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Genetisk disposisjon for fedme hos ungdom og voksne og samspillet 

mellom arv og miljø under fedmeepidemien: longitudinelle funn fra 

Helseundersøkelsen i Trøndelag 

 

Fra midten på 80-talet har forekomsten av fedme økt i Trøndelag. Sammenlignet med eldre 

kohorter, har de som er født etter 1970 en vesentlig høyere BMI allerede som unge voksne. 

Endringer de siste tiårene påvirker vekten til dem som ikke er særlig disponert for å legge på 

seg, men de genetisk disponerte har økt enda mer i vekt. Dagens miljø forsterker altså 

vektforskjellene mellom mer og mindre genetisk disponerte mennesker. Dette gir særlig 

tydelig utslag på forskjeller i forekomsten av fedme og alvorlig fedme. 

Fedme rammer mer enn 650 millioner mennesker over hele verden med store potensielle 

konsekvenser for folkehelsen. Målet med denne avhandling var å undersøke samspillet 

mellom arv og miljø før og etter fedmeepidemien samt å skille mellom genetikken bak fedme 

hos barn og voksne. Studiene kombinerer kraftige genetiske verktøy med målt BMI fra 

Helseundersøkelsen i Trøndelag (1963-2019) og tuberkulosescreeningen på 60-tallet for å 

undersøke genetisk disposisjon for fedme hos over 60 000 norske ungdom og voksne over 

seks tiår. Opplysninger om familiesammensetning er hentet fra SSB. 

De første to studiene viser en økende genetisk ulikhet i både fedme og alvorlig fedme i et 

fedmefremmende miljø. Dette bekreftes i analyser av søsken med ulik genetisk tilbøyelighet 

for høyere vekt. Til tross for at fedme er en arvelig egenskap, virker kroppsvekt modifiserbar 

i forhold til graden av fedmefremmende eksponering. Den tredje studien viser en forskjell 

mellom genetiske faktorer som driver fedme hos barn og hos voksne. Gjennom å validere en 

ny genscore for barnefedme, bekrefter våre funn at barnescoren predikerer kroppsvekt bedre 

enn voksenscoren frem til midten av tenårene. Denne genscoren danner utgangspunkt for nye 

studier for å undersøke konsekvenser av barnefedme på senere sykdom så vel som sosiale 

utfall.  

Selv om det kan være mulig å identifisere de som er mest utsatt for miljøendring, og som 

dermed har mest å tjene på forebyggende tiltak, vil førsøk på å reversere det 

fedmefremmende miljøet komme alle aldrer i hele befolkningen til gode.  
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Destigmatising obesity by understanding the impact of genes 

 

BMJ Opinion July 3, 2019  

As a young adult I moved from Toronto to Stockholm to start my studies in medicine. 

Although the values of Swedes and Canadians are similar, my first impressions revealed 

some visible differences in how people live their lives. People ate warm meals for lunch 

as well as dinner and processed food seemed less available. People biked or took public 

transport as downtown Stockholm is inaccessible for cars. At quick glance, people 

walking in the streets of Stockholm seemed one size smaller than in my hometown of 

Toronto. 

After 20 years of living abroad, I have experienced many differences in the way North 

Americans and Scandinavians live their lives. It came as no surprise to find that the 

obesity epidemic hit Scandinavia ten years after, and to a lesser extent, than in North 

America. Regardless of how much Toronto and Stockholm differ, both places have been 

subject to major environmental changes over the past five decades. The obesity 

epidemic has changed our view of what is considered normal, something that the 

clothing industry has caught on to. As people have become bigger, manufacturers 

created a larger range of sizes and altered labelling to accommodate them. A dress made 

to fit Marilyn Monroe’s waist would be between a size eight to twelve in 1958 but a size 

double zero today. 

Although previous research suggested that genetic vulnerability had larger 

consequences after the onset of the obesity epidemic than before, our dataset provides 

convincing results, with a large sample size and range of years of assessments and ages. 

The findings were surprising. On average, genetic predisposition would make a 35-year 

old man of average height 3.9 kg heavier than his genetically protected peers in the 

1960s. If the same man remained 35-years old but lived in Norway today, his vulnerable 

genes would make him more than 6.8 kg heavier. Additionally, both him and his peers 

would have gained an extra 7.1 kg simply as a result of living in our obesogenic 

environment. This man’s 13.9 kg excess weight is caused mostly by today’s unhealthy 

lifestyle, but also by how his genes interplay with the environment.  

The obese are often stigmatized for having unhealthy lifestyle choices. Acknowledging 

the importance of the obesogenic environment and its amplification of our genetic 

differences, can help destigmatise obesity. Perhaps it is time to shift our focus away 

from the individual and towards a healthier society. 

Maria Brandkvist, Pediatrician and PhD candidate at the Department of Public Health 

and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 

Norway.  
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Summary 
 

Background 

Obesity has tripled worldwide since 1975 as environments are becoming more 

obesogenic. (1-3) The obesity epidemic is largely attributed to over-nutrition and 

sedentary behavior, both related to sociodemographic characteristics. However, the 

underlying cause is likely a complex combination of globalization, industrialization, and 

other societal, economic, cultural, and political factors. Although secular trends can 

change the prevalence of obesity in an entire population simultaneously, (4) genetic 

differences could make some people more susceptible than others to an obesogenic 

environment. (5-8)  

Aims 

The aim of this thesis is to illustrate how population weight and obesity are modified by 

the interplay between genetic predisposition and the obesogenic environment over six 

decades and to examine the robustness of the findings using sibling design. Recently, a 

powerful polygenic risk score for childhood BMI was developed in an unprecedented 

attempt to separate childhood and adult obesity. We aim to validate the childhood 

polygenic risk score for BMI and identify at what age the cross-over in terms of strength 

of prediction from the early life to the adult score occurs. 

Methods  

We conducted three studies based on the participants from the HUNT Study (1984-

2019) linked to previous height and weight measurements in the tuberculosis screening 

program (1966-69). The first study was based on data from the first three waves of the 

HUNT Study while the second and third study were based on data from all four waves.  

In the first study, we estimated age adjusted BMI growth trajectories for different birth 

cohorts in the total study sample. Then we use the genetic risk score to estimate the 

effect of genetic risk of obesity on BMI according to time of measurement and age.  

In the second study, we applied the genome-wide polygenic score (GPS) to estimate the 

effect of genetic risk of obesity on height-adjusted BMI, obesity and severe obesity 

according to time of measurement, age, and sex. One consideration is that genetic 



 

x 
 

variants are not necessarily distributed randomly in a population. (9) By comparing  

differentially exposed siblings, we could provide an efficient adjustment for all shared 

confounding factors between siblings, such as assortative mating, dynastic effects and 

population stratification. (10)  

In the third study, we used summary statistics from the genome-wide association study 

in the UK Biobank to construct, validate and then compare the childhood and adult 

genetic scores for obesity using data from HUNT participants.  

Results 

Obesity increased in Norway starting between the mid-1980s and mid-1990s and, 

compared with older birth cohorts, those born after 1970 had a substantially higher BMI 

already in young adulthood. BMI differed substantially between the highest and lowest 

fifths of genetic susceptibility for all ages at each decade, and the difference increased 

gradually from the 1960s to the 2000s. Hence, we found statistical evidence for a gene 

by environment interaction during the obesity epidemic. 

In the second study we translated our novel finding to obesity while still 

conceptualizing year of assessment as a broad indicator of the environment. We found 

an increasing genetic inequality in obesity and severe obesity in an obesogenic 

environment. Despite being a very heritable trait, our study illustrates that body weight 

is modifiable proportionate to the degree of the obesogenic exposure. Our findings show 

an interplay between genes and the environment that is robust to family-level 

confounding using sibling design.  

In the third study, we validate the childhood and adult polygenic risk scores for BMI 

and identify 16 years as the critical age separating the genetics of childhood and adult 

obesity. 

Conclusion 

This thesis provides evidence that genetically predisposed people are at greater risk for 

higher BMI and that genetic predisposition interacts with the obesogenic environment 

resulting in higher BMI and prevalence of obesity, as observed between the mid-1980s 

and late-2010s. Our findings are robust to family-level confounding using sibling 

design. While obesity is a highly heritable trait, (11) we illustrate how it is still 



 

xi 
 

modifiable according to the degree of the obesogenic exposure. This thesis also supports 

that genetic factors driving BMI differ at young age and in adulthood. Validating the 

new polygenic risk score for childhood BMI, our findings confirm the childhood score 

as a better predictor of body weight before the mid to late teens. Whilst it may be 

possible to identify those most susceptible to environmental change, who thus have the 

most to gain from preventative measures, efforts to reverse the obesogenic environment 

will benefit all ages of the whole population and help resolve the obesity epidemic.   
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1 Introduction - The impact of nurture on nature 
 

The question of nature versus nurture has riddled mankind for centuries. Now, in light 

of recent genetic advances, we know that most human traits result from the effects of 

both nature and nurture. (12, 13) We explore how the effect of genetic predisposition to 

obesity differs, as environments are becoming more obesogenic over time. We also 

question if genetic factors driving BMI differ at young age and in adulthood. 

The obesogenic environment could be amplifying the effect of genetic predisposition on 

obesity (8) from in utero to agedness. (14) This gene-environment interaction has been 

exposed by converging findings from obesity studies considering genetic relatedness, 

candidate genes, polygenic scores and clinical syndromes. (14) Earlier studies have 

suggested that the association between genetic risk scores and BMI was of greater 

magnitude in more recent birth cohorts or in social groups more exposed to an 

obesogenic environment. (7, 15, 16) Compared with these studies, our dataset is large 

with a wide range of ages containing measured BMI before and after the onset of the 

obesity epidemic. Such comprehensive data in adolescents and adult is also appropriate 

for separating the genetics of childhood and adult obesity. 

My research focuses on obesity conducted within the field of genetic epidemiology. 

Genetic epidemiology studies the role of genetic factors in determining health and 

disease in families and in populations, and the interplay of such genetic factors with 

environmental factors. (17) In all three studies we apply genetic instruments developed 

as quantitative measures of inherited susceptibility for obesity. The first study utilizes 

the genetic risk score (GRS) based on 97 common genetic variants associated with adult 

obesity while the second study utilizes the powerful genome-wide polygenic score 

(GPS). The GPS encompasses over two million common genetic variants for obesity 

and explains a far greater variation for BMI in the population. (18) In the third study we 

attempt to validate a GRS specific to childhood obesity. (19)  

Combining the genetic instruments with longitudinal BMI and obesity data from the 

Norwegian population over six decades, we study genetic variation at the population 

level. Novel to our dataset is the dimension of time. Hence, this thesis represents the 
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best effort to date to quantify the gene-by-environment interaction, conceptualizing year 

of assessment as a broad indicator of environment. Questioning the robustness of our 

findings we use sibling design to test for confounding by assortative mating, population 

stratification and dynastic effects. Lastly, we consider differences in the genetic 

architecture for childhood and adult obesity in attempt to validate a genetic score better 

suited for childhood obesity. Although the dimension of time is advantageous also in 

the third study, here we concentrate on when in the life-course the negative impact of 

obesity can best be alleviated. This thesis is novel in that it captures cohort effects over 

four generations, age effects from adolescence to agedness and most importantly, a 

period effect from before and after the obesity epidemic. Understanding the genetic 

contribution to obesity at different ages and under the influence of a changing 

environment is the main implication of this line of work. 

In this thesis, I first consider the cause and consequence of the obesity epidemic as a 

background to the main aims. Next, I present the methods and findings of my research 

project, before I conclude by discussing the validity and interpretations of the novel 

findings. 
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2 Background - The cause and consequence of the obesity 

epidemic 

2.1 Obesity and obesity related diseases  

Obesity is a condition of abnormal fat accumulation to the extent that it may have a 

negative effect on health. (1) Obesity is classified using body mass index (BMI) which 

is calculated as weight in kilograms per meter squared. While overweight is defined as a 

BMI greater than or equal to 25, obesity is defined as a BMI greater or equal to 30.(1) 

Severe obesity is referred to as a BMI greater or equal to 35 in this thesis. Although 

BMI categories may facilitate research and clinical practice, they are arbitrary cut-offs 

on a continuous scale. 

Obesity is more than a cosmetic problem. (20) Although several children with obesity 

and relatively fewer adults appear to be metabolically healthy, obesity is generally 

associated with physical and psychiatric comorbidities. These reduce quality of life and 

apply an unprecedented pressure on our health care system. (21-23) Adult obesity is 

well-known as a major risk factor for ischemic heart disease, stroke, arthritis, type 2 

diabetes and many cancers. (23) Actually, a recent study published in the British 

Medical Journal found that obesity is a greater risk factor than smoking for four 

subtypes of cancer. (24) Obesity is responsible for 4,7 million premature deaths each 

year. (25) It is one of the world’s leading health problems, that has shifted from being a 

problem in only rich countries to that which spans across all income levels.  

Especially worrisome is that obesity affects the younger age groups to a much greater 

extent than in the past. Although it is still unsure whether childhood obesity increases 

risk for later disease directly, (19, 26) most children carry their obesity into adulthood. 

Gastrointestinal, metabolic, endocrine and orthopedic comorbidities to obesity occur 

already in childhood and adolescents. (27) At the age of eight years, the child with 

obesity may already experience metabolic syndrome with signs of diabetes, blood 

vessel changes, hypertension, hyperlipidemia and fatty liver. (28, 29) However, the 

social burden experienced by these youths is usually the heaviest to bear. Knowledge on 

the social burden of obesity is needed, as this may have long-term detrimental effects of 

later health, social life, educational attainment and employment. (29-33) 
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2.2 Prevalence of obesity in Norway and around the globe 

While obesity has tripled among adults, childhood obesity has increased more than 

eight-fold worldwide since 1975. (1-3, 34) According to the World Health 

Organization, the obesity epidemic affected more than 650 million people in 2016. (1) 

The global prevalence of obesity has increased from 6 to 15% among women and 3 to 

11% among men. (35) Today, approximately 60 to 80% of adults and 20 to 30% of 

children in the western world have overweight or obesity, (36, 37) while the prevalence 

in developing countries is increasing at alarming rates. (23) For example, China has 

transitioned from a history of undernutrition to a rapid increase in obesity in over just 

two decades (38) and is now the country with most  children with obesity in the world. 

(39) This overlap of undernutrition and obesity from one generation to the next within 

the same household is apparent also in other countries. (40)  

Since the mid-1980s, Norway has experience an obesity epidemic. (41) While most 

countries continue an upward trajectory, the prevalence of obesity has stabilized in 

Norway for children and adults over the last decade. (42) Results from earlier this year 

show that 22% of the adult population in the Trøndelag region are having obesity while 

approximately 70% are having overweight. Correspondingly, 6% of female and 7% of 

male adolescents are now having obesity. (42) Similar prevalence are observed in the 

rest for Norway. (43) 

2.3 Obesogenic environment – the causes of obesity on an individual and 

on a population level 

What makes an individual gain or lose weight versus why a whole population increases 

in weight is important to differentiate. For the individual, this disease is likely an issue 

of energy imbalance. (20) While genetic propensities and physical activity levels may 

contribute, the change in eating behavior is likely the dominating cause for obesity. (20, 

44-48) 

In a study where human cafeteria foods were fed to rodents, the animals showed 

voluntary hyperphagia, resulting in extensive weight gain, inflammation, and metabolic 

and cognitive abnormalities. (49) Similar biological effects of modern food were 
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observed in humans. In a recent randomized controlled trial, participants were 

randomized to eating either an ultra processed diet or a minimally processed one. Both 

groups were allowed to eat as little or as much as they wished. Interestingly, the group 

with the ultra processed diet consumed 2092 kJ more per day than their counterparts. 

(50)  Hence, the evidence suggests that ultra processed foods lead to overeating by 

changing several endocrine and neurobiological pathways. (51) Ultra processed foods 

are characterized by long shelf or freezer time and their ability to manipulate our taste 

buds. (52) But what do they actually contain? The answer is complex; too little fiber, 

too few ꞷ-3 and way too many ꞷ-6 fatty acids, too few micronutrients, too many trans-

fats, too many branched-chain amino acids, too many emulsifiers, too many nitrates, too 

much salt, too much ethanol, too much fructose. The paper ‘Processed Food – An 

Experiment That Failed’ by Robert Lustig provides a detailed explanation of how each 

of these harmful ingredients affect the body. (52) A major concern is that so many of 

the world’s children are overconsuming foods of poor nutritional quality. The 

consequence is that they become undernourished and have obesity simultaneously. 

Stunted linear growth and obesity together likely amplify the risk for metabolic disease. 

(27) For children and adults alike, taking personal responsibility for healthy lifestyle 

choices is difficult if one’s circumstances in terms of social determinants of health 

renders this impossible. (53) 

In this thesis, we consider the increase in BMI on the population level and not on the 

individual level. The origins of the obesity epidemic remain unclear. 

In a recent commentary, Anthony Rodgers used prevalence trends to reveal what did not 

precipitate the US obesity epidemic. (4) He describes that the increase in prevalence of 

obesity began in the late 1970s for all subgroups across the whole US population. This 

simple observation makes a simultaneous decline in willpower related to healthy 

nutrition or exercise unlikely and rules out intrauterine exposure as a contributing 

factor. He also argues that changes in genetic predisposition do not occur over the 

period of a few years, nor in all age groups simultaneously. However, this argument 

does not take into account a possible gene-environment interaction – which is the aim of 

this thesis. (54) Rodgers suggests that the obesity epidemic must have been caused by 

‘factors that led to rapid population-wide growth’. He highlights an example related to 
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the American food bill introduced in the 1970s. This political reform might have helped 

precipitate the obesity epidemic in the United States by changing food supplies that 

ultimately lead to unfavorable dietary patterns affecting the whole population at the 

same time. (4) In Norway, the 1980s were characterized by increased prosperity as a 

result of new working cultures, increased market consumption and automobile 

transport, and feasibly, a comparable change in eating patterns influenced by North 

America and the rest of Europe. (55-58)  

Obesity has become a global public health emergency. Motivated to tackle this problem, 

the Lancet commission report from 2019 describes the global syndemic of obesity, 

undernutrition and climate change. (59) Here, overconsumption of foods of poor 

nutritional quality can simultaneously lead to obesity and undernutrition while 

damaging our natural ecosystems. (27, 59) The three pandemics not only coexist in time 

and place but interact with each other and have common underlying societal drivers. 

(59) For example, companies responsible for producing unhealthy foods and making 

them widely available often target children and other vulnerable populations. (23) 

Detrimental to global population health, there are many reasons why fast food is a failed 

experiment. (52) Another example is the automobile industry that simultaneously 

increases air pollution while decreasing physical activity. (23) These byproducts of 

economic development increase population weight by influencing the lifestyle that we 

live. China experienced modernization and economic growth in the course of just two 

decades. While BMI was strongly associated with urbanicity in the 1990s, these obesity 

trends expanded to rural China already in the 2000s. Interestingly, among Chinese 

women, the burden shifted towards the lower educated. (38) The byproducts of 

economic development also change our biological environment, for example by 

introducing toxins and altering microbiota. Reversing the obesogenic environment is 

difficult and requires a shared global effort. The Lancet commission report suggests a 

strategy to overcome policy and address the global syndemic. This involves five feed-

back loops regarding governance, business, supply and demand, as well as ecological 

and human health. (59) 
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So, what variables caused the obesity epidemic? Adam Briggs sums up the answer in 

his British Medical Journal opinions piece advocating taxes on sugary drinks and foods 

in Britain (44): 

‘Crudely speaking, weight gain is caused by eating too much and moving too little, but 

our diet and activity levels are heavily influenced by social, environmental, and 

economic conditions, as well as the interplay between these and our genetics and our 

physical and mental health.’ 

 

2.4 Estimates of heritability  

Phenotypic variance for a complex trait such as obesity is an index of how spread out 

BMI scores are in a study population. It is calculated as the average of the squared 

deviations from the mean. (60) Phenotypic variance is composed of both environmental 

and genetic variance. (13) ‘Heritability is the proportion of observed (phenotypic) 

differences among individuals that can be attributed to genetic differences in a particular 

population.’ (60) Narrow heritability (h2) is the extent to which a child’s phenotype is 

determined by the genes transmitted by both parents. This makes up the additive 

component of genetic variance. (13) Single-nucleotide polymorphism (SNP) heritability 

is the degree to which phenotypic variance for a trait can be explained by the SNPs in 

our genome without identifying specific SNP associations. Genome-wide polygenic 

score (GPS) heritability is the degree to which phenotypic variance for a trait can be 

explained by all common SNPs when combined as a genetic score. SNP heritability and 

GPS heritability are both measures of narrow heritability. The concepts of SNPs and 

genetic scores will be covered in section 2.6. Comparatively, broad heritability (H2) 

includes both additive and nonadditive components of genetic variance. Nonadditive 

genetic variance involves effects of gene-gene interactions and gene-environment 

interactions. Hence, broad heritability estimates the total variance explained by inherited 

DNA differences and can be roughly measured by twin studies. (60)  

Twin studies estimate the genetic and environmental components of variance by 

comparing the resemblance of identical and fraternal twins. (60) Studying identical 

twins separated by adoption at birth is an informative way to test genetic influence. 
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Identical twins share 100% of their inherited DNA such that if weight was 100% 

heritable, they would share the exact same weight. Despite an unshared environment, 

studies on identical twins reared apart suggest a correlation for weight of 0.75. (61) This 

implies that 75% of the weight difference between people (variance) is shared by the 

identical twins who grew up in two different family environments, which in turn, is a 

direct estimate of heritability. (12) 

The gap between the level of heritability suggested by twin studies and that estimated 

using a polygenic score is often referred to as missing heritability (62) Accounting for 

the missing heritability between the GPS heritability and SNP heritability would require 

a larger genome-wide association study (GWAS) sample size. SNP heritability is the 

ceiling for additive effects of SNPs genotyped on SNP chips. Accounting for the 

missing heritability between SNP heritability and twin heritability would require other 

technologies that capture rare gene variants, gene-gene interactions, effects of 

epigenetics and gene-environment interactions. (60, 63) If sufficient, these methods 

could reveal whether or not twin heritability is in fact overestimated.  

2.5 Distribution of genes in a population 

Genetic variation is important for the evolution and survival of a species. It 

encompasses the naturally occurring genetic differences among individuals of the same 

species. (9) Although the inheritance of genetic variants from parent to offspring is 

assumed to be random, this is not always the case at the population level. (64) Non-

random mating may occur if one chooses a partner based on a certain trait. These 

specific behavioral choices, also known as assortative mating, will shape the genetic 

combinations that appear in the next generations. (9) Another possibility is that the 

frequency of genetic variants may differ within subpopulations of a larger population 

due to diverse ancestral origins. This is known as population stratification whereby 

otherwise unrelated phenotypic differences across a population may become spuriously 

associated with genetic variation. (65) A different issue is when parental genes 

influence offspring phenotype through other pathways than shared genes. This is known 

as dynastic effects. (65, 66) Within-family analysis is an approach that can reduce or 
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eliminate these spurious or biased associations between gene variants and phenotype. 

(65, 66) 

 

2.6 Genetic background of obesity 

Heritability estimates for obesity between 0.5 and 0.8 in twin and adoption studies 

indicate a strong genetic contribution at the individual level. (67, 68) Until recently, 

genome-wide association studies could only identify genetic variants explaining a mere 

2-5% of variation in BMI. (69, 70) Novel genetic advances have now led to the 

genome-wide polygenic score (GPS) for BMI that explains almost 9% of variation in 

BMI. (18) Still, it is not known whether the remaining heritability for obesity is due to 

insufficient tagging of causal variants (the rare causal variants in particular) or if 

heritability from pedigree data is overestimated. Interestingly, a study using whole 

genome sequencing (WGS) data on over 21,000 unrelated individuals claims to have 

recovered the missing heritability of obesity by accounting for the effects of rare genetic 

variants associated with BMI. (11)  

Although much of the genetics underlying obesity remains unknown, several genetic 

variants also denoted single nucleotide polymorphisms (SNPs) have been associated 

with BMI. More specifically, a SNP appears when there is a mutation or a change in 

one of the three billion weak chemical bonds between nucleotides in the double helix of 

DNA. (12)  A single SNP can be responsible for obesity if its effect size is large. The 

MC4R gene, for example, is likely involved in biological pathways critical for the 

control of appetite and body weight. Mutations in the MC4R gene are the most common 

monogenetic cause for obesity in humans. (71) Collectively, rare genetic variants likely 

explain a larger variation in BMI than previously anticipated. (11) 

For most people however, obesity involves millions of SNPs. Genome-wide association 

studies (GWAS) have been a game changer for obesity research. GWAS are studies that 

aim to identify SNPs throughout the genome that are associated with an observed trait, 

such as obesity, in a large number of people. (13, 60) As GWAS for obesity become 

statistically powerful, they discover more and more SNPs associated with body mass 
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index. Obesity is a complex trait where even the effect of the dominating common SNP 

is very small. However, collecting all the SNPs to a genetic score makes it possible to 

predict an individual’s genetic propensity for obesity. (12) 

Genetic risk scores (GRS) also denoted polygenic risk scores are genetic indices for 

each individual that combine the effects of many SNPs associated with obesity. (12) 

The polygenic risk score for BMI created by Locke et al. includes 97 independent SNPs 

(GRS97) associated with BMI (p<5x10-8) explaining 2.7% variance for BMI. (69) The 

following polygenic risk score for BMI created by Yengo et al. has a slightly less 

stringent genome-wide significance threshold (p<1x10-8) and includes 554 near 

independent SNPs explaining 5% variance for BMI. (70) The polygenic risk scores go 

beyond pedigree data in that they can predict genetic risk for each individual and can be 

used to determine causality in Mendelian randomization (MR) studies. (12)  

The GPS is the next wave of prediction in genetics. This polygenic score adds together 

the small, sometimes infinitely small contributions of tens to millions of SNPs to create 

the most powerful genetic instrument to date. (72) While previous GRS97 includes only 

independent, GWAS significant SNPs, the GPS includes all common SNPs associated 

with BMI without conforming to a threshold p-value. Adjustment for dependence of the 

different SNPs is required when all common SNPs are included. The GPS for BMI 

encompasses 2.1 million common variants and explains roughly 9% of variation in 

BMI. Among middle aged adults, this accounts for a 13-kg gradient in weight and a 25-

fold gradient in risk of severe obesity across polygenic score deciles. (18) Individuals in 

the top 1,6 percentile of the GPS for BMI have a comparable BMI increase to 

individuals with monogenic obesity caused by MC4R mutations. (73) Correspondingly, 

a recent study suggests that having a low GPS for BMI may counter the effects of a 

pathogenic MC4R mutation. (74) Although the GPS does not account for the effects of 

rare gene variants recently recovered by whole-genome sequencing, (11) it is the first 

genetic instrument to provide meaningful predictive power. The GPS for BMI was 

developed during the course of this PhD and could thus be applied it to the second 

study. The third study of this thesis separates the genetic effects of childhood and adult 

obesity by validating the new childhood and adult GRSs from the UK biobank. A GPS 
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for childhood BMI is not yet available as it requires a genetic material from a large 

study sample with measures of BMI in early life. 

While most of the mechanisms underpinning the genetics of obesity remain unknown, 

some important biological discoveries have been made. For example, the FaT mass and 

Obesity-associated protein SNP (FTO) is the SNP with the largest effect size and 

explains 0.7% variance in BMI. The FTO SNP alters the expression of several genes in 

fat cells and influences how much fat is stored away in reserve. (12) This mutation 

likely spread throughout the population as it protected us from starvation when we lived 

as hunters and gathers. Today, the FTO mutation has become a disadvantage for most 

people. Most of us live in a society with easy access to high energy fast foods yet our 

brain is still adapted to the Stone Age. (12)   

Both the GRS97 and the GPS utilize a top down approach to genetics. The scores utilize 

inherited DNA differences to predict individual differences in obesity without knowing 

anything about the many mechanisms connecting genes and obesity. (12) This approach 

is clever considering the overwhelming number of SNPs known to be associated with 

BMI. How SNPs relate to BMI is easier to study with the GRS97 as it contains fewer 

SNPs that are all strongly associated with BMI. In contrast, the GPS encompasses 

millions of SNPs that may also reflect indirect associations with BMI.  

Some people find it much easier to gain weight and much more difficult to lose weight 

than others. This is largely on account of our genes as obesity is a highly heritable trait. 

The genetic risk scores are however not deterministic. Neither do they account for the 

entire genetic component of obesity. Many individuals with high obesity scores are 

slim, while others with low scores are obese. Also, everyone will lose weight if they 

stop eating.  

2.7 Interplay between genes and the environment 

The concept of the ‘interplay between genes and the environment’ is composed of two 

components; gene-environment interactions and gene-environment correlations. These 

terms are often confused and are used interchangeably. Gene-environment interactions 

are conditional, where the effects of the genes depend on the environment. (60) For 
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example, male pattern baldness is a highly heritable trait yet first when hormones 

change in mid-life do the effects of these genes begin to show. (75) This illustrates an 

answer to Geoffrey Rose’s famous question ‘Why did this patient get this disease at this 

time?’ (76) Epigenetics has recently become a hot topic and can be paralleled to gene-

environment interactions. Epigenetics is defined as ‘modifications of DNA or associated 

factors that have information content, other than the DNA sequence itself, are 

maintained during cell division, are influenced by the environment, and cause stable 

changes in gene expression.’ (77) Gene-environment correlations on the other hand, are 

the correlations between genetic predisposition and experiences – how we ‘select, 

modify and create environments correlated with our genetic propensities’. (60)  

Our genetic propensities for obesity make it easier for some and more difficult for 

others to make healthy lifestyle choices. For those with genetic predisposition to 

obesity, today’s environment may make these healthy lifestyle choices even more 

difficult. We cannot change our genes; however, we can influence the obesogenic 

environment in which we live. 
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3 Aims  

3.1 General aims of the thesis 

The aim of this thesis is to illustrate how population weight and obesity are modified by 

the interplay between genetic predisposition and the obesogenic environment over six 

decades and to examine the robustness of the findings using sibling design. Further, we 

aim to validate the childhood polygenic risk score for BMI and identify at what age the 

cross-over in terms of strength of prediction from the early life to the adult score occurs. 

3.2 Specific aims of the thesis 

To study the trajectories of body mass index (BMI) in Norway over five decades and to 

assess the differential influence of the obesogenic environment on BMI according to 

genetic predisposition. (Paper I) 

To utilize the powerful genome-wide polygenic score to illustrate how BMI, obesity and 

severe obesity are modified by the interplay between genetic predisposition and the 

obesogenic environment over six decades. (Paper II) 

To examine whether the interplay between genes and the obesogenic environment is 

robust to family-level confounding from assortative mating, population stratification 

and dynastic effects using sibling design. (Paper II) 

To validate the childhood and adult polygenic risk score using measured BMI data of 

individuals in both adolescence and adulthood from the HUNT Study cohort in Norway. 

Further, we aim to identify the age at which the predictive performance of the early life 

and adult scores crosses over. (Paper III) 

 

 

 

 

 



 

14 
 

 

 

  



 

15 
 

4 Study population and methods 

4.1 The HUNT Study and the tuberculosis screening program (Paper I-

III) 

In this thesis we conducted three studies based on the participants from the HUNT 

Study (1984-2019) linked to previous height and weight measurements in the 

tuberculosis screening program (1963-75). 

The Trøndelag Health Study (HUNT, and formerly known as the Nord-Trøndelag 

Health Study) is a large population-based health study conducted in four waves: 

HUNT1 (1984-86), HUNT2 (1995-97), HUNT3 (2006-08) and HUNT4 (2017-19). (42) 

The HUNT population is an ethnically homogeneous cohort with an age span from 

adolescence to late adulthood. The entire adult population from the age of 20 was 

invited to participate in the main HUNT Study. HUNT includes data based on clinical 

examinations, self-reported health characteristics, assays of biological samples and 

genotyping. Blood samples were drawn at HUNT2, HUNT3 and HUNT4. Despite 

participation decline from 88% in HUNT1 to 70% in HUNT2 and subsequently 54% in 

HUNT3 and HUNT4, the HUNT Study is considered representative of the Norwegian 

population. Specifically, a non-participation study from HUNT3 shows that the HUNT 

Study is representative, also in terms of population BMI. (78)  

The Young-HUNT survey is the adolescent counterpart to the adult HUNT surveys, 

conducted in 1995-97, 2000-01, 2006-08 and 2017-19. All teenagers aged 13-19 in the 

Nord-Trøndelag region were recruited to participate. The Young-HUNT survey includes 

data based on clinical examinations, self-reported health characteristics and buccal 

swabs taken for genotyping. Unfortunately, the buccal swabs have inconsistent quality 

and were not included as data in this thesis. BMI data from baseline measurements in all 

four waves is likely representative as over 76% of teenagers participated. However, we 

expect some selection bias in the adolescents and young adults who participated in 

follow-up measurements. 

The tuberculosis screening program was established in 1943 and contributed to the 

surveillance of tuberculosis in the general Norwegian population. (79) Starting in 1963, 

efforts were gradually directed to the surveillance of groups at high risk of tuberculosis. 
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Simultaneously, the systematic measurement of height and weight was introduced. We 

excluded participants aged less than 14 years as they were not targets for population 

surveillance. For the genetic analyses of the first two studies, we used data from the 

tuberculosis screening program limited to 1966-69, as this interval contains most 

observations.  

4.2 Statistics Norway family database 

The Statistics Norway family database provides an ongoing account of changes 

affecting families and partnership. Population projections are calculated each year and 

family composition is monitored closely. (80) Linking the Statistics Norway database to 

our HUNT Study data, we included 11,857 sibling groups (29,585 individuals) with 

complete data on genotype and measured BMI for the sibling analyses in the second 

study. Participants were defined as sibling if they their maternal and paternal ID codes 

matched. Sibling pairs with an age difference greater than 30 years were dropped. As 

the data is registry based, it may also include non-biological siblings. There was a 

substantial amount of missing sibling data especially for the older cohorts. For example, 

more than 50% of the sibling data is missing for those born before 1940.  

4.3 BMI assessment 

BMI was calculated as weight in kilograms per meter squared. Weight was measured to 

the nearest half kilogram with the participants wearing light clothes and no shoes, and 

height was measured to the nearest centimeter. (81) The World Health Organization 

defines overweight as a BMI greater than or equal to 25 and obesity as a BMI greater 

than or equal to 30. (25) In the second study, we refer to severe obesity as BMI greater 

than or equal to 35. BMI strongly relates to longitudinal growth, and for participants 

younger than 18 years we calculated their BMI z score, using the International Obesity 

Task Force reference to adjust for age and sex. (82) Each participant’s BMI z score was 

subsequently used to estimate the corresponding BMI at age 18 years and to define 

overweight and obesity.  

BMI may not be the most adequate measure of body fat as it cannot distinguish between 

muscle mass and fat mass. Regardless, it is a good indicator of obesity on a population 
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level. BMI is common in population studies with big sample sizes as height and weight 

are easy to measure accurately. By definition, BMI encompasses adjustments for height. 

However, a BMI of 30 does not necessarily have the same significance for a tall person 

as for a short person. (83) In the statistical analyses of the second study, we adjusted 

BMI for height to account for any effect of the six centimeters height increase in the 

population since the 1960s. (84)  

4.4 Genotyping and computation of genetic risk score (GRS96 in Paper I), 

genome-wide polygenic score (GPS in Paper II) and child and adult 

polygenic risk scores (Paper III) 

Genotyping of the adult participants in HUNT2 and HUNT3 was carried out with one of 

three different Illumina HumanCoreExome arrays (HumanCoreExome12 v1.0, 

HumanCoreExome12 v1.1, and UM HUNT Biobank v1.0, Illumina, CA), as described 

previously. (54, 85) Imputation was performed using minimac3 from a panel combined 

from the Haplotype Reference Consortium and 2,202 HUNT low-pass sequenced 

individuals with indel calling. 

In the first study, the genetic risk score included 96 of the 97 SNPs previously identified 

to be associated with BMI in the Giant Investigation of Anthropometric Traits (GIANT) 

consortium. (69) We lacked data for one SNP (rs12016871) due to insufficient quality 

of genotyping or imputation procedures. The supplementary file for the first paper 

provides more details about the quality control procedures. In order to create the genetic 

risk score, we performed SNP harmonization whereby we first compared the effect 

allele and secondly compared the mean allele frequency (MAF) for palindromic SNPs. 

A palindromic SNP is a SNP in which the alleles pair with each other in the double 

helix strand such that alleles on the forward strand are the same as on the reverse strand. 

(86) Thirdly, we associated the SNPs with BMI in our sample to verify correct 

alignment. The number of risk alleles for each of the 96 BMI associated SNPs were 

multiplied with the estimated effect size of that particular SNP on BMI published by the 

GIANT consortium, (69) and then summarized over all SNPs to create a weighted 

genetic risk score. (87) The study population was divided into five equally sized groups, 

the top fifth group being the most genetically susceptible to higher BMI and the bottom 
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fifth group being the least. Additional analyses were done with a proxy (rs4771122) in 

linkage disequilibrium (r2=0.88, DPrime 1.00) replacing the excluded SNP.  

In the second study, the GPS was constructed using weights from the polygenic score 

for BMI derived and validated by Khera et al. Palindromic polymorphisms were 

excluded, but all available variants of sufficient quality were included regardless of p-

value of the association with BMI. Using a Bayesian approach, a posterior mean effect 

size was calculated for each variant incorporating the extent to which similarly 

associated variants are correlated in a reference population. More detailed information 

on the polygenic score derivation and validation is described previously. (18) The GPS 

of Khera et al. includes 2.1 million common variants previously identified to be 

associated with BMI. (69, 88) The GPS used in the second study includes 2.07 million 

of the 2.1 million common variants, excluding those with insufficient quality of 

genotyping or imputation in HUNT (r2<0.8).  

In the third study, summary statistics from the genome-wide association study in the 

UK Biobank (89) were used to create both childhood and adult genetic risk scores for 

BMI with data from the HUNT participants. For the childhood and adult scores 

respectively, the number of risk alleles for each of the common variants were multiplied 

with the estimated effect size of that particular variant on BMI published by Richardson 

et al., (89) and then summarized over all common variants in respective scores to create 

a weighted polygenic risk score. Richardson et al.’s childhood and adult polygenic risk 

scores include 295 and 557 common variants identified to be associated with childhood 

and adult BMI, respectively. 268 of the 295 common variants were included in the 

childhood score, excluding 17 common variants due to lacking information in the 

HUNT dataset, one with insufficient quality of genotyping or imputation in HUNT (r2 

<0.8) and nine that were palindromic with allele frequency between 0.4 and 0.6. 

Correspondingly, 492 of the 557 common variants were included in the adult score, 

excluding 39 common variants due to lacking information, nine with insufficient quality 

of genotyping or imputation and 17 that were palindromic with the same exclusion 

criteria as above.  
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4.5 Study design 

The longitudinal study design is applied to all studies in this thesis with exception of 

cross-sectional design for the sibling analyses and ROC analyses in paper II. 

Longitudinal studies are usually observational and utilize continuous or repeated 

measures to follow individuals over longer periods of time. (90) The HUNT Study is a 

prospective cohort study where individuals in a defined population are followed from 

the mid-1980s to the late 2010s. By linking the HUNT Study to the tuberculosis 

screening program in the 1960s, we can follow individuals of the Nord Trøndelag 

population with repeated standardized BMI measurements over six decades. Hence, this 

allows us to follow change in body weight over time in a particular individual and for 

the group as a whole. Longitudinal cohort studies can correct for and account for the 

influence of the cohort effect (range of birth dates), period effect (current time) and age 

effect (at time of measurement) separately. When two of these variables are used 

simultaneously, the third variable will be given from the first two.  

The within-family analysis of siblings is an optimal approach to test for possible 

confounding in the estimates of the second study. Here we adjust for three forms of 

confounding that may arise in unrelated individuals; dynastic effects, assortative mating 

and population stratification. By design, these forms of confounding are minimized or 

eliminated in within-family analysis. On average, siblings with the same mother and 

father share 50% of their genes. Since the transmission of alleles from parent to 

offspring is random, the siblings have an equal likelihood of inheriting any given gene. 

(91) Dynastic effects occur when parental genes influence offspring outcome through 

other pathways than shared genes. (92-94) This does not become an issue as ‘siblings 

are well matched on all shared familial genetic influences that shape the environment’. 

(91) Potential confounding from assortative mating, when partners select each other 

based on a specific trait or as consequence of social homogamy, (92, 95) and population 

stratification, when allele frequencies differ between subpopulations, (92-94) is 

completely eliminated by sibling design. In the second study, we test if the prediction 

estimates within and between sibling groups are similar. If this is the case, it supports 

that confounding by dynastic effects, assortative mating and population stratification 

must be negligible or non-existent. 
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4.6 Sensitivity, specificity, ROC curves and AUC 

In the third study, Receiver operator characteristics (ROC) curves were used to compare 

the ability of the childhood and adult genetic risk scores to predict both overweight and 

obesity in the different age categories.  

ROC curves are a graphical way of showing the trade-off between sensitivity and 

specificity for every possible cut-off for a test or for several tests combined. (96) 

Sensitivity is defined as the proportion of positives that are correctly identified by the 

test while specificity is defined as the proportion of negatives that are correctly 

identified by the test. (97) 

The ROC curve is a graph with the x-axis showing 1-specificity (the rate of false 

positives) and the y-axis showing sensitivity (the rate of true positives). The area under 

the curve (AUC) can thus be used to measure the test’s discriminative ability (96) for 

example, the predictive ability of a particular genetic risk score on BMI. ROC curves 

are most useful when comparing two or more competing methods (97) like the 

childhood and adult genetic risk scores. However, being based on sensitivity and 

specificity, the ROC curves do not take into account of the prevalence of the disease 

being tested. (96)  

4.7 Statistical analyses 

The following statistical approaches were used in the three papers: descriptive statistics 

(Paper I-III), linear mixed models (Paper I-III where Paper I and II are multilevel mixed 

models) and generalized estimating equations (Paper II).  

A linear mixed model is a simple linear model extended to allow for both fixed and 

random effects. When the model has multiple levels, the variability in the outcome is 

considered as either within group or between group. (98) If both random intercepts and 

slopes are fitted, the slope of a predictor can vary based on a separate grouping variable. 

(99) Data from all groups are used in random effect models to estimate the mean and the 

global distribution of group means. The estimates of their means drift towards global 

mean, assuming all group means are drawn from a common distribution. (99) Multilevel 

linear regression is less susceptible to outcome driven loss to follow up under the 
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assumption of missing at random. (100) Generalized estimating equations (GEE) are 

linear models often used to analyze longitudinal and other correlated data, particularly 

for binary outcomes. (101)  In longitudinal data with repeated measurements within 

individuals, the GEE method considers each individual as a “cluster”. (101) A main 

strength with GEE is that this method produces reasonably accurate standard errors 

resulting in confidence intervals with correct coverage rates. In contrast to linear mixed 

models, the GEE does not explicitly model between-cluster variation but rather focusses 

on and estimates its counterpart, the within-cluster similarity of the residuals. The 

estimated correlation is then used to re-estimate the regression parameters and to 

calculate standard errors. (101) One limitation of the GEE approach is that it cannot 

handle several levels of clustering yet, this can be accounted for by extension methods. 

Another challenges with using the GEE methods are; appropriately accounting for 

missing data and handling data spaced unevenly in time. (101) 

 After performing linear mixed models and GEE analyses, we continued with post-

estimations using the margins, lincom, and user written spost13 command mgen in 

Stata. Thus, we presented the estimated marginal means, adjusted predictions and 

estimated marginal effects to illustrate the association between the genetic instrument 

and BMI and obesity respectively over time. Analyses were performed with StataMP15 

(Paper I and II), StataMP 16 (Paper II and III), Plink 2.0 (Paper II) and R version 3.6.2 

(Paper III). 

4.7.1 Paper I 

Longitudinal trajectories in BMI were analyzed using linear multilevel mixed models 

with observations clustered within individuals, and with a random slope for age. 

Analyses were performed separately for men and women. BMI growth trajectories for 

different birth cohorts were estimated in the total study sample and included age and the 

square of age as continuous covariates. The effect of genetic risk of obesity on BMI was 

estimated according to time of measurement and age. Linear splines of age with knots at 

every decile were created for optimal age adjustment. The Bayesian information criteria 

was used to compare goodness of fit for models with two year, five year, 10 year and 15 

year, and 20 year age bands, where 10 year age bands proved to be the most 

appropriate. Based on this model, the estimated BMI was plotted for the highest 
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compared with the lowest fifth of genetic susceptibility to BMI for chosen ages at each 

decade for men and women.  

Several additional analyses were performed. Firstly, the association between BMI 

measured in the 1960s and availability of genetic data was estimated to investigate the 

possibility of a selection bias. Secondly, sensitivity analyses were performed including 

only people born after 1940 as there was evidence of lower participation among those 

with higher BMI in the older birth cohorts. Thirdly, as the genetic risk score was based 

on genome-wide analyses performed in adults, whereas the data also included 

adolescents, the impact of excluding people younger than 20 years from the analyses 

was assessed. Fourthly, the association using FTO, the fat mass and obesity associated 

SNP, was assessed separately. FTO is the dominating BMI associated SNP that is also 

associated with BMI in childhood. (102) Fifthly, the analyses were restricted to self- 

reported never smokers in the 1990s or in the 2000s to assess whether smoking trends 

could affect the results. Sixthly, the association between genetic risk for obesity was 

assessed rather than the association between genetic risk and BMI. A linear probability 

model was chosen for similarity with the main model and to maintain a population 

average effect. Lastly, the association between genetic risk score and the natural 

logarithm of BMI was assessed. This was done to approximate the relative difference in 

BMI between the top and bottom fifth of genetic predisposition. (103) 

4.7.2 Paper II 

The association between GPS and BMI was assessed using linear multilevel models 

with observations nested within individuals. To assess linearity, the association between 

the GPS and BMI was modelled using linear splines with nine knots according to 

percentiles of the distribution. Adjustments were made for sex and time of measurement 

as categorical variables and linear splines were used with knots at every 20 years to 

adjust for age. Adjustments were also made for 20 principal components and 

genotyping batch. Further, the effect of the GPS could differ according to time of 

measurement, sex, and age using interaction terms for each. Although age was adjusted 

for with splines, 20-year age categories were used for the interaction terms. The 

association between the GPS and BMI was fairly linear justifying a linearity assumption 

for GPS (supplementary fig S1, Paper II). Hence, for the main analyses, the study 
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population was divided into ten equally sized groups, the top tenth being the most 

genetically susceptible to higher BMI and the bottom tenth being the least genetically 

susceptible. The effect of genetic risk of obesity on height-adjusted BMI was estimated 

according to time of measurement, age and sex. In addition to the previously described 

interaction terms, an interaction term between age and time of measurement was 

included.  

The association of GPS with obesity and severe obesity was modelled using generalized 

estimating equations. The same covariates were included as in the models assessing 

height-adjusted BMI. In the main text, results for adults aged 25-55 years are presented, 

as this age band shows a relevant age span and was most complete in our dataset.  

Based on these models, the estimated height-adjusted BMI and the prevalence of 

obesity and severe obesity were plotted for the highest compared with the lowest tenth 

of genetic susceptibility to BMI for chosen ages at each decade for men and women. 

To assess whether assortative mating, dynastic effects or population stratification 

influenced the results, the association of the GPS with height-adjusted BMI as well as 

with the prevalence of obesity was analysed within and between siblings. The sibships’ 

GPS average and each sibling’s deviation from the group GPS average were calculated 

and included as independent variables in the regression, where the within sibship 

coefficient is an estimate for differentially genetically exposed siblings. Between 

sibship coefficients exceeding the within sibship coefficients would indicate 

confounding at the sibship level. Unlike the main analyses, these models were 

preformed separately by time point with one observation per individual, assuming the 

association of GPS with BMI and with obesity to be linear and constant over different 

ages.  

To assess the possibility of selection bias, the association between obesity status in the 

1960s and availability of genetic data was estimated. The estimated BMI and prevalence 

of obesity among 38,378 individuals excluded due to lack of genetic data was compared 

with the estimated BMI and prevalence of obesity for individuals in our study sample. 

Genetic data from first degree relatives was used to evaluate if exclusions due to 

missing genetic data biased the results. 
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4.7.3 Paper III 

First, in order to check the overlap in genetic predisposition to obesity as defined by the 

two scores, we calculated the Pearson’s correlation coefficient between the childhood 

and adult genetic scores for all ages combined. The main validation analyses involved 

linear regression between measures of BMI with both the childhood and adult scores 

adjusted for age, sex, time of measurement, 20 principal components and batch. These 

analyses were performed separately by age groups 12-15.9, 16-17.9, 18-23.9, 24-29.9 

and 30-70, and we included only the first observation for each individual per age group. 

We used BMI measured in the HUNT Study as well as in the tuberculosis screening 

program in the 1960s and 1970s both separately and over all times combined. We then 

calculated the difference in explained variance by comparing variance explained by 

models with and without a genetic score, to evaluate the ability of both scores to predict 

BMI overall and at multiple time points. To describe the age of cross-over in strength of 

association between each score and BMI, we included all available BMI measurements 

and performed mixed linear models with observations nested in individuals. Adjusted 

models were similar to the linear models described earlier, but rather than analyzing 

separately over age groups, we included interaction terms between genetic scores (as 

continuous variables) and age groups (as a categorical variable in three-year bands). In 

additional analyses, we also included interaction terms between genetic scores and time 

of measurement (as a categorical variable). We subsequently estimated the marginal 

effects of genetic scores on BMI over age, using the user written spost13 package for 

Stata. We then generated Receiver operator characteristics (ROC) plots as undertaken in 

Richardson et al.’s study (89) to investigate the ability of both scores to predict 

overweight and obesity in different age categories. Because obesity was rare among 

adolescents in our sample, we present ROC plots for overweight in the main results. 

The genetic scores were generated using R version 3.6.2 and all subsequent analyses 

were performed using Stata16. 
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5 Ethics 
 

We obtained ethical clearance from REK for this project through the main project 

“Burden of obesity in Norway”, and ethical clearance for additional analyses was 

sought correspondingly. The project was approved by the data inspectorate, and 

linkages were approved by the data owners. The project is based on observational data 

already collected. There is no intervention; there is therefore no known risk for the 

participants. The collection of large datasets including genetic information nonetheless 

requires scrutiny in handling data. Furthermore, scrutiny in presenting research results 

is, as always, needed to avoid adverse outcomes and misinterpretation.  
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6 Main results 

6.1 Descriptive statistics 

In the first study, the sample included 118 959 participants aged 13 to 80 years with a 

total of 252 948 BMI measurements (fig 1, Paper I). Of these individuals, 67 305 were 

included in analyses of the association between genetic predisposition and BMI, with an 

average of 2.6 observations per person. Participants in the 1960s were five to 10 years 

younger than those at other time points, except for 2000-01 when only adolescents 

participated (supplementary table S1, Paper I). 

In the second study, the sample consisted of 67 110 participants aged 13 to 80 years 

with a total of 202 030 BMI measurements, with an average of three measurements per 

person (fig 1, Paper II). Due to a new SNP delivery, 195 fewer participants were 

included in this study. We found an increasing BMI variance and a shift towards a 

higher prevalence of obesity over time (supplementary fig S2, supplementary table S1, 

Paper II). In the contemporary HUNT population, the GPS explained 8.26% of variance 

in BMI. 

In the third validation study, the sample consisted of 66 963 participants aged 12 to 70 

years with a total of 185 078 BMI measurements. By keeping only the first observation 

per age category, 97 879 observations were left for inclusion in the analyses of 

explained variance. 

6.2 Quantifying the impact of genes on body mass index during the 

obesity epidemic (Paper I) 

Body weight increased in Norway starting between the mid-1980s and mid-1990s and, 

compared with older birth cohorts, those born after 1970 had a substantially higher BMI 

already in young adulthood (fig 2 and 3, supplementary fig S1 and S2, Paper I).  

Men aged 35 in the bottom fifth of genetic predisposition were 2.20 kg/m2 (95% 

confidence interval 2.05 to 2.35 kg/m2) heavier in the 2000s compared with the 1980s. 

The corresponding difference among 35 year old women was 2.88 kg/m2 (95% 

confidence interval 2.70 to 3.06 kg/m2). Slightly smaller differences were found among 
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the other ages (supplementary table S4, Paper I).  We also found a relatively high and 

stable BMI among middle aged women in the earliest cohorts (primarily before 1920 

and 1920-29) and a subsequent decrease in BMI among this age group from the 1960s 

to 1980s. 

BMI differed substantially between the highest and lowest fifths of genetic 

susceptibility for all ages at each decade, and the difference increased gradually from 

the 1960s to the 2000s. For 35 year old men, the most genetically predisposed had 1.20 

kg/m2 (95% confidence interval 1.03 to 1.37 kg/m2) higher BMI than those who were 

least genetically predisposed in the 1960s compared with 2.09kg/m2 (1.90 to 2.27 

kg/m2) in the 2000s. For women of the same age, the corresponding differences in BMI 

were 1.77 kg/m2 (1.56 to 1.97 kg/m2) and 2.58 kg/m2 (2.36 to 2.80 kg/m2). Hence, the 

increased difference in BMI of 0.89 kg/m2 (0.63 to 1.15 kg/m2)  and 0.81 kg/m2 (0.51 to 

1.12 kg/m2) for men and women, respectively, in the 2000s, could be attributed to the 

gene-obesogenic environment interaction (supplementary table S6, Paper I). 

Several additional analyses were performed. Assessing survival bias, we found a weak 

association between BMI measured in the 1960s and survival to and participation in 

genetic analyses in the 1990s (OR 0.98, 95% CI 0.98 to 0.99, per kg/m2). However, this 

was not as apparent among cohorts born in 1940 and later (OR of having genetic data 

0.99, 95% CI 0.98 to 1.0, per kg/m2 in the 1960s). Restricting analyses of the 

association between time point and BMI to these cohorts revealed estimates similar to 

the main results. However, this restriction prevented estimation of BMI in the1960s for 

anyone over 27 years of age (supplementary fig S3, Paper I).  

Additional analyses showed that restricting the study sample to never-smokers did not 

change results substantially (supplementary fig S4, Paper I). As expected, the 

associations with FTO alone were weaker than the associations with the GRS96 yet 

showed the same trends as in the main analyses (supplementary fig S5, Paper I). 

Furthermore, we used the natural logarithm of BMI as the outcome and still found 

evidence of a small interaction between genetic risk and time (supplementary table S7, 

Paper I). The interaction between genetic risk and time was thus evident on a 

multiplicative scale, however, the relative difference in BMI according to genetic risk 
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was rather constant over time. Among the most genetically predisposed men aged 35 - 

45, estimated prevalence of obesity increased from less than 10% in the 1960s to more 

than 30% in the 2000s (supplementary fig S6, Paper I). Comparatively for the least 

predisposed 35 year old men, the estimated prevalence of obesity increased from nearly 

2% in 1960s to 13% in 2000s. For 35 and 45 year old women, the estimated prevalence 

of obesity decreased between the 1960s and the 1980s. Starting in the 1980s, the 

estimated prevalence of obesity increased steadily by time for both men and women. 

We repeated the analyses using a proxy (rs4771122) in linkage disequilibrium (r2 0.88, 

DPrime 1.00) for the one excluded SNP and results were consistent with the main 

results (data not shown). 

6.3 Genetic associations with temporal shifts in obesity and severe obesity 

during the obesity epidemic in Norway verified by sibling design (Paper 

II) 

From relative stability in the 1960s to 1980s, the weight for both the genetically 

predisposed and non-predisposed increased dramatically from the mid-1980s to the 

2000s and then stabilized to a higher level over the past decade. Height-adjusted BMI 

differed substantially across polygenic score tenths for all ages and at each decade, and 

the difference varied proportional to the changes in population weight (supplementary 

fig S5 and table S2, Paper II). We found comparable associations between polygenic 

risk score and BMI as well as obesity within and between sibling groups with little 

evidence of bias from assortative mating, population stratification or dynastic effects 

(fig 2, supplementary fig S6, Paper II). HUNT participants excluded due to missing 

genetic data had only a slightly higher prevalence of obesity and severe obesity than the 

study sample (supplementary table S3, Paper II). Using genetic data from first degree 

relatives, we found no evidence that exclusion due to missing genetic data biased results 

(supplementary fig S7, S8, S9, Paper II).  

The increase in prevalence of obesity and severe obesity was steeper among the 

genetically predisposed over the time period (fig 3,4, Paper II). Among 35 year old 

men, the prevalence of obesity for the least predisposed tenth increased from 1% (95% 

confidence interval [CI] 1 to 1%) to 7% (95% CI 5 to 8%) while for the most 

predisposed tenth it increased from 14% (95% CI 13 to 16%) to 40% (95% CI 37 to 
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43%). Hence, the absolute change in prevalence of obesity was 20 percentage points 

(95% CI 17 to 24 percentage points) greater for the highly predisposed. Equivalently for 

women of the same age, the prevalence of obesity for the least predisposed tenth 

increased from 1% (95% CI 1 to 2%) to 8% (95% CI 6 to 9%) while the most 

predisposed tenth increased from 15% (95% CI 14 to 17%) to 42% (95% CI 39 to 46%).  

The absolute change in prevalence of obesity among women was 20 percentage points 

(95% CI 17 to 24 percentage points) greater for the highly predisposed (fig 3, 

supplementary tables S4 and S5, Paper II). A similar trend is evident for severe obesity 

(fig 4, supplementary tables S4 and S5, Paper II); the corresponding absolute change in 

prevalence of severe obesity for men and women respectively, was 9 percentage points 

(95% CI 6 to 11 percentage points) and 13 percentage points (95% CI 10 to 16 

percentage points) greater for the highly predisposed. With a contemporary prevalence 

of severe obesity below 2% for most age groups, the least genetically predisposed 

people seem relatively protected against severe obesity.  

The following is a more comprehensive answer to the rapid response published in the 

British Medical Journal concerning assortative mating in the first paper (See 

Supplementary materials). This argument applies also to the second study. 

If assortative mating exists, one would expect a higher genetic risk score for the high-

risk quintiles among the younger cohorts. This is not the case in our dataset. For all 

birth cohorts, we found negligible differences in GRS96 z-score with corresponding 

standard deviations for not only the high-risk quintile but also the top percentile (Table 

1, below). When keeping the GRS96 z-score constant from the 1960s to 2000s, we found 

practically the same increased difference in BMI between the predisposed and non-

predisposed as in our manuscript, 0.89 kg/m2 (confidence interval 0.63 to 1.15 kg/m2) 

and 0.80 (confidence interval 0.49 to 1.10 kg/m2) for men and women respectively. 
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Table 1. Mean and standard deviation of genetic risk score for BMI in the top fifth and 

top percent of the genetic risk score for each birth cohort 

 Top fifth of genetic risk  Top percent of genetic risk 

Birth 

cohort 

Number of 

participants 

GRS96 z-

score 

mean 

Standard 

deviation 

 Number of 

participants 

GRS96 z-

score 

mean 

Standard 

deviation 

Before 

1920 326 1.43 0.50 

 

20 2.79 0.05 

1920 1525 1.40 0.47  68 2.78 0.05 

1930 1716 1.42 0.48  88 2.78 0.06 

1940 2534 1.39 0.47  119 2.78 0.06 

1950 2710 1.41 0.48  140 2.79 0.06 

1960 2461 1.42 0.48  135 2.78 0.05 

1970 1531 1.39 0.46  75 2.77 0.04 

1980 666 1.42 0.46  31 2.77 0.06 

 

6.4 Validation of genetic scores for childhood and adult body mass index 

in adolescence and adulthood in the HUNT Study (Paper III) 

The childhood and adult polygenic risk scores were only moderately correlated in our 

dataset, with a correlation coefficient of 0.28. Although there is large overlap in gene 

variants associated with obesity in children and adults,(89) there was small overlap the 

respective scores. Only independent SNPs with the most significant association to BMI 

are included in the childhood and adult scores. There were 21 SNPs that overlapped 

between the two scores, of which we could include 20 SNPs.  

In the age group 12-15.9 years, the additional variance explained by the childhood GRS 

was 4.8% versus 2.3% for the adult GRS (table 1, Paper III). In the age group 16-17.9, 

the additional variance explained by the adult GRS was 3.0% versus 2.0% for the 

childhood GRS. Thus, the cross-over in terms of explained variance occurs at 16 years 

of age. This finding holds true for all years combined and when studying 1963-75 and 
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1995-97 separately (supplementary fig 1, Paper III). Correspondingly, the ROC 

analyses indicate that the childhood score is superior to the adult score in predicting 

overweight in the age group 12-15.9, whereas there is no difference between the two 

scores in age 16-17.9 (fig 2, supplementary table S1, Paper III).  Interestingly, the 

marginal effect of the childhood score on BMI, i.e. to how much BMI increases per 

standard deviation of the genetic score, is relatively constant throughout the life-course 

while the marginal effect of the adult score on BMI increases with age (fig 3, Paper 3). 

The marginal effects of the two scores cross at age 18 to 19 years however, their 

confidence intervals overlap from 17 to 26 years. This implies that neither score is 

better at predicting BMI in this age range.  
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7 Discussion 

7.1 Main findings  

The HUNT Study is novel in that it captures cohort effects over four generations, age 

effects from adolescence to agedness and most importantly, a period effect from before 

and after the obesity epidemic. This comprehensive dataset has been instrumental for 

the new knowledge brought forth by this thesis. We have followed the development of 

obesity in Norway over six decades and uncovered convincing evidence of an 

interaction between genes and the obesogenic environment. Further, these findings 

reveal a growing inequality in risk for obesity and severe obesity across polygenic score 

deciles confirmed by sibling design. Lastly, we used measured BMI over a broad age 

range to validate the new genetic risk scores for childhood and adult BMI, also over 

time. In doing so, we confirm the age at cross-over in terms of strength of prediction for 

the childhood and adult scores. This thesis demonstrates the use of genetics to better 

understand childhood and adult obesity in an increasingly obesogenic environment. 

7.2 Methodological considerations  

While the aim of a prediction study is to optimally predict an outcome based on 

available information, the aim of a causal study is to resolve whether a certain 

independent variable truly affects the dependent variable and to estimate the magnitude 

of the effect, if this exists. (104) 

In both forms of studies, the main objective is to obtain accurate estimates with as little 

error as possible. (105) Errors in epidemiology can be classified as being random or 

systematic. Random error is defined as the variability in observed data that cannot be 

readily explained; either due to truly random processes or to yet unidentified causes. 

(105, 106) In contrast, systematic errors can be explained either by the way in which 

subjects were selected, the way study variables are measured, or by confounding. 

Systematic errors are also referred to as biases. (106) 
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7.2.1 Validity  

 

Validity is defined as the lack of systematic error and is unaffected by sample size. 

(105, 106) External validity, often denoted as generalizability, refers to the validity of 

inferences outside of the source population. (105) External validity will be discussed 

later in the discussion. Internal validity refers to the validity of inferences regarding the 

source population. (105) Internal validity can be threatened by lack of precision, 

selection bias, information bias as well as confounding. 

7.2.1.1 Precision  

Precision is defined as the lack of random error. (105) A precise estimate in an 

epidemiological study is preferably indicated by a narrow confidence interval. (106) In 

general, 95% confidence intervals will include the true value 95% of the time, if the 

study is repeated numerous times and is free of bias. (105) The larger the sample size of 

a study, the greater the precision. (105)  

Most of our estimates are precise with narrow 95% confidence intervals. Compared 

with a British study, (18) our second study does however lack statistical power in the 

younger age groups and is unable to replicate findings of an increasing weight gradient 

across polygenic score tenths from childhood to adulthood. That being said, our 

estimates for adult participants are precise and do not affirm any clear age trends. 

Precision is however somewhat limiting for our third study. The results for the change 

in BMI over time in adolescents and young adults suffer from low statistical power and 

should be interpreted with caution.  

7.2.1.2 Selection bias  

Selection bias is a systematic error that occurs due to differences in exposure-outcome 

associations between those who were theoretically eligible to participate and those who 

participated. (105) Non-participation bias and bias from selective survival to date of 

genetic testing are two forms of selection bias that could violate the internal validity of 

this thesis. This thesis includes BMI data for both individuals who did and did not 

participate in genetic testing in HUNT2 and HUNT3. Hence, this enabled us to 

investigate the association between missing genetic data and BMI measured at earliest 

time points. 
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The first wave of the Trøndelag Health Study (HUNT1) is considered unselected as 

88% of the Nord-Trøndelag adult population attended. As in most other population 

studies, participation declined to 70% in the second wave (HUNT2) and subsequently 

stabilized at 54% for the third and fourth waves (HUNT3 and HUNT4.) (42, 81, 107) 

Non-participation is often associated with lower socioeconomic status and poorer 

health. A non-participation study was performed for HUNT3 where non-participants 

from the HUNT3 Study were recruited to answer a short questionnaire and registry data 

was collected. This study found that non-participants had slightly lower socioeconomic 

status, had more chronic diseases, had higher mortality and had a higher risk of 

receiving a disability pension. From these characteristics, one would expect non-

participants to have higher BMI than participants. Interestingly, non-participants and 

participants shared the same amount of subjective health complaints. Non-participants’ 

self-reported body heights and weights were slightly higher and lower, respectively 

giving them a lower BMI (0.6 and 1.1 kg/m2 lower in men and women, respectively) 

when compared with participants. This is likely explained by reporting bias as several 

studies show that self-reported BMI is generally underestimated. (108) In turn, lower 

participation among lower socioeconomic groups could contribute to reduce the 

difference between self-reported and measured anthropometrics.  

To summarize, the non-participation study for HUNT3 provided little evidence for 

higher BMI among non-participants and any discrepancies in BMI between participants 

and non-participants were likely an artefact of reporting bias. (78) We assumed this to 

be true also for HUNT1 and HUNT2 with far greater participation as well as HUNT4 

with comparable participation. In contrast, the participation in the UK biobank is 

comparatively low (5%) and is subject to participation bias where higher levels of 

adiposity reduced participation. (109) 

Generally, our study sample is little affected by bias from selective survival to date of 

genetic testing. In addition, we applied multilevel linear regression that is less 

susceptible to outcome driven loss to follow up under the assumption of missing at 

random. (100) For the eldest cohorts we acknowledge a weak association between a 

higher BMI measured in the 1960s and survival to and participation in genetic analyses 

in the 1990s. Still, in the second study we found little evidence of selection bias in 
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analyses using genetic data from first degree relatives as a proxy for those who did not 

participate in genetic testing. It is however likely that results for 25 year old men and 

women in 2017-2019 may suffer from selection bias as estimates are extrapolated from 

a broader age range. The lowest observed age was 27 in this age group. We anticipate 

that the adolescents who participated in Young HUNT and then returned to participate 

in HUNT4 as young adults are selected and likely have lower BMI. 

7.2.1.3 Information bias 

Information bias is defined as bias in estimating an effect caused by measurement errors 

in the necessary data. (106) For discrete variables, measurement error is called 

misclassification and can be either differential (depending on the value of other 

variables) or non-differential (independent of the actual values of other variables). (105) 

Differential misclassification of the exposure to outcome or outcome to exposure can 

both exaggerate or deflate estimated associations. (105) Non-differential 

misclassification will cause bias towards the null for dichotomous exposure variables 

yet, for exposure variables with three or more categories it can affect estimates in either 

direction. The longitudinal study design eliminates recall bias as all BMI measurements 

are standardized and collected prospectively. Having these BMI measurements, 

particularly in adolescents, is useful when validating Richardson et al.’s genetic risk 

scores for BMI in children and adults. (19) Recall bias is a main limitation to 

Richardson et al.’s genetic risk score for childhood BMI. The British childhood score 

relies on a rough self-reported childhood body size (i.e. ‘thinner’, ‘plumper’, ‘about 

average’) recalled by middle aged participants of the UK biobank. (89) 

7.2.1.4 Confounding  

Confounding is the situation where an apparent association between an exposure and an 

outcome is caused by a third factor known as a confounder. A confounder is a variable 

associated with but not a consequence of the exposure and is a cause of the outcome. 

(106) Confounders should not be confused with mediators (intermediate variables 

conveying some or all effect of the exposure on the outcome) and colliders (common 

consequence of the exposure and outcome). (105) Commonly, confounding is dealt with 

through separate or stratified analyses or by including covariates in regression models 

(105). For example, additional analyses for the first study addressed smoking as a 
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possible confounder yet restricting the study sample to never smokers did not change 

results substantially (supplementary fig S4, Paper I).  Three possible confounders 

threatening the validity of our novel finding of a gene-environment interaction are 

assortative mating, population stratification, and dynastic effects. 

Phenotypic assortative mating for quantitative traits such as BMI is indisputable. (110) 

We tend to choose partners with similar interests and physical attributes, including body 

size. Assortative mating on a phenotype can be direct (i.e. partners select each other 

based on a specific trait) or as an indirect consequence of social homogamy (i.e. 

partners from the same background are more likely to pair.) (92, 95) It is logical to 

assume that children of couples with obesity are likely to inherit a higher genetic risk 

for obesity and that variance in genetic risk would amplify for each generation. While 

we fully agree that phenotypic assortment for BMI exists, the genetic consequences 

remain unknown. The most convincing genetic evidence of assortative mating for BMI 

reveals only a slight genetic correlation among couples (0.143, SE: 0.007), 

approximately half the value of their phenotypic correlation (0.228, SE: 0.004). (95) 

Other studies suggest negligible genetic similarities between couples despite phenotypic 

similarities (111) or that genetic similarities disappear when accounting for population 

stratification (112).  

After publishing the first study we received a rapid response arguing that assortative 

mating rather than the obesogenic environment is responsible for the increasing 

disparity in BMI between the genetically predisposed and non-predisposed over the last 

decades. If assortative mating did exist, one would expect a higher genetic risk score for 

the high-risk quintiles among the younger cohorts. This was not the case in our dataset. 

For all birth cohorts, we found negligible differences in GRS96 z-score with 

corresponding standard deviations for not only the high-risk quintile but also the top 

percentile. Hence, we were fairly confident that our findings are not a function of 

assortative mating but rather a function of the obesogenic environment. As we lack 

information on the whole genome, we cannot fully deny that genetic assortative mating 

may still exist in our dataset. We also acknowledge that the parents to many of the 

cohorts in our dataset were not affected by the obesity epidemic. We hypothesize that 

genotypic assortment for BMI may become a greater issue in the future. 
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Other forms of confounding are population stratification and dynastic effects. 

Population stratification arises when there are geographic or regional differences in 

allele frequency relating to a trait of interest across study populations. (92, 113) As 

result of such population structure, spurious association between genetic variation and 

otherwise unrelated phenotypic differences may result. (65) Methods that utilize 

genome-wide SNP data including principal components (114) or linear mixed models 

(115) are unlikely to fully account for population stratification in genome wide 

association studies. Dynastic effects arise when parental genes influence offspring 

outcome through other pathways than shared genes. (92-94) It is logical that parents 

generate family environments agreeing with their own genotypes, which in turn 

influences the development of a trait such as obesity in the offspring. This genetic 

nurture effect creates a correlation between the offspring genotype and the family 

environment. (91) Interestingly, a recent non-transmitted parental alleles study (i.e. the 

alleles which are not inherited by the offspring can be shown to relate to offspring 

phenotype) did not report genetic nurture effects for BMI. (93, 116) 

To adjust for confounding in our second study, we compare the genome-wide polygenic 

score predictions for BMI and obesity in the total study sample individuals with 

predictions between siblings in a within-family design. Within a family, offspring 

inherit genetic variants randomly. Hence, estimates of the SNP-phenotype associations 

within families do not suffer from assortative mating. Similarly, sibling in a sibship 

share the same ancestry such that estimates of the SNP-phenotype association within 

families cannot be biased by population stratification. Lastly, dynastic effects shared 

amongst siblings or that are independent of genotype within families will also not bias 

the estimates of the SNP-phenotype association within families. (65) By design, within-

family studies may reduce or eliminate these three types of confounding in our study. 

(66, 117, 118)  

Our analyses showed comparable associations between polygenic risk score and BMI as 

well as obesity within and between sibling groups with little evidence of bias from 

assortative mating, population stratification or dynastic effects. Formally testing our 

novel finding of a gene-environment interaction for confounding is a major strength of 

this thesis. 
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7.2.2 Strengths and limitations of the longitudinal study design 

A major advantage of longitudinal cohort studies is that they can correct for and account 

for the influence of cohort effects (range of birth dates), period effects (current time) 

and age effects (at time of measurement) separately. Another advantage is that recall 

bias does not occur as data is collected prospectively. (90) This is a major strength of 

our third study that attempts to validate Richardson et al.’s genetic risk score for 

childhood obesity. In contrast to the UK Biobank population with self-reported 

childhood body weight recalled in middle age, our study population measured BMI 

prospectively from adolescents to agedness. Longitudinal studies are however costly, 

demanding and are prone to bias such as interruption or loss of follow-up. Nevertheless, 

the longitudinal study design is the main strength of this thesis capturing the change in 

population weight before and after the obesity epidemic. 

7.2.3 Informativeness of the ROC curve 

Generally, the ROC curve is an illustrative way of comparing two competing methods 

such as the predictive performance of the childhood and adult genetic risk scores on 

overweight or obesity. However, being based on sensitivity and specificity, the ROC 

curve does not take into account the prevalence of the disease being tested. This is a 

limiting factor for the ROC method when the prevalence of having the disease in 

question is similar to that of not having the disease. For example, in the third study, the 

ROC plots for overweight from age 18 to 70 appear to show an equal effect for both the 

childhood and adult genetic risk scores on BMI. This is somewhat misleading as it is 

rather a reflection of the high prevalence of overweight in the adult HUNT Study 

population. Hypothetically, if 50% of the study population was overweight and 50% 

was not, it would be difficult to determine the respective genetic scores’ ability to truly 

predict overweight. In contrast, the adolescent HUNT Study population has a low 

prevalence of overweight. This implies that there is a greater contrast between the 

proportion of individuals with overweight compared to without. Hence, the ROC curves 

for overweight in the younger age groups are much more informative and reliable. 
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7.2.4 Limitations specific to genetic epidemiology 

Challenges specific to genetic epidemiology can arise when creating a genetic score or 

in regard to how well the score fits the target population.   

Genetic risk scores are constructed from genome-wide association studies (GWAS). 

GWAS require large sample sizes as SNPs often have small effect sizes and are difficult 

to detect. (13) Similarly, a large sample size is advantageous when constructing a 

genetic score as, in order to be detected, the commons SNPs must be of sufficient mean 

allele frequency also in the target population. (86)  

Linkage disequilibrium (LD) occurs when ‘the allele of one locus is disproportionately 

co-inherited with an allele at another locus.’ (86, 119) This may result in confounding 

as the loci do not exhibit complete independence from each other. In the first study, we 

dealt with this by excluding all SNPs in LD in the first study. In the second study, LD 

was dealt with in the derivation of the GPS by using a linkage disequilibrium reference 

panel of 503 European samples from 1000 Genomes phase 3 version5. (69) 

We undertook harmonization procedures to assure the correct alignment of genetic 

variants as this could otherwise be a major source of bias. We dropped palindromic 

SNPs when it was not possible to infer the effect allele either using the allele frequency 

information or by associating the SNPs with BMI in our sample. 

The genetic scores used for prediction of a common trait must be made to fit the 

population they are applied on. In the first study we were criticized for using the adult 

GRS96 for BMI on adolescents in our study population. Curious to explore if this 

criticism was warranted, we validated a GRS for childhood BMI in the third study. This 

childhood GRS proved to be a better predictor of BMI for children and adolescents up 

to their mid to late teens. Regardless, we expect our findings of a gene- environment 

interaction to be relatively unchanged when using the childhood GRS on the younger 

adolescents in our study sample. Also, it is advantageous if the genetic score consists of 

individuals from the same ethnicity as the target population. This reduces any spurious 

associations between the genotype and phenotype due to differences in distribution of 

genetic variants between subpopulations, also denoted as population stratification. (113) 
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Both the GWAS for BMI and the HUNT Study consist primarily of individuals of 

recent European decent. (69, 81) 

 

7.3 External validity (generalizability) 

External validity is the extent to which the findings of a study can be generalized to 

people outside of the study population. (105) Although this thesis is based on a 

homogeneous European population, the underlying message seems likely to hold true in 

other populations.  

Genetic risk is likely to differ slightly among populations as the genetic variants 

associated with childhood and adult BMI may vary. Furthermore, environments could 

be more or less obesogenic. Interestingly, the magnitude of the interplay between genes 

and the environment seem to relate directly to the degree of the obesogenic exposure in 

the macroenvironment. This implies that genetically predisposed people are at greater 

risk for higher BMI in today’s obesogenic environment. Although the estimates for the 

interplay between genes and the environment might differ, the underlying mechanisms 

for how genetic variants affect BMI are likely the same. Similarly, the age-related 

differences in strength of association between these gene variants and BMI are likely 

comparable in respective child and adult populations throughout the world. 
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7.4 Discussion of findings  

7.4.1 BMI trajectories in the Norwegian population from 1963-2020 

Our data suggests that the obesity epidemic was noticeable in Norway between the mid-

1980s and 1990s. This trend was apparent to a greater extent in the US already in the 

1970s. (4) In line with previous studies, (120) we find a change in the distribution of 

BMI with an increasing positive skew. The population shift towards a higher overall 

BMI implies that more people are experiencing the physical and social burdens of 

obesity and obesity related diseases. Cohorts born after 1970 have a substantially higher 

BMI already in young adulthood and many people are subject to the implications of 

lifelong obesity. (23, 29, 30) In contrast to most countries, (23, 121) the prevalence of 

obesity in Norway stabilized over the last decade. (42) With BMI measurements 

spanning from 1963 to as recent as 2019, this thesis captures time periods with both an 

increasing and stabilizing prevalence of obesity. Although obesity is a very heritable 

trait, we show that it is still modifiable according to the degree of the obesogenic 

environment. 

Findings related to the stabilizing prevalence of obesity in the last decade awakens 

speculation. While today’s Norwegian environment still fosters genetic propensity for 

obesity, it may also foster genetic propensity for weight stability by encouraging health 

promoting behavior. It is also plausible that our findings reflect a saturation for the role 

of genetics in current society. Replication of our second study in a comparable 

population yet with a higher obesity prevalence could help answer this question. (27) 

Surprisingly, BMI was relatively high for middle aged women in the 1960s and then 

decreased up until the mid-1980s. This result is puzzling and rarely seen in other 

countries, yet population based studies across Norway have found similar trends. (122) 

BMI for men in the same time period increased gradually, possibly due to increased 

market consumption and access to fatty food coinciding with a rapid change to more 

sedentary (male dominated) jobs and transport. Although women had access to the same 

diet, physically demanding housework and other women-dominated work still 

predominated. That new smoking trends among women precipitated the decrease is 

unlikely, as additional analysis among never-smokers showed similar results. One 

plausible explanation could be that women born in earlier cohorts had on average more 



 

43 
 

children. (123) Excess weight due to current and previous multiple pregnancies could 

not be accounted for in the BMI measurements. Although difficult to prove statistically, 

we must not ignore the new societal trends in female body image to a slimmer ideal. 

 

7.4.2 The dimension of time and the interplay between genes and the environment 

The high heritability of obesity should not obscure the fact that heritability is still much 

less than 100%. Undoubtedly, the obesogenic environment has had a dominant role in 

the development of obesity over the past decades (54). This period effect was 

experienced by all groups of the population regardless of age. (4) For a trait with more 

than 40% cross-sectional heritability, (11), fat mass, as indicated by body mass index, is 

still very modifiable by the obesogenic environment. (54) How the effect of genetic 

predisposition to obesity differs as environments are becoming more obesogenic was 

until recently, unknown. Novel to this thesis, we use the dimension of time to show the 

impact of nurture on nature. Our work provides statistical evidence of the interplay 

between genes and the obesogenic environment. 

While genetic risk scores for obesity only account for part of the additive heritability, 

we incorporate the dimension of time to quantify the interplay between genes and the 

obesogenic environment. This is the main strength of our work. The tuberculosis 

screening program and the HUNT Study provide a novel and appropriate data source 

that links genetic data of participants with their BMI trajectories providing a unique 

opportunity to quantify the role of genetics on the development of obesity. While 

previous research suggested that genetic variants known to predict BMI had larger 

effects after the onset of the obesity epidemic than before, (7, 8, 14) these are the most 

convincing results to date, with the largest sample size and range of assessments and 

ages. As discussed in the methodological considerations, our results were largely 

unchanged after several additional analyses, suggesting that the finding of a gene-

obesogenic environment interaction withstand scrutiny. 

Combining this unique dataset with the most powerful polygenic predictor to date is a 

principal strength of this thesis. Unlike the genetic risk score based on 97 gene variants 

reaching genome-wide significance, (69) the GPS encompasses over the 2.1 million 

common genetic variants known to be associated with obesity. It explains 9% of the 
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heritability for obesity and suggests a 13kg weight gradient across polygenic score 

tenths among today’s middle-aged adults. (18) Interestingly, the difference across the 

extremes of the GPS is the same order as the increase in body weight in the US over the 

past 40 years. (18) Recently, a whole genome sequencing study recovered the 40% 

heritability of obesity estimated by pedigree data. (11) Much of the increase in 

explained variance is caused by the accumulation of many rare gene variants. An 

instrument created from whole genome sequencing would surely give a better 

classification of the genetically predisposed and non-predisposed for obesity. However, 

applying such an instrument with the same weights in an external dataset is likely 

impossible as rare gene variants are not comparable between the two datasets. This 

highlights a limitation of the GPS as it does not account for the effects of rare gene 

variants. Regardless, the ‘GPS provides a particularly powerful approach to test for 

gene-environment interaction compared with twin studies.’ (60) Twin studies implicitly 

incorporate gene-environment interactions into their estimates of broad heritability. (13) 

For the first time, the ‘GPS offers the possibility of directly assessing genetic 

propensities of individuals and to investigate their interplay with the obesogenic 

environment.’ (60)   

Emphasizing our findings to obesity and severe obesity in the second study is another 

principal strength of this thesis. We uncovered a genetic inequality in obesity and severe 

obesity that is of clinical importance and that contributes to the understanding of the 

disease. Our findings suggest that least genetically predisposed people are relatively 

protected from obesity and almost completely protected from severe obesity whereas 

the most predisposed people experience a substantial risk for both obesity and severe 

obesity in an obesogenic environment. Although our estimates may be slightly 

exaggerated by the BMI cut-offs for obesity, the findings agree with clinical suspicion. 

To our knowledge, no other study has reported similar findings.  

The novel findings of the first two studies comply with a recent twin-study 

collaboration suggesting unchanged heritability estimates for BMI over time and 

geography as a result of both increasing average BMI and an increasing impact of the 

environment on the effects of genetic variation. (68, 124) A possible explanation comes 

from another study suggesting that the effect of certain genetic variants associated with 
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obesity increases in people with higher BMI and the enhanced genetic effects stem 

predominantly from gene by environment interactions. Interestingly, these findings 

apply for BMI but not for height. (125) 

Our findings of an interplay between genes and the obesogenic environment withstand 

scrutiny however, I do acknowledge several limitations to this thesis. 

Highlighted by Kim et al. in an accompanying editorial to the first study, the focus on 

average changes in population weight limits our understanding of the variation between 

people. (126) First, the obesity epidemic is responsible for an increasing dispersion in 

BMI that has occurred differently across subgroups of the population. (127) Second, the 

obesity epidemic has resulted in a disproportionate number of heavier individuals. This 

makes the distribution for weight less normal than before resulting in longer tail on the 

right side of the distribution on a bell-shaped curve. (12, 120) Third, using average 

population weight does not give a sufficient understanding of other variables, such as 

socioeconomic status, that influence variability in BMI across different subgroups. (126, 

128) Hence, Kim et al. question the meaning in focusing on population averages and 

argue that an exclusive focus on population-wide strategies will unlikely reverse the 

obesity epidemic. They also comment that the genetic risk scores only account for a 

fraction of explained variance in BMI. This we acknowledged earlier in the thesis. 

Ideally, research should be more thorough in identifying sources of within population 

variation. (126) Our study does not account for cohort effects developed in different 

sociocultural contexts, (129) however it does eliminate any cohort effects of birth year 

with data over four generations. Regardless, I would not undermine the implications of 

studying change in population averages. Our findings support population-wide 

strategies for improving the health of the majority of people. There are many arguments 

why ‘population level interventions, such as taxes on sugary drinks, require less agency 

and are more effective and equitable than interventions targeting subgroups or the 

individuals.’  (44, 130-132) ‘Recognizing obesity as a disease can transform public 

health policies and clean up the food environment that is harming the health of millions 

of people. It can also be cost effective for the economy by reducing healthcare costs.’ 

(20) 
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This thesis considers the interplay between genes and the obesogenic environment in a 

general sense without studying the interaction with specific lifestyle factors. Studying 

genetic interplay with separate lifestyle factors could shed light on underlying biological 

mechanisms and would allow for more tailored preventive strategies. Recently, a gene-

environment interaction study for BMI with data from 360 participants in the UK 

Biobank revealed significant interactions between genetic factors and physical activity, 

alcohol consumption and socioeconomic status. Interestingly, the effect of the genetic 

score for BMI was doubled when comparing participants reporting never drinking 

alcohol versus daily drinkers and more than doubled comparing those with a slow 

walking style to those with a brisk walking style. (133) Another UK Biobank study with 

120 000 participants, also of European decent, showed that the combination of physical 

activity, sedentary time, television watching, and Western diets interacted with the 

genetic risk score for BMI. (134) Evidence that a specific aspect of the environment or a 

certain behavior interacts directly with the genetic risk score for BMI is difficult to 

prove. Changes in dietary patterns to unhealthy foods and drink and increased portion 

size, sedentary lifestyle, and socioeconomic inequality are possible candidates; 

however, the undoing of these changes is less likely without extreme individual 

motivation and major societal transformation. (8) Although we lacked detailed 

pathophysiological understanding of the influence of SNPs on phenotype, (8) we 

suspect that those with a genetic predisposition for obesity will gain more weight by 

eating more unhealthy foods when these are readily available. This agrees with our 

knowledge of hypothalamic appetite control as there is an enriched expression of genes 

near the loci regulating BMI in the central nervous system. (8)  

Finally, the fit or appropriateness of the genetic scores to the study population may also 

question the validity of the interplay between genes and the obesogenic environment. 

One possible caveat is that we apply a contemporary GPS to past time periods. Ideally, 

if we had historical data from a separate population, we could create a GPS from the 

past to optimize the genetic score’s fit to BMI in a pre-obesogenic environment. By 

applying this historical genetic score to the different time periods, we could examine if 

the increased effect of genetic risk on BMI still occurs. We are unaware of any existing 

historical genetic scores however, we identified the Tromsø Study as an appropriate 
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external dataset for creating such a score. Unfortunately, such analyses were beyond the 

timeframe for this thesis. The genetic risk score for childhood obesity used in the third 

study may reflect both historical and age differences in the gene-BMI association as it 

was derived using recalled obesity status in childhood from middle age adults. Although 

it has not yet been used it to test for an interplay between genes and the obesogenic 

environment, we did validate it as a predictor for childhood obesity both in the past and 

the present. In our results, it explains similar variance in BMI at all times combined, in 

the 1960s and in the 1990s.  

In our first study, the use of the adult GRS96 for BMI also on the adolescent population 

was criticized. Admittedly, we were curious to see if this critic was warranted and 

questioned whether the underlying genetic architecture for obesity is comparable in 

children, in adolescents and in adults. Fortunately, Richardson et al. asked us to validate 

their new genetic risk score for BMI in children using data from the tuberculosis 

screening program and the HUNT Study.  The findings of our third study as well as its 

strengths and limitations are discussed in the following section. Testing the childhood 

genetic score on adolescents in the first study was not within the time frame of this 

thesis. Regardless, the study population consisted mostly of adults and the new score 

would unlikely alter our novel findings of interplay between genes and the obesogenic 

environment. 

7.4.3 Differences in genetic architecture of childhood and adult obesity and the 

validation of a genetic risk score for childhood obesity. 

Age effects refer to variation in life-course outcome due to chronological age. (135) As 

such, it is likely that age effects exist in the underlying genetics of BMI. From a clinical 

perspective, infants, children, adolescents, adults and the elderly all have different 

growth patterns, body proportions and body compositions. The age groups also differ in 

their nutritional needs, their food preferences as well as in their physical capabilities. 

(136) Acknowledging considerable variation, healthy children seem intuitively active 

while adults become increasingly sedentary with age.  

Recent genetic findings could help explain the observed differences between age 

groups. While research on polygenic risk scores for BMI in adults has advanced steadily 

over the last years, (18, 69, 70) polygenic risk scores for BMI in infancy and childhood 
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are now beginning to appear. (89, 137, 138) These childhood scores uncover novel 

variants associated with infant and childhood adiposity (102, 137, 139) and show that 

many variants represent age-related differences in strength of association with body 

mass index. (102, 139-141) Until recently, the childhood scores for BMI were limited 

by statistical power. 

Richardson et al.’s new polygenic score is unprecedented in its power. (89) It includes 

295 gene variants associated with childhood BMI derived from nearly half a million 

participants of the UK Biobank. (89) The childhood score predicts body mass index 

better at age 10 whereas the corresponding adult score is a stronger predictor of adult 

BMI. However, the childhood score is prone to misclassification bias as it relies on 

questionnaire-based data for the age 10 variable. Appropriately, the third study accounts 

for this limitation and further validates the new childhood and adult genetic scores with 

standardized BMI measurements of adolescents and adults in the Norwegian HUNT 

Study population.  

The British and Norwegian study populations are well matched in terms of ethnicity and 

have comparable cohorts that were children and middle aged in the same decades. The 

latter accounts for age cohort effects as the British and Norwegian participants in 

parallel age groups were exposed to the similar historical cultural events, traditions, 

social situations and trends.  

Our comprehensive dataset is the main strength of this validation study. It contains both 

genetic material and repeated BMI measurements for a large sample of individuals from 

12 to 70 years of age over six decades. Hence, our study widens the age range of 

assessment for both scores and identifies age 16 as the cross-over in terms of strength of 

prediction from the early life score to the adult score. This agrees with the British study 

that suggests 17 years as the age of cross-over, likely reflecting the biological effects of 

puberty. (89) Utilizing the dimension of time, our study shows that the British childhood 

score is associated with childhood BMI also in younger cohorts from the HUNT Study. 

This implies that Richardson et al.’s childhood polygenic score for BMI is indeed a 

predictor of childhood obesity and not compromised by period effects. One obvious 

limitation of our dataset is that it lacks genetic information and BMI data on children 
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under the age of 12. Hence, we tested the childhood genetic risk score for BMI on 

adolescents and not on children.  

Validation of separate genetic scores for adult and childhood BMI will enable us to 

study childhood obesity and its relation to later health. The question of whether 

childhood obesity has a direct effect on disease risk or if the risk is conferred through 

adult obesity is baffling and has led to conflicting results. (142) Previous observational 

studies have found associations with high BMI in early life and increased risk for 

morbidity (33) including coronary artery disease, (143) type 2 diabetes (144) and 

several types of cancer. (145, 146) Other studies imply that high BMI in childhood does 

not have a direct effect on risk for later disease unless it is sustained throughout 

adulthood. (147, 148) This argument is supported clinically as adolescents with severe 

obesity have shown reversal of type 2 diabetes and improvements in cardiovascular risk 

factors after surgical weight loss. (149) 

Richardson et al.’s attempt to distinguish childhood obesity’s relation to later disease is 

the most comprehensive to date. (89) Using the childhood and adult polygenic risk 

scores as separate genetic instruments, they distinguish the causal role of childhood 

obesity within the framework of multivariable Mendelian randomization. (150, 151) 

After validating the childhood and adult polygenic risk scores for BMI with the HUNT 

population, Richardson et al.’s analytical approach can now be used to test a multitude 

of disease outcomes. The findings will be interesting to compare with other research 

such as a recent Phewas two-sample Mendelian randomization study identifying 

potential causal effects of childhood obesity on 60 adult traits. (26) 

  

7.5 Implications and future perspectives 

The interpretation of heritability estimates for obesity is the main implication of this line 

of work. Agreeing with a recent twin study, (152) it seems that the increasingly 

obesogenic environment has a minimal impact on heritability estimates for BMI. This 

can be explained by a higher genetic variance due to the interplay between our genes 

and the environment alongside an increase in the phenotypic variance for BMI.  
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From previous research, we know that genetically predisposed people are at greater risk 

of higher BMI. Our work suggests that genetic predisposition interacts with the 

obesogenic environment resulting in an even higher BMI and prevalence of obesity for 

the genetically predisposed people, who thus have the most to gain from preventative 

measures. Regardless of obesity being a heritable trait, (67, 68) secular trends have 

increased body weight for both genetically predisposed and genetically non-predisposed 

people. This reinforces the need for more effective preventive strategies that would 

benefit all ages of the whole population and could alleviate the genetic inequalities of 

this disease. Future research should focus on specific gene environment interactions that 

could identify which preventive strategies and possible treatments are most effective. 

Already today, we have sound evidence that population level interventions such as taxes 

on sugary foods and drink are ‘more effective and more equitable than interventions 

targeting the individual’. (44) 

Whether heritability estimates for BMI vary throughout the life-course is still debated. 

(12) Validating Richardson et al.’s genetic risk scores for childhood and adult BMI 

brings us one step closer to answering this question.  

Within the framework of multivariable Mendelian randomization, the validated 

childhood polygenic risk score can now be used to determine causality. (89) It could 

resolve whether childhood obesity has a direct effect on later disease or if the risk is 

conferred through adult obesity. Guided by Richardson et al.’s recent results for type 2 

diabetes and coronary artery disease, it is plausible that obesity only presents a risk for 

somatic diseases after the mid to late teens. (89) This new knowledge could be an 

important clue in uncovering mechanisms underlying the global disease. While efforts 

to alleviate obesity should be pursued at all ages, using human genetics to disentangle 

the contribution of childhood and adult BMI to disease risk can be an attractive and 

cost-effective approach to help improve prevention strategies. 
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8 Conclusions - New? True? Important?  
 

Since the mid-1980s, Norway has experienced an obesity epidemic. The population 

shift towards a higher overall BMI implies that more people are experiencing the 

physical and social burdens of obesity and obesity related diseases. Cohorts born after 

1970 have a substantially higher BMI already in young adulthood and are subject to the 

implications of lifelong obesity. The HUNT Study is novel in that it captures cohort 

effects over four generations, age effects from adolescence to agedness and most 

importantly, a period effect from before and after the obesity epidemic. This 

comprehensive dataset has been instrumental for the new knowledge brought forth by 

our work.  

This thesis provides evidence that genetically predisposed people are at greater risk for 

higher BMI and that genetic predisposition interacts with the obesogenic environment 

resulting in higher BMI and prevalence of obesity, as observed between the mid-1980s 

and late 2010s. These findings are robust to family-level confounding using sibling 

design. While obesity is a highly heritable trait, (11) we illustrate how it is still 

modifiable according to the degree of the obesogenic exposure. This thesis also supports 

that genetic factors driving BMI differ at young age and in adulthood. Validating the 

new polygenic risk score for childhood BMI, our findings confirm the childhood score 

as a better predictor of body weight before the mid to late teens. Whilst it may be 

possible to identify those most susceptible to environmental change, who thus have the 

most to gain from preventative measures, efforts to reverse the obesogenic environment 

will benefit all ages of the whole population and help resolve the obesity epidemic. 
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Epilogue - Pandemic perspective 

 

Media compares the Coronavirus disease 2019 (COVID-19) pandemic to a third world 

war. While not undermining the severity of today’s pandemic, we must not forget that 

we also have other pandemics to fight. Obesity is responsible for 4.7 million premature 

deaths worldwide each year (1). This death toll will later be compared to that of 

COVID-19. Both death tolls will be underreported. Both diseases expose a growing 

inequality in our society.  

As the globe frantically races to find a vaccine against COVID-19, blue skies reappear 

over New Delhi. Perhaps we shall take time to reflect on how our modern lifestyle 

affects our health. How will months of home confinement with record high school drop-

out and unemployment later reflect on the prevalence of obesity? How will this affect 

our children? (153) When a vaccine is available and immunity is reached, we will return 

to a world different from the one we left. We will reflect upon the immense media 

coverage, commercial and political resource and collective human willpower to fight the 

COVID-19 death toll. Perhaps we should use this global effort and willpower to fight 

another war? To fight next year’s obesity death toll. 
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^ƚĂƚŝƐƚŝĐĂů�ĂŶĂůǇƐĞƐ͗ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϯ

ZĞƐƵůƚƐ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϱ

dĂďůĞ�^ϭ͗��ĞƐĐƌŝƉƚŝǀĞ�ƐƚĂƚŝƐƚŝĐƐ�ŽĨ�ŵĂůĞ�ĂŶĚ�ĨĞŵĂůĞ�ƉĂƌƚŝĐŝƉĂŶƚƐ�Ăƚ�ĞĂĐŚ�ƚŝŵĞ�ƉŽŝŶƚ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϱ

&ŝŐƵƌĞ�^ϭ͗��D/�ƚƌĂũĞĐƚŽƌŝĞƐ�ǁŝƚŚ�ϵϱй�ĐŽŶĨŝĚĞŶĐĞ�ŝŶƚĞƌǀĂůƐ�ĨŽƌ�ƚŚĞ�ǁŽŵĞŶ�ĂŶĚ�ŵĞŶ�ďǇ�ďŝƌƚŚ�ĐŽŚŽƌƚ͘�
�ƐƚŝŵĂƚĞƐ�ĨƌŽŵ�Ă�ůŝŶĞĂƌ�ŵŝǆĞĚ�ŵŽĚĞů͕�ǁŝƚŚ�ĂŐĞ�ŵŽĚĞůůĞĚ�ƵƐŝŶŐ�ůŝŶĞĂƌ�ƐƉůŝŶĞƐ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϲ

dĂďůĞ�^Ϯ͗�ZĞŐƌĞƐƐŝŽŶ�ĞƐƚŝŵĂƚĞƐ�ĨƌŽŵ�ĂŶĂůǇƐĞƐ�ŽĨ�ĂƐƐŽĐŝĂƚŝŽŶ�ďĞƚǁĞĞŶ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�ƐĐŽƌĞ�ĂŶĚ��D/�Ăƚ�
ĚŝĨĨĞƌĞŶƚ�ĂŐĞƐ�ĂŶĚ ƚŝŵĞ�ƉŽŝŶƚƐ�ĂŵŽŶŐ�ŵĞŶ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϳ

dĂďůĞ�^ϯ͗�ZĞŐƌĞƐƐŝŽŶ�ĞƐƚŝŵĂƚĞƐ�ĨƌŽŵ�ĂŶĂůǇƐĞƐ�ŽĨ�ĂƐƐŽĐŝĂƚŝŽŶ�ďĞƚǁĞĞŶ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�ƐĐŽƌĞ�ĂŶĚ��D/�Ăƚ�
ĚŝĨĨĞƌĞŶƚ�ĂŐĞƐ�ĂŶĚ�ƚŝŵĞ�ƉŽŝŶƚƐ�ĂŵŽŶŐ�ǁŽŵĞŶ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϬ

dĂďůĞ�^ϰ͗��ƐƚŝŵĂƚĞĚ�ĚŝĨĨĞƌĞŶĐĞ�ŝŶ��D/�ďĞƚǁĞĞŶ�ϮϬϬϲͲϬϴ�ĂŶĚ�ϭϵϴϰͲϴϲ�ĂŵŽŶŐ�ŵĞŶ�ĂŶĚ�ǁŽŵĞŶ�ŝŶ�ƚŚĞ�
ůŽǁĞƐƚ�ĨŝĨƚŚ�ŽĨ�ŐĞŶĞƚŝĐ�ƐƵƐĐĞƉƚŝďŝůŝƚǇ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϯ

dĂďůĞ�^ϱ͗��ŝĨĨĞƌĞŶĐĞ�ŝŶ�ƉŚĞŶŽƚǇƉŝĐ��D/�ďĞƚǁĞĞŶ�ƚŚĞ�ĨŝĨƚŚƐ�ǁŝƚŚ�ƚŚĞ�ŚŝŐŚĞƐƚ�;YϱͿ�ĂŶĚ�ůŽǁĞƐƚ�;YϭͿ�
ŐĞŶĞƚŝĐ�ƐƵƐĐĞƉƚŝďŝůŝƚǇ�ĨŽƌ�ĐŚŽƐĞŶ�ĂŐĞƐ�Ăƚ�ĞĂĐŚ�ƚŝŵĞ�ƉŽŝŶƚ�ĨŽƌ�ŵĞŶ�ĂŶĚ�ǁŽŵĞŶ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϯ

dĂďůĞ�^ϲ͗��ƐƚŝŵĂƚĞĚ�ĚŝĨĨĞƌĞŶĐĞ�ŝŶ�ƚŚĞ�ĂƐƐŽĐŝĂƚŝŽŶ�ďĞƚǁĞĞŶ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�ĂŶĚ��D/�ĐŽŵƉĂƌŝŶŐ�ĚŝĨĨĞƌĞŶƚ�
ƚŝŵĞ�ƉŽŝŶƚƐ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϰ

dĂďůĞ�^ϳ͗��ƐƚŝŵĂƚĞĚ�ĚŝĨĨĞƌĞŶĐĞ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�ƐĐŽƌĞ�ĂŶĚ�ƚŚĞ�ŶĂƚƵƌĂů�ůŽŐĂƌŝƚŚŵ�ŽĨ��D/�ĐŽŵƉĂƌŝŶŐ�ƚŚĞ�
ŚŝŐŚĞƐƚ�ĂŶĚ�ůŽǁĞƐƚ�ĨŝĨƚŚ�ŽĨ�ŐĞŶĞƚŝĐ�ƐƵƐĐĞƉƚŝďŝůŝƚǇ͕�ĂŶĚ�ĞƐƚŝŵĂƚĞĚ�ĚŝĨĨĞƌĞŶĐĞ�ĂƐƐŽĐŝĂƚŝŽŶƐ�ďĞƚǁĞĞŶ�
ŐĞŶĞƚŝĐ�ƌŝƐŬ�ƐĐŽƌĞ�ĂŶĚ�ƚŚĞ�ŶĂƚƵƌĂů�ůŽŐĂƌŝƚŚŵ�ŽĨ��D/�ŽǀĞƌ�ƚŝŵĞ͕�ĐŽŵƉĂƌŝŶŐ�ƚŚĞ�ŚŝŐŚĞƐƚ�ƚŽ�ůŽǁĞƐƚ�ĨŝĨƚŚ�ŽĨ�
ŐĞŶĞƚŝĐ�ƐƵƐĐĞƉƚŝďŝůŝƚǇ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϰ

&ŝŐƵƌĞ�^Ϯ͗��ƐƚŝŵĂƚĞĚ��D/�ďǇ�ĞĂĐŚ�ĨŝĨƚŚ�ŽĨ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�ƐĐŽƌĞ�ďǇ�ĂŐĞ�ĂŶĚ�ƚŝŵĞ�ƉŽŝŶƚ�ĨŽƌ�ϯϭ͕ϴϮϯ�ŵĞŶ�ĂŶĚ�
ϯϱ͕ϰϴϮ�ǁŽŵĞŶ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϱ

&ŝŐƵƌĞ�^ϯ͗��ŽŵƉĂƌŝƐŽŶ�ŽĨ�ĞƐƚŝŵĂƚĞĚ��D/�ďǇ�ƚŚĞ�ƚŽƉ�ĂŶĚ�ďŽƚƚŽŵ�ĨŝĨƚŚ�ŽĨ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�ƐĐŽƌĞ�ďǇ�ĂŐĞ�ĂŶĚ�
ƚŝŵĞ�ĨƌŽŵ�ƚŚĞ�ŵŽĚĞů�ƵƐĞĚ�ƚŽ�ĐƌĞĂƚĞ�ŵĂŝŶ�&ŝŐƵƌĞ�ϯ�;ĐŝƌĐůĞƐ�ĂŶĚ�ĨƵůů�ƐƋƵĂƌĞƐ�ĨŽƌ�ďŽƚƚŽŵ�ĂŶĚ�ƚŽƉ�ĨŝĨƚŚ͕�
ƌĞƐƉĞĐƚŝǀĞůǇͿ�ƚŽ�Ă�ŵŽĚĞů�ǁŚĞƌĞ�ŽŶůǇ�ĐŽŚŽƌƚƐ�ďŽƌŶ�ϭϵϰϬ�ĂŶĚ�ůĂƚĞƌ�ŚĂǀĞ�ďĞĞŶ�ŝŶĐůƵĚĞĚ�;ǆ�ĂŶĚ�ŚŽůůŽǁ�
ĐŝƌĐůĞ�ĨŽƌ�ďŽƚƚŽŵ�ĂŶĚ�ƚŽƉ�ĨŝĨƚŚ͕�ƌĞƐƉĞĐƚŝǀĞůǇͿ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϳ

&ŝŐƵƌĞ�^ϰ͗��ƐƚŝŵĂƚĞĚ��D/�ďǇ�ƚŚĞ�ƚŽƉ�ĂŶĚ�ďŽƚƚŽŵ�ĨŝĨƚŚ�ŽĨ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�ƐĐŽƌĞ�ďǇ�ĂŐĞ�ĂŶĚ�ƚŝŵĞ�ƉŽŝŶƚ�ĂŵŽŶŐ�
ϭϭ͕ϳϭϬ�ŵĞŶ�ĂŶĚ�ϭϱ͕ϯϳϴ�ǁŽŵĞŶ�ǁŚŽ�ƌĞƉŽƌƚ�ƚŽ�ďĞ�ŶĞǀĞƌ�ƐŵŽŬĞƌƐ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϴ

&ŝŐƵƌĞ�^ϱ͗��ƐƚŝŵĂƚĞĚ��D/�ďǇ�Ϭ�ĂŶĚ�Ϯ�ĞĨĨĞĐƚ�ĂůůĞůĞƐ�&dKͲĂƐƐŽĐŝĂƚĞĚ�^EW�ƌƐϭϱϱϴϵ�ďǇ�ĂŐĞ�ĂŶĚ�ƚŝŵĞ�ƉŽŝŶƚ͘
͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϭϵ

&ŝŐƵƌĞ�^ϲ͗��ƐƚŝŵĂƚĞĚ�ƉƌĞǀĂůĞŶĐĞ�ŽĨ�ŽďĞƐŝƚǇ�ďǇ�ƚŚĞ�ƚŽƉ�ĂŶĚ�ďŽƚƚŽŵ�ĨŝĨƚŚ�ŽĨ�ŐĞŶĞƚŝĐ�ƐƵƐĐĞƉƚŝďŝůŝƚǇ͕�ďǇ�ĂŐĞ�
ĂŶĚ�ƚŝŵĞ�ƉŽŝŶƚ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ ϮϬ

&ŝŐƵƌĞ�^ϳ͗��ƐƚŝŵĂƚĞĚ�ďŽĚǇ�ŵĂƐƐ�ŝŶĚĞǆ�;�D/Ϳ�ďǇ�ƚŽƉ�;ŵŽƐƚ�ƐƵƐĐĞƉƚŝďůĞͿ�ĂŶĚ�ďŽƚƚŽŵ�ĨŝĨƚŚ�ŽĨ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�
ƐĐŽƌĞ�ďǇ�ĂŐĞ�ĂŶĚ�ƚŝŵĞ�ƉŽŝŶƚ�ĨŽƌ�ϯϭ�ϲϴϮ�ŵĞŶ�ĂŶĚ�ϯϱ�ϯϭϰ�ǁŽŵĞŶ�ǁŚŽ�ƉĂƌƚŝĐŝƉĂƚĞĚ�ŝŶ�ƚŚĞ�EŽƌĚͲ
dƌƆŶĚĞůĂŐ�,ĞĂůƚŚ�^ƚƵĚǇ͕�EŽƌǁĂǇ͘��ŶĂůǇƐĞƐ�ƌĞƐƚƌŝĐƚĞĚ�ƚŽ�ŝŶĚŝǀŝĚƵĂůƐ�ĂŐĞĚ�ϮϬͲϴϬ�ǇĞĂƌƐ͘ ͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘͘ Ϯϭ

'ĞŶŽƚǇƉŝŶŐ�ĂŶĚ�^EW�ŝŵƉƵƚĂƚŝŽŶ�ƉƌŽĐĞĚƵƌĞƐ



dŚĞ�ŐĞŶŽƚǇƉĞ�ƋƵĂůŝƚǇ�ĐŽŶƚƌŽů�ĂŶĚ�ŝŵƉƵƚĂƚŝŽŶ�ŚĂƐ�ďĞĞŶ�ĐŽŶĚƵĐƚĞĚ�ďǇ�ƚŚĞ�<͘'͘�:ĞďƐĞŶ��ĞŶƚĞƌ�ĨŽƌ�'ĞŶĞƚŝĐ
�ƉŝĚĞŵŝŽůŽŐǇ͕��ĞƉĂƌƚŵĞŶƚ�ŽĨ�ƉƵďůŝĐ�ŚĞĂůƚŚ�ĂŶĚ�ŶƵƌƐŝŶŐ͕�&ĂĐƵůƚǇ�ŽĨ�ŵĞĚŝĐŝŶĞ�ĂŶĚ�ŚĞĂůƚŚ�ƐĐŝĞŶĐĞƐ͕�
EŽƌǁĞŐŝĂŶ�hŶŝǀĞƌƐŝƚǇ�ŽĨ�^ĐŝĞŶĐĞ�ĂŶĚ�dĞĐŚŶŽůŽŐǇ�;EdEhͿ͘�dŚĞ�ƋƵĂůŝƚǇ�ĐŽŶƚƌŽů�ƉƌŽĐĞĚƵƌĞƐ�ĂƌĞ�ŽƵƚůŝŶĞĚ�ŝŶ�Ă�
ĨĂĐƚ�ƐŚĞĞƚ�ƉƌŽǀŝĚĞĚ�ďǇ�ƚŚĞ�<'�:ĞďƐĞŶ��ĞŶƚĞƌ�ĨŽƌ�'ĞŶĞƚŝĐ��ƉŝĚĞŵŝŽůŽŐǇ ;ϭͿ͘�dŚĞ�ĨŽůůŽǁŝŶŐ�ŝŶĨŽƌŵĂƚŝŽŶ�ŝƐ�
ƋƵŽƚĞĚ ĨƌŽŵ�ƚŚŝƐ�ĨĂĐƚ ƐŚĞĞƚ͘

͞/Ŷ�ƚŽƚĂů͕��E��ĨƌŽŵ�ϳϭ͕ϴϲϬ�,hEd�ƐĂŵƉůĞƐ�ǁĂƐ�ŐĞŶŽƚǇƉĞĚ�ƵƐŝŶŐ�ŽŶĞ�ŽĨ�ƚŚƌĞĞ�ĚŝĨĨĞƌĞŶƚ�/ůůƵŵŝŶĂ�
,ƵŵĂŶ�ŽƌĞ�ǆŽŵĞ�ĂƌƌĂǇƐ�;,ƵŵĂŶ�ŽƌĞ�ǆŽŵĞϭϮ�ǀϭ͘Ϭ͕�,ƵŵĂŶ�ŽƌĞ�ǆŽŵĞϭϮ�ǀϭ͘ϭ�ĂŶĚ�hD�,hEd��ŝŽďĂŶŬ�ǀϭ͘ϬͿ͘�
^ĂŵƉůĞƐ�ƚŚĂƚ�ĨĂŝůĞĚ�ƚŽ�ƌĞĂĐŚ�Ă�ϵϵй�ĐĂůů�ƌĂƚĞ͕�ŚĂĚ�ĐŽŶƚĂŵŝŶĂƚŝŽŶ�х�Ϯ͘ϱй�ĂƐ�ĞƐƚŝŵĂƚĞĚ�ǁŝƚŚ���&�ZĞŐƌĞƐƐ ;:ƵŶ�Ğƚ�
Ăů͘�͕�ϮϬϭϮͿ͕�ůĂƌŐĞ�ĐŚƌŽŵŽƐŽŵĂů�ĐŽƉǇ�ŶƵŵďĞƌ�ǀĂƌŝĂŶƚƐ͕�ůŽǁĞƌ�ĐĂůů�ƌĂƚĞ�ŽĨ�Ă�ƚĞĐŚŶŝĐĂů�ĚƵƉůŝĐĂƚĞ�ƉĂŝƌ�ĂŶĚ ƚǁŝŶƐ͕�
ŐŽŶŽƐŽŵĂů�ĐŽŶƐƚĞůůĂƚŝŽŶƐ�ŽƚŚĞƌ�ƚŚĂŶ�yy�ĂŶĚ�yz͕�Žƌ�ǁŚŽƐĞ�ŝŶĨĞƌƌĞĚ�ƐĞǆ�ĐŽŶƚƌĂĚŝĐƚĞĚ�ƚŚĞ�ƌĞƉŽƌƚĞĚ ŐĞŶĚĞƌ͕�ǁĞƌĞ�
ĞǆĐůƵĚĞĚ͘�^ĂŵƉůĞƐ�ƚŚĂƚ�ƉĂƐƐĞĚ�ƋƵĂůŝƚǇ�ĐŽŶƚƌŽů�ǁĞƌĞ�ĂŶĂůǇƐĞĚ�ŝŶ�Ă�ƐĞĐŽŶĚ�ƌŽƵŶĚ�ŽĨ�ŐĞŶŽƚǇƉĞ ĐĂůůŝŶŐ�ĨŽůůŽǁŝŶŐ�
ƚŚĞ�'ĞŶŽŵĞ�^ƚƵĚŝŽ�ƋƵĂůŝƚǇ�ĐŽŶƚƌŽů�ƉƌŽƚŽĐŽů͘͞

͞sĂƌŝĂŶƚƐ�ǁĞƌĞ�ĞǆĐůƵĚĞĚ�ŝĨ ;ϭͿ ƚŚĞŝƌ�ƉƌŽďĞ ƐĞƋƵĞŶĐĞƐ�ĐŽƵůĚ�ŶŽƚ�ďĞ�ƉĞƌĨĞĐƚůǇ�ŵĂƉƉĞĚ�ƚŽ�ƚŚĞ�ƌĞĨĞƌĞŶĐĞ�ŐĞŶŽŵĞ͕�
ĐůƵƐƚĞƌ�ƐĞƉĂƌĂƚŝŽŶ�ǁĂƐ�ф�Ϭ͘ϯ͕�'ĞŶƚƌĂŝŶ ƐĐŽƌĞ�ǁĂƐ�ф�Ϭ͘ϭϱ͕�ƐŚŽǁĞĚ�ĚĞǀŝĂƚŝŽŶƐ�ĨƌŽŵ�,ĂƌĚǇ�tĞŝŶďĞƌŐ�ĞƋƵŝůŝďƌŝƵŵ�
ŝŶ�ƵŶƌĞůĂƚĞĚ�ƐĂŵƉůĞƐ�ŽĨ��ƵƌŽƉĞĂŶ ĂŶĐĞƐƚƌǇ�ǁŝƚŚ�ƉͲǀĂůƵĞ�ф�Ϭ͘ϬϬϬϭͿ͕�ƚŚĞŝƌ�ĐĂůů�ƌĂƚĞ�ǁĂƐ�ф�ϵϵй͕�Žƌ�ĂŶŽƚŚĞƌ�ĂƐƐĂǇ�
ǁŝƚŚ�ŚŝŐŚĞƌ�ĐĂůů�ƌĂƚĞ ŐĞŶŽƚǇƉĞĚ�ƚŚĞ�ƐĂŵĞ�ǀĂƌŝĂŶƚ͘�͞

͞/ŵƉƵƚĂƚŝŽŶ�ǁĂƐ�ƉĞƌĨŽƌŵĞĚ�ŽŶ�ƚŚĞ�ϲϵ͕ϳϭϲ�ƐĂŵƉůĞƐ�ŽĨ�ƌĞĐĞŶƚ��ƵƌŽƉĞĂŶ�ĂŶĐĞƐƚƌǇ�ƵƐŝŶŐ�DŝŶŝŵĂĐϯ�
;ǀϮ͘Ϭ͘ϭ͕ŚƚƚƉ͗ͬͬŐĞŶŽŵĞ͘ƐƉŚ͘ƵŵŝĐŚ͘ĞĚƵͬǁŝŬŝͬDŝŶŝŵĂĐϯͿ ;�ĂƐ�Ğƚ�Ăů͘�͕�ϮϬϭϲͿ ǁŝƚŚ�ĚĞĨĂƵůƚ�ƐĞƚƚŝŶŐƐ�;Ϯ͘ϱ�Dď�
ƌĞĨĞƌĞŶĐĞ�ďĂƐĞĚ�ĐŚƵŶŬŝŶŐ�ǁŝƚŚ�ϱϬϬŬď�ǁŝŶĚŽǁƐͿ�ĂŶĚ�Ă�ĐƵƐƚŽŵŝǌĞĚ�,ĂƉůŽƚǇƉĞ�ZĞĨĞƌĞŶĐĞ�ĐŽŶƐŽƌƚŝƵŵ�ƌĞůĞĂƐĞ�ϭ͘ϭ�
;,Z��ǀϭ͘ϭͿ�ĨŽƌ�ĂƵƚŽƐŽŵĂů�ǀĂƌŝĂŶƚƐ�ĂŶĚ�,Z� ǀϭ͘ϭ�ĨŽƌ�ĐŚƌŽŵŽƐŽŵĞ�y�ǀĂƌŝĂŶƚƐ ;DĐ�ĂƌƚŚǇ�Ğƚ�Ăů͘�͕�ϮϬϭϲͿ͘�dŚĞ�
ĐƵƐƚŽŵŝǌĞĚ�ƌĞĨĞƌĞŶĐĞ�ƉĂŶĞů�ƌĞƉƌĞƐĞŶƚĞĚ�ƚŚĞ�ŵĞƌŐĞĚ�ƉĂŶĞů�ŽĨ�ƚǁŽ�ƌĞĐŝƉƌŽĐĂůůǇ�ŝŵƉƵƚĞĚ�ƌĞĨĞƌĞŶĐĞ�ƉĂŶĞůƐ͗�;ϭͿ�
Ϯ͕ϮϬϭ�ůŽǁͲĐŽǀĞƌĂŐĞ�ǁŚŽůĞͲŐĞŶŽŵĞ�ƐĞƋƵĞŶĐĞƐ�ƐĂŵƉůĞƐ�ĨƌŽŵ�ƚŚĞ�,hEd�ƐƚƵĚǇ�ĂŶĚ�;ϮͿ�,Z��ǀϭ͘ϭ�ǁŝƚŚ�ϭ͕ϬϮϯ�
,hEd�t'^�ƐĂŵƉůĞƐ�ƌĞŵŽǀĞĚ�ďĞĨŽƌĞ�ŵĞƌŐŝŶŐ͘͟ /ŵƉƵƚĞĚ�ǀĂƌŝĂŶƚƐ�ǁŝƚŚ�ZƐƋ�ф�Ϭ͘ϯ�ǁĞƌĞ�ĞǆĐůƵĚĞĚ ;ϭͿ͘

^ƚĂƚŝƐƚŝĐĂů�ĂŶĂůǇƐĞƐ͗

tĞ�ƵƐĞĚ�ƚǁŽ�ĚŝĨĨĞƌĞŶƚ�ƐƚĂƚŝƐƚŝĐĂů�ŵŽĚĞůƐ�ŝŶ�ŽƵƌ�ƉĂƉĞƌ͘�&Žƌ�ƚŚĞ�ŐƌŽǁƚŚ�ƚƌĂũĞĐƚŽƌŝĞƐ͕�ǁĞ�ƵƐĞĚ�Ă�ŵŽĚĞů�ǁŝƚŚ�
ĂŐĞ͕ ĂŐĞ�ƐƋƵĂƌĞĚ�ĂŶĚ�ďŝƌƚŚ�ĐŽŚŽƌƚ͘�EŽ�ŽƚŚĞƌ�ĐŽǀĂƌŝĂƚĞƐ�ǁĞƌĞ�ŝŶĐůƵĚĞĚ�ŝŶ�ƚŚŝƐ�ĂŶĂůǇƐŝƐ͘�

/Ŷ�^ƚĂƚĂ͕�ǁĞ�ƵƐĞĚ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ĐŽŵŵĂŶĚƐ�ƚŽ�ĞƐƚŝŵĂƚĞ�ƚŚĞ�ĂƐƐŽĐŝĂƚŝŽŶƐ�ĂŵŽŶŐ�ǁŽŵĞŶ�ĂŶĚ�ŵĞŶ͕�
ƌĞƐƉĞĐƚŝǀĞůǇ͗�

ŵŝǆĞĚ�ďŵŝ�Đ͘ĂŐĞηηĐ͘ĂŐĞηηŝ͘ĨĐŽŚŽƌƚ�ŝĨ�^ĞǆссϬ͕ͮͮ�W/�͗�ĂŐĞ͕�ĐŽǀĂƌŝĂŶĐĞ;ƵŶƐƚƌƵĐƚƵƌĞĚͿŵŝǆĞĚ�

ŵŝǆĞĚ�ďŵŝ�Đ͘ĂŐĞηηĐ͘ĂŐĞηηŝ͘ĨĐŽŚŽƌƚ�ŝĨ�^Ğǆссϭ͕ͮͮ�W/�͗�ĂŐĞ͕�ĐŽǀĂƌŝĂŶĐĞ;ƵŶƐƚƌƵĐƚƵƌĞĚͿŵŝǆĞĚ�

ďŵŝ�ĚĞŶŽƚĞƐ�ƚŚĞ�ďŽĚǇ�ŵĂƐƐ�ŝŶĚĞǆ͕�ĨŽƌ�ƉĂƌƚŝĐŝƉĂŶƚƐ�ƵŶĚĞƌ�ϭϴ�ƚŚŝƐ�ǁĂƐ�ĂĚũƵƐƚĞĚ�ĂĐĐŽƌĚŝŶŐ�ƚŽ�ƚŚĞ�
ŝŶƚĞƌŶĂƚŝŽŶĂů�ƚĂƐŬ�ĨŽƌĐĞ�ĨŽƌ�ŽďĞƐŝƚǇ�ĂƐ�ĚĞƐĐƌŝďĞĚ�ŝŶ�ƚŚĞ�ŵĂŝŶ�ŵĂŶƵƐĐƌŝƉƚ͘��ŐĞ�ǁĂƐ�ĐĞŶƚĞƌĞĚ�Ăƚ�ĂŐĞ�ϰϱ͕�ĂŶĚ�
ďŝƌƚŚĐŽŚŽƌƚ�ǁĂƐ�ĐŽĚĞĚ�ĨƌŽŵ�Ϭ�ƚŽ�ϴ͕�ŝŶĚŝĐĂƚŝŶŐ�ďŝƌƚŚ�ďĞĨŽƌĞ�ϭϵϮϬ͕�ϭϵϮϬͲϮϵ͕�ϯϬͲϯϵ͕�ϰϬͲϰϵ͕�ϱϬͲϱϵ͕�ϲϬͲϲϵ͕�ϳϵͲ
ϳϵ͕�ϴϬͲϴϵ�ĂŶĚ�ϵϬͲϵϵ͕�ƌĞƐƉĞĐƚŝǀĞůǇ͘

dŚĞ�ƌĞŐƌĞƐƐŝŽŶ�ǁĂƐ�ƚŚƵƐ�ƌƵŶ�ƐĞƉĂƌĂƚĞůǇ�ĨŽƌ�ŵĞŶ�ĂŶĚ�ǁŽŵĞŶ ǁŝƚŚ�ƚŚĞ�ĨŽůůŽǁŝŶŐ�ĞƋƵĂƚŝŽŶ ĞƐƚŝŵĂƚŝŶŐ��D/�
Ăƚ�ƚŚĞ�ŝƚŚ ŽďƐĞƌǀĂƚŝŽŶ�ĨŽƌ�ƚŚĞ�ũƚŚ ŝŶĚŝǀŝĚƵĂů͗�

�D/ŝũ�с�ɴϬ н�ɴϭΎĂŐĞн�ɴϮΎĂŐĞΎĂŐĞн�ɴϯΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϭ�н ɴϰΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϮ�
н ɴϱΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϯ�н�ɴϲΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϰ�н ɴϳΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϱ�н ɴϴΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϲ�
н�ɴϵΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϳ н�ɴϭϬΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϴ�н�ɴϭϭΎ�ĂŐĞΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϭн�ɴϭϮΎ ĂŐĞΎĂŐĞΎďŝƌƚŚ�
ĐŽŚŽƌƚϮ н�ɴϭϯΎĂŐĞΎĂŐĞΎ�ďŝƌƚŚ�ĐŽŚŽƌƚϯ н�ɴϭϰΎĂŐĞΎĂŐĞΎ�ďŝƌƚŚ�ĐŽŚŽƌƚϰ н�ɴϭϱΎĂŐĞΎĂŐĞΎ�ďŝƌƚŚ�ĐŽŚŽƌƚϱ



н�ɴϭϲΎĂŐĞΎĂŐĞΎ�ďŝƌƚŚ�ĐŽŚŽƌƚϲ� н�ɴϭϳΎĂŐĞΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϳ н ɴϭϴΎĂŐĞΎĂŐĞΎďŝƌƚŚ�ĐŽŚŽƌƚϴ
н�hϬũ�н�hϭũΎĂŐĞŝũ�н�Ğŝũ

DŽĚĞůůŝŶŐ�ĂŐĞ�ǁŝƚŚ�ůŝŶĞĂƌ�ƐƉůŝŶĞƐ�ŐŝǀĞƐ�Ă�ďĞƚƚĞƌ�Ĩŝƚ�ĂĐĐŽƌĚŝŶŐ�ƚŽ�ƚŚĞ��ĂǇĞƐŝĂŶ�ŝŶĨŽƌŵĂƚŝŽŶ�ĐƌŝƚĞƌŝĂ͕�
ŚŽǁĞǀĞƌ͕�ƚŚĞ�ƉŽůǇŶŽŵŝĂů�ŵŽĚĞů�ŽƵƚůŝŶĞĚ�ĂďŽǀĞ�ƉƌŽĚƵĐĞĚ�ƐŵŽŽƚŚĞƌ�ĂŶĚ�ŵŽƌĞ�ůĞŐŝďůĞ ĐƵƌǀĞƐ͘��Ɛ�ƚŚĞ�
ƉŽůǇŶŽŵŝĂů�ŵŽĚĞů�ŽǀĞƌĞƐƚŝŵĂƚĞƐ�ƚŚĞ��D/�ĨŽƌ�ǁŽŵĞŶ�ŝŶ�ďŝƌƚŚ�ĐŽŚŽƌƚƐ�ďŽƌŶ�ϭϵϯϬͲϰϵ�Ăƚ�ƚŚĞ�ŽďƐĞƌǀĞĚ�ŽůĚĞƌ�
ĂŐĞƐ͕�ǁĞ�ŚĂǀĞ�ŝŶĐůƵĚĞĚ�ƌĞƐƵůƚƐ�ĨƌŽŵ�Ă�ŵŽĚĞů�ǁŚĞƌĞ�ĂŐĞ�ǁĂƐ�ŝŶĐůƵĚĞĚ�ĂƐ�ůŝŶĞĂƌ�ƐƉůŝŶĞƐ�ŝŶ�ƚŚŝƐ�
^ƵƉƉůĞŵĞŶƚĂƌǇ�DĂƚĞƌŝĂů�&ŝŐƵƌĞ�^ϭͿ͘�dŚĞ�ƐƉůŝŶĞƐ ǁĞƌĞ�ŐĞŶĞƌĂƚĞĚ�ǁŝƚŚ�ϰ�ŬŶŽƚƐ�ƉůĂĐĞĚ�ĂĐĐŽƌĚŝŶŐ�ƚŽ�
ƉĞƌĐĞŶƚŝůĞƐ�ŽĨ�ƚŚĞ�ĂŐĞ�ĚŝƐƚƌŝďƵƚŝŽŶ͘�

&Žƌ�ƚŚĞ�ĂŶĂůǇƐĞƐ�ǁŝƚŚ�ŐĞŶĞƚŝĐ�ƌŝƐŬ�ĂŶĚ�ƚŝŵĞ͕�ǁĞ�ŚĂǀĞ�ƵƐĞĚ�ŝŶĚŝĐĂƚŽƌ�ǀĂƌŝĂďůĞƐ�ƚŽ�ĚĞŶŽƚĞ�ƚŚĞ�ĚŝĨĨĞƌĞŶƚ�
ĐĂůĞŶĚĂƌ�ƚŝŵĞƐ�;ǇĞĂƌƐ�ŽĨ�ŽďƐĞƌǀĂƚŝŽŶƐͿ͘�dŚĞ�ǇĞĂƌƐ�ϭϵϵϱͲϵϳ�ǁĞƌĞ�ƐĞƚ�ĂƐ�ƌĞĨĞƌĞŶĐĞ�ǀĂůƵĞƐ͕�ĂƐ�ƚŚĞ�ŶƵŵďĞƌ�ŽĨ�
ŽďƐĞƌǀĂƚŝŽŶƐ�ǁĂƐ�ŐƌĞĂƚĞƐƚ�ƚŚĞƐĞ�ǇĞĂƌƐ͘�dŚĞ�ĨŝĨƚŚ�ŽĨ�ƚŚĞ�ƉŽƉƵůĂƚŝŽŶ�ǁŝƚŚ�ƚŚĞ�ůŽǁĞƐƚ�ŐĞŶĞƚŝĐ�ƉƌĞĚŝƐƉŽƐŝƚŝŽŶ�
ƚŽ�ŽďĞƐŝƚǇ ;'Z^ϬͿ�ǁĂƐ�ƵƐĞĚ�ĂƐ�ƌĞĨĞƌĞŶĐĞ�ĐĂƚĞŐŽƌǇ�ĨŽƌ�ŐĞŶĞƚŝĐ�ƌŝƐŬ͘��ŐĞ�ŝƐ�ŵŽĚĞůůĞĚ�ǁŝƚŚ�ůŝŶĞĂƌ�ƐƉůŝŶĞƐ͕�
ƵƐŝŶŐ�ĂŐĞ�ŽĨ�ϮϬ�ĂƐ�ƚŚĞ�ƌĞĨĞƌĞŶĐĞ�ǀĂůƵĞ͘�<ŶŽƚƐ�ǁĞƌĞ�ƉůĂĐĞĚ�Ăƚ�ĞĂĐŚ�ϭϬƚŚ ǇĞĂƌ�ĨƌŽŵ�ϮϬ�ƚŽ�ϳϬ͘�zĞĂƌ�ǁĂƐ�ĐŽĚĞĚ�
ĂƐ�Ϭ�;ϲϲͲϲϵͿ͕�ϰ�;ϴϰͲϴϲͿ͕�ϲ�;ϵϱͲϵϳͿ͕ϳ�;ϬϬͲϬϭͿ�ĂŶĚ�ϴ�;ϬϲͲϬϴͿ͘��

&Žƌ�ƚŚĞ�ŝƚŚ ŽďƐĞƌǀĂƚŝŽŶ�ŽĨ�ƚŚĞ�ũƚŚ ŝŶĚŝǀŝĚƵĂů͕�ǁĞ ĞƐƚŝŵĂƚĞ�ƚŚĞ��D/�ƚŽ�ďĞ͗

�D/ŝũ�с�ɴϬ н�ɴϭΎzĞĂƌϲϲͲϲϵ�н�ɴϮΎzĞĂƌϴϰͲϵϲ�н�ɴϯΎzĞĂƌϬϬͲϬϭ�н ɴϰΎzĞĂƌϬϲͲϬϴ�
н ɴϱΎ'Z^ϭ�н�ɴϲΎ'Z^Ϯ�н ɴϳΎ'Z^ϯ�н ɴϴΎ'Z^ϰ�
н�ɴϵΎĂŐĞ�ƐƉůŝŶĞ�ϭ�н�ɴϭϬΎĂŐĞ�ƐƉůŝŶĞ�Ϯн�ɴϭϭΎĂŐĞ�ƐƉůŝŶĞ�ϯн�ɴϭϮΎĂŐĞ�ƐƉůŝŶĞ�ϰ
н�ɴϭϯΎĂŐĞ�ƐƉůŝŶĞ�ϱн�ɴϭϰΎĂŐĞ�ƐƉůŝŶĞ�ϲн�ɴϭϱΎĂŐĞ�ƐƉůŝŶĞ�ϳ
н�ɴϭϲΎzĞĂƌϲϲͲϲϵΎ'Z^ϭ�н�ɴϭϳΎzĞĂƌϲϲͲϲϵΎ'Z^Ϯ�н ɴϭϴΎzĞĂƌϲϲͲϲϵΎ'Z^ϯ�н ɴϭϵΎzĞĂƌϲϲͲϲϵΎ'Z^ϰ
н ɴϮϬΎzĞĂƌϴϰͲϴϲΎ'Z^ϭ�н�ɴϮϭΎzĞĂƌϴϰͲϴϲΎ'Z^Ϯ�н ɴϮϮΎzĞĂƌϴϰͲϴϲΎ'Z^ϯ�н ɴϮϯΎzĞĂƌϴϰͲϴϲΎ'Z^ϰ
н ɴϮϰΎzĞĂƌϬϬͲϬϭΎ'Z^ϭ�н�ɴϮϱΎzĞĂƌϬϬͲϬϭΎ'Z^Ϯ�н ɴϮϲΎzĞĂƌϬϬͲϬϭΎ'Z^ϯ�н ɴϮϳΎzĞĂƌϬϬͲϬϭΎ'Z^ϰ
н ɴϮϴΎzĞĂƌϬϲͲϬϴΎ'Z^ϭ�н�ɴϮϵΎzĞĂƌϬϲͲϬϴΎ'Z^Ϯ�н ɴϯϬΎzĞĂƌϬϲͲϬϴΎ'Z^ϯ�н ɴϯϭΎzĞĂƌϬϲͲϬϴΎ'Z^ϰ
н�ɴϯϮΎĂŐĞ�ƐƉůŝŶĞ�ϭΎ�'Z^ϭн�ɴϯϯΎĂŐĞ�ƐƉůŝŶĞ�ϭΎ�'Z^Ϯ нɴϯϰΎĂŐĞ�ƐƉůŝŶĞ�ϭΎ�'Z^ϯ нɴϯϱΎĂŐĞ�ƐƉůŝŶĞ�ϭΎ�'Z^ϰ
н�ɴϯϲΎĂŐĞ�ƐƉůŝŶĞ�ϮΎ�'Z^ϭн�ɴϯϳΎĂŐĞ�ƐƉůŝŶĞ�ϮΎ�'Z^Ϯ нɴϯϴΎĂŐĞ�ƐƉůŝŶĞ�ϮΎ�'Z^ϯ нɴϯϵΎĂŐĞ�ƐƉůŝŶĞ�ϮΎ�'Z^ϰ
н�ɴϰϬΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�'Z^ϭн�ɴϰϭΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�'Z^Ϯ нɴϰϮΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�'Z^ϯ нɴϰϯΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�'Z^ϰ
н�ɴϰϰΎĂŐĞ�ƐƉůŝŶĞ�ϰΎ�'Z^ϭн�ɴϰϱΎĂŐĞ�ƐƉůŝŶĞ�ϰΎ�'Z^Ϯ нɴϰϲΎĂŐĞ�ƐƉůŝŶĞ�ϰΎ�'Z^ϯ нɴϰϳΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�'Z^ϰ
н�ɴϰϴΎĂŐĞ�ƐƉůŝŶĞ�ϱΎ�'Z^ϭн�ɴϰϵΎĂŐĞ�ƐƉůŝŶĞ�ϱΎ�'Z^Ϯ нɴϱϬΎĂŐĞ�ƐƉůŝŶĞ�ϱΎ�'Z^ϯ нɴϱϭΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�'Z^ϰ
н�ɴϱϮΎĂŐĞ�ƐƉůŝŶĞ�ϲΎ�'Z^ϭн�ɴϱϯΎĂŐĞ�ƐƉůŝŶĞ�ϲΎ�'Z^Ϯ нɴϱϰΎĂŐĞ�ƐƉůŝŶĞ�ϲΎ�'Z^ϯ нɴϱϱΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�'Z^ϰ
н�ɴϱϲΎĂŐĞ�ƐƉůŝŶĞ�ϳΎ�'Z^ϭн�ɴϱϳΎĂŐĞ�ƐƉůŝŶĞ�ϳΎ�'Z^Ϯ нɴϱϴΎĂŐĞ�ƐƉůŝŶĞ�ϳΎ�'Z^ϯ нɴϱϵΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�'Z^ϰ
н�ɴϲϬΎĂŐĞ�ƐƉůŝŶĞ�ϭΎ�zĞĂƌϲϲͲϲϵн�ɴϲϭΎĂŐĞ�ƐƉůŝŶĞ�ϭΎ�zĞĂƌϴϰͲϴϲ нɴϲϮΎĂŐĞ�ƐƉůŝŶĞ�ϭΎ�zĞĂƌϬϬͲϬϭ нɴϲϯΎĂŐĞ�ƐƉůŝŶĞ�ϭ��������������������������������������������������������������������������������������
Ύ�zĞĂƌϬϲͲϬϴ
н�ɴϲϰΎĂŐĞ�ƐƉůŝŶĞ�ϮΎ�zĞĂƌϲϲͲϲϵн�ɴϲϱΎĂŐĞ�ƐƉůŝŶĞ�ϮΎ�zĞĂƌϴϰͲϴϲ нɴϲϲΎĂŐĞ�ƐƉůŝŶĞ�ϮΎ�zĞĂƌϬϲͲϬϴ
н�ɴϲϳΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�zĞĂƌϲϲͲϲϵн�ɴϲϴΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�zĞĂƌϴϰͲϴϲ нɴϲϵΎĂŐĞ�ƐƉůŝŶĞ�ϯΎ�zĞĂƌϬϲͲϬϴ
н�ɴϳϬΎĂŐĞ�ƐƉůŝŶĞ�ϰΎ�zĞĂƌϲϲͲϲϵн�ɴϳϭΎĂŐĞ�ƐƉůŝŶĞ�ϰΎ�zĞĂƌϴϰͲϴϲ нɴϳϮΎĂŐĞ�ƐƉůŝŶĞ�ϰΎ�zĞĂƌϬϲͲϬϴ
н�ɴϳϯΎĂŐĞ�ƐƉůŝŶĞ�ϱΎ�zĞĂƌϲϲͲϲϵн�ɴϳϰΎĂŐĞ�ƐƉůŝŶĞ�ϱΎ�zĞĂƌϴϰͲϴϲ нɴϳϱΎĂŐĞ�ƐƉůŝŶĞ�ϱΎ�zĞĂƌϬϲͲϬϴ
н�ɴϳϲΎĂŐĞ�ƐƉůŝŶĞ�ϲΎ�zĞĂƌϴϰͲϴϲ нɴϳϳΎĂŐĞ�ƐƉůŝŶĞ�ϲΎ�zĞĂƌϬϲͲϬϴнɴϳϴΎĂŐĞ�ƐƉůŝŶĞ�ϳΎ�zĞĂƌϬϲͲϬϴ
н�hϬũ�н�hϭũΎĂŐĞŝũ�н�Ğŝũ

tĞ�ĂƐƐƵŵĞ�ƚŚĂƚ�ĞƌƌŽƌ�ƚĞƌŵƐ�hϬũ�ĂŶĚ�hϭũ�ĂƌĞ�ŶŽƌŵĂůůǇ�ĚŝƐƚƌŝďƵƚĞĚ�ǁŝƚŚ�ŵĞĂŶ�Ϭ͘



ZĞƐƵůƚƐ
7DEOH�6���'HVFULSWLYH�VWDWLVWLFV�RI�PDOH�DQG�IHPDOH�SDUWLFLSDQWV�DW�HDFK�WLPH�SRLQW�

7%& +� +� <+� +� 7RWDO

<HDU ������� ������� ������� ������� �������

0HQ

1R��RI�SDUWLFLSDQWV ������� ������� ������ ��� ������� �������

1R��RI�REVHUYDWLRQV ������� ������ ������ ���
������

�������

1R��ZLWK�*56���� ������� ������ ������� ������ ������ ������ ��� ������ ������ ������ ������� ������

0HDQ�$JH��6'�� ���� ������ ���� ������ ���� ������ ���� ����� ���� ������ ���� ������

0HDQ�%0,��6'� ���� ����� ���� ����� ���� ����� ���� ����� ���� ����� ���� �����

%0,�FDWHJRULHV

���

����� ��� ��� ��� ��� ���

��������� ���� ���� ���� ���� ����

��������� ���� ���� ���� ���� ����

��������� ��� ��� ���� ��� ����

��� ��� ��� ��� ��� ���

:RPHQ

1R��LQ�GDWD�VHW ������ ������� ������� ��� ������ ��������

1R��RI�REVY� ������ ������
������

��� ������
�������

1R��ZLWK�*56���� ������ ������ ������� ������ ������ ������ ��� ������ ������ ������ ������� ������

0HDQ�$JH��6'� ���� ������ ���� ������ ���� ������ ���� ����� ���� ������ ���� ������

0HDQ�%0,��6'� ���� ����� ���� ����� ���� ����� ���� ����� ���� ����� ���� �����

%0,�FDWHJRULHV����

����� ��� ��� ��� ��� ���

��������� ���� ���� ���� ���� ����

��������� ���� ���� ���� ���� ����

��������� ���� ���� ���� ��� ����

��� ��� ��� ��� ��� ���



)LJXUH�6���%0,�WUDMHFWRULHV�ZLWK�����FRQILGHQFH�LQWHUYDOV�IRU�WKH�ZRPHQ�DQG�PHQ�E\�ELUWK�FRKRUW��(VWLPDWHV�
IURP�D�OLQHDU�PL[HG�PRGHO��ZLWK�DJH�PRGHOOHG�XVLQJ�OLQHDU�VSOLQHV�



7DEOH�6���5HJUHVVLRQ�HVWLPDWHV�IURP�DQDO\VHV�RI�DVVRFLDWLRQ�EHWZHHQ�JHQHWLF�ULVN�VFRUH�DQG�%0,�DW�GLIIHUHQW�
DJHV�DQG�WLPH�SRLQWV�DPRQJ�PHQ�

([SODQDWRU\�YDULDEOH %HWD 6( ����&, S�YDOXHV
<HDU� ������� Ͳϭ͘Ϭϵ Ϭ͘ϭϭ Ͳϭ͘ϯϭ � ͲϬ͘ϴϳ фϬ͘ϬϬϭ

������� ͲϬ͘ϴϮ Ϭ͘ϭϭ Ͳϭ͘Ϭϰ � ͲϬ͘ϱϵ фϬ͘ϬϬϭ

������� Ͳϭ͘Ϯϯ Ϭ͘ϰϵ ͲϮ͘ϭϵ � ͲϬ͘Ϯϳ Ϭ͘ϬϭϮ

������� ͲϬ͘Ϭϯ Ϭ͘ϭϲ ͲϬ͘ϯϰ � Ϭ͘Ϯϴ Ϭ͘ϴϱϳ

*HQHWLF�ULVN *56�� Ϭ͘ϱϭ Ϭ͘ϭϮ Ϭ͘Ϯϳ � Ϭ͘ϳϱ фϬ͘ϬϬϭ

*56�� ϭ͘ϭϬ Ϭ͘ϭϮ Ϭ͘ϴϲ � ϭ͘ϯϰ фϬ͘ϬϬϭ

*56�� ϭ͘ϭϮ Ϭ͘ϭϮ Ϭ͘ϴϳ � ϭ͘ϯϲ фϬ͘ϬϬϭ

*56�� ϭ͘ϳϴ Ϭ͘ϭϮ ϭ͘ϱϰ � Ϯ͘ϬϮ фϬ͘ϬϬϭ

<HDU��JHQWLF�ULVN

<HDU

������� *56�� ͲϬ͘Ϯϭ Ϭ͘ϭϬ ͲϬ͘ϰϬ � ����� �����

������� *56 � ͲϬ͘ϱϯ Ϭ͘ϭϬ ͲϬ͘ϳϮ � ����� ������

������� *56�� ͲϬ͘ϯϲ Ϭ͘ϭϬ ͲϬ͘ϱϱ � ����� ������

������� *56�� ͲϬ͘ϲϬ Ϭ͘ϭϬ ͲϬ͘ϳϵ � ����� ������

������� *56�� ͲϬ͘ϭϯ Ϭ͘Ϭϱ ͲϬ͘Ϯϰ � ����� �����

������� *56�� ͲϬ͘Ϯϲ Ϭ͘Ϭϱ ͲϬ͘ϯϳ � ����� ������

������� *56�� ͲϬ͘ϭϱ Ϭ͘Ϭϱ ͲϬ͘Ϯϲ � ����� �����

������� *56�� ͲϬ͘ϯϰ Ϭ͘Ϭϱ ͲϬ͘ϰϱ � ����� ������

������� *56�� ͲϬ͘ϬϮ Ϭ͘ϯϵ ͲϬ͘ϳϳ � ���� �����

������� *56�� Ϭ͘Ϯϭ Ϭ͘ϯϴ ͲϬ͘ϱϰ � ���� �����

������� *56�� Ϭ͘ϯϬ Ϭ͘ϯϴ ͲϬ͘ϰϱ � ���� �����

������� *56�� Ϭ͘Ϯϱ Ϭ͘ϯϵ ͲϬ͘ϱϭ � ���� �����

������� *56�� Ϭ͘ϭϯ Ϭ͘Ϭϲ Ϭ͘ϬϮ � ���� �����

������� *56�� Ϭ͘ϭϴ Ϭ͘Ϭϲ Ϭ͘Ϭϳ � ���� �����

������� *56�� Ϭ͘Ϯϯ Ϭ͘Ϭϲ Ϭ͘ϭϭ � ���� ������

������� *56�� Ϭ͘Ϯϵ Ϭ͘Ϭϲ Ϭ͘ϭϴ � ���� ������

$JH�VSOLQHV $JH�VSOLQH�� Ϭ͘ϯϯ Ϭ͘Ϭϯ Ϭ͘Ϯϳ � ���� ������

$JH�VSOLQH�� Ϭ͘ϮϬ Ϭ͘Ϭϭ Ϭ͘ϭϴ � ���� ������

$JH�VSOLQH�� Ϭ͘Ϭϰ Ϭ͘Ϭϭ Ϭ͘ϬϮ � ���� ������

$JH�VSOLQH�� Ϭ͘Ϭϴ Ϭ͘Ϭϭ Ϭ͘Ϭϲ � ���� ������

$JH�VSOLQH�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘ϬϮ � ���� �����

$JH�VSOLQH�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘ϬϮ � ���� �����



$JH�VSOLQH�� Ϭ͘ϬϬ Ϭ͘ϬϮ ͲϬ͘Ϭϱ � ���� �����

$JH�VSOLQHV���JHQHWLF�ULVN

$JH VSOLQH�� *56�� Ϭ͘ϬϮ Ϭ͘Ϭϯ ͲϬ͘Ϭϰ � Ϭ͘Ϭϵ Ϭ͘ϱϬϲ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϲ Ϭ͘Ϭϯ ͲϬ͘Ϭϭ � Ϭ͘ϭϮ Ϭ͘Ϭϴϴ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϰ Ϭ͘Ϭϯ ͲϬ͘Ϭϯ � Ϭ͘ϭϬ Ϭ͘ϮϲϮ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϲ Ϭ͘Ϭϯ Ϭ͘ϬϬ � Ϭ͘ϭϯ Ϭ͘Ϭϲϱ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϮ Ϭ͘ϳϲϭ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘Ϭϭ Ϭ͘ϮϲϮ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϮ Ϭ͘ϱϲϱ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘ϬϮ � Ϭ͘Ϭϯ Ϭ͘ϲϭϳ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘ϬϮ � Ϭ͘Ϭϭ Ϭ͘ϳϳϮ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϬ Ϭ͘Ϭϲϴ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘Ϭϭ � Ϭ͘ϬϮ Ϭ͘ϲϴϮ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘Ϭϭ Ϭ͘Ϯϱϲ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϬ Ϭ͘Ϭϱϲ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϬ Ϭ͘ϭϬϴ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϬ Ϭ͘Ϭϱϲ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � ͲϬ͘Ϭϭ Ϭ͘ϬϬϵ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϭ � Ϭ͘ϬϮ Ϭ͘ϰϴϳ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘Ϭϭ Ϭ͘ϯϭϲ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘ϬϮ � Ϭ͘Ϭϭ Ϭ͘ϳϰϮ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘Ϭϭ Ϭ͘ϯϯϲ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘Ϭϭ Ϭ͘ϯϴϬ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘Ϭϭ Ϭ͘ϭϰϮ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϮ Ϭ͘ϲϰϱ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘ϬϬ Ϭ͘ϭϬϮ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘ϬϮ ͲϬ͘Ϭϲ � Ϭ͘Ϭϭ Ϭ͘ϮϭϮ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϱ Ϭ͘ϬϮ ͲϬ͘Ϭϵ � ͲϬ͘ϬϮ Ϭ͘ϬϬϱ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϱ Ϭ͘ϬϮ ͲϬ͘Ϭϴ � ͲϬ͘Ϭϭ Ϭ͘ϬϬϵ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϲ Ϭ͘ϬϮ ͲϬ͘Ϭϵ � ͲϬ͘ϬϮ Ϭ͘ϬϬϮ

$JH�VSOLQH�� ������� ͲϬ͘Ϯϭ Ϭ͘Ϭϯ ͲϬ͘Ϯϳ � ͲϬ͘ϭϲ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� ϭϱ͘ϰϰ ϵ͘Ϭϵ ͲϮ͘ϯϵ ϯϯ͘Ϯϲ Ϭ͘ϬϵϬ

$JH�VSOLQH�� ������� ͲϬ͘ϯϱ Ϭ͘ϭϵ ͲϬ͘ϳϮ � Ϭ͘Ϭϯ Ϭ͘Ϭϲϵ

$JH�VSOLQH�� ������� ͲϬ͘ϰϳ Ϭ͘ϲϬ Ͳϭ͘ϲϰ � Ϭ͘ϳϬ Ϭ͘ϰϮϵ

$JH�VSOLQH�� ������� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϱ � Ϭ͘Ϭϭ Ϭ͘ϭϮϳ

$JH�VSOLQH�� ������� ͲϬ͘Ϭϲ Ϭ͘ϬϮ ͲϬ͘Ϭϵ � ͲϬ͘Ϭϯ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� Ϭ͘Ϭϵ Ϭ͘ϬϮ Ϭ͘Ϭϰ � Ϭ͘ϭϯ фϬ͘ϬϬϭ



$JH�VSOLQH�� ������� Ϭ͘ϬϮ Ϭ͘Ϭϭ Ϭ͘ϬϬ � Ϭ͘Ϭϱ Ϭ͘Ϭϯϭ

$JH�VSOLQH�� ������� Ϭ͘Ϭϲ Ϭ͘Ϭϭ Ϭ͘Ϭϯ � Ϭ͘Ϭϴ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� Ϭ͘Ϭϰ Ϭ͘ϬϮ Ϭ͘Ϭϭ � Ϭ͘Ϭϴ Ϭ͘ϬϬϴ

$JH�VSOLQH�� ������� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘Ϭϭ Ϭ͘ϮϬϳ

$JH�VSOLQH�� ������� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϱ � Ϭ͘ϬϬ Ϭ͘Ϭϰϵ

$JH�VSOLQH�� ������� ͲϬ͘Ϭϲ Ϭ͘Ϭϭ ͲϬ͘Ϭϵ � ͲϬ͘Ϭϰ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� Ϭ͘ϬϮ Ϭ͘Ϭϴ ͲϬ͘ϭϰ � Ϭ͘ϭϴ Ϭ͘ϳϳϬ

$JH�VSOLQH�� ������� Ϭ͘Ϭϯ Ϭ͘Ϭϭ Ϭ͘ϬϬ � Ϭ͘Ϭϲ Ϭ͘ϬϮϮ

$JH�VSOLQH�� ������� Ϭ͘Ϭϯ Ϭ͘Ϭϭ Ϭ͘Ϭϭ � Ϭ͘Ϭϲ Ϭ͘Ϭϭϱ

$JH�VSOLQH�� ������� Ϭ͘Ϭϭ Ϭ͘ϬϮ ͲϬ͘Ϭϰ � Ϭ͘Ϭϲ Ϭ͘ϲϭϭ

$JH�VSOLQH�� ������� ͲϬ͘Ϭϰ Ϭ͘ϬϮ ͲϬ͘Ϭϳ � Ϭ͘ϬϬ Ϭ͘Ϭϯϲ

$JH�VSOLQH�� ������� ͲϬ͘Ϭϭ Ϭ͘ϬϮ ͲϬ͘Ϭϲ � Ϭ͘Ϭϰ Ϭ͘ϲϳϭ

,QWHUFHSW Ϯϯ͘Ϭϵ Ϭ͘ϭϭ ϮϮ͘ϴϴ � Ϯϯ͘ϯϭ фϬ͘ϬϬϭ



7DEOH�6���5HJUHVVLRQ�HVWLPDWHV�IURP�DQDO\VHV�RI�DVVRFLDWLRQ�EHWZHHQ�JHQHWLF�ULVN�VFRUH�DQG�%0,�DW�GLIIHUHQW�
DJHV�DQG�WLPH�SRLQWV�DPRQJ�ZRPHQ�

([SODQDWRU\�YDULDEOH %HWD 6( ����&,
S�

YDOXHV
<HDU� ������� ����� ���� ����� � Ͳϭ͘ϭϲ фϬ͘ϬϬϭ

������� ����� ���� ����� � Ͳϭ͘ϭϲ фϬ͘ϬϬϭ

������� ����� ���� ����� � Ϭ͘ϳϮ Ϭ͘ϳϮϯ

������� ����� ���� ����� � Ϭ͘ϭϮ Ϭ͘ϮϮ

*HQHWLF�ULVN *56�� ���� ���� ���� � Ϭ͘ϳϱ Ϭ͘ϬϬϭ

*56�� ���� ���� ���� � Ϭ͘ϵϵ фϬ͘ϬϬϭ

*56�� ���� ���� ���� � ϭ͘Ϭϴ фϬ͘ϬϬϭ

*56�� ���� ���� ���� � Ϯ͘Ϯϭ фϬ͘ϬϬϭ

<HDU��JHQWLF�ULVN

<HDU

������� *56�� ����� ���� ����� � Ϭ͘ϭϯ Ϭ͘ϯϵϭ

������� *56�� ����� ���� ����� � Ϭ͘Ϭϴ Ϭ͘ϭϵϲ

������� *56�� ����� ���� ����� � Ϭ͘Ϭϲ Ϭ͘ϭϲϯ

������� *56�� ����� ���� ����� � ͲϬ͘Ϯϰ фϬ͘ϬϬϭ

������� *56�� ����� ���� ����� � Ϭ͘Ϭϵ Ϭ͘ϱϰϭ

������� *56�� ����� ���� ����� � ͲϬ͘ϬϮ Ϭ͘ϬϮϴ

������� *56�� ����� ���� ����� � Ϭ͘Ϭϰ Ϭ͘ϭϲ

������� *56�� ����� ���� ����� � ͲϬ͘ϭϴ фϬ͘ϬϬϭ

������� *56�� ���� ���� ����� � Ϭ͘ϵϳ Ϭ͘ϱϮ

������� *56�� ���� ���� ����� � ϭ͘ϭϵ Ϭ͘ϯϯ

������� *56�� ���� ���� ����� � ϭ͘ϰϯ Ϭ͘ϭϯϲ

������� *56�� ���� ���� ����� � Ϭ͘ϴϴ Ϭ͘ϳϵϰ

������� *56�� ����� ���� ����� � Ϭ͘ϭϭ Ϭ͘ϳϮϰ

������� *56�� ���� ���� ����� � Ϭ͘ϭϰ Ϭ͘ϵϭϰ

������� *56�� ���� ���� ����� � Ϭ͘Ϯϰ Ϭ͘ϭϮϴ

������� *56�� ���� ���� ���� � Ϭ͘ϰϵ фϬ͘ϬϬϭ

$JH�VSOLQHV $JH�VSOLQH�� ���� ���� ���� � Ϭ͘ϯϵ фϬ͘ϬϬϭ

$JH�VSOLQH�� ���� ���� ���� � Ϭ͘ϭϮ фϬ͘ϬϬϭ

$JH�VSOLQH�� ���� ���� ����� � Ϭ͘Ϭϰ Ϭ͘Ϯϰϭ

$JH�VSOLQH�� ���� ���� ���� � Ϭ͘ϭϲ фϬ͘ϬϬϭ

$JH�VSOLQH�� ���� ���� ���� � Ϭ͘ϭϯ фϬ͘ϬϬϭ

$JH�VSOLQH�� ���� ���� ���� � Ϭ͘ϭϬ фϬ͘ϬϬϭ

$JH�VSOLQH�� ���� ���� ����� � Ϭ͘Ϭϱ Ϭ͘ϵϲϵ

$JH�VSOLQHV���JHQHWLF�ULVN



$JH�VSOLQH�� *56�� Ϭ͘Ϭϯ Ϭ͘Ϭϰ ͲϬ͘Ϭϱ � Ϭ͘ϭϭ Ϭ͘ϰϯϮ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϲ Ϭ͘Ϭϰ ͲϬ͘Ϭϭ � Ϭ͘ϭϰ Ϭ͘ϭϬϵ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϰ ͲϬ͘Ϭϴ � Ϭ͘Ϭϴ Ϭ͘ϵϲϰ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϱ Ϭ͘Ϭϰ ͲϬ͘Ϭϯ � Ϭ͘ϭϯ Ϭ͘ϭϵ

$JH�VSOLQH�� *56�� Ϭ͘ϬϮ Ϭ͘ϬϮ ͲϬ͘Ϭϭ � Ϭ͘Ϭϱ Ϭ͘Ϯϯϴ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϯ Ϭ͘Ϭϭ Ϭ͘ϬϬ � Ϭ͘Ϭϲ Ϭ͘Ϭϱϲ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϱ Ϭ͘Ϭϭ Ϭ͘ϬϮ � Ϭ͘Ϭϴ Ϭ͘ϬϬϮ

$JH�VSOLQH�� *56�� Ϭ͘Ϭϰ Ϭ͘ϬϮ Ϭ͘Ϭϭ � Ϭ͘Ϭϳ Ϭ͘ϬϬϳ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘Ϭϭ Ϭ͘ϭϰϭ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϮ Ϭ͘ϲϲϭ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘Ϭϭ Ϭ͘Ϯϴϲ

$JH�VSOLQH � *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘ϬϬ Ϭ͘Ϭϲϰ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘ϬϮ � Ϭ͘ϬϮ Ϭ͘ϳϱϲ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘ϬϮ � Ϭ͘ϬϮ Ϭ͘ϴϭϭ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘ϬϮ � Ϭ͘ϬϮ Ϭ͘ϴϯϰ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘Ϭϭ Ϭ͘ϯϰϴ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϮ Ϭ͘ϲϮϵ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘Ϭϭ Ϭ͘ϭϱ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘Ϭϭ Ϭ͘Ϯϴϵ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϯ Ϭ͘Ϭϭ ͲϬ͘Ϭϱ � Ϭ͘ϬϬ Ϭ͘Ϭϭϲ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘ϬϮ Ϭ͘ϰϬϰ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘Ϭϭ ͲϬ͘Ϭϯ � Ϭ͘ϬϮ Ϭ͘ϳϵϳ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘Ϭϭ ͲϬ͘Ϭϰ � Ϭ͘ϬϮ Ϭ͘ϰϰϵ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϰ Ϭ͘Ϭϭ ͲϬ͘Ϭϲ � ͲϬ͘Ϭϭ Ϭ͘ϬϬϲ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϭ Ϭ͘ϬϮ ͲϬ͘Ϭϱ � Ϭ͘Ϭϰ Ϭ͘ϳϳϭ

$JH�VSOLQH�� *56�� Ϭ͘ϬϬ Ϭ͘ϬϮ ͲϬ͘Ϭϰ � Ϭ͘Ϭϰ Ϭ͘ϵϲϴ

$JH�VSOLQH�� *56�� ͲϬ͘Ϭϰ Ϭ͘ϬϮ ͲϬ͘Ϭϴ � Ϭ͘ϬϬ Ϭ͘Ϭϳϲ

$JH�VSOLQH�� *56�� ͲϬ͘ϬϮ Ϭ͘ϬϮ ͲϬ͘Ϭϳ � Ϭ͘ϬϮ Ϭ͘Ϯϵϵ

$JH�VSOLQH�� ������� ͲϬ͘Ϯϲ Ϭ͘Ϭϯ ͲϬ͘ϯϮ � ͲϬ͘ϮϬ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� Ϭ͘Ϯϴ Ϭ͘ϭϵ ͲϬ͘Ϭϵ � Ϭ͘ϲϰ Ϭ͘ϭϯϵ

$JH�VSOLQH�� ������� ͲϬ͘Ϯϳ Ϭ͘ϰϵ Ͳϭ͘Ϯϰ � Ϭ͘ϳϬ Ϭ͘ϱϴϮ

$JH�VSOLQH�� ������� Ϭ͘Ϭϭ Ϭ͘ϬϮ ͲϬ͘ϬϮ � Ϭ͘Ϭϰ Ϭ͘ϲϭ

$JH�VSOLQH�� ������� ͲϬ͘Ϭϴ Ϭ͘ϬϮ ͲϬ͘ϭϮ � ͲϬ͘Ϭϱ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� Ϭ͘ϲϰ Ϯ͘ϲϮ Ͳϰ͘ϱϭ ϱ͘ϳϴ Ϭ͘ϴϬϴ

$JH�VSOLQH�� ������� Ϭ͘ϭϮ Ϭ͘ϬϮ Ϭ͘Ϭϳ � Ϭ͘ϭϳ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� Ϭ͘ϭϳ Ϭ͘Ϭϭ Ϭ͘ϭϰ � Ϭ͘ϮϬ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� Ϭ͘ϭϮ Ϭ͘Ϭϭ Ϭ͘Ϭϵ � Ϭ͘ϭϱ фϬ͘ϬϬϭ



$JH�VSOLQH�� ������� Ϭ͘Ϭϰ Ϭ͘ϬϮ Ϭ͘Ϭϭ � Ϭ͘Ϭϴ Ϭ͘ϬϮϱ

$JH�VSOLQH�� ������� Ϭ͘Ϭϰ Ϭ͘ϬϮ Ϭ͘Ϭϭ � Ϭ͘Ϭϴ Ϭ͘ϬϬϲ

$JH�VSOLQH�� ������� Ϭ͘Ϭϭ Ϭ͘ϬϮ ͲϬ͘ϬϮ � Ϭ͘Ϭϰ Ϭ͘ϰϱϭ

$JH�VSOLQH�� ������� ͲϬ͘ϭϮ Ϭ͘ϬϮ ͲϬ͘ϭϱ � ͲϬ͘Ϭϴ фϬ͘ϬϬϭ

$JH�VSOLQH�� ������� ͲϬ͘Ϭϯ Ϭ͘Ϭϵ ͲϬ͘ϮϬ � Ϭ͘ϭϰ Ϭ͘ϳϱϭ

$JH�VSOLQH�� ������� Ϭ͘Ϭϰ Ϭ͘ϬϮ Ϭ͘ϬϬ � Ϭ͘Ϭϳ Ϭ͘Ϭϰϲ

$JH�VSOLQH�� ������� Ϭ͘ϬϬ Ϭ͘ϬϮ ͲϬ͘Ϭϯ � Ϭ͘Ϭϰ Ϭ͘ϵϮϰ

$JH�VSOLQH�� ������� Ϭ͘ϬϮ Ϭ͘Ϭϯ ͲϬ͘Ϭϰ � Ϭ͘Ϭϳ Ϭ͘ϱϲϵ

$JH�VSOLQH�� ������� ͲϬ͘Ϭϯ Ϭ͘ϬϮ ͲϬ͘Ϭϳ � Ϭ͘Ϭϭ Ϭ͘ϮϬϴ

$JH�VSOLQH�� ������� Ϭ͘ϬϮ Ϭ͘Ϭϯ ͲϬ͘Ϭϰ � Ϭ͘Ϭϴ Ϭ͘ϱϱ

,QWHUFHSW Ϯϯ͘ϭϴ Ϭ͘ϭϮ ϮϮ͘ϵϯ � Ϯϯ͘ϰϮ фϬ͘ϬϬϭ



7DEOH�6���(VWLPDWHG�GLIIHUHQFH�LQ�%0,�EHWZHHQ���������DQG���������DPRQJ�PHQ�DQG�ZRPHQ�LQ�WKH�ORZHVW�ILIWK�
RI�JHQHWLF�VXVFHSWLELOLW\���

0HQ :RPHQ

$JHV %0,�GLIIHUHQFH ����&, %0,�GLIIHUHQFH ����&,

$JH��� ���� ����� ���� ���� ����� ����

$JH��� ���� ����� ���� ���� ����� ����

$JH��� ���� ����� ���� ���� ����� ����

$JH��� ���� ����� ���� ���� ����� ����

7DEOH�6���'LIIHUHQFH�LQ�SKHQRW\SLF�%0,�EHWZHHQ�WKH�ILIWKV�ZLWK�WKH�KLJKHVW��4���DQG�ORZHVW��4���JHQHWLF�
VXVFHSWLELOLW\�IRU�FKRVHQ�DJHV�DW�HDFK�WLPH�SRLQW�IRU�PHQ�DQG�ZRPHQ�

0HQ :RPHQ

$JHV <HDUV %0,�4��4�� ����&, %0,�4��4�� ����&,

$JH��� ������� ���� ���� � ���� ���� ���� � ����

������� 1$ 1$

������� ���� ���� � ���� ���� ���� � ����

������� 1$ 1$

$JH��� ������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

$JH �� ������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

$JH��� ������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

$JH��� ������� 1$ 1$

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

$JH��� ������� 1$ 1$

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

$JH��� ������� 1$ 1$

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����

������� ���� ���� � ���� ���� ���� � ����



7DEOH�6���(VWLPDWHG�GLIIHUHQFH�LQ�WKH�DVVRFLDWLRQ�EHWZHHQ�JHQHWLF�ULVN�DQG�%0,�FRPSDULQJ�GLIIHUHQW�WLPH�
SRLQWV��
7KH�UHSRUWHG�%0,�GLIIHUHQFHV�DUH�WKH�HVWLPDWHG�DGGLWLRQDO�FKDQJH�LQ�WKH�DVVRFLDWLRQ�EHWZHHQ�JHQHWLF�ULVN�DQG�
%0,��FRPSDULQJ�PRUH�UHFHQW�WLPH�SRLQWV�WR�WKH DVVRFLDWLRQ�IRXQG�LQ����������,Q�RWKHU�ZRUGV��WKH�GLIIHUHQFHV�
DWWULEXWDEOH�WR�WKH�JHQH�E\�HQYLURQPHQW LQWHUDFWLRQ�

0HQ :RPHQ
%0,�
GLIIHUHQFH ����&, S�YDOXH

%0,�
GLIIHUHQFH ����&, S�YDOXH

������� � 5HIHUHQFH � 5HIHUHQFH

������� ���� ��������� ������ ���� ���������� ����
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Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal 
findings from the HUNT Study 
BMJ 2019; 366 doi: https://doi.org/10.1136/bmj.l4067 (Published 03 July 2019) Cite this as: 

BMJ 2019;366:l4067 Re: Panmictic Presumption 

Phenotypic assortative mating for quantitative traits such as BMI is indisputable (1). We 

tend to choose partners with similar interests and physical attributes, including body 

size. Hence, it is logical to assume that children of couples with obesity are likely to 

inherit a higher genetic risk for obesity and that variance in genetic risk would amplify 

for each generation.  

Uzoigwe argues that assortative mating rather than the obesogenic environment is 

responsible for the increasing disparity in BMI between the genetically predisposed and 

non-predisposed over the last decades. If this were true, one would expect a higher 

genetic risk score for the high-risk quintiles among the younger cohorts. This is not the 

case in our dataset. For all birth cohorts, we found negligible differences in GRS96 z-

score with corresponding standard deviations for not only the high-risk quintile but also 

the top percentile. The mean GRS96 z-scores varied from 1.39 to 1.43 for individuals in 

the top fifth of the genetic risk score (standard deviations 0.46 to 0.50) without any 

apparent trend from the oldest to the youngest cohorts. Corresponding mean GRS96 z-

scores for the top percent varied from 2.77 to 2.79 (standard deviations 0.04 to 0.06). 

When keeping the GRS96 z-score constant from the 1960s to 2000s, we found 

practically the same increased difference in BMI between the predisposed and non-

predisposed as in our manuscript, 0.89 kg/m2 (confidence interval 0.63 to 1.15 kg/m2) 

and 0.80 kg/m2 (confidence interval 0.49 to 1.10 kg/m2) for men and women 

respectively. 

While we fully agree that phenotypic assortment for BMI exists, the genetic 

consequences remain unknown. The most convincing genetic evidence of assortative 

mating for BMI reveals only a slight genetic correlation among couples (0.143, SE: 



0.007), approximately half the value of their phenotypic correlation (0.228, SE: 0.004) 

(2). Other studies suggest negligible genetic similarities between couples despite 

phenotypic similarities (3) or that genetic similarities disappear when accounting for 

population stratification (4).  

Twin and adoption studies suggest heritability estimates for obesity between 40-60% 

where the genetic risk score we used only accounts for 2-5% of variation in BMI (5). As 

we lack information on the whole genome, we cannot deny that genetic assortative 

mating may exist in our dataset. We also acknowledge that the parents to many of the 

cohorts in our dataset were not affected by the obesity epidemic. We hypothesize that 

genotypic assortment for BMI may become a greater issue in the future. 

We thank Uzoigwe for raising a relevant question to the interpretation of our study. 

After additional analyses, we are fairly confident that our findings are not a function of 

assortative mating but rather a function of the obesogenic environment. 

1. Silventoinen K, Kaprio J, Lahelma E, Viken RJ, Rose RJ. Assortative mating by 
body height and BMI: Finnish twins and their spouses. Am J Hum Biol. 
2003;15(5):620-7. 
2. Robinson MR, Kleinman A, Graff M, Vinkhuyzen AAE, Couper D, Miller MB, et al. 
Genetic evidence of assortative mating in humans. Nature Human Behaviour. 
2017;1:0016. 
3. Conley D, Laidley T, Belsky DW, Fletcher JM, Boardman JD, Domingue BW. 
Assortative mating and differential fertility by phenotype and genotype across the 20th 
century. Proc Natl Acad Sci U S A. 2016;113(24):6647-52. 
4. Abdellaoui A, Verweij KJ, Zietsch BP. No evidence for genetic assortative mating 
beyond that due to population stratification. Proc Natl Acad Sci U S A. 
2014;111(40):E4137. 
5. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies 
of body mass index yield new insights for obesity biology. Nature. 
2015;518(7538):197-206. 
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Re: Re: Quantifying the impact of genes on body mass index during the obesity 

epidemic: longitudinal findings from the HUNT Study 

Over the study period, Norwegian men and women have increased an average of five to 

six centimeters in height (1). Connolly questions if this substantial increase in height 

may also contribute to higher average BMI and in turn to the growing disparity between 

the genetically predisposed and non-predisposed over time. This however, is not 

justified when replicating our analysis using BMI adjusted for height. The estimates in 

the new analyses are practically identical to the estimates in our manuscript (2). 

For 35 year old men, the most genetically predisposed had 1.20 kg/m2 (95% confidence 

interval 1.03 to 1.37 kg/m2) higher BMI than those who were least genetically 

predisposed in the 1960s compared with 2.09 kg/m2 (95% confidence interval 1.90 to 

2.27 kg/m2) in the 2000s. For women of the same age, the corresponding differences in 

BMI were 1.75 kg/m2 (confidence interval 1.54 to 1.96 kg/m2) and 2.57 kg/m2 

(confidence interval 2.35 to 2.79 kg/m2). Furthermore, the additional adjustment of 

BMI for height yields slightly higher estimated increase in BMI over time for all 

groups.  

1. Roser M, Appel C, Ritchie H. Human Height 2013 Last modified May 2019. 
Accessed 2019-09-03. https://ourworldindata.org/human-height. 

2. Brandkvist M, Bjorngaard JH, Odegard RA, Asvold BO, Sund ER, Vie GA. 
Quantifying the impact of genes on body mass index during the obesity epidemic: 
longitudinal findings from the HUNT Study. BMJ. 2019;366:l4067. 
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Re: Quantifying the impact of genes on body mass index during the obesity epidemic: 

longitudinal findings from the HUNT Study 

Dear Editor, 

The study entitled, “Quantifying the impact of genes on body mass index during the 

obesity epidemic: longitudinal findings from the HUNT Study” underscores the 

magnitude of the challenge that the obesity epidemic represents worldwide. This study 

was very interesting and applicable in the 21st century. Obesity is caused by a 

combination of genetics and behavioral factors. Behavioral factors can include physical 

activity, dietary patterns, inactivity, medication use and other societal factors. Obesity is 

a serious problem resulting in reduced quality of life, poor mental health and the leading 

cause of death worldwide (CDC, 2017). Although measures have been put in place, 

obesity continues to be a challenge worldwide. The World Health Organization (WHO) 

(2019) revealed that the prevalence of obesity has tripled since the 1980s in many 

countries in the European regions, and there has been an alarming increase in other 

countries.  

The findings of Brandkvist (2019) support that there was an increase in the prevalence 

of obesity between the mid-1980s and mid-1990s in Norway. In addition, those 

individuals who were born after 1970 already had higher BMI in young adulthood. In 

examining these findings, it would be useful to have included the blood results of 

adolescents so that comparisons could be made among adolescents, young adults and 

adults during the period. In addition, participants aged 13- 80 were selected but the 

analysis of data for those younger than 18 years old was not reflected thus should the 

age group omitted be stated as participants? It would have been good to have included 

information on how observations were carried out as this could make it easier for the 

reader to examine the impact of the study. 



The study has been one of interest and can be used in identifying individuals who 

possess genetic predisposition to obesity so that early interventions can be implemented. 

It is important to model healthy lifestyles at all stages of life despite one’s genetic 

predisposition as this can reduce the prevalence of obesity globally. This practice will 

further decrease diseases and deaths worldwide as individuals improve their quality of 

life. 
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Panmictic Presumption 

The work of Brandkvist et al. is in many ways seminal (1). It is one of very few studies 

to engage the interplay between geneticity and the environment in the obesity pandemic. 

The authors show that the difference in BMI between the highest and lowest BMI 

genetic risk quintiles rose by 0.9 kg/m2 for men and 0.8 kg/m2 for women between the 

1960s and 2000s. From this they infer an obesogenic environment interacts with the 

genetic predisposition, causing an increasing disparity between high- and low-risk 

quintiles over time. However this conclusion requires an assumption of panmixia with 

regard to BMI. This is where individuals chose their partners randomly, with no BMI 

preference(2). In this paradigm, obesogenic alleles, would be randomly distributed and 

have the same distribution and concentration within individuals in the populations in the 

1960s as in the 2000s. However panmixia does not occur. There is very strong, indeed 

almost incontrovertible evidence that individuals select partners who are of a very 

similar BMI(3,4). This is assortive pairing and applies not only to obesity but a host of 



other phenotypes, whereby adults prefer those with similar traits(3,4). The net effect 

with regard to obesity; is that children of these obese dyads are more likely to carry 

more obesogenic alleles and display homozygosity for recessive high-risk genes, 

increasing the proclivity to adult obesity. Hence the high-risk quintiles in 2000 engender 

a much higher risk than the high-risk quintiles in the 1960s due to assortive pairing and 

increased combinations of high-risk and recessive obesogenic alleles in later 

generations. There is no need to implicate a putative obesogenic environment. A similar 

phenomenon occurs with lean individuals; who tend to select individuals of a similar 

BMI and their children carry genes that promote a healthy weight. There will thus be an 

increase in the BMI distribution and increased discrepancy between high genetic risk 

and low genetic risk individuals with subsequent generations. This was perceptively and 

elegantly identified by Kim et al. in the accompanying editorial which highlighted the 

fact that there has been a 30% increase in the BMI distribution between in the US(5). 

While this process will make the lean leaner and the obese more obese, it will also result 

in an increase in the mean BMI. This is because the BMI distribution curve is bell-

shaped with right-sided tail (positive skew) (6). Much larger deviations to the right of 

the curve are physiologically possible than to the left. Further, the average is very 

sensitive to extreme large values. The result is that children from obese conjugates, as 

adults, will increase the BMI more than their lean counterparts decrease it. 

Where there is a generational increase or polarisation of any phenotype, including BMI, 

the role of assorting pairing cannot be overlooking, as in this case. The finding may not 

therefore be a function of an obesogenic environment but rather basic sexual selection. 

1. Brandkvist M, Bjørngaard JH, Ødegård RA, Åsvold BO, Sund ER, Vie 
GÅ.Quantifying the impact of genes on body mass index during the obesity epidemic: 
longitudinal findings from the HUNT Study. BMJ. 2019 Jul 3;366:l4067. 
2. Burrell AS, Disotell TR Panmixia postponed: ancestry-related assortative mating in 
contemporary human populations. Genome Biol. 2009;10(11):245 
3. Ajslev TA, Angquist L, Silventoinen K et al. Assortative marriages by body mass 
index have increased simultaneously with the obesity epidemic. Front Genet. 
2012;3:125 
4. Cobb LK, McAdams-DeMarco MA, Gudzune KA, Anderson CA, Demerath E, 
Woodward M, Selvin E, Coresh J Changes in Body Mass Index and Obesity Risk in 
Married Couples Over 25 Years: The ARIC Cohort Study. Am J Epidemiol. 2016 Mar 
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Re: Quantifying the impact of genes on body mass index during the obesity epidemic: 

longitudinal findings from the HUNT Study 

The authors correctly reject data from under 18’s because of the correlation of BMI with 

longitudinal growth or to put it another way for the same body composition BMI is 

proportional to height. It is then incredible that they appear to ignore the substantial 

increase in average height that has occurred in western populations over the relevant 

period as at least a contributory factor. The fault in part lies with the World Health 

Organisation in giving an absolute definition of obesity utilising BMI deapite 

assurances from the original authors that this is not justified. A BMI of 30 does not have 

the same significance for a person of 2 metres (normal proportions) as for one of 1.6 

metres (obese). It would be interesting to know if a possible genetic factor for height 

and susceptible to the changing environment is also responsible for the increase in 

obesity which though real is exaggerated by determination by BMI. 
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Environments Influence our Genetic Blueprint – the Need to Think about Systemic 
Interdependencies  

Brandkvist et al’s [1] paper is an important contribution to demonstrate that our 

environments have a huge impact on our biological blueprint. Health and disease are 



indeed interconnected and interdependent – our recent paper has outlined the multi-

scale interdependencies between the macrolevel societal domains and the microlevel 

physiological pathways that regulate both, health and disease [2]. Obesity, like many 

other “modern lifestyle diseases”, are systemic problems, they only can be solved by 

system wide, rather than disease by disease, approaches. I hope their paper turns out to 

push forward the long overdue debate for health system redesign [3].  

1. Brandkvist M, Bjørngaard JH, Ødegård RA, Åsvold BO, Sund ER, Vie GÅ. 
Quantifying the impact of genes on body mass index during the obesity epidemic: 
longitudinal findings from the HUNT Study. BMJ. 2019;366:l4067. 
2. Sturmberg JP, Picard M, Aron DC, Bennett JM, Bircher J, deHaven MJ, et al. Health 
and Disease—Emergent States Resulting From Adaptive Social and Biological Network 
Interactions. Frontiers in Medicine. 2019;6:59. 
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British Medical Journal Print abstract 

Quantifying the impact of genes on body mass index during the 
obesity epidemic: longitudinal study based on HUNT 

Brandkvist M, Bjørngaard JH, Ødegård RA, Åsvold BO, Sund ER, Vie GA 

 

Study question How does the effect of genetic predisposition on obesity differ, as 

environments are becoming more obesogenic over time? 

Methods A large Norwegian study population with repeated measurements of body mass 

index (BMI) was followed longitudinally from 1963 to 2008. Overall, 118 959 people 

aged 13-80 from the general population participated, of whom more than half were 

included in analyses of the association between genetic predisposition and BMI over time. 

Study answer and limitations In this population before and after the transition to a more 

obesogenic environment (1960s to 2000s), genetic predisposition seemed to interact with the 

obesogenic environment resulting in a higher BMI in recent decades. For example, the estimated 

difference in BMI between genetically predisposed and non-predisposed 35 year old men and 

women was almost 1 BMI unit higher in the 2000s compared with the 1960s, suggesting clinical 

significance at a population level. Regardless, BMI has increased for both genetically predisposed 

and non-predisposed people, suggesting that the environment remains the main contributor. One 

limitation of this study is that those with a higher BMI in the oldest cohorts could have 

died and hence participated in genetic testing to a lesser extent than surviving participants.  

What this study adds Using a comprehensive dataset with the largest sample size and 

range of ages and years to date, the study suggests amplification of the effect of genes on 

BMI resulting in the increase in obesity observed in Norway between the mid-1980s and 

mid-1990s. 

Funding, competing interests, and data sharing See full paper on bmj.com for funding. 

No funding sources or other circumstances present potential conflicts of interest to this 

study. Data used in this project are available from the HUNT Data Access Committee and 

Norwegian Institute of Public Health on reasonable request.  
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