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Abstract

This thesis concerns fundamental aspects of coexistence and flow of two
fluid phases within porous media. Specifically, the focus is on thermo-
dynamic stability and equilibrium on the scale of a single pore and on
macroscopic steady-state properties of immiscible two-phase flow. In this
work, macroscopic steady-state properties refers to time-averages of time-
dependent quantities that describe flow through a volume element con-
sisting of many pores.

Capillary models are derived for free and adsorbed droplets and bub-
bles, and thick films in a pore. The thermodynamic stability of these
structures in a specific pore geometry is mapped out and the effect of pore
size and the pore being open or closed w.r.t. exchange of particles with the
surroundings is explored. Equilibrium structures are found. When struc-
tures are unstable, they are found to be unstable against perturbations
that can be classified as either translation or as condensation/evaporation.
Furthermore, stability of thin films and droplets on a flat solid surface is
considered. It is found that the often-cited criterion for stability of a flat
film, which states that the flat films are stable when the derivative of dis-
joining pressure w.r.t. film thickness is negative, applies in open systems.
In closed systems, however, stability is governed by mechanical instabili-
ties that require a large enough substrate size to render the film unstable.
Unstable droplets in both the open and closed containers are found to
represent saddle points and activation barriers in their respective energy
landscapes.

Numerical methods are presented that enable stable and fast time
integration of a pore network model. These eliminate previous problems
with numerical instabilities observed at low capillary numbers. The new
methods extend the range of capillary numbers for which the pore network
model is a tractable alternative and enables e.g. future studies of Haines
jumps in the low capillary number regime.

By pore network modelling and lattice-Boltzmann simulations in the
high capillary number limit, it is found that the total flow rate follows a
Darcy-type equation where the fluid viscosity is replaced by an effective
viscosity. This effective viscosity can be modelled by the Lichtenecker–
Rother equation. Results from more than 6000 steady-state simulations
using the pore network model are presented that range from the high capil-
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lary number limit and down to ∼ 10−4. Variation in dimensionless output
from the model is shown to be explainable by three dimensionless vari-
ables: the wetting fluid saturation, the viscosity ratio and a dimensionless
pressure gradient. In the high capillary number limit, the model gives
relative permeabilities that do not form straight lines when the viscosity
ratio is different from one.

This thesis also addresses the computational challenges associated with
calculating the thermodynamic stability limits of multi-component mix-
tures and the identification of extrema as minima, maxima or saddle points
in variational calculus.

iv



Preface

This thesis was submitted to the Department of Physics at the Norwegian
University of Science and Technology (NTNU) in partial fulfilment of the
requirements for the degree of philosophiae doctor (PhD). The thesis rep-
resents four years of work, in which teaching, courses and parental leave
equivalent to approximately 18 months in total are included. The work
was financed by the Faculty of Natural Sciences at NTNU and, partly, by
the Research Council of Norway through its Centres of Excellence fund-
ing scheme (project number 262644). The thesis supervisors have been
Professor Alex Hansen, Professor Signe Kjelstrup and Senior Research
Scientist/Professor II Øivind Wilhelmsen.

I am very grateful to Alex Hansen for accepting me as a PhD student
and for his help in acquiring funding. Alex deserves thanks for including
me in his research projects, for our many discussions and for sharing some
of his vast knowledge of physics. Also, it was in large part attending his
lectures in computational physics as a student, almost ten years ago now,
that inspired me to pursue a career as a researcher.

Many, many thanks are due to Signe Kjelstrup for her never-ending
enthusiasm and optimism, her confidence in me, her lightening fast read-
ing and feedback and her deep care for her students. Attending her course
in irreversible thermodynamics has been one of the most enlightening ex-
periences in my time at NTNU.

I am truly grateful to Øivind Wilhelmsen for being a good friend and
office mate, and for introducing me to capillary models. Øivind’s sense for
details and rigour makes working with him an undivided pleasure, and he
has helped me navigate through the nitty-gritty details of many problems.
Without him, I do not think this thesis would have been completed.

Also, I am of course indebted to all collaborators and coauthors and in
particular to Ailo Aasen, Eskil Aursand, Peder Aursand, Anders Auste-
gard, Dick Bedeaux, Raffaela Cabriolu, Eirik Grude Flekkøy, Morten
Hammer, Karl Yngve Lerv̊ag, Gaute Linga, Halvor Lund, Elisa Mag-
nanelli, Svend Tollak Munkejord, Jon Pharoah, Santanu Sinha, Geir Skau-
gen, Morten Vassvik and Mathias Winkler. Furthermore, I would like to
offer thanks to everyone at PoreLab and at the Gas Technology depart-
ment at SINTEF Energy Research for excellent discussions during lunches
and coffee breaks, although I have not been able to attend as many of them

v



as I would have liked.
Finally, I would like to thank my parents, for more than 30 years of

love and support, and my dear Ida and our children Vilma and Martin.
Ida’s support, emotional counselling and love have been inspiring when
work has gone well and indispensable all the times it has not. Vilma and
Martin have helped me keep a healthy distance to the thesis work. Their
smiles and laughter have duly reminded me of the things that are truly
important in life, and have done so every single day.

Trondheim, August 2020
Magnus Aa. Gjennestad

vi



Contents

Abstract iii

Preface v

Contents vii

1 Introduction 1
1.1 Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 List of papers . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Thermodynamics of fluids 7
2.1 Bulk fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Equations of state . . . . . . . . . . . . . . . . . . . 9
2.1.2 Gas-liquid coexistence . . . . . . . . . . . . . . . . . 12
2.1.3 Phase stability . . . . . . . . . . . . . . . . . . . . . 12

2.2 Fluids with interfaces . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Gibbs interface model . . . . . . . . . . . . . . . . . 18
2.2.2 Capillary model . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Thin films . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Flow in porous media 25
3.1 Single-phase flow . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Entropy production . . . . . . . . . . . . . . . . . . 27
3.1.2 Darcy’s law . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Immiscible two-phase flow . . . . . . . . . . . . . . . . . . . 30
3.2.1 Haines jumps . . . . . . . . . . . . . . . . . . . . . . 31

vii



3.2.2 The extended Darcy equations . . . . . . . . . . . . 33

4 Summary of results and conclusions 39

4.1 Paper I. The spinodal of single- and multi-component flu-
ids and its role in the development of modern equations of
state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Paper II. Thermodynamic stability of droplets, bubbles
and thick films in open and closed pores . . . . . . . . . . . 40

4.3 Paper III. Thermodynamic stability of volatile droplets
and thin films governed by the disjoining pressure in open
and closed containers . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Paper IV. Stable and efficient time integration at low cap-
illary numbers of a dynamic pore network model for immis-
cible two-phase flow in porous media . . . . . . . . . . . . . 43

4.5 Paper V. Rheology of high-capillary number flow in porous
media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Paper VI. Pore network modeling of the effects of viscosity
ratio and pressure gradient on steady-state incompressible
two-phase flow in porous media . . . . . . . . . . . . . . . . 45

5 Perspectives and outlook 47

Bibliography 51

Paper I. The spinodal of single- and multi-component fluids and its
role in the development of modern equations of state 63

Paper II. Thermodynamic stability of droplets, bubbles and thick
films in open and closed pores 81

Paper III. Thermodynamic stability of volatile droplets and thin films
governed by the disjoining pressure in open and closed containers

99

Paper IV. Stable and efficient time integration at low capillary num-
bers of a dynamic pore network model for immiscible two-phase
flow in porous media 117

viii



Paper V. Rheology of high-capillary number flow in porous media 139

Paper VI. Pore network modeling of the effects of viscosity ratio and
pressure gradient on steady-state incompressible two-phase flow in
porous media 149

ix



x



Chapter 1

Introduction

Porous media are ubiquitous both in nature and technology. For instance,
naturally occurring substances, e.g. soils and rocks, and synthetic ma-
terials, e.g. concrete, ceramics, paper and various fibrous materials, are
porous. Even biological materials such as wood, bone and the matrix of
cells that make up the human body may be considered porous materials.
Knowledge about their properties, and in particular the distribution and
flow of fluids through them, is critical for applications such as ground wa-
ter flow, spreading of contaminants in the ground, nuclear waste disposal,
geothermal energy, oil and natural gas recovery, drug delivery for cancer
treatment, catalysis and so on.

Perhaps the greatest challenge facing the world today is increased
global warming. To meet it, strategies both for adapting to the conse-
quences and eliminating net emissions of green house gases are required.
One expected consequence is more heavy rainfall. This increases the risk
of flooding and landslides [1]. Understanding how water flows into and
through the ground is critical for dealing with these threats. Such knowl-
edge is also important for drilling of water wells in areas that face droughts
to ensure supply of clean drinking water [2]. Many technologies to re-
duce green house gas emissions also rely on porous media. Examples
include geological sequestration of CO2 [3, 4], CO2 capture using porous
absorbents [5], porous components of fuel cells [6] and H2 storage [7, 8].

The pores of a porous material can be quite small, on the order of
millimetres or even nanometres. However, some applications, e.g. flow in
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soils and rocks, may require knowledge about flows on a length scale of
kilometres. Porous media are therefore often described either on the pore
scale, where the distribution of fluids within each pore is resolved, or on
the continuum scale1, where fluids and solid are described as superimposed
continua and each point in space contain a mixture of some or all phases.
Single-phase flow refers to the situation where a single fluid phase flows
within the solid porous medium and the term two-phase flow is used when
there are two fluid phases.

Two fluids that coexist in the pore space share common interfaces and
may also have interfaces toward the solid. Thermodynamic properties
of interfaces have been studied using density functional theories, square
gradient theory and capillary models, see e.g. [9]. There is still much left
to explore regarding the application of such approaches to porous media.

Experiments to study flow on the pore scale have used micromodels
consisting of small flow channels. These are often two-dimensional to
ease viewing and are made e.g. by etching in glass or using glass beads
[10, 11, 12, 13]. Recently, advances in x-ray microcomputed tomography
have also allowed the resolution of pore scale fluid distributions in three
dimensions [14, 15].

Several modelling approaches have also been applied to the pore scale.
These include direct numerical simulation approaches that solve the Navier–
Stokes equations in the pore space and use e.g. the level-set method [16] or
the volume-of-fluid method [17] to keep track of any fluid-fluid interfaces.
Another widely used approach is the lattice-Boltzmann method [18, 19].
These methods provide detailed information, but are computationally ex-
pensive. An alternative approach is pore network models which treat the
porous medium as a simplified network of volume elements that are often
the size of a single pore or throat. The average flow properties in these
elements are then considered, without taking into account the variation in
flow properties within each element. Such models are classified as either
quasi-static models [20, 21], which account for capillary forces, or dynamic
models [22], which account for both capillary and viscous forces.

1The continuum scale is often also referred to as the Darcy scale. In this thesis, we
use the term continuum scale to emphasize that fluids and solid are described as super-
imposed continua. Continuum mechanical descriptions, however, can be and are used
to describe flow also on the pore scale. One example are the Navier–Stokes equations.
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On the continuum scale, flow may be described by balance equations
for mass, momentum and energy [23]. The prevailing modelling frame-
works are Darcy’s law for single-phase flow and the extended Darcy equa-
tions for two-phase flow. The limitations of the latter and the proper
description of two-phase flow on the continuum scale is still a matter of
debate [24]. A large effort has gone into measuring the parameters of the
extended Darcy equations, the relative permeabilities and the capillary
pressure, for different situations, see e.g. [25, 26].

1.1 Scope of work

This thesis concerns fundamental aspects of coexistence and flow of two
fluid phases within in porous media. Specifically, the main focus is on
thermodynamic stability and equilibrium on the scale of a single pore and
on macroscopic steady-state properties of immiscible two-phase flow. By
macroscopic steady-state properties we here refer to time-averages of, pos-
sibly, fluctuating quantities that describe flow through a volume element
consisting of many pores. The research is disseminated in six published
journal articles.

Equilibrium states can be described thermodynamically as global min-
ima of an appropriate potential. A state is locally stable if it is a local
minimum, and unstable otherwise. Whether a particular state is a min-
imum or not, may be strongly dependent on the choice of ensemble, e.g.
whether the system is allowed to exchange particles with its surroundings
or not. This thesis seeks to explore what the consequences of this are for
stability of heterogeneous structures such as droplets, bubbles and films
in a pore. The results are documented in Paper II. An extension of
this work is the thermodynamic description and stability of thin films and
droplets, which is the topic of Paper III. Prerequisites for the work both
in Paper II and Paper III are thermodynamic descriptions and stability
limits of homogeneous fluids and this is the topic of Paper I.

Single-phase flow in porous media is, at this point, reasonably well
understood. Two-phase flow, on the other hand, is not and its description
of the continuum scale is still debated [24]. While this thesis is, of course,
not able to resolve this discussion, it seeks to add to it and to provide
tools for further studies. These contributions are published in Paper IV,
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Paper V and Paper VI.

The methods applied are theoretical and numerical, and the models
used and approaches taken are, to a large degree, well-established. Ex-
ample models are equations of state that describe the behaviour of bulk
fluids, capillary models to describe heterogeneous structures with inter-
faces, the disjoining pressure for thin films and a pore network model. A
large part of the thesis describes results from applying these theories and
models to specific situations. To be able to do so, however, there was
a need to address certain computational challenges. For instance, calcu-
lating the thermodynamic stability limits homogeneous multi-component
mixtures, doing stable and fast time integration of the pore network model
and the identification of extrema as minima, maxima and saddle points
in variational calculus. The resolution of these challenges are documented
as well in, respectively, Paper I, Paper IV and Paper II.

1.2 Outline of thesis

This thesis is made up of five chapters, followed by the six journal articles.
Chapter 2 concerns thermodynamic description of fluids and Chapter 3 is
about porous media flow. The purpose of chapters 2 and 3 is to provide a
basic introduction to these subjects, or at least the parts of these subjects
that are relevant to the papers. The intention is that a person who is an
expert in one area and not the other should be able to read the entire
thesis without unnecessary obstacles. The introduction is provided here
as it is too basic to be included in the research articles, but may be highly
non-trivial to someone without some experience in the fields. Chapter 4
gives a summary of the findings in the research papers. Perspectives and
outlook for the future are given in Chapter 5.

1.3 List of papers

The following papers are included in the thesis:

Paper I. P. Aursand, M. Aa. Gjennestad, E. Aursand, M. Hammer, and
Ø. Wilhelmsen. The spinodal of single- and multi-component fluids
and its role in the development of modern equations of state. Fluid
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Phase Equilibria 436 (2017), pp. 98–112. doi: 10.1016/j.fluid.

2016.12.018

Paper II. M. Aa. Gjennestad and Ø. Wilhelmsen. Thermodynamic sta-
bility of droplets, bubbles and thick films in open and closed pores.
Fluid Phase Equilibria 505 (2020), p. 112351. doi: 10.1016/j.

fluid.2019.112351

Paper III. M. Aa. Gjennestad and Ø. Wilhelmsen. Thermodynamic sta-
bility of volatile droplets and thin films governed by the disjoin-
ing pressure in open and closed containers. Langmuir 36 (2020),
pp. 7879–7893. doi: 10.1021/acs.langmuir.0c00960

Paper IV. M. Aa. Gjennestad, M. Vassvik, S. Kjelstrup, and A. Hansen.
Stable and efficient time integration at low capillary numbers of a
dynamic pore network model for immiscible two-phase flow in porous
media. Frontiers in Physics 6 (2018), p. 56. doi: 10.3389/fphy.

2018.00056

Paper V. S. Sinha, M. Aa. Gjennestad, M. Vassvik, M. Winkler, A.
Hansen, and E. G. Flekkøy. Rheology of high-capillary number
flow in porous media. Frontiers in Physics 7 (2019), p. 65. doi:
10.3389/fphy.2019.00065

Paper VI. M. Aa. Gjennestad, M. Winkler, and A. Hansen. Pore net-
work modeling of the effects of viscosity ratio and pressure gradi-
ent on steady-state incompressible two-phase flow in porous media.
Transport in Porous Media 132 (2020), pp. 355–379. doi: 10.1007/
s11242-020-01395-z

During time the author has been a PhD student, he has in addition
contributed to papers that are not part of this thesis. In chronological
order of publication, these include:

Paper VII. Ø. Wilhelmsen, A. Aasen, G. Skaugen, P. Aursand, A. Auste-
gard, E. Aursand, M. Aa. Gjennestad, H. Lund, G. Linga, and
M. Hammer. Thermodynamic modeling with equations of state:
Present challenges with established methods. Industrial & Engi-
neering Chemistry Research 56.13 (2017), pp. 3503–3515. doi: 10.

1021/acs.iecr.7b00317

5

https://doi.org/10.1016/j.fluid.2016.12.018
https://doi.org/10.1016/j.fluid.2016.12.018
https://doi.org/10.1016/j.fluid.2019.112351
https://doi.org/10.1016/j.fluid.2019.112351
https://doi.org/10.1021/acs.langmuir.0c00960
https://doi.org/10.3389/fphy.2018.00056
https://doi.org/10.3389/fphy.2018.00056
https://doi.org/10.3389/fphy.2019.00065
https://doi.org/10.1007/s11242-020-01395-z
https://doi.org/10.1007/s11242-020-01395-z
https://doi.org/10.1021/acs.iecr.7b00317
https://doi.org/10.1021/acs.iecr.7b00317


Paper VIII. M. Aa. Gjennestad, E. Aursand, E. Magnanelli, and J.
Pharoah. Performance analysis of heat and energy recovery ven-
tilators using exergy analysis and nonequilibrium thermodynamics.
Energy and Buildings 170 (2018), pp. 195–205. doi: 10.1016/j.

enbuild.2018.04.013

Paper IX. A. Hansen, S. Sinha, D. Bedeaux, S. Kjelstrup, M. Aa. Gjennes-
tad, and M. Vassvik. Relations between seepage velocities in immis-
cible, incompressible two-phase flow in porous media. Transport in
Porous Media 125 (2018), pp. 565–587. doi: 10.1007/s11242-

018-1139-6

Paper X. M. Winkler, M. Aa. Gjennestad, D. Bedeaux, S. Kjelstrup, R.
Cabriolu, and A. Hansen. Onsager-symmetry obeyed in athermal
mesoscopic systems: Two-phase flow in porous media. Frontiers in
Physics 8 (2020), p. 60. doi: 10.3389/fphy.2020.00060

6

https://doi.org/10.1016/j.enbuild.2018.04.013
https://doi.org/10.1016/j.enbuild.2018.04.013
https://doi.org/10.1007/s11242-018-1139-6
https://doi.org/10.1007/s11242-018-1139-6
https://doi.org/10.3389/fphy.2020.00060


Chapter 2

Thermodynamics of fluids

This chapter reviews some basic aspects of the thermodynamics of bulk
fluids and fluids with interfaces. The treatment of such systems is a vast
field that employs also far more advanced theory than what is covered
here. It is not the objective of this chapter to provide a comprehensive
review, but to give the reader an introduction to the topics treated and the
concepts used in Paper I, Paper II and Paper III. Furthermore, fluid
equations of state such as those presented may be used as closure relations
in continuum-scale modelling of multi-phase flows [23] and the concept
of interfacial tension, which is a critical parameter in two-phase porous
media flow, has its origins in the thermodynamic theory presented here.
The contents of this chapter thus also serve as a basis for the discussion
of porous media flow in Chapter 3. We use single-component fluids as
examples as these are studied in Paper II and Paper III.

2.1 Bulk fluids

The internal energy differential of a simple homogeneous bulk fluid is [36,
p. 36]

dU = TdS − pdV + µdN, (2.1)
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where S is the entropy, V is the volume and N is the number of particles.
The intensive1 properties temperature T , pressure p and chemical poten-
tial µ are thus partial derivatives of U w.r.t. S, −V and N , respectively.
The term TdS accounts for the flow of heat into the system, −pdV for
the mechanical work done on the system and µdN for the energy associ-
ated with any new particles introduced into the system. Since the internal
energy is extensive2 it follows from Euler’s theorem of homogeneous func-
tions that it can be expressed as [36, p. 60]

U = TS − pV + µN. (2.2)

An expression for a thermodynamic potential in terms of its natural
variables (S, V and N for the internal energy) is a fundamental relation
that can be differentiated to yield the remaining thermodynamic prop-
erties of the system [36, pp. 28, 41]. It is thus advantageous to have a
thermodynamic model for fluids on this form. Furthermore, it is often
practical to formulate such models in terms of the Helmholtz energy

F = U − TS, (2.3)

whose natural variables are T , V and N . Taking the differential and
using (2.1), the Helmholtz energy differential is

dF = −SdT − pdV + µdN. (2.4)

We then see that the entropy, pressure and chemical potential can be
obtained from F by differentiation,

S = −
(
∂F

∂T

)
V,N

, (2.5)

p = −
(
∂F

∂V

)
T,N

, (2.6)

µ =

(
∂F

∂N

)
T,V

. (2.7)

1Intensive properties do not change with a scaling of the system size, e.g.
p (βS, βV, βN) = p (S, V,N).

2Extensive properties scale with the system size, e.g. U (βS, βV, βN) = βU (S, V,N).
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It can be shown3 that the molar Helmholtz energy f is a function of
the temperature and the molar volume v = V/N only, i.e.

f (T, v) = F (T, V,N) /N. (2.8)

The differential of f is thus,4

df =

(
∂f

∂T

)
v

dT +

(
∂f

∂v

)
T

dv = −sdT − pdv. (2.9)

Since f = u− Ts, the differential of u is

du = Tds− pdv, (2.10)

which can be equivalently expressed as

du = Tds−
{
p/ρ2

}
dρ, (2.11)

where ρ = 1/v is the density. Dividing (2.2) by N , we get

u = Ts− pv + µ = Ts− p/ρ+ µ. (2.12)

2.1.1 Equations of state

A fundamental relation needs to have some physical content. This may be
provided through a mechanical equation of state (EOS). One of the sim-
plest equations of this kind, that describes both gas and liquid behaviour,
is the van der Waals equation of state,

p (T, V,N) =
RT

V −Nb −
N2a

V 2
, (2.13)

for which Johannes Diderik van der Waals received the 1910 Nobel prize
in physics. Example isotherms of this equation for CO2 are shown in
Figure 2.1.

3Since the Helmholtz energy is extensive, F (T, βV, βN) = βF (T, V,N). Subse-
quently choosing β = 1/N yields f (T, v) = F (T, V/N, 1) = F (T, V,N) /N .

4The latter equality follows from (∂f/∂T )v = (∂ {F/N} /∂T )V,N = −S/N = −s and
(∂f/∂v)T = (∂F/∂V )T,N = −p.
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Figure 2.1: Isotherms of the van der Waals EOS (2.13) for CO2, with parameters
a = 0.37 Nm4/mol2 and b = 0.043 l/mol (dashed vertical line). The dotted
parts of the isotherms represent locally unstable phases (see Section 2.1.3). For
isotherms below the critical temperature (304.1 K) there are pressures for which
the EOS predicts three possible volumes, one small (liquid phase), one large (gas
phase) and one intermediate (unstable phase).

In (2.13), R is the universal gas constant. The co-volume parameter
b accounts for the finite size of the particles in the fluid and makes the
pressure diverge towards infinity as V/N → b. The a parameter accounts
for intermolecular attraction between particles. Below the critical temper-
ature, the term −N2a/V 2 introduces a local minimum in the isotherms.
Thus the EOS predicts three possible volumes of the system for a speci-
fied temperature and pressure: one small volume, corresponding to a liquid
phase, one large volume, corresponding to a gas phase, and one intermedi-
ate volume, corresponding to a locally unstable phase (see Section 2.1.3).
In the limit V/N → ∞, the van der Waals equation reduces to the ideal
gas law.

This type of mechanical EOS, which gives p as a function of T , V and
N , alone does not provide enough information to derive a fundamental
relation. It will, however, if combined with a description of how the fluid
behaves in the rarefied limit with molar volume v∞ where the particles
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are too far apart to interact. In this rarefied state the system behaves as
an ideal gas and its Helmholtz energy is given by F i. An expression for
F i may be derived by assuming a model for the ideal gas heat capacity
at constant pressure or volume. We may then integrate to obtain the
Helmholtz energy at any volume V ,

F (T, V,N) = F i (T, v∞N,N) +

∫ V

v∞N

(
∂F

∂V

)
T,N

dV. (2.14)

The partial derivative being integrated is equal to −p and thus,

F (T, V,N) = F i (T, v∞N,N)−
∫ V

v∞N
p dV. (2.15)

Adding and subtracting an integral over the ideal gas pressure pi = NRT/V ,
and absorbing the subtracted integral into F i, we get

F (T, V,N) = F i (T, V,N)−
∫ V

v∞N

{
p− pi

}
dV. (2.16)

The integral term on the right-hand-side describes the deviation of the
Helmholtz energy from that of an ideal gas and is called the residual
Helmholtz energy [37, p. 21],

F r (T, V,N) = −
∫ V

v∞N

{
p− pi

}
dV. (2.17)

There are a number of different EOS in the literature that are more
sophisticated and accurate than the van der Waals EOS. Still, other cubic
equations, such as Soave–Redlich–Kwong (SRK) [38] and Peng–Robinson
(PR) [39], may be subjected to the same kind of integration procedure
in order to obtain a fundamental relation. This also applies for e.g. the
cubic-plus-association equation (CPA) [40], which uses a cubic equation
for the pressure with an added term to account for association effects. It
is the CPA EOS that is used in Paper II and Paper III.

Some modern EOS, e.g. the perturbed-chain statistically associating
fluid theory (PC-SAFT) EOS [41], the multi-parameter equation of state
for combustion gases and combustion gas-like mixtures (EOS-CG) [42]
and the multi-parameter equation GERG-2008 [43], are given as models
the Helmholtz energy (or the residual part) rather than as expressions for
pressure that need to be integrated.
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2.1.2 Gas-liquid coexistence

For a fluid system contained in a box with a fixed volume V and number
of particles N , that is kept at constant temperature T by exchanging heat
with its surroundings, the equilibrium state is one that maximizes the total
entropy of the system and the surroundings. This state will correspond
to a global minimum in the Helmholtz energy of the system [36, p. 155].
For the fluids described by one of the EOS mentioned in Section 2.1.1,
that are below the critical temperature, this equilibrium state is either a
gaseous state, a liquid state or a state in which a gaseous phase and a
liquid phase coexists.

A necessary condition for gas-liquid coexistence at equilibrium is that
the total Helmholtz energy differential,

dF = dFg + dF`, (2.18)

= −pgdVg + µgdNg − p`dV` + µ`dN`. (2.19)

is zero. Since N = Ng + N` and V = Vg + V`, then dNg = −dN` and
dVg = −dV`, and

dF = −{pg − p`}dVg + {µg − µ`} dNg. (2.20)

A necessary condition for a gas-liquid equilibrium is thus that

p` = pg, (2.21)

µ` = µg. (2.22)

The criteria (2.21) and (2.22) define the phase envelope. Such an
envelope is illustrated in Figure 2.2 for CO2, described by the van der
Waals EOS. It terminates at the critical point where the gas and liquid
densities converge and the two phases become indistinguishable.

An excellent and much more general treatment of phase equilibria in
mixtures is given by Michelsen and Mollerup [37].

2.1.3 Phase stability

An equilibrium state is a global minimum in the relevant thermodynamic
potential. A metastable state, on the other hand, represents a local min-
imum. A state that is not a minimum may have its free energy reduced
by infinitesimally small perturbations and is thus unstable.
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Figure 2.2: Phase envelope for CO2, as modelled by the van der Waals EOS. Gas
and liquid coexistence densities are shown in solid green and solid blue, respec-
tively. The equilibrium state is gas and liquid in coexistence for temperatures
and total densities ρ = N/V inside the envelope. The gas and liquid spinodal
curves are shown in dotted green and dotted blue. All curves terminate at the
critical point (black circle).
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The general question of phase stability is surprisingly technical and
complex. We therefore treat only the special case of stability of a single-
component phase at fixed temperature, volume and number of particles
here. This is the specific case relevant for the homogeneous phases con-
sidered in Paper II and Paper III. A more comprehensive discussion,
that considers mixtures and other ensembles, is given in [44], Paper I
and the references therein. A conceptually similar approach to that taken
here is used to analyse stability of heterogeneous systems in Paper II and
Paper III.

Consider a homogeneous phase with a fixed temperature T , volume V
and number of particles N and partition the phase into two parts, called 1
and 2. The two subsystems have volumes V1 and V2, respectively, contain
N1 and N2 particles and can freely exchange volume and particles with
each other, so that dN1 = −dN2 and dV1 = −dV2. Since the whole system
is homogeneous, the intensive variables of the two subsystems are initially
equal, e.g. p1 = p2 and µ1 = µ2.

The question of local stability of the homogeneous phase is then: Can
the total system system reduce its Helmholtz energy by small, local pertur-
bations in such a way that the two parts 1 and 2 attain different intensive
variables? Physically, this would mean that the system would sponta-
neously split into two phases with different intensive properties. To ad-
dress this question, we set up the Helmholtz energy differential to second
order,

dF = dF1 + dF2, (2.23)

= dxT
1

dF1

dx1
+ dxT

2

dF2

dx2

+ dxT
1

d2F1

dx2
1

dx1 + dxT
2

d2F2

dx2
2

dx2. (2.24)

Herein, x1 = [V1, N1]
T and x2 = [V2, N2]

T. Since the total volume and
the total number of particles are constant, we have that dx1 = −dx2 and
thus

dF = dxT
1

{
dF1

dx1
− dF2

dx2

}
+ dxT

1

{
d2F1

dx2
1

+
d2F2

dx2
2

}
dx1. (2.25)
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The first derivatives of the Helmholtz energy w.r.t. volume and number
of particles are equal to the negative pressure and the chemical potential,
respectively, see (2.6) and (2.7). Since the system is initially homogeneous,
p1 = p2 and µ1 = µ2 and the first-order term in dF is zero. Furthermore,
it may be shown5 that N1 d2F1/dx2

1 = N2 d2F2/dx2
2 and the Helmholtz

energy differential may then be reduced to

dF =
N

N2
dxT

1

d2F1

dx2
1

dx1. (2.26)

The Hessian matrix of F1 is

d2F1

dx2
1

=


(
∂2F1

∂V 2
1

)
T,N1

(
∂

∂N1

(
∂F1
∂V1

)
T,N1

)
T,V1(

∂
∂V1

(
∂F1
∂N1

)
T,V1

)
T,N1

(
∂2F1

∂N2
1

)
T,V1

 , (2.27)

and may be further simplified6 to

d2F1

dx2
1

=
1

N1

(
∂2f1
∂v21

)
T

[
1 −v1
−v1 v21

]
. (2.28)

The matrix in this expression is symmetric and may be decomposed as
QΛQT, where Λ is the diagonal matrix of eigenvalues and Q is a matrix
whose ith column qi is the eigenvector associated with the eigenvalue Λi.

5Intensive variables are zeroth-order homogeneous in the extensive variables of the
system, e.g. p (T, V,N) = p (T, βV, βN). By setting β = 1/N , we get that the pressure
can be considered a function of T and v, p (T, v) = p (T, V/N, 1) = p (T, V,N). Thus(
∂2F/∂V 2

)
T,N

= − (∂p/∂V )T,N = − (∂p/∂v)T /N . Since subsystems 1 and 2 initially

have equal intensive variables, (∂p1/∂v1)T = (∂p2/∂v2)T , and N1

(
∂2F1/∂V

2
1

)
T,N1

=

N2

(
∂2F2/∂V

2
2

)
T,N2

follows. A similar argument may be used for the other elements of

the Hessian matrix.
6According to (2.8), the molar Helmholtz energy is a function of T and v only. In

terms of the molar Helmholtz energy, we can write (∂F1/∂N1)T,V1
= f1−v1 (∂f1/∂v1)T ,

since N1 = V1/v1 and the the partial derivative is taken at constant V1. Differentiating
one more time w.r.t.N1 yields

(
∂2F1/∂N

2
1

)
T,V1

=
(
∂/∂N1

{
f1 − v1 (∂f1/∂v1)T

})
T,N1

=

v21
(
∂2f1/∂v

2
1

)
T
/N1. Similar arguments may be followed for the other elements of the

Hessian matrix.

15



Introducing the simplified Hessian, with the eigenvalue decomposition of
the matrix, the Helmholtz differential becomes

dF =
N

N1N2

(
∂2f1
∂v21

)
T

dxT
1 QΛQTdx1. (2.29)

The Helmholtz energy F is at a local minimum if dF is positive for all
possible dx1. This will be the case if all eigenvalues Λi have the same
sign as

(
∂2f1/∂v

2
1

)
T

. If the signs are opposite for one or more eigenvalues,
dx1 may be chosen along one of the corresponding eigenvectors to give a
negative dF and a reduction in the Helmholtz energy. The state is then
locally unstable. If an eigenvalue is zero, the variation in F along the
corresponding eigenvector is zero to second order and more information is
required in order to assess local stability.

The eigenvalues Λi satisfy the characteristic polynomial

Λ2
i = Λi

(
1 + v21

)
, (2.30)

and we therefore have the two eigenvalues Λ1 = 0 and Λ2 = 1+v21. Letting
dx1 be in the direction of the eigenvector q1 corresponds to perturbations
with dV1 = v1dN1. Such perturbations amount to moving in the mathe-
matical boundary between subsystems 1 and 2, with no physical change to
the system as a whole, including its Helmholtz energy, or to the intensive
variables of either subsystem. We can therefore ignore the eigenvalue Λ1

when assessing stability.

The remaining condition for stability is that dF is positive for pertur-
bations along the eigenvector q2. Since Λ2 is always positive, this is true
when (

∂2f1
∂v21

)
T

> 0. (2.31)

Since the partitioning of the system is arbitrary, and we could let N1 → N ,
we can drop the subscripts, multiply by the positive number 1/N and write

1

N

(
∂2f

∂v2

)
T

=

(
∂2F

∂V 2

)
T,N

= −
(
∂p

∂V

)
T,N

> 0, (2.32)
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as the criterion for stability of the homogeneous phase. Multiplying in-
stead with the positive number v2/N , the criterion may also be formulated
as

v2

N

(
∂2f

∂v2

)
T

=

(
∂2F

∂N2

)
T,V

=

(
∂µ

∂N

)
T,V

> 0. (2.33)

A fluid phase that does not satisfy these two equivalent relations corre-
sponds to one located on a dashed curve in Figure 2.1 and it will sponta-
neously decompose into a gas and a liquid phase.

The spinodals represent the limits of thermodynamic stability, i.e. the
curves where the stable phases become unstable and the stability criteria
(2.32) and (2.33) are satisfied as equalities. The gas and liquid spinodal
limits are shown in Figure 2.2 for CO2 modelled by the van der Waals
EOS. Spinodal limits of mixtures are treated in Paper I.

Some EOS may predict states that satisfy stability criteria between
the gas and liquid spinodals. We call such states pseudo-stable. To the
best of the author’s knowledge, they have never been observed they are
thus, when they appear, unfortunate artefacts of the EOS. Pseudo-stable
states are discussed further in Paper I.

2.2 Fluids with interfaces

The previous section treated the thermodynamic description of homoge-
neous bulk fluids. When a gas and liquid phase are in coexistence, how-
ever, they share an interfacial region where intensive properties such as
density and pressure may be different from the two bulk phases. In many
cases, and especially for small systems, treating the combined gas and liq-
uid system as the sum of the bulk gas phase and the bulk liquid phase is
insufficient for an accurate description.

In this section, we review the Gibbs interface model and the capillary
approach for describing heterogeneous systems. Furthermore, we briefly
mention the concept of disjoining pressure used to describe thin films, i.e.
heterogeneous systems with two interfaces in close proximity.

17



2.2.1 Gibbs interface model

An illustration of a density profile in the interfacial region in a gas-liquid
system of CO2 is shown in Figure 2.3. In the narrow, but finite, interfacial
region there is a continuously varying density profile that connects the
bulk densities in the gas and liquid phases. We will consider only planar
interfaces in this section.
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Figure 2.3: Illustration of the density profile (solid grey) around a planar gas-
liquid interface in CO2 at T = 220 K. The bulk liquid density ρ` and the bulk
gas density ρg are indicated by blue and green dashed lines, respectively. The
location of the equimolar Gibbs surface is shown as a dotted black line.

A thermodynamic treatment of such interfaces was introduced by Josiah
Willard Gibbs. His approach was to describe the interface as a two-
dimensional thermodynamic system that is separate from the bulk pha-
ses [45]. The combined system, with continuously varying properties, is
thus modelled in a discontinuous manner by two homogeneous bulk sys-
tems and an interfacial system. To the interface are assigned extensive
quantities such as an internal energy Ug`, an entropy Sg`, a particle num-
ber Ng` and an area Ag`. The total internal energy of the gas-liquid
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system, including the interface, is thus

U = Ug + U` + Ug`. (2.34)

Similar sums apply for the total entropy S and the total number of parti-
cles N ,

S = Sg + S` + Sg`, (2.35)

N = Ng +N` +Ng`. (2.36)

Since the interface is modelled as a two-dimensional surface, it has no
volume and the total volume is thus

V = Vg + V`. (2.37)

The internal energy differential of the interfacial subsystem is

dUg` = Tg`dSg` + γg`dAg` + µg`dNg`, (2.38)

where the partial derivative γg` is the interfacial tension. From the exten-
sivity of Ug`, we get the Euler relation,

Ug` = Tg`Sg` + γg`Ag` + µg`Ng`. (2.39)

From the example system in Figure 2.3, it is evident that the total
number of particles in the gas-liquid system can be obtained by integrating
the density profile

N = Ag`

∫ L/2

−L/2
ρ dx, (2.40)

over the length L of the system. Since two bulk systems are assumed
homogeneous, with spatially constant densities ρ` and ρg,

N` = Ag` {x∗ + L/2} ρ` = Ag`

∫ x∗

−L/2
ρ` dx, (2.41)

Ng = Ag` {L/2− x∗} ρg = Ag`

∫ L/2

x∗
ρg dx, (2.42)
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where x∗ is the location of the interface. Inserting these integrals into
(2.36) and solving for Ng`, we get that

Ng` = Ag`

∫ x∗

−L/2
{ρ− ρ`}dx+Ag`

∫ L/2

x∗
{ρ− ρg} dx. (2.43)

The dividing surface location x∗ may be chosen in a number of different
ways. One choice is such that Ng` = 0 and this defines the equimolar
Gibbs surface, illustrated in Figure 2.3.

2.2.2 Capillary model

The internal energy of the two-dimensional Gibbs model of the interface
was given by (2.38). Performing now a Legendre transformation, Fg` =
Ug` − TSg`, the Helmholtz energy of the interface is

Fg` = γg`Ag` + µg`Ng`. (2.44)

By choosing the dividing surface such that Ng` = 0, the second term in
this expression can be set to zero.

A capillary model for the Helmholtz energy of the total gas-liquid
system can thus be set up as the sum of two bulk-phase contributions plus
an interfacial tension term,

F = Fg + F` + γg`Ag`. (2.45)

To use such a capillary model to do calculations requires a model for
the bulk phases, usually and equation of state of the kind described in
Section 2.1.1, and a model for the interfacial tension.

The capillary modelling approach is a simple, yet powerful model for
the gas-liquid system. Wilhelmsen et al. [46] used it to study stability of
droplets and bubbles. They found that it accurately reproduced the solu-
tions from the more sophisticated square gradient model, which models the
spatially varying density profiles, except in the vicinity of the spinodals.
Furthermore, earlier works have established that stability of droplets and
bubbles is strongly affected by whether the system can exchange particles
with its surroundings or not, i.e. if it is open or closed. This work has, in
part, relied the capillary model [47, 48, 49].
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(a) (b)

(c) (d)

Figure 2.4: Illustration of the fluid structures considered in Paper II: (a) a
homogeneous fluid phase, (b) a free droplet or bubble that is not in contact with
the pore walls, (c) a droplet or bubble filling the entire cross-section of some part
pore and (d) a thick film of gas or liquid.

The capillary model may be used to describe heterogeneous structures
in pores by including also gas-solid and liquid-solid interfaces, so that the
total Helmholtz energy is7

F = Fg + F` + γg`Ag` + γgsAgs + γ`sA`s. (2.46)

The motivation for doing this is to extend the earlier analysis [47, 49] of
stability of droplets and bubbles to structures in pores. From these earlier
works, it is expected that pore size and whether the pore is open or closed
could affect stability and this is investigated in Paper II. The extended
capillary model could also be used to study e.g. capillary condensation in
porous media, where liquid phases may form at pressures below saturation.

In Paper II, models are derived that describe the Helmholtz energies
(2.46) of each of the structures illustrated in Figure 2.4: (a) a homogeneous
fluid phase, (b) a free droplet or bubble that is not in contact with the
pore walls, (c) a droplet or bubble filling the entire cross-section of some

7The energy of the three-phase contact line is not considered, but this could easily
be included in the analysis.
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part pore and (d) a thick film of gas or liquid. The equilibrium state of
a system corresponds to a minimum in some thermodynamic potential.
By computing the value of this potential, and evaluating stability, for
each of the structures (a)-(d), the equilibrium state for a specified set
of conditions is identified. Which thermodynamic potential should be
minimized depends on the boundary conditions. In a closed pore kept at
constant temperature, the Helmholtz energy should be minimized. In an
open pore that can exchange particles with is surroundings at a constant
chemical potential, the grand canonical energy

Ω = F − µN, (2.47)

should be minimized. Herein, µ is the chemical potential of the surround-
ings and N is the number of particles in the pore.

The derived Helmholtz energy models for the bubbles and droplets,
i.e. (b) and (c), are each a functions of a set of variables that describe the
configuration. The film Helmholtz energy model, on the other hand, is a
functional of the continuously varying film thickness along the pore. For
a particular film state to be stable, it is necessary to have a vanishing first
variation and a second variation which is positive for all possible pertur-
bations of that film profile. To establish that this is the case, or not, can
be very demanding. There was thus a need to address this computational
problem in order to asses stability of films. Its resolution is documented
in Paper II.

2.2.3 Thin films

The previous two sections treated modelling of interfaces separating two
bulk phases. In thin films, on the other hand, two interfacial regions
may be so close together that they begin to overlap and to interact. The
properties of the film phase located between the two interfaces may then
differ from the properties of a bulk phase. One approach to modelling this
situation is through the concept of the disjoining pressure Π, developed
by Boris Vladimirovich Derjaguin [50].

The disjoining pressure may be defined using the two containers illus-
trated in Figure 2.5, where there is a bulk gas phase and a thin liquid film
in the left container and there is a bulk liquid phase in the right. The thin
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pg pb

Figure 2.5: Two containers, where the left holds a thin liquid film (blue) and a
bulk gas phase (white) with pressure pg and the right holds a bulk liquid phase
with pressure pb. The film is connected to and in chemical equilibrium with the
bulk liquid. Furthermore, the system is in force balance, but the two pressures
pg and pb are not, in general, equal.

film and the bulk liquid phase are connected and in chemical equilibrium.
Furthermore, the system is in force balance, so the gas pressure pg is equal
to the normal pressure p⊥ in the film. Due to anisotropic stresses in the
film, however, the gas pressure is, in general, not equal to the bulk liquid
pressure pb. The disjoining pressure is defined as [50]

Π = p⊥ − pb. (2.48)

Further details on the disjoining pressure are given in Paper III and [50,
51]. For a specific temperature and set of materials, e.g. a water film on
a graphite surface [52, 53], the disjoining pressure is often assumed to be
a function of the film thickness h only. The curve obtained by plotting Π
vs. h is called a disjoining pressure isotherm.

The stability of flat liquid films that are assumed non-volatile, by ne-
glecting condensation and evaporation of the film, have been extensively
studied in the literature, see e.g. [54, 55, 56, 57]. One result is that flat
films are stable when dΠ/dh < 0. When, dΠ/dh > 0 on the other hand,
interfacial tension acts to suppress perturbations with short wavelengths,
whereas perturbations with wavelengths

λ > λ0 = 2π

√
γ∞g`

dΠ/dh
, (2.49)

can grow. Herein, γ∞g` denotes the gas-liquid interfacial tension of an in-
finitely thick film. Films that form droplets by succumbing to such insta-
bilities are said to undergo spinodal dewetting. Non-volatile films confined

23



on substrates that are smaller than λ0 may be stable [58, 59]. By dynamic
considerations, Sharma [60] found the stability criterion dΠ/dh < 0 ap-
plied also to evaporating films, when a specific model for the evaporation
rate was assumed.

Another phenomenon that can be described by the disjoining pressure
is the wetting properties of droplets in coexistence with thin, flat films. A
particularly well-known result is that the contact angle θ of a large droplet
is related to the film thickness and the disjoining pressure by [50, 61]

γ∞g` cos (θ) = γ∞g` + Πh−
∫ h

∞
Π dh. (2.50)

The stability of non-volatile and evaporating droplets has been studied
e.g. by Dörfler, Rauscher, and Dietrich [59] and Sharma [60], respectively.

Paper III discusses, consistently and on equal terms, the thermody-
namic stability of thin flat films and flat films in combination with droplets
in open and closed systems. These films are allowed to exchange particles
with a surrounding gas phase and may thus evaporate or condense. In the
open system, the gas may also exchange particles with an external par-
ticle reservoir. Previous works have shown that stability of droplets and
bubbles depends on whether the system is open or closed [47, 49]. Based
on the existing concept of disjoining pressure, a fundamental relation for
a liquid film phase is derived and used in a capillary modelling approach.
In this respect, Paper III is an extension of the work in Paper II, where
effects of overlapping interfacial regions were neglected.

As for the thick-film description in Paper II, the capillary approach
gives a Helmholtz energy model for the thin film which is a functional of the
continuously varying film thickness. The same computational challenges
in determining whether or not a particular film profile is a local minimum
in the Helmholtz energy are therefore encountered in Paper III, and they
are resolved by the same method.

24



Chapter 3

Flow in porous media

Flow in porous media is a vast subject that has been studied and de-
scribed with a wide variety of approaches. We shall here focus mostly two
example continuum-scale models: One model for single-phase flow and
one for two-phase flow. To form a natural continuation of the previous
chapter, we shall use the single-phase model place concepts like Darcy’s
law and permeability in a thermodynamic context. These concepts are
central to the findings in Paper V. Subsequently, we use the two-phase
model to introduce the traditional way of describing two-phase flow on the
continuum scale, in terms of the extended Darcy equations, relative per-
meabilities and the capillary pressure. Relative permeabilities form part
of the framework used to present the results in Paper VI. These results
are obtained by computer simulations using the pore network model and
new numerical solution procedures described in Paper IV. The concept
of Haines jumps, which are an important part of the background for the
new solution procedures, is also discussed.

In Chapter 2, u, s, v and ρ represented molar quantities. In this
chapter, we shall use the same symbols with the understanding that they
now represent mass-specific quantities.

3.1 Single-phase flow

We first consider a relatively simple one-dimensional case of a single-
component liquid phase flowing through a porous medium and use a
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continuum-scale model to describe it. On this scale, each point in space
represents an average over many pores and therefore has both liquid and
solid in it. The solid phase is here assumed incompressible and chemically
inert and is characterized by a constant density ρs and a temperature Ts.
The volume fraction of solid αs is constant in time, but may vary in space.
The porosity ϕ and liquid volume fraction α` are both equal to 1 − αs

and are assumed known. A more general model which includes also e.g.
elasticity of the solid can be found in [62].

Liquid mass is conserved and this is expressed by

∂t {α`ρ`}+ ∂x {α`ρ`w`} = 0, (3.1)

where ρ` is the liquid mass density and w` is the average flow velocity.
Momentum balance for the liquid phase is expressed as

∂t {α`ρ`w`}+ ∂x {w`α`ρ`w`}+ α`∂x {p`} = α`ρ`gx + τ`s, (3.2)

where p` is the pressure, gx is the x-component of the gravitational ac-
celeration vector and τ`s represents the frictional force between the solid
and the liquid phase. The terms of the right-hand side of the momentum
equation are thus α`ρ`gx due to gravitational forces and τ`s due to friction.
Any other forces acting on the liquid are ignored here.

Energy balance for the liquid phase is expressed as

∂t {α`ρ`e`}+ ∂x {w`α`ρ`e` + w`α`p` + j`} = α`ρ`gxw` + ε`s, (3.3)

where e` = u` + w2
`/2 is the sum of the internal and kinetic energy per

liquid mass. The term ε`s accounts for flow of heat from the solid phase
and j` is the heat flux from e.g. thermal conduction through the liquid.

Since the solid is rigid, incompressible and chemically inert, it only has
an energy equation

∂t {αsρsus}+ ∂x {js} = −ε`s, (3.4)

where js is the heat flux through the solid.
The unknown quantities in this description are T`, Ts, u`, us, ρ`, w`,

p`, τ`s, ε`s j` and js, giving the a total of eleven unknowns. To determine
these, we have the four balance equations: liquid mass (3.1), liquid mo-
mentum (3.2), liquid energy (3.3) and solid energy (3.4). Assuming local
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equilibrium and that the liquid and solid can be described at every point
by one bulk-phase equation of state (EOS) each, we also have three consti-
tutive relations provided by these EOS: u` (T`, ρ`), us (Ts), p` (T`, ρ`). To
close the system, models for τ`s, ε`s, j` and js may be selected. The second
law of thermodynamics requires a positive local entropy production and
this gives constraints on what kind of models for that are acceptable.

3.1.1 Entropy production

We start the derivation of the entropy production by combining the liquid
mass and momentum equations, (3.1) and (3.2), to get a balance equation
for the kinetic energy,

∂t

{
1

2
α`ρ` {w`}2

}
+ ∂x

{
w`

1

2
α`ρ` {w`}2

}
= α`ρ`gxw` + τ`sw` − w`α`∂x {p`} . (3.5)

Introducing this into the energy equation (3.3) gives a balance equation
for the internal energy,

∂t {α`ρ`u`}+ ∂x {w`α`ρ`u`}
= εs` − ∂x {j`} − τ`sw` − p`∂x {w`α`} . (3.6)

The terms on the right-hand side are, respectively, due to heat flow into
the liquid from the solid, heat flow through the liquid, dissipation of kinetic
energy due to friction and compression.

The entropy equation for the liquid can now be obtained by introduc-
ing (2.11)1, the internal energy differential du` = T`ds` +

{
p`/ρ

2
`

}
dρ`, in

combination with the mass balance equation (3.2) into the internal energy
equation (3.6). This yields

∂t {α`ρ`s`}+ ∂x

{
w`ρ`s` +

j`
T`

}
=
ε`s
T`
− τ`sw`

T`
+ j`∂x

{
1

T`

}
. (3.7)

1Equation (2.11) has the same form when expressed in terms of mass-specific rather
than molar quantities. This can be seen by dividing it by the molar mass m and letting
u/m 7→ u, s/m 7→ s and ρm 7→ ρ.
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A similar approach for the solid phase, where dus = Tsdss, yields the
entropy equation,

∂t {αsρsss}+ ∂x

{
js
Ts

}
= −ε`s

Ts
+ js∂x

{
1

Ts

}
. (3.8)

Adding together the two entropy equations, the sum of the right-hand
sides give the local entropy production,

σ = ε`s

{
1

T`
− 1

Ts

}
− τ`sw`

T`
+ j`∂x

{
1

T`

}
+ js∂x

{
1

Ts

}
. (3.9)

The current model should, of course, obey the second law of thermody-
namics and have a positive σ. Choosing the constitutive models for τ`s,
ε`s, j` and js such that all terms in (3.9) are positive is sufficient to ensure
this. The first term is positive if heat flows from the hotter to the cooler
phase. The second term is positive if the frictional force always acts in the
direction opposite to the flow velocity. The final two terms are positive if
the heat flux within each phase is against temperature gradient.

3.1.2 Darcy’s law

In this section, we give a brief motivation for Darcy’s law. For more formal
derivations based on volume averaging, we refer to [63, 62].

The dimensionless Reynolds number is [64, p. 57],

Re =
ρwl

η
, (3.10)

where ρ, w, l and η are, respectively, the characteristic density, flow ve-
locity, length scale and viscosity. In porous media flow, l may be chosen
as the typical pore diameter. The Reynolds number represents the ratio
of inertial to viscous forces.

If the porous medium we are considering has relatively small pores
and the liquid flowing through it is relatively viscous, the flow will be
characterized by a low Reynolds number. At low Reynolds numbers, the
flow in each pore is laminar and, inspired by the case of Poiseuille flow [64,
pp. 51, 58], we may model the average frictional force per volume of liquid
as proportional to the viscosity η` and to the flow velocity w`. If we
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then choose the constant of proportionality as ϕ/κ, and thus define the
permeability κ, we can set

τ`s
α`

= −ϕ
κ
η`w`. (3.11)

From (3.9) it is easily confirmed that this model for τ`s leads to positive
entropy production from the frictional force term.

Since the Reynolds numbers are low, we may also neglect the inertial
term in the momentum equation (3.2). Steady-state flow is then governed
by a much simplified version of the momentum balance equation (3.2),

τ`s
α`

= ∂x {p`} − ρ`gx. (3.12)

Combining (3.12) and (3.11) we get Darcy’s law

q` = − κ
η`
{∂x {p`} − ρ`gx} , (3.13)

where the volumetric flux q` = w`α` has been introduced. This equation
is named after the French hydraulic engineer and scientist Henry Philibert
Gaspard Darcy.2

One important feature of (3.13) is that it separates the proportionally
factor κ/η` in two numbers, where the viscosity η` is a property of the
liquid and the permeability κ is a property of the porous medium. There-
fore, if the permeability of a porous medium is measured using one liquid,
the flow rate of another fluid is easily calculated, if its viscosity is known.3

In many cases, it is reasonable to assume that the liquid is incom-
pressible, i.e. that ρ` is a constant. In such a case, the steady-state mass
conservation equation is ∂x {w`α`} = 0, stating that the volume flux q` is

2Darcy is famously credited for designing the public water system of Dijon, France
in the 1840s [65]. The design and construction was documented in his book with the
English title “The Public Fountains of the City of Dijon” [66], published in 1856. In
this book, Darcy’s formulation of (3.13) appears in Appendix D, a part concerned with
water filters utilizing sand.

3A necessary condition for this to hold is that the no-slip condition on the solid
surfaces is satisfied, which it typically is for liquids, but is not always for gases. Gases
may slip at the solid walls when their mean free path is not small w.r.t. the pore size.
This is known as the Klinkenberg effect. Darcy’s law is then invalid or the permeability
must be corrected [67].
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constant along the x-direction. Equation (3.13) is then easily integrated
over a finite length L with uniform κ to yield

q` = − κ
η`

{
∆p`
L
− ρ`gx

}
, (3.14)

where ∆p` is the pressure difference over the length L.

This section has treated the case of single-phase flow in porous me-
dia. The problem of two-phase flow is considerably more complex. This
is, in part, due to the presence of interfaces between the two fluids and
the existence of two different kinds of fluid-solid interface [68]. At high
flow rates, however, where the viscous forces are much larger than the
interfacial forces, these interfacial forces should not be important for the
fluid flow. By simulations with a pore network model and the lattice-
Boltzmann method, Paper V finds that horizontal two-phase flow can be
described by Darcy-type equation similar to (3.14), where the viscosity η`
is replaced by an effective viscosity.

3.2 Immiscible two-phase flow

Compared to the case of single-phase flow, two-phase flow in porous media
is much more complex and exhibits a richer range of physical effects. The
two phases can have different viscosities and densities, and viscous and
gravitational forces may thus affect them differently. Furthermore, three
types of interface are now present [68]. This results in interfacial, i.e.
capillary, forces that affect the flow. Capillary forces tend to dominate
when flow rates are low and viscous forces are small. One phase will
usually wet the solid to a lager degree than the other. We therefore adopt
a widely used convention and label the most wetting phase “wetting” (w)
and the least wetting phase “non-wetting” (n). We restrict the attention
to immiscible flow, where particles from one phase may not be transferred
to the other. The terms phase and fluid will be used interchangeably in
this section.

To characterize two-phase flow, the dimensionless capillary number
and the viscosity ratio are often used. The capillary number describes the
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ratio of viscous to capillary forces,

Ca =
ηw

γwn
, (3.15)

where η is the characteristic fluid viscosity, γwn is the fluid-fluid interfacial
tension and w is a characteristic flow velocity. The viscosity ratio is

M =
ηn
ηw
. (3.16)

In their seminal work, Lenormand, Touboul, and Zarcone [11] set up
maps in terms Ca and M to describe drainage processes. In drainage, the
non-wetting fluid flows into a porous medium and displaces the wetting
fluid. The opposite process is called imbibition. For drainage, they iden-
tified three types of displacement regime: (i) Stable displacement, which
occurs when the viscous forces in the injected fluid dominate. This results
in a more or less flat displacement front. (ii) Viscous fingering is obtained
when viscous forces in the displaced fluid dominate. Tree-like structures
then emerge, which grow in direction of the outlet. (iii) Capillary finger-
ing occurs when capillary forces dominate. This regime is characterized
by tree-like structures that grow in all directions, also backwards toward
the inlet. Example drainage processes representing these three regimes
simulated with the pore network model from Paper IV are shown in
Figure 3.1. An example of a practical consequence of these displacement
regimes is their effect on the storage efficiency of CO2 in geological seques-
tration, see e.g. [4].

3.2.1 Haines jumps

One important concept in drainage is Haines jumps [69]. An illustra-
tion of such jumps, simulated by the pore network model in Paper IV,
is shown in Figure 3.2. As non-wetting fluid is injected into a porous
medium at constant flow rate, the external pressure needed to drive the
flow fluctuates [70]. Due to capillary forces, an increasingly larger pressure
is needed when the invasion front moves into narrowing necks. When the
non-wetting fluid front breaks through a neck and invades a new pore,
there is a sudden drop in the driving pressure. For low injection rates,
it has been observed that the invasion front retracts near the point of
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(a) (b) (c)
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Figure 3.1: Example displacement patterns simulated with the pore network
model from Paper IV. Figures (a)-(c) show an example drainage process from
the stable displacement regime (Ca = 10−1, M = 102), (d)-(f) show one from
the viscous fingering regime (Ca = 10−4, M = 10−3) and (g)-(i) one from the
capillary fingering regime (Ca = 10−6, M = 1). The networks are periodic in the
horizontal direction. Drawn link widths are chosen for illustrative purposes and
are not to scale.
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break-through [70, 71], because the non-wetting fluid volume needed to
fill the newly invaded pores must be supplied internally rather than from
the external feed. Local flow velocities during these events may be large,
even though the injected flow rate is small. They may thus contribute
significantly to viscous dissipation [72, 4] and to entropy production and
the detriment of energy efficiency in the drainage process.

The capillary number in Figure 3.2 is 10−5. Numerical instabilities
at low capillary numbers is a long-known problem for various types of
dynamic pore network models [73], and a whole section was devoted to
this topic in the comprehensive review by Joekar-Niasar and Hassanizadeh
[22]. The pore network model in Paper IV is of the Aker type [74].
When this kind of model is used, numerical instabilities are observed as
interfaces jumping back and forth between consecutive time steps, in a
manner that is unphysical and certainly not observed in experiments. This
has restricted use of the model to relatively high capillary numbers. Proper
resolution two-phase flow at low capillary numbers, and Haines jumps in
particular, require stable simulations. Paper IV describes how this can be
achieved and uses a Haines jump test case to demonstrate that simulations
are indeed stabilized.

3.2.2 The extended Darcy equations

On the continuum scale, the fine pore-scale details of displacement pat-
terns such as those in Figure 3.1 are averaged out. Each point in space
represents an average over many pores and therefore has both wetting
fluid, non-wetting fluid and solid in it. Their respective volume fractions
are αw, αn and αs. A fundamental variable in porous media literature is
the saturation. The saturation of phase i is the fraction of the pore volume
occupied by that phase, i.e. αi/φ.4 The volumetric flow rate of phase i
per area of porous medium is qi. The average flow velocity is wi = qi/αi.

One treatment of two-phase flow on the continuum scale, that seeks to
have a large degree of generality, can be found in [75, 76]. This approach
explicitly considers interfaces and employs macroscopic balance equations
for mass, momentum and energy for each phase and each interface. To

4To avoid a notational conflict with the entropy, we do not give the saturation its
own symbol here and use instead αi/φ.
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Figure 3.2: Illustration of Haines jumps simulated with the pore network model
from Paper IV, with Ca = 10−5 and M = 1. Non-wetting fluid (blue) is
injected at the bottom of the networks in (a)-(c) at a constant rate and displaces
the wetting fluid (grey). The pressure at the top of the network is fixed while
that at the bottom is varied in order to get the specified flow rate. The drainage
process proceeds by successive invasion of pores. The invaded pores are indicated
by circles in (a)-(c). Each invasion is here associated with a spike in driving
pressure (d). The network is periodic in the horizontal direction. Drawn link
widths are chosen for illustrative purposes and are not to scale.
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make predictions, however, constitutive relations are needed and, in most
practical cases, some simplifying assumptions. The extended Darcy equa-
tions represent one such choice of assumptions and constitutive relations.
Another approach to the description of flow on the continuum scale was
given by Kjelstrup et al. [77].

We discuss here a much less general case with an incompressible, rigid
and chemically inert solid phase and two fluid phases, w and n, that are
immiscible and do not exchange particles. As in the single-phase case, the
solid density ρs is a constant and the solid volume fraction αs and the
porosity ϕ are a known quantities that vary only in space and not in time.
Furthermore, we assume thermal equilibrium between all phases and they
thus have the same temperature T at every point.

Fluid mass is conserved, and this is expressed on the continuum scale
as [23]

∂t {αiρi}+ ∂x {wiαiρi} = 0, (3.17)

for each phase i ∈ {w,n}. The traditional way of modelling the fluid flow
is to use a two-phase extension of Darcy’s law (3.13) [23],

wiαi = −κκ
r
i

ηi
{∂x {pi} − ρigx} , (3.18)

where κri is the relative permeability of phase i. In this approach, it is
assumed that the flow of each fluid can be described by Darcy’s law, where
the effective permeability of the porous medium to one fluid is reduced by
a factor, the relative permeability, due to the presence of the other. This
idea dates back to the experimental work of Wyckoff and Botset [78] from
the 1930s. They studied the simultaneous flow of CO2 and water through
sand and recorded the reduction in effective permeability of both fluids,
relative to the single-phase flow cases, for different water saturations.

In the flow description consisting of (3.17) and (3.18), ηw, ηw, κ, ϕ and
gx may be assumed known. There are then eleven unknown quantities: T ,
αw, αn, ρw, ρn, pw, pn, ww, wn, κrw and κrn. To determine these, we have
two mass conservation equations (3.17), two constitutive relations for the
flow rate (3.18) and αw + αn = ϕ. With the additional assumption of
local equilibrium and the applicability of bulk-phase EOS, the relations
pw (T, ρw) and pn (T, ρn) may be provided. We then need an additional four
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constitutive equations to close the system. One is obtained by specifying
a known temperature T , or an energy equation. The other three are often
functional relationships for κrw, κrn, and pn − pw, in terms of the other
variables in the problem. The quantity pn − pw is often identified as the
capillary pressure pc [24].

When closure is obtained using the capillary pressure, it often assumed
to be a function of saturation, i.e. pc (αw/ϕ). In this case, pc may depend
on the history of the porous medium and be different for e.g. a drainage
process and an imbibition process following it. It has been suggested that
the reason for this is, in part, the incomplete functional dependence of the
capillary pressure and that more variables must be introduced to represent
the fluid distribution in the porous medium [24, 79, 68].

If the fluids are assumed incompressible and isothermal, so that ρw, ρn
and T are known constants, the mass conservation equations (3.17) and
the extended Darcy equations (3.18) may be combined to give

∂t {αw}+ ∂x {wwαw} = 0, (3.19)

and

∂x

{
κκrw
ηw
{∂x {pw} − ρwgx}+

κκrn
ηn
{∂x {pn} − ρngx}

}
= 0, (3.20)

with unknowns αw, αn, pw, pn, ww, wn, κrw and κrn. A closed system may
be obtained by combining the two equations above with αw + αn = ϕ,
(3.18) and constitutive relations for κrw, κrn, and pn − pw.

Although the extended Darcy equations are widely used and have,
arguably, been useful in many engineering applications, see e.g. [3, 80,
81], their theoretical foundation is not as sound as that of Darcy’s law for
single-phase flow. As stated by Miller et al. [23], “While the relationship
between this approach and a formal momentum balance approach has been
established for the limiting case of low Reynolds number in single-fluid
systems, the common multiphase extension of Darcy’s law to multiphase
systems is not rigorously based.”.

Hassanizadeh and Gray [76] do give a derivation of the extended Darcy
equations, based on formal averaging and explicit consideration of inter-
faces. To obtain them, however, they rely on a number of simplifying
assumptions. Among them is a first-order expansion of the dissipative
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Figure 3.3: Example relative permeabilities for the network shown in Figure 3.1
computed with the pore network model described in Paper IV and a constant
pressure gradient. Fluid viscosities are equal, i.e. M = 1.

friction forces in the velocities of the fluids and interfaces, relative to the
solid. This should be valid close to equilibrium, when these velocities are
small, but the linear relation between flow rate and pressure gradient is
nonetheless an assumption in the derivation and not a result of it. Further
necessary assumptions include that coupling between velocities can be ig-
nored. Other approaches to a derivation of the extended Darcy equations
are given in e.g. [82, 83].

Relative permeabilities are often assumed to be functions of the satu-
rations only, and an illustration of how relative permeabilities may vary
with saturation is provided in Figure 3.3. It is, however, well established
that this is not generally the case, see e.g. [84, 12, 85, 14, 86]. In par-
ticular, dependence on capillary number and on fluid properties such as
fluid-fluid interfacial tension and viscosity ratio has been reported. The
dependence of relative permeabilities on fluid properties makes them very
different from the absolute permeability κ, which is a property of the
porous medium.

Using the extended Darcy equations is thus complicated by the need
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for a number of assumptions to be valid. It may be difficult to know for,
say, a given experiment, that they are. The view may then be taken that
the extended Darcy equations define the relative permeabilities. The equa-
tions are thus valid, regardless of the validity of the underlying assump-
tions, because the relative permeabilities take on any value that satisfies
the equations. They thus obtain a complex functional dependence that
may be explored and correlated experimentally or using computer sim-
ulations. The relative permeabilities may in this case be understood as
dimensionless quantities that can be used descriptively and the extended
Darcy equations as a framework in which to present results of experiments
and computer simulations. This seems to be the view taken in practice by
many works.

The work in Paper V and Paper VI both represent efforts to extract
information about continuum-scale two-phase flow in steady-state. The
approach is to use, mainly,5 the pore network model described in Paper
IV, which resolves the flow on the pore scale, and subsequently compute
time-averaged quantities for the entire network. In Paper VI, steady-
state flow rates are computed for a number of different pressure gradients,
wetting fluid saturations, pore sizes, fluid viscosities and fluid-fluid interfa-
cial tensions. The results are presented and discussed using dimensionless
numbers and the relative permeabilities are two of them. Incompress-
ible flow is considered in a macroscopically one-dimensional case with no
gravity and periodic boundary conditions. As a result of the boundary
conditions, there is no difference between the pressure gradients in the
two fluids.

The pore network model used is of the Aker type, which has been used
extensively to study various aspects of steady-state flow [87, 88, 89, 90,
91]. In particular, Knudsen, Aker, and Hansen [87] performed simulations
with equal viscosities, i.e. M = 1, and one value for the interfacial tension,
and studied the effect of changing total flow rate on fractional flow and
relative permeabilities. Paper VI is an extension of this work, which
considers the effect of viscosity ratio and discusses the results in light of
the findings at high capillary numbers in Paper V.

5Lattice-Boltzmann simulations are also used in Paper V.
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Chapter 4

Summary of results and
conclusions

This chapter reviews the most important results and contributions of the
papers included in this thesis and their conclusions.

4.1 Paper I

P. Aursand, M. Aa. Gjennestad, E. Aursand, M. Hammer, and
Ø. Wilhelmsen. The spinodal of single- and multi-component
fluids and its role in the development of modern equations of
state. Fluid Phase Equilibria 436 (2017), pp. 98–112. doi:
10.1016/j.fluid.2016.12.018

The criteria for thermodynamic stability of a single-component homo-
geneous phase, at constant temperature, volume and number of parti-
cles, were derived in Section 2.1.3. Paper I considers the thermody-
namic stability of mixtures and considers also different ensembles. While
the stability criteria for these cases are known, see e.g. [44], Paper I
presents a robust methodology for calculating the spinodal curves and ap-
plies this method to several advanced equations of state (EOS), including
PC-SAFT [41] and GERG-2008 [43]. The spinodal curve represents the
limit of thermodynamic stability, where a stable homogeneous phase be-
comes unstable. Gas and liquid spinodals are calculated and compared for
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a range of different EOS and large differences are observed, particularly
for the gas spinodals. If the locations of the spinodals can be determined,
this could be used in the fitting of EOS and improve predictions in the
metastable regions.

EOS may predict pseudo-stable single-component states, between the
gas and liquid spinodals. Such states are perhaps most easily recognized
in some modern EOS like GERG-2008, as they are manifested in this case
in the slope of the pressure-volume isotherm, but it is found in Paper I
that they are present also in the much simpler van der Waals equation of
state (2.13). As such states have, to the authors’ knowledge at least, never
been observed, they should not be predicted by an EOS either. Paper I
presents inequality constraints that could be used in the fitting of single-
component EOS parameters to avoid them. If satisfied, the constrains
guarantee no pseudo-stable states between the spinodals, regardless of
choice of ensemble.

In bulk-phase experiments to measure properties of homogeneous pha-
ses, thermal fluctuations will trigger homogeneous nucleation before the
spinodal is reached. This occurs at the limit of superheat for liquids and
at the limit of supersaturation for gases. The region between the limit of
superheat/supersaturation and the spinodals is thus inaccessible in such
experiments. In Paper I, superheat and supersaturation limits are cal-
culated using classical nucleation theory and superheat limits are found
to agree well with experimental data. Despite being unable to predict nu-
cleation rates accurately, classical nucleation theory works well to predict
superheat limits because these are insensitive to errors in the nucleation
rate.

4.2 Paper II

M. Aa. Gjennestad and Ø. Wilhelmsen. Thermodynamic sta-
bility of droplets, bubbles and thick films in open and closed
pores. Fluid Phase Equilibria 505 (2020), p. 112351. doi:
10.1016/j.fluid.2019.112351

Paper I was concerned with the stability of homogeneous phases. Paper
II considers the thermodynamic stability of heterogeneous structures in
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a pore, i.e. free and adsorbed droplets and bubbles and thick films, see
Figure 2.4. This is done by employing capillary models for each structure.
These models were briefly introduced in Section 2.2.2, and include up
to three types of interface: liquid-solid, gas-liquid and gas-solid. The
examined systems are isothermal and the effects on stability of pore size
and whether or not the pore is closed, i.e. containing a fixed number of
particles, or open, and allowed to exchange particles with a reservoir with
constant chemical potential, is examined. Water at 358 K, as described
by the cubic-plus-association modification of the Soave–Redlich–Kwoing
EOS, is used as the example fluid.

The capillary model describing the film is formulated as a functional
integral representing its Helmholtz energy. While identification of station-
ary states (with vanishing first variation) of this functional can be done
by solving the Euler–Lagrange equation [92], this approach does not give
any information about the stability of such states. A new methodology is
therefore presented, and documented in detail in the supplementary mate-
rial, that can be used to discretize the functional integrals and thus asses
stability. The procedure is general and can be applied to many problems
in variational calculus. It is utilized also in Paper III.

It is found that the observed instabilities for the films and the adsorbed
droplets/bubbles belong to one of two distinct classes: (1) translation and
(2) condensation/evaporation. The general trend is that translation in-
stabilities are observed in the closed pores while both translation and con-
densation/evaporation instabilities are seen in the open pores, but some
exceptions are seen.

The thermodynamic stability limit of adsorbed droplets and bubbles in
both large open and large closed pores is determined by their mechanical
stability. Mechanical stability is closely linked to the pore shape. This is
also the case for a film in a closed pore. In open pores, the film is chemically
unstable except for very low film-phase contact angles and for a limited
range in external pressure. The difference in thermodynamic stability
in open and closed pores and the presence of condensation/evaporation
instabilities emphasizes the importance of not restricting the focus to me-
chanical force balance and mechanical stability and instead use a more
complete thermodynamic analysis.

Phase diagrams are presented that show the stable structures with
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the lowest free energy, the equilibrium structures. For the closed pore,
the phase diagram is mapped out in terms of contact angles and average
particle density. An important feature is the appearance and increase in
size of regions in the phase diagram where the homogeneous phase is the
equilibrium structure, as pore size is reduced.

4.3 Paper III

M. Aa. Gjennestad and Ø. Wilhelmsen. Thermodynamic sta-
bility of volatile droplets and thin films governed by the dis-
joining pressure in open and closed containers. Langmuir 36
(2020), pp. 7879–7893. doi: 10.1021/acs.langmuir.0c00960

Paper III is focused on systems consisting of thin liquid films and droplets
adsorbed on the flat solid surface of a container’s inside wall. A gas phase
fills the volume of the container that is not occupied by liquid, and the gas
and liquid phases may exchange particles with each other. The systems
are considered isothermal and water at 293.15 K is used as the example
fluid.

A capillary-type description is used and this is based on an EOS that
models the bulk-phase liquid behaviour and a model for the disjoining
pressure [50] as a function of film thickness. The fundamental assumption
is that any departure from bulk-phase behaviour exhibited by the film is
captured by the disjoining pressure. Two analytically obtainable results
from the relation is that the film-solid interfacial tension depends on the
film thickness and the reproduction of Derjaguin’s equation (2.50) for the
contact angle of a large droplet in mechanical force balance with a thin
film.

The same discretization approach as in Paper II is applied to numer-
ically evaluate the thermodynamic stability of both flat films and droplets
in coexistence with flat films. The often-cited criterion for stability of a
flat film is that the film is stable when the derivative of disjoining pressure
w.r.t. film thickness is negative. It is found that this criterion applies in
open systems due to the presence of a condensation/evaporation insta-
bility whenever the criterion is not satisfied. In closed systems, however,
stability is governed by mechanical instabilities of a similar type as those
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responsible for spinodal dewetting in non-volatile systems. Such instabili-
ties require a substrate size that is large enough to support the minimum
unstable wavelength, see (2.49). Flat films are thus stable when the sub-
strate size is smaller than this wavelength.

Droplets that are in coexistence with thin films are found to be un-
stable for all the considered examples when the container is open. In a
closed system, on the other hand, such droplets may be stable under spe-
cific conditions. Unstable droplets in both the open and closed containers
represent saddle points in their respective energy landscapes. In the closed
system, they represent the activation barrier for the transition between a
stable flat film and a stable droplet. In the open system, the unstable
droplet represents the activation barrier for the creation of a bulk liquid
phase from a flat film.

By comparing the Helmholtz energy of flat films and droplets at differ-
ent values of average density in the container, it is found that flat films are
the equilibrium configuration up to a certain value of the average density.
At this value, there is a morphological phase transition and above it the
equilibrium configuration is a droplet.

4.4 Paper IV

M. Aa. Gjennestad, M. Vassvik, S. Kjelstrup, and A. Hansen.
Stable and efficient time integration at low capillary numbers
of a dynamic pore network model for immiscible two-phase
flow in porous media. Frontiers in Physics 6 (2018), p. 56.
doi: 10.3389/fphy.2018.00056

The pore network model used in Paper V and Paper VI is of the Aker
type [74]. This kind of model is dynamic and takes both viscous and cap-
illary forces into account. The location of each fluid-fluid interface is kept
track of and evolved in time, according to the calculated pressures and
flow rates in each pore, by integrating one ordinary differential equation
(ODE) per interface. Previously, this model suffered from numerical insta-
bilities when integrated with explicit methods at low capillary numbers.
These were artefacts of the numerical methods and resulted in interfaces
jumping back and forth between consecutive time steps. This restricted
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use of the model to relatively high capillary numbers. Paper IV presents
two strategies to eliminate the instabilities.

The first is a new time step criterion used to control the maximum
length of time steps used when integrating the ODEs in time. It is demon-
strated that this criterion stabilizes the two explicit methods considered in
the paper, the forward Euler method and the midpoint method. The new
time step criterion is independent of flow rate and therefore becomes quite
severe when flow rates are low and this typically results in long simulation
wall times for such cases.

The second strategy is a semi-implicit method. This approach achieves
stabilization without the need to enforce the severe time step restriction.
The result is superior efficiency at capillary numbers lower than ∼ 10−5

for the test case run. The range of capillary numbers for which the pore
network model is a tractable alternative is thus vastly increased. The cost
of the semi-implicit method is the need to solve a non-linear system of
equations in every time step, instead of the linear systems required by the
explicit methods.

A Haines jump case is simulated. This shows that all three methods
were able to resolve both the pressure build-up and the subsequent fluid
redistribution, including interfacial retraction along the invasion front, in
a stable manner. These are phenomena which occur on vastly different
time scales when capillary numbers are low.

4.5 Paper V

S. Sinha, M. Aa. Gjennestad, M. Vassvik, M. Winkler, A.
Hansen, and E. G. Flekkøy. Rheology of high-capillary num-
ber flow in porous media. Frontiers in Physics 7 (2019), p. 65.
doi: 10.3389/fphy.2019.00065

As briefly discussed in Section 3.2, two-phase flow in porous media is a
complex topic and its continuum-scale description is still a topic of debate.
Paper V finds, however, that in the high-capillary number limit, the total
flux q = qw +qn in steady-state can be described by an equation similar to
Darcy’s law for single-phase flow (3.14), where the viscosity η` is replaced
by an effective viscosity. The effective viscosity η̄ is given in terms of
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the viscosities of each fluid by the Lichtenecker–Rother equation and its
exponent ε,

η̄ε =
αw

φ
ηεw +

αn

φ
ηεn. (4.1)

Simulations are performed using both the pore network model from
Paper IV and the lattice-Boltzmann method. The pore network model
simulations are time-dependent and resolve flow and interface locations
in each pore. Continuum-scale steady-state time-averaged flow rates and
pressure drops are calculated by time-averaging flow rates and pressure
drops for the entire network. Periodic boundary conditions are applied.

The ε-exponent is found to depend on the degree of coupling and
intermixing between the two fluids. For well intermixed flow with small
bubbles, ε = 1 is found both with the pore network model and with the
lattice-Boltzmann method. An exponent ε = 0.6 is found in the pore
network model if bubbles are larger and the fluids thus less intermixed.
A regime with lubrication layers and some degree of parallel flow in the
pores is also obtained from another set of lattice-Boltzmann simulations,
and this regime results in ε = −0.5.

4.6 Paper VI

M. Aa. Gjennestad, M. Winkler, and A. Hansen. Pore network
modeling of the effects of viscosity ratio and pressure gradient
on steady-state incompressible two-phase flow in porous media.
Transport in Porous Media 132 (2020), pp. 355–379. doi: 10.
1007/s11242-020-01395-z

Paper VI presents results from 6048 steady-state pore network model
simulations corresponding to a large span in viscosity ratios and capillary
numbers. The simulations are similar those in Paper V, except that
they are run at finite capillary numbers. Dimensionless steady-state time-
averaged quantities, such as relative permeabilities, residual saturations,
mobility ratios and fractional flows, are computed from these simulations.
It is found that these computed quantities depend on three dimensionless
variables, the wetting fluid saturation αw/φ, the viscosity ratio M and a
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dimensionless pressure gradient. Effects of wettability, gravity and inertia
are not considered.

The calculated relative permeabilities and residual saturations show
many of the same qualitative features observed in other computational
and experimental studies. In particular, the relative permeabilities in-
crease with capillary numbers and converge to a limit, which depends on
viscosity ratio and saturation, at high capillary numbers. However, while
the consensus in the literature seems to be that relative permeabilities
converge to straight lines at high capillary numbers, this is not the case
for the results from the network model when M 6= 1. It is concluded that
this is because high capillary numbers are not here obtained by running
simulations in the near-critical region. In this region, interfacial tension
is very small and phase properties, including viscosities, are similar.1 In-
stead the two fluids considered in Paper VI may have different viscosities
and, in the simulations run, the fluids intermix and do not form decoupled
flow channels.

The average mobility is here defined as {qw + qn}L/φ∆p. Ratios of
average mobility to their high capillary number limit values are also con-
sidered. These ratios vary, roughly, between 0 and 1, but values larger
than 1 were also observed. For a given saturation, the mobilities are not
always monotonically increasing with the pressure gradient. Increasing
the pressure gradient mobilizes more fluid and activates more flow paths.
However, when the mobilized fluid is more viscous, the effective viscosity
of the moving fluid is increased by this mobilization and a reduction in
average mobility may occur instead.

1That gas and liquid densities become similar near the critical point is illustrated in
Figure 2.2 for CO2.
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Chapter 5

Perspectives and outlook

The present thesis has considered fundamental aspects related to thermo-
dynamic stability of homogeneous systems and heterogeneous two-phase
systems at the pore scale and steady-state immiscible two-phase flow on
the continuum scale. This final chapter provides a discussion of possible
consequences and applications of, and future research avenues based on,
the results obtained and procedures developed.

Equations of state (EOS) are frequently used to predict behaviour of
phases that would be metastable in a bulk system. Examples are classi-
cal nucleation theory [93] and, indeed, the capillary models that describe
heterogeneous systems with interfaces in Paper II and Paper III. Mass-
based density functional theories rely in addition on information from the
unstable region [32]. It is therefore important to have EOS that give
accurate, or at least thermodynamically consistent, predictions in these
regions. Paper I discussed how information about the spinodals could be
used to improve accuracy in metastable region. Furthermore, inequality
constrains were presented that could be used to eliminate pseudo-stable
states between the spinodal lines. Such states were found to be present
even in the simple van der Waals EOS (2.13).

The capillary models developed in Paper II modelled single-component
fluids only. An obvious future extension would therefore be to consider
mixtures also. The models could then be used to study capillary conden-
sation of e.g. water from air. Furthermore, the thermodynamic stability
of bubbles, both w.r.t. translation and dissolution into the other phase,
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could influence capillary trapping [94] and long-term storage of CO2 in ge-
ological formations. Another possible extension is to include line tension
in the capillary models.

The fundamental relation for film phases developed in Paper III
considered films on flat solid surfaces. This could be extended to con-
sider films on fibres, along the lines of Neimark [53]. In this regard, it
would be advantageous to also extend the discrete variational procedure
to two dimensions, so that the assumption of cylindrical symmetry could
be avoided. A possible avenue to follow is to study wetting of fibres. This
has applications in water management in fuel cells, where accumulation of
liquid water may block reactant pathways and be detrimental to perfor-
mance [6], and moisture in thermal insulation materials for buildings and
process equipment.

In both Paper II and Paper III systems were considered either open
or closed w.r.t. exchange of particles with the surroundings. However,
because migration of particles takes time, an open system may remain
effectively closed at short time scales. Future work could seek to establish
the time scale at which an open system remains effectively closed.

The new numerical solution procedures developed in Paper IV make
dynamic pore network modelling computationally feasible at low capillary
numbers. One phenomenon of interest in this regime is Haines jumps.
Paper IV demonstrated that the new methods make it possible to re-
solve both the pressure build-up before such jumps and the subsequent
pore invasion and interface retraction, even though these occur at vastly
different time scales. In particular, statistics of single jumps and avalanche
sizes for larger systems than accessible through direct numerical simula-
tions or lattice-Boltzmann could be obtained. As discussed in Section 3.2,
Haines jumps may involve locally large flow velocities and thus contribute
significantly to viscous dissipation [72, 4]. Furthermore, they may have
influence on storage and energy efficiency in CO2 sequestration [4].

Paper VI was an effort to map out and discuss the steady-state flow
properties of two-phase flow in porous media, as modelled by the dy-
namic pore network model described in Paper IV. It was observed that
the studied dimensionless flow properties depended on three dimensionless
variables, saturation αw/φ, viscosity ratio M and a dimensionless pressure
gradient. In the high-Ca limit, there was only a dependence of αw/φ and
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M . In future, one could explore what can be learned about the connection
between macroscopic flow properties and flow regimes. As discussed by
Avraam and Payatakes [12], four different flow regimes were observed in
their micromodel experiments: large-ganglion dynamics, small-ganglion
dynamics, drop-traffic flow and connected pathway flow. Such knowledge
could be key to develop new theories for two-phase flow in porous media
that go beyond the extended Darcy equations. Research along these lines
could possibly also tie into ongoing efforts to characterize fluid configura-
tions by integral geometry, see e.g. [95, 15, 19].

Another observation in Paper VI was that relative permeabilities did
not form straight lines in the high-Ca limit when the viscosity ratio was
different from unity. It was concluded that this was due to the intermixing
and coupling of flow of the two fluids. Even though such intermixing be-
haviour has been observed also in lattice-Boltzmann simulations (Paper
V) and, to some extent, in experiments [12], it would be very interesting
to see experimental studies specifically designed to induce varying de-
grees of intermixing and measure steady-state properties at high capillary
numbers. In particular, when would such experiments produce relative
permeability curves that are nonlinear in saturation and what would the
functional form be?
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Connectivity enhancement due to film flow in porous media. Physical
Review Fluids 4.9 (2019), p. 094102. doi: 10.1103/PhysRevFluids.
4.094102.

[14] R. T. Armstrong, J. E. McClure, M. A. Berrill, M. Rücker, S. Schlüter,
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a b s t r a c t

The spinodal represents the limit of thermodynamic stability of a homogeneous fluid. In this work, we
present a robust methodology to obtain the spinodal of multicomponent fluids described even with the
most sophisticated equations of state (EoS) available. We elaborate how information about the spinodal
and its uncertainty can contribute both in the development of modern EoS and to estimate their un-
certainty in the metastable regions. Inequality constraints are presented that can be exploited in the
fitting of modern EoS of single-component fluids to avoid inadmissible pseudo-stable states between the
vapor and liquid spinodals. We find that even cubic EoS violate some of these constraints.

With the use of a selection of EoS representative of modern applications, we compare vapor and liquid
spinodal curves, superheat and supersaturation limits from classic nucleation theory (CNT), and available
experimental data for the superheat limit. Computations are performed with pure species found in
natural gas, binary mixtures, as well as a multi-component natural gas mixture in order to demonstrate
the scalability of the approach. We demonstrate that there are large inconsistencies in predicted spi-
nodals from a wide range of EoS such as cubic EoS, extended corresponding state EoS, SAFT and
multiparameter EoS. The overall standard deviation in the prediction of the spinodal temperatures were
1.4 K and 2.7 K for single- and multi-component liquid-spinodals and 6.3 K and 26.9 K for single- and
multi-component vapor spinodals.

The relationship between the measurable limit of superheat, or supersaturation, and the theoretical
concept of the spinodal is discussed. While nucleation rates from CNT can deviate orders of magnitude
from experiments, we find that the limit of superheat from experiments agree within 1.0 K and 2.4 K
with predictions from CNT for single- and multi-component fluids respectively. We demonstrate that a
large part of the metastable domain of the phase diagram is currently unavailable to experiments, in
particular for metastable vapor. Novel techniques, experimental or with computational simulations,
should be developed to characterize the thermodynamic properties in these regions, and to identify the
thermodynamic states that define the spinodal.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Metastable fluids can be found everywhere and continue to
attract attention [1]. Recent examples include the ongoing discus-
sion on cavitation of water at large negative pressures [2e6],
magma erupting from volcanoes [7] and violent vapor-explosions

from liquids spills in contact with a substantially warmer sub-
stance [8e11]. It is challenging to measure the properties of highly
metastable fluids. By their own labile nature, they transform into a
more stable phase via nucleation, where the nucleation process is
triggered by thermal fluctuations. These fluctuations occur natu-
rally, even in perfectly homogeneous fluids at equilibrium [12].

Properties of metastable fluids are central in the description of
many processes. An important example is nucleation, which is
ubiquitous in a wide range of physical, chemical, and biological
processes. In nucleation theory, the thermodynamic state of the
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critical embryo is within the metastable region of the fluid [12].
Even for the simple case of condensation of the noble gas argon,
predictions of nucleation rates from classical nucleation theory
(CNT) deviatemore than 20 orders of magnitude from experiments.
In contrast, we will here show that CNT predicts accurately the
“limit of superheat” for many hydrocarbons, which represents the
experimentally available limit of metastability of liquids. Some of
the deviation between several theories [13,14] and experimental
data is likely because of inaccuracies in current equations of state
(EoS) in the metastable regions [13].

In the development of modernmultiparameter EoS, for example
for water [15], the thermodynamic properties of metastable fluid
phases such as subcooled liquid (metastable with respect to solid-
liquid) and superheated liquid (metastable with respect to the
vapor-liquid) are included in the fitting procedure. The extrema for
metastability are defined by the spinodal. At the spinodal, the ho-
mogeneous fluid becomes intrinsically unstable and the activation
barrier for nucleation disappears. The unstable fluid will then
spontaneously decompose into the more stable phases. From a
thermodynamic point of view,much is known about the state of the
fluid at the spinodal. For instance, for single-component fluids,
several thermodynamic properties such as the bulk modulus and
the inverse isobaric heat capacity equal zero. Therefore, informa-
tion about the spinodal is valuable, both in the development of
modern EoS and to estimate their uncertainty in the metastable
regions. Moreover, a thermodynamically consistent behavior of the
EoS in the unstable domain of the homogeneous fluid is a prereq-
uisite for combining them with mass based density functional
theory for studying interfacial phenomena [16].

A major challenge in the study of metastable fluids is that there
are limitations to how close to the spinodal one can get in experi-
ments with real fluids. No matter how careful an experiment has
been carried out, thermal fluctuations that occur naturally in the
fluid will trigger homogeneous nucleation before the spinodal has
been reached, even though the metastable domain extends
significantly further. Highly metastable states that are experimen-
tally unavailable for bulk fluids can still be encountered in small
cavities, or within the critical cluster or cavity during nucleation,
and are thus of practical relevance. The experimentally attainable
limit where a superheated liquid spontaneously transforms into
vapor is known as the limit of superheat [1]. The most popular
experimental technique for measuring the limit of superheat is the
droplet explosion method, a technique dating back to the early
work of Wakeshima and Takata [17] and Moore [18]. The droplet
explosion method remains the most popular technique to date
[8,11], and represents one of the techniques that can bring the
liquid closest to the spinodal [19].We shall in this work discuss how
close to the spinodal it is possible to get experimentally, and how to
get even closer.

From a theoretical perspective, we shall elaborate how infor-
mation about the spinodal and its uncertainty can contribute both
in the development of modern EoS and to estimate their uncer-
tainty in the metastable regions. With the use of a selection of EoS
with varying degree of complexity, we predict the spinodal curves
for pure species and mixtures. The predicted spinodals are
compared to both the limit of superheated liquid and supersatu-
rated vapor from CNT and available experimental data. The present
paper extends previous work on the topic spanning the last three
decades [9,20e24]. Whereas previous studies have focused on cu-
bic EoS, where obtaining the spinodal curve is straightforward, we
present a general and robust approach based on thermodynamic
stability analysis. This allows us to calculate and compare spinodals
from a number of EoS with very different functional forms and
levels of complexity. Moreover, while previous works have focused
mostly on pure species, we calculate spinodals for hydrocarbon

mixtures with up to five components. We show that the functional
form of the EoS can have a significant influence on the predicted
spinodal.

2. Theory

In this section, we present the theoretical foundation for the
work. We start in Sec. 2.1 by describing the different types of EoS
that will be used. In Sec. 2.2, we discuss how the spinodal can be
characterized, before we in Sec. 2.3 explain how to estimate the
experimental limit of stability for a homogeneous fluid with clas-
sical nucleation theory.

2.1. Equations of state

2.1.1. Cubic EoS (PR, SRK)
The simplest type of EoS that can still predict the spinodal are

the cubic EoS. These can in general be represented as

P ¼ RT
v� b

� aaðTÞ
ðv� bm1Þðv� bm2Þ

: (1)

Here, P is the pressure, T is the temperature, R the universal gas
constant, v the molar volume, and a, a, and b are parameters of the
EoS. The constants m1 and m2 characterize various two-parameter
cubic EoS. For instance, for the van der Waals (VdW) EoS,
m1 ¼ m2 ¼ 0, for the SoaveeRedlicheKwong (SRK) EoS [25], m1 ¼
1 andm2 ¼ 0, and for the PengeRobinson (PR) EoS [26],m1 ¼ �1þffiffiffi
2

p
and m2 ¼ �1�

ffiffiffi
2

p
. All these EoS are two-parameter cubic EoS

in the sense that they use the two parameters a and b. For fluids
with several components, mixing rules are used to compute the
parameters a and b, which then depend on the composition.

2.1.2. Extended corresponding state EoS (SPUNG)
An extension of the corresponding state (CSP) methodology was

initiated by Leach, Rowlinson andWatson as elaborated in Ref. [27],
by including so-called “shape factors” that take into account how
the mixture in consideration differs from the reference fluid(s). For
pure components, this extension has a basis in statistical me-
chanics. If cubic EoS are used to calculate the shape factors, onemay
combine the strength of cubic EoS observed in VLE calculations
with improved prediction of bulk properties obtained from a very
accurate reference EoS. This methodology has also been referred to
as the SPUNG EoS, and has proven to be both computationally fast
as well as accurate [28]. We refer to Chapter 4 in Ref. [29] for further
details.

2.1.3. Statistical associating fluid theory (SAFT)
Statistical Associating Fluid Theory (SAFT) gives EoS that are

founded on statistical mechanics [30]. The perhapsmost commonly
used formulation is PC-SAFT [31] that has, in general, substantially
improved accuracy in comparison with cubic EoS. Since PC-SAFT is
founded on statistical mechanics and accounts for sizes and shapes
of molecules, it is also expected to be the EoS with the largest
predictive ability of the EoS considered in this work, in particular
for polar substances and associating substances.

2.1.4. Multiparameter equations of state (GERG-2008)
Multiparameter EoS are today the most accurate EoS for the

regions where thermodynamic property data are available. The EoS
are founded on a comprehensive analysis of experimental data and
a diligent optimization procedure, with functional forms optimized
for accuracy. They have been devised for single-component fluids
[15,32e36] and mixtures [37]. For some of these EoS, the thermo-
dynamic properties of metastable fluid phases such as
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supersaturated vapor and superheated liquid have been included in
the fitting procedure [15]. In this work, we will use the multipa-
rameter EoS for natural gas called GERG-2008 [37]. It is defined in
terms of a reduced Helmholtz energy function:

aðr; T ; xÞ ¼ a0ðr; T ; xÞ þ
XNc

i¼1

xia
r
i ðr; TÞ þ Darðr; T ; xÞ; (2)

where the superscripts 0 and r refer to the ideal gas and the residual
contributions respectively, subscript i refers to species i, Nc is the
number of components, r is the density and xi is the mole fraction
of component i. The last term on the right-hand-side, Dar is the
departure function that takes into account the deviation from ideal
mixture.

2.2. Thermodynamic stability and the spinodal

The spinodal represents the limit of intrinsic stability of a single-
phase fluid. The spinodal is a theoretical limit, since thermal fluc-
tuations will lead to homogeneous nucleation long before the
spinodal has been reached in experiments, as explained in Sec. 1.

2.2.1. Thermodynamic stability in terms of the eigenvalues of the
Hessian matrices of the energy state functions

Classical thermodynamics states that at equilibrium, the en-
tropy of an isolated system is at its maximum. By considering an
isolated composite system consisting of a subsystem that interacts
with a thermal, pressure or particle reservoir, this criterion can be
reformulated in terms of minima of various energy state functions
for the subsystem [38]. The identity of the energy state function
depends on the surroundings of the subsystem, or alternatively
which state variables that have been fixed. Some examples are:

minfUðS;V ;NÞg at fixed S;V and N (3)

minfAðT ;V ;NÞg at fixed T ;V and N (4)

minfHðS; P;NÞg at fixed S; P and N (5)

minfGðT ; P;NÞg at fixed T ; P and N (6)

where U is the internal energy, A is the Helmholtz energy, H is the
enthalpy, G is the Gibbs energy, S is the entropy, V is the total vol-
ume, and N is the mole numbers, where boldface symbols are
vectors. In addition, in a single-component system, U� ¼ U � Nm is
the Legendre transform of the internal energy with respect to the
mole number, where m is the chemical potential. Even if U� is not
commonly used in engineering applications, we shall refer to it in
subsequent discussions. The energy state functions A;U� and H are
Legendre transforms of the internal energy with respect to one
variable, while G is a Legendre transform of the internal energy
with respect to two variables.

The thermodynamic stability of a stationary homogeneous
system can be examined by evaluating the change in internal en-
ergy when decomposing into two phases, denoted with subscripts
a and b (the initial system has no subscript). Let us start with an
isolated system where U is a minimum at equilibrium, meaning
that dU ¼ dðUa þ UbÞ ¼ 0, i.e. the system is in a stationary state.
This condition implies uniform intensive variables: T, P and mi,
where subscript i refers to component i (see Chapters 5 and 6 in
Ref. [38]). However, a stationary state can be aminimum,maximum
or saddle point. For the energy state function to be a minimum, the
lowest order of non-vanishing variation must be positive. In most
cases, this is the second order variation:

d2U ¼ d2Ua þ d2Ub ¼ dxTa VVUa dxa þ dxTb VVUb dxb � 0;

(7)

where dxT ¼ ½dS;dV ;dN1;…;dNNc
� represents an arbitrary change

in the state variables and VVU is the Hessian matrix of the internal
energy, i.e. the matrix containing the second order partial de-
rivatives of U with respect to the variables in x. Since the system is
isolated, dxa ¼ �dxb and since the a and the b phases have uniform
intensive variables, Eq. (7) can be reformulated as [39]:

dxT VVU dx � 0; (8)

where we have omitted subscript a and a scaling factor of
N=Nb. Equation (8) can be rewritten in terms of the eigenvalues
of VVU, lj:

XNcþ2

j¼1

c2j lj � 0; (9)

where dx ¼ PNcþ2
j cjej and e1;…; eNcþ2 are the eigenvectors of the

Hessian matrix. Here, we have expressed the vector dx in terms of
the eigenvector-space of the Hessian matrix and the parameters, cj,
which can take any value. Since c2j is always positive for any real
number, the criterion for thermodynamic stability of an isolated
system expressed by Eq. (7) can be reformulated as:

minfeigðVVUÞg � 0; (10)

i.e., the Hessian matrix of U should be positive-semidefinite. Leg-
endre transforming the internal energy gives other energy state
functions, and equivalent thermodynamic stability criteria can be
formulated for these by following a similar approach as elaborated
above:

min
�
eig

�
VV ;NVV ;N AðT ;V ;NÞ�� � 0 at fixed T ;V and N (11)

min
�
eig

�
VS;NVS;N HðS; P;NÞ�� � 0 at fixed S; P and N (12)

minfeigðVNVN GðT; P;NÞÞg � 0 at fixed T; P and N (13)

where the subscripts indicate which variables are included in the
del-operator, i.e. only the extensive variables of the respective po-
tentials are included. In fact, at equilibrium, the Legendre trans-
formed energy state functions are concave functions of their
intensive canonical variables, and they are only a minimum if these
variables are fixed [38] (see Eqs. (3)e(6)). The spinodal can thus be
identified by investigating the eigenvalues of the Hessian matrices
above. The criteria above are completely general, however, the
typical textbook treatment defines an alternativeway of identifying
the spinodal in terms of a set of thermodynamic quantities that
become zero at the spinodal. Since this method can give further
insight, we shall discuss it next.

2.2.2. Thermodynamic stability in terms of selected thermodynamic
derivatives

In conventional textbook literature on thermodynamic stability
analysis, the approach outlined by Beegle et al. is often referred to
[40], where the inner product between the Hessianmatrices and dx
is examined in more detail. In particular, they show that some
thermodynamic quantities go to zero before any other properties at
the spinodal. In their textbook on classical thermodynamics, Tester
and Modell state that a necessary and sufficient condition for
thermodynamic stability is that [39]:
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v2UðNcÞ

vxNcþ1vxNcþ1
>0; (14)

where the superscript in UðkÞ denotes that the internal energy has
been Legendre transformed with respect to the number k, of the
first variables in the vector xT ¼ ½S;V ;N1;…;NNc

�. Moreover, xl de-
fines index l of the vector x. The spinodal is then defined in terms of
the following equation:

v2UðNcÞ

vxNcþ1vxNcþ1
¼ 0: (15)

However, the order of the variables in x can be chosen arbi-
trarily. Therefore, Eq. (15) results in several thermodynamic iden-
tities that equal zero at the spinodal. For a single-component
system, these are:

v2A
vx2k

: �
�
vP
vV

�
T ;N

¼ 0 and
�
vm

vN

�
T ;V

¼ 0 (16)

v2U�

vx2k
:

�
vT
vS

�
m;V

¼ 0 and �
�
vP
vV

�
m;S

¼ 0 (17)

v2H
vx2k

:

�
vm

vN

�
P;S

¼ 0 and
�
vT
vS

�
P;N

¼ 0 (18)

where Eq. (16) contains the diagonal entries of VV ;NVV ;N A, Eq. (17)
of VS;VVS;V U� and Eq. (18) of VS;NVS;N H. All of these equations are
satisfied simultaneously at the spinodal, where they change from
positive to negative. An interesting questionwe shall discuss in Sec.
3.1 is whether the left-hand-side of Eqs. (16)e(18) should remain
negative between the vapor and liquid spinodals. Such information
is useful in the development of modern EoS, because if one can
argue that thermodynamic quantities such as those defined in Eqs.
(16)e(18) should remain negative, they can be exploited as
inequality constraints in the fitting of single-component EoS to
avoid inadmissible pseudo-stable states between the vapor and
liquid spinodals. Any of the thermodynamic quantities in Eqs.
(16)e(18) can be used equivalently to locate the spinodal of a
single-component fluid.

2.2.3. The numerical algorithm used to identify the spinodal in this
work

The Hessian matrices of all the energy state functions are sin-
gular, i.e. one of their eigenvalues is always zero. The reason for this
is that the energy state functions are Euler homogeneous functions
of first degree with respect to their extensive variables, while the
Hessian matrices contain derivatives of only intensive variables
(see Theorem 4, Chapter 1 in Ref. [41]). In practice, the spinodal can
be found by eliminating one row and one column of the Hessian
matrix of an appropriate energy state function to construct the
matrix F. In the stable domain, F is non-singular, and the smallest
eigenvalue becomes 0 at the spinodal (see Theorem 6, Chapter 1 in
Ref. [41]). In this work, we have used the following criterion to
identify the spinodal:

minfeigðFÞg ¼ 0 where F ¼ VNVN AðT ;V ;NÞ: (19)

The use of the Helmholtz energy formulation has proven
numerically robust when solving for critical points [42]. Applying
the Hessian scaling suggested by Michelsen [43], the spinodal is
found by solving for the temperature at a given specific volume. A
second-order method that uses numerical differentials for the

minimum eigenvalue, lmin is used. The eigenvalue calculation of a
symmetric matrix can be performedwith high numerical efficiency.
With a given initial point on the spinodal, the entire spinodal curve
can easily be traversed with the use of uniform steps in lnðVÞ.
Extrapolation from a known spinodal point can be achieved by
utilizing:

dlmin ¼
�
vlmin
vT

�
V
dT þ

�
vlmin
vV

�
T
dV ¼ 0; (20)

which provides a good initial value for the temperature at the next
spinodal point.

2.3. The experimentally available limit of stability of a
homogeneous fluid as predicted by classical nucleation theory (CNT)

When a liquid has been sufficiently superheated, the homoge-
neous nucleation rate becomes at some point so large that the
liquid transforms into two phases in a much shorter time than the
characteristic time of the experiment. This corresponds to the
observed superheat limit, and nucleation theory can thus be used to
predict this.

Nucleation is an activated process where an energy barrier must
be overcome by thermal fluctuations. Accordingly, the nucleation
rate J depends exponentially on the height of the nucleation barrier
according to a standard Arrhenius rate law,

J ¼ Kexp
�
� DG�

kBT

�
; (21)

where DG� is the nucleation barrier, kB is Boltzmann's constant, and
K is the kinetic prefactor. Equation (21) can be used both to describe
the formation of bubbles and droplets; however, the expression for
K and DG� differ in the two cases. The nucleation barrier, DG�, is:

DG� ¼ 4psr�2

3
; (22)

where the radius of the critical cluster or cavity r�, for bubble for-
mation in a liquid [1], is

r� ¼ 2s
PsatðTÞ � Pl

; (23)

or for droplet formation in a gas [1],

r� ¼ 2s
~rlkBTln

�
Pg
	
Psat

�; (24)

where ~rl is the number density of the liquid phase. Further, the
kinetic prefactors can be approximated by following a range of
approaches. In this work, we have used the following expressions to
calculate the kinetic prefactor for bubble formation in a liquid [1]:

Kz~rl

ffiffiffiffiffiffiffiffi
2s
pm

r
; (25)

where ~rl is the number density of the liquid phase and m is the
mass of one molecule. For droplet formation in a gas, we have used
[1]:

Kz
~r2g
~rl

ffiffiffiffiffiffiffiffi
2s
pm

r
; (26)

where ~rg is the number density of the vapor-phase, i.e. Eqs. (25) and
(26) differ by the factor ð~rg=~rlÞ2.We have in this work provided only
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the necessary formulas, and we refer to Refs. [1,44] for details and
derivations. Once the nucleation barrier has been found and the
kinetic prefactors have been estimated based on properties at
saturation, the nucleation rate can be calculated by use of Eq. (21).
However, to set a specific limit of superheat or supersaturation,
one must decide on a critical nucleation rate that represents
the observed sudden phase change. Experiments indicate values
of Jcrit in the range 102 � 106 cm�3 s�1 [1]. Since the exact value
of the critical nucleation rate has very little influence on the pre-
dicted limit of superheat (See Fig. 3.13 in Ref. [1]) we use
Jcrit ¼ 106 cm�3 s�1 in this work.

Given a value for Jcrit, we find the superheat/supersaturation
temperature limits for a given pressure and composition by solving

JðTÞ ¼ Jcrit; (27)

for T. In order to complete this model, thermodynamic properties
are needed. The pressures and densities are supplied by an EoS, and
in this work we have used the most accurate EoS for the compo-
nents in natural gas, GERG2008 [37]. Pure component surface
tensions were modeled by the corresponding state correlation
recommended in Ref. [45] (see Chapter 12). The deviation between
this correlation and experiments is below 5% for most fluids ac-
cording to Tables 12e1 in Ref. [45]. The procedure for finding the
limits of superheat/supersaturation is described above for pure
components. We extend it to mixtures by replacing the saturation
properties by the properties at the bubble line (superheat limit) or
at the dew line (subcool limit) of the mixture. The molecule massm
is then replaced by the mole fraction averagedmolecule mass. Also,
we use the mole fraction weighted average of the pure component
surface tensions.

3. Results

We shall in Secs. 3.1 and 3.2 discuss the vapor and liquid spi-
nodals from a theoretical perspective and their relevance in the
development of EoS. Next, we evaluate in Sec. 3.3 how much the
spinodals predicted from various EoS differ, and the implications of
this on prediction of properties in the metastable regions. Even-
tually, we discuss in Sec. 3.4 how close to the spinodal that current
experiments can bring us. In the following, we will focus on hy-
drocarbons and their mixtures.

3.1. The spinodals and their relevance for developing EoS

Properties of metastable fluids have received much attention in
recent literature, partly because such states are ubiquitous in na-
ture, including in important processes such as nucleation of drop-
lets or bubbles in condensation and evaporation processes. It is
therefore important to develop EoS that give an accurate repre-
sentation of the metastable regions of the fluid.

Fig. 1a shows the pressure as a function of the density for
methane at T ¼ 175 K, as predicted by the PengeRobinson cubic
EoS. The figure highlights five regimes, one regime with single-
phase gas at low densities (green solid line), one regime with
single-phase liquid at high densities (blue solid line), two regimes
where the single-phase fluid is metastable (dashed lines) and one
regime where it is unstable (dotted line). If the inequality,
ðvP=vrÞ < 0, is satisfied where r is the density (equivalent to Eq.
(16)-left), the single-phase fluid is mechanically unstable and will
spontaneously decompose into liquid and vapor.

The shape of the pressure, P plotted as a function of the density,
r displayed in Fig. 1a with a local maximum followed by a local
minimum is called aMaxwell loop. Many EoS have a singleMaxwell
loop, but some EoS have a second, artificial Maxwell loop in the

two-phase region. One example is shown in Fig. 1b, where
GERG2008 (blue solid line) exhibits a second loop. Since
ðvP=vrÞ > 0 (mechanically stable) and also other thermodynamic
stability criteria are satisfied, the EoS predicts a pseudo-stable
single-phase fluid within a region where experiments show a
coexistence between vapor and liquid. For many fluids and condi-
tions, the pseudo-stable phase has even a lower energy than the
vapor-liquid coexistence [16]. The second Maxwell loop is an arti-
fact of the functional form and parameters of the GERG2008 EoS,
and is a general problem/challenge in the present development of
multiparameter EoS.

Fig. 1b shows the behavior of several EoS in the metastable and
unstable regions, and elucidates some important points:

� The exact location of the spinodals (the maxima and minima)
varies much with the choice of EoS.

� The EoS have different behaviors between the spinodals; some
EoS exhibit a thermodynamically consistent behavior (a single
Maxwell loop), while other EoS do not.

� The behavior of the metastable regions depends much on the
choice of EoS.

A goal should be to develop EoS that are accurate and thermo-
dynamically consistent, also in the metastable and unstable regions
of the phase diagram of the single-phase fluid. A future goal should
be to develop EoS without inadmissible pseudo-stable states in the
unstable domain of the single-phase fluid. This is of importance,
both for combining them with mass based density functional the-
ory and to develop thermodynamically consistent mixing rules
with a physical interpretation as elaborated in detail in Ref. [16].

Fig. 1b shows that GERG2008 and PC-SAFT follow each other
closely in the first part of the metastable regions. This is expected,
as their Taylor-expansions of the pressure as a function of density
about the saturation state are very similar, because they both
reproduce well the thermodynamic properties at saturation from
experiments. Therefore, accurate prediction of equilibrium prop-
erties at the saturation curve is a prerequisite for accurately pre-
dicting properties in the metastable regions. However, the figure
also shows that GERG2008 and PC-SAFT predict very different
pressures for the onset of the liquid-spinodal (the minima of the
curves). Since equilibrium measurements at saturation can provide
the right slope of, for instance P as a function of r into the meta-
stable regions, the location of the spinodal would provide a refer-
ence for this extrapolation. Therefore, if it was possible to find the
precise onset of the spinodal, either through experiments or com-
putations, it would be possible to characterize the whole meta-
stable regionwith good accuracy. Moreover, if the spinodal could be
determined to some degree of uncertainty it would be possible,
based on the known uncertainty of properties at coexistence, to
make statements about how accurate extrapolations to the meta-
stable regions from various EoS are. We shall discuss the current
uncertainty in the prediction of the liquid and vapor spinodals in
Sec. 3.3.

One of the more urgent challenges in the development of EoS is
to remove the second artificial Maxwell loop in the two-phase re-
gion, an artifact characteristic for so-called multiparameter EoS
(see Sec. 2.1.4). Multiparameter EoS are founded on a comprehen-
sive analysis of experimental data and a diligent optimization
procedure, with functional forms optimized for accuracy. By adding
new terms to the Helmholtz energy functional of multiparameter
EoS and with the use of additional constraints in the nonlinear
fitting routine, Lemmon and Jacobsen managed to reduce the
magnitude of the second Maxwell loop in the multiparameter EoS
for the fluid R125 [46] from � 106 MPa to below � 102 MPa. In
2009, Lemmon et al. presented a multiparameter EoS for propane,
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where they reverted back to the functional formwith Gaussian bell
shaped terms [47]. With the use of the new fitting techniques and
constraints from Ref. [46], they were able to reduce the magnitude
of the artificial Maxwell loop. Recent multiparameter EoS are
formulated with the functional form presented in Ref. [47]. Lem-
mon and Jacobsen implemented the constraint discussed by
Elhassan et al. [48]:

aðrÞ � atangðrÞ � 0 (28)

where a is the Helmholtz energy and subscript tang means the
Helmholtz energy evaluated at the equilibrium tangent line.
Despite what Elhassan and coauthors claim in their work [48], the
constraint in Eq. (28) does not “remove any inconsistencies be-
tween thermodynamic stability and physical reality”. Even if
Eq. (28) guarantees that both the Helmholtz energy and the Gibbs
energy of the vapor-liquid coexistence state is lower than the Gibbs
energy of a pseudo-stable state coming from a second Maxwell
loop [48], the pseudo-stable state can still be stable in other en-
sembles such as in an isolated system. We have elaborated in detail
on this in Ref. [16].

3.2. Inequality constraints to avoid inadmissible pseudo-stable
states between the spinodals

Since the inequality in Eq. (28) is insufficient for constraining
EoS to avoid inadmissible pseudo-stable states in the unstable-
region of the single-phase fluid (between the spinodals), we shall
next discuss which inequality constraints that can be used instead.
The derivatives in Eqs. (16e18) are natural candidates for such
inequality constraints for the single-component fluid, since they
reach zero before any other thermodynamic identities at the spi-
nodals. We note that similar thermodynamic quantities can be
defined for multicomponent fluids [39], and exploited in the fitting
of multiparameter EoS for mixtures, such as GERG2008. We shall
now evaluate Eqs. (16e18) for an EoS that is considered, from a
qualitative perspective, to have a physically admissible behavior in
the two-phase region: the Van der Waals cubic (VdW) EoS.

Fig. 2 plots Eqs. (16e18) for methane at 92 K through the
metastable and unstable regions of the single-phase fluid, as pre-
dicted by the VdW EoS. The figure shows that all six of the ther-
modynamic quantities in Eqs. (16e18) reach zero at exactly the
same two densities (r ¼ 32 kg=m3 and r ¼ 251 kg=m3), as shown

by the vertical red dashed lines. These two densities define the
vapor and liquid spinodals. At constant temperature, these are the
only two densities where the thermodynamic quantities in Eqs.
(16e18) equal zero.

If we examine the sign of the thermodynamic relations in Eqs.
(16) and (18), only four of them remain negative between the vapor
and liquid spinodals (vertical red dashed lines). The two thermo-
dynamic relations that represent the diagonal entries of the Hes-
sianmatrix of the enthalpy, ðvm=vNÞP;S and ðvT=vSÞP;N shown in Figs.
2e and f, have asymptotes at densities just after the vapor spinodal
and right before the liquid spinodal, and are positive in a region
between the asymptotes. One of these thermodynamic relations
has a clear physical interpretation:

�
vT
vS

�
P;N

¼ T

N


C0
p þ Cr

p

� ; (29)

where the isobaric heat capacity, Cp, is split into an ideal gas
contribution (superscript 0) and a residual contribution (super-
script r). While Cr

p goes to ±∞ at the spinodals, C0
p is positive and

depends only on the temperature. It is thus constant in Figs. 2 and 3.
While C0

p ðTÞ can be determined experimentally and is well-known
for methane, Cr

pðT ; rÞ is unknown between the spinodals. The as-
ymptotes of Eq. (29) correspond to the points where

Cr
pðT ; rÞ ¼ �C0

p ðTÞ; (30)

which can occur only between the spinodals. Interestingly, whether
Eq. (30) is satisfied between the spinodals depends on which pa-
rameters that are used in the VdW EoS, and at which temperature
the EoS is used. For instance, for methane at 92 K, Eq. (30) is clearly
satisfied at two densities (see the asymptotes in Figs. 2e and f).
However, for methane at 157 K, the same EoS predicts that
Cr
pðT; rÞ< � C0

p ðTÞ for all densities between the spinodals, where
both of the thermodynamic relations in Eq. (18) remain negative
between the spinodals, as shown in Fig. 3.

We shall next discuss if there are any physical arguments for
why the thermodynamic quantities in Eqs. (16e18) should remain
negative between the spinodals. To examine thermodynamic sta-
bility, we evaluate the sign of the eigenvalues of the Hessian
matrices, since they definewhether a stationary point of the energy
state function is a minimum (only positive eigenvalues), a

Fig. 1. Pure methane isotherms at 175 K. (a), the stable, metastable and unstable regions are illustrated by an isotherm as predicted by the PR EoS. (b), isotherms are drawn with
different EoS: GERG2008 (solid blue), PC-SAFT (dashed green), PR (dash-dot red) and extended CSP (dotted cyan). The saturation points are indicated by circles. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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maximum (only negative eigenvalues) or a saddle point (positive
and negative eigenvalues).

First, let us discuss the rank of Hessian matrices and hence how
many non-zero eigenvalues we expect. Since the energy state
functions are Euler homogeneous functions of first degree in their

extensive variables, the highest possible rank of their Hessian
matrices is r � 1, where r is the number of extensive variables (we
refer to Sec. 1.3 in Ref. [41] for details). Thus, for all the Hessian
matrices, we expect at least one eigenvalue to be zero since they are
singular [41]. For a single-component fluid, this gives a maximum

Fig. 2. A plot of Eqs. (16e18) through the two-phase region in the case of methane at 92 K as predicted by the Van der Waals cubic EoS (blue solid lines). The vertical red dashed
lines show where the quantities pass through zero. The reported values are for 1 kmol of fluid. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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of two non-zero eigenvalues for U and one non-zero eigenvalue for
U�;H and A. We have plotted the non-zero eigenvalues in Fig. 4 for
methane, as described by the VdW EoS at 92 K (solid lines). In the
figure, the eigenvalues have been divided by the eigenvalue of the
liquid phase at saturation, and the subscripts refer to which energy
state function the eigenvalues come from.

Fig. 4 shows that except for one of the eigenvalues of the Hessian
matrix of U, lU;1, all eigenvalues go from positive to negative at the
spinodals. This means that the internal energy goes from being a
local minimum to a saddle point at the spinodals (one positive and
one negative eigenvalue), while U�;H and A go from local minima
to maxima at the spinodals. Except for the eigenvalue of the Hes-
sianmatrix of the enthalpy displayed in Fig. 4c, the eigenvalues look
very similar at 157 K and have not been plotted.

The asymptotes in the diagonal elements of the Hessian matrix
of H at 92 K displayed in Fig. 2e and f are also reflected in asymp-
totes at the same densities in lH . In fact, Fig. 4c shows that the
eigenvalue of VS;NVS;N H goes from negative to positive in a region
between the spinodals. When the asymptotes in the diagonal ele-
ments of the Hessian matrix of H disappear, such as at 157 K (see
Fig. 3), then lH remains negative between the spinodals, similar to
lU;2, lU� and lA, as shown by the blue dashed lines in Fig. 4d.

Since all eigenvalues of the Hessian matrix of the enthalpy are
non-negative in a region between the spinodals, the energy state
function is a minimum. The VdW EoS thus predicts a uniform phase
between the spinodals to be “pseudo-stable” in an adiabatic system
kept at constant pressure, since the enthalpy is then the appro-
priate energy state function to examine.

In a macroscopic, single-phase system of arbitrary size, the
thermodynamic stability of a sub-volume within the fluid should
be independent of the choice of surroundings. Moreover, a pseudo-
stable phase has never been observed experimentally between the
spinodals, regardless of which experimental conditions that have
been chosen. Therefore, the positive value of lH between the spi-
nodals is an artifact of the VdW EoS and its parameters. We find a
similar behavior of other cubic EoS, such as SRK and PR, where lH
becomes positive between the spinodals at low temperatures. This
is surprising, as its shows that even cubic EoS that have been
considered to have a “physically admissible” behavior between the
spinodals exhibit inconsistencies in the unstable domain of the
single-phase fluid. To summarize: If one can find a state between
the spinodals where, for any choice of energy state function, all
eigenvalues of the Hessian are positive (one eigenvalue is always

zero), one has found a pseudo-stable phase in that region. On the
contrary, if at least one eigenvalue stays negative, such states are
thermodynamically unstable. Thus, if we assume that such states
are physically inadmissible, we arrive at the following statement:

A sufficient condition for EoS to avoid inadmissible pseudo-
stable states between the vapor and liquid spinodals is that at
least one eigenvalue of the Hessian of the energy state function
goes from positive to negative at, and remains negative be-
tween, the spinodals, for any choice of energy state function.

Fig. 2 shows that even if the EoS exhibits a physically admissible
behavior for many of the state functions, this does not guarantee a
physically admissible behavior for all energy state functions, unlike
what is suggested in the work by Elhassan and coauthors [48]. We
can also make some statements about the suitability of using Eqs.
(16e18) as inequality constraints in fitting an EoS for a single-
component fluid (similar statements can be made about multi-
component fluids).

We know the following about the Hessian matrices of the en-
ergy state functions: They are singular, meaning that one of the
eigenvalues is always zero and they are symmetric. Since the sum of
the eigenvalues of a matrix equals the sum of the diagonal ele-
ments, one can prove mathematically that the two thermodynamic
quantities in each of Eqs. (16e18) will always have the same sign for
a single-component fluid. Therefore, it is only necessary to use one
thermodynamic relation in each of the pairs in Eqs. (16e18) as an
inequality constraint between the spinodals, where they have to be
negative for a physically admissible behavior in the unstable region
of the single-component fluid.

3.3. The spinodals and the limit of homogeneous nucleation

In Sec. 3.1 we argue that it is important to determine the spi-
nodal precisely to arrive at EoS that are accurate in the metastable
domain. In what follows, we investigate to which extent the EoS
that are available today differ in their predictions of the spinodal.

Solving phase equilibrium calculations has received much
attention in the literature. This can be challenging, in particular for
multicomponent mixtures and multiparameter EoS [49]. Deter-
mining the spinodal has a comparable degree of complexity to
phase equilibrium calculations, where a set of algebraic equations
have to be solved based on the underlying EoS. However, robust

Fig. 3. A plot of two of the thermodynamic relations in Eq (18) through the two-phase region in the case of methane at 157 K as predicted by the VdW EoS (blue dashed lines). The
vertical red dashed lines show where the quantities pass through zero. The reported values are for 1 kmol3 of fluid. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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and accurate methods for obtaining the spinodal have received far
less attention in the literature than phase equilibrium calculations,
partly due to the spinodal being less needed in engineering cal-
culations. Previous work on the topic has mainly been limited to

simple cubic EoS and pure substances [9,20e24].
In Fig. 5 we have used themethodology described in Sec. 2.2.3 to

obtain the spinodal curve of a multicomponent natural gas mixture
with one of the most accurate EoS available today, GERG2008 [50].

Fig. 4. A plot of the normalized eigenvalues of the energy state functions through the two-phase region in the case of methane at 92 K as predicted by the Van der Waals cubic EoS
(black solid lines). The dashed line represents the eigenvalue the Hessian matrix of the enthalpy at 157 K. The vertical red dashed lines showwhere the quantities pass through zero.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The figure demonstrates that the method we have presented is
robust, even in the vicinity of the critical point, scalable to multi-
component mixtures and applicable to complex non-analytical EoS.
We observe, from a comparison of the solid and the dashed lines in
Fig. 5, that there is a significant distance in the TP -space between
the coexistence limits (solid lines) and the spinodal curves (dashed
lines).

In what follows, we discuss the predicted spinodal for hydro-
carbons with a selection of EoS representative of what is used in
modern applications. Herein, we mainly focus on the pressure and
temperature. In this discussion it is however crucial to recognize
that the liquid density can change dramatically within the meta-
stable region, even though it might only span a few degrees kelvin.
An illustrative example of this is given in Fig. 6, showing the density
and pressure of the liquid spinodal of ethane compared to the
saturation line. At low pressures, the liquid density of the meta-
stable fluid near the spinodal curve can be half of that at the
saturation curve. Moreover, the difference in liquid density at the
spinodal for different EoS can also be significant.

Fig. 7 shows the spinodal curve in the TP -space compared to the
corresponding homogeneous nucleation limit and available
experimental data for the limit of superheat for a selection of pure
species. For all three substances considered here, there is a clear
agreement between the limit of superheat predicted by nucleation
theory and experimental data obtained from the droplet explosion
method. Table 1 shows the absolute average deviation (AAD) of the
experimental data points relative to the limit of superheat from
classic nucleation theory for pure components and binarymixtures.
The overall AAD between the predictions from CNT and the
experimental measurements for the limit of superheat is only 1.0 K
for pure species and 2.4 K for mixtures. Thus, even though CNT does
not accurately predict the exact nucleation rates of fluids [1], it
accurately reproduces the superheat limit.

The gap between the limit of superheat predicted by CNT and
the liquid spinodal curve thus accurately represents the experi-
mentally unobtainable part of the metastable region, caused by
thermal fluctuations in the liquid. Overall, the liquid spinodal
curves predicted using GERG2008, PC-SAFT, PR, and CSP agree

within 2e3 K in the range from atmospheric to critical pressure. A
notable exception is the liquid and vapor spinodals for n-pentane
calculated using the PC-SAFT EoS (Fig. 7b). Here, a significant in-
accuracy in the predicted critical point seems to offset the entire
liquid spinodal curve by 5e10 K. This suggests that it is imperative
for the EoS to reproduce the critical point of the fluid to provide
reliable predictions of the spinodal. Note that while the CNT pre-
dictions depend on an estimated liquid density, surface tension, as
well as the value of Jcrit, a sensitivity analysis showed that the
predicted limit of superheat matched experimental data for
reasonable perturbations of r and s, and for Jcrit differing by orders
of magnitude.

For the vapor spinodal there is a significantly larger span in the
predicted spinodal curves from the four EoS than for the liquid
spinodal. In particular, at a pressure of 0.9 bar, the difference in the
vapor spinodal ranges from 42.4e85.1 K for methane,
135.5e213.6 K for nepentane and 32.6e59.7 K for nitrogen. Table 2
shows the pressure-averaged standard deviation (with regard to
EoS) in kelvin for a number of light hydrocarbons and nitrogen. The
spread in predictions is higher for the vapor spinodal than the
liquid spinodal, with an average standard deviation of 6.29 K for the
former.

Fig. 8 shows the binary mixture liquid and vapor spinodal
temperature at atmospheric pressure for the GERG2008, PC-SAFT,
PR and extended CSP EoS, as a function of the second component
mole fraction. The spinodal curves are compared to the bubble and
dew lines, the superheat and supersaturation limits predicted by
CNT, as well as available experimental data for the limit of super-
heat. Again, there is a good agreement between liquid superheat
limit obtained in droplet explosion experiments and the limit
predicted by classic nucleation theory. The predicted liquid spino-
dals mostly agree within 5 K. Moreover, the results indicate that for
these species, a mole-weighted average of pure specie spinodal can
provide an accurate estimate of the mixture spinodal.

The binary mixture vapor spinodals (Fig. 8, right) demonstrates
a larger internal spread thanwhat is the case for the liquid spinodal
curves. Specifically, for an even mixture, the vapor spinodal tem-
perature ranges from 85.9e154.7 K for ethane/propane,
108.9e177.0 K for propane/nebutane and 154.4e227.3 K for
nepentane/nehexane. This behavior is consistent with what was

Fig. 5. Illustration of the phase envelope and spinodal curves obtained with the
GERG2008 EoS for a five-component mixture of methane (75 mol-%), ethane (10 mol-
%), propane (7 mol-%), butane (3 mol-%) and nitrogen (5 mol-%). The bubble line (solid
blue), the dew line (solid green), the liquid spinodal (dashed blue) and the gas spinodal
(dashed green) all meet in the critical point (black dot). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 6. The liquid density and pressure at the liquid spinodal curve for ethane, calcu-
lated using GERG2008 (solid blue), PC-SAFT (dashed green), PR (dash-dot red) and
extended CSP (dotted cyan). The saturation line is given by the solid black line. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 7. Comparison of pure-component spinodal curves (liquid and vapor), superheat and subcool limits predicted using CNT (solid gray) and saturation line (solid black). The
saturation lines are calculated with GERG2008. Spinodal curves are shown for four different EoS: GERG2008 (solid blue), PC-SAFT (dashed green), PR (dash-dot red) and extended
CSP (dotted cyan). Experimental data from various studies of the limit of superheat are also shown: methane by Baidakov and Skripov [51] (squares), n-pentane compiled by
Avedisian [8] (pentagons), nitrogen by Baidakov and Skripov [51] (circles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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observed for pure species (Fig. 7 right). The highest predictions for
the vapor spinodal all come from the multiparameter GERG2008
equation, while the lowest come from the simple cubic Pen-
geRobinson EoS. This further illustrates the inconsistency of widely
used EoS when used in the metastable domain. Table 3 shows the
average (over mole fractions) standard deviation (with regard to
EoS) of the predicted liquid and vapor spinodal temperatures for
mixtures. Again, as for pure species, the spread in predicted spi-
nodal temperatures is significant, especially for the vapor spinodal.

3.4. How close to the spinodals can experiments bring us?

We showed in Sec. 3.3 that the limit of superheat from experi-
ments agreed very well with predictions from CNT, both for single-
component liquids (Fig. 7) and mixtures (Fig. 8). This does not
contradict that CNT is unable to reproduce experimental nucleation
rates, since the limit of superheat is insensitive to the exact choice
of the critical nucleation rate in Eq. (27). We can therefore use CNT
to estimate the limits for how close to the spinodal it is possible to
get experimentally before homogeneous nucleation occurs spon-
taneously. In Fig. 9, we have used methane as example and plotted
the phase envelope that encloses the two-phase region (blue solid
line), the limit of homogeneous nucleation as predicted by CNT
(green dashed line) and the spinodals (red solid line). The spino-
dals, the coexistence line and the homogeneous nucleation limit all
merge in the critical point.

In the following, we shall refer to the function P ¼ PðT; rÞ as the
thermodynamic surface of methane. Fig. 9 shows that:

1 On a curve on the thermodynamic surface that goes from the
spinodal to the coexistence limit, the distance between the
spinodal and the nucleation limit relative to the corresponding
distance to the coexistence limit is significant.

2 The relative distance on this curve is much larger for metastable
vapor than for metastable liquid.

Point number 1 means that there is large part of the thermo-
dynamic surface where the properties of the metastable fluid are

currently experimentally unavailable, in particular for metastable
vapor. In the literature, some suggestions have been put forward on
how to enter the region of the thermodynamic surface that is
currently experimentally unavailable.

A recent work [56] shows how small closed containers can be
used to completely prevent nucleation, achieving infinitely long-
lived metastable states, referred to as superstable. Experiments
can be carried out in quartz inclusions, similar to Ref. [6], where
speed of sound measurements in the inclusion give information
about the slope of PðrÞ at constant entropy, similar to Ref. [57].
Since such experiments are very challenging, the perhaps most
available methodology to study the properties of highly metastable
states is to use molecular dynamics simulations in the canonical
ensemble. For many fluids like alkanes, carbon dioxide and nitro-
gen, force fields have been developed that reproduce the thermo-
dynamic properties from experiments very accurately [58].
Molecular Dynamics simulations are then capable of generating
pseudo-experimental data in the metastable regions, or to estimate
the spinodals of the fluid. Eventually, hybrid data sets with both
experimental data and data from computations can be exploited in
the fitting of the next generation multiparameter EoS, following a
procedure similar to Rutkai et al. [59]. This represents a largely
unexplored research topic for the future.

Bullet point 2 agrees with the results in Figs. 7 and 8, and shows
that CNT predicts the nucleation limit to be closer to the spinodal
for liquids than for vapor.

4. Conclusion

In this work, we have presented a method that can be used to
obtain the thermodynamic stability limit of a single-phase fluid,
called the spinodal. We demonstrated that the method was robust
in vicinity of the critical point, scalable to multicomponent mix-
tures and applicable to complex non-analytical EoS.

We next discussed the role of the spinodal, the metastable and
the unstable regions of the phase diagram of the single-phase fluid
in the development of modern equations of state (EoS). Since the
spinodal provides a reference for an extrapolation into the meta-
stable domain from the saturation curve, and since much is known
about the thermodynamic properties of the fluid at the spinodal,
information about the spinodal can be used to characterize the
properties or to estimate the uncertainty of the properties of fluids
in the metastable domain.

A future goal should be to develop EoS without inadmissible
pseudo-stable states in the unstable domain. This is of importance,
both for combining them with mass based density functional the-
ory and to develop thermodynamically consistent mixing rules
with a physical interpretation. We proposed and evaluated a set of
inequality constraints that can be used for this purpose in the fitting
of modern EoS for single-component fluids.

We showed that there were large inconsistencies in predicted
spinodals from a wide range of EoS such as cubic EoS, extended
corresponding state EoS, SAFT and multiparameter EoS. The overall
standard deviation in the prediction of the spinodal temperatures
were 1.4 K and 2.7 K for single- and multi-component liquid-spi-
nodals and 6.3 K and 26.9 K for single- and multi-component vapor
spinodals. However, the range between the smallest and the largest
predictions were significantly larger. For example, for an even
mixture of hydrocarbons, the vapor spinodal temperature ranged
from 85.9e154.7 K for ethane/propane, 108.9e177.0 K for propane/
nebutane and 154.4e227.3 K for nepentane/nehexane. In general,
there was a much larger spread in the prediction of the vapor-
spinodal than the liquid-spinodal.

We also discussed the relationship between the measurable
limit of superheat or supersaturation and the theoretical concept of

Table 1
The average absolute deviation (AAD) in the temperature for
the experimental data for the limit of superheat compared to
classic nucleation theory for pure components and mixtures
at pressure ranging from 0.9 bar to the critical pressure.

AAD (K)

Methane 0.62
n-Pentane 0.28
Nitrogen 2.21
Ethane/Propane 4.5
Propane/n-Butane 1.2
n-Pentane/n-Hexane 1.6

Table 2
The standard deviation in the temperature with regard to EoS for the predicted
spinodal. For the GERG2008, PC-SAFT, PR, and CSP EoS. Standard deviations are
averaged for pressures ranging from 0.9 bar to the critical pressure.

Liquid
(K)

Vapor
(K)

Methane 0.44 4.07
Ethane 1.13 6.62
Propane 1.60 7.15
n-Butane 2.19 7.99
n-Pentane 2.86 9.31
Nitrogen 0.30 2.61
Overall 1.42 6.29
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Fig. 8. Comparison of the spinodal curve (liquid and vapor), superheat and subcool limits predicted using CNT (solid gray), and bubble and dew lines (solid black) for some binary
mixtures at 1 bar. The bubble and dew lines are computed using GERG2008. Spinodals are shown for four different EoS: GERG2008 (solid blue), PC-SAFT (dashed green), PR (dash-
dot red) and extended CSP (dotted cyan). Experimental data from various studies of the limit of superheat are also shown: ethane þ propane by Porteous and Blander [52]
(hexagons), propane þ n-butane by Renner et al. [53] (pentagons), n-pentane þ n-hexane by Holden and Katz [54] (squares), Park et al. [24] (diamonds) and Skripov [55] (tri-
angles). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the spinodal. While nucleation rates from CNTcan deviate orders of
magnitude from experiments, we found that the limit of superheat
experiments agreed within 1.0 K and 2.4 K with predictions from
CNT for single- and multi-component fluids respectively.

At present, a large part of the metastable domain of the phase
diagram is experimentally unavailable, in particular for metastable
vapor. Novel techniques, with experimental or computational
methods, should be developed to characterize the thermodynamic
properties in these regions, and to identify the thermodynamic
states that define the spinodal.
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a b s t r a c t

A fluid in a pore can form diverse heterogeneous structures. We combine a capillary description with the
cubic-plus-association equation of state to study the thermodynamic stability of droplets, bubbles and
films of water at 358 K in a cylindrically symmetric pore. The equilibrium structure depends strongly on
the size of the pore and whether the pore is closed (canonical ensemble) or connected to a particle
reservoir (grand canonical ensemble). A new methodology is presented to analyze the thermodynamic
stability of films, where the integral that describes the total energy of the system is approximated by a
quadrature rule. We show that, for large pores, the thermodynamic stability limit of adsorbed droplets
and bubbles in both open and closed pores is governed by their mechanical stability, which is closely
linked to the pore shape. This is also the case for a film in a closed pore. In open pores, the film is
chemically unstable except for very low film-phase contact angles and for a limited range in external
pressure. This result emphasizes the need to invoke a complete thermodynamic stability analysis, and
not restrict the discussion to mechanical stability. A common feature for most of the heterogeneous
structures examined is the appearance of regions where the structure is metastable with respect to a
pore filled with a homogeneous fluid. In the closed pores, these regions grow considerably in size when
the pores become smaller. This can be understood from the larger energy cost of the interfaces relative to
the energy gained from having two phases. Complete phase diagrams are presented that compare all the
investigated structures. In open pores at equilibrium, the most stable structure is either the homoge-
neous phase or adsorbed droplets and bubbles, depending on the type of phase in the external reservoir.
Smaller pores allow for droplets and bubbles to adsorb for a larger span in pressure. In closed pores, most
of the investigated configurations can occur depending on the total density, the contact angle, the pore
shape and the pore size. The analysis presented in this work is a step towards developing a thermo-
dynamic framework to map the rich heterogeneous phase diagrams of porous media and other confined
systems.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Some phenomena occur exclusively in pores or under strong
confinement. In porous materials, a liquid phase can form at
pressures below the saturation pressure during capillary conden-
sation [1e4], liquid water can be stretched to negative pressures
exceeding 140MPa in quartz inclusions [5,6] and giant charge
reversal has been observed in confined systems filled with

electrolytes [7]. The understanding of such systems is at the core of
widely different topics such as porous media science [8,9], atmo-
spheric science [10] and biology [11].

While the thermodynamics of homogeneous systems is well
understood [12], this is not the case for heterogeneous systems, as
evident e.g. from the large deviations between experiments, theory
and simulations for the formation of drops [13,14]. Both in bulk
systems and in systems under confinement, equilibrium is char-
acterized by aminimum of an energy state functionwhose nature is
determined by the boundary conditions. For instance, in a closed
container at constant temperature, equilibrium is aminimumof the
Helmholtz energy, while the Gibbs energy is minimum at
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atmospheric conditions [12].
A complicating factor in pores, is that multiple heterogeneous

structures such as films, adsorbed or free droplets and bubbles, and
combinations of these, could all be stationary states of the same
energy state function [15]. Such states are typically characterized by
uniform temperature, equality of chemical potentials and me-
chanical equilibrium [12,16]. These conditions being satisfied
however, does not imply a minimum, as the stationary state can
also be a maximum or a saddle point [17]. To determine the equi-
librium state, it is necessary to employ thermodynamic stability
analysis [18], where the outcome depends strongly on the bound-
ary conditions. For instance, bubbles and droplets are known to be
unstable at atmospheric conditions, as they represent saddle points
in the Gibbs energy landscape [17]. However, in confined systems,
bubbles and droplets can be minima in the Helmholtz energy and
thus be stable [19e21].

In the literature on the stability of heterogeneous structures,
many works have studied thin films, often in combination with
adsorbed droplets [22e24]. Films are characterized as either thin
(a-films) or thick (b-films). In thin films, the thermodynamic
properties of the interior deviate from bulk behavior, resulting in a
non-zero disjoining pressure. Thin films have been examined by
use of theory [25,26], molecular simulations [27,28], density func-
tional theory [29] and experiments [30]. A common feature of
previous works in the literature discussing the stability of films, is
that they consider only stability towards perturbations of the film
height. This differs from thermodynamic stability, since exchange
of particles is neglected [25,26]. In this work, we show that the
thermodynamic stability of the simplest type of film, the thick film,
is very different for closed (canonical ensemble) and open systems
(grand canonical ensemble). A new methodology to analyze the
thermodynamic stability of films will be presented. This method-
ology can be extended to include the disjoining pressure and give
new insight into thin films in future work.

We will discuss in detail the difference between the thermo-
dynamic stability of heterogeneous structures and equilibrium
configurations in open and closed pores, as well as the influence of
pore size. The work is a step towards developing a thermodynamic
framework to characterize heterogeneous fluid structures and
equilibrium states inside porous media.

We begin by presenting the thermodynamic description of the
fluid structures in Section 2. We employ a capillary description,
with the rationale that it gives identical results to more sophisti-
cated density functional theory for the thermodynamic stability of
multicomponent droplets and bubbles [14]. The numerical
methods are described in Section 3, before results are discussed in
Section 4. Concluding remarks are provided in Section 5.

2. Models

In the following, we present thermodynamicmodels for the four
systems illustrated in Fig. 1. The figure depicts a cylindrically
symmetric pore in an incompressible and chemically inert solid
matrix. The pore contains a single-component fluid that can have
four different configurations, (a) a homogeneous fluid phase, (b) a
free droplet or bubble that is not in contact with the porewalls, (c) a
droplet or bubble filling the entire cross-section of some part of the
pore and (d) a thick film (no disjoining pressure) of gas or liquid.
Thin films, that are influenced by a disjoining pressure, are beyond
the scope of the present work. Structures that do not have the same
rotational symmetry as the pore are not considered. Examples
include spherical sessile droplets and bubbles adsorbed to the pore
wall. The reason for omitting these structures will be further dis-
cussed in Section 4.4. By deriving thermodynamic models for all
these sub-systems with the same assumptions, it is possible to

evaluate their local stability, compare their energies and thus
identify the appropriate equilibrium configuration, at given
conditions.

We consider a pore of length Lp and radius Rp. The radius de-
pends on the axial coordinate z2½0; Lp�. Fig. 1a illustrates one
possible pore geometry, but the governing equations will be
derived for an arbitrary function RpðzÞ, which is sufficiently smooth
for _R

p ¼ dRp=dz and €R
p ¼ d2Rp=dz2 to be defined.

For simplicity, we will restrict the pore radii considered in the
present work to functions on the form,

RpðzÞ¼ Lp
�
0:2�0:075

�
1þ cos

�
2pz
Lp

���
; (1)

where Fig. 1 shows an example of this profile. It is assumed that the
solidmatrix acts as a thermal reservoir for the fluids at temperature
T.

With the above assumptions, the volume of the pore is constant
and can be calculated from,

Vp ¼p

ðLp

0

�
Rp

�2dz: (2)

Similarly, the surface area of the solid matrix is constant and equal
to

Ap ¼2p
ðLp
0
Rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
_Rp

2r

dz: (3)

Three interfacial tensions will be parameters in our models.
These are sgs, s[s and sg[ for the gas-solid, liquid-solid and gas-
liquid interfaces, respectively. In terms of the interfacial tensions,
Young's equation gives the contact angle a (measured in the liquid)
as

cosðaÞ¼sgs � s[s

sg[
: (4)

Due to the isothermal conditions, interfacial tensions are assumed
to be constant.

The thermodynamic properties of the fluids are described by an
equation of state (EOS), where any EOS capable of describing the
liquid and gas phases is applicable.

In the following, we present the governing equations for all the
sub-systems in Fig. 1. A clear distinction is made between whether
the system is closed (canonical ensemble), or connected to a par-
ticle reservoir (grand canonical ensemble). The grand canonical
ensemble is a natural representation of an open pore, which is
equivalent to a system connected to a temperature and pressure
reservoir for a single-component system due to the GibbseDuhem
relation (see Ref. [21] for a discussion). Equilibrium in the canonical
ensemble is a minimum of the total Helmholtz energy of the sys-
tem, while equilibrium in the grand canonical ensemble is a min-
imum of the total grand potential energy. These energy state
functions and their stationary states have to be identified for each
of the configurations in Fig. 1.

2.1. Pore with a homogeneous phase

We start by considering the simplest fluid configuration
possible, which is a pore filledwith a single-phase fluid. This type of
configuration is illustrated in Fig. 1a. The Helmholtz energy of this
system is
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F ¼ � pVp þ mN þ sAp; (5)

where p is the fluid pressure, m is the chemical potential, N is the
number of particles and s is the interfacial tension between the
solid and the fluid, i.e. sgs for a pore filled with gas and s[s for a pore
filled with liquid. The grand potential energy is

U¼ F � mN: (6)

Since the solid matrix is incompressible, chemically inert and has a
constant temperature, its Helmholtz and grand potential energies
are constants that can be omitted from the analysis without any
further effect on the results. A stationary state of a homogeneous
phase is characterized by uniform temperature, pressure and
chemical potentials [12]. The phase is thermodynamically stable if
its density is within the spinodal limits at the specified tempera-
ture. We refer to Aursand et al. [18] for further details on how the
spinodal limits can be calculated.

2.2. Pore with a free droplet or bubble

Next, we consider a pore with a free spherical droplet or bubble
that is not in contact with the pore walls. The droplet/bubble phase
is labeled n, while the surrounding phase is labeled e, as illustrated
in Fig. 1b.

First, we assume that the pore is a closed system with a fixed
total number of particles N, total volume Vp and temperature T. An
equilibrium state of this system is then a minimum in the total
Helmholtz energy,

F ¼ � peVe þ meNe þ sesAes � pnVn þ mnNn þ senAen: (7)

Herein, pj is the pressure of phase j, mj is the chemical potential of
phase j and Nj is the number of particles in phase j. The area of the
interface between phase i and j is denoted by Aij and the tension of
this interface by sij. Using that Ve þ Vn ¼ Vp,Ne þNn ¼ N, Aes ¼ Ap

and the GibbseDuhem relations for each phase, the differential of F
can be written as

dF ¼ �ðpn �peÞdVnþðmn �meÞdNn þ sendAen: (8)

Since the n-phase is assumed to be spherical, Aen and Vn are not
independent. We choose to describe the geometry of the droplet/
bubble in terms of its radius Rn and get the differential

dF ¼ �
�
pn �pe �2sen

Rn

�
4p

�
Rn

�2dRn þ ðmn �meÞdNn; (9)

in terms of perturbations in the independent free variables of the
system, Rn and Nn. The elements in the Jacobian vector of F are then

�
vF
vRn

�
Nn

¼ � 4p
�
Rn

�2�pn � pe �2sen

Rn

�
; (10)

and

�
vF
vNn

�
Rn

¼mn � me: (11)

A stationary state of F is therefore characterized by equality of the
chemical potentials in the two phases and a pressure difference
between the gas and liquid given by the YoungeLaplace equation.
The Hessian matrix of F can be found by further differentiation of
the Jacobian, as shown in Ref. [14].

Let us now consider the pore in an open system at fixed total
volume and temperature that is connected to a particle reservoir,
such that the chemical potential of the e-phase is fixed. An equi-
librium state is then a minimum of the total grand potential energy
of the system,

U¼ F � meN: (12)

By a derivation analogous to that above, one finds the Jacobian
vector of U and that the criteria for a stationary point in the grand
canonical ensemble are exactly the same as in the canonical
ensemble. One subtle difference that makes the Hessianmatrix ofU
different from that of F, is that me in the open system no longer
depends on the free variables of the system.

Fig. 1. Illustration of the heterogeneous fluid structures under consideration: (a) a homogeneous fluid phase, (b) a free droplet or bubble that is not in contact with the pore walls,
(c) a droplet or bubble filling the entire cross-section of some part pore and (d) a thick film of gas or liquid.
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2.3. Pore with an adsorbed droplet or bubble

The next fluid configuration we consider is a pore containing a
droplet or a bubble that is in contact with the pore walls and fills
the entire pore cross-section for some interval on the z-axis. This
type of fluid configuration is illustrated in Fig. 1c. The two fluid-
fluid interfaces, in contact with the pore walls at z[ and zr, are
assumed to be spherical caps. Again, the droplet/bubble phase is
labeled n. The fluid phase on the left side is labeled e[ and the one
on the right side is labeled er.

The Helmholtz energy is

F ¼ �pe[Ve[ þ me[Ne[ þ sesAe[s þ senAe[n

�perVer þ merNer þ sesAers þ senAern

�pnVn þ mnNn þ snsAns:
(13)

Using now that Ve[ þ Ver þ Vn ¼ Vp, Ae[s þ Ans þ Aers ¼ Ap, Ne[þ
Nn þ Ner ¼ N and that the GibbseDuhem relation is satisfied for
each phase, we can formulate the differential of F as

dF ¼ �ðpe[ � pnÞdVe[ þ ðme[ � mnÞdNe[

þðses � snsÞdAe[s þ sendAe[n

�ðper � pnÞdVer þ ðmer � mnÞdNer

þðses � snsÞdAers þ sendAern:

(14)

Since both fluid-fluid interfaces are assumed to be shaped like
spherical caps, they can each be described by two independent
variables. We therefore parameterize the six geometrical quantities
Ve[ , Ae[s, Ae[n, Ver , Aers, Aern in terms of the four independent vari-
ables z[, zr, q[, and qr. As illustrated in Fig. 1c, z[ denotes the position
along the z-axis of the left three-phase contact line of the left
meniscus and zr denotes the position of the contact line of the right
meniscus. The angle q[ is between a line connecting the center of
the left sphere with a point on the left three-phase contact line and
a line from the same point on the contact line which is perpen-
dicular to the z-axis. The angle qr is defined analogously. In terms of
the independent variables, we have that

Ve[ ¼p

ðz[

0

�
Rp

�2dz� zðz[; q[Þ; (15)

Ver ¼p

ðLp

zr

�
Rp

�2dz� zðzr; qrÞ; (16)

Ae[s ¼2p
ðz[
0
Rp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
_Rp

2r

dz; (17)

Aers¼ 2p
ðLp

zr

Rp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
_Rp

2r

dz; (18)

Ae[n¼p
�
Rpðz[Þ

�2n1þ x2ðq[Þ
o
; (19)

Aern ¼p
�
RpðzrÞ

�2n1þ x2ðqrÞ
o
; (20)

where

zðz; qÞ¼p

6
�
RpðzÞ�3xðqÞn3þ x2ðqÞ

o
; (21)

xðqÞ¼1� sinðqÞ
cosðqÞ : (22)

The Helmholtz energy differential may then be expressed as

dF ¼ fme[ � mngdNe[ þ fmer � mngdNer

þ
�
ðses � snsÞ vA

e[s

vz[
þ sen

vAe[n

vz[
� ðpe[ � pnÞ vV

e[

vz[

�
dz[

þ
�
ðses � snsÞ vA

ers

vzr
þ sen

vAern

vzr
� ðper � pnÞ vV

er

vzr

�
dzr

þ
�
sen

vAe[n

vq[
� ðpe[ � pnÞ vV

e[

vq[

�
dq[

þ
�
sen

vAern

vq[
� ðper � pnÞ vV

er

vqr

�
dqr:

(23)

Here, the expressions in the curly brackets are the elements of the
Jacobian vector of F. The Hessian matrix can be found by further
differentiation of the Jacobian vector.

In a stationary state, all the terms of (23) must vanish. Setting
the last two terms equal to zero, yields

pn �pe[ ¼2sencosðq[Þ
Rpðz[Þ ; (24)

pn �per ¼2sencosðqrÞ
RpðzrÞ : (25)

Since the radii of curvature of the fluid-fluid interfaces are
Rpðz[Þ=cosðq[Þ and RpðzrÞ=cosðqrÞ, these two equations imply that
the interfaces obey the YoungeLaplace equation.

For the first two terms in equation (23) to vanish, we must have
equality of the chemical potential in all fluid phases. This requires
that pe[ ¼ per , and (24) and (25) may then be combined to give

cosðq[Þ
Rpðz[Þ ¼ cosðqrÞ

RpðzrÞ ; (26)

meaning that both fluid-fluid interfaces must have the same cur-
vature. The relation between qi and the contact angle, measured in
the n-phase, is

an ¼ qi þ bi; (27)

where

b[ ¼ arctan
	

_Rpðz[Þ


; (28)

br ¼ arctan
	
� _Rpðz[Þ



: (29)

By combining the above equations with (15-23) we find by use of
trigonometric relations that both contact angles obey Young's
equation (4) in a stationary state.

The grand canonical energy U of the system is given by (12),
where (13) is used for the Helmholtz energy. The derivatives of U
may then be found by an analogous derivation to that given above.
One result from this derivation is that the criteria for a stationary
state of U are the same as those for a stationary state of F. The
Hessian matrix differs, however.
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2.4. Pore with a thick film of liquid or gas

The final fluid configuration that will be considered is a pore
with a wetting film consisting of either liquid or gas. The film is
considered so thick that interactions between the fluid-fluid and
fluid-solid interfaces, as modeled by the disjoining pressure, are
negligible. We refer to excellent works in the literature for further
information about the disjoining pressure [22e24]. The thick film
configuration is illustrated in Fig. 1d. As for the adsorbed droplet
and bubble, z[ and zr denote the positions of the left and right
three-phase contact lines, respectively.

The Helmholtz energy is now

F ¼ �peVe þ meNe þ sesAes þ senAen

�pnVn þ mnNn þ snsAns:
(30)

The interfacial area between the n- and s-phases is a function of z[
and zr,

Ans ¼2p
ðzr
z[

Rp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
_Rp

2r

dz (31)

The volume of the n-phase Vn and the interfacial area between the
n- and e-phases Aen depend on z[ and zr and on the shape of the
fluid-fluid interface in between. Since the system is axisymmetric,
we may express the shape of the interface by the function Rf ðzÞ,
which represents the distance between a point on the fluid-fluid
interface to its closest point on the z-axis. The volume Vn and
area Aen are then functionals of Rf ,

Aen ¼
ðzr
z[

LAen

	
z;Rf ; _R

f

dz; (32)

Vn ¼
ðzr
z[

LVn

	
z;Rf ; _R

f

dz: (33)

The integrands of these functionals are

LAen

	
z;Rf ; _R

f
¼2pRf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
_R
f
2r

; (34)

LVn

	
z;Rf ; _R

f
¼p

��
Rp

�2 �	
Rf

2�

: (35)

Using that Aes þ Ans ¼ Ap, Ve þ Vn ¼ Vp and Ne þ Nn ¼ N we pro-
ceed to eliminate Aes, Ve and Ne from (30) and get

F ¼ ðmn � meÞNn � peVp þ sesAp þ meN
�ðpn � peÞVn þ ðsns � sesÞAns þ senAen:

(36)

Taking the differential on both sides of (36) gives

dF ¼ ðmn � meÞdNn � ðpn � peÞdVn

þðsns � sesÞdAns þ sendAen:
(37)

The above equation shows that in a stationary state, the chemical
potentials of the e- and n-phases must be the same. The Helmholtz
energy of a film in a pore with a uniform chemical potential
(subscript m) can be formulated as

Fm ¼ F+m þ p

ðzr
z[
2senRf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
_R
f
2r

�ðpn � peÞ
��

Rp
�2 � 	

Rf

2�

þ2ðsns � sesÞRp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

	
_Rp

2r

dz;

(38)

where we have integrated (37) and used (32) and (33). F+m is a
constant. To have a stationary state in Fm, the first variation with
respect to the function Rf must vanish and Rf must therefore satisfy
the EulereLagrange equation in the interval z2ðz[; zrÞ. The
EulereLagrange equation leads to the following second-order or-
dinary differential equation (ODE) for Rf ,

pe �pn¼ senðk1 þ k2Þ; (39)

where

k1 ¼
1

Rf
�
1þ

	
_R
f
2�1

2

; (40)

k2 ¼ �
€R
f

�
1þ

	
_R
f
2�3

2

; (41)

are the interfacial curvatures. This ODE can be recognized as the
YoungeLaplace relation for the film. Since (39) is a second-order
ODE, we need boundary conditions on both Rf and _R

f
at the free

end points, z[ and zr to fully define the film. The boundary condi-
tions on Rf are Rf ðz[Þ ¼ Rpðz[Þ and Rf ðzrÞ ¼ RpðzrÞ. To derive
boundary conditions for _R

f
, we must consider the transversal con-

ditions at the free end points z[ and zr, see e.g. page 159 in Ref. [31].
They give that

cosðanÞ¼ses � sns

sen
; (42)

must be satisfied at the end points z[ and zr. Here, an is the contact
angle measured in the film. The transversal conditions are thus
satisfied when the three-phase contact angles obey Young's equa-
tion, as for the adsorbed droplet/bubble.

The grand canonical energy U of the pore with a film is given by
(12), where (30) is used for the Helmholtz energy. As for the other
systems, the criteria for a stationary state of U are the same as those
for a stationary state of F. To analyze the thermodynamic stability of
the film, one possibility is to study the second variation of e.g. F at
the stationary state. As this is often challenging due to the infinite
number of possible functions that can perturb the stationary state,
we present in Section 3 a new methodology to analyze the sta-
tionary states of films.

3. Numerical methods

In this section, we provide details on the numerical methods
used to determine the stationary states and the thermodynamic
stability of the configurations in Fig. 1. For all the heterogeneous
structures, oneway to identify stationary states is to first determine
the shape and positions of the interfaces. The outcome is a fixed
value of the pressure difference Dp ¼ pe � pn. For the film, this can
be done by solving the EulereLagrange equation (39) as described
in Section 3.2. Subsequently, one can calculate the phase
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equilibriumwith specified Dp ¼ pe � pn, as described in Section 3.1.

3.1. Phase equilibrium calculations

All the heterogeneous structures considered in this work are
characterized by the same chemical potentials in the n- and e-
phases, but at a fixed pressure difference Dp ¼ pe � pn, tempera-
ture T and phase volumes Ve and Vn. This poses an untypical phase-
equilibrium problem.

To determine the remaining thermodynamic properties of the
system, one can solve for the dimensionless particle numbers Nn=

N+ and Ne=N+. This procedure amounts to solving the non-linear
system of equations FðNn =N+;Ne =N+Þ ¼ 0, where

F
�
Nn

N+;
Ne

N+

�
¼

2
6664

me
�
T ;Ve;Ne�� mn

�
T ;Vn;Nn�

RT

pe
�
T ;Ve;Ne�� pn

�
T;Vn;Nn�� Dp

p+

3
7775: (43)

Herein, the functions for pressure and chemical potentials, and the
derivatives required to compute the Jacobian matrix of F; are pro-
vided by the EOS. The scaling parameters are

p+ ¼ 105 Pa; (44)

N+ ¼ p+Vp

RT
; (45)

and R is the universal gas constant. The system in (43) was solved
using Newton's method. Initial guesses for Nn and Ne were ob-
tained from a standard phase equilibrium calculation [18,32e34] at
the specified temperature and saturation pressure. The EOS
implementation used was provided by our in-house thermody-
namic library presented by Wilhelmsen et al. [35].

3.2. Solving the film EulereLagrange equation

The ODE in (39) gives a requirement for the film profile that
must be satisfied to have a vanishing first variation of the Helm-
holtz and grand canonical energies. Since the ODE is second-order
and requires boundary conditions on both Rf and _R

f
at z[ and zr, it

represents a two-point boundary value problem. We solved this
problem using the shooting method. The solution strategy was to
first specify the position z[. Since the contact angle and pore radius
at z[ are known, Rf and _R

f
are also specified. Next, a search was

performed for the values of the variables Dp ¼ pe � pn and zr that
satisfy the two boundary conditions on Rf and _R

f
at zr. The shooting

procedure thus amounts to solving GðDp =p+;zr =LpÞ ¼ 0, where

G
�
Dp
p+

;
zr
Lp

�
¼

2
66664

Rf ðzrÞ � RpðzrÞ
Lp

_R
f ðzrÞ � tanðqrÞ

maxð1; jtanðqrÞjÞ

3
77775; (46)

and

qr ¼ arctan
	
_R
pðzrÞ



þ an: (47)

The scaling parameter is

p+ ¼ sen

Lp
: (48)

One evaluation of G involves one integration of (39). We used

odeint from scipy's integrate module for the ODE integrations and
fsolve from the optimize module to solve G ¼ 0 [36].

A complicating factor in the search for stationary states is that
there may be many solutions to G ¼ 0 with the same z[. In practice,
however, we have found that we can identify the one that is
potentially stable and discard any other solutions in subsequent
analysis. This is further explained in Appendix A.

3.3. A discrete method for describing the film

The variational formulation works well for identifying station-
ary states in F and U, where the EulereLagrange equation for the
film (39) can be solved as described in Section 3.2. The procedure
identifies stationary states, but it does not give any insight into the
thermodynamic stability of the film. This information is contained
in the second variation (or higher-order variations, if the second
variation happens to be zero). For a stationary state of a functional
to be a minimum, it is necessary to have a positive second variation
for all viable perturbations, as discussed by Wilhelmsen et al. [14].
To establish that this is the case, or not, can be very demanding and
it is impossible for many examples.

In this section, we present a newmethodology for analyzing the
thermodynamic stability of films. The approach that we follow here
is to discretize the functionals for Aen (32) and Vn (33) and use the
discretized functionals to represent the Helmholtz and grand ca-
nonical energies. The functionals are integrated numerically using a
quadrature rule over a predefined grid, where the end points are
left unspecified. This transforms the variational problem of mini-
mizing F or U in the space of functions Rf , to an algebraic problem
where F is to be minimized by a vector in RM . Local stability can
then be evaluated by considering the eigenvalues of a Hessian
matrix.

This procedure can be applied to general problems in functional
optimization. We have tested it carefully and successfully repro-
duced well-known results from variational calculus, such as the
Brachistochrone and the hanging cable problems [31], see supple-
mentary material.

In the discrete formulation of the film, we approximate the
function Rf by the vector

Rf ¼
h
Rf1;R

f
2;…;RfM

iT
; (49)

which represents the values of Rf at points on a predefined gird
with M points on the z-axis, given by

z ¼ ½z1; z2;…; zM�T: (50)

The complete vector of geometrical unknowns, including the po-
sitions of the free end points, is then

x ¼ ½x1; x2;…; xMþ2�T¼
h
z[; zr;Rf1;R

f
2;…;RfM

iT
: (51)

The volume Vn and area Ane can now be approximated by the
midpoint rule,

VnðxÞ¼
X
i¼0

M

LVn

�
zi;R

f
i ;
_R
f

i

�
Dzi; (52)

AenðxÞ¼
X
i¼0

M

LAen

�
zi;R

f
i ;
_R
f

i

�
Dzi: (53)

The integrands LVn and LAen are given by (35) and (34), respectively,
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and

zi ¼
ziþ1 þ zi

2
; (54)

R
f
i ¼

Rfiþ1 þ Rfi
2

; (55)

_R
f
i ¼

Rfiþ1 � Rfi
Dzi

; (56)

Dzi ¼ ziþ1 � zi; (57)

In addition, Rf0 ¼ Rpðz[Þ, RfMþ1 ¼ RpðzrÞ, z0 ¼ z[ and zMþ1 ¼ zr.
The discretized Helmholtz energy for the film can now be

calculated by introducing into (36) the discrete functionals VnðxÞ
and AenðxÞ, and the interfacial area Ansðz[; zrÞ as given by (31),

FðyÞ ¼ fmn � megNn � peVp þ sesAp þ meN þ senAenðxÞ
�fpn � pegVnðxÞ þ fsns � sesgAnsðz[; zrÞ: (58)

Since, the quantities Vn, Ans and Ane depend only on the variables
contained in x, and since Vp, Ap and N are constants, the free var-
iables of the system are the elements of x and the number of par-
ticles in the film Nn,

y ¼ ½y1; y2;…; yMþ3�T¼
h
Nn; z[; zr;Rf1;R

f
2;…;RfM

iT
: (59)

The elements of the Jacobian vector can be obtained from (37) as

vF
vy1

¼mn � me; (60)

and, for i2½2;…;M þ 3�,

vF
vyi

¼ �ðpn� peÞ vV
n

vyi
þðsns � sesÞ vA

ns

vyi
þ sne

vAne

vyi
: (61)

The Hessian matrix can be found by further differentiation. The
procedure used for calculating the derivatives of Vn and Ane w.r.t. yi
is documented in the supplementary material. By a derivation
similar to that above, we obtain the grand potential U, its Jacobian
vector and its Hessian matrix.

The strategy to solve the discrete problem is to use the sta-
tionary state obtained from solving the ODE as described in Section
3.2 as initial guess. The stationary state for the discrete problem is
then found by solving for the vector y� for which the discrete Ja-
cobian vector is zero,

dF
dy






y�
¼0: (62)

Since we have an expression for the Hessian matrix of F and a very
good initial guess for the solution to (62), this non-linear system of
equations is solved with Newton's method with few number of
iterations. A convergence study is reported in Appendix B, which
shows that the film profiles obtained by the discrete method
converge to those obtained by solving the EulereLagrange equation
as the grid size M is increased. For a thorough exposition of the
discrete approach, we refer to the supplementary material.

3.4. Stability analysis

Any stationary state identified using the procedures described

above, and defined by the vector y�, will be stationary for both F and
U and, therefore, in both a closed and an open pore. Since the Ja-
cobian vector is 0, the change in, say, F in response to a small
perturbation dy of y� can be expressed as

dF ¼dyT
d2F
dy2







y�
dy; (63)

where d2F=dy2 is the Hessian matrix. For the film, we calculate the
Hessianmatrices using the discrete description, see Section 3.3. The
symmetric Hessian matrix can be decomposed into

d2F
dy2







y�
¼QLQT; (64)

where L is the diagonal matrix eigenvalues and Q is a matrix
where column i is the eigenvector qi (with unit length in the
L2-norm) associated with eigenvalue li. The eigenvectors are
orthogonal, since the Hessian is symmetric.

A stationary state y� corresponds to a minimum in F and is
considered locally stable in the closed pore if all eigenvalues of the
Hessian are positive. If one or more of the eigenvalues are negative,
dy can be taken in direction of the corresponding eigenvectors qi
(or � qi) to give a negative dF . The stationary state is thus not a
minimum in the Helmholtz energy and it is therefore unstable.
Analogous considerations apply for U and stability in open pores.

The eigenvectors that correspond to the negative eigenvalues
give information about the direction of the perturbations that lead
to a reduction in the energy andmake the system unstable. For both
the adsorbed droplet/bubble and the films, we observe (see Section
4) two distinct classes of instabilities that we name (1) translation
and (2) condensation/evaporation. Translation instabilities are
perturbations where the n-phase moves along the z-axis and only a
small number of particles are transferred to/from the e-phase(s).
For condensation/evaporation instabilities on the other hand, the
n-phase expands or contracts while exchanging particles with the
e-phase(s), without shifting its center of mass.

Eigenvectors and eigenvalues were calculated using eigh from
numpy's linalg module [36]. This function uses the *syevd routines
from LAPACK, which compute the eigenvalues and eigenvectors of
symmetric matrices [38].

4. Results

In the following, we will discuss the thermodynamic stability of
the heterogeneous structures illustrated in Fig. 1. The focus will be
on the influence of pore size, the fluid-solid interaction, as captured
by the liquid contact angle a, and the difference in thermodynamic
stability between closed and open systems. We restrict the dis-
cussion to two pore sizes, Lp ¼ 10 mm and Lp ¼ 0:01 mm. Despite
the small size of both pores, wewill refer to the 10 mm-pore as large
and the 0.01 mm-pore as small.

Water at 358 K will be used as example, inspired by the oper-
ational conditions of a proton-exchange membrane fuel cell1 [39].
The thermodynamic properties of water are described by the cubic-
plus-association modification to the SoaveeRedlicheKwong EOS
(CPA-SRK). In Fig. 2, the saturation properties of water as described
by both the SoaveeRedlicheKwong EOS (SRK) and CPA-SRK are

1 Condensation of liquid water in such fuel cells may block reactant flow paths
and is then severely detrimental to their performance. It is therefore of interest to
know if, say, a path-blocking adsorbed droplet or a liquid film is the equilibrium
configuration under the chosen operating conditions.
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plotted together with reference data from Ref. [37]. Compared to
SRK, CPA-SRK is more inaccurate in the critical region, but has su-
perior prediction of liquid densities at lower temperatures and is
therefore the preferred choice here.

The CPA-SRK isotherm for water at 358 K is shown in Fig. 3,
where the gas and liquid spinodals are indicated by vertical lines. A
homogeneous phase with a density between the two spinodals is
thermodynamically unstable. The isotherm shows that the EOS
predicts stable or metastable stretched liquid phases down to
pressures of �173 MPa, consistent with the findings of Caupin et al.
[5] and Azouzi et al. [6].

In the models presented in Section 2, the energies of the gas-
liquid interface sg[, the gas-solid interface sgs and the liquid-solid
interface s[s are necessary input parameters. The gas-liquid sur-
face tension of water at 358 K is 0:0616N m �1 [37]. With this value
in place, it is only the difference between the gas-solid and gas-
liquid interfacial tensions that is of physical significance in the
models. We therefore set s[s ¼ 0 and subsequently use sg[ and the
specified contact angle a to calculate sgs by use of Young's equation
(4). Thus, only combinations of interfacial energies where Young's
equation has a solution for the contact angle are studied here.

Completewetting, sometimes characterized by a positive spreading
coefficient, is not considered.

4.1. Pore with a free droplet or bubble

The thermodynamic stability of free droplets and bubbles in a
closed pore has been studied in previous works [17,19e21]. Our
results for free bubbles in water at 358 K are shown in Fig. 4. The
stability is here mapped out in terms of the relative bubble size Rn=
Lp and contact angle a. The largest bubble radius that has been
considered equals the radius of the pore at thewidest point. Similar
stability maps for free droplets are given in the supplementary
information.

As expected, the thermodynamic stability of both free bubbles
and droplets is independent of contact angle. For both pore sizes,
large bubbles and droplets are stable and have lower Helmholtz
energies than if the pores were filled with a homogeneous phase
(with the same number of particles). As Rn decreases however, the
configurations first become metastable w.r.t. the homogeneous
phase and, eventually, unstable. The reason is that, as the volume of
the n-phase becomes smaller, the reduction in energy from having
both a liquid and a gas phase does not compensate for the energy
cost of the gas-liquid interface. These findings are consistent with
those of Wilhelmsen et al. [14]. They considered droplets and
bubbles in a spherical container, where the interfacial energy be-
tween the container and the e-phase was zero. The non-zero en-
ergy of the es-interface adds a constant term to the Helmholtz
energy that does not change the local stability w.r.t. to the analysis
performed byWilhelmsen et al. [14]. This is also the reasonwhy the
contact angle does not affect stability. However, it is necessary to
include the contribution from the fluid-solid interface when
comparing the energy of the free droplet/bubble configurations
with other configurations such as adsorbed droplet/bubbles and
films.

The thermodynamic stability of free bubbles and droplets in a
closed system changes with pore size, which can be seen e.g. by
comparing Fig. 4a with 4b. In the white region in the bottom part of
the figures, the bubble radius becomes so small that the pressure
difference needed to satisfy the YoungeLaplace relation is too large
to conform with equal chemical potential between the phases. A
similar effect is observed for the free droplets. The limiting factor
for the droplets is the gas spinodal and for the bubbles it is the
liquid spinodal. The density range where the bubbles are

Fig. 2. Saturation properties of water, as predicted by SRK (green) and CPA-SRK (blue). Reference data from Ref. [37] are shown for comparison (black). Compared to SRK, CPA-SRK is
more inaccurate in the critical region, but has superior predictions of liquid densities for temperatures around 300 K.

Fig. 3. CPA-SRK isotherm (solid blue) for water at 358 K. The densities at the gas
spinodal (dotted line) and liquid spinodal (dashed line) are also indicated. Phases with
densities between the two spinodals are unstable.
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thermodynamically stable (the green regions) or metastable (or-
ange regions) decreases with pore size. The transition from the
metastable to the unstable region is associated, as can be seen in
Fig. 4b, with a maximum in the total density. For densities above
this maximum, there are no stationary bubble states. This is due to
the superstabilization of the homogeneous liquid phase that occurs
in small pores. We refer to Ref. [20] for an elaborate discussion of
this topic.

The white dashed lines in Fig. 4 mark the states where the total
density in the pore reaches the liquid spinodal limit, and the ho-
mogeneous liquid phase becomes unstable. Beyond this limit, the
liquid will spontaneously decompose into two phases.

In agreement with previous work [17], we find that free droplets
and bubbles are unstable in the open systems, also in the presence
of a solid-fluid interface.

4.2. Pore with an adsorbed droplet or bubble

When the solid-fluid interfacial energy is lower than the gas-
liquid interfacial tension, the bubbles and droplets can lower
their energies by adsorbing to the pore walls. The thermodynamic
stability of adsorbed bubbles and droplets, as shown in Fig. 1c, is
mapped out in Fig. 5 in terms of the position of the left contact line
z[ and the contact angle a for open and closed pores with lengths
10 mm and 0.01 mm.

In contrast to the free droplets and bubbles, the absorbed
droplets and bubbles can be stable both in open and closed pores.
The general trend is that adsorbed droplets are thermodynamically
stable if the liquid contact angle is high (non-wetting), while
bubbles are stable when the liquid contact angle is low (wetting),
and the range of stability depends on the value of the contact angle.
We find that this behavior depends strongly on the pore geometry.
An in-depth discussion of the influence of pore morphology on the
thermodynamic stability however, is beyond the scope of the pre-
sent work.

We have analyzed in detail the regions where the adsorbed
droplets and bubbles become unstable. The eigenvectors associated
with the negative Hessian eigenvalues in these regions reveal that
an instability w.r.t. to translation of the n-phase along the z-axis, i.e.
a mechanical instability, is present in the unstable regions of all the
adsorbed bubble and droplet configurations. A perturbation of the
position of the droplet/bubble leads to a net force that moves it

further in the direction of the perturbation, not back to the original
position as for the stable droplets/bubbles. The Hessian matrices of
the open systems have an additional negative eigenvalue in the
unstable regions. The second negative eigenvalue is associatedwith
condensation/evaporation. This instability is also present for the
droplet in the small closed pore, when the liquid pressures become
large and negative. We have included figures that display where
these instabilities appear in the supplementary material.
Comparing the unstable regions of the droplets (left column in
Fig. 5) with those of the bubbles (right column Fig. 5), these are
clearly anti-symmetric. This is because the droplets with contact
angles a are mechanically identical to bubbles with contact angle
p� a.

The white regions in the stability maps for the 10 mm-pore
represent configurations where no stationary state can be found
because the two menisci would have intersected or extended
outside the pore. Such configurations are unfeasible and are not
considered in the analysis. The same is true for the small pores. In
addition, the large curvatures of some menisci in the small pores
result in large, negative liquid pressures. Fig. 3 shows that the liquid
spinodal poses a lower limit to how large the negative pressures of
the liquid phase can be. Configurations with a lower pressure than
the liquid spinodal are unfeasible.

Fig. 5e shows results for a closed pore of the small kind con-
taining an adsorbed droplet. It has a considerable region where the
droplets are metastable w.r.t. a pore with a homogeneous liquid
phase (with the same number of particles). In a large closed pore,
the thermodynamic stability map looks the same, except that the
metastable region is stable. A figure can be found in the supple-
mentary material. The reason for the appearance of the metastable
region in the small pore is as for the free droplet/bubble; when the
volumes of the bulk phases become smaller, the reduction in en-
ergy from having both a gas and a liquid does not compensate for
the energy associated with the gas-liquid interface. The adsorbed
bubble configurations display a similar behavior, where large
bubbles (relative to pore size) become unstable w.r.t. a homoge-
neous gas phase. A crucial difference from the free bubbles/drop-
lets, however, is that the transition from stable to metastable
depends on the contact angle.

The orange regions for the open pores indicate where the
adsorbed/droplet bubble configurations are locally stable, but have
a larger grand canonical energy than if the pore were filled with a

Fig. 4. Stability maps for free bubbles in closed pores of lengths (a) 10 mm and (b) 0.01 mm. The black contour lines indicate the total fluid density in mol/l. Unstable configurations
are red, stable configurations are green and configurations that are locally stable, but have a larger Helmholtz energy than if the pore were filled with a single homogeneous phase,
are orange. The liquid spinodal of 40.7 mol/l is shown as a dashed white line.
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homogeneous phase with the same intensive properties as the e-
phase. The location of these regions does not change much when
pore size is reduced, which is evident by comparing Fig. 5b to
Fig. 5d for the bubbles, and Fig. 5a to Fig. 5c for the droplets.

Comparing the adsorbed bubbles in the large open pore (Fig. 5b)
with those in the small pore (Fig. 5d), we observe that the variation
of gas pressure is much larger in the small pores. In particular, when
the liquid phase is sufficiently wetting, the gas pressure is lower

than the bulk saturation pressure, and much more so in the small
pore. Although the external phase is liquid in Fig. 5b and d, these
observations are closely related to the phenomenon of capillary
condensation in open pores with an external gas phase. When the
liquid phase is wetting, a lower water vapor pressure is required for
water to condense in the pore than in the bulk. A much lower vapor
pressure is required in the small pores, meaning that water will
preferentially condense in small over large pores. A study of

Fig. 5. Stability maps of (left column) adsorbed droplets and (right column) adsorbed bubbles in open and closed pores with lengths 10 mm and 0.01 mm. For the closed pores, the
black contour lines indicate the total fluid density in mol l�1. Further, the gas spinodal density of 1.05 mol/l is drawn as a dotted white line and the liquid spinodal of 40.7 mol/l is
shown as a dashed white line. No homogeneous phase filling the entire pore can exist for densities between the spinodals. For the open pores, the black contour lines indicate the
gas phase pressure in kPa. Also, the bulk saturation pressure of 48.86 kPa is shown as a dashed white line. For all maps, unstable configurations are red, stable configurations are
green and configurations that are locally stable, but have a larger energy than if the pore were filled with a single homogeneous phase, are orange.
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capillary condensation and the effects pore size and shape can be
done with the models and methods presented here, which is a
possible topic for future work.

4.3. Pore with a thick films of liquid or gas

The thermodynamic stability of liquid and gas films in open and
closed pores is shown in Fig. 6. Configurations are here mapped in
terms of the position of the left contact line z[ and contact angle a.

In the open pores, most of the liquid (Fig. 6a) and gas (Fig. 6b)
film configurations are unstable. The exception is when the film
phase is strongly wetting. It is then possible to have a metastable
film, which is evident by the orange regions in the left part of Fig. 6a
and the right part of Fig. 6b. The stability map for the small pore in
the open system is nearly identical to that of the large pore and is
shown in the supplementary material.

Stability maps of liquid and gas films in the 10 mm closed pore
are shown in Fig. 6c and d, respectively. They reveal large regions

Fig. 6. Stability maps of (left column) liquid films and (right column) gas films in open and closed pores of lengths 10 mm and 0.01 mm. For the closed pores, the black contour lines
indicate the total fluid density in mol l�1. Further, the gas spinodal density of 1.05mol l�1 is drawn as a dotted white line and the liquid spinodal of 40.7 mol/l is shown as a dashed
white line. No homogeneous phase filling the entire pore can exist for densities between the spinodals. For the open pores, the black contour lines indicate the gas phase pressure in
kPa. Further, the bulk saturation pressure of 48.86 kPa is shown as a dashed white line. In all maps, unstable configurations are red, stable configurations are green and config-
urations that are locally stable, but have a larger energy than if the pore were filled with a single phase, are orange.
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where both gas and liquid films are more stable than the homo-
geneous phase. In contrast to the adsorbed droplets, which appear
when the liquid is non-wetting, the liquid films are stable only
when the liquid is wetting. Analogously, the gas films in closed
pores are locally stable only for a highly non-wetting liquid.

Fig. 6 reveals that the thermodynamic stability of thick films is
remarkably different in open and closed pores. A deeper insight
into the origin of this difference can be gained by further investi-
gating the unstable regions. Like the adsorbed bubbles and droplets
discussed in Section 4.2, a translational instability is responsible for
the unstable regions in the closed system, as can be seen in Fig. 7a
for the liquid film. This translation instability is also present in the
same regions in the open pore (Fig. 6a and b). However, the open
pore also has a condensation/evaporation instability which is pre-
sent in the entire unstable region. This is illustrated in Fig. 7b for the
liquid film.

As for the previous two configuration types, a metastable region
appears in the closed system when the pore size is reduced, as
shown in Fig. 6e and f for the liquid and gas films, respectively. The
metastable configurations represent films whose small gas and
liquid volumes, again, do not compensate for their interfacial en-
ergy cost. In addition, an unstable region also appears for films with
small extent along the z-axis. This region is present for both, but is
larger for the gas film than the liquid film. It is caused by a
condensation/evaporation instability.

We emphasize that the appearance of metastable regions and of
condensation/evaporation instabilities cannot be predicted form a
purely mechanical analysis of the film, and a complete thermody-
namic stability analysis is needed. This is important critique to
nearly all previous works that evaluate the stability of films in the
literature, and an important future work is thus to extend the
present analysis to films that have a non-zero disjoining pressure to
shed new light on the thermodynamic stability of thin films in open
and closed systems.

4.4. Phase diagrams

The final results we report are phase diagrams that show the
equilibrium configuration, i.e. that which has the lowest total en-
ergy at given conditions. Such phase diagrams are shown in Fig. 8
for closed pores of sizes 10 mm and 0:01 mm. The equilibrium

configurations herein are determined by comparing the Helmholtz
energies of the different (locally stable) fluid configurations at each
value of the total density r and the contact angle a.

The phase diagram for the large pore in Fig. 8a exhibits a large
degree of symmetry around the neutral-wetting case where a ¼
p=2. As pore-size is reduced (Fig. 8a), however, this symmetry is
broken, partly due the appearance of homogeneous phases with
lower Helmholtz energies than the heterogeneous structures. We
note in particular the appearance of a stretched homogeneous
liquid phase at the expense of the free bubble and adsorbed droplet
configurations. In a similar manner, a compressed homogeneous
gas phase appears as well.

For both phase diagrams, the free bubble and adsorbed droplet
configurations prevail at higher densities, because locally stable
configurations of these kinds allow for large liquid volume frac-
tions. Similarly, the free droplet and adsorbed bubble are prevalent
at lower densities, as these allow for large gas volume fractions. At
densities around 25 mol l�1, the equilibrium configuration is either
a free bubble (when the liquid is wetting) or a free droplet (when
the liquid is non-wetting).

Equilibrium liquid film configurations are only observed at low
densities and for wetting liquids. In the 10 mm-pore, the extent of
the liquid film region along the r-axis is smaller than the resolution
used in figure. A finer resolution of the low densities, however,
reveals that the region is indeed there. Its position and extent along
the a-axis is indicated by a thin solid line in Fig. 8a.

The size of the liquid film region grows when the pore size is
reduced (Fig. 8b). This expansion is primarily at the expense of the
adsorbed bubble region and can be explained as follows. When the
pore size is reduced, the liquid pressures in the adsorbed bubble
configurations are also reduced. Eventually, these pressures reach
the liquid spinodal, where the liquid phase can no longer exist, and
it is no longer possible to have an adsorbed bubble. This is also
evident from comparing the white region in the lower left corner of
Fig. 5d with that in Fig. 5b. The liquid film, however, is stable in this
region as it has a lower curvature than the adsorbed bubble. It
therefore appears in the phase diagram as the equilibrium config-
uration when it is no longer possible to have an adsorbed bubble.

Like the liquid film region in the 10 mm-pore (Fig. 8a), the extent
of the gas film region along the r-axis is smaller than the resolution.
Its position is therefore also indicated with a thin solid line. The gas

Fig. 7. Maps of instability types for liquid films in (a) the 10 mm closed pore and (b) the 10 mm open pore. Regions with no instabilities are light green, regions with only translation
instabilities are cream, regions with only condensation/evaporation instabilities are magenta and regions with both types of instabilities are gray.
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Fig. 8. Phase diagram showing equilibrium configurations in a closed pores of size (a) 10 mm and (b) 0:01 mm. Considered configurations are homogeneous gas (light blue), ho-
mogeneous liquid (blue), free bubble (light green), free droplet (green), adsorbed bubble (light purple), adsorbed droplet (purple), gas film (light orange) and liquid film (orange).

Fig. 9. Phase diagram showing equilibrium configurations in an open pore of size (a) 10 mm and (b) 0:01 mm and a gaseous external phase. Considered configurations are ho-
mogeneous gas (light blue) and adsorbed droplet (purple). External pressure minus the bulk saturation pressure, psat ¼ 48:86 kPa, is indicated on the ordinate axis.

Fig. 10. Phase diagram showing equilibrium configurations in an open pore of size (a) 10 mm and (b) 0:01 mm and a liquid external phase. Considered configurations are homo-
geneous liquid (blue) and adsorbed bubble (light purple). External pressure minus the bulk saturation pressure, psat ¼ 48:86 kPa, is indicated on the ordinate axis.
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film appears at high densities, when the liquid is non-wetting. For
the 0.01 mm-pore, however, we do not observe any gas films at
equilibrium. The adsorbed droplet is found to always have a lower
energy than the gas film. This conclusionmaywell change for other
fluids and pore geometries.

For the closed pores at a given contact angle, a control param-
eter is the total density, i.e. how many particles the pore contains.
For the open pores, on the other hand, a more natural choice is the
external phase pressure pe. Also, the particle reservoir connected to
be pore is either gas or liquid and not both at the same time. We
therefore present separate phase diagrams for cases where the
external phase is gas (Fig. 9) and cases when it is liquid (Fig. 10). The
equilibrium configurations are here determined by comparing the
grand canonical energies of the different (locally stable) fluid con-
figurations at each value of pe and a.

For both pore sizes and external phase choices, a homogeneous
phase is the prevailing fluid configuration. With an external gas
phase, an adsorbed droplet appears as the liquid is non-wetting
and, with an external liquid phase, an adsorbed bubble appears
when the liquid is wetting. Compared to the phase diagrams for the
closed pores, there are much fewer possible configurations. The
free droplets and bubbles are absent because they are unstable for
all possible contact angles and external pressures. The film con-
figurations are absent because, even though they may be locally
stable in an open pore, the homogeneous phase has a lower grand
canonical energy.

As the pore size is decreased, the range of external pressures at
which we find an adsorbed droplet or bubble is greatly increased.
This is evident by comparing the scale of the ordinates of Fig. 9 and
Fig. 10. The increase in range is due to the increased YoungeLaplace
pressure difference of the interface induced by the large interfacial
curvatures in the small pores.

From the outset, we have restricted the discussion to fluid
configurations with the same type of symmetry as the pore, i.e.
rotational symmetry around the z-axis. Examples of structures that
do not have this symmetry are sessile droplets and bubbles
adsorbed to the pore wall. The reason for omitting these structures
is as follows. The capillary modeling approach assumes a uniform
pressure in the gas and liquid phases. Since fixed surface energies is
also assumed, a force balance across the gas-liquid interface re-
quires that this interface has constant mean curvature. Moreover, a
stationary statemust also have force balance along any liquid-solid-
gas contact line(s). This requires that Young's equation (4) is
satisfied along the entire contact line(s) and that the liquid-phase
contact angle is constant. The combination of requirements on
the interfacial curvature and the contact angle puts quite severe
constraints onwhich fluid configurations can be stationary states in
a specific pore. The considered structures all satisfy the constant
contact angle requirements for the pore under consideration, due
to their rotational symmetry around the z-axis.

5. Conclusion

We have studied the thermodynamic stability of free and
adsorbed droplets, bubbles and gas and liquid films in open and
closed pores by use of capillary models coupled to an equation of
state. We used water at 358 K, as described by the CPA-SRK equa-
tion of state, as example. Emphasis was placed on the effect of fluid-
solid interaction, as described by the contact angle, pore size and
whether the pore is open or closed.

For free droplets and bubbles, our findings were in agreement
with previous works [14,17]. These configurations were unstable in
open pores, but could be stable in closed pores, if the bubbles/

droplets were large enough.
In contrast to the free droplets and bubbles, adsorbed droplets

and bubbles could be stable both in closed and open pores.
Evidently, the interaction with the solid phase made these struc-
tures stable and in many cases, depending on contact angle and
phase fractions, favorable w.r.t. a homogeneous fluid phase.

A new methodology was presented to analyze the thermody-
namic stability of films, where the integral that describes the total
energy of the system was approximated by a quadrature rule. The
methodology allowed us to examine in detail any perturbations
that made the film unstable.

Gas and liquid films were found to be unstable at most condi-
tions in the open pores. The exception was when the fluid was
nearly perfectly wetting and a liquid film could form, or nearly
perfectly non-wetting, when a gas film could form. In both cases,
the films were metastable with respect to the homogeneous phase.
In the closed pore, both stable gas and liquid films were found. As
for the free droplets and bubbles, metastable regions where a ho-
mogeneous phase was energetically preferable were observed for
both adsorbed droplets and bubbles and for the gas and liquid films
in the small pore. The reason was that, as the volumes of the gas
and liquid phases became smaller, the energy gained from having
both a liquid and a gas phase did not compensate for the energy
cost of the gas-liquid interface.

Observed instabilities for the adsorbed droplets/bubbles and the
films belonged to one of two distinct classes: (1) translation and (2)
condensation/evaporation. Although exceptions were present, the
general trendwas that translation instabilities were observed in the
closed pores while both translation and condensation/evaporation
instabilities were observed in the open pores.

Finally, we presented phase diagrams showing equilibrium
configuration types for both open and closed pores. The closed-
pore phase diagrams were found to contain a larger variety of
structures compared to the open-pore diagrams. Partly, this is
because the open-pore diagrams can contain only structures where
the external phase is gas or liquid, while the closed-pore diagrams
can have both kinds of structures. Most interesting, however, is the
lack of locally stable configurations of free droplets/bubbles and
films with lower energy than a homogeneous phase in the open
pores.

The appearance of metastable regions and of condensation/
evaporation instabilities cannot be predicted form a purely me-
chanical analysis of systems. A complete thermodynamic stability
analysis, as performed herein, is necessary. In previous literature on
films, the discussion is usually limited to mechanical stability. The
methodology presented in this work can be used to shed new light
on the topic.

The analysis presented in this work is a step towards developing
a thermodynamic framework to map the rich heterogeneous phase
diagram of porous media and other confined systems.
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Appendix A. Solutions to the film EulereLagrange equation

Fig. A.11. Illustration of different solutions to the film ODE (39) for a given pore, shown
in (b), z[ ¼ 3 mm and an ¼ 0:07p. A map of the space searched for solutions to the two-
point boundary value problem G ¼ 0 is shown in (a). The dotted curve indicates where
the first element of G is zero and the boundary condition on Rf is satisfied. The dashed
curve indicates where the second element of G is zero and the boundary condition on
_R
f
is satisfied. A solution to the two-point boundary value problem is thus a point

where the two curves intersect. Four different solutions are indicated (blue, green, red
and yellow). The corresponding film profiles are shown in (b).

A complicating factor in the search for stationary states for the
film is that there may be many solutions to G ¼ 0 with a specified
z[. G is the residual function for the two-point boundary value
problem obtained by setting (46) equal to 0. One example is illus-
trated in Figure A.11, which displays a porewith Lp ¼ 10 mm,where
the shape of the pore is defined by (1) and drawn in black in
Figure A.11b. Furthermore, the contact angle is an ¼ 0:07p, sen ¼
0:0616 N m�1 and z[ ¼ 3 mm. Figure A.11a maps the search space.
The dotted curve shows where the first element of G is zero and the
boundary condition on Rf is satisfied, while the dashed curve shows
where the second element of G is zero and the boundary condition
on _R

f
is satisfied. A solution to the two-point boundary value

problem is thus a point where the two curves intersect. The solid
vertical line is drawn at zr ¼ Lp � z[. Solutions falling on this line are
symmetric or anti-symmetric with respect to the center of the pore.

Four different solutions are indicated by circles (blue, green, red
and yellow) in Figure A.11a. The corresponding film configurations
are shown in Figure A.11b. Of these four solutions, only the green
and the yellow are symmetric. When evaluating the thermody-
namic stability of these solutions, however, it turns out that only
the green solution is stable in a closed system. All solutions are

unstable in an open system. For a more thorough discussion on
thermodynamic stability, we refer to Section 4. Since we observe
that solutions that are not symmetric around the pore center are
always unstable, we only need to consider the symmetric film so-
lution with the lowest Dp, that is also feasible in the sense that 0<
Rf ðzÞ<RpðzÞcz2ðz[;zrÞ. In the analysis presented in this paper, we
ignore the other solutions, even if they also represent unstable
stationary states of the film. These unstable states may, however, be
of interest in the theory of nucleation. For instance, the yellow
profile in Figure A.11b could well be the saddle point that de-
termines the activation barrier to the creation of a an adsorbed
droplet, similar to the one depicted in Fig. 1c.

Appendix B. Convergence of the discrete film description
method

In Section 3.3, we presented a discrete method to describe the
Helmholtz energy of the film. Here, we perform a convergence
study to show that the solutions provided by the discrete method
converge to those obtained by solving the EulereLagrange equa-
tions when the discrete grid is refined. To this end, we consider a
pore described by (1) with Lp ¼ 10 mm and choose an ¼ p=20 and
sen ¼ 0:02 N m�1. The fluid is, as in Section 4, water at 358 K,
described by the CPA-SRK EOS. The film is liquid and the sur-
rounding phase gas.

We use the variational formulation to obtain a stationary state of
Fwhere the film starts at z[ ¼ 0:3Lp. This solutionwill serve both as
a reference solution and to generate initial guesses for the discrete
solutions. Subsequently, we solve (63) for different number of grid
points, M. Relative errors in the film profile Rf with respect to the
reference solution, as measured in the L2- and L∞-norms, and the
corresponding estimated convergence orders are presented in
Table B.1. It is clear from these results that the discrete solutions
converge to the variational solution as the grid is refined, and that
the convergence is second-order.

Appendix C. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.fluid.2019.112351.
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ABSTRACT: Distributed thin films of water and their coexistence with droplets are
investigated using a capillary description based on a thermodynamic fundamental
relation for the film Helmholtz energy, derived from disjoining pressure isotherms and
an accurate equation of state. Gas−film and film−solid interfacial tensions are derived,
and the latter has a dependence on film thickness. The resulting energy functionals
from the capillary description are discretized, and stationary states are identified. The
thermodynamic stability of configurations with thin films in systems that are closed
(canonical ensemble) or connected to a particle reservoir (grand canonical ensemble)
is evaluated by considering the eigenvalues of the corresponding Hessian matrices.
The conventional stability criterion from the literature states that thin flat films are stable when the derivative of the disjoining
pressure with respect to the film thickness is negative. This criterion is found to apply only in open systems. A closer inspection of
the eigenvectors of the negative eigenvalues shows that condensation/evaporation destabilizes the film in an open system. In closed
systems, thin films can be stable even though the disjoining pressure derivative is positive, and their stability is governed by
mechanical instabilities of a similar kind to those responsible for spinodal dewetting in nonvolatile systems. The films are stabilized
when their thickness and disjoining pressure derivative are such that the minimum unstable wavelength is larger than the container
diameter. Droplets in coexistence with thin films are found to be unstable for all considered examples in open systems. In closed
systems, they are found to be stable under certain conditions. The unstable droplets in both open and closed systems are saddle
points in their respective energy landscapes. In the closed system, they represent the activation barrier for the transition between a
stable film and a stable droplet. In the open system, the unstable droplets represent the activation barrier for the transition from a
film into a bulk liquid phase. Thin films are found to be the equilibrium configuration up to a certain value of the total density in a
closed system. Beyond this value, there is a morphological phase transition to stable droplet configurations.

■ INTRODUCTION

In the literature, a distinction is made between thick (β-films)
and thin films (α-films). The thermodynamic properties of thin
films deviate from those of a bulk liquid phase at the same
temperature and chemical potential. This deviation can be
modeled by the disjoining pressure, a concept first introduced by
Derjaguin in the 1930s.1 The disjoining pressure describes the
interaction between two interfaces in close proximity, such as
the top and the bottom of a thin liquid film residing on a solid
substrate.2,3 The formation of films and droplets at solid
interfaces is of importance in many applications. Inside porous
media, thin films provide an important mode for fluid transport4

that is often neglected or under-resolved in flow modeling.5−7

Both droplet formation and films impact the efficiency of water
removal in fuel cells8 and are important for atmospheric water
collection.9 Thin, nanometer-thick films are key components in
paint, coatings, and different lubricants.1 They are also
important in thin-film evaporation10,11 and boiling heat
transfer.12,13

With an emerging interest in micro-14 and nanofluidics,15

condensation on nanostructured surfaces,9,16 and self-organ-
ization and pattern formation,17−19 it becomes increasingly

important to understand how thin films, often in coexistence
with droplets, are influenced by confinement.20 Previous
works21−25 have shown that the stability of heterogeneous
structures is strongly affected by the choice of ensemble. For the
simplest type of films, thick films with a negligible disjoining
pressure, we recently showed that their thermodynamic stability
was profoundly different in a closed system (canonical
ensemble) and an open system (grand canonical ensemble).25

In this work, we will study how thin films and their possible
coexistence with droplets are influenced by confinement.
In the literature, thin films are often proclaimed to be unstable

when dΠ/dh > 0, whereΠ is the disjoining pressure and h is the
film thickness.1,26,27 It has, however, been pointed out that this
criterion is not necessarily valid for confined systems.20,28 In fact,
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this has been exploited in computer simulations to calculate the
disjoining pressure where it has a positive slope in h.29 The aim
of this work is to compare, consistently and on equal terms, the
thermodynamic stability of thin films in combination with
droplets in open and closed systems. To this end, we derive a
thermodynamic fundamental relation for the film phase from the
disjoining pressure combined with an equation of state (EOS)
that represents the bulk-phase properties. Pure water is used as
an example, but the methodology is equally applicable to other
fluids and can straightforwardly be extended to mixtures.
By comparing with previous results from the literature, we will

explain how different assumptions in the modeling of thin films
make them appear as if in an open or a closed
system.3,20,26,27,30−33 For instance, in his study of volatile
films, Sharma34 used kinetic theory to model the gas−liquid
mass transfer rate as a function of the difference between vapor
pressure and coexistence pressure. The coexistence pressure was
modeled by an extended Kelvin equation (including effects of
the disjoining pressure). Subsequently, the mass transfer rate
was incorporated into a partial differential equation for the film
profile to study time evolution and stationary states of films and
droplets on a flat substrate. He found that flat films are unstable
only when dΠ/dh > 0, in agreement with the conventional
stability criterion.
Dörfler et al.,20 on the other hand, used an effective interface

Hamiltonian to describe the mechanical energy of a film. They
showed that the mechanical instabilities are suppressed in
systems that are smaller than the critical wavelength, in
agreement with earlier findings. Although their effective
interface Hamiltonian did not account for particle exchange,
we will show that many of their findings can be recovered by
considering a closed system, since the behavior of the system is
then determined by mechanical instabilities of the film−gas
interface.

■ FUNDAMENTAL THEORY OF THIN FILMS

In the following, we present the fundamental theory that will be
used to describe thin films. Starting with the original definition
of the disjoining pressure by Derjaguin,1 we derive a
thermodynamic fundamental relation for the liquid film phase.
Next, we show that the fundamental relation is consistent with
Derjaguin’s well-known relation for the macroscopic contact
angle.2 Results from the literature on the mechanical stability of
thin films are briefly reviewed, which will be used in the
subsequent stability analysis.
Disjoining Pressure. Since there appear to be somewhat

differing interpretations of the disjoining pressure in the
literature,1,2,35 we start by describing the definition used in
this work. When two interfacial regions are brought in close
proximity to form a thin film, they experience either attractive or
repulsive forces. These forces can be described by the disjoining
pressure Π. They lead to anisotropic stresses in the film,
manifested by a pressure p⊥ normal to the interfaces that differs
from the pressure p∥ parallel to them.
To define the disjoining pressure, we will use the example

illustrated in Figure 1. In the left container, there is a thin liquid
film and a bulk gas phase with pressure pg, while in the right,
there is a bulk liquid phase with pressure pb. The film phase in
the left container is connected to, and in chemical equilibrium
with, the bulk liquid phase in the right through a tube. The
system is also in mechanical force balance, but the pressures pg

and pb are, in general, different.

Inside the region enclosed by dashed lines in Figure 1, the
gas−film interface has negligible curvature. Due to the force
balance, the normal pressure in the film is equal to the gas
pressure

=⊥p pg
(1)

The disjoining pressure is then defined, in accordance with
Churaev et al.1 (p 36), as the difference between the normal
pressure in the film and the pressure in the bulk liquid phase with
which the film is in chemical equilibrium. This may be expressed
as

= + Π⊥p pb
(2)

Fundamental Relation.We will next derive a fundamental
relation for the liquid film phase, i.e., the Helmholtz energy of an
infinitesimally small film section. The fundamental relation may
be divided by the infinitesimal substrate area covered by the film
section to obtain an expression that can be integrated over the
entire substrate to calculate the total Helmholtz energy of a
distributed film with varying thicknesses.
Consider a section of the film covering a small area Afs of a flat

solid surface, as illustrated by the dotted white lines in Figure 2.

Since the section is small, any variation in the film thickness
across it may be considered small with respect to (w.r.t.) the
thickness h in the middle and can be approximated as linear. The
Helmholtz energy differential for the film section may then be
expressed as

μ γ γ= − + − + +⊥F S T N p V A Ad d d d d df f f f f gf gf fs fs

(3)

Figure 1. Two connected containers, where the left contains a thin
liquid film (blue) and a bulk gas phase (white) with pressure pg and the
right contains a bulk liquid phase with pressure pb. As indicated by the
curved liquid menisci along the walls of the left container, pg ≠ pb in
general. The disjoining pressure is Π = pg − pb. The region enclosed by
dashed lines is drawn in Figure 2. Any effects of gravity have been
neglected.

Figure 2. Enclosed by dotted white lines is the part of a film covering a
small area Afs of a flat solid surface. The gas−film interfacial area is Agf.
Since the section is small, any variations in the film thickness across it
may be considered small and linear. The symbol h refers to the
thickness in the middle of the film section. A somewhat exaggerated
slope in the gas−film interface is used to illustrate that, in general, Agf≠
Afs.
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where Sf is the entropy, T is the temperature, μf is the chemical
potential, Nf is the number of particles, Vf is the volume of the
film, and Agf is the gas−film interfacial area. The interfacial
tensions of the gas−film and film−solid interfaces are γgf and γfs,
respectively. The reason for the appearance of p⊥ in eq 3 is that
the only way to change Vf at constant Agf and Afs is to change the
film thickness h. The work required to change h must be
performed against the normal pressure in the film.
The Helmholtz energy can be expressed as a function of T, Vf,

Agf, Afs, and Nf by integrating from a thick film of volume V∞
f ,

which has the desired areas Agf and Afs and is unaffected by the
disjoining pressure, to a thin film with volume Vf

∫
γ γ= + +

+ ∂
∂

∞ ∞ ∞

∞

i
k
jjjjj

y
{
zzzzz

F T V A A N

F T V N A A

F
V

V

( , , , , )

( , , )

d
V

V

T N A A

f f gf fs f

b f f gl gf ls fs

f

f
, , ,

f
f

f gf fs (4)

Herein, γ∞
gl and γ∞

ls are the standard macroscopic gas−liquid and
liquid−solid interfacial tensions, respectively, and Fb is a bulk-
phase description of the fluid Helmholtz energy as given, e.g., by
an EOS. Since the integration is performed with constant areas
Agf and Afs, we may replace dVf with Afs dh. Replacing the
integrand in eq 4 by p⊥ = pb + Π from eq 2 and absorbing the
resulting integral over pb into Fb, we obtain

∫γ γ= + + − Π∞ ∞
∞

F T V A A N

F T V N A A A h

( , , , , )

( , , ) d
h

h

f f gf fs f

b f f gl gf ls fs fs

(5)

where, implicitly, h = Vf/Afs. For convenience, we introduce the
shorthand notation

∫= Π
∞

w h h( ) d
h

h

(6)

that will be used in further derivations.
Equation 5 is a fundamental relation for the film section, and

many other thermodynamic quantities may be derived from it by
differentiation.36 In particular, the chemical potential is

μ μ= ∂
∂ =i

k
jjjjj

y
{
zzzzz

F
N

T V A A

f
f

f
, , ,

b

f gf fs (7)

meaning that the chemical potential of the film is the same as in a
bulk liquid at the same temperature and density. This is a
consequence of the disjoining pressure being a function of the
film thickness only. Hence, μf is a function of T, Vf, and Nf.
Furthermore, the gas−film interfacial tension is the same as the
macroscopic gas−liquid interfacial tension

γ γ= ∂
∂ = ∞

i
k
jjjjj

y
{
zzzzz

F
A

T V A N

gf
f

gf
, , ,

gl

f fs f (8)

The film−solid interfacial tension, on the other hand, becomes a
function of the film thickness through the action of the
disjoining pressure

γ

γ

= ∂
∂

= + Π −∞

i
k
jjjjj

y
{
zzzzz

F
A

h w

T V A N

fs
f

fs
, , ,

ls

f gf f

(9)

From eq 5, we observe that the Helmholtz energy is first-order
Euler homogeneous in Vf, Agf, Afs, and Nf

β β β β β=F T V A A N F T V A A N( , , , , ) ( , , , , )f f gf fs f f f gf fs f

(10)

where β is a variable that describes a scaling of the system size.
Differentiating w.r.t. β and setting β = 1 yields the Euler relation

μ γ γ= − + +⊥F N p V A Af f f f gf gf fs fs
(11)

Choosing instead β = 1/Afs yields the Helmholtz energy per area
of solid substrate

α Γ =
=

f T h F T V A A A N A

F T V A A N A

( , , , ) ( , / , / , 1, / )

( , , , , )/

f f f fs gf fs f fs

f f gf fs f fs
(12)

where h = Vf/Afs, Γ = Nf/Afs, and α = Agf/Afs. From the Euler
relation (eq 11), we get

μ γ α γ= Γ − + +⊥f p hf f gf fs
(13)

Macroscopic Wetting Properties. We previously showed
that the film−solid interfacial tension is a function of the film
thickness; see eq 9. This has implications for the wetting
properties of a macroscopic liquid droplet on a solid surface
covered by a thin film.
The spreading coefficient associated with the spreading of a

thick liquid layer, whose surface tensions are unaffected by the
disjoining pressure, onto a solid surface covered by a thin film is

ψ γ γ γ γ

γ γ

= { + } − { + }
= −

∞ ∞

∞

gf fs gl ls

fs ls
(14)

since γ γ= ∞
gf gl according to eq 8. For a given disjoining pressure

isotherm, ψ is a function of h only. Young’s equation for the
contact angle θ results from a balance of interfacial forces. In
terms of the spreading coefficient, it can be expressed as

θ ψ γ= + ∞hcos( ) 1 ( )/ gl
(15)

Replacing γfs using eqs 9 and eq 3 in the equations above gives

∫γ θ γ= + Π − Π∞ ∞
∞

h hcos( ) d
h

h
gl gl

(16)

This result is identical to Derjaguin’s equation for the
macroscopic contact angle.1−3

Since the droplet is macroscopic, and thus largely unaffected
by the disjoining pressure and the Young−Laplace pressure
difference, it is reasonable to approximate the film thickness by
h0, which is such that Π(h0) = 0. This simplifies eq 16 to

∫γ θ γ≈ − Π∞ ∞
∞

hcos( ) d
h

h
gl

0
gl 0

(17)

as discussed in detail in the insightful review by Boinovich and
Emelyanenko.2 An alternative derivation of eq 16 based on a
simplified droplet model similar to that of Dörfler et al.20 is
provided in Appendix A.
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Linear Stability Analysis. The mechanical stability of thin
films, not taking into account condensation and evaporation, has
been studied extensively in the literature.18,20,30−33,37 One
approach has been to use the film profile equation, see, e.g., refs
18 and 31, to perform a linear stability analysis and determine
the growth rate of mechanical disturbances of a thin flat film with
different wavelengths λ. To represent an unstable disturbance, λ
must satisfy the well-known criterion

λ λ π
γ> = Π
∞

h
2

d /d0

gl

(18)

A discussion and derivation of this equation can be found in ref
18.
The criterion (eq 18) cannot be satisfied for any wavelength

when dΠ/dh < 0, and films corresponding to a negative slope in
the disjoining pressure isotherm are therefore mechanically
stable. When dΠ/dh > 0, on the other hand, the interfacial
tension acts to suppress disturbances with short wavelengths,
while disturbances with wavelengths longer than λ0 can grow.
Films forming droplets by succumbing to such instabilities are
said to undergo spinodal dewetting.20 Locally stable films
forming stable, energetically favorable droplets by overcoming
some energy barrier do so through nucleation. If the substrate
size is smaller than the shortest unstable wavelength, flat films
may be stable even though dΠ/dh > 0.20,28

■ MODELS
We will next develop models for the two composite systems
illustrated in Figure 3: a distributed flat film and a droplet
system. Details will be provided for the representation of the
disjoining pressure and the equation of state. Water at 293.15 K
will be used as the example fluid, for which γ∞

gl = 0.073 N m−1.
Since γ∞

ls only adds a constant to the Helmholtz energy that has
no qualitative effect on the results, we have set γ∞

ls = 0. In the
section Fundamental Relation, Vf, Agf, Afs, and Nf refer to the
volume, interfacial areas, and particle number of a small section
of a film. From this point on, these symbols will refer to the
entire distributed film.
Disjoining Pressure Model. There are many different

models for the disjoining pressure isotherms, depending on the
nature of the interface interactions. These vary from the classical
van der Waals curves where Π ∝ 1/h3 (ref 1, p 99) to more
complex curves38 that exhibit one or more local extrema; see,
e.g., Figure 3 in ref 27. Disjoining pressure isotherms are usually
modeled by adding terms that account for different types of
forces acting between two interfaces,39 resulting in a plethora of

possibilities for combinations of terms. We will restrict the
attention to a type of model that has been used to describe water
films on a solid graphite surface.27,40 This model has two terms

Π = Π + Πh h h( ) ( ) ( )VdW sr (19)

accounting for van der Waals forces and short-ranged forces,
respectively. Any effects of substrate size on the disjoining
pressure are neglected.28,41 Other surfaces and fluids are likely to
require different terms and parameter values.
The van der Waals term is proportional to 1/h3

π
Π = −h

A
h

( )
6VdW 3 (20)

where A is the effective Hamaker constant. This is modeled by
applying a mixing rule to the liquid and solid Hamaker constants

= −A A A All ll ss (21)

Here, we will use All = 4.4 × 10−20 J and Ass = 4.7 × 10−19 J.27,40

The short-ranged contribution is, in line with previous
works,27,40 modeled by an exponential

Π = −h K h L( ) exp( / )sr sr sr (22)

where Ksr and Lsr are the strength and correlation length of the
interactions, respectively. We will use Lsr = 0.6 nm27,40 and
consider Ksr = 0 and three different negative values of Ksr. The
four resulting disjoining pressure curves are illustrated in Figure
4. The effect of the negative Ksr values is to create a minimum in

Figure 3. Illustration of the two types of fluid configurations studied in this work. (a) Flat film of uniform thickness with a gas phase above it. (b)
Droplet in force balance and chemical equilibrium with a film, with a gas phase above them. All of the configurations exist in a cylindrical container of
radius R and height H, which can be open or closed. The axes of symmetry are indicated by dashed lines.

Figure 4. Disjoining pressure isotherms calculated using eq 19 for
different values of the parameter Ksr. Contact angles θ0 are calculated
using eq 17. The dots indicate where on the isotherms Π = 0 and
represent the thickness of the film a macroscopic droplet would be in
force balance with.
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the disjoining pressure curve that makes the liquid partially
wetting and allows the existence of droplets in equilibrium with
thin films. For each isotherm in the figure, the legends state the
contact angle θ0 predicted by eq 17 for a macroscopic droplet in
mechanical force balance with a thin film.
Equation of State for Bulk-Phase Properties. A

necessary component of the models developed here is a
thermodynamic description of the bulk phases. For this purpose,
any EOS capable of predicting Helmholtz energies of both gas
and liquid phases is applicable. We will use the cubic-plus-
association modification of the Soave−Redlich−Kwong EOS.42
This EOS is implemented in our in-house thermodynamics
library.43

Distributed Film in a Cylindrical Container.We consider
a cylindrical container with radius R, height H, and volume V =
πR2H. Furthermore, we assume for simplicity that the film
thickness h is a cylindrically symmetric function of the radial
coordinate r. The film−solid interfacial area is then a constant

∫π π= =A r r R2 d
R

fs

0

2
(23)

The film volume may be obtained by integrating h over the area
Afs

∫π=V hr r2 d
R

f

0 (24)

and, similarly

∫π= ΓN r r2 d
R

f

0 (25)

A homogeneous bulk gas phase fills the container volume that is
not occupied by the film.
The container has a fixed volume V, and we will only consider

the case when it is connected to a thermal reservoir with
constant temperature T. If the container is closed, i.e., it is in the
canonical ensemble and contains a fixed number of particles N,
equilibrium is defined by the state that maximizes the total
entropy of the system in the container and the reservoir subject
to these constraints on T, V, and N. This is equivalently
described as a minimum in the Helmholtz energy for the
system.36 Equilibrium in an open container, which also has a
fixed volume V and temperature T, but where the gas phase can
exchange particles with an external particle reservoir at constant
chemical potential, corresponds to a minimum in the grand
canonical energy Ω.
The total Helmholtz energy for the combined film-and-gas

system is

= +F F Ff g (26)

The Helmholtz energy of the gas is

μ
μ μ

= −
= − − +

F N p V

N N p V p V

(27)

(28)

g g g g g

g g f g g f

sinceNg =N−Nf and Vg = V− Vf. The Helmholtz energy of the
film is obtained by integrating f f over Afs

∫π=F f r r2 d
R

f

0

f
(29)

Inserting for f f using eq 13, and subsequently combining with
eqs 8, eq 4, and eq 2, we get

∫γ π μ γ α= + { Γ + − − }∞ ∞F A w p h r r2 d
R

f ls fs

0

f gl b

(30)

whereα = + ̇h1 2
with ḣ = dh/dr. We restrict our attention to

cases where there is chemical equilibrium within the film phase,
i.e., μf is uniform, and thus

∫μ γ π γ α= + + { − − }∞ ∞F N A w p h r r2 d
R

f f f ls fs

0

gl b

(31)

Adding together eqs 28 and 5, we obtain the total Helmholtz
energy

∫
μ μ μ γ

π γ α

= { − } + − +
+ { − − { − } }

∞

∞

F N N p V A

w p p h r r2 d
R

f g f g g ls fs

0

gl b g

(32)

This expression is a functional of h and a function of Nf.
Assuming chemical equilibrium, i.e., μg = μf, at a given value of

Δp = pg − pb, mechanical equilibrium is defined by a minimum
of the functional

∫π= ° + ̇
μ μF F L r h h r2 ( , , ) d

R

0 (33)

where Fμ° is a constant and the integrand is

γ α̇ = { − − { − } }∞L r h h w p p h r( , , ) gl b g
(34)

We observe that Fμ closely resembles an effective interface
Hamiltonian as presented, e.g., by MacDowell28 and Dörfler et
al.20

A film profile at mechanical equilibriummust have a vanishing
first variation of Fμ and satisfy the Euler−Lagrange equation44

{ }∂
∂ − ∂

∂ ̇ =L
h r

L
h

d
d

0
(35)

We differentiate L and insert into the Euler−Lagrange equation
to get

γ κ κ− = Π + { + }∞p pg b gl
1 2 (36)

where

κ = ̇
+ ̇

h

r h1
1 2

(37)

κ = ̈
{ + }̇

h
h12 3/2 (38)

are the curvatures of the film−gas interface.
Equation 36 is the augmented Young−Laplace equation for

the film. It is a second-order ordinary differential equation that
may be solved to yield a film profile that satisfies the mechanical
force balance. Solving eq 36 requires two boundary conditions.
The first is a homogeneous Neumann boundary condition at r =
0

̇ ==h 0r 0 (39)

which follows from the cylindrical symmetry of the problem.
The second is a Dirichlet condition at r = R

==h hr R R (40)

where hR is some specified constant value.
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For a given value of hR, the Euler−Lagrange equation may
have several solutions. We will consider two qualitatively
different types of solutions. The first type is the trivial solution
where h is a constant. This corresponds to a flat film (Figure 3a).
In this case, the curvature terms in eq 36 are zero andΔp = pg −
pb is equal to Π, which is constant along the film profile. The
other type of solution is a droplet and a film, as illustrated in
Figure 3b. In this case, the disjoining pressure and curvature
terms vary along the film profile, but their sum remains constant.
Crucially, as the gas−liquid interface of the droplet approaches
the solid surface, the disjoining pressure term balances the
curvature terms in such a way that the gas−liquid interface
flattens into a flat film.
The grand canonical energy can be calculated from the

Helmholtz energy by

μΩ = −F Ng (41)

The criteria for a stationary state in Ω are the same as for F.
However, the stability of these stationary points, i.e., whether
they are minima, maxima, or saddle points, is likely to differ.

■ NUMERICAL METHODS
In this section, we will describe the numerical methods used to solve the
models presented. This amounts to identifying stationary states of the
two energy functionals, F and Ω, and determining their stability by
characterizing them as maxima, minima, or saddle points.
To identify stationary states, we adopt the same strategy as described

in ref 25. We first find states that are in mechanical force balance by
solving eq 36, the Euler−Lagrange equation. The solution specifies the
geometry of the film configuration, i.e., the thickness h as a function or r,
and corresponds to a specific value of Δp = pg − pb, the difference
between the gas phase pressure and the pressure of the hypothetical
bulk liquid phase with which the film would be in chemical equilibrium.
A phase equilibrium calculation is performed next, where equality of the
chemical potentials is used to determine the number of particles in the
film and gas phases.
The next step after determining a stationary state is to evaluate its

stability. To this end, we discretize the Helmholtz and grand canonical
energy functionals and examine the eigenvalues of their Hessian
matrices.
Phase Equilibrium Calculations. Any film profile in mechanical

force balance satisfies eq 36 for a specific value ofΔp = pg− pb. Through
eq 24, the film profile also specifies the volumes Vf and Vg. Phase
equilibrium for a particular film profile can therefore be determined by
finding the particle numbers Nf and Ng that give the necessary pressure
difference and equality of the film and gas chemical potentials. This is
accomplished by solving the nonlinear system of equations

° ° =N N N NF ( / , / ) 0f g (42)

where

μ μ
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g g g b f f

(43)

and μb = μf according to eq 7. The pressures, chemical potentials, and
the derivatives required to compute F and its Jacobian are provided by
the EOS. The scaling quantities are

° =p 10 Pa5 (44)

° = °
N

p V
RT (45)

where R is the universal gas constant.

The nonlinear system defined by eq 42 was solved using Newton’s
method. Initial guess values for Nf and Ng were obtained by a standard
phase equilibrium calculation45,46 at the specified temperature and
saturation pressure.

Solving the Euler−Lagrange Equation. The Euler−Lagrange
equation for the film eq 36 was solved to obtain film profiles in
mechanical force balance. This equation is a second-order ordinary
differential equation that has two boundary conditions, one at r = 0 and
the other at r = R. Together, these boundary conditions and eq 36
constitute a two-point boundary value problem, which was solved using
solve_bvp from Scipy’s integrate module.47

Discrete Description of the Distributed Film. Following the
procedures described above results in stationary states of the Helmholtz
and grand canonical energy functionals. These are states that have a
vanishing first variation for any perturbation of the film profile.
However, these procedures do not give any information about whether
or not the stationary states are stable. This information is contained in
the second variation or higher-order variations if the second variation is
zero. A stationary state is a minimum if the second variation is positive
for any perturbation of the film profile. To evaluate this numerically, we
use a discrete approach similar to Gjennestad and Wilhelmsen.25 The
idea is to represent the continuous function h(r) by its values at discrete
points and then use a quadrature rule to approximate the functional
integrals. Stability of the stationary states can then be determined by
considering the eigenvalues of a Hessian matrix, as will be described in
the section Stability Analysis.

An equivalent way of expressing the Helmholtz energy of the
distributed film model (eq 32) is

μ μ μ γ γ= { − } + − + + −
− { − }

∞ ∞F N N p V A A W

p p V

f g f g g ls fs gl gf

b g f (46)

where Agf, W, and Vf are functionals of h. Specifically

∫
∫

π

π

= + ̇

=

A r h r

W rw r

2 1 d (47)

2 d (48)

R

R

gf

0

2

0

and Vf is given by eq 24.
Let now the function h be approximated by the vector

= [ ]h h hh , , ..., M1 2
T (49)

which gives its values at M discrete points along the r-axis

= [ ]r r rr , , ..., M1 2
T (50)

The functional Agf may then be approximated by the sum
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(51)
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+

̅ = +

̅̇ = −
Δ

Δ = −

+

+

+

+

r
r r

h
h h

h
h h

r
r r r

2
(52)

2
(53)

(54)

(55)

i
i i

i
i i

i
i i

i

i i i

1

1

1

1

The boundary conditions dictate that h0 = h1 and hM+1 = hM. Analogous
definitions apply for W(h) and Vf(h).

The Helmholtz energy functional may now be approximated by

μ μ μ

γ γ

= { − } + −
= + − − { − }∞ ∞

F N N p V

A A W p p V

x

h h h

( )

( ) ( ) ( )

f g f g g

ls fs gl gf b g f
(56)

where the vector of unknowns x includes Nf in addition to h
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= [ ]
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+x x x x

N h h h
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1 2 3 1
T

f
1 2

T
(57)

The Jacobian vector of the discretized Helmholtz energy can be shown
to be

μ μ∂
∂ = −F

x1

f g

(58)

and

γ∂
∂ = ∂

∂ − ∂
∂ − { − } ∂

∂∞
F
x

A
x

W
x

p p
V
xi i i i

gl
gf

b g
f

(59)

for i ∈ {2, M + 1}. The Hessian matrix may be found by further
differentiation. Details of the procedure for calculating the derivatives of
Agf, W, and Vf w.r.t. xi and a validation of the discretization procedure
are given in ref 25 and its accompanying Supporting Information. An
analogous procedure is applied to obtain a discrete approximation of
the grand canonical energy and its derivatives.
Stability Analysis. Stationary states x* obtained with the above

procedures will have Jacobian vectors equal to zero for both F and Ω.
The change in, e.g., F due to a small perturbation dx of the stationary
state x* is thus determined by the Hessian matrix of F

=
*

F
F

x
x

xd d
d
d

d
x

T
2

2
(60)

The Hessian matrix is symmetric and can therefore be decomposed as

Λ=
*

F
x

Q Q
d
d

x

2

2
T

(61)

where the matrixΛ is a diagonal matrix of eigenvalues andQ is a matrix
whose column i is the eigenvector q(i) corresponding to the eigenvalue
Λ(i). We will use the convention that all eigenvectors q(i) have length 1
in the L2-norm. Since the Hessian is symmetric, the eigenvectors are
orthogonal.25

The stationary state x* is locally stable in a closed container and
represents a local minimum in F if all of the eigenvalues of the Hessian
matrix Λ(i) are positive. On the other hand, if one or more eigenvalues
are negative, it is possible to choose the perturbation dx along one of the
associated eigenvectors q−

(i). The subscripted minus sign indicates the
negative eigenvalue. In this case, we choose dx = dx− ∝ q−

(i) and this will
give a negative dF. The stationary state x* is then not a local minimum
and is considered locally unstable. Stability in open containers is
evaluated in a similar manner. Unstable states with both positive and
negative eigenvalues are called saddle points, while only negative
eigenvalues characterize a maximum.

The eigenvectors associated with negative eigenvalues give
information about the direction in configuration space that the system
can go to reduce its energy and hence what causes an instability to the
stationary state.

Before the calculation of eigenvalues and eigenvectors, it was ensured
that the discrete Jacobian vectors of the stationary states obtained by
the methods in sections Solving the Euler−Lagrange Equation and
Phase Equilibrium Calculations were indeed zero. This was
accomplished through a small number of iterations with Newton’s
method using the Jacobian vectors and Hessian matrices defined by the
discrete approach.

Figure 5. Stability of flat films of different thicknesses with each of the four disjoining pressure curves from Figure 4, in (a) a closed and (b) an open
container. Locally stable films are indicated by green dots and unstable films by red dots.

Figure 6. Flat film instability modes dh− for the θ0 = 60° disjoining pressure isotherm in the open container. In (a) the film thickness is h = 1.06 nm and
in (b) it is h = 2.68 nm. Instabilities have zero (black), one (blue), three (magenta), or four (cyan) internal extrema. The plotted vectors dh− have been
normalized so that their length is 1 in the L2-norm. Instabilities in the closed system are similar, except that the zero-extrema mode (black) is absent.
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Eigenvalues and eigenvectors were calculated with eigh from the
linalg module in Numpy.48 This function again uses the *syevd
routines from LAPACK.49

■ RESULTS

We first discuss the thermodynamic stability of flat films and
droplet configurations. Next, we compare the energies of the two
types of configuration and study the morphological phase
transition between them.
Except where explicitly stated otherwise, we consider a

container with R = 20 nm and H = 10 nm. The number of grid
points used in the discrete approximation is M = 400.
Flat Films. Figure 5 compares the local stability of flat films as

a function of film thickness for four different disjoining pressure
isotherms. Stability in a closed container is illustrated in Figure
5a, while Figure 5b displays stability in an open container. In the
open container, films are stable when dΠ/dh < 0. This is in
agreement with the conventional stability condition presented in
the literature; see, e.g., the review paper by Boinovich and
Emelyanenko2 (or ref 1, p 56). A similar result was also obtained
through dynamic considerations by Sharma,34 assuming a
constant gas pressure and a model for the evaporation rate. In
the closed container, on the other hand, some films are found to
be stable even if dΠ/dh > 0.
Eigenvectors q−

(i) of Hessian matrices that are associated with
negative eigenvalues correspond to perturbations dx− ∝ q−

(i) that
the film is unstable against. An unstable stationary state may
have one or more such negative eigenvalues. The vectors dx− are

composed of two parts: dN−
f , the component describing the

perturbation of the number of particles in the film; and dh−, a
vector representing the perturbation of the film profile. The
vectors dh− are here referred to as instability modes.
Figure 6 compares the instability modes for the θ0 = 60°

isotherm and two different film thicknesses in an open container.
Specifically, Figure 6 displays the instability modes obtained
when h = 1.06 nm. This film thickness is well into the unstable
region of the disjoining pressure isotherm with dΠ/dh > 0. Each
mode has resemblance to a sinusoidal function with some
wavelength and corresponds to a specific number of internal
extrema, indicated by their color (black, 0; blue, 1; yellow, 2;
etc.). Instabilities in the closed system are similar, except that the
zero-extrema mode (black) is absent. By moving along this
mode, the open system can reduce its energy by condensing or
evaporating the film while the film retains its flat profile. We call
this mode a condensation−evaporation instability and find that
it is present in the open system whenever the derivative of the
disjoining pressure curve is positive. This type of mode thus
causes the open system to be unstable whenever dΠ/dh > 0. The
other instability modes involve some degree of rearrangement of
the film profile, and we therefore call these mechanical instability
modes. The stability of the closed system is determined by this
kind of instability. We emphasize that the mechanical
instabilities also involve some exchange of particles. The
distinction between condensation/evaporation and mechanical
instabilities is based on whether or not the alteration of the gas−
film interface shape occurs. We further observe that the

Figure 7.Wavelengths λ of mechanical instability modes (dots) for different film thicknesses h, disjoining pressure isotherms, and container radii R.
Themodes have one (blue), two (yellow), three (magenta), or four (cyan) internal maxima. In (a) and (b), the container radius isR = 20 nm and in (c)
it is R = 30 nm. In (a) and (c) θ0 = 40° and in (b) θ0 = 60°. Also plotted are the container diameters 2R (solid lines) and a linear approximation,
computed from eq 18, of the minimum wavelength λ0 of film profile perturbations that have a positive growth rate (dashed lines). The dotted vertical
linesmark the asymptotes where λ0→∞. The shaded gray regions indicate the intervals of film thicknesses where the films were found to be unstable in
the closed system.
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exchange of particles is larger in the open system than in the
closed system, which is due to the constrained total number of
particles in the closed system.
As the film thickness is increased, the number of unstable

mechanical modes is gradually reduced. They disappear in order
of decreasing number of internal maxima (i.e., cyan first, then
magenta, etc.) until there is only one left. As the film thickness is
increased further and approaches the end of the unstable interval
for the closed container (Figure 5a), the maximum of the mode
with a single internal extremum moves toward the center of the
container. Figure 6 shows the instability modes for a film of
thickness h = 2.68 nm in an open container. This thickness
corresponds to the rightmost red dot on the θ0 = 60° isotherm of
the closed container displayed in Figure 5a. The mechanical
instability mode resembles in this case a sinusoidal function with
a wavelength close to the diameter of the container. For thicker
films, there are no unstable modes in the closed system and it is
stable. In the open system however, the condensation/
evaporation instability persists until the disjoining pressure
derivative again becomes negative. The existence of condensa-
tion/evaporation inabilities in open systems and their absence in
closed systems have recently been reported also for thick films in
pores.25

The mechanical instabilities seen here are of a similar kind as
those that cause spinodal dewetting. As shown, e.g., by Dörfler et
al.,20 the mechanical instabilities must have wavelengths λ that
are smaller than the diameter of the container. The finite extent
of the container makes instabilities with longer wavelengths
impossible. Furthermore, the wavelengths of unstable perturba-
tions must be bounded from below by the surface tension.
Perturbations with very short wavelengths will require the
creation of a large amount of surface area, relative to the amount
of energy than can be gained from the disjoining pressure by
shifting the liquid around. In a translationally invariant system of
infinite extent, this lower bound is given by eq 18. A
consequence of eq 18 is that dΠ/dh > 0 is a necessary condition
for mechanical instabilities. This results in specific intervals of
film thicknesses where mechanical instabilities may occur.
To show that these two effects indeed constrain the

mechanical instabilities observed here, we estimate for each
unstable state the wavelengths of the mechanical instability
modes. For the modes with many extrema, the horizontal crest-
to-trough distance changes slightly along the r-axis.We therefore
estimate the wavelength as the distance from the container
sidewall to the nearest internal extremum, multiplied by a factor
2. Figure 7 displays the resulting wavelengths as functions of film
thickness. Results are presented for disjoining pressure
isotherms with θ0 = 40° (Figure 7a) and θ0 = 60° (Figure 7b).
Figure 7c displays results for the 40° isotherm and a wider
container. The figures also show the container diameter 2R
(solid horizontal line) and the shortest unstable wavelength λ0 as
predicted by eq 18 (dashed line). The dotted vertical lines
indicate where dΠ/dh = 0 and λ0 →∞. The disjoining pressure
derivative is positive between them and, according to the linear
stability analysis, mechanical instabilities should thus occur only
for film thicknesses in between these lines.
All measured wavelengths correspond to film thicknesses

between the dotted lines, i.e., where dΠ/dh > 0. We observe no
mechanical instabilities with wavelengths longer than 2R. As a
concrete illustration, compare Figure 7a where R = 20 nm with
Figure 7c where the container size is increased to R = 30 nm. In
the latter case, the increased container size gives room for
instabilities with longer wavelengths. This results in an increased

interval of film thicknesses where films are mechanically
unstable. The larger container also gives room for a larger
number of extrema in instabilities with a given wavelength. For
instance, the shortest-wavelength instabilities in Figure 7a have
two internal extrema, whereas instabilities with approximately
the same wavelength in Figure 7c have four. For both container
sizes, it is clear that the mechanical instabilities with the longest
wavelength disappear when they reach the 2R-bound.
In addition to being smaller than 2R, the measured unstable

wavelengths are longer than λ0. Although derived with an
assumption of translational invariance that does not apply in the
present example, eq 18 appears to provide an accurate estimate
for the lower bound for the unstable wavelengths.
From the form of eq 18, we may expect that instabilities of

shorter wavelengths are possible when the disjoining pressure
derivatives are larger. This is indeed what we observe, e.g., when
comparing results from the θ0 = 40° isotherm (Figure 7a) to
results from the θ0 = 60° isotherm (Figure 7b). The latter
disjoining pressure curve extends to larger negative values for the
disjoining pressure. This results in unstable modes with shorter
wavelengths and a larger number of internal extrema.
In large closed containers, more mechanical instability modes

will be present as the upper bound of 2R increases. The films will
then become mechanically unstable for a larger part of the
interval where dΠ/dh > 0. However, the dotted lines in Figure 7
display the film thicknesses for which the estimated lower bound
for unstable wavelengths λ0 diverges. The divergence of λ0
means that there may be an interval on the h-axis where a finite
container is not large enough to support sufficiently long
wavelengths for the film to be unstable no matter how large the
container is. However, this region quickly becomes narrow as
the container diameter is increased. As an example, consider the
θ0 = 40° isotherm and a container with 2R = 1 μm. The lower
bound, λ0, is larger than 1 μm only for film thicknesses between
5.41 nm and the thickness for which λ0 diverges, 5.56 nm. The
effect of mechanical stabilization due to finite container size is
therefore expected to be small for large containers.
In summary, we find that the criterion for thermodynamic

stability of films provided in the literature, dΠ/dh < 0, applies
only to open systems due to a condensation/evaporation
instability that is present whenever this criterion is not satisfied.
The stability of films in closed systems is governed by
mechanical instabilities of a similar kind as those responsible
for spinodal dewetting in nonvolatile systems. Similar to
nonvolatile films,20 we find that films in small closed containers
may be stable even though dΠ/dh > 0 due to the finite size of the
container.

Droplets and Films. We shall next compare the
thermodynamic stability of a thin film in coexistence with a
droplet in an open and a closed system. The stability of different
droplet configurations in a closed container is shown in Figure 8
for the θ0 = 60° isotherm. Here, the configurations with the
largest droplets are stable. As the droplet size is reduced, the
contact angle decreases and the film thickness increases. Thus,
the droplet configurations gradually converge to a flat film as the
film thickness approaches the minimum on the disjoining
pressure curve where dΠ/dh|h=hR = 0. At some point before the
disjoining pressure in the thin-film part of the configurations
reaches this minimum, however, the droplets become unstable.
As we shall see in the next section, this point is associated with a
minimum in the total density in the container. A similar behavior
was obtained also for the θ0 = 40° isotherm.
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Dörfler et al.20 found that stable nonvolatile droplets
eventually became unstable if the substrate size was increased
by making the film-covered substrate area larger while keeping
the size of the droplet fixed. We observe the same for the
droplets in a closed system studied here.
If the container is open instead of closed, then all of the

droplet configurations in Figure 8 are unstable.
The unstable droplet states have one negative Hessian

eigenvalue, in both the open and the closed container. The
unstable droplets thus represent saddle points in both free
energy landscapes, and the systems can reduce their energies by
moving along (or against) one particular direction given by the
associated eigenvector. Examples of instability modes dh− are
shown in Figure 9. These modes are similar for the open and

closed systems. However, as discussed for the flat film, the
unstable perturbations dx− ∝ q−

(i) for the open system involve a
larger degree of particle exchange with the gas phase.
By initially perturbing the unstable droplets in the open

system along the unstable eigenvector dx−∝ q−
(i), we were able to

form a path in the configuration space, with monotonically
decreasing grand canonical energy, to a homogeneous liquid
phase filling the entire container. By perturbing the system in the
opposite direction, a path to a stable flat film was obtained.

Sharma34 observed a similar behavior by use of dynamic
considerations. He assumed a constant gas pressure and a model
for the evaporation rate. Time-stationary droplet solutions were
then unstable, and droplets slightly smaller than the time-
stationary state evaporated, shrunk, and eventually became a flat
film, while slightly bigger droplets condensed further and grew in
size. The unstable droplets in the open system thus represent
activation barriers in the energy landscape, which correspond to
stationary states with gas pressures above the saturation
pressure.
By perturbing the unstable droplets in the closed system, we

were able to form paths with monotonically decreasing
Helmholtz energy to either a larger stable droplet or a stable
flat film. The unstable droplets in the closed system therefore
represent the activation barrier for wetting/dewetting of the
solid surface.
A notable difference between the paths in the open and closed

systems was that in the closed system, the number of particles in
the film phaseNf changed very little. As an example, the decay of
the unstable droplet in Figure 9 to a flat film resulted in a 5.5%
reduction in Nf in the open system and only a 0.074% reduction
in the closed system. A consequence of this is that the
assumption of a nonvolatile film phase in the effective interface
Hamiltonian approach used, e.g., by Dörfler et al.20 appears
reasonable for water in a closed system at the current
temperature. However, this might not be the case for fluids
closer to their critical temperature.

Film−Droplet Transition. By comparing the Helmholtz
energy of different locally stable flat film and droplet
configurations with the same total density ρ = N/V, we
determine the equilibrium configuration in a closed system. This
comparison is shown in Figure 10 for the θ0 = 60° isotherm. The

film thickness hR at the container sidewall is plotted as a function
of the total density for both types of configurations. Unstable
configurations are indicated by red markers, locally stable
configurations are indicated in green, and stable configurations
that represent the lowest Helmholtz energy for a particular value
of ρ are shown in blue. The gas spinodal density at the
considered temperature is 0.35 mol L−1, and the liquid spinodal

Figure 8.Thermodynamic stability of droplets in coexistence with films
of different thicknesses for the disjoining pressure curve with θ0 = 60°.
The film thickness marked on the disjoining pressure isotherm is hR, i.e.,
the thickness measured at the container wall where r = R. Stable
configurations are shown in solid green and unstable configurations in
dashed red.

Figure 9. Droplet instability modes dh− for the θ0 = 60° disjoining
isotherm and hR = 0.50 nm, in the closed (blue) and the open
(magenta) container. For reference, the film thickness h is also shown
(dashed red line). The plotted vectors dh− have been normalized so
that their length is 1 in the L2-norm.

Figure 10. Film thicknesses hR (at the container sidewall) plotted
against the total density ρ in a closed container for the disjoining
pressure isotherm with θ0 = 60°. Flat film configurations are shown as
circles on a dashed line, while droplet configurations are shown as
squares on a dotted line. Unstable states are shown in red and locally
stable in green. Equilibrium states, which are locally stable and have the
lowest Helmholtz energy of the stable configurations at that density, are
shown in blue. The solid vertical line indicates the film−droplet
transition density.
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density is 43 mol L−1. Since the total densities of the
configurations lie between the gas and liquid spinodals, a
homogeneous fluid phase can be ruled out as a possible
alternative equilibrium state since it is thermodynamically
unstable.46

Figure 10 shows that the point on the dotted line where
droplet configurations go from stable to unstable occurs at a
minimum in the total density. Below this minimum, no
stationary droplet states can be found. A similar effect has
been observed for free bubbles and droplets in a closed
system.22,23 The unstable branch of droplet configurations
converges toward the flat film configurations. The two types of
configurations merge at the film thickness corresponding to a
minimum in the disjoining pressure curves.
The flat films are stable at low densities. They are also the

equilibrium configuration up to a certain value of the total
density, indicated by the vertical solid line in Figure 10, where
there is a morphological phase transition and the equilibrium
state becomes a stable droplet configuration. The transition
density is 3.03mol L−1, a value that depends both on the size and
on the shape of the container.
Tracing the blue markers from left to right in Figure 10 shows

that in a closed container at equilibrium, the system will initially
consist of a thin flat film that grows in thickness as the number of
particles is increased. Eventually, a droplet will form when the
transition density is exceeded. The formation of a droplet will
deplete liquid from the thin-film region such that the film
thickness is reduced. This transition, from a stable film state to a
stable droplet state, occurs through dewetting by nucleation.
The nucleation regime corresponds to the interval of densities

in Figure 10 for which there are three possible stationary states:
one stable flat film state and two droplet states. The two droplet
states correspond to a small droplet, which is unstable, and a
larger droplet, which is stable. An example of three such states at
ρ = 3.1 mol L−1 is shown in Figure 11b. A transition from the
stable flat film to the stable droplet state will pass through the
unstable droplet, as it represents a saddle point in the
thermodynamic energy landscape.
In Figure 11a, the Helmholtz energy difference ΔF between

the droplet configurations and the corresponding film
configuration with the same total density is plotted. Like in
Figure 10, the stationary droplet states fork out into a stable and
an unstable branch. The Helmholtz energy of the unstable
branch is always larger than the stable branch. Furthermore, the
Helmholtz energy of the unstable branch approaches that of the
flat film as the total density in increased.
The Helmholtz energy differences ΔF of the three states in

Figure 11b are indicated by markers of corresponding colors in
Figure 11a. It is clear that the large droplet has the lowest
Helmholtz energy and is the equilibrium configuration.
However, a transition from the stable flat configuration, which
passes through the unstable small-droplet configuration, must
overcome an energy barrier through an activated nucleation
process. The probability of the transition to occur increases as
the energy barrier decreases and eventually goes to zero as the
total density is increased. The opposite transition, from a large
droplet to a flat film, may also occur as an activated nucleation
process below the transition density. A similar analysis for the θ0
= 40° isotherm gives qualitatively similar results but a somewhat
higher transition density of 3.88 mol L−1. Since the activation
barriers for the film−droplet transition displayed in Figure 11a
are rather small, we expect for this example that the
morphological change will occur close to the transition density.

■ CONCLUSIONS
The thermodynamic properties of thin films deviate from those
of a bulk liquid phase at the same temperature and chemical
potential. This deviation can be modeled by the disjoining
pressure. Thin films occur in a variety of applications, such as in
flow through porous media, fuel cells, in evaporation as well as in
micro- and nanofluidics.
This work is a study of thin films of spatially varying

thicknesses and their coexistence with droplets, in open systems
and under confinement. Based on Derjaguin’s concept of a
disjoining pressure Π, which is dependent on film thickness h,
and the existing bulk-phase equations of state, we derived a
thermodynamic fundamental relation for a thin liquid film
phase. From this fundamental relation, the film−gas and film−
solid interfacial tensions were obtained, the latter of which was
dependent on the film thickness. We verified that Derjaguin’s
equation for the contact angle of a macroscopic droplet was
reproduced by the fundamental relation, and it was next
employed to derive a capillary model for a distributed film of
varying thicknesses, with a homogeneous gas phase above it.
The model was used to study the thermodynamic stability of

stationary states that represent flat films and droplets of water in
closed systems (canonical ensemble) or connected to a particle
reservoir (grand canonical ensemble). The stationary states
were found by solving the Euler−Lagrange equations derived

Figure 11. In (a), the Helmholtz energies of droplet configurations,
relative to the flat film configuration with the same density, are shown as
squares on a dotted line. As in Figure 10, θ0 = 60° and unstable droplet
states are marked by red squares, locally stable states by green squares,
and stable states that have the lowest Helmholtz energy at the given
density are shown in blue. The flat film configurations are stable for the
entire range of densities plotted. Values of ΔF for the three possible
stationary configurations at ρ = 3.1 mol L−1, one flat film state (yellow
dot) and two droplet states (magenta and cyan squares), are indicated.
The corresponding film profiles are shown in (b).
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from the Helmholtz energy functional (closed system) or the
grand canonical energy functional (open system). By discretiz-
ing the energy functionals, the thermodynamic stability of the
configurations could be inferred from the eigenvalues of the
corresponding Hessian matrices.
In closed systems, the flat films were occasionally stable even

when the conventional stability criterion often presented in the
literature, dΠ/dh < 0, was not satisfied. A closer inspection of the
eigenvectors associated with the negative eigenvalues revealed
that the stability was governed by mechanical instabilities of a
similar kind as those responsible for spinodal dewetting in
nonvolatile systems. In line with earlier works,20,28 the films were
stabilized when their thickness and disjoining pressure
derivatives were such that the minimum unstable wavelength
became larger than the container diameter.
Flat films in open systems, on the other hand, were found to

follow the conventional stability criterion. The reason for this
was the presence of an additional type of instability whenever the
criterion was not satisfied. This type of instability corresponded
to condensation/evaporation of the film while the film profile
remained flat. This instability was not present in the closed
systems.
Droplets in coexistence with thin films were found to be

unstable for all considered examples in open systems. In closed
systems, they were stable under certain conditions. When two
different droplet states were possible at the same density, the
large droplet was stable and the small droplet was unstable.
Smaller and smaller droplets exhibited smaller and smaller
contact angles and eventually converged to flat films.
The unstable droplets in both open and closed systems were

found to be saddle points in their respective energy landscapes.
In the closed system, they represent the activation barrier for the
transition between a stable flat film and a stable droplet. This
activation barrier was quantified by evaluating the Helmholtz
energies of both the stable and unstable stationary states. In the
open system, the unstable droplets represent the activation
barrier for the transition from a flat film to a bulk liquid phase
through condensation.
In a closed system, flat films were found to be the equilibrium

configuration up to a certain value for the total density. Beyond
this value, there was a morphological phase transition to stable
droplet configurations.
The framework presented can readily be extended to study

thin-film configurations in multicomponent systems and in
different geometries such as around fibers and within porous
media.

■ APPENDIX A. MACROSCOPIC DROPLET MODEL
In this section, we derive a simplified model for a macroscopic
droplet configuration. This model serves two purposes. (1)
Analysis of the macroscopic model will provide an alternative
way to derive Derjaguin’s relation for the macroscopic contact
angle (eq 16), using the fundamental relation for the film phase,
that does not presume a balance of interfacial forces. (2) Since
the macroscopic model is consistent with a known result,
Derjaguin’s contact angle relation, it provides an opportunity to
validate the distributed model and the discrete approach used to
solve it. We will show that the two give the same interface
profiles in the large-droplet limit.
We consider a cylindrical container of base radius R, base area

A = πR2, and heightH, giving a total volume V = AH. It contains
a spherical droplet, large enough for the pressure inside it to be
unaffected by the disjoining pressure, covering part of A, while a

thin film covers the rest. A gas phase occupies the remaining
container volume. The gas−liquid interface of the droplet is a
spherical cap, and the droplet volume can be expressed as

π= { + }V a b
b

a b( , )
6

3d 2 2
(A.1)

where a is the base-area radius and b is the height of the spherical
cap. The parameters a and b are related to the radius of curvature
in the droplet, r, and the contact angle θ through

= + { − }r a r b2 2 2 (A.2)

θ = { − }r b rcos( ) / (A.3)

The gas−liquid interfacial area of the droplet is

π= { + }A a b a b( , )gd 2 2 (A.4)

and the solid−liquid interfacial area is

π=A a a( )ds 2 (A.5)

The film area is

= −A a A A a( ) ( )f ds (A.6)

and the film volume is

=V h a hA a( , ) ( )f f (A.7)

where h is the film thickness. The gas volume is

= − −V V V Vg f d (A.8)

In a closed container in contact with a thermal reservoir,
equilibrium is a stationary state of the Helmholtz energy. Using
the capillary model approach, the Helmholtz energy differential
for the system is

μ
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g d f

g g g g d d

d d gl gd ls ds f f

f f f f

Herein, γf is the film tension, i.e.,

∫
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Using now that dVg =−dVf− dVd, dNg =−dNf− dNd, and dAf =
− dAds, the differential may be expressed as

μ μ

γ γ γ

μ μ

= − − { − } + { − }
+ + { − } − { − }
+ { − }
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N
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d
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The areas and volumes are determined by three free parameters,
e.g., h, a, and b. This enables further manipulation of the
differential to obtain
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In a stationary state, all terms in A.14 must be zero. The first two
terms then give that a stationary state requires chemical
equilibrium

μ μ μ= =d g f (A.15)

Having the last term equal to zero requires

= = + Πp p pg f b
(A.16)

i.e., mechanical equilibrium between the gas and film phases.
The two remaining terms give

γ− = ∞p p
r

2d g
gl

(A.17)

the Young−Laplace equation for the droplet and

θ
γ γ

γ
= − ∞

∞
cos( )

f ls

gl
(A.18)

which is Young’s equation for the contact angle of the droplet.
Inserting eq A.12 into eq A.18, we recover Derjaguin’s equation
(eq 16) for the contact angle of a macroscopic droplet.
The procedure above can also be applied in an open

isothermal system. The result is that the criteria for a stationary
state in the grand canonical energyΩ are the same as those for a
stationary state in F.
As a validation of the discrete approach described in the

section Discrete Description of the Distributed Film, we here
confirm that the film profiles obtained with this method
converge to those obtained by the macroscopic model as the
droplet size is increased. To this end, we compute stationary
droplet states with the macroscopic model and a = R/2 for
progressively increasing values of R. For each of these states, we
compute the stationary state that has the same number of
particles using the discrete approach with 600 grid points. We
use the same fluid EOS and interfacial tensions as in the main
paper and use the disjoining pressure isotherm with a
macroscopic contact angle of θ0 = 60°. Two examples are
shown in Figure 12a,b for R = 10 and 640 nm, respectively.
There is a large discrepancy between the film profiles for the
small container. In the large container, the two profiles are
identical within the accuracy of the plots.
As a more formal comparison, we compute the L2-norm of the

relative difference between the film profiles obtained with the
two different models. This is plotted in Figure 13 against the
container radius. This shows that the film profiles obtained with
the discrete method converge to those from the macroscopic
model as the container size is increased.
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We study three different time integration methods for a dynamic pore network model for

immiscible two-phase flow in porous media. Considered are two explicit methods, the

forward Euler and midpoint methods, and a new semi-implicit method developed herein.

The explicit methods are known to suffer from numerical instabilities at low capillary

numbers. A new time-step criterion is suggested in order to stabilize them. Numerical

experiments, including a Haines jump case, are performed and these demonstrate that

stabilization is achieved. Further, the results from the Haines jump case are consistent

with experimental observations. A performance analysis reveals that the semi-implicit

method is able to perform stable simulations with much less computational effort

than the explicit methods at low capillary numbers. The relative benefit of using the

semi-implicit method increases with decreasing capillary number Ca, and at Ca ∼ 10−8

the computational time needed is reduced by three orders of magnitude. This increased

efficiency enables simulations in the low-capillary number regime that are unfeasible with

explicit methods and the range of capillary numbers for which the pore network model

is a tractable modeling alternative is thus greatly extended by the semi-implicit method.

Keywords: porous media, two-phase flow, pore network model, numerical methods, time integration, stability,

low capillary number

1. INTRODUCTION

Different modeling approaches have been applied in order to increase understanding of immiscible
two-phase flow in porous media. On the pore scale, direct numerical simulation approaches using
e.g. the volume of fluid method [1] or the level-set method [2, 3] to keep track of the fluid
interface locations, have been used. The lattice-Boltzmann method is another popular choice, see
e.g. Ramstad et al. [4]. These methods can provide detailed information on the flow in each pore.
They are, however, computationally intensive and this restricts their use to relatively small systems.

Pore network models have proven to be useful in order to reduce the computational cost [5], or
enable the study of larger systems, while still retaining some pore-level detail. In these models, the
pore space is partitioned into volume elements that are typically the size of a single pore or throat.
The average flow properties in these elements are then considered, without taking into account the
variation in flow properties within each element.

Pore network models are typically classified as either quasi-static or dynamic. The quasi-static
models are intended for situations where flow rates are low, and viscous pressure drops are
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neglected on the grounds that capillary forces are assumed to
dominate at all times. In the quasi-static models by Lenormand
et al. [6], Willemsen [7], and Blunt [8], the displacement of one
fluid by the other proceeds by the filling of one pore at the time,
and the sequence of pore filling is determined by the capillary
entry pressure alone.

The dynamic models, on the other hand, account for
the viscous pressure drops and thus capture the interaction
between viscous and capillary forces. As three examples
of such models, we mention those by Hammond and
Unsal [5], Joekar-Niasar et al. [9], and Aker et al. [10].
A thorough review of dynamic pore network models
was performed by Joekar-Niasar and Hassanizadeh
[11].

The pore network model we consider here is of the dynamic
type that was first presented by Aker et al. [10]. Since the
first model was introduced, it has been improved upon several
times. Notably, it was extended to include film and corner
flow by Tørå et al. [12]. The model considered here does
not contain this extension. This class of models, which we
call the Aker-type models, is different from the majority of
other pore network models [5, 9] in that both the pore body
and pore throat volumes are assigned to the links, and no
volume is assigned to the nodes. Fluid interface locations are
tracked explicitly as they move continuously through the pore
space. This is in contrast to the model by Hammond and
Unsal [5], where interfaces are moved through whole volume
elements at each time step, and to the model of Joekar-
Niasar et al. [9], where interface locations are only implicitly
available through the volume element saturation. One of the
advantages of the Aker-type model is that a detailed picture
of the fluid configuration is provided at any time during a
simulation. Dynamic phenomena, such as the retraction of the
invasion front after a Haines jump [13–16], are thus easily
resolved.

Since 1985, numerical instabilities at low capillary numbers
have been known to occur for various types of dynamic pore
network models [17]. A whole section is devoted to the topic
in the review by Joekar-Niasar and Hassanizadeh [11]. It is
important to address such stability problems rigorously, as
many of the practical applications of two-phase porous media
flow are in the low capillary number regime. Examples include
most parts of the reservoir rock during CO2 sequestration,
flow of liquid water in fuel cell gas diffusion layers and
studies of Haines jump dynamics, see e.g. Armstrong and Berg
[15].

When Aker-type pore network models are used, the
numerical instabilities are observed as oscillations in the
positions of the fluid interfaces. Some efforts to avoid these
oscillations have been made by introduction of modifications
to the model. Medici and Allen [18] used a scheme where
water was allowed to flow in the forward direction only
in order to study water invasion in fuel cell gas diffusion
layers. While this approach led to interesting results, it has
some downsides. First, the interface movement is artificially
restricted, and certain dynamic effects can not be resolved.
This includes e.g. invasion front retraction after a Haines

jump. Second, the method can only be used in cases with
transient invasion. Studies of steady-state flow, such as those
performed by Knudsen et al. [21] and Savani et al. [19], are not
possible.

Because the oscillations originate in the numerical methods,
rigorous attempts to remove them should focus on these
methods rather than the models themselves. Joekar-Niasar
et al. [9] followed this avenue and achieved stabilization
using a linearized semi-implicit method. Their work, however,
concerned a different type of pore network model than that
considered here.

In this work, we present three numerical methods that
can be utilized to perform stable simulations of two-phase
flow in porous media with pore network models of the Aker
type. The stability problems previously observed are thus
solved without the need to resort to model modifications
that restrict interface movement or preclude steady-state flow
simulations. Two explicit methods are discussed, the forward
Euler method and the midpoint method. These are stabilized
by a new time step criterion derived herein. The third method
is a new semi-implicit method. Thorough verifications of
all methods are performed, confirming correct convergence
properties and stability. Finally, we compare the methods in
terms of performance.

The rest of this paper is structured as follows. Section 2
contains background information on the pore network model.
Section 3 presents briefly the nomenclature, used in subsequent
sections to describe the time integration methods. In section 4,
we recapitulate how the forward Euler method is used to
integrate the model and we present a new time step criterion
that stabilizes both forward Euler and the midpoint method at
low capillary numbers. We briefly review the midpoint method
in section 5. The new semi-implicit method is described in detail
in section 6. Some remarks about the numerical implementation
are made in section 7. Section 8 contains a description of the
cases simulated. Numerical experiments, including a Haines
jump case, that show convergence and stability are given in
section 9 and a comparison of the method performances are
made in section 10. Section 11 summarizes and concludes the
paper.

2. PORE NETWORK MODEL

We consider incompressible flow of two immiscible fluids in a
porous medium, where one fluid is more wetting toward the pore
walls than the other. We call the less wetting fluid non-wetting
(n) and the more wetting fluid we call wetting (w). The porous
medium is represented in the model by a network of N nodes
connected byM links. Each node is given an index i ∈ [0,N − 1],
and each link is identified by the indices of the two nodes it
connects. An example pore network is shown in Figure 1. The
nodes are points that have no volume and, consequently, all fluid
is contained in the links. The links therefore represent both the
pore and the throat volumes of the physical porous medium. In
this respect, the pore network model studied here differ from
most other pore networkmodels [11]. Each fluid is assumed to fill

Frontiers in Physics | www.frontiersin.org 2 June 2018 | Volume 6 | Article 56
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FIGURE 1 | Illustration of (A) a physical pore network with wetting (white) and non-wetting fluid (blue) and (B) its representation in the pore network model. The void

space volumes separated by dashed lines in (A) are each represented as one link in (B). The node points in the model representation (B) is assumed to be located at

the intersection points of the dashed lines in (A). Each fluid is assumed to fill the entire link cross section. The interface positions are therefore each represented in the

model by a single number, giving its location along the link length.

the entire link cross section. The interface positions are therefore
each represented in the model by a single number, giving its
location along the link length.

The flow in each link is treated in a one-dimensional manner,
where the flow is averaged over the link cross section. As we
consider flow in relatively small cross sections only, we neglect
any inertial effects and the volume flow rate (m3 s−1) from node j
to node i through the link connecting then is given by Washburn
[20]

qij = −gij
(

zij
) {

pi − pj − cij
(

zij
)}

. (1)

Herein, pi (Pa) is the pressure in node i, gij (m
3 s−1 Pa−1) is the

link mobility, cij (Pa) is the link capillary pressure and zij (m) is a
vector containing the positions of any fluid interfaces present in
the link. Both the link mobility and the capillary pressure depend
on the fluid interface positions in the link. If two nodes i and j are
not connected by a link, then gij = 0. Due to mass conservation,
the net flow rate into every node i is zero

∑

j

qij = 0. (2)

While the mobilities are symmetric with respect to permutation
of the indices, the capillary pressures are anti-symmetric,

gij = gji, (3)

cij = −cji. (4)

Introducing this into Equation (1), we obtain the immediately
intuitive result

qij = −qji. (5)

The cross-sectional area of link ij is denoted aij (m
2). Interface

positions are advected with the flow according to

d

dt
zij =

qij

aij
, (6)

when they are sufficiently far away from the nodes. Near the
nodes, however, the interfaces are subject to additional modeling
to account for interface interactions in the pores. This is discussed
further in section 2.3.

The form of the expressions for the mobilities and capillary
pressures depends on the shape of the links, and many different
choices and modeling approaches are possible. Here, we will use
models similar to those previously presented and used by e.g.
Knudsen et al. [21] and Aker et al. [10]. However, the treated time
integrationmethods are more general and can be applied to other
models as well.

2.1. Link Mobility Model
We apply a cylindrical link model when computing the
mobilities, so that

gij(zij) =
πr4ij

8Lijµij

(

zij
) . (7)

Here, rij (m) is the link radius and Lij (m) is the link length.
The viscosity µij (Pa s) is the volume-weighted average of the
fluid viscosities and can be computed from the wetting and
non-wetting fluid viscosities µw and µn and the wetting fluid
saturation sij,

µij

(

zij
)

= µwsij
(

zij
)

+ µn

{

1− sij
(

zij
)}

. (8)
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2.2. Capillary Pressure Model
In each link ij, there may be zero, one or more interfaces
present. These are located at the positions specified in zij. As
the interfaces may be curved, there may be a discontinuity in
pressure at these interface locations. The capillary pressure cij is
the sum of interfacial pressure discontinuities in the link ij. When
computing the capillary pressures, we assume that the links are
wide near each end, and therefore that interfaces located near a
link end have negligible curvature and no pressure discontinuity,
while the links have narrow throats in the middle. The link
capillary pressures are thus modeled as

cij
(

zij
)

=
2σwn

rij

∑

z∈zij

(±1)
{

1− cos
(

2πχij (z)
)}

. (9)

The interfacial tension between the fluids is denoted σwn (Nm−1)
and

χij (z) =











0 z < αrij,
z−αrij

Lij−2αrij
αrij < z < Lij − αrij,

1 z > Lij − αrij.

(10)

The χij-function ensures zones of length αrij at both ends of
each link with zero capillary pressure across any interface located
there. Choosing α = 0 is equivalent to replacing χij with z/Lij in
(9).

2.3. Fluid Interface Interaction Models
The equations discussed so far in this section describe how the
fluids and the fluid interfacesmove through the links. In addition,
we rely on models for how they behave close to the nodes. The
purpose of these are to emulate interface interactions in the pore
spaces.

The following is assumed about the fluid behavior near the
nodes and is accounted for by the fluid interface interaction
models.

• The mass of each fluid is conserved at every node. This means
that at all times, all wetting and non-wetting fluid flowing into
a node from one subset of its neighboring links must flow out
into another disjoint subset of its neighboring links.

• The network nodes in the model have no volume. However,
due to the finite size of the physical pore void spaces, wetting
fluid flowing into a pore space must be able to flow freely past
any non-wetting fluid occupying the node point if the non-
wetting fluid does not extend far enough into the pore void
space cut the wetting fluid off. An example is illustrated in
Figure 2. We consider a link ij to be cut off from free outflow
of wetting fluid if the non-wetting fluid continuously extends
a length at least αrij into the link. Non-wetting fluid may freely
flow past wetting fluid, or not, the same manner.

• In each link ij, interfacial tension will prevent droplets with
length smaller than αrij from forming by separation from
larger droplets. An example is illustrated in Figure 3.

FIGURE 2 | Network node connected to three links. The node point, located

near the middle of the pore space, is occupied by non-wetting fluid (blue). (A)

The non-wetting fluid extends only a short distance into the links containing

wetting fluid (white). The wetting fluid therefore remains connected and may

flow freely through the pore space. (B) Non-wetting fluid protrudes far enough

into all links to block the pore space for wetting fluid. The wetting fluid must

now displace the non-wetting fluid in order to flow through.

2.4. Boundary Conditions
We consider only networks where the nodes and links can be
laid out in the two-dimensional x-y plane. These networks will
be periodic in both the x- and y-direction. However, the model is
also applicable to networks that extend in three dimensions [22],
and the presented numerical methods are also compatible both
with networks in three dimensions and with other, non-periodic
boundary conditions [23].

We will here apply two types of boundary conditions to the
flow. With the first type, a specified pressure difference 1P
(Pa) will be applied across the network in the y-direction. This
pressure difference will be equal to the sum of all link pressure
differences in any path spanning the network once in the y-
direction, ending up in the same node as it started.With the other
type of boundary condition, we specify a total flow rateQ (m3 s−1)
across the network. This flow rate will be equal to the sum of link
flow rates flowing through any plane drawn through the network
normal to the y-axis.

3. TEMPORAL DISCRETIZATION

In the following three sections, we describe the different time
integration methods considered. These methods are applied to
Equation (6), where evaluation of the right hand side involves
simultaneously solving the mass conservation equation (2) and
the constitutive equation (1) to obtain all unknown link flow rates
and node pressures.

The discretized times (s) are denoted with a superscript where
n is the time step number,

t(n) = t(0) +

n−1
∑

i=0

1t(i). (11)

The time step 1t(i) is the difference between t(i+1) and t(i)

and the time t(0) is the initial time in a simulation. Similarly,
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FIGURE 3 | (A) Small non-wetting bubble (blue) whose volume is small compared to the link volumes and is prevented from splitting by interfacial tension. This limits

the minimum size of non-wetting bubbles, which will either (B) be stuck or (C) move through one of the links without splitting.

quantities evaluated at the discrete times are denoted with time
step superscripts, e.g.

q
(n)
ij = qij

(

t(n)
)

. (12)

Mobilities and capillary pressures with superscripts are evaluated
using the interface positions at the indicated time step,

g
(n)
ij = gij

(

z
(n)
ij

)

, (13)

c
(n)
ij = cij

(

z
(n)
ij

)

. (14)

4. FORWARD EULER METHOD

The forward Euler method is the simplest of the time integration
methods considered here and is the one used most frequently
in previous works, see e.g. Knudsen et al. [21] and Sinha and
Hansen [24]. We include its description here for completeness
and to provide context for the proposed new capillary time
step criterion that is introduced to stabilize the method at low
capillary numbers.

The ordinary differential equation (ODE) (6) is discretized in
a straightforward manner for each link ij using forward Euler,

z
(n+1)
ij = z

(n)
ij + 1t(n)

q
(n)
ij

aij
. (15)

The flow rates are calculated by inserting Equation (1), evaluated
with the current known interface positions,

q
(n)
ij = −g

(n)
ij

{

p
(n)
i − p

(n)
j − c

(n)
ij

}

, (16)

into the mass conservation equation (2). This results in the a
system of linear equations consisting of one equation,

∑

j

g
(n)
ij p

(n)
j − p

(n)
i

∑

j

g
(n)
ij = −

∑

j

g
(n)
ij c

(n)
ij , (17)

for each node iwith unknown pressure. This linear system can be
cast into matrix form,

A · x = b, (18)

where the vector x contains the unknown node pressures, e.g.

x =













p
(n)
0

p
(n)
1
...

p
(n)
N−1













. (19)

The matrix elements are

Aij =
{

1− δij
}

g
(n)
ij − δij

∑

k

g
(n)
ik

, (20)

and the elements of the constant vector are

bi = −

∑

k

g
(n)
ik

c
(n)
ik
. (21)

The node pressures are obtained by solving this linear equation
system. The flow rates are subsequently evaluated using Equation
(16) and the interface positions are then updated using Equation
(15) and the interface interaction models.

4.1. Time Step Restrictions
In previous works [10, 21], the time step length was chosen from
a purely advective criterion,

1t(n)a = Camin
ij





aijLij

q
(n)
ij



 . (22)

The parameter Ca corresponds to the maximum fraction of a link
length any fluid interface is allowed to move in a single forward
Euler time step. The value ofCa must be chosen based on the level
of accuracy desired from the simulation.

However, selecting the time step based on the advective
criterion only, often results in numerical instabilities at low
capillary numbers, where viscous forces are small relative to the
capillary forces. This is demonstrated in section 9.2. The origins
of the numerical instabilities can be identified by performing
analysis on a linearized version of the governing equations. This
is done in Appendix A. This analysis also leads to a new time
step criterion, whereby the time step length is restricted by the
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sensitivity of the capillary forces to perturbations in the current
interface positions,

1t(n)c = Ccmin
ij









2aij

g
(n)
ij

∣

∣

∣

∣

∑

z∈z
(n)
ij

∂cij
∂z

∣

∣

∣

∣









. (23)

For the particular choice of capillary pressure model given by (9),
we obtain

1t(n)c = Ccmin
ij









aijrijLij

2πg
(n)
ij σwn

∣

∣

∣

∣

∑

z∈z
(n)
ij

(±1) sin
(

2πχij (z)
) dχij

dz

∣

∣

∣

∣









.

(24)

According to the linear analysis, numerical instabilities are
avoided if the parameter Cc is chosen such that 0 < Cc < 1.
However, we must regard (23) as an approximation when
we apply it to the full non-linear model in simulations and,
consequently, we may have to chose Cc conservatively to ensure
stability for all cases.

At each step in the simulation, the time step used is then taken
as

1t(n) = min
(

1t(n)c ,1t(n)a

)

, (25)

to comply with both the advective and the capillary time step
criteria. The capillary time step restriction (23) is independent of
flow rate. It therefore becomes quite severe, demanding relatively
fine time steps, when flow rates are low.

4.2. Boundary Conditions
The periodic boundary conditions, specifying a total pressure
difference 1P across the network, can be incorporated directly
into the linear equation system (18). For each node i, a term

g
(n)
ij 1P is added to or subtracted from bi for any link ij that

crosses the periodic boundary.
With the specified 1P condition implemented, we can use it

to obtain the node pressures and link flow rates corresponding to
a specified total flow rateQ. Due to the linear nature of themodel,
the total flow rate is linear in 1P [10], so that

Q = C11P + C2, (26)

for some unknown coefficients C1 and C2, that are particular to
the current fluid configuration.

We choose two different, but otherwise arbitrary, pressure
drop values 1P1 and 1P2 and, using the above procedure, we
solve the network model once for each pressure difference and
calculate the corresponding total flow rates Q1 and Q2. The
coefficients C1 and C2 are then determined by,

C1 =
Q2 − Q1

1P2 − 1P1
, (27)

C2 =
Q21P1 − Q11P2

1P1 − 1P2
. (28)

The pressure difference 1P required to obtain the specified
flow rate Q is determined by solving Equation (26) for 1P.
Subsequently, the network model is solved a third time with
pressure drop 1P to obtain the desired node pressures and link
flow rates.

5. MIDPOINT METHOD

The forward Euler method is first-order accurate in time. To
obtain smaller numerical errors, methods of higher order are
desirable. We therefore include in our discussion the second-
order midpoint method. This method is identical to that used by
Aker et al. [10], except with respect to choice of time step length.

The ODE (6) is discretized as

z
(n+1)
ij = z

(n)
ij + 1t(n)

q
(n+1/2)
ij

aij
, (29)

where q
(n+1/2)
ij is the flow rate at the midpoint in time between

point n and n+1. This flow rate is calculated in the same manner
as described in section 4. The interface positions at n + 1/2 are
obtained by taking a forward Euler step with half the length of the
whole time step,

z
(n+1/2)
ij = z

(n)
ij +

1

2
1t(n)

q
(n)
ij

aij
. (30)

5.1. Time Step Restrictions
Since the forward Euler stability region is contained within the
stability region for the midpoint method, we use the same time
step restrictions for the midpoint method as for forward Euler,
see section 4.1.

5.2. Boundary Conditions
Both the specified 1P and the specified Q boundary conditions
are incorporated into the midpoint method by applying the
procedures described in section 4.2 for each evaluation of the
right hand side of Equation (6).

6. SEMI-IMPLICIT METHOD

To avoid both the numerical instabilities and the time step
restriction (23), which becomes quite severe at low flow rates,
we here develop a new semi-implicit time stepping method.
Simulation results indicate that this method is stable with time
steps determined by the advective criterion (22) only, and much
longer time steps are therefore possible than with the forward
Euler and midpoint methods at low capillary numbers.

The ODE (6) is now discretized according to

z
(n+1)
ij = z

(n)
ij + 1t(n)

q
(n+1)
ij

aij
. (31)

The semi-implicit nature of this discretization comes from the
flow rate used,

q
(n+1)
ij = −g

(n)
ij

{

p
(n+1)
i − p

(n+1)
j − c

(n+1)
ij

}

. (32)
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Herein, the link mobility is evaluated at time step n, while the
node pressures and the capillary pressure are evaluated time step
n+ 1.

The link mobilities could of course also have been evaluated
at time step n + 1, thus creating a fully implicit backward Euler
scheme. As is shown in Appendix A, we may expect backward
Euler to be stable with any positive 1t(n). The backward Euler
scheme may therefore seem like a natural choice for performing
stable simulations with long time steps. However, to evaluate
the mobilities at time step n + 1 complicates the integration
procedure and was found to be unnecessary in practice. A semi-
implicit alternative is therefore preferred.

To obtain the node pressures, we solve the mass conservation
equations,

Fi =
∑

k

q
(n+1)
ik

= 0. (33)

Again, we have one equation for each node i with unknown
pressure. However, because the capillary pressures now depend
on the flow rates,

c
(n+1)
ij = cij



z
(n)
ij + 1t(n)

q
(n+1)
ij

aij



 , (34)

the mass conservation equations are now a system of non-linear
equations, rather than a system of linear equations. This system
can be cast in the form

F (x) = 0, (35)

where x contains the unknown pressures, e.g.

x =













p
(n+1)
0

p
(n+1)
1
...

p
(n+1)
N−1













. (36)

In order to solve Equation (35) using the numerical method
described in section 7, it is necessary to have the Jacobian matrix
of F. Details on how the Jacobian matrix is calculated are given in
Appendix B.

The calculation of link flow rates from node pressures, and
thus every evaluation of F and its Jacobian, involves solving one
non-linear equation for each link flow rate,

Gij

(

q
(n+1)
ij

)

= q
(n+1)
ij + g

(n)
ij

{

p
(n+1)
i − p

(n+1)
j − c

(n+1)
ij

}

= 0.

(37)

The derivative of Gij with respect to q
(n+1)
ij is

dGij

dq
(n+1)
ij

= 1− g
(n)
ij

dc
(n+1)
ij

dq
(n+1)
ij

. (38)

The procedure for updating the interface positions with the semi-
implicit method may be summarized as follows. The non-linear
equation system (35) is solved to obtain the unknown node
pressures. In every iteration of the solution procedure, the flow
rates are evaluated by solving Equation (37) for each link. When
a solution to Equation (35) is obtained, the interface positions
are updated using Equation (31) and the interface interaction
models.

6.1. Time Step Restrictions
We aim to select the time steps such that

1t(n) = 1t(n+1)
a . (39)

However, to solve the non-linear system (35) is challenging in
practice and requires initial guess values for the link flow rates
and node pressures that lie sufficiently close to the solution. For
this purpose, we here use values from the previous time step. This
turns out to be a sufficiently good choice for most time steps,
but our numerical solution procedure does not always succeed.
As the link flow rates and node pressures at two consecutive
points in time become increasingly similar as the time interval
between them is reduced, we may expect the guess values to
lie closer to the solution if we reduce the time step. Thus, if
our solution procedure is unable to succeed, our remedy is to
shorten 1t(n). This will sometimes lead to time steps shorter

than 1t
(n+1)
a . If, for a given time step, 1t(n) must be reduced

to less than twice the time step length allowed by the explicit
methods, we revert to forward Euler for that particular step. As
we demonstrate in section 10, however, this does not prevent the
semi-implicit method from being much more efficient than the
explicit methods at low capillary numbers.

6.2. Boundary Conditions
As with the explicit methods, the specified 1P boundary
condition can be incorporated directly into the mass balance
equation system, in this case Equation (35). This is done by
adding to or subtracting from the right hand sides of Equation

(32) and Equation (37) a term g
(n)
ij 1P for each link ij crossing the

periodic boundary.
The specified flow rate boundary condition is incorporated by

including1P as an additional unknown and adding an additional
equation

Fm =







∑

ij∈�

q
(n+1)
ij







− Q = 0, (40)

to the non-linear equation system (35). Herein, � is the set of
links crossing the periodic boundary, with i being the node on
the downstream side and j being the node on the upstream side.
Thus, Equation (40) is satisfied when the total flow rate through
the network is equal to Q.

7. IMPLEMENTATION

The non-linear equation system (35) is solved using a Newton-
type solution method that guarantees convergence to a local
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minimum of F · F, see Press et al. [25, p. 477]. However, a local
minimum of F · F is not necessarily a solution to Equation (35),
and good initial guess values for the node pressures and link flow
rates are therefore crucial. For this purpose, we use the values
from the previous time step and reduce the length of the current
time step if the solution method fails, as discussed in section 6.1.

Solving Equation (37) is done using a standard Newton solver
[26]. For robustness, a bisection solver [26] is used if the Newton
solver fails.

The Newton-type solver for non-linear systems and the
explicit time integration methods require methods for
solving linear systems of equations. We use the conjugate
gradient method in combination with the LU preconditioner
implemented in the PETSc library, see Balay et al. [27]. An
introduction to solving systems of Kirchhoff-type equations
numerically can be found in Batrouni and Hansen [28].

8. CASE DESCRIPTIONS

In this section, we describe the two simulated cases. One is a test
case where a single bubble is contained in a network consisting of
links connected in series, while the other is designed to capture
a single Haines jump in a small network where fluids flow at a
specified rate.

8.1. Links-in-Series Test Case
The verification will include comparison of results from the
various numerical methods applied to a test case. The test case
is chosen such that it can be set up as a single ODE with a closed
expression for the right-hand side. An accurate reference solution
can thus be easily obtained using a high-order Runge–Kutta
method. As our test case, we consider a network consisting of
M = 3 identical links connected in series. The network contains
a single bubble of length ℓ (m) with center position z (m). In the
capillary pressuremodel, we choose α = 0. TheODE (6) can then
be restated as an equivalent equation for the bubble position,

dz

dt
=

Q

a
, (41)

where Q is the flow through the network and a is the link
cross-sectional area. The model equations can be reduced to the
following expression for flow rate.

Q = −
g

M

{

1P +
4σwn

r
sin

(

πℓ

L

)

sin

(

2πz

L

)}

(42)

Here, g is the mobility of a single link, L = 1.0 · 10−3m is the
length of a single link and r = 1.0 · 10−4m is the link radius.
The bubble has length ℓ = 4.8 · 10−4m and is initially located
at z = 2.4 · 10−4m. The fluid parameters used in all simulations
are given in Table 1. The pressure difference1P will be stated for
each simulation.

8.2. Haines Jump Case
The Haines jump was first reported almost 90 years ago [13].
It refers to the sudden drops in driving pressure observed
in drainage experiments when non-wetting fluid breaks
through a throat and invades new pores. This process

TABLE 1 | Fluid properties corresponding to water (w) and decane (n) at

atmospheric pressure and 298K.

Parameter Value Unit References

µw 8.9 · 10−4 Pa s [29]

µn 8.5 · 10−4 Pa s [29]

σwn 5.2 · 10−2 Nm−1 [30]

was studied experimentally and numerically by Måløy
et al. [16] and, more recently, it was imaged directly and
analyzed in detail by Armstrong and Berg [15] for flow in
a micromodel and by Berg et al. [14] for flow in a sample
of Berea sandstone. The Haines jump case simulated here
captures one such break-through and subsequent pressure
drop.

Among the findings in the study by Måløy et al. [16] was that
pore drainage is a non-local event, meaning that as one pore
is drained, imbibition occurs in nearby neck regions. This was
also observed by Armstrong and Berg [15], and was explained as
follows. When the imposed flow rates are low, the non-wetting
fluid that fills the newly invaded pores needs to be supplied from
nearby locations rather than the external feed. Armstrong and
Berg [15] also found, for their range of investigated parameters,
that pore drainage occurred on the same time-scale, regardless of
the externally imposed flow rate.

We consider a hexagonal network consisting N = 24 nodes
and M = 36 links. All links have length 1.0 · 10−3m, while
the link radii are drawn randomly from a uniform distribution
between 0.1 and 0.4 link lengths. In the capillary pressure model,
we choose α = 1. The fluid parameters µw, µn and σwn are the
same as in the links-in-series test case, see Table 1. With these
fluid parameters and network length scales, the case mimics the
flow of water (w) and decane (n) in a Hele-Shaw cell filled with
glass beads similar to those used in e.g. Måløy et al. [16, 31] and
Tallakstad et al. [32]. The linear dimensions are∼ 10 times bigger
in this network compared to the micromodel of Armstrong and
Berg [15]. Initially, the fluids are distributed in the network
as shown in Figure 4, with the non-wetting fluid in a single
connected ganglion.

Simulations are run at different specified flow rates Q until a
net fluid volume equivalent to 5% of the total pore volume has
flowed through the network. The flow dynamics will, of course,
depend upon the specified flow rate. At low flow rates, however,
the flow will exhibit some relatively fast fluid redistribution
events and one relatively slow pressure build-up and subsequent
Haines jump event. The Haines jump will occur as the non-
wetting fluid breaks through the link connecting nodes 9 and 16
and invades node 16, see Figure 4.

It was mentioned by Armstrong and Berg [15] that the
large local flow velocities that they observed as a pore
was filled with non-wetting fluid during a Haines jump has
implications for how such processes must be numerically
simulated. Specifically, the time resolution of the simulation
needs to be fine enough during these events to capture them.
This poses a challenge when externally applied flow rates are
low and there is thus a large difference in the large time
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scale that governs the overall flow of the system and the
small time scale than governs the local flow during Haines
jumps.

9. VERIFICATION

In this section, we verify that the time integration methods
presented correctly solve the pore network model equations and
that the time step criteria presented give stable solutions.

9.1. Convergence Tests
All time integration methods presented should, of course, give
the same solution for vanishingly small time steps. Furthermore,
the difference between the solution obtained with a given finite
time step and the fully converged solution should decrease as the
time steps are refined, and should do so at a rate that is consistent
with the order of the method. In this section, we verify that all
three time integration methods give solutions that converge to
the reference solution for the links-in-series test case and thus
that the methods correctly solve the model equations for this
case.

We choose the pressure difference to be 1P = −3200 Pa.
This value is large enough to overcome the capillary forces
and push the non-wetting bubble through the links. We
therefore expect a flow rate Q that varies in time, but is always
positive.

As measures of the numerical error, we consider both the
relative error in the flow rate Q and the relative error in
bubble position z between the numerical solutions and reference
solutions at the end of the simulation. Time integration is

FIGURE 4 | Initial fluid configuration in the Haines jump case. The non-wetting

fluid is blue while the wetting fluid is gray. The link radii are not drawn to scale

with the link lengths. Node indices are indicated in black.

performed from t = 0 s to t = 0.001 44 s. To have control over
the time step lengths, we ignore all time step criteria for now and
instead set a constant 1t for each simulation.

In Figure 5, flow rates are plotted for each of the time
integration methods. Results using a coarse time step, 1t =

4 · 10−5 s, and a fine time step, 1t = 1 · 10−5 s, are shown along
with the reference solution.

For the forward Euler and the semi-implicit method, there
is considerable discrepancy between the numerical and the
reference solution with the coarse time step. The flow rate
obtained from forward Euler lags behind the reference solution,
while that from the semi-implicit method lies ahead of it. This
may be expected, however, since forward Euler at each time
step uses current information in the right hand side evaluation,
whereas the semi-implicit method uses a combination of current
and future information. With the fine time step, there is less
difference between the reference and the numerical solutions.

FIGURE 5 | Flow rates Q plotted against time for two different time steps 1t

for the links-in-series test case with 1 P = −3200Pa. Results from the

forward Euler method are given in (A), results from the midpoint method in (B)

and results from the semi-implicit method in (C). The solid line represents the

reference solution.
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With the more accurate midpoint method, the coarse-stepped
numerical solution lies only marginally ahead of the reference
solution while there is no difference between the fine-stepped
numerical solution and the reference solution at the scale of
representation.

The convergence of the numerical solutions to the reference
solution upon time step refinement is quantified in Tables 2–4.
Herein, the numerical errors and estimated convergence orders
are given for the forward Euler, midpoint and semi-implicit
method, respectively. For all methods considered, the numerical
errors decrease when the time step is refined and do so at the rate
that is expected. The forward Euler and the semi-implicit method
exhibit first-order convergence, while the midpoint method
shows second-order convergence.We note that the errors in both
z and Q are similar in magnitude for the forward Euler and the
semi-implicit method. The errors obtained with the midpoint
method are smaller. The difference is one order of magnitude for
1t = 1 · 10−5 s.

In summary, we have verified that the presented time
integration methods correctly solve the pore network model
equations for the links-in-series test case and that the numerical
errors decrease upon time step refinement at the rate that is
consistent with the expected order of the methods.

TABLE 2 | Relative errors in bubble position z and flow rate Q at t = 0.00144 s

and estimated convergence orders for the links-in-series test case computed with

the forward Euler method.

1t (s) z-error z-order Q-error Q-order

4 · 10−5 1.55 · 10−2 1.33 ·10−1

2 · 10−5 7.44 · 10−3 1.06 6.41 ·10−2 1.06

1 · 10−5 3.66 · 10−3 1.02 3.15 ·10−2 1.02

5 · 10−5 1.82 · 10−3 1.01 1.57 ·10−2 1.01

TABLE 3 | Relative errors in bubble position z and flow rate Q at t = 0.00144 s

and estimated convergence orders for the links-in-series test case computed with

the midpoint method.

1t (s) z-error z-order Q-error Q-order

8 · 10−5 1.67 ·10−2 1.44 · 10−1

4 · 10−5 4.24 ·10−3 1.98 3.65 · 10−3 1.98

2 · 10−5 1.08 ·10−3 1.97 9.33 · 10−3 1.97

1 · 10−5 2.86 ·10−4 1.92 2.46 · 10−3 1.92

TABLE 4 | Relative errors in bubble position z and flow rate Q at t = 0.00144 s

and estimated convergence orders for the links-in-series test case computed with

the semi-implicit method.

1t (s) z-error z-order Q-error Q-order

4 · 10−5 1.39 ·10−2 1.18 · 10−1

2 · 10−5 6.98 ·10−3 0.99 5.97 · 10−2 0.98

1 · 10−5 3.51 ·10−3 0.99 3.01 · 10−2 0.99

5 · 10−5 1.76 ·10−3 1.00 1.5 ·10−2 1.00

9.2. Stability Tests
In this section, we demonstrate that the proposed capillary
time step criterion (23) stabilizes the forward Euler method
and the midpoint method at low flow rates. We simulated two
different cases and varied Cc. Simulations run with low Cc

turned out to be free of spurious oscillations, indicating that
the proposed criterion stabilizes the methods, while simulations
run with Cc significantly larger than unity produced oscillations,
indicating that the proposed criterion is not unnecessarily
strict.

First, consider the links-in-series test case with 1P = 0 Pa.
With no applied pressure difference, the flow is driven purely
by the imbalance of capillary forces on the non-wetting bubble.
Therefore, there should only be flow initially and the bubble
should eventually reach an equilibrium position where both
interfaces experience the same capillary force and the flow rate
is zero. Simulations were run with Ca = 0.1 and Cc equal to 2.0,
1.0, and 0.5. Results from forward Euler are shown in Figure 6A

and results from the midpoint method are shown in Figure 6B.
In both figures, the reference solution is also shown.

The forward Euler results are stable and qualitatively similar
to the reference solution with Cc = 0.5. With Cc = 1.0, there
are some oscillations initially that are dampened and eventually
vanish. From comparison with the reference solution, it is clear
that such oscillations have no origin in the model equations
and are artifacts of the numerical method. With Cc = 2.0, the
oscillations are severe and do not appear to be dampened by the
method. Instead the non-wetting bubble keeps oscillating around
its equilibrium position in a manner that is clearly unphysical.

The results from the midpoint method in Figure 6B follow
a qualitatively similar trend as those from forward Euler with
regard to stability. Results computed with Cc = 0.5 are stable
and results with Cc = 2.0 exhibit severe oscillations. Still, the
results from themidpointmethod liemuch closer to the reference
solution than the results from the forward Euler method, as
we would expect since the midpoint method is second-order.
Both methods are, however, unstable with Cc = 2.0, indicating
that the while the midpoint method has improved accuracy
over forward Euler, it is unable to take significantly longer time
steps without introducing oscillations. This is consistent with the
analysis in Appendix A, since the two methods have identical
stability regions in real space.

Next, consider the Haines jump case with Q = 10−9m3 s−1,
corresponding to Ca = 1.2 · 10−5. This case was run using the
forward Euler method, Ca = 0.1 and three different values of
Cc, equal to 4.0, 2.0, and 1.0. The required pressure difference
to drive the flow at the specified rate is shown in Figure 7A.
Figure 7B shows the pressure from Figure 7A in greater
detail.

For all three values of Cc, the main qualitative features of the
flow are captured. We observe short transient pressure drops at
t ≈ 0.08 s and t ≈ 0.20 s. These correspond to fluid redistribution
events on the upstream side of the non-wetting ganglion, where
the fluid rearranges itself to a more stable configuration with
little change to the interface positions on the downstream side.
The event at t ≈ 0.20 s is illustrated in Figure 8. The fluid
redistribution is driven by capillary forces and less external
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FIGURE 6 | Flow rate plotted against time in the link-in-series test case with 1P = 0Pa. Results from the forward Euler method (A) and the midpoint method (B) are

shown for different values of Cc. Severe numerical instabilities arise when Cc = 2.0. Results from the semi-implicit method are shown are shown in (C). These are

stable, even if the capillary time step criterion is not used. The solid black line represents a reference solution.

FIGURE 7 | Pressure difference required to drive the flow in the Haines jump case at a rate of Q = 10−9 m3 s−1, corresponding to Ca = 1.2 · 10−5. In (B), the results

from (A) are shown in greater detail. Results are computed with the forward Euler method for different values of the capillary time step restriction parameter Cc.

Numerical instabilities are seen to occur for Cc > 1.

pressure is therefore required to drive the flow during these
events.

We also observe the slow pressure build-up from t ≈

0.10 s to t ≈ 0.23 s, when the driving pressure becomes
large enough to overcome the capillary forces and cause
break-through of non-wetting fluid in the link connecting
nodes 9 and 16, and we observe the subsequent Haines jump.

The fluid configurations before and after the Haines jump
are shown in Figure 9. Notice also that non-wetting fluid at
the downstream end of the moving ganglion retracts during
the Haines jump in links near to where the break-through
occurs. This is seen e.g. in the links downstream of nodes
10 and 14. That such local imbibition occurs near the
drained pore is in agreement with the observations of
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FIGURE 8 | Fluid distribution in the Haines jump case, (A) at t = 0.19 s and (B) at t = 0.21 s, before and after the fluid redistribution event at t ≈ 0.20 s. The link radii

are not drawn to scale with the link lengths. Node indices are indicated in black.

FIGURE 9 | Fluid distribution in the Haines jump case (A) at t = 0.23 s and (B) at t = 0.27 s, before and after the Haines jump. During the jump, non-wetting fluid

breaks-through the link connecting nodes 9 and 16 and invades node 16. Also, non-wetting fluid in other links at the downstream end of the moving ganglion retracts.

This is seen e.g. in the links downstream of nodes 10 and 14. The link radii are not drawn to scale with the link lengths. Node indices are indicated in black.

Armstrong and Berg [15], and shows that the model is able
to capture the non-local nature of pore drainage events in a
numerically stable manner when the new numerical methods are
used.

As in the links-in-series case, the solution exhibits oscillations
for the values of Cc that are larger than unity. With Cc = 1.0, the
results are free from oscillations and appear stable. This indicates
that the stability criterion (23) is valid and not unnecessarily strict
also for a network configuration that is much more complex than
links in series.

Both the links-in-series case and the Haines jump case
were simulated with the semi-implicit method and produced
stable results with the advective time step criterion (22) only.
The results from the links-in-series test case are shown in

Figure 6C. For brevity, the results from the Haines jump case
are omitted here. The reader is referred to Figure 10A in
section 10, where stable results are shown for a lower flow
rate.

To summarize, both the forward Euler and midpoint
methods produce stable results for the cases considered when
the capillary time step criterion (23) is used in addition to
Equation (22) to select the time step lengths. By running
simulations with different Cc, we have observed a transition
from stable to unstable results for values of Cc near 1, in
order of magnitude. In the Haines jump case, all methods
presented are able to capture both the fast capillary-driven fluid
redistribution events, and the slow pressure build-up before a
Haines jump.
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FIGURE 10 | (A) Pressure difference required to drive the flow at Q = 10−11

m3 s−1, corresponding to Ca = 1.2 · 10−7, in the Haines jump case. Results

are plotted for the forward Euler method (solid dark blue) and the semi-implicit

method (dashed light blue). These lines coincide at the scale of representation.

The time steps lengths used by each method are plotted in (B).

10. PERFORMANCE ANALYSIS

In this section, we analyze and compare the performance
of the time integration methods. In doing so, we consider
the number of time steps and the wall clock time required
to perform stable simulations of the Haines jump case with
each of the methods at different specified flow rates Q. The
flow rates simulated were 10−7 m3 s−1, 10−8m3 s−1, 10−9m3 s−1,
10−10m3 s−1, 10−11m3 s−1, and 10−12m3 s−1. The accuracy of
the methods was studied Section 9.1, and will not be part of the
performance analysis. Instead, stable simulations are considered
sufficiently accurate.

First, we lookmore closely at the results forQ = 10−11m3 s−1,
corresponding to Ca = 1.2 · 10−7. The pressure difference
required to drive the flow is shown in Figure 10A, and the
time step lengths used are shown in Figure 10B. From the latter
Figure, we see that the semi-implicit method is able to take longer

time steps than forward Euler for most of the simulation. During
the pressure build-up phase, the difference is four orders of
magnitude. During the fast capillary-driven fluid redistribution
events, however, the length of the semi-implicit time steps drop
to the level of those used by forward Euler. This is because we
here have relatively large flow rates in some links, even though Q
is low, and the advective time step criterion (22) becomes limiting
for both the semi-implicit method and forward Euler.

It was mentioned by Armstrong and Berg [15] that any
accurate numerical simulation on the pore scale must have a
time resolution fine enough to capture the fast events. The semi-
implicit method accomplishes this by providing a highly dynamic
time resolution, which is refined during the fast events. The
method is therefore able to resolve these events, while time
resolution can be coarsened when flow is governed by the slow
externally applied flow rate, saving computational effort.

The time duration of the Haines jump pressure drops for
all except the two largest externally applied flow rates were
around 10ms. This is in qualitative agreement with the results
presented by Armstrong and Berg [15]. They found that, for
their investigated range of parameters, pores were drained on the
millisecond time scale regardless of externally applied flow rate.
However, we stress that although we consider the same fluids,
the pore network used here was approximately one order of
magnitude larger in the linear dimensions than that of Armstrong
and Berg [15].

The number of time steps and wall clock time required to
simulate the Haines jump case at different specified flow rates Q
are shown in Figures 11A,B, respectively.

For the explicit methods, both the number of time steps
and the wall time are proportional to Ca−1 at low capillary
numbers. This is because the capillary time step criterion (23)
dictates the time step at low capillary numbers (except during
fast fluid redistribution events). The criterion depends on the
fluid configuration, while it is independent of the flow rate. At
low enough flow rates, the system will pass through roughly the
same fluid configurations during the simulation, regardless of the
applied Q. The speed at which the system passes through these
configurations, however, will be inversely proportional to Q and
therefore, so will the required wall time and number of time steps.
As the forward Euler and the midpoint method are subject to the
same time step criteria, these require roughly the same number
of time steps at all considered flow rates. However, since the
midpoint method is a two-step method, the wall time it requires
is longer and approaches twice that required by the forward Euler
for long wall times.

For the semi-implicit method, on the other hand, the number
of time steps required to do the simulation becomes effectively
independent of the specified flow rate at capillary numbers
smaller than approximately 10−4. The result is that low-capillary
number simulations can be done muchmore efficiently than with
the explicit methods, in terms of wall time required to perform
stable simulations. This is seen in Figure 11B. At Ca ∼ 10−5,
the computational time needed by all three methods are similar
in magnitude. The relative benefit of using the semi-implicit
method increases at lower capillary numbers. For the lowest
capillary number considered, the difference in wall time between
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FIGURE 11 | (A) Number of time steps and (B) wall clock time required to simulate the Haines jump case at at different specified flow rates. In each simulation, the

same volume of fluid (5% of the pore volume) flows through a network. Results from the forward Euler method (squares), the midpoint method (diamonds) and the

semi-implicit method (circles) are shown. In (A,B), the black lines are inversely proportional to Ca.

FIGURE 12 | Wall clock time time required to simulate the Haines jump case

with the semi-implicit method for different network sizes. All simulations were

run at Ca ∼= 10−7 and N denotes the number of nodes in the network. The

wall time is seen to increase proportionally to N2 for the three largest networks.

the explicit methods and the semi-implicit is three orders of
magnitude.

The increased efficiency of the semi-implicit method over
explicit methods at low capillary numbers means that one can
use the semi-implicit method to perform simulations in the
low capillary number regime that are unfeasible with explicit
methods. Thus, the range of capillary numbers for which the pore
network model is a tractable modeling alternative is extended
to much lower capillary numbers. This includes e.g. simulations
of water flow in fuel cell gas diffusion layers, where capillary
numbers are can be 10−8 [33].

Finally, to study the effect of an increase in network size on
the wall time required by the semi-implicit method, the Haines
jump case was run on three scaled-up versions of the network
with N = 24 nodes considered so far, illustrated in Figure 4.

All simulations were run at Ca ∼ 10−7. In Figure 12 the wall
clock time time required is plotted against the number of nodes
N for the different networks. The wall time is seen to increase
proportionally to N2.

11. CONCLUSION

We have studied three different time integration methods for a
pore network model for immiscible two-phase flow in porous
media. Two explicit methods, the forward Euler and midpoint
methods, and a new semi-implicit method were considered. The
explicit methods have been presented and used in other works
[10, 21, 24], and were reviewed here for completeness. The
semi-implicit method was presented here for the first time, and
therefore in detail.

The explicit methods have previously suffered from numerical
instabilities at low capillary numbers. Here, a new time-step
criterion was suggested in order to stabilize them and numerical
experiments were performed demonstrating that stabilization
was achieved.

It was verified that all three methods converged to a reference
solution to a selected test case upon time step refinement. The
forward Euler and semi-implicit methods exhibited first-order
convergence and the midpoint method showed second-order
convergence.

Simulations of a single Haines jump were performed. These
showed that the all three methods were able to resolve
both pressure build-up events and fluid redistribution events,
including interfacial retraction after a Haines jump, which may
occur at vastly different time scales when capillary numbers are
low. The results from the Haines jump case were consistent
with experimental observations made by Armstrong and Berg
[15]. Fluid redistribution events cannot be properly captured
when using solution methods that have previously been used
at low capillary numbers that e.g. do not allow backflow
[18].

A performance analysis revealed that the semi-implicit
method was able to perform stable simulations with much less
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computational effort than the explicit methods at low capillary
numbers. For the case considered, the computational time
needed was approximately the same for all three methods at
Ca ∼ 10−5. At lower capillary numbers, the computational time
needed by the explicit methods increased inversely proportional
to the capillary number, while the time needed by the semi-
implicit method was effectively constant. At Ca ∼ 10−8, the
computational time needed by the semi-implicit methods was
therefore three orders of magnitude smaller than those needed
by the explicit methods.

The superior efficiency of the new semi-implicit method over
the explicit methods at low capillary numbers enables simulations
in this regime that are unfeasible with explicit methods. Thus, the
range of capillary numbers for which the pore network model
is a tractable modeling alternative is extended to much lower
capillary numbers. This includes e.g. simulations of water flow
in fuel cell gas diffusion layers, where capillary numbers are can
be 10−8 [33].

In summary, use of Aker-type pore network models were

previously restricted to relatively high capillary numbers due to

numerical instabilities in the explicit methods used to solve them.

With the new time step criterion presented here, these stability
problems are removed. However, simulations at low capillary
numbers still take a long time and the computational time
needed increases inversely proportional to the capillary number.
This problem is solved by the new semi-implicit method. With
this method, the computational time needed becomes effectively

independent of the capillary number, when capillary numbers are
low.
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Appendix A. Capillary time step criterion

In this section, we identify the cause of the numerical instabilities that explicit
methods suffer from at low flow rates when the capillary time step criterion (23) is not
obeyed. We also derive this criterion. The contents of this section are not intended
to constitute a formal proof of the stability of the presented time integration methods.
The results derived herein are based on a linearized approximation of the pore network
model. Although the application of results from a linearized analysis to general cases
is somewhat simplistic, it is useful for highlighting key difficulties, see e.g. [26] pp.
347., and for deriving results that can be found to work in practice. For evidence of the
actual stability of the time integration methods, it is therefore referred to the numerical
tests performed in Section 9.

Consider a single link i j in a network and assume that pi and p j are given. Then
the ODE (6) for the interface positions in the link is

dzi j

dt
=

qi j

(
zi j

)

ai j
. (A.1)

We further assume that the flow rate in this link is low. This means that the node
and capillary pressures almost balance at the current interface positions z∗i j, and thus

qi j

(
z∗i j

)
≈ 0. Also, we neglect the dependence of gi j on the interface positions. Now

rewrite (A.1) in terms ∆zi j = zi j − z∗i j and linearize the right hand side around z∗i j to get

d
dt

∆zi j ≈
qi j

(
z∗i j

)

ai j
+

gi j

(
z∗i j

)

ai j


∑

z∈z∗i j

∂ci j

∂z

 ∆zi j, (A.2)

≈
gi j

(
z∗i j

)

ai j


∑

z∈z∗i j

∂ci j

∂z

 ∆zi j, (A.3)

= λ∆zi j. (A.4)

We can now read off the approximate ODE eigenvalue as

λ =
gi j

(
z∗i j

)

ai j


∑

z∈z∗i j

∂ci j

∂z

 . (A.5)

Without loss of generality, we may assume that λ < 0. If this is not the case, we
interchange the indices i and j and redefine our spatial coordinate so that z→ −z to get
an ODE with negative λ. We therefore write the eigenvalue as

λ = −
gi j

(
z∗i j

)

ai j

∣∣∣∣∣∣∣∣

∑

z∈z∗i j

∂ci j

∂z

∣∣∣∣∣∣∣∣
. (A.6)

If the forward Euler method is to be stable on the linearized ODE, λ∆t must lie in
the stability region of the forward Euler method [26],

−2 < λ∆t < 0. (A.7)



This is satisfied if we choose the time step such that

∆t <
2ai j

gi j

(
z∗i j

) ∣∣∣∣
∑

z∈z∗i j

∂ci j

∂z

∣∣∣∣
. (A.8)

The criterion (23) is obtained by demanding that (A.8) be satisfied for all links in the
network. If the advective criterion (22) is used by itself and the link flow rates are
low, then (A.8) is not necessarily satisfied for all links and we must expect numerical
instabilities from the forward Euler method.

As the midpoint method has the same real-space stability region as the forward
Euler method (A.7), the above reasoning and the criterion (23) can be applied for the
midpoint method also.

The backward Euler method, on the other hand, is stable if [26]

λ∆t < 0, (A.9)

and, because λ is negative, it is stable with any positive ∆t for this linearized problem.

Appendix B. Jacobian matrix for the semi-implicit method

In order to solve (35) using the numerical method described in Section 7, it is
necessary to have the Jacobian matrix of F. This matrix may be written as

∂Fi

∂p(n+1)
j

= δi j

∑

k

∂q(n+1)
ik

∂p(n+1)
i

+
{
1 − δi j

} ∂q(n+1)
i j

∂p(n+1)
j

. (B.1)

The derivative of q(n+1)
ik with respect to p(n+1)

i can be found by differentiation of (32)
with respect to p(n+1)

i and application of the chain rule,

∂q(n+1)
i j

∂p(n+1)
i

= −g(n)
i j + g(n)

i j

∂c(n+1)
i j

∂p(n+1)
i

, (B.2)

= −g(n)
i j + g(n)

i j

dc(n+1)
i j

dq(n+1)
i j

∂q(n+1)
i j

∂p(n+1)
i

. (B.3)

This can be solved for the desired derivative to yield

∂q(n+1)
i j

∂p(n+1)
i

= −
g(n)

i j

1 − g(n)
i j

dc(n+1)
i j

dq(n+1)
i j

. (B.4)

Herein, the derivative of capillary pressure with respect to flow rate is

dc(n+1)
i j

dq(n+1)
i j

=
2σwn

ri j

∑

z∈z(n+1)
i j

(±1) sin
(
2πχi j (z)

) dχi j

dz
2π∆t(n)

ai j
, (B.5)



for the specific choice of capillary pressure model given by (9).
As the pore network model is linear in the node pressures, it is intuitive that the

effect on the link flow rate of increasing the pressure in the node at one end of a link is
the same as decreasing it, by the same amount, in the node at the other end. Thus we
may write

∂q(n+1)
i j

∂p(n+1)
j

= −
∂q(n+1)

i j

∂p(n+1)
i

. (B.6)

This equation may be more formally derived by differentiating (32) with respect to
p(n+1)

j to get

∂q(n+1)
i j

∂p(n+1)
j

= g(n)
i j + g(n)

i j

∂c(n+1)
i j

∂p(n+1)
j

, (B.7)

= g(n)
i j + g(n)

i j

dc(n+1)
i j

dq(n+1)
i j

∂q(n+1)
i j

∂p(n+1)
j

, (B.8)

and, solving for the desired derivative,

∂q(n+1)
i j

∂p(n+1)
j

=
g(n)

i j

1 − g(n)
i j

dc(n+1)
i j

dq(n+1)
i j

. (B.9)

Comparison of (B.4) and (B.9) gives the intuitive result (B.6).
The addition of Fm (40) to the non-linear system for the specified flow rate bound-

ary condition, introduces some new terms in the Jacobian matrix of F. The derivatives
of Fm with respect to the node pressures are

∂Fm

∂p(n+1)
k

=
∑

i j∈Ω


δki

∂q(n+1)
k j

∂p(n+1)
k

+ δk j
∂q(n+1)

ik

∂p(n+1)
k


, (B.10)

where link flow rate derivatives are calculated using (B.4) and (B.6) and the derivative
with respect to ∆P is

∂Fm

∂ (∆P)
= −

∑

i j∈Ω

g(n)
i j

1 − g(n)
i j

dc(n+1)
i j

dq(n+1)
i j

. (B.11)

The additional terms corresponding to the derivatives with respect to ∆P of the mass
balance equations for each node k with unknown pressures are

∂Fk

∂ (∆P)
=

∑

i j∈Ω

{
δk j − δki

} g(n)
i j

1 − g(n)
i j

dc(n+1)
i j

dq(n+1)
i j

. (B.12)
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Flow of immiscible fluids in porous media at high capillary numbers may be characterized

by an effective viscosity. We demonstrate that the effective viscosity is well-described

by the Lichtenecker-Rother equation. Depending on the pore geometry, wettability, and

viscosity of the fluids, the exponent α in this equation can have different values. We

find α = 1 when fluids are well-mixed with small bubbles, α = 0.6 in two- and 0.5 in

three-dimensional systems when there is less mixing with the appearance of big bubbles,

and α = −0.5 when lubrication layers are formed along the pore walls. Our arguments

are based on analytical and numerical methods.

Keywords: porous media, two-phase flow, effective viscosity, pore-network modeling, lattice-boltzman method

(LBM)

1. INTRODUCTION

The hydrodynamics of real systems very often happens at small scale, such as in a porous medium
[1]. This is the case in a wide variety of biological, geological, and technological systems where there
are often several immiscible fluids present. The challenge of describing such systems in a unified
way, however, is largely unsolved. An important reason for this is the lack of a length scale above
which the system may be averaged. Such a length scale gives rise to the representative elementary
volume (REV) which is the conceptual basis for conventional theories that seek to up-scale the
description of flow in porousmedia. However, since the fluid structures in question are often fractal,
the REV average of intensive quantities, such as saturations, will depend on the size of the REV.

An important and rather general exception where this is not a problem, is the case of steady
state flow [2, 3]. Steady state flow is characterized by potentially strong fluctuations at the pore
scale, but with steady averages at the REV scale. Steady state configurations have much in common
with ensembles in equilibrium statistical mechanics. Steady state flow implicitly assumed in
conventional descriptions of porous media flows that take the existence of a REV for granted.

When the flow in question contains immiscible phases that are strongly forced in the sense
that viscous forces dominate capillary forces, the description of the steady state simplifies to the
description of a single fluid. This is the subject of the present work, and we show how the emergent
description is manifestly incompatible with the conventional theories that have been in use for
more than 80 years, most notably perhaps by the petroleum industry.

2. THEORY

The first and still leading theory describing immiscible two-phase flow in porous media is that of
Wyckoff and Botset [4]. They based their theory of relative permeability on the idea that when the
porous medium is seen from the viewpoint of one of the fluids, the pore volume accessible to this



Sinha et al. Rheology of High-Capillary Number Flow

fluid would be the pore volume of the porous medium minus
the pore volume occupied by the other fluid. This reduces
the effective permeability seen by either fluid and the relative
reduction factor is the relative permeability. In order to account
for the surface tension between the immiscible fluids in the pores,
the concept of capillary pressure was introduced [5]. The central
equations in relative permeability theory are

Evj = −
K

µj
kr,j(Sj) E∇Pj , (1)

where the subscript j either refers to the wetting fluid (j = w)
or the non-wetting fluid (j = n). Evw and Evn are superficial
velocities of the two fluids, defined as the volumetric flow rates
of each fluid entering a REV divided by the area of entry. K
is the permeability of the porous medium, µw and µn are the
wetting and non-wetting viscosities. kr,w(Sw) and kr,n(Sw) are the
relative permeabilities and they are both functions of the wetting
saturation Sw only. The corresponding non-wetting saturation
is Sn = 1 − Sw. The wetting and non-wetting pressure fields
Pw and Pn are related through the capillary pressure function
Pc(Sw) = Pn−Pw.We define a total superficial velocity Ev given by,

Ev = Evw + Evn . (2)

Ev is defined as the volumetric flow rate of all fluids entering the
REV divided by the area of entry.

Let us now consider the case when the flow rates are so large
that the capillary pressure may be ignored. Hence, we have Pn =

Pw = P and we may combine the relative permeability Equation
(1) with Equation (2) to find

Ev = −K

[

kr,w(Sw)

µw
+

kr,n(Sn)

µn

]

E∇P = −
K

µeff(Sw)
E∇P , (3)

where we have defined an effective viscosity µeff as

1

µeff(Sw)
=

kr,w(Sw)

µw
+

kr,n(Sn)

µn
. (4)

There have been many suggestions as to what functional form
the relative permeabilities kr,w(Sw) and kr,n(Sw) take. The most
common choice is to use those of Brooks and Corey assuming
kr,w(Sw) = k0r,wS

nw
w and kr,n(Sw) = S

nn
n where 0 ≤ k0r,w ≤ 1

and the Corey exponents nw and nn being typically in the range
2–6 [6, 7].

Equation (4) is problematic. When µw = µn, a dependency
of µeff on the saturation is predicted when nw and/or nn are
larger than 1when using the Brook–Corey relative permeabilities.
Other functional forms for the relative permeabilities give similar
dependencies. Clearly, such behavior is not physical.

McAdams et al. [8] proposed an effective viscosity for two-
phase flow by assuming a saturation-weighted harmonic average

1

µeff
=

Sw

µw
+

Sn

µn
. (5)

Cicchitti et al. [9] proposed an effective viscosity based on the
saturation-weighted arithmetic average

µeff = µwSw + µnSn . (6)

Both of these expressions become saturation-independent when
µw = µn as they should. There are several other proposals for the
functional form of the effective viscosityµeff in the literature [10].

A one-dimensional porous medium, e.g., a capillary tube
where the two fluids move as bubbles in series [11] constitutes
a series coupling and the arithmetic average (6) is appropriate.
If the capillary tubes forms a parallel bundle, each filled with
either only the wetting or the non-wetting fluid, we have a
parallel coupled system and Equation (5) is appropriate. We now
consider a capillary bundle, where each capillary i in the bundle is
filled with a bubble train with a corresponding wetting saturation
Sw,i. The probability distribution for finding a capillary having
this saturation, Sw,i, is p(Sw,i) so that

Sw =

∫ 1

0
dS p(S) S . (7)

The capillary bundle is essentially a parallel combination of tubes,
each filled with a series of bubbles. The effective viscosity for the
capillary bundle is therefore given by,

1

µeff
=

∫ 1

0

p(S) dS

µwS+ µn(1− S)
. (8)

As a model for the distribution p(Sw,i), we may take a Gaussian
with a narrow width σ centered around Sw: p(Sw,i) =

exp[−(Sw,i − Sw)
2/2σ 2]/

√
2πσ 2. Using this distribution for

saturation we can integrate Equation (8) using a saddle point
approximation and we find to order σ 2 that,

µeff = µwSw + µnSn −
(µn − µw)

2

µwSw + µnSn
σ 2 . (9)

We now consider a wide distribution of saturations in the
capillaries. Considering a uniform distribution for p(Sw,i) in
Equation (8) rather than a Gaussian, we find for an average
wetting saturation Sw = 1/2,

µeff =

∣

∣

∣

∣

∣

∣

µw − µn

ln
(

µw
µn

)

∣

∣

∣

∣

∣

∣

. (10)

The functional form of the latter equation is very different from
the one for the Gaussian distribution, Equation (9).

For the extreme case when the capillaries are filled completely
by either the wetting or the non-wetting fluids given by p(Sw,i) =
Swδ(Sw,i− 1)+ Snδ(Sw,i), we find the effective viscosity according
to Equation (5), as already pointed out. Wemay study this either-
or situation in a more complex network, namely a square lattice.
We assume that the wetting saturation is set to Sw = 1/2, which
defines the bond percolation threshold and that the links are
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randomly filled with either fluid. We may then use Straley’s exact
result [12] leading to an effective viscosity

µeff =
√

µwµn . (11)

We may calculate the effective viscosity of a regular lattice by
using Kirkpatrick’s mean field theory [13]. The mobility between
nodes i and j is Kij/µij where Kij is the permeability and µij is the
effective viscosity of the link given byµij = µwSw,ij+µnSn,ij. Here
Sw,ij and Sn,ij are the local wetting and non-wetting saturations in
the links between the nodes. This form of µij is due to the fluids
being connected in series in one link. Kirkpatrick’s theory is based
on the idea that the network with link mobilities Kij/µij may be
replaced by a network with a uniform mobility K/µeff such that
the total network mobility remains the same. In that case, the
value of K/µeff is given by [13]

〈 K
µeff

−
Kij

µij

Kij

µij
+

[(

z
2

)

− 1
]

K
µeff

〉

= 0, (12)

where z is the coordination number of the lattice.
Considering the wetting saturation distribution p(Sw,ij)
fulfilling Equation (7), the ensemble average is given by,

〈...〉 =
∫

∞

0 dKijP(Kij)
∫ 1
0 dSw,ijp(Sw,ij)..., where P(Kij) is the

permeability distribution. We assume a square lattice so that
z = 4. By assuming that the saturation distribution is a narrowly
peaked Gaussian with width σ , we may again use the saddle
point approximation to get,

µeff = µwSw + µnSn +O
(

|µn − µw|σ
2
)

. (13)

This is similar to that found for the parallel capillary
bundle, Equation (9).

From the systems giving rise to Equations (9), (10), (11), and
(13), the form of µeff is not clear. Does it depend on the details of
the porousmedium or is there a general form?Wemay generalize
Equations (5) and (6) by writing them in the form

µα
eff = µα

wSw + µα
nSn, (14)

where α = −1 for parallel coupling and α = +1 for
series coupling. Equation (14) has been used for estimating
the effective electrical permittivity of heterogeneous conductors
and in connection with permeability homogenization in porous
media and is known as the Lichtenecker–Rother equation [14–
17]. The effective viscosity in (11) corresponds to α → 0, whereas
Equations (9) and (13) suggest α = 1. Only Equation (10) does
not fit this form.

In order to test Equation (14) in case of a porous medium, we
now present two numerical approaches in the following: dynamic
pore-network modeling and lattice Boltzmann simulations.

3. PORE-NETWORK MODELING

The dynamic pore-network model used here has successfully
explained several experimental and theoretical results for

both the transient and steady-state two-phase flow in porous
media over decades [18–21]. During the transients, the
model shows the different regimes of two-phase flow, namely
the capillary fingering, viscous fingering, and the stable
displacement pattern while changing the capillary number
and viscosity ratio [18]. In the steady state, the crossover
from linear Darcy regime to a quadratic regime that was
observed experimentally have also been studied with this
pore-network model [19, 22]. The model have also shown
the experimental observation of history independence in
the steady-state two-phase flow at higher capillary numbers
[20]. Recently, relations between steady-state seepage
velocities in porous media was obtained analytically by
introducing of a new velocity function, the co-moving velocity.
These relations were also established numerically with this
model [23].

In the model, the porous medium is represented by a network
of links, connected at nodes. In the links, two immiscible fluids,
separated by interfaces, are transported. We consider both two-
dimensional (2D) and three-dimensional (3D) networks for our
simulations. For 2D, regular square and honeycomb networks
with disordered link radii are used, whereas for 3D, reconstructed
pore networks extracted from real samples are used [19]. The flow
rate inside a link between two neighboring nodes i and j with
respective pressures pi and pj obeys

qij = −
gij

lij

(

pj − pi
)

, (15)

where lij is the link length and gij is the link mobility which
is inversely proportional to the link viscosity given by µij =

µwSw,ij+µnSn,ij [24, 25]. There is no contribution to the pressure
from interfaces as the surface tension (γ ) is zero. This sets the
capillary number, defined as the ratio of viscous to capillary forces
given by Ca = uµr/γ , to infinity. Here u is the Darcy velocity
and µr is the viscosity of the more viscous fluid. Simulations are
performed with a constant global pressure drop 1P across the
network and the local pressures (pi) are determined by solving
the Kirchhoff equations. Flow rates qij through each link are then
calculated using Equation (15) and the interfaces are moved with
small time steps.

A crucial point here is how to distribute the two fluids after
they mix at the nodes. Whether the system will allow high or
low fragmentation of the fluids will depend on the geometry
and nature of the pore space [26, 27]. This will have impact on
the size of the bubbles and the number of interfaces inside a
link. As small bubbles of either fluid may not necessarily imply
a large number of interfaces or vice versa, we implemented two
different algorithms for the interface dynamics. In the bubble-
controlled algorithm, we decide the minimum size of a bubble
before entering a link and in the interface-controlled algorithmwe
decide the maximum number of interfaces that can exist in a link.
We considered two different possibilities for each algorithm: for
the bubble-controlled case, (A) small bubbles are allowed, with
minimum sizes bmin = 0.02rij, (B) bubbles with sizes at least
equal to the respective pore radii (bmin = rij) are allowed. For the
interface-controlled algorithm, we study two cases, (C) one with
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maximum four and (D) another with maximum two interfaces
per link. Our model does not include lubrication layers, and the
simulations therefore cannot capture the wetting film effects at
the pore walls. More details of the interface algorithm is provided
in the Supplementary Material.

4. LATTICE BOLTZMANN SIMULATIONS

We then turn to lattice Boltzmann simulations which have no
explicit parameters for the bubble size or for the number of
interfaces and permits arbitrary shapes of the fluid domains
within the link. The lattice Boltzmann model applied here is
based on the original triangular lattice and the interaction rules
first introduced by Gunstensen et al. [28]. It models the Navier–
Stokes equation for two immiscible fluids within a 2D pore
geometry of rectangular pipes of equal width, and in the pores
the fluids organize only according to the flow and geometry of the
system. The two fluids are represented by different colors, here
red (more viscous) and blue (less viscous), and their respective
densities ρr and ρb define a local color gradient. The surface
tension is introduced by the application of two steps, first a
perturbation of the mass distribution that is proportional to the
magnitude of the color gradient, thus increasing the mass in the
directions transverse to a fluid-fluid interface, and second, a re-
coloring step that sends red toward red and blue toward blue.
Both steps conserve the local momentum, the first step creates
the change in the stress tensor which is responsible for the surface
tension, and the last step causes an anti-diffusive flux of both
phases. The solid obstacles are represented by the bounce-back
rule, which ensures the hydrodynamic no-slip condition and the
wetting property is controlled by coloring the solid obstacles with
the same saturations as in the bulk fluid. The aim is to simulate
flows that are not governed by surface tension effects and this
wetting rule creates a relatively neutral wetting property that does
not affect the flow as much as full wetting of one phase. The
model also allows for tuning of the surface tension γ, so that
the capillary number given by Ca =

uµr
γ
, is set to high values.

Here, u is the overall Darcy velocity and µr is the viscosity of
the red fluid with higher viscosity. In all the simulations Ca >

9. For the more viscous wetting fluid, the wetting saturation
Sw = ρr/(ρr + ρb) controls the viscosity according to the
local rule

µ =
[

Sw +M(1− Sw)
]

µr , (16)

where M = µb/µr here and the pressure gradient is
implemented as a constant body force in the diagonal
direction point to upper right corner of the simulation
domain. The body force is introduced as a constant
momentum input at every time step and at every
lattice site.

Initially, the flow velocity is zero everywhere and ρr and ρb
initialized according to the specified value of Sw but with a small
random component added. This randomness then triggers an
initial phase separation which is responsible for the subsequent
distribution of bubbles. Unlike the network modeling, the
wetting effects of the pore walls are included here [29]. For the

neutral wetting condition and for more viscous wetting fluid,
we choose a rectangular pore network to emulate the network
model. For the case of complete wetting with less viscous wetting
fluid, the wetting layers are important and we therefore avoid the
singular sharp corners. The model is implemented on a 128×128
biperiodic lattice with the pressure gradient implemented as a
constant body force in the diagonal direction pointing to the
upper right corner.

5. RESULTS AND DISCUSSION

We perform simulations under constant external pressure drop
1P and the systems are evolved to the steady state. The results
here are in the high capillary number regime and therefore
do not depend on the history or the initial preparation of the
system [20]. In the steady state, we compare the results with
(µeff/µw)

α = Sw +MαSn (Equation 14), whereM = µn/µw. In
the network model, we measure the total flow rateQ as a function
of the saturations Sw. As Q = −

KA
Lµeff

1P, we measure µeff/µw

by calculating Qw/Q where Qw is the total flow rate at Sw = 1.
In the lattice Boltzmann simulations, the µeff is calculated by
measuring the effective permeability, obtained by measuring the
total flux Q through the system and dividing by the forcing or
average pressure gradient. We chose M = 2, 5, and 10 here.
Higher values of M increase the computational cost and do not
change the conclusions of this study for the network model with
γ = 0. Simulations with M and 1/M produce the same results
due to symmetric bubble rules and the absence of film flow in
the network model. Depending on the pore geometry, wettability
and viscosities of the fluids, we find three flow regimes. All can
be characterized by Equation (14) with three different values of
α. When smaller bubbles (model A) or more interfaces (model
C) are allowed in the network model, we find α = 1 for both
2D and 3D systems as shown in Figures 1, 2, respectively were
the fluids are well mixed. This regime is also observed in the
lattice Boltzmann simulations for neutral wetting properties, or
when the wetting fluid is more viscous. This is shown in Figure 3,
where the straight lines confirm α = 1 in Equation (14). Here the
continuous merging and break-up of droplets give rise to a flow
where each pore channel contains a sequence of individual drops.
The fluids effectively behave as if they are arranged in series, and
on the average the life-time of the droplets does not have any
impact on the up-scaled behavior.

When we allow only larger bubbles with the size of the order
of the pore size (model B) or few interfaces (model D) in the
network model, we find α = 0.6 for 2D and α = 0.5 for 3D
that are consistent with Equation (14). Results are plotted in
Figures 4, 5, respectively. Here the steady-state fluid distribution
shows less mixing and larger clusters compared to Figure 1. This
also affects the fractional flow, making the less viscous fluid to
flow with higher velocity (Supplementary Material). So far, we
could not find a set of suitable parameters or pore geometry for
the lattice Boltzmann simulations that can reproduce this regime
of flow.

When the wetting fluid is made less viscous in the lattice
Boltzmann simulations, it produces lubrication layers of the

Frontiers in Physics | www.frontiersin.org 4 May 2019 | Volume 7 | Article 65



Sinha et al. Rheology of High-Capillary Number Flow

FIGURE 1 | (A) Plot of (µeff/µw)
α obtained from 2D network simulations (symbols) with small bubbles (A) or with many interfaces (C). Results are consistent with

Equation (14) (straight lines) with α = 1. A steady-state snapshot for model C is shown in (B), where gray and blue are the wetting and non-wetting fluids respectively.

Here the wetting fluid is more viscous and the results for less viscous wetting fluid are the same for the network model due to the symmetry in the interface rules and

the lack of film flow mechanism in the model.

FIGURE 2 | (A) Plot of (µeff/µw)
α for 3D networks reconstructed from Berea sandstone and sandpack samples for the simulations with four interfaces (C). Results

are consistent with Equation (14) (straight lines) with α = 1, similar to the 2D networks. A snapshot of fluids in Berea sandstone in the steady state for model C is

shown in (B), where blue and red are the wetting and non-wetting fluids respectively.

FIGURE 3 | (A) Plot of (µeff/µw)
α obtained from lattice Boltzmann simulations with more viscous wetting fluid which shows α = 1 when compared with Equation (14).

(B) Typical steady-state distribution of the fluids, where the blue and red are the more viscous (wetting) and less-viscous (non-wetting) fluids, respectively.

wetting fluid along the pore walls. This introduces a third
regime with a negative value of α. The results are shown
in Figure 6 which indicate a robust α = −0.5 behavior
over a range of M values. This means that, due to the

lubrication layers flow comes close to the parallel-coupling
scenario, which is described by α = −1, but there is still
a significant difference. The flow paths that appear in parallel
are not stationary as they would be in a parallel coupled
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FIGURE 4 | (A) Plot of (µeff/µw)
α obtained from network simulations with larger bubbles (B) or few interfaces (D) which shows α = 0.6 for 2D. (B) Typical

steady-state snapshot for model D, showing less mixing of fluids and larger clusters compared to Figure 1B.

FIGURE 5 | (A) Plot of (µeff/µw)
α for 3D networks reconstructed from Berea sandstone and sandpack samples for the simulations with two interfaces (D). Results are

consistent with Equation (14) (straight lines) with α = 0.5. A steady-state snapshot of Berea sandstone for model D is shown in (B), where blue and red are the wetting

and non-wetting fluids respectively.

FIGURE 6 | (A) Plot of (µeff/µw)
α from lattice Boltzmann simulations with less viscous wetting fluid where we find α = −0.5. The steady state is dominated by

lubrication layers of less viscous blue fluid as seen in (B). The end points close to Sw = 1 fall a little below 1, which could have several explanations, one being finite

Reynolds numbers, an effect that is likely to increase with increasing M the way the simulations are done.

system, they break up and merge continuously. We could
not study this regime with our network model as the model
does not contain film flow. It will be interesting to study
this in the future with a network model that includes the
film flow [30].

6. CONCLUSION

In summary, we show that immiscible two-phase flow in porous
media at high capillary number limit can be characterized by
measuring the effective viscosity in the steady state. We find that

Frontiers in Physics | www.frontiersin.org 6 May 2019 | Volume 7 | Article 65
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the Lichtenecker–Rother Equation (14) describes the effective
viscosity well for different flow configurations. We identified
three flow regimes characterized by the exponent α, which
depend on the organization of the two fluids in the pores. When
the fluids are well mixed, we find a result which is consistent
with the Kirkpatrick’s mean field theory [13] with α = 1. This
is observed in both the network model and lattice Boltzmann
simulations, by allowing small bubbles or more interfaces in the
network model, and with the neutral wetting condition or more
viscous wetting fluid in the lattice Boltzmann simulations. When
only larger bubbles or fewer interfaces are allowed, we find the
second regime with α = 0.6 in 2D and α = 0.5 in 3D with
the network model. Third, when the wetting fluid is less viscous,
lubrication layers are formed at the pore walls, and we find α =

−0.5 from the lattice Boltzmann simulations.
Finally, we like to point out that in the network model, we

have varied the minimum bubble size over the range 0.02rij to
0.5rij finding α decreasing gradually from 1 to 0.6. Taking into
account that rij ≤ 0.4 l, where l is the link length, this shift of α

from 1 to 0.6 occurs over the narrow range from 0.008 l to 0.2 l,
indicating that we see a crossover. In case of the lattice Boltzmann
simulation there is no gradual transition with different wetting
properties from α = 1 to α = −0.5. The former is observed in
the neutrally wetting case or in the case when the viscous fluid
is the completely wetting. The latter is observed in the case of
complete wetting of the less viscous fluid.
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Abstract
We perform steady-state simulations with a dynamic pore network model, corresponding 
to a large span in viscosity ratios and capillary numbers. From these simulations, dimen-
sionless steady-state time-averaged quantities such as relative permeabilities, residual satu-
rations, mobility ratios and fractional flows are computed. These quantities are found to 
depend on three dimensionless variables, the wetting fluid saturation, the viscosity ratio 
and a dimensionless pressure gradient. Relative permeabilities and residual saturations 
show many of the same qualitative features observed in other experimental and modeling 
studies. The relative permeabilities do not approach straight lines at high capillary numbers 
for viscosity ratios different from 1. Our conclusion is that this is because the fluids are not 
in the highly miscible near-critical region. Instead they have a viscosity disparity and inter-
mix rather than forming decoupled, similar flow channels. Ratios of average mobility to 
their high capillary number limit values are also considered. Roughly, these vary between 
0 and 1, although values larger than 1 are also observed. For a given saturation, the mobili-
ties are not always monotonically increasing with the pressure gradient. While increasing 
the pressure gradient mobilizes more fluid and activates more flow paths, when the mobi-
lized fluid is more viscous, a reduction in average mobility may occur.

Keywords  Porous media · Two-phase flow · Steady-state · Pore network model

1  Introduction

A number of different modeling approaches have been applied to study two-phase flow 
in porous media. These include direct numerical simulations (DNS), which employ, 
e.g., the volume-of-fluid method (Raeini et  al. 2012) or the level-set method (Jettes-
tuen et al. 2013; Gjennestad and Munkejord 2015) to keep track of the fluid interfaces, 
lattice-Boltzmann methods (Ramstad et al. 2012; Armstrong et al. 2016) and pore net-
work models. Recently, several of these methods were compared in a benchmark study 
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by Zhao et al. (2019), where participants were asked to reproduce experimentally stud-
ied transient fluid displacement processes at different capillary numbers and wettability 
conditions. This benchmark study, and the bulk of works in the literature, focuses on 
transient processes. Less attention has been given to pore-scale modeling and experi-
ments on steady-state flow. In steady state, fluids may flow and interfaces move on the 
pore scale. However, the total flow rates and average pressure drop for a sufficiently 
large representative elementary volume fluctuate around well-defined time-averaged 
values (Erpelding et al. 2013; Rücker et al. 2015; Hansen et al. 2018). Our focus here is 
on such states and their corresponding time-averaged steady-state properties.

On the modeling side, part of the explanation for the limited focus on steady state is 
probably that steady-state simulations require longer simulation times compared to tran-
sient processes. While breakthrough of the invading phase typically happens for simula-
tion times corresponding to much less than one pore volume of flow in transient cases, 
several pore volumes may be required to obtain decent time averages of steady-state 
quantities.

In spite of this, some studies on steady-state two-phase flow have been carried out. 
Avraam and Payatakes (1995) performed quasi-2D micro-model experiments, varied the 
capillary number, the viscosity ratio and the flow rate ratio, and found four different flow 
regimes. They also studied relative permeabilities. Steady-state simulations with a pore 
network model of the Aker type (Aker et al. 1998b) have also been performed by Knudsen 
et al. (2002), Knudsen and Hansen (2002), Ramstad and Hansen (2006), Tørå et al. (2009), 
Sinha et al. (2017) and Sinha et al. (2019b). In particular, Knudsen et al. (2002) performed 
simulations with equal viscosities and one value for the interfacial tension, and studied the 
effect of changing total flow rate on fractional flow and relative permeabilities. Results for 
equal viscosities are interesting and applicable in some cases, e.g., for oil and water (Oak 
et al. 1990). For other applications, e.g., sequestration of supercritical CO2 (Bennion and 
Bachu 2005) and gas–liquid flows such as in fuel cells, viscosity contrast should be taken 
into account.

The aim of this work is to shed light on how different steady-state flow properties behave 
as pressure gradients are increased from values corresponding to moderate capillary num-
bers around 10−3–10−4 to the high capillary number limit. Furthermore, we aim to assess 
the impact of viscosity ratio in this context. To this end, we perform steady-state simula-
tions using a dynamic pore network model of the Aker type (Aker et al. 1998b; Sinha et al. 
2019a) to represent a block of porous material. In each simulation, the time evolution of 
the fluid configurations in the network is resolved, yielding a time series of total flow rates 
and average pressure drops for the entire network. These time series are subsequently time-
averaged to obtain steady-state values that are used to calculate quantities such as relative 
permeabilities, fractional flow and capillary number. We give results from more than 6000 
such steady-state simulations that cover a large range of viscosity ratios and capillary num-
bers. To aid further research, the simulation data are published along with this article.

In the simulations, we utilize a new time step criterion in the numerical solution method 
(Gjennestad et  al. 2018) to perform numerically stable simulations at low and moderate 
capillary numbers. The new methodology has an important effect on capillary numbers 
below 10−3 . In addition, we make extensive use of results from a recent study of the high 
capillary number regime (Sinha et al. 2019b) in the analysis of the results.

The discussion is restricted to capillary numbers above 10−4 , where history-dependence 
of the steady-state quantities is negligible (Knudsen et al. 2002; Erpelding et al. 2013). At 
lower capillary numbers, steady-state quantities are harder to define and calculate. To allow 
for a discussion which is as general as possible, and which allows for comparison with 
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other studies of slightly different systems, we focus on dimensionless steady-state quanti-
ties, such as relative permeabilities, mobility ratios and fractional flow.1

The chosen pore network model is of the Aker type (Aker et  al. 1998b). It has sev-
eral properties that are advantageous when computing steady-state quantities. First, it is 
dynamic and thus captures the effects of both viscous and capillary forces. Second, it can 
be solved in a numerically stable manner at arbitrarily low capillary numbers (Gjennestad 
et al. 2018). Third, it is possible to apply periodic boundary conditions, keeping the satura-
tion constant and eliminating effects of saturation gradients. Furthermore, it is computa-
tionally cheap, making the study of large enough systems over long enough times possible.

In spite of these advantages, however, the model also has some limitations. In particular, 
film flow is not accounted for. An extension of the model that includes film flow has been 
developed (Tørå et al. 2012), but it is computationally more demanding than the present 
model and is therefore not used here. While film flow effects could, in principle, also be 
captured, e.g., by a DNS or lattice-Boltzmann simulations, very high spatial resolution is 
required to resolve such films properly (Zhao et al. 2019). This makes such an approach 
prohibitively expensive for steady-state calculations, especially when a large number of 
them are desired.

The rest of the paper is structured as follows. In Sect. 2, we describe the system under 
consideration, define some important steady-state flow properties and discuss the high cap-
illary number limit. In Sect. 3, we describe the pore network model used, the numerical 
methods used to solve it and the procedures used to obtain steady-state time averages in 
some detail. Results are presented and discussed in Sect. 4, and concluding remarks are 
given in Sect. 5.

2 � Steady‑State Flow

In this section, we define the system under study, some quantities that will be used to 
describe steady-state flow and discuss the high capillary number limit.

The system we consider is a block of porous material, as illustrated in Fig.  1. It has 
cross-sectional area A and thickness Δx in the direction of flow (the x-direction). The vol-
ume of the block is

The pore space volume in the block is Vp , so that the porosity is

The pore space is occupied by two fluids, where one is more wetting toward the pore walls 
than the other. In the following, we will call the more wetting fluid wetting ( w ) and the less 
wetting fluid non-wetting ( n ). The fluids are assumed to be incompressible and Sw is the 
wetting fluid saturation, i.e., the fraction of the pore space volume occupied by the wetting 
fluid.

(1)V = AΔx.

(2)� = Vp∕V .

1  These quantities are used to provide a familiar framework of dimensionless quantities in which results 
are presented and discussed. However, other quantities could also, in principle, be used to convey the same 
information. One example is the velocities presented by Hansen et al. (2018).
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A pressure difference, either constant or fluctuating, exists across the porous block. This 
causes the wetting and non-wetting fluids to flow at time-dependent rates Q̃w(t) and Q̃n(t) , 
respectively. In a steady-state Q̃w and Q̃n may fluctuate, but do so around a well-defined 
time-averaged value (Erpelding et al. 2013; Rücker et al. 2015; Hansen et al. 2018). We 
shall be most concerned with such time averages, which we call the steady-state flow prop-
erties. The steady-state wetting flow rate is defined as

where 
[
t1, t2

]
 is the time period of averaging. The steady-state non-wetting flow rate and the 

steady-state pressure difference Δp are defined analogously.2 The steady-state total flow 
rate is,

and the fractional flow of wetting fluid is

The volume-averaged fluid velocity in the pore space, the seepage velocity, is

and the average mobility is

In the literature, description of two-phase flow in porous media is typically done in terms 
of the relative permeabilities �r

w
 and �r

n
 . These are related to the steady-state properties Qw , 

Qn and Δp by

(3)Qw =
1

t2 − t1 ∫
t2

t1

Q̃w(t) dt,

(4)Q = Qw + Qn,

(5)Fw = Qw∕Q.

(6)v = Q∕�A,

(7)m = −v∕(Δp∕Δx).

Fig. 1   Illustration of the system 
under consideration, a block 
of porous material. The porous 
matrix is shown in gray, pores 
occupied by the wetting fluid 
in white and pores filled by the 
non-wetting fluid in blue. The 
block has thickness Δx in the 
x-direction and cross-sectional 
area A 

∆x

A

x

2  We use tildes to distinguish the time time-dependent, possibly fluctuating Q̃ , Q̃
w
 , Q̃

n
 and Δp̃ from the 

time-averaged or constant Q, Q
w
 , Q

n
 and Δp.
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Herein, �w and �n are the viscosities of the wetting and non-wetting fluids, respectively, 
and � is the absolute permeability of the porous medium.

When measuring relative permeabilities (Oak et  al. 1990; Bennion and Bachu 2005) 
and when using relative permeability models to do continuum-scale calculations, it is 
often only their dependence on Sw which is considered. It is, however, well established 
that variation with viscosity ratio M = �n∕�w and capillary number Ca cannot, in general, 
be neglected (Avraam and Payatakes 1995; Bardon and Longeron 1980; Datta et al. 2014; 
Armstrong et al. 2016; Guo et al. 2015).

2.1 � The High Capillary Number Limit

Even though the relative permeabilities are dependent on capillary number, there seems 
to be general agreement in the literature that this dependence disappears at high capillary 
numbers (Bardon and Longeron 1980; Avraam and Payatakes 1995; Whitson et al. 2003; 
Ramstad et  al. 2012; Schechter and Haynes 1992; Sinha et  al. 2019b). We call this the 
high-Ca limit.

In particular, Sinha et al. (2019b) studied the high-Ca limit obtained when the two flu-
ids are driven through the porous medium by a large pressure gradient while retaining 
their immiscibility. For a pore network model and 2D lattice-Boltzmann simulations, they 
showed that the fluid velocity in this limit could be described by

with an effective viscosity

The exponent � depended on the degree of intermixing of the fluids, induced by the flow 
through the porous medium. Intermixing here means that the fluids flow as many small 
disconnected structures when well intermixed, while they flow as larger structures when 
less well intermixed. For highly intermixed flows containing small droplets, it was found 
that � = 1 , while for less well intermixed flows � was shown to decrease. For a flow regime 
with lubrication layers, where the two fluids flowed in parallel through the pores, � = −0.5 
was obtained.

These results for � may be illustrated by considering the following two examples. First, 
an exponent � = −1 would be obtained if the porous medium were modeled by a bundle of 
identical capillary tubes, where each tube contains only one or the other of the two fluids. 
In this case, the fluids are not intermixed at all and their flows are completely decoupled. 
Second, consider the case where the tubes in the model each contain a train of bubbles, 
with the same saturation in each tube. In this case, the fluids must be considered well inter-
mixed and there is strong coupling between their flows. They are in fact forced to have 
same velocity. The corresponding exponent would be � = 1 . The degree of intermixing 

(8)
Qw

A
= −

�r
w
�

�w

Δp

Δx
,

(9)
Qn

A
= −

�r
n
�

�n

Δp

Δx
.

(10)vD = lim
Ca→∞

v = −
𝜅

𝜇̄𝜑

Δp

Δx
,

(11)𝜇̄𝛼 = Sw𝜇
𝛼
w
+ Sn𝜇

𝛼
n
.
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between the flow of the two fluids, resulting in the coupling between their flows being 
strong or weak, thus determines � . In a real porous medium and in a network model, one 
might expect partial coupling of the flows and an exponent somewhere in between −1 and 
1. This was indeed what was found by Sinha et al. (2019b). For the pore network model 
and porous medium studied here, it was shown that � = 0.6.

Many other works in the literature refer to the more general idea of a high-Ca limit 
(Avraam and Payatakes 1995; Whitson et al. 2003; Ramstad et al. 2012; Armstrong et al. 
2016). However, the prevailing view seems to be that the relative permeabilities approach 
straight lines at high capillary numbers (Bardon and Longeron 1980; Avraam and Payat-
akes 1995; Whitson et al. 2003; Ramstad et al. 2012; Schechter and Haynes 1992), i.e.,

To show how straight-line relative permeabilities are compatible with the results from 
Sinha et al. (2019b), we introduce (8), (9), (12) and (13) and into (6) and express the flow 
velocity in the high-Ca limit as

This result is a special case of (10) with � = −1.
Some of the experimental studies carried out that obtain straight-line relative perme-

abilities consider two phases near the mixture’s critical point, see, e.g., Bardon and Longe-
ron (1980); Schechter and Haynes (1992). In these cases, the interfacial tension approaches 
zero, and the capillary number infinity, as the phases are brought closer to the critical 
point. At the same time, the physical properties (e.g., composition, density and viscosity) 
of the two phases converge and they become chemically miscible. The two-phase flow then 
converges toward a literal single-phase flow, where the two phases have the same average 
velocity. The relative permeabilities approach (12) and (13) as a result. Furthermore, as 
�n → �w in this kind of miscible high-Ca limit, (14) reduces to the single-phase Darcy 
equation and the �-exponent becomes meaningless. This paper is concerned with immis-
cible two-phase flow and we therefore do not seek to approach the high-Ca limit through 
small interfacial tensions.

Another way one might obtain the straight-line relative permeabilities, in the event that 
the high-Ca limit is approached while the fluids retain their immiscibility, is if the two flu-
ids occupy similar, but separate and decoupled parts of the porous medium. In this case, the 
porous medium can essentially be described by the capillary tube model that gave � = −1 
above. The relative permeability of each fluid is then proportional to the cross-sectional 
area of the porous medium available to it, i.e., proportional to the saturation. Such a flow 
configuration seems compatible with one of the basic assumptions in the relative perme-
ability framework, namely the fluids flow through connected pathways and the fluid–fluid 
interfaces behave as rigid partitions between them (Armstrong et al. 2016).

While the view that relative permeabilities are straight lines at high capillary num-
bers seems to be the prevailing one, there are also studies which indicate that this may 
not always be the case (Delshad 1981; Fulcher et  al. 1985; Armstrong et  al. 2016). 
A particularly illustrative example is the lattice-Boltzmann simulations by Arm-
strong et  al. (2016), where the wetting and non-wetting relative permeabilities seem 

(12)lim
Ca→∞

�r
w
= Sw,

(13)lim
Ca→∞

�r
n
= Sn.

(14)vD = −
�

�

(
Sw

�w

+
Sn

�n

)
Δp

Δx
.
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to approach curves that are concave up and concave down, respectively. High capillary 
numbers were simulated by varying interfacial tension, viscosity and driving force. 
Armstrong et  al. (2016) show conclusively that ganglion motion and intermixing of 
fluids occur in a manner that is clearly inconsistent with the idea that the two fluids 
flow through static pathways. The latter point is part of a discussion that goes back to 
the flow regime micro-model studies of flow regimes by Avraam and Payatakes (1995).

3 � Pore Network Simulations

In this section, we describe in some detail the pore network model used in this study, 
the numerical methods used to solve it and the procedure for calculating the time-aver-
aged quantities described in the previous section.

The pore network model is a dynamic model that takes both viscous and capillary 
forces into account. It keeps track of the fluid–fluid interface locations and evolves 
these in time according to the calculated pressures and flow rates in each pore. This 
provides a time series of the fluctuating total quantities Q̃w , Q̃n and Δp̃ for the entire 
network, in steady state. Subsequently, these time series are averaged to get time-aver-
aged steady-state flow properties.

Validation of the pore network modeling approach is provided through earlier 
works. These include Aker et  al. (1998a, 2000), Erpelding et  al. (2013), Sinha et  al. 
(2017) and the benchmark study by Zhao et al. (2019).

(a) (b)

Fig. 2   Illustration of a wetting (white) and non-wetting fluid (blue) in a physical pore network and b the 
representation of this network in the model. The dashed lines in a indicate sections of the pore space vol-
ume that are each represented by one link in b. The intersection points of the dashed lines in a show the 
node locations in the model representation (b). Figures a and b are reproduced from Gjennestad et  al. 
(2018)



	 M. Aa. Gjennestad et al.

1 3

3.1 � Pore Network Model

The model describes flow of two incompressible and immiscible fluids ( w and n ) in a porous 
medium. The porous medium is represented by a network consisting of N nodes that are 
connected by M links. The nodes are each given an index i ∈ [0,… ,N − 1] , and the links 
are identified by the two nodes ij that they connect. An example pore network is shown in 
Fig. 2. The nodes have no volume, and the pore space volume is thus assigned to the links. 
Furthermore, it is assumed that each fluid fills the entire link cross sections. The location of a 
fluid–fluid interface can then be described by a single number which gives its position in the 
link. For each link, the vector �ij contains the positions of the fluid interfaces in that link.

The flow in each link is treated in a one-dimensional fashion, averaged over the link cross 
sections. We consider flows in relatively small cross sections only and therefore neglect any 
effects of fluid inertia. The volumetric flow rate from node j to node i through the link con-
necting the two nodes is then given by,

Herein, pi is the pressure in node i, �ij is the link’s mobility and cij is the net pressure differ-
ence across the link due to its fluid interfaces. Both �ij and cij depend on the interface posi-
tions �ij . For two nodes i and j not connected by a link, �ij = 0 . Applying mass conservation 
at each node i yields,

The cross-sectional area of link ij is aij . The interface positions �ij therefore evolve in time 
according to the advection equation,

when sufficiently far away from the nodes. Close to the nodes, they are subject to addi-
tional models that account for interface interactions in the nodes. This is further described 
in Gjennestad et al. (2018).

3.1.1 � Link Mobility Model

The link mobility depends on link geometry and fluid viscosities. We assume cylindrical links 
when computing the mobilities and thus

Here, Lij is the link length, rij is the link radius and �ij

(
�ij
)
 is the volume-weighted average 

of the fluid viscosities �w and �n.

3.1.2 � Interfacial Pressure Discontinuity Model

There may be zero, one or more interfaces in each link. Their positions along the link are 
contained in �ij . Each element in �ij is thus between 0 and Lij . The symbol cij denotes the 

(15)qij = −�ij
(
�ij
){

pi − pj − cij
(
�ij
)}

.

(16)
∑
j

qij = 0.

(17)
d

dt
�ij =

qij

aij
,

(18)�ij
(
�ij
)
=

�r4
ij

8Lij�ij

(
�ij
) .
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sum of the interfacial pressure discontinuities in link ij. We assume that the links are much 
wider near the ends than in the middle and that the pressure discontinuities become negli-
gibly small for interfaces near the ends. The pressure discontinuities are therefore modeled 
by

Herein, �wn is the interfacial tension and

The effect of the �-function is to introduce zones of length rij at each end of the links where 
the pressure discontinuity of any interface is zero.

3.2 � Numerical Solution Method

Solving the pore network model numerically involves stepping the fluid–fluid interface 
locations forward in time, from one discrete point in time to the next. This is be accom-
plished by applying a Runge–Kutta method to the M ODEs, one for each link, given 
by (17). Each evaluation of the right-hand sides during the integration requires simultane-
ously solving the mass conservation equations (16) and the constitutive equations (15) for 
the flow rate in each link.

The time at the discrete point n is

where the time step length Δt(i) is the difference between t(i+1) and t(i) . For ease of notation, 
we let quantities evaluated at the discrete time points be denoted by their associated time 
point index in superscript, e.g.,

Mobilities and pressure discontinuities with superscripts are evaluated with the interface 
positions at the time point indicated,

In this work, we use the forward Euler method to integrate the ODEs (17). However, other 
and more sophisticated solution methods can also be used (Gjennestad et al. 2018). Apply-
ing the forward Euler method to (17), we get

(19)cij
(
�ij
)
=

2�wn

rij

∑
z∈�ij

(±1){1 − cos (2��(z))}.

(20)𝜒(z) =

⎧
⎪⎨⎪⎩

0, if z < rij,
z−rij

Lij−2rij
, if rij < z < Lij − rij,

1, if z > Lij − rij.

(21)t(n) =

n−1∑
i=0

Δt(i),

(22)q
(n)

ij
= qij

(
t(n)

)
.

(23)�
(n)

ij
= �ij

(
�(n)
ij

)
,

(24)c
(n)

ij
= cij

(
�(n)
ij

)
.



	 M. Aa. Gjennestad et al.

1 3

The link flow rates herein are calculated by introducing the constitutive equation (15), eval-
uated at the current interface positions,

into the mass conservation equations (16). This yields a system of linear equations, with 
one equation

for each node i with an unknown pressure.
One forward Euler time step is then taken by first obtaining the pressure in each node by 

solving the linear system, using the current interface positions. Subsequently, the link flow 
rates are calculated using (26) and the interface positions updated according to (25).

3.2.1 � Time Step Restrictions

Since we use the explicit forward Euler method to integrate the interface positions in time, 
short enough time steps must be chosen to ensure numerical stability. The length of time 
step n is set according to the criteria in Gjennestad et al. (2018),

where

and the parameters Ca and Cc are set to 0.1 and 0.9, respectively.

3.2.2 � Boundary Conditions

We carry out simulations in a network that can be laid out in two dimensions, as illustrated 
in Fig. 2b. The network is periodic both in the flow direction and in the transverse direc-
tion. Two different boundary conditions are explored: (1) A constant pressure difference 
of Δp is applied across the periodic boundary in the flow direction, and (2) a constant total 
flow rate Q is prescribed. The length of the network in the flow direction is denoted Δx and 
the average pressure gradient in the network is thus Δp∕Δx.

(25)�(n+1)
ij

= �(n)
ij

+ Δt(n)
q
(n)

ij

aij
.

(26)q
(n)

ij
= −�

(n)

ij

{
p
(n)

i
− p

(n)

j
− c

(n)

ij

}
,

(27)
∑
j

�
(n)

ij
p
(n)

j
− p

(n)

i

∑
j

�
(n)

ij
= −

∑
j

�
(n)

ij
c
(n)

ij
,

(28)Δt(n) = min
(
Δt(n)

c
,Δt(n)

a

)
,

(29)Δt(n)
a

= Ca min
ij

⎛⎜⎜⎝
aijLij

q
(n)

ij

⎞⎟⎟⎠
,

(30)Δt(n)
c

= Cc min
ij

⎛
⎜⎜⎜⎝

2aij

�
(n)

ij

����
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ij
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����

⎞
⎟⎟⎟⎠
,



Pore Network Modeling of the Effects of Viscosity Ratio and…

1 3

The boundary conditions corresponding to a constant applied Δp can be incorporated 
directly into the linear system (27) when this is solved during each time step. This is done 
by adding to or subtracting from each equation i in the linear system a term �(n)

ij
Δp for each 

link ij that extends across the periodic boundary.
The boundary conditions corresponding to a prescribed flow rate Q are applied as fol-

lows. Since the model is linear, the total flow rate is related to the current pressure drop by

where the constants C1 and C2 depend on the current interface positions in a non-trivial 
way. By selecting two different, but otherwise arbitrary, pressure drops Δp̃1 and Δp̃2 and 
solving the linear system (27) for both of them, we obtain the corresponding total flow 
rates Q1 and Q2 . The quantities C1 and C2 can then be calculated from,

Subsequently, (31) can be solved for the pressure difference Δp̃ necessary to get the pre-
scribed total flow rate Q, and a forward Euler time step can be taken with this pressure dif-
ference incorporated into the linear system (27).

3.3 � Computation of Steady‑State Time Averages from Network Simulations

The porous medium we consider is modeled by a network of links, and the total volume 
of the links is the pore volume Vp . The network is embedded in a three-dimensional block 
of solid material with thickness Δx in the flow direction and cross-sectional area A. The 
volume V of the porous block and its porosity � are then easily calculated by (1) and (2), 
respectively.

The saturation Sw may be computed at any time during the simulation, by adding up the 
fluid volumes for all links. However, since we use periodic boundary conditions, Sw is a 
constant in each simulation. So is Sn = 1 − Sw.

In the case of constant applied pressure gradient Δp∕Δx , the quantities that we need to 
compute from the actual simulations are Q, Qw and Qn . These are time averages of the fluc-
tuating quantities Q̃ , Q̃w and Q̃n . The model is stepped forward in time as described in the 
previous section. We approximate the time-average Q by summing over the total flow rates 
Q̃(n) at each time step n (after steady state has been reached),

The time-averaged quantities Qw and Qn are calculated from Q̃(n)
w  and Q̃(n)

w  in an analogous 
manner.

The instantaneous flow rate Q̃(n) can be computed by constructing a plane cutting 
through the network, transverse to the flow direction, and adding together the flow rates q(n)

ij
 

of all links intersecting the plane. We denote the set of intersecting links by B and add up,

(31)Q = C1 + C2Δp̃,

(32)C1 =
Q2 − Q1

Δp̃2 − Δp̃1
,

(33)C2 =
Q2Δp̃1 − Q1Δp̃2

Δp̃1 − Δp̃2
.

(34)Q =

∑
n Q̃

(n)Δt(n)∑
n Δt

(n)
.
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Since the fluids are incompressible, it does not matter where this cut is made.
The instantaneous flow rate Q̃(n)

w  is computed by making several cuts, denote the set of cuts 
by C, and computing the sum

Herein, |C| denotes the number of elements in C, i.e., the number of cuts, and s(n)
ij

 is the 
volume fraction of wetting fluid in the volume of fluid that flowed past the middle of link 
ij during time step n. Q̃(n)

n  is computed in an analogous manner. Having computed the time 
averages Q, Qw and Qn we may the obtain the time-averaged flow velocity, mobility, frac-
tional flow and relative permeabilities using (6), (7), (5), (8) and (9).

If Q is fixed instead of Δp∕Δx , the time-averaged value of the pressure gradient is com-
puted by

where Δp̃(n) is the pressure difference across the network during time step n.
Using steady-state averages calculated as described above, the capillary number is com-

puted according to,

where the average viscosity � is defined as,

3.4 � Dimensional Analysis

As can be surmised from the description above, the network and five numbers are given as 
input to steady-state simulations. In the case of constant pressure-difference boundary condi-
tions, the five numbers are the fluid viscosities �w and �n , the fluid–fluid interfacial tension 
�wn , the pressure gradient Δp∕Δx and the saturation Sw . Any change in the steady-state aver-
ages is the response of the model to variations in these inputs. If we consider the network 
topology and aspect ratios fixed, and only allow for a linear scaling of the network size, any 
variations in the network can be described by a single length scale. We choose the average 
pore radius r̄.

By the Buckingham � theorem (Rayleigh 1892), the total of six dimensional input variables 
can be reduced to three dimensionless variables. This means that any combination of the six 
inputs that give the same three dimensionless variables is similar and differs only in scale. Any 
dimensionless output from the model is therefore the same for the same values of the dimen-
sionless input variables. One choice of dimensionless variables is

(35)Q̃(n) =
∑
ij∈B

q
(n)

ij
.

(36)Q̃(n)
w

=
1

|C|
∑
B∈C

∑
ij∈B

s
(n)

ij
q
(n)

ij
.

(37)
Δp

Δx
=

∑
n Δp̃

(n)Δt(n)

Δx
∑

n Δt
(n)

,

(38)Ca =
�|Q|
�A�wn

,

(39)� = Sw�w + Sn�n.

(40)Sw,
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where M is the viscosity ratio. The variable Π is a dimensionless pressure gradient. It rep-
resents the ratio of the average pressure drop over a length r̄ to the Young–Laplace pressure 
difference over an interface in a pore of radius r̄ . In particular, when Π = 1 , we have

and the average pressure drop over the length r̄ is equal to the typical Young–Laplace pres-
sure difference.

Since it relates the average pressure drop to the capillary forces, Π may be expected 
to play a similar role as the capillary number. This should be true at least when capillary 
numbers are high and the average pressure drop is dominated by viscous contributions. 
However, Π is perhaps even more closely related to the ganglion mobilization number. This 
was defined by Avraam and Payatakes (1995) as the ratio between the driving force exerted 
on a ganglion and its resistance to motion resulting from capillary forces.

3.5 � Simulations

Steady-state simulations were performed using the pore network model described in this 
section. All simulations were run on 72 × 48 hexagonal networks, similar to that shown in 
Fig. 2b. These networks consisted of 3456 nodes and 5184 links. All links had the same 
length L, and link radii were uniformly distributed between 0.1L and 0.4L. For each of 
the 288 combinations of the input parameters listed in Table 1, 21 values of Sw were used, 
evenly spaced on the interval [0, 1] . In total, 288 × 21 = 6048 simulations were run. As 
this paper is concerned with immiscible two-phase flow, we do not use vanishingly small 
values of the interfacial tension. Time-averaged quantities were calculated from simulation 
results as described in Sect. 3.3. The averaging time corresponded to 10 pore volumes of 
flow.

(41)M =
�n

�w

,

(42)Π =
||||
Δp

Δx

||||
r̄2

2𝜎wn
,

(43)
||||
Δp

Δx

||||r̄ =
2𝜎wn

r̄
,

Table 1   Range of input 
parameters used in the 
steady-state pore network 
model simulations. For each 
combination of the input 
parameters listed, 21 values 
of S

w
 , evenly spaced on the 

interval [0, 1] , were used. The 
corresponding ranges of the 
dimensionless variables M, Π 
and Ca are also given

Quantity Minimum value Maximum value Unit

�
w 5.0 × 10

−4
1.0 × 10

−2 Pa s
�
n 5.0 × 10

−4
1.0 × 10

−2 Pa s
�
wn 2.0 × 10

−2
3.0 × 10

−2 N m−1

−Δp∕Δx 3.9 × 10
3

8.0 × 10
5 Pa m−1

r̄ 2.5 × 10
−4

7.8 × 10
−4 m

M 5.0 × 10
−2

2.0 × 10
1 –

Π 6.1 × 10
−3

8.1 × 10
1 –

Ca 4.0 × 10
−4

6.1 × 10
−1 –
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4 � Results

In this section, we present and discuss the simulation results. We look first at relative per-
meabilities (Sect.  4.1), then residual saturations (Sect.  4.2), average flow velocities and 
mobilities (Sect. 4.3) and, finally, fractional flows (Sect. 4.4).

4.1 � Relative Permeabilities

Relative permeabilities �r
w
 and �r

n
 are perhaps the most extensively studied properties in 

two-phase flow in porous media, and the most obvious dimensionless steady-state quanti-
ties to calculate from the pore network model. In Fig. 3, computed relative permeabilities 
are plotted against saturation Sw and the non-dimensional pressure gradient Π for three sub-
sets of the simulations. Specifically, Fig. 3a, b, c shows relative permeabilities for the wet-
ting phase and viscosity ratios M of 1, 0.25 and 4, respectively. Relative permeabilities for 
the non-wetting phase and a viscosity ratio of 4 are shown in Fig. 3d.

For each value of M, the relative permeability data fall on a single well-defined 
surface. This shows that the relative permeabilities produced by the model are indeed 
determined by the three dimensionless variables Sw , M and Π , in agreement with the 
dimensional analysis in Sect.  3.4. Bardon and Longeron (1980) mention that gravity 
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Fig. 3   Relative permeabilities for the wetting phase for a M = 1 , b M = 0.25 and c M = 4 . Relative perme-
abilities for the non-wetting phase and M = 4 are shown in d. Parameters where simulations have been per-
formed are indicated by white dots, while values in between are obtained by interpolation. a Contains data 
from 1365 simulations, while b, c and d each contain data from 336
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(Bond number), wettability (contact angle) and inertia (Reynolds number) could also 
affect the relative permeabilities. These effects are not considered in the present study, 
though gravity could be included in the model with relative ease.

When measuring relative permeabilities (Oak et al. 1990; Bennion and Bachu 2005) 
and when using relative permeability models for continuum-scale calculations, it is 
often only their dependence on Sw which is considered. Here, the calculated relative 
permeabilities are strongly dependent on Π , and they increase with increasing Π . There 
is a very strong correlation between Π and the capillary number, where high values of 
Π are also associated with high values of Ca . Thus, the results are consistent with those 
of Bardon and Longeron (1980), Avraam and Payatakes (1995), Armstrong et al. (2016) 
and Datta et  al. (2014), who find that relative permeabilities increase with capillary 
number. This dependence seems to disappear, however, as Π → ∞ . For the viscosity 
ratios considered here, it disappears at Π ∼ 1 , where the contours in Fig.  3 approach 
vertical lines. At this Π-value, the average pressure drop over the length r̄ is equal to 
the typical Young–Laplace interfacial pressure difference, as discussed in Sect. 3.4. The 
fact that the relative permeabilities become independent of the pressure gradient as cap-
illary numbers increase is consistent with the high-Ca limit.

The general consensus in the literature (Bardon and Longeron 1980; Fulcher et  al. 
1985; Avraam and Payatakes 1995; Whitson et al. 2003; Ramstad et al. 2012; Schechter 
and Haynes 1992) seems to be that relative permeabilities approach straight lines (12) 
and (13), at high capillary numbers. In the equal-viscosity pore network simulations by 
Knudsen et  al. (2002), this was found to be the case. Here, however, we find straight 
lines, i.e., equidistant contour lines in Fig. 3 for Π ≳ 1 , only for M ∼ 1 . When M is dif-
ferent from unity, relative permeabilities converge to nonlinear functions of Sw (and M) 
in the high-Ca limit.

As discussed in Sect. 2.1, relative permeabilities form straight lines in the high-Ca 
limit if this is realized by approaching a mixture critical point. In such a case Ca → ∞ 
would necessarily happen at the same time as M → 1 and our results would seemingly 
be in agreement with the literature consensus. However, our model assumes immiscible 
flow and it is questionable whether it can be relied on when the fluids become miscible.

Straight-line relative permeabilities could be obtained also in the immiscible high-Ca 
limit if the fluids flow in similar, decoupled flow channels. By visual inspection of fluid 
configurations, however, such decoupled flow channels are not found here (see, e.g., 
Fig. 10 in “Appendix” section). Instead, the fluids exhibit a large degree of intermixing 
and move as droplets or small ganglia at high capillary numbers. This was observed 
also by Sinha et al. (2019b), both in pore network model and lattice-Boltzmann simula-
tions. Disconnected non-wetting droplets were also observed at high capillary numbers 
in the experiments by Avraam and Payatakes (1995), and were found to contribute sig-
nificantly to the total flow rate, although connected pathways were also present.

We therefore conclude that our relative permeabilities deviate from straight lines at 
high capillary numbers because the fluids are not in the highly miscible near-critical 
region. Instead they have a viscosity disparity and intermix instead of forming decou-
pled flow channels. The effect of this on total mobility and fractional flow is discussed 
further in Sects. 4.3 and 4.4, respectively.

One example from the literature where relative permeabilities do not seem to form 
straight lines is found in Armstrong et al. (2016). Instead, they found a concave down �r

n
 

and a concave up �r
w
 , similar to our results with M > 1 (see Fig. 3c, d). Their viscosity 

ratio was not given.
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From Fig. 3, it is evident that the relative permeabilities follow a nonlinear curve not 
unlike those produced by the classical Corey-type correlations for the lowest values of Π , 
i.e., the lowest capillary numbers. When working with such correlations, it is typically 
assumed that there exists a low capillary number limit below which relative permeabilities 
become independent of the flow rate, and the correlations are therefore valid (for the flu-
ids used in the measurements). Ramstad et al. (2012) mention that viscous forces start to 
influence the fluid transport at capillary numbers around 10−5 . This is consistent with the 
findings here, which are that relative permeabilities have a dependence on Π down to the 
lowest capillary numbers considered of approximately 10−4 . We emphasize that the defini-
tion of capillary number used here differs from that used in Ramstad et al. (2012), since it 
includes the porosity. Adoption of the definition from Ramstad et al. (2012) would reduce 
all capillary numbers reported here by approximately half an order of magnitude.

Qualitatively, the changes in the relative permeability curves with Ca in Armstrong 
et al. (2016) are similar to those found here for M > 1 . In particular, their �r

n
-curve shifts 

from a concave up shape at low Ca to a concave down shape at high Ca . We find the same 
here when M > 1 (Fig. 3d).

Avraam and Payatakes (1995) find from their experiments that both relative permeabili-
ties increase with M. This is not the case here, at least not at high capillary numbers. They 
attribute this to the existence of films of the wetting fluid, which are not included in our 
model.

4.2 � Residual Saturations

For both the wetting and non-wetting fluids, there are regions in Fig. 3 where the relative 
permeabilities are zero. This was seen by Knudsen et  al. (2002) also, for M = 1 . These 
regions correspond to irreducible/residual saturations, two other ubiquitous dimensionless 
quantities in two-phase porous media flow. The residual saturations are often defined as 
the saturation of one fluid that remains after flooding with the other. This property, defined 
in this way, is somewhat difficult to measure using the type of steady-state pore network 
model simulations performed here. Therefore, we have chosen to define the residual satura-
tion of the wetting fluid as the saturation on the fractional flow curve ( Fw plotted vs. Sw , 
all other input parameters kept constant) where the wetting fluid fractional flow falls below 
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Fig. 4   Residual saturations for a the wetting fluid and b the non-wetting fluid. a and b each contain 288 
data points, one for each of the 288 combinations of input parameters (see Sect. 3.5)
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a threshold value3 of 10−4 . The residual non-wetting saturation is defined in an analogous 
manner.

Computed residual wetting and non-wetting saturations are shown in Fig. 4. Residual 
saturations increase as capillary numbers are reduced, in accordance with findings of 
Ramstad et al. (2012), Bardon and Longeron (1980), Datta et al. (2014) and Fulcher et al. 
(1985). Furthermore, they reach zero at capillary numbers around 0.1. This means that it 
is possible to flush out all of one fluid from the network model through flooding with the 
other, provided that the flow rate is high enough.

Bardon and Longeron (1980) observed that residual saturations were insensitive to 
changes in M, which is in agreement with our findings. However, wetting residual satura-
tions are somewhat higher when the wetting fluid is more viscous and non-wetting residual 
saturations are a little higher when the non-wetting fluid is more viscous. It would seem 
that mobility of the minority fluid is impeded when it is more viscous than the majority 
fluid.

4.3 � Average Flow Velocity and Mobility

The average mobility m and the average flow velocity v are other important quantities in 
two-phase flow. They are related through (7) and are discussed together here for reasons 
that will become apparent below.

Sinha et  al. (2019b) studied the high-Ca limit of two-phase porous media flow. They 
found that, at high capillary numbers, the average flow velocity followed a Darcy-type 
equation (10), with an effective viscosity (11). The existence of this high-Ca limit moti-
vates the study of the average flow velocity and the average mobility, relative to their limit 
values. Dividing (7) by (10) gives

where mD is the mobility in the high-Ca limit. The two quantities v∕vD and m∕mD are thus 
identical. Moreover, they are dimensionless and may be expected to vary, roughly, between 
0 and 1. In particular, they should be 1 in the two single-phase cases, Sw = 1 and Sn = 1 , 
and in the high-Ca limit.

Figure  5 shows v∕vD for M = 1 , M = 0.25 and M = 4 , plotted against Sw and Π . As 
expected, all data points collapse to 1 in both single-phase cases. Furthermore, each value 
of M corresponds to a single well-defined v∕vD-surface, in accordance with the dimen-
sional analysis. Each constant-M surface reaches values close to 1 at the highest values of 
Π , in agreement with the findings of Sinha et al. (2019b) for the high-Ca limit.

Interestingly, there are some values of v∕vD that are larger than 1. This means that, at 
a given saturation, the average mobility is higher at some lower capillary number than 
in the high-Ca limit. This somewhat counter-intuitive effect occurs for the more dispa-
rate viscosity ratios, at saturations where the more viscous fluid is in minority. Figure 6a 
shows v∕vD plotted against Π , for Sw = 0.15 and three different viscosity ratios, 0.25, 1 
and 4. The data points with M = 1 converge to 1, the limit value, from below and rela-
tively fast as Π increases. The data points with M = 4 also approach 1 from below, but 

(44)v∕vD = m∕mD,

3  The value of this threshold is based on the observation that fractional flow curves yielded by the pore net-
work model for moderate capillary numbers are close to zero at low saturations before they increase sharply 
as saturation is increased. A threshold of 10−4 provides a reasonable estimate for where this occurs.
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slower. For the lower viscosity ratio M = 0.25 , on the other hand, v∕vD increases fast, 
overshoots and then approaches 1 from above.

In Fig. 6b is shown the fractional flow for the same data points as in Fig. 6a. For the 
data points with M = 1 , convergence of v∕vD to the limit value occurs as the fractional 
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flow approaches its limit value. The same is true for M = 0.25 and M = 4 , although con-
vergence is not yet complete for the largest Π-values considered.

In terms of mobility ratios m∕mD these observations may be understood as follows. 
At low pressure gradients, all wetting fluid is stuck, in the sense that Fw = 0 , and the 
non-wetting fluid flows around it (see Fig.  6b). As the pressure gradient is increased, 
some of the wetting fluid is mobilized and Fw increases above zero. This results in more 
active flow paths for both fluids and a sharp increase in the average mobility for all three 
viscosity ratios. An example of such mobilization can be seen by comparing Figs. 8 and 
9 in “Appendix” section.

For M = 0.25 , average mobility reaches a maximum before all wetting fluid is mobi-
lized, i.e., before Fw converges to its value in the high-Ca limit. This maximum is caused 
by the competition between two different effects. First, an increase in pressure gradi-
ent makes more flow paths available, increasing mobility. Second, Fw increases and the 
more viscous wetting fluid makes up a larger fraction of the flowing fluid. Thus, the 
average viscosity of the flowing fluid increases, reducing the average mobility. Eventu-
ally, a point is reached where the latter effect becomes more important and a further 
increase in the pressure gradient reduces the average mobility.

0.00 0.25 0.50 0.75 1.00
Sw

0.0

0.2

0.4

0.6

0.8

1.0

F
w

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g 1

0(
C
a)

(a)M =1

0.00 0.25 0.50 0.75 1.00
Sw

0.0

0.2

0.4

0.6

0.8

1.0

F
w

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g 1

0(
C
a)

(b)M =0 .25

0.00 0.25 0.50 0.75 1.00
Sw

0.0

0.2

0.4

0.6

0.8

1.0
F
w

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

lo
g 1

0(
C
a)

(c)M =4

Fig. 7   Fractional flow data for a M = 1 , b M = 0.25 and c M = 4 . The dashed lines represent Fw = Sw and 
the dotted lines represent the fractional flow obtained if the relative permeabilities were �r

w
= Sw , see (12), 

and �r
n
= 1 − Sw , see (13). a Contains data from 1365 simulations, while b and c each contain data from 

336



	 M. Aa. Gjennestad et al.

1 3

For M = 1 , there is no such competition to generate a maximum, as the wetting and 
non-wetting fluids are equally viscous and mobilization of the wetting fluid does not affect 
the average viscosity.

For M = 4 , the two effects are again present. However, since the wetting fluid is now 
less viscous, they both lead to an increase in mobility with an increase in pressure gradient 
and we see no maximum.

4.4 � Fractional Flow

The fractional flow for three subsets of the performed simulations is shown in Fig. 7, for 
viscosity ratios 1, 4, and 0.25. The data in Fig. 7a for M = 1 are in qualitative agreement 
with those from Knudsen et al. (2002). They find Fw ∼ Sw at high capillary numbers and 
that deviation from the diagonal line representing Fw = Sw increases as the capillary num-
ber is reduced. Furthermore, curves for a specific capillary number are asymmetric w.r.t. 
Sw = 0.5 and cross the diagonal line at Sw > 0.5 , meaning that more of the curve lies below 
the diagonal than above it. This observation was explained by Knudsen et al. (2002) by the 
propensity for the wetting fluid to occupy narrower pores where the flow rate is lower.

By comparing Fig. 7b, c we may deduce some of the impact of the viscosity ratio on the 
fractional flow. At high capillary numbers, Fw > Sw when M > 1 , i.e., when the wetting 
fluid is less viscous. Conversely, Fw < Sw when M < 1 and the wetting fluid is more vis-
cous. The latter was observed also by Avraam and Payatakes (1995), at low viscosity ratios 
and high capillary number, the fractional flow curves tended to be concave up.

The dotted lines in Fig. 7b, c represent the fractional flows obtained if the relative per-
meabilities were �r

w
= Sw and �r

n
= 1 − Sw , i.e., what would be expected at high capillary 

numbers if the fluids followed separate, similar flow channels. The fractional flows from the 
network model in this limit curve the same way as the dotted lines, but lie much closer to the 
diagonal. As noted before, our pore network model gives instead a large degree of fluid inter-
mixing in the high-Ca regime (see, e.g., Fig. 10). In such an intermixed state, fluid veloci-
ties will be more tightly coupled. We therefore propose that, in the event that fluids intermix 
rather than form decoupled flow channels, the tighter coupling causes the fluids to flow with 
velocities that are more similar. Thus, the fractional flow curves lie closer to the diagonal.

At lower capillary numbers, the fractional flow curves obtain the classical S-shape, as in 
the case for M = 1 . Also, as is intuitive and was observed by Avraam and Payatakes (1995), 
fractional flow for a given saturation and capillary number increases with viscosity ratio.

5 � Conclusion

We have performed more than 6000 steady-state simulations with a dynamic pore net-
work model of the Aker type, corresponding to a large span in viscosity ratios and 
capillary numbers. From these simulations, dimensionless time-averaged steady-state 
quantities such as relative permeabilities, residual saturations, mobility ratios and frac-
tional flows were computed and discussed. By a dimensional analysis of the model, all 
dimensionless output was found to be functions of the saturation Sw , the viscosity ratio 
M and the dimensionless pressure gradient Π . Effects of wettability, gravity and inertia 
were not considered. These effects may add additional dimensionless variables whose 
impact could be studied in future work.
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Calculated relative permeabilities and residual saturations showed many of the same 
qualitative features observed in other experimental and modeling studies. In particular, the 
relative permeabilities increased with capillary numbers and converged to a limit, depend-
ent on M and Sw , at high capillary numbers. However, while consensus in the literature 
seems to be that relative permeabilities converge to straight lines at high capillary numbers, 
this was not the case for the results of the network model when M ≠ 1.

Our conclusion is that our relative permeabilities deviate from straight lines at high capil-
lary numbers because the fluids are not in the highly miscible near-critical region. Instead 
they have a viscosity disparity and intermix rather than forming decoupled, similar flow chan-
nels. Such intermixing behavior has been observed previously in pore network and lattice-
Boltzmann simulations (Sinha et al. 2019b) and, to some extent, in experiments (Avraam and 
Payatakes 1995). However, it would be very interesting to see whether experimental studies 
specifically designed to induce intermixing and measure steady-state properties at high capil-
lary numbers would produce relative permeability curves that are nonlinear in Sw.

Ratios of average mobility to their high capillary number limit values were also con-
sidered. These ratios varied, roughly, between 0 and 1, but values larger than 1 were also 
observed. For a given saturation, the mobilities were not always monotonically increasing 
with the pressure gradient. While increasing the pressure gradient mobilizes more fluid and 
activates more flow paths, when the mobilized fluid is more viscous, a reduction in average 
mobility may occur instead.
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Appendix: Example Fluid Distributions

In this section, we show example fluid distributions from steady-state simulations at dif-
ferent sets of parameters. We show two examples for each set of parameters, with a time 
difference between them corresponding to one pore volume of flow. For ease of viewing 
and discussion, the networks used in these illustrations are 12 × 8 , much smaller than those 
used in the steady-state simulations described in Sect. 3.5.

Figures 8, 9 and 10 show example fluid configurations obtained during simulations with 
Sw = 0.85 and M = 1 and different dimensionless pressure gradients. Comparing them 
illustrates how more and more of the non-wetting fluid is mobilized as the magnitude of Π 
is increased.

In Fig. 8, log10 (Π) = −1.0 and all interfaces remain stationary. Only the wetting fluid is 
moving ( Fw = 1.0 ) and necessarily does so through connected pathways.
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In Fig. 9, log10 (Π) = −0.7 and some interfaces remain stationary while others are mov-
ing. The non-wetting fluid is partially mobilized ( Fw = 0.94 ) and moves in droplets or 
small ganglia.

(a) (b)

Fig. 8   Example fluid distributions for Sw = 0.85 , M = 1 and log10 (Π) = −1.0 . Non-wetting fluid is blue, 
and wetting fluid is gray. The time difference between a and b corresponds to one pore volume of flow. All 
interfaces are stationary. Only the wetting fluid is moving ( Fw = 1.0 ) through connected pathways. Drawn 
link widths are chosen for illustrative purposes and are not to scale

(a) (b)

Fig. 9   Example fluid distributions for Sw = 0.85 , M = 1 and log10 (Π) = −0.7 . The time difference between 
a and b corresponds to one pore volume of flow. Some interfaces remain stationary, while others are mov-
ing. The non-wetting fluid is partially mobilized ( Fw = 0.94 ) and moves in droplets or small ganglia. Drawn 
link widths are chosen for illustrative purposes and are not to scale
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In Fig. 10, log10 (Π) = 1.2 and the system starts to approach the high-Ca limit. Almost 
no interfaces remain stationary, and most of the non-wetting fluid is moving through drop-
lets or ganglia. The fractional flow is Fw = 0.88.

(a) (b)

Fig. 10   Example fluid distributions for Sw = 0.85 , M = 1 and log10 (Π) = 1.2 . Non-wetting fluid is blue, 
and wetting fluid is gray. The time difference between a and b corresponds to one pore volume of flow. 
Almost no interfaces remain stationary, and most of the non-wetting fluid is moving through moving drop-
lets or small ganglia. The fractional flow is Fw = 0.88 . Drawn link widths are chosen for illustrative pur-
poses and are not to scale

(a) (b)

Fig. 11   Example fluid distributions for Sw = 0.75 , M = 1 and log10 (Π) = −1.0 . Non-wetting fluid is blue, 
and wetting fluid is gray. Some of the non-wetting fluid is mobilized, while some remains stationary. The 
fractional flow is Fw = 0.84 . Drawn link widths are chosen for illustrative purposes and are not to scale
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Figure  11 shows example fluid configurations when more non-wetting fluid is intro-
duced, Sw = 0.75 , while M = 1 and the pressure gradient log10 (Π) = −1.0 is the same as 
in Fig. 8. As more non-wetting fluid is added, some of it is mobilized, while some remains 
stationary ( Fw = 0.84 ). The non-wetting fluid moves as droplets or small ganglia.
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