-environment interaction.

Men Women
BMI BMI
difference 95% CI  p-value difference 95% CI p-value
1966-69 0 Reference 0 Reference
1984-86 0.25 0.11-0.39 <0.001 0.16 -0.01-0.32 0.06
1995-97 0.60 0.41-0.79 <0.001 0.47 0.24-0.69 <0.001
2006-08 0.89 0.63-1.15 <0.001 0.81 0.51-1.12 <0.001

Table S7: Estimated difference in the association between genetic risk and the natural logarithm of BMI
comparing different time points.
The exponentiated regression coefficients can be interpreted as the relative additional change in the association
between genetic risk and BMI, comparing more recent time points to the association found in 1966-69.

Men Women

Beta 95% CI Exp(beta) 95% CI P Beta 95% CI Exp(beta) 95%CI P
1966-69 0 Ref 1.0 Ref 0 Ref 1.0 Ref
1984-86 0.01  0.00- 0.01 1.01  1.00- 1.01 0.002 0.01  0.00- 0.01 1.01  1.00- 1.01 0.037
1995-97 0.02  0.01- 0.03 .02 1.01- 1.03 <0.001 0.01  0.01- 0.02 1.01  1.01- 1.02 0.001
2006-08 0.03  0.02- 0.04 1.03  1.02- 1.04 <0.001 0.02  0.01- 0.03 .02 1.01- 1.04 <0.001



Figure S2: Estimated BMI by each fifth of genetic risk score by age and time point for 31,823 men and 35,482

women.

The lowest fifth of genetic susceptibility is represented by the full circle, the second by the full square, the third
by the x, the fourth by the hollow circle and the highest fifth of genetic susceptibility is represented by the
hollow square (ordered from left to right).
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Figure S3: Comparison of estimated BMI by the top and bottom fifth of genetic risk score by age and time from the model used to create main Figure 3 (circles and
full squares for bottom and top fifth, respectively) to a model where only cohorts born 1940 and later have been included (x and hollow circle for bottom and top
fifth, respectively).
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Figure S4: Estimated BMI by the top and bottom fifth of genetic risk score by age and time point among 11,710 men and 15,378 women who report to be never

smokers.
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Figure S5: Estimated BMI by 0 and 2 effect alleles FTO-associated SNP rs15589 by age and time point.
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Figure S6: Estimated prevalence of obesity by the top and bottom fifth of genetic susceptibility, by age and time point.
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Figure S7: Estimated body mass index (BMI) by top (most susceptible) and bottom fifth of genetic risk score by age and time point for 31 682 men and 35 314
women who participated in the Nord-Trendelag Health Study, Norway. Analyses restricted to individuals aged 20-80 years.
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Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal
findings from the HUNT Study
BM1J 2019; 366 doi: https://doi.org/10.1136/bmj.14067 (Published 03 July 2019) Cite this as:

BMJ 2019;366:14067 Re: Panmictic Presumption

Phenotypic assortative mating for quantitative traits such as BMI is indisputable (1). We
tend to choose partners with similar interests and physical attributes, including body
size. Hence, it is logical to assume that children of couples with obesity are likely to
inherit a higher genetic risk for obesity and that variance in genetic risk would amplify

for each generation.

Uzoigwe argues that assortative mating rather than the obesogenic environment is
responsible for the increasing disparity in BMI between the genetically predisposed and
non-predisposed over the last decades. If this were true, one would expect a higher
genetic risk score for the high-risk quintiles among the younger cohorts. This is not the
case in our dataset. For all birth cohorts, we found negligible differences in GRSo¢ z-
score with corresponding standard deviations for not only the high-risk quintile but also
the top percentile. The mean GRSos z-scores varied from 1.39 to 1.43 for individuals in
the top fifth of the genetic risk score (standard deviations 0.46 to 0.50) without any
apparent trend from the oldest to the youngest cohorts. Corresponding mean GRSy z-
scores for the top percent varied from 2.77 to 2.79 (standard deviations 0.04 to 0.06).
When keeping the GRS z-score constant from the 1960s to 2000s, we found
practically the same increased difference in BMI between the predisposed and non-
predisposed as in our manuscript, 0.89 kg/m2 (confidence interval 0.63 to 1.15 kg/m?2)
and 0.80 kg/m2 (confidence interval 0.49 to 1.10 kg/m2) for men and women

respectively.

While we fully agree that phenotypic assortment for BMI exists, the genetic
consequences remain unknown. The most convincing genetic evidence of assortative

mating for BMI reveals only a slight genetic correlation among couples (0.143, SE:



0.007), approximately half the value of their phenotypic correlation (0.228, SE: 0.004)
(2). Other studies suggest negligible genetic similarities between couples despite
phenotypic similarities (3) or that genetic similarities disappear when accounting for

population stratification (4).

Twin and adoption studies suggest heritability estimates for obesity between 40-60%
where the genetic risk score we used only accounts for 2-5% of variation in BMI (5). As
we lack information on the whole genome, we cannot deny that genetic assortative
mating may exist in our dataset. We also acknowledge that the parents to many of the
cohorts in our dataset were not affected by the obesity epidemic. We hypothesize that

genotypic assortment for BMI may become a greater issue in the future.

We thank Uzoigwe for raising a relevant question to the interpretation of our study.
After additional analyses, we are fairly confident that our findings are not a function of

assortative mating but rather a function of the obesogenic environment.
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Norwegian University of Science and Technology (NTNU) ,NTNU, Fakultet for
medisin og helsevitenskap, Institutt for ssmfunnsmedisin og sykepleie, Postboks 8905,
N-7491 Trondheim, Norway

Re: Re: Quantifying the impact of genes on body mass index during the obesity

epidemic: longitudinal findings from the HUNT Study

Over the study period, Norwegian men and women have increased an average of five to
six centimeters in height (1). Connolly questions if this substantial increase in height
may also contribute to higher average BMI and in turn to the growing disparity between
the genetically predisposed and non-predisposed over time. This however, is not
justified when replicating our analysis using BMI adjusted for height. The estimates in

the new analyses are practically identical to the estimates in our manuscript (2).

For 35 year old men, the most genetically predisposed had 1.20 kg/m2 (95% confidence
interval 1.03 to 1.37 kg/m2) higher BMI than those who were least genetically
predisposed in the 1960s compared with 2.09 kg/m2 (95% confidence interval 1.90 to
2.27 kg/m?2) in the 2000s. For women of the same age, the corresponding differences in
BMI were 1.75 kg/m2 (confidence interval 1.54 to 1.96 kg/m2) and 2.57 kg/m2
(confidence interval 2.35 to 2.79 kg/m2). Furthermore, the additional adjustment of
BMI for height yields slightly higher estimated increase in BMI over time for all

groups.

1. Roser M, Appel C, Ritchie H. Human Height 2013 Last modified May 2019.
Accessed 2019-09-03. https://ourworldindata.org/human-height.
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Norwegian University of Science and Technology (NTNU)

NTNU, Fakultet for medisin og helsevitenskap, Institutt for samfunnsmedisin og
sykepleie, Postboks 8905, N-7491 Trondheim, Norway

Re: Quantifying the impact of genes on body mass index during the obesity epidemic:

longitudinal findings from the HUNT Study

Dear Editor,

The study entitled, “Quantifying the impact of genes on body mass index during the
obesity epidemic: longitudinal findings from the HUNT Study” underscores the
magnitude of the challenge that the obesity epidemic represents worldwide. This study
was very interesting and applicable in the 21st century. Obesity is caused by a
combination of genetics and behavioral factors. Behavioral factors can include physical
activity, dietary patterns, inactivity, medication use and other societal factors. Obesity is
a serious problem resulting in reduced quality of life, poor mental health and the leading
cause of death worldwide (CDC, 2017). Although measures have been put in place,
obesity continues to be a challenge worldwide. The World Health Organization (WHO)
(2019) revealed that the prevalence of obesity has tripled since the 1980s in many
countries in the European regions, and there has been an alarming increase in other

countries.

The findings of Brandkvist (2019) support that there was an increase in the prevalence
of obesity between the mid-1980s and mid-1990s in Norway. In addition, those
individuals who were born after 1970 already had higher BMI in young adulthood. In
examining these findings, it would be useful to have included the blood results of
adolescents so that comparisons could be made among adolescents, young adults and
adults during the period. In addition, participants aged 13- 80 were selected but the
analysis of data for those younger than 18 years old was not reflected thus should the
age group omitted be stated as participants? It would have been good to have included
information on how observations were carried out as this could make it easier for the

reader to examine the impact of the study.



The study has been one of interest and can be used in identifying individuals who
possess genetic predisposition to obesity so that early interventions can be implemented.
It is important to model healthy lifestyles at all stages of life despite one’s genetic
predisposition as this can reduce the prevalence of obesity globally. This practice will
further decrease diseases and deaths worldwide as individuals improve their quality of

life.
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Panmictic Presumption

The work of Brandkvist et al. is in many ways seminal (1). It is one of very few studies
to engage the interplay between geneticity and the environment in the obesity pandemic.
The authors show that the difference in BMI between the highest and lowest BMI
genetic risk quintiles rose by 0.9 kg/m2 for men and 0.8 kg/m?2 for women between the
1960s and 2000s. From this they infer an obesogenic environment interacts with the
genetic predisposition, causing an increasing disparity between high- and low-risk
quintiles over time. However this conclusion requires an assumption of panmixia with
regard to BMI. This is where individuals chose their partners randomly, with no BMI
preference(2). In this paradigm, obesogenic alleles, would be randomly distributed and
have the same distribution and concentration within individuals in the populations in the
1960s as in the 2000s. However panmixia does not occur. There is very strong, indeed
almost incontrovertible evidence that individuals select partners who are of a very

similar BMI(3,4). This is assortive pairing and applies not only to obesity but a host of



other phenotypes, whereby adults prefer those with similar traits(3,4). The net effect
with regard to obesity; is that children of these obese dyads are more likely to carry
more obesogenic alleles and display homozygosity for recessive high-risk genes,
increasing the proclivity to adult obesity. Hence the high-risk quintiles in 2000 engender
a much higher risk than the high-risk quintiles in the 1960s due to assortive pairing and
increased combinations of high-risk and recessive obesogenic alleles in later
generations. There is no need to implicate a putative obesogenic environment. A similar
phenomenon occurs with lean individuals; who tend to select individuals of a similar
BMI and their children carry genes that promote a healthy weight. There will thus be an
increase in the BMI distribution and increased discrepancy between high genetic risk
and low genetic risk individuals with subsequent generations. This was perceptively and
elegantly identified by Kim et al. in the accompanying editorial which highlighted the
fact that there has been a 30% increase in the BMI distribution between in the US(5).
While this process will make the lean leaner and the obese more obese, it will also result
in an increase in the mean BMI. This is because the BMI distribution curve is bell-
shaped with right-sided tail (positive skew) (6). Much larger deviations to the right of
the curve are physiologically possible than to the left. Further, the average is very
sensitive to extreme large values. The result is that children from obese conjugates, as
adults, will increase the BMI more than their lean counterparts decrease it.

Where there is a generational increase or polarisation of any phenotype, including BMI,
the role of assorting pairing cannot be overlooking, as in this case. The finding may not

therefore be a function of an obesogenic environment but rather basic sexual selection.
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Re: Quantifying the impact of genes on body mass index during the obesity epidemic:

longitudinal findings from the HUNT Study

The authors correctly reject data from under 18’s because of the correlation of BMI with
longitudinal growth or to put it another way for the same body composition BMI is
proportional to height. It is then incredible that they appear to ignore the substantial
increase in average height that has occurred in western populations over the relevant
period as at least a contributory factor. The fault in part lies with the World Health
Organisation in giving an absolute definition of obesity utilising BMI deapite
assurances from the original authors that this is not justified. A BMI of 30 does not have
the same significance for a person of 2 metres (normal proportions) as for one of 1.6
metres (obese). It would be interesting to know if a possible genetic factor for height
and susceptible to the changing environment is also responsible for the increase in

obesity which though real is exaggerated by determination by BML
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Environments Influence our Genetic Blueprint — the Need to Think about Systemic
Interdependencies

Brandkvist et al’s [1] paper is an important contribution to demonstrate that our

environments have a huge impact on our biological blueprint. Health and disease are



indeed interconnected and interdependent — our recent paper has outlined the multi-
scale interdependencies between the macrolevel societal domains and the microlevel
physiological pathways that regulate both, health and disease [2]. Obesity, like many
other “modern lifestyle diseases”, are systemic problems, they only can be solved by
system wide, rather than disease by disease, approaches. I hope their paper turns out to

push forward the long overdue debate for health system redesign [3].
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British Medical Journal Print abstract

Quantifying the impact of genes on body mass index during the
obesity epidemic: longitudinal study based on HUNT

Brandkvist M, Bjerngaard JH, @degard RA, Asvold BO, Sund ER, Vie GA

Study question How does the effect of genetic predisposition on obesity differ, as
environments are becoming more obesogenic over time?

Methods A large Norwegian study population with repeated measurements of body mass
index (BMI) was followed longitudinally from 1963 to 2008. Overall, 118 959 people
aged 13-80 from the general population participated, of whom more than half were
included in analyses of the association between genetic predisposition and BMI over time.
Study answer and limitations In this population before and after the transition to a more
obesogenic environment (1960s to 2000s), genetic predisposition seemed to interact with the
obesogenic environment resulting in a higher BMI in recent decades. For example, the estimated
difference in BMI between genetically predisposed and non-predisposed 35 year old men and
women was almost 1 BMI unit higher in the 2000s compared with the 1960s, suggesting clinical
significance at a population level. Regardless, BMI has increased for both genetically predisposed
and non-predisposed people, suggesting that the environment remains the main contributor. One
limitation of this study is that those with a higher BMI in the oldest cohorts could have
died and hence participated in genetic testing to a lesser extent than surviving participants.
What this study adds Using a comprehensive dataset with the largest sample size and
range of ages and years to date, the study suggests amplification of the effect of genes on
BMI resulting in the increase in obesity observed in Norway between the mid-1980s and
mid-1990s.

Funding, competing interests, and data sharing See full paper on bmj.com for funding.
No funding sources or other circumstances present potential conflicts of interest to this
study. Data used in this project are available from the HUNT Data Access Committee and

Norwegian Institute of Public Health on reasonable request.
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