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Summary

This thesis is concerned with the theoretical development of trajectory tracking
control for an articulated intervention autonomous underwater vehicle (AUV) in
6DOF while using no or as little model knowledge as possible since an articulated
intervention-AUYV is subject to hydrodynamic and hydrostatic parameter uncer-
tainties, uncertain thruster characteristics, unknown disturbances, and unmodelled
dynamics, meaning that the control approach should be robust. To achieve this
goal, robust algorithms based on sliding mode control are proposed. The stability
of the proposed control approaches is analysed theoretically, and their performance
is tested in simulations and experiments.

The first sliding mode control approach proposed for trajectory tracking control
for an articulated intervention-AUV is the super-twisting algorithm with adaptive
gains. At the start of this project, this algorithm was the most powerful second-
order continuous sliding mode control algorithm available, as it attenuates chat-
tering and does not require consideration of any conservative upper bound on
the disturbance to maintain sliding because of the adaptive gains. Motivated by
this characteristic, we solve the trajectory tracking control problem for an articu-
lated intervention-AUV in 6DOF using the super-twisting algorithm with adaptive
gains. We consider both the case where velocity measurements are available and
the case where they are not. When velocity measurements are not available, we
use a higher-order sliding mode observer to estimate the linear and angular ve-
locities. The reason we choose the higher-order sliding mode observer is its strong
stability properties. Specifically, the finite-time stability of the higher-order sliding
mode observer enables us to prove that the closed-loop system is uniformly globally
asymptotically stable. Finally, we demonstrate the applicability of the presented
control schemes with comprehensive simulation and experimental results.

The second sliding mode control approach proposed for trajectory tracking
control for an articulated intervention-AUYV is the generalized super-twisting al-
gorithm. The generalized super-twisting algorithm is an extension of the super-
twisting algorithm that provides finite-time convergence in the case where both
the perturbations and control coefficients are state- and time-dependent and the
control coefficients are uncertain, which is essential for robust control of an articu-
lated intervention-AUV. Motivated by this feature, we solve the trajectory tracking
control problem for an articulated intervention-AUV in 6DOF using the generalized
super-twisting algorithm. Furthermore, we prove the asymptotic convergence of the
tracking errors. We also consider the case where velocity measurements are unavail-
able by solving the tracking control problem using the generalized super-twisting



Summary

algorithm in combination with a higher-order sliding mode observer. Furthermore,
we prove the asymptotic convergence of the tracking errors when the higher-order
sliding mode observer is included. We also present comprehensive simulation and
experimental results that validate and demonstrate the applicability of both control
schemes.

We then compare the previously proposed tracking control laws. Specifically,
we compare the control law using the super-twisting algorithm with adaptive gains
and the control law using the generalized super-twisting algorithm. We also com-
pare the control laws when they are combined with a higher-order sliding mode
observer. Furthermore, we solve the tracking problem using a PID controller to eval-
uate how the sliding mode control algorithms perform compared to this standard
linear controller. In both simulations and experiments, the super-twisting algo-
rithm with adaptive gains provided the best overall tracking performance, but the
generalized super-twisting algorithm was not far from achieving the same tracking
results. Thus, the fact that we had to tune the generalized super-twisting algo-
rithm manually may be the reason that we achieved lower tracking performance
with this algorithm. The super-twisting algorithm with adaptive gains is therefore
better than the generalized super-twisting algorithm in practice, but the general-
ized super-twisting algorithm does have some theoretical advantages as it is proven
to provide global finite-time stability for a larger class of systems. These addi-
tional theoretical properties make it possible to prove that the closed-loop system
is uniformly globally asymptotically stable without the higher-order sliding mode
observer when the generalized super-twisting algorithm is used. This is not possible
for the super-twisting algorithm with adaptive gains.

Based on the results of the comparison, we develop an adaptive generalized
super-twisting algorithm for a class of systems whose perturbations and uncer-
tain control coefficients are time- and state-dependent, i.e., we combine the best
properties of the super-twisting algorithm with adaptive gains and the generalized
super-twisting algorithm. The proposed approach consists of using dynamically
adapted control gains that ensure global finite-time convergence. The advantage
of adaptive gains is that no conservative upper bound on the perturbations and
control coefficients must be considered to maintain sliding. We prove that the
resulting closed-loop system is globally finite-time stable. To demonstrate the ef-
fectiveness of the proposed adaptive generalized super-twisting algorithm, we use
it to solve the trajectory tracking control problem for an articulated intervention-
AUV in 6DOF. Additionally, we prove that the adaptive generalized super-twisting
algorithm makes the tracking errors of the articulated intervention-AUV converge
asymptotically to zero. We also present simulation and experimental results that
validate and show the applicability of the proposed control law.

Finally, to utilize the redundancy of this highly flexible underwater vehicle, we
propose a combined kinematic and dynamic control approach for vehicle-manipulator
systems. The main idea is to combine the singularity-robust multiple task-priority
framework with a robust sliding mode controller while simultaneously ensuring
that the task errors remain bounded. Any controller can be used, as long as it
is able to make the velocity vector converge to the velocity reference vector in fi-
nite time. The reference vector is chosen as the output from the singularity-robust
multiple task-priority inverse kinematic controller. This novel approach allows us

ii



to analyse the stability properties of the kinematic and dynamic subsystems to-
gether in the presence of model uncertainty while retaining the possibility of solving
multiple tasks simultaneously. The finite-time convergence property of the sliding
mode controller allows us to show that multiple set-point regulation tasks will con-
verge asymptotically to zero without the strict requirement that the velocities be
perfectly controlled. This novel approach thus avoids the assumption of perfect
dynamic control that is common in kinematic stability analyses for robot manipu-
lators and vehicle manipulator systems. We provide two examples of sliding mode
controllers that are able to make the velocity vector converge to the velocity ref-
erence vector in finite time: a first-order sliding mode controller and the adaptive
generalized super-twisting algorithm. The applicability of the proposed method is
illustrated via a simulation study, where the primary task is to control the posi-
tion and orientation of the centre link of an articulated intervention-AUV and the
secondary tasks are to control the orientations of the front end and back end of
the articulated intervention-AUV, and an experimental study, where the primary
task is to control the position and orientation of the front end of the articulated
intervention-AUYV and the secondary task is to control the position and orientation
of the back end of the articulated intervention-AUV.

iii
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Nomenclature

Model parameters

n Number of joints
m Number of thrusters
" Added mass coefficient for the cross section
4, Non-linear drag coefficient in surge

4, Non-linear crossflow drag coefficient

C
C
Ca, Non-linear drag coefficient in roll
C
C

4, Linear cross-sectional drag coefficient

= @0

Added mass ratio in surge/heave for a link
Linear drag parameter in surge
Linear drag parameter in roll

Model conventions

qe R(n—l)

7(q) € R™HD

Tthr € R™

Tq € R(—1)

C c R6+(n—1)
veR3
weR?

¢ € R(»=1

gq c R7+(n—1)

m € R3
p € R?

& € R6+(n—1)

ny € R3

xvi

Vector representing the joint angles

Vector representing the generalized forces

Vector representing the thruster forces

Vector representing the joint torques

Vector representing the body-fixed velocities

Vector representing the body-fixed linear velocities

Vector representing the angular velocities

Vector representing the joint angle velocities

Complete state vector specifying the position,

orientation, and shape of the ATAUV when quaternions are used
Vector representing the position

Vector representing the unit quaternion describing

the orientation in the inertial frame

Complete state vector specifying the position,

orientation, and shape of the AIAUV when Euler angles are used
Vector representing the Euler angles describing the

orientation in the inertial frame
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Sliding surface

€ Control gain for the adaptive gains

A Control gain for the adaptive gains

Y1 Control gain for the adaptive gains
w1 Control gain for the adaptive gains
Qo Design parameter for the adaptive gains « and k;
L HOSMO gain

k1 Control gain for the GSTA

ko Control gain for the GSTA

Basta  Control gain for the GSTA

kp Control gain for the PID controller

kq Control gain for the PID controller

k; Control gain for the PID controller
K, Gain matrix for A in sliding surface
K, Gain matrix for A in sliding surface
X Task variable for the SRMTP method
A; Gain matrix for the SRMTP method
Ky Gain matrix for the first-order SMC
K Gain matrix for the first-order SMC

Matrix and vector operators

e; € RI*? 1 x i vector of ones

RB e R3*3 Rotation matrix expressing the transformation from the inertial
frame to the body-fixed frame

I, e R**n (n x n) identity matrix

S(-) € R3*3 Cross-product operator defined as in [30, Definition 2.2]

Jio € R3%3 Jacobian matrix

J=JI(J;JF)~t  Right Moore-Penrose pseudo-inverse of the task Jacobian
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Chapter 1

Introduction

1.1 Motivation

Currently, subsea operations are often performed using remotely operated vehi-
cles (ROVs) and autonomous underwater vehicles (AUVs) (Figure 1.1). ROVs are
suited for short-term, short-distance inspection and intervention operations. These
vehicles are typically human-operated from a surface support vessel; ROV opera-
tions are therefore expensive (100-200 kUSD /day) and have a large environmental
footprint. Survey AUVs are hydro-dynamically efficient torpedo-shaped vehicles
that are suited for long-distance operations without human supervision but usu-
ally cannot stand still (hover) or perform intervention operations. These vehicles
also rely on a surface support vessel for energy provision. Articulated intervention-
AUVs (ATIAUVs) [51, 59] are novel bio-inspired marine robots that have a slender,
multi-articulated body of an underwater snake robot (USR), which imparts the
ATAUYV with phenomenal accessibility and flexibility, but also multiple thrusters
along its body. The thrusters enable the ATAUV to move forward without using
an undulating gait pattern and provide the ability to hover. This property is espe-
cially important for station-keeping and trajectory tracking in narrow and confined
spaces. These capabilities enable the AIAUV to operate as a floating base manip-
ulator. Moreover, the ATAUV adopts the high-kinematic redundancy of the USR
and the fully energy-efficient hydrodynamic properties and tether-less operation of
AUVs. Compared to standard survey AUVs, ATAUVs have the advantage of full
actuation and the ability to perform intervention tasks. Since an ATAUV can use its
slender body to access narrow spaces, use its thrusters to keep itself stationary and
then use its joints to perform intervention tasks, the ATAUV can exploit the full
potential of the inherent kinematic redundancy. This ability has been addressed
in detail in [77, 79]. Existing AIAUVs are either remotely controlled or used to
perform mostly preplanned missions. However, the ATAUV concept is arguably the
best foundation for the development of a truly autonomous and versatile under-
water robot that can perform both observation and intervention operations in the
same mission, e.g., mapping the seabed and collecting sediments, inspecting and
repairing the net of an aquaculture fish cage, acting as a key instrument for the
automation of sea weed production plants, and detecting and gathering plastic and
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Figure 1.1: The Eelume vehicle inspecting (Courtesy: Eelume)

other debris polluting the oceans.

Station-keeping and trajectory tracking are essential for an ATAUV to be able
to move in confined spaces and to perform intervention tasks. Since the ATAUV is
a floating-base robot manipulator, standard control methods for fixed-base robot
manipulators cannot be applied to the ATAUV. Moreover, the ATAUV is subject
to hydrodynamic and hydrostatic parameter uncertainties, uncertain thruster char-
acteristics, unknown disturbances, and unmodelled dynamics. Furthermore, since
the coupling forces caused by the manipulator joint motion are even larger for the
ATAUYV than for ROVs because the ATAUV has no separate vehicle base while
ROVs have a separate base with a larger inertia than that of the manipulator arm,
it is essential for the control approach to be robust. The design of a robust tra-
jectory tracking controller for the ATAUYV is therefore the objective of this thesis.
Sliding mode control (SMC) is a robust and versatile non-linear control approach
that is particularly well suited for situations where unknown non-linearities affect
the system, as in the case of AIAUVs. In this thesis we therefore investigate using
SMC to obtain a robust trajectory tracking controller. The proposed methods are
theoretically analysed, and simulation and experimental results that demonstrate
their performance are presented.

1.2 Background and literature overview

This section provides an introduction to previous research that is relevant for this
thesis. First, an overview of control methods used for ATAUVs is given. Then, some
background on SMC is presented.

1.2.1 Control of the articulated intervention AUV

Control of ATAUVs or UVMSs (the class of vehicles that the ATAUV is a subgroup
of) has usually been divided into two parts: motion planning and dynamic con-
trol (Figure 1.2). In this section, some previous related research on both motion

2
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——| Motion planner Dynamic controller ATAUV  |[——

Figure 1.2: Overview of control structure for ATAUVs

planning and dynamic control is presented, although this thesis focuses mainly on
dynamic control.

Motion planning

Motion planning is required to enable the ATAUV to move efficiently to solve
the mission tasks and simultaneously assure the safety of the system. ATAUVs
are redundant, as the many joints and thrusters provide more degrees of freedom
than the mission task requires. Thus, the motion planning algorithm must include
redundancy resolution. Methods have been developed for fixed-base robots and
floating-base robots with a large base. The existing methods for motion planning
with redundancy resolution include task-priority inverse kinematics (IK) control
and operational space formulation (OSF). The two main classes of IK are based
on [20] and [71]. While many of the derived methods have no stability analysis,
the stability properties of the singularity-robust multiple task-priority (SRMTP)
method based on [20] are analysed in [3]. Autonomous robots are safety-critical
systems, and safety-related tasks are inherently set-based [61]. Set-based tasks do
not fit naturally into the original task-priority IK framework. The authors in [54]
and [55] extend the SRMTP method to include set-based tasks using hybrid systems
theory. The authors in [73] add set-based tasks to a framework derived from [71].
For ATAUVs specifically, [77] applies the SRMTP method, and [78] applies the
theory from [54]. The existing IK methods do not work well for ATAUVSs: one main
reason is that the dynamics are not considered. A fundamental assumption of IK
is that the kinematics and dynamics can be decoupled; this assumption holds for
ROVs with a heavy base and fixed-base robots. Furthermore, when analysing the
resulting stability properties, it is common to neglect the dynamics and assume that
the reference output is tracked perfectly by a dynamic controller. This approach
makes sense for fixed-base manipulators or for VMS, where the mass of the vehicle is
much larger than the mass of the manipulator arm such that joint motion does not
have a significant impact on the overall motion of the whole vehicle. For ATAUVs,
the coupling forces caused by joint motion are too large to rely on this assumption.
Inertia, drag forces, and restoring forces and moments caused by joint motion have
a significant effect on the overall motion of the whole mechanism, for which any
joint motion leads to a corresponding change in the direction of the thrusters that
are distributed along the robot. For this type of system, the stability properties
of the kinematic and dynamic subsystems must be analysed together since the
assumption that the references are perfectly tracked, on which the IK approach is
based, is not valid for ATAUVs. Therefore, existing IK methods are not suitable for
ATAUV motion planning.

In contrast to IK, OSF directly assigns a control torque to the redundant manip-
ulator [23, 41]. In [7], a novel task-priority framework based on a hierarchy of control

3
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Lyapunov function and a control barrier function based on quadratic programs are
presented. The proposed method guarantees strict priority among different groups
of tasks, such as safety-related, operational and optimization tasks. Moreover, a
soft priority measure in the form of penalty parameters can be employed to pri-
oritize tasks at the same priority level. In contrast to kinematic control schemes,
the proposed framework is a holistic approach to the control of redundant robotic
systems that solves the redundancy resolution, dynamic control and control allo-
cation problems simultaneously. However, a drawback of OSF is its dependency on
accurate knowledge of the dynamic model. This dependence was investigated in [6],
where the effect of ROV mass matrix uncertainties when using OSF was analysed.
In addition to these uncertainties, AIAUVs are strongly affected by forces with
large uncertainties, for example, hydrodynamic parameter uncertainties, uncertain
thruster characteristics, and unknown ocean current disturbances. Existing OSF
methods are therefore not suitable for ATAUV motion planning.

Dynamic control

There are many similarities between ATAUVs, robot manipulators, USRs and more
conventional underwater vehicles (UVs). The ATAUV can be seen as a free-floating
robot manipulator since it is equipped with actuators to control the overall position
and orientation. Modelling and control of traditional fixed-base robots is presented
in textbooks on robotics, such as [70, 72, 76]. However, since the ATAUV is a
floating-base robot manipulator, standard control methods for fixed-base robot
manipulators cannot be applied to ATAUVs. Another type of system characterized
as a free-floating robot manipulator is spacecraft manipulator systems, for which
the only significant external forces are actuator forces. A review of such systems is
given in [24]. These methods are not directly applicable since the ATAUV is also
subject to hydrodynamic and hydrostatic parameter uncertainties and external
disturbances such as currents. The ATAUV has the slender, multi-articulated body
of a USR while also possessing hovering and intervention capabilities because of the
thrusters. Path following and manoeuvring control of USRs are investigated in [36,
38, 42—-45]; however, we do not want to apply these methods directly, as we would
then not be able to utilize the AIAUV’s hovering and intervention capabilities.
Some methods for dynamic control of single-body UVs are presented in [30]. If
the UV is equipped with a manipulator arm, we face the additional challenge of
handling the interaction forces, also known as coupling forces, between the arm and
the vehicle. Several different control approaches that address these challenges are
summarized and presented in [4]. However, [4] considers mostly ROVs. Since the
coupling forces caused by the manipulator joint motion are even larger for ATAUVs
than for ROVs because the ATAUV has no separate vehicle base while ROVs have a
separate base with large inertia compared to the manipulator arm, these methods
cannot be directly applied.

For the ATAUV in particular, some methods for propulsion have been proposed
in [37, 39], and energy-efficient methods for long-distance travel have been pro-
posed in [83]. In [77, 79], a control framework for ATAUVs that uses IK and a
dynamic controller is proposed. However, in both papers, IK is the main focus.
The dynamic controller proposed in [77] is only a simple P-controller, and the
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Zo

Reaching phase

> 1

Sliding phase

Figure 1.3: Hlustrating the reaching and sliding phase with o = 1 4+ z2 (Credit:
Arnt Erik Stene)

controller proposed in [79] is a feedback-linearisation controller combined with a
velocity-based PID controller. Moreover, none of these methods focus on robust
control, which is essential for ATAUVs.

1.2.2 Sliding mode control

SMC systems are designed to drive system state trajectories onto a particular
surface in the state space, named the sliding surface o, in finite time. Once the
sliding surface is reached, SMC keeps the states in the close neighbourhood of the
sliding surface for all future time. Hence, SMC is a two-part controller design. The
first part involves the design of a sliding surface, which should be designed such that
when the sliding variable o goes to zero, the state variables asymptotically converge
to zero. The second part is concerned with selecting a control law that makes the
sliding surface converge to zero in finite time. Thus, SMC can be divided into two
phases, as shown in Figure 1.3. The first phase is called the reaching phase, where
the state trajectory is driven towards the sliding surface, and the second phase is
called the sliding phase, where the state trajectory moves towards the origin along
the sliding surface.

SMC is a robust and versatile non-linear control approach that is particularly
well suited for controlling perturbed control systems, specifically, control systems
perturbed by matched uncertainties and disturbances [80]. We achieve these proper-
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ties using a discontinuous control law. The discontinuous element provides robust-
ness but also introduces chattering, i.e., high-frequency switching in the control
input. Chattering can be avoided by using a saturation or sigmoid function instead
of the discontinuous signum function [17, 74]. We then achieve continuous control
input, but we restrict our sliding system’s trajectory to a boundary around the
sliding surface, thereby losing robustness to disturbances. However, chattering can
also be avoided via higher-order sliding mode (HOSM) techniques [49, 50, 68]. We
thus achieve a continuous control input without loss of robustness. The HOSM
methods drive the sliding variable and its derivatives to zero in the presence of
disturbances and uncertainties [69].

The super-twisting algorithm (STA) [47] is one of the most powerful second-
order continuous SMC algorithms. The STA attenuates chattering by introducing
a dynamic extension to the system such that the discontinuous term is hidden
behind an integrator. In this way, the STA generates a smooth continuous control
input that drives the sliding variable and its derivatives to zero in finite time in
the presence of smooth matched disturbances with a bounded gradient. The main
drawback of this approach is that the boundaries of the disturbance gradient must
be known. This boundary is not always easily estimated, which often leads to
overestimation that leads to unnecessarily large control gains. Therefore, in [69],
an STA with adaptive gains was proposed. The approach continuously drives the
sliding variable and its derivatives to zero in the presence of a bounded disturbance
with unknown boundary, such that no conservative upper bound on the disturbance
gradient has to be considered to maintain sliding because of the adaptive gains.

In recent years, various Lyapunov functions have been designed to obtain con-
vergence conditions and estimates of the reaching time. However, these Lyapunov
proofs are made under conservative assumptions. For example, the perturbations
are dependent only on time [47, 58], the control coeflicient is known [33, 35, 47, 58],
or perturbations are dependent on state and time, but it is supposed that their to-
tal time derivative, i.e., the control signal, is a priori bounded by some constant
[33, 66]. Therefore, [18] proposed a generalized super-twisting algorithm (GSTA)
for a more general scenario, i.e., the case when both the perturbations and control
coefficients are state- and time-dependent and the control coefficients are uncer-
tain. This approach provides some additional theoretical properties over the regular
STA proposed in [47]. However, in this case, we also need to know the boundaries
of the perturbations and control coefficients to obtain bounds on the control gains
that are not excessively conservative.

In [81] and [82], two adaptive GSTAs are proposed as alternatives to the GSTA
proposed in [56] for SISO and MIMO systems, respectively. However, these two
methods do not utilize the fact that the GSTA can handle unknown control coef-
ficients. In [34], a third alternative adaptive GSTA is proposed for an underwater
vehicle; however, this method does not utilize the fact that the GSTA can handle
state-dependent disturbances.

Sliding mode control for underwater vehicles

In recent years, several results have been reported regarding the use of SMC for
many complex dynamic systems. For UVs, in general, some relevant contributions
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are as follows. In [5], an SMC approach for the regulation problem of an UVMS is
developed. This control law is inspired by [27]; it avoids the inversion of the system
Jacobian and is therefore singularity free. In [28] and [31], SMC is used to ad-
dress input uncertainty due to partially known non-linear thruster characteristics.
In [75], chattering-free SMC is proposed for trajectory control. The chattering-free
approach is developed by combining SMC with adaptive PID controller gains and
implementing an adaptive update of the upper bounds on the disturbance and pa-
rameter uncertainties. In [22], SMC is used to address the coupling effects between
a manipulator and an UV. A combination of virtual velocity control and SMC is
used to develop a hybrid control strategy in [87] for the trajectory tracking of an
unmanned UV. In [84], the trajectory tracking problem of an under-actuated un-
manned UV is studied by combining backstepping and SMC. An attitude controller
for an AUV is designed in [21] using a sliding-mode-based adaptive controller. In
[52], the trajectory tracking problem for an UV subject to unknown system un-
certainties and time-varying external disturbances is considered, and the problem
is solved using a non-linear disturbance observer-based backstepping finite-time
SMC scheme. In [62], SMC is applied to land-based snake robots to achieve robust
tracking of a desired gait pattern and under-actuated straight-line path following.

Other sliding mode control approaches

Many different SMC approaches exist; the ones mentioned above are the most
relevant for this thesis. However, many other promising SMC approaches have not
been mentioned. In this section, some of these approaches will be mentioned, and
some examples of each will be given.

Integral SMC is one approach that produces promising results. SMC that re-
tains the order of the compensated system’s dynamics in the sliding mode is called
integral SMC [67, Definition 1.7]. Integral SMC can compensate for disturbances
without the presence of a reaching phase. This feature is desirable, as the system’s
compensated dynamics can become insensitive to matched disturbances and un-
certainties when the sliding surface is reached and sliding motion is established
[67]. In [63], an integral SMC approach is proposed to reduce the disturbance
terms that act on non-linear systems with state-dependent drift and input ma-
trix. The general case of both matched and unmatched disturbances affecting the
system is addressed. In [26], a switching structure scheme for motion control of
industrial robots manipulators was proposed. The scheme implements both a de-
centralized approach and an inverse dynamic-based centralized approach. In both
cases, integral SMC is used to compensate matched disturbances and to estimate
the unmodelled dynamics used for the switching decision mechanism.

A newer class of approaches is terminal SMC and non-singular terminal SMC.
Terminal SMC includes SMC approaches where not only the sliding surface con-
verges to zero in finite time but also the tracking errors converge to zero or a
bounded set in finite time. In [86], the terminal SMC proposed for rigid robotic
manipulators provides faster and higher-precision tracking than conventional con-
tinuous SMC methods. In [85], a non-singular terminal SMC is proposed for non-
linear dynamic systems. This approach avoids the possible singularity during the
control phase, which is a problem with the terminal SMC method. In [64], a robust
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adaptive non-singular terminal SMC is proposed. The proposed method guaran-
tees that the tracking errors converge to a bounded set in finite-time, even under
unmodelled dynamics and external disturbances.

SMC introduces considerable energy into the system, and it is often necessary to
minimise or limit the control input since physical systems have a limited amount of
thrust or power. Methods that combine optimization with SMC have therefore been
introduced to achieve energy-efficient robust control. For example, [25] propose
an optimization-based adaptive SMC. The aim of the approach is to reduce the
control effort while maintaining all the positive aspects of finite-time convergence
and robustness to match uncertainty.

1.3 Contributions and organization of this thesis

In this section, the scope, contributions and outline of this thesis are presented.

1.3.1 Scope

The scope of this thesis, entitled "Robust Control of Articulated Intervention-
AUVs Using Sliding Mode Control", is to solve the trajectory tracking problem for
an ATAUV in 6DOF. This thesis is concerned with the theoretical development of
a trajectory tracking controller for an AIAUV in 6DOF without using any or as lit-
tle model knowledge as possible since the ATAUV is subject to hydrodynamic and
hydrostatic parameter uncertainties, uncertain thruster characteristics, unknown
disturbances, and unmodelled dynamics, i.e., the control approach should be ro-
bust. To achieve this goal, robust algorithms based on SMC are proposed. The
stability properties of the proposed control approaches are analysed theoretically,
and their performance is tested in simulations and experiments.

1.3.2 Contributions and outline

In this thesis, various SMC algorithms are proposed for the trajectory tracking
problem for an ATAUV in 6DOF. We consider both the case where velocity mea-
surements are available and the case where they are not. When velocity measure-
ments are not available, we use a higher-order sliding mode observer (HOSMO) to
estimate the linear and angular velocities. Moreover, a novel GSTA with adaptive
gains that is particularly well suited for control of the ATAUYV is developed. Addi-
tionally, we combine the SRMTP method with different SMC approaches that are
finite-time stable (FTS, Definition A.7). The stability properties of the complete
systems are analysed theoretically, and their performance is tested in simulations
and experiments. The particular contributions and methods of the single chapters
are outlined in the following.

Chapter 2

This chapter presents the ATAUV model represented in terms of both quaternions
and Euler angles and the corresponding tracking control problem for each model.
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We also present the simulation models used in this thesis and the experimental
set-up used in experiments during the fall of 2018 and the summer of 2020.

Chapter 3

This chapter investigates the use of the STA with adaptive gains to solve the
trajectory tracking problem for an ATAUV. The tracking problem is also solved
when velocity measurements are not available by using the STA with adaptive
gains in combination with a HOSMO. The closed-loop system is then analysed.

The STA with adaptive gains, proposed by [69], is the most powerful second-
order continuous SMC algorithm, as it attenuates chattering and does not require
the consideration of any conservative upper bound on the disturbance to maintain
sliding because of the adaptive gains. Motivated by this approach, we solve the
trajectory tracking control problem of an ATAUV in 6DOF using the STA with
adaptive gains. We also solve the trajectory tracking control problem in the case
that velocity measurements are not available by using the STA with adaptive gains
in combination with a HOSMO [46]. We choose to use the HOSMO because of
its strong stability. Specifically, the finite-time stability of the HOSMO enables us
to show that the closed-loop system is uniformly globally asymptotically stable
(UGAS, Definition A.2). The HOSMO is then used to estimate the linear and an-
gular velocities. Additionally, we prove the asymptotic convergence of the tracking
errors for the control law using the STA with adaptive gains in combination with
the HOSMO. Finally, we demonstrate the applicability of the presented control
laws with comprehensive simulation and experimental results. The purpose of the
experiments is to validate the theory and the robustness of the control approaches
by showing that the proposed approaches work in experiments and not only in the
ideal case presented by simulations. This argument holds for both the STA with
adaptive gains and the HOSMO, as, to the best of the author’s knowledge, few
experimental results exist for these methods.

Chapter 4

This chapter investigates the use of the GSTA to solve the trajectory tracking
problem for an ATAUV. The tracking problem is also solved in the case that velocity
measurements are not, available by using the GSTA in combination with a HOSMO.
The closed-loop systems are then analysed.

The GSTA, proposed by [18], is an extension of the STA that provides finite-
time convergence in the case where both the perturbations and control coefficients
are state- and time-dependent and the control coefficients are uncertain, which is
essential for robust control of an ATAUV. Motivated by this scenario, we solve the
trajectory tracking control problem of an ATAUV in 6DOF using the GSTA. Fur-
thermore, we prove the asymptotic convergence of the tracking errors. Additionally,
we prove that the GSTA is actually globally uniformly finite-time stable (GUFTS,
Definition A.8), while in [18], the GSTA was proven to be only globally finite-time
stable (GFTS, Definition A.7). We also consider the case where velocity measure-
ments are unavailable by solving the tracking control problem using the GSTA in
combination with a HOSMO [46]. The reason we choose to use the HOSMO is its
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strong stability. Specifically, the finite-time stability of the HOSMO enables us to
show that the closed-loop system is UGAS. Furthermore, we prove the asymptotic
convergence of the tracking errors when the HOSMO is included. We also present,
comprehensive simulation and experimental results that validate and illustrate the
applicability of both control schemes. The purpose of the experiments is to val-
idate the theory and the robustness of the control approaches by showing that
the proposed approaches perform well in experiments and not only in the ideal
case presented by simulations. This argument holds for both the GSTA and the
HOSMO, as, to the best of the author’s knowledge, few experimental results exist
for these methods.

Chapter 5

In this chapter, we compare the previously proposed tracking control laws presented
in Chapter 3 and Chapter 4. Specifically, we compare the performance of the control
law using the STA with adaptive gains presented in Section 3.2.1 and the control law
using the GSTA presented in Section 4.2.1. We also compare the control scheme in
which the STA with adaptive gains is combined with a HOSMO, which is presented
in Section 3.2.2, with the control scheme in which the GSTA is combined with a
HOSMO, which is presented in Section 4.2.2. In addition, we solve the tracking
problem using a standard PID controller to evaluate how the SMC algorithms
perform compared to a linear controller. The main objective and contribution of
this chapter is the comparison between the STA with adaptive gains, the GSTA
and a PID controller.

Chapter 6

In this chapter, we propose an adaptive GSTA for a class of systems whose pertur-
bations and uncertain control coefficients are time- and state-dependent, i.e., we
combine the best properties of the STA with adaptive gains [69] (used in Chap-
ter 3) and the GSTA [18] (used in Chapter 4). The proposed approach consists of
using dynamically adapted control gains that ensure global finite-time (GFT) con-
vergence. The advantage of adaptive gains is that no conservative upper bound on
the perturbations and control coefficients must be considered to maintain sliding.
We prove that the resulting closed-loop system is GFTS.

In Chapter 3, we investigate the use of the STA with adaptive gains to control
an ATAUV, and in Chapter 4, we investigate the use of the GSTA to control an
ATAUV. In Chapter 5, we compare the two SMC algorithms via both simulations
and experiments, and we observe that the STA with adaptive gains produces better
tracking results than does the GSTA, even though the GSTA has better theoretical
properties as it is proven to provide GFT stability for a larger class of systems. The
adaptive gains are thus seen to be very practical and provide tuning advantages.
Therefore, we find it desirable to combine the practical advantages of the adaptive
gains with the theoretical advantages of the GSTA to control an ATAUV. A novel
adaptive GSTA is thus proposed for a class of systems whose perturbations and un-
certain control coefficients are time- and state-dependent. The proposed approach
consists of using dynamically adapted control gains in a GSTA, which ensures GFT
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convergence. A non-smooth strict Lyapunov function is used to obtain the condi-
tions for the GFT stability. To illustrate the effectiveness of the proposed adaptive
GSTA, we use the adaptive GSTA to solve the trajectory tracking control problem
of an ATAUV in 6DOF. Additionally, we show that the adaptive GSTA makes the
tracking errors of the ATAUV converge asymptotically to zero. We also present
simulation and experimental results for the AIAUV that validate and demonstrate
the applicability of the proposed control law.

Chapter 7

In this chapter, a novel combined kinematic and dynamic control approach is pro-
posed for vehicle-manipulator systems (VMSs). The main idea is to combine the
SRMTP framework with a robust SMC while simultaneously ensuring that the
task errors remain bounded. This novel approach allows us to analyse the stabil-
ity properties of the kinematic and dynamic subsystems together in the presence
of model uncertainty while retaining the possibility of solving multiple tasks si-
multaneously. We present two examples of robust SMC that satisfy the required
condition of making the velocity vector converge to the velocity reference vector in
finite time.

Specifically, we combine the SRMTP framework [20] with a robust SMC while
simultaneously ensuring that the task errors remain bounded. The kinematic sta-
bility analysis of the SRMTP method is based on the results in [3]. Any SMC
can be used as long as it is able to make the velocity vector converge to the ve-
locity reference vector in finite time. The reference vector is chosen as the output
from the SRMTP inverse kinematic controller. The finite-time convergence prop-
erty of the SMC enables us to show that the multiple set-point regulation tasks
will converge asymptotically to zero without the strict requirement that the veloc-
ities are perfectly controlled. This novel approach thus avoids the assumption of
perfect dynamic control that is common in kinematic stability analyses for vehi-
cle manipulators. We provide two examples of SMCs that can make the velocity
vector converge to the velocity reference vector in finite time: a first-order SMC
and the GSTA with adaptive gains proposed in Chapter 6. We choose these two
SMCs because we want to demonstrate how both a basic SMC, i.e., a first-order
SMC, and a higher-order SMC fit into the control scheme. Part of the analysis of
the first-order SMC is based on [5], who consider a set-point regulation problem
for a UVMS. The control law proposed in [5] avoids the inversion of the Jacobian
system, thus overcoming the occurrence of kinematic singularities, but the inverse
kinematic problem is not considered. In this chapter, we extend the analysis in [5]
to show the finite-time convergence of the velocity controller. A simulation and
experimental study for the ATAUV are performed to demonstrate the effectiveness
of the proposed method.

Chapter 8

This chapter presents concluding remarks and suggestions for future research.
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Chapter 2

ATAUV: Mathematical Model,
Simulation Model and Experimental
Set-up

This chapter presents the ATAUV model represented with both quaternions and
Euler angles and the corresponding tracking problem for each model. We also
present the simulation model used in this thesis and the experimental set-up used
in the experiments conducted during the fall of 2018 and the summer of 2020.

2.1 AITAUYV model and problem statement

In this section, we provide the model and the mathematical definition of the track-
ing control problem for the ATAUV. The ATAUV consists of n links connected by
n — 1 motorized joints. Each joint is treated as a one-dimensional Euclidean joint.
To follow the convention used in the robotics community, the first link is referred
to as the base of the manipulator. The base link is link 1, and the front link, where
the end-effector is positioned, is link n. The joints are numbered from i = 1 ton—1
such that link ¢ and link 7+ 1 are connected by joint i. Furthermore, the ATAUV is
equipped with m thrusters, including one or more thrusters acting along the body
of the ATAUV to provide forward thrust and tunnel thrusters acting through the
links to provide station-keeping capability. The ATAUYV is considered to be a float-
ing base manipulator operating in an underwater environment subject to added
mass forces, dissipative drag forces, and gravity and buoyancy forces. This allows
us to model the ATAUV as an UVMS, with dynamic equations given in matrix
form by [4, 32],

M(q)¢ + C(q, )¢ + D(q, )¢ + g(q, RE) = 7(q) (2.1)

where ¢ € R("~1) is the vector representing the joint angles, M(q) is the inertia ma-
trix including added mass terms, C(q, ¢) is the Coriolis-centripetal matrix, D(q, ()
is the damping matrix, and g(g, R) is the matrix of gravitational and buoyancy
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2. AIAUV: Mathematical Model, Simulation Model and Experimental Set-up

forces. The control input is given by the generalized forces 7(q):

(g) = . T'(q) O6x (n—1) } |:Tthr:| (2.2)

(n—1)xm  Ln-1)xm-1)] | Tq

where T'(q) € R6*™ is the thruster configuration matrix, 74, € R™ is the vector
of thruster forces, and 7, € R~ represents the joint torques. To implement the
control input 7(g), a thruster allocation scheme as proposed in [79] needs to be
implemented to distribute the desired control inputs onto the m thrusters. The
vector of body-fixed velocities, (, is defined as

¢=[T W §7)" eROTD (2.3)

where v and w are the body-fixed linear and angular velocities of the base of
the ATAUYV, respectively, and ¢ is the vector of joint angle velocities. The desired

velocities are denoted as

Ca=[vg wi df (2.4)

in the body-fixed frame. To represent the orientation of the AIAUV, both Euler
angles and quaternions can be used.

]T

2.1.1 Model representation using quaternions

In this section, we will describe the model using quaternions. When we use quater-
nions to represent, the model, we avoid the singularities in the Jacobian matrix that
arise from the Euler angles. We therefore obtain the advantage of a well-defined
Jacobian. The complete state vector specifying the position, orientation, and shape
of the ATAUV when quaternions are used is defined as

T ne
&=l 7 ¢ eRrTHY (2.5)

where n7 = [a: Y Z]T € R? is the position of the base and p = [e’:‘T n]T =
[51 €2 €3 77]T € R* is the unit quaternion describing the orientation of the
base in the inertial frame. The relationship between the body-fixed velocities and
the complete state vector specifying the position, orientation, and shape of the
ATAUYV is given by the differential equation

. Ri(p) 033 035 (n—1)
gq = Jq(p)g = O4x3 Jk,oq(p) 04><(n71) ¢ (2-6)
On—1)x3 Om-1)x3 Ln-1)x(n-1)

where RP is the rotation matrix expressing the transformation from the inertial

1 (34 S(e)
T

frame to the body-fixed frame and J o4(p) = 3 } , where I3 is the (3% 3)

identity matrix and S(-) is the cross-product operator defined as in Definition A.1.
By defining the desired trajectories as

T T 17

§ga = [771,(1 Py qd] (2.7)
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2.1. AIAUV model and problem statement

where pg = [55 nd]T, the orientation error, which is computed via the composi-
tion (quaternion product) [4], is then given by

di nma +eleq

P Lﬂ _ {nad —nqe + S(eq)e 2.8)

The complete tracking error can then be defined as

B i M — M,d
o= |E| = |nca—nac + S(ea)e (2.9)
q q—qa

Remark 2.1. Note that for the orientation, the goal is to ensure that p = £py,

which corresponds to p = [leg :l:l]T. Now, since the Euler parameters satisfy
n? + eTe = 1, it is sufficient to make & — 0 because then p = [01X3 il]T.
Therefore, 7 is not included as an independent state in (2.9).

The goal of the tracking problem is to make the error vector (2.9) converge
to zero. The tracking control objective is therefore to make (£,,¢) = (0,0) an
asymptotically stable equilibrium point of (2.1) and (2.6), which will ensure that
the tracking error will converge to zero.

2.1.2 Model representation using Euler angles

In this section, we will describe the model using Euler angles. A well-known problem
when we use the Euler angles is that the Jacobian can become singular at 6 = +7/2
(zyz-convention); however, if we stay away from that angle, the Jacobian is well
defined and the inverse of the Jacobian matrix can be used. The complete state
vector specifying the position, orientation, and shape of the ATAUV when Euler
angles are used is defined as

&=[F nf ¢7]7 eRSHD (2.10)
where 17 = [ac Y z]T € R? is the position of the base and 1, = [qb 0 w]T €R3
are the Euler angles describing the orientation of the base in the inertial frame.
The relationship between the body-fixed velocities and the complete state vector
is given by the differential equation

. R 03x3 03% (n—1)
e =Je(m)(=| Osxs T Osx(n-1) | ¢ (2.11)
Om-1)x3 Om-1)x3 Ln—1)x(n-1)

where Jj, , is the Jacobian matrix. By defining the desired trajectory as &.q =

T .
[nfd ngjd qcﬂ , the tracking error vector can be defined as

B m M — M,d
Ee = |M2]| = |M2—N2,d (2.12)
q q—dqad
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2. AIAUV: Mathematical Model, Simulation Model and Experimental Set-up

The goal of the tracking problem is to make the error vector, ée, converge to zero.
The tracking control objective is therefore to make (&.,¢) = (0,0) an asymptotically
stable equilibrium point of (2.1) and (2.11), which will ensure that the tracking
errors will converge to zero.

2.2 Simulation model

The simulation of the motion of the ATAUV is performed using MATLAB Simulink.
The model is implemented via the method described in [65] and is based on Eelume
robots. In this thesis, we use two different ATAUV models, one based on the 2016
version of the Eelume robot and one based on the 2020 version of the Eelume robot.
A detailed description of each robot is given in the following sections. Note that
the robots have only 5 visible links (Figure 2.1 and Figure 2.2); however, the links
are interconnected by joint modules that allow rotation about two axes (y and z).
Accordingly, we model each joint as two revolute joints interconnected by a small
link; this is why we define the robot as possessing n = 9 links and n—1 = 8 revolute
joints. In the simulations, both robots are assumed to be neutrally buoyant. The
link frames are right-hand coordinate systems, in which the completely outstretched
robot is placed such that the z-axes point forward and the z-axes point upwards.
The physical parameters in the simulations are shown in Table 2.1.

Table 2.1: Physical parameters used in the simulations

Physical parameter Value
C\: Added mass coefficient for the cross section 1
Cyg,: Non-linear drag coefficient in surge 0.2
Cy,: Non-linear drag coefficient in roll 0.1
Cyg,: Non-linear crossflow drag coefficient 0.5
Cy,: Linear cross-sectional drag coefficient 0.1
a: Added mass ratio in surge/heave for a link 0.2
B: Linear drag parameter in surge 0.1
~: Linear drag parameter in roll 0.1

2.2.1 Eelume 2016 version

The 2016 version of the Eelume robot has a length of 3.37 m, weighs 85.6 kg, and
is shown in Figure 2.1. The ATAUV has n = 9 cylindrical links with radius 0.09 m,
n — 1 = 8 revolute joints and m = 7 thrusters. The properties of each link are
presented in Table 2.2. In the thrusters column, "2: Z, Y" means that the link
has 2 thrusters: one thruster works in the z-direction and one thruster work in the
y-direction of the link frame. Joints 1, 3, 5 and 7 rotate about the z-axis, and joints
2, 4, 6 and 8 rotate about the y-axis. Joint rotation occurs in the link frame of the
corresponding link, i.e., joint 1 rotates about the z-axis of link 1. Note that the
thruster configuration of the simulation model is singular in roll when the ATAUV
is straight. The thruster allocation matrix is implemented, as proposed in [79]. The
maximum thrust of each thruster is approximately 50 N.
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2.2. Simulation model

Figure 2.1: The Eelume 2016 vehicle (Courtesy: Eelume)

Table 2.2: Eelume 2016 link properties

Link nr. | Length [m] | Mass [kg] | Thrusters
1 0.62 15.8 None
2.4, 6,8 0.10 25 None
3 0.59 15.0 2:7Z,Y
5 0.80 20.4 33X, X, Z
7 0.59 15.0 2:Y,7Z
9 0.37 9.4 None

2.2.2 Eelume 2020 version

The 2020 version of the Eelume robot has a length of 6.15 m, weighs 194.1 kg,
and is shown in Figure 2.2. The ATAUV has n = 9 cylindrical links with radius
0.1 m, n — 1 = 8 revolute joints and m = 12 thrusters. The properties of each
link are presented in Table 2.3. In the thrusters column, "4: (X,Z), (X,-Z), Y, -Y"
means that the link has 4 thrusters: two thrusters work in both the z-direction
and the positive /negative z-direction in the link frame, and two thrusters work in
the positive/negative y-direction. The thrusters that work in both the a-direction
and z-direction are tilted 45deg such that they works in both directions. Joints
1, 3, 5 and 7 rotate about the z-axis, and joints 2, 4, 6 and 8 rotate about the
y-axis. Joint rotation occurs in the link frame of the corresponding link, i.e., joint
1 rotates about the z-axis of link 1. The thruster allocation matrix is implemented,
as proposed in [65]. The maximum thrust of each thruster is approximately 60 N,
while the limit on the joint torques are 16 Nm.
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2. AIAUV: Mathematical Model, Simulation Model and Experimental Set-up

Figure 2.2: The Eelume 2020 vehicle (Courtesy: Eelume)

Table 2.3: Eelume 2020 link properties

Link nr. | Length [m] | Mass [kg] Thrusters
1 0.84 26.4 None

2.4, 6,8 0.08 2.6 None
3 1.38 43.5 4: (X,2), (X-2), Y, -Y
5 1.63 513 | 4 (X.2), (X.Z), Y, Y
7 1.38 43.5 4: (X,-2), (X,2),-Y, Y
9 0.60 19.0 None

2.3 Experiments fall 2018

This section describes the Eelume 2016 robot and the experimental set-up employed
for validating the proposed algorithms for trajectory tracking. We also describe the
test cases used in the experiments conducted during the fall of 2018.

2.3.1 The Eelume 2016 robot

The Eelume robot used during the experiments conducted during the fall of 2018
was the 2016 version of the robot, which is described by the simulation model
in Section 2.2.1. A more detailed description of the robot can be found in [51].
The Eelume 2016 robot has internal joint controllers, which means that in the
experiments, we could only provide a desired joint reference ¢4 rather than joint
torque. This is also why we use a P-controller in the simulations performed to be
compared with the experiments.
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2.3. Experiments fall 2018

Figure 2.3: The Eelume 2016 vehicle with reflective markers attached to the base

2.3.2 Experimental set-up

We performed the experiments at the MC-lab at NTNU, Trondheim, Norway [1].
The tank located in the MC-lab has the following dimensions: length of 40 m,
height of 1.5 m and width of 6.45 m. The underwater motion capture system from
Qualisys [2] is installed in the basin to provide us with real-time measurements
of the position and orientation of the base of the ATAUV. The Qualisys system
has six identical cameras, allowing us to track reflective markers attached to the
base of the AIAUV underwater, as shown in Figure 2.3. The cameras allow us to
track the reflective markers inside a working area with dimensions of 10 m x1.35 m
x5.45 m.

The system structure used during the experiments is illustrated in Figure 2.4.
The Qualisys system or camera positioning system sent the measured position
and orientation from an external computer, to which the Qualisys system was
connected, through UDP to LabVIEW 2016. LabVIEW was then connected to
the ATAUV through an optical fibre cable and through UDP to another computer
running MATLAB Simulink with the dynamic controller; thruster allocation, which
was implemented as in [79]; and the reference generator. The computer running
MATLAB Simulink received the measured position and orientation, and if the
control laws without the HOSMO were used, also an estimate of the linear and
angular velocities, which were estimated by using an extended Kalman filter based
on the kinematic model. This solution was chosen since only position measurements
were available during the experiments. When the control laws with the HOSMO
were used, the linear and angular velocities were estimated by the HOSMO in
the dynamic controller. The computer running MATLAB Simulink then sent the
thrust commands and the desired joint angles back to LabVIEW through UDP.
These were then passed through to the AIAUV through the optical fibre cable.
The trajectories for the position and orientation of the base of the ATAUV and the
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ATAUV
MATLAB
Camera : :
positioning |—| Labview —| Dynamic controller Thruster allocation [—
system :

Reference generator

Figure 2.4: Tllustration of the system structure (experiments fall 2018)

joints were generated by setting set-points and by then using a filter to create a
continuous trajectory between them.

2.3.3 Test cases for simulations and experiments

In this section, we describe the different test cases considered in the simulations
and experiments performed during the fall in 2018. The cases, or shapes, chosen
to validate and compare the control laws presented in this thesis are C-shape, C-
shape with a moving head and I-shape. The reason we chose these shapes is the two
different modes, transport mode and operation mode, which is explained in detail
in [79]. The transport mode is for long-distance travel, and the operation mode
is for performing inspections and intervention tasks. In the transport mode, the
accuracy of the tracking is not that important, and we therefore chose to use the
I-shape for that case. In the operation mode, however, the accuracy is extremely
important, and since the ATAUV is unactuated in roll when the ATAUYV is in the I-
shape, the I-shape cannot be used for inspection or intervention tasks. We therefore
chose to test two other cases for the operation mode where all DOFs are actuated.
The two cases chosen are the C-shape and the C-shape with a moving head.

In Figure 2.5 the reference trajectory for the position and orientation that is
used for all the simulation cases is shown. At 100 s, we change the reference for x,
y and 1, and at 300 s, we change the reference for z and 6. We also change the
reference for z, 1) and 6 at 450 s and for x, y and z at 600 s. The reference values
for z are, however, different for the different cases. For the C-shape, the reference
for z starts at —1 and goes to —0.7, and for the C-shape with a moving head
and the I-shape, the z reference starts at —0.7 and goes to —0.5. The reason for
the difference is that during the experiments, we observed that some of the joints
were peeking out of the water and creating problems for the measurements system
when we started the trajectory at —1 for the C-shape with a moving head and the
I-shape. The z reference for the C-shape with a moving head when the control law
with the HOSMO is used is also changed at 100 s, starting at —1, going to —0.7 at
100 s, and then to —0.5 at 300 s.
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Figure 2.5: Reference trajectories for position and orientation

In the experiments, a test representing both modes was also performed, i.e.
we started with the transport mode and then went into the operation mode. This
test was mainly performed to highlight the reasoning for choosing the tests (i.e.
the shapes). In the complete test, we first move forward in the a-direction in the
transport mode before we turn the robot into the C-shape, and then we move in
1 to make the head face the direction that it originally was facing in the I-shape.
The head is then moved around to make the test represent a complete inspection.
In Figure 2.6a and Figure 2.6b, the movement of the joints, the position and the
orientation are shown. Note the oscillations when the robot is in the I-shape. These
oscillations occur because the robot is underactuated in roll, which means that we
do not have any thrusters that can provide a torque to control roll. The robot
will therefore move from side to side in roll. Now, since the controller will try to
control roll anyway, the controller calculates a force that it needs to stabilize the
roll angle. This force is given to the thruster allocation algorithm to distribute
to the thrusters. Since the robot is underactuated in roll, the thruster allocation
scheme should have given zero as the desired moment in roll, but that is not the
case. Some of the desired moment in roll is therefore distributed to the thrusters,
which cause an oscillation effect. From these results, we can find that performing
an inspection or intervention in the I-shape would be very difficult, or at least the
precision would be bad, and we therefore move into the C-shape where the robot
is still before we perform the inspection.

To make the simulations a valid comparison with the experiments, we use a
P-controller for the joints. The reason for this choice is that the Eelume robot has
an internal joint controller, which is a P-controller. We therefore include figures
of the actual joint angles and their reference trajectories in the description of the
test cases in the section below, both in simulations and experiments. This is to
provide the reader with an idea of how well the internal P-controller for the joints
performed.
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Figure 2.6: Tracking results for a complete inspection
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Figure 2.7: Configurations

C-shape

In the C-shape configuration, the ATAUV is shaped like a C and the ATAUV is actu-
ated in every DOF, since the thrusters are oriented such that the robot can provide
thrust in all 6DOFs. The C-shape is therefore ideal for operation mode. In C-shape
the joint angles references are set to ¢4 = [45deg 0deg 45deg 0deg 45deg 0deg
45deg 0deg]”, and in Figure 2.7a, the configuration of the robot is shown. In Fig-
ure 2.8a and Figure 2.8b, the joint angles are shown together with their reference
trajectories for the C-shape for simulations and experiments, respectively.

C-shape with a moving head

The C-shape with a moving head configuration of the ATAUV is similar to that
of the C-shape configuration; the only difference is that the n — 1-th and n — 2-th
joints are moving such that the camera positioned in the n-th joint of the AIAUV
is looking around. The references for the joint angles at ¢ = 0 are therefore set to
q4(0) = [45deg 0deg 45deg 0deg 45deg 0deg 45deg 0deg]T, and then at 50 s g7

and ¢g starts to move in a circular motion, while the other joints remain constant.
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The reference for ¢; is given by four set-points 0 deg — 45 deg — 0deg — —45 deg.
The set-point is changed every 50 s, and a filter is used to create a continuous
trajectory between the set-points. The set-points are then repeated trough the
simulation. The reference for gg is created in the same manner, however the set-
points are then given by 45deg — Odeg — —45deg — Odeg. The joint angles
together with their reference trajectories for the C-shape with a moving head are
presented in Figure 2.9a for the simulations, and in Figure 2.9b for the experiments.

I-shape

In the I-shape, the joints are all set to zero such that the robot is straight, like an I,
i.e. the joint angles references are set to ¢; = [0 deg 0deg 0deg 0deg 0deg 0deg
Odeg Odeg]?. The configuration of the robot is shown in Figure 2.7b. In Fig-
ure 2.10a and Figure 2.10b, the joint angles are shown together with their reference

(a) Simulation results

(b) Experimental results

Figure 2.9: Joint angles in the C-shape with a moving head case

trajectories for the C-shape for simulations and experiments, respectively.
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Figure 2.10: Joint angles in the I-shape case

2.4 Experiments summer 2020

This section describes the Eelume 2020 robot and the experimental set-up employed
for validating the proposed trajectory tracking algorithms. We also describe the test
cases used in the experiments conducted during the summer of 2020.

2.4.1 The Eelume 2020 robot

The Eelume robot used during the experiments conducted during the summer of
2020 was the 2020 version of the robot, which is described by the simulation model
in Section 2.2.2. This new robot has torque control on the joints, which means that
we could use our control algorithms to also control the joint angles by means of
the torque, and not just the position and orientation of the vehicle by means of the
thrusters.

2.4.2 Experimental set-up

The experiments were performed in the same location as the experiments conducted
during the fall of 2018, i.e., at the MC-lab at NTNU, Trondheim, Norway [1].
Additionally, we used the underwater motion capture system from Qualisys [2],
which allowed us to track reflective markers inside a working area with dimensions
of 10 m x1.35 m x5.45 m. In Figure 2.11, the 2020 version of the robot can be
seen, with the reflective markers attached to the centre link of the robot.

The system structure used during the experiments is illustrated in Figure 2.12.
The Qualisys system or camera positioning system sent the measured position and
orientation from an external computer, to which the Qualisys system was con-
nected, via UDP to a different computer running LabVIEW 2016. The LabVIEW
computer was then connected via UDP to another computer running MATLAB
Simulink, where the reference generator or inverse kinematic scheme, the dynamic
controllers and the thruster allocation were implemented. The computer running
MATLAB Simulink also ran Eelume Suite, which is the program developed by
Eelume to connect to the robot. From the Eelume Suite program, we obtained
the orientation of the vehicle and the joint angles. We sent the joint torques and
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Figure 2.11: The Eelume 2020 vehicle with reflective markers attached to the centre
link

MATLAB
Camera :
positioning [——| Labview 1 l
system i

| Reference generator/
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—| Dynamic controller ——| Thruster allocation —‘

AIAUV Eelume Suite

Figure 2.12: Tllustration of the system structure (experiments summer 2020)

thrust commands from MATLAB Simulink to Eelume Suite. Eelume Suite sent
and received information to and from the robot through an optical fibre cable. To
estimate the linear and angular velocities of the vehicle and the joint velocities,
we used an extended Kalman filter based on the kinematic model, which was also
implemented in MATLAB Simulink. As inputs to the Kalman filter, we used the
position measurements from Qualisys and the orientation and joint measurements
from the robot, as the orientation measurements from the robot were more accurate
than those from Qualisys. To control the thrusters, we used current control. The
thruster reference was thus proportional to the motor current, which means that we
used a linear mapping to calculate the commanded reference we sent from MAT-
LAB Simulink from the desired force. The commanded reference was a number in
the range of +100, which corresponded to £23 A on the motor and approximately
+60 N.

2.4.3 Test cases for simulations and experiments

In this section, we describe the different test cases considered in the simulations
and experiments performed during the summer of 2020.
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Figure 2.13: Reference trajectories for the inspection case

Inspection

In this case, we wanted to highlight two different modes, i.e., transport mode and
operation mode, which are explained in detail in [79]. Transport mode is for long-
distance travel, and operation mode is for performing inspections and intervention
tasks. However, we noticed during the experiments that the 2020 version of the
robot is very sensitive in roll when in the I-shape (in which all joint angles are
equal to zero: ¢ = 0deg), which is used for transport mode. We therefore needed
to use a very small gain for roll control when in the I-shape. When we then tried
to transition from the I-shape to the C-shape (in which every second joint angle
is equal to 55 deg), we needed a much larger gain in roll to achieve good tracking.
Keeping the same gain as for the I-shape resulted in a large deviation in roll, and
the robot ended up touching the bottom of the basin during the transition. When
we used a controller with an integrator, we were able to eventually achieve good
tracking after the transition from the I-shape to the C-shape; however, it took a
very long time. Since the robot is so sensitive in roll, it was also very difficult to
achieve good tracking in the I-shape because of the dead-zone of the thrusters. We
therefore ended up with a case that could highlight only the operation mode.

In this case, we performed an inspection by setting the AIAUV in the C-shape
configuration and then, after some time, moving joints 7 and 8 in a circular motion
such that link 9 was moved around. In Figure 2.13, the reference trajectory for the
position, the orientation and the movement of the joints are shown. The trajecto-
ries for the position and orientation of the ATAUV and the joints were generated
by setting set-points and then applying a filter to create a continuous trajectory
between them.

Singularity-robust multiple task-priority

This case was chosen to test the combined kinematic and dynamic controller, which
will be presented in Chapter 7. Therefore, we used the SRMTP method to create a
continuous trajectory for the ATAUV to follow. The dynamic controller acts on the
centre link of the ATAUV, and the output reference for the SRMTP method must
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2.4. Experiments summer 2020

therefore be created for the centre link. To demonstrate the proposed approach,
we used the following two set-point regulation tasks:

1. Control the position and orientation of the front end (link 9)

2. Control the position and orientation of the back end (link 1)

This combination of tasks illustrates the ability of the ATAUV to move to a position
of interest and then perform a double observation task by simultaneously adjusting
the position and orientation of its front and back ends.

The expressions for the task error and the task Jacobian for task 1 are as follows:
Task 1 - Position and orientation of the front end

T
~ ~ T ~T
X1 = (U{,If) T2, 7
Jl = JCfa

where 77{7[ is the position deviation of the front end and 7js s is the orientation
deviation of the frond end. The task Jacobian .J; for task 1 is the front-end Jacobian
Jef, which relates the body-fixed velocities of the front end to the body-fixed
velocity of the centre link and the joint velocities. The tasks can then be solved
by using the position and orientation of the centre link and the two double-joint
modules in front of the centre link.

The second task utilizes the position and orientation of the centre link and the
two double-joint modules behind the centre link, so the expressions for the task
error and the task Jacobian for task 2 are as follows:

Task 2 - Position and orientation of the back end
%o = [ ) i)

J2 = Jebs

where 7} ;, is the position deviation of the back end and 7 is the orientation
deviation of the back end. The task Jacobian Jo for task 2 is the back-end Jaco-
bian J., which relates the body-fixed velocities of the back end to the body-fixed
velocity of the centre link and the joint velocities.

The reference velocities, (., are calculated according to

Gr=JT A + NiJy Aoxo (2.13)

where J;t = JI'(J;JT)~1 is the Right Moore-Penrose pseudo-inverse of the task
Jacobian and N is the null space projector of task 1. The set-points x; ¢ were set
manually and filtered through a third-order reference filter to avoid discontinuities
and large jumps in the calculated reference velocities. The gain parameters in (2.13)
were set to A = 0.5l and Ay = 0.5154-

The reference trajectories for each task are shown in Figure 2.14.
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Chapter 3

Tracking using the Super-Twisting
Algorithm

This chapter investigates the use of the STA with adaptive gains to solve the
trajectory tracking problem for an ATAUV. The tracking problem is also solved
when velocity measurements are not available by using the STA with adaptive
gains in combination with a HOSMO. The closed-loop system is then analysed.

Contributions of this chapter

The contributions of this chapter can be summarized as follows. The trajectory
tracking control problem of an ATAUV in 6DOF is solved using the STA with
adaptive gains. The trajectory tracking control problem is also solved by using the
algorithm in combination with a HOSMO. Additionally, the tracking errors for the
control law using the STA with adaptive gains in combination with the HOSMO are
proven to converge asymptotically to zero. We demonstrate the applicability of the
presented control laws with comprehensive simulation and experimental results.

Organization of this chapter

This chapter is structured as follows. In Section 3.1 the STA with adaptive gains
is given in detail. The control law and observer design for tracking the desired
trajectory are presented and analysed in Section 3.2. The simulation results are
presented in Section 3.3 and the experimental results are presented in Section 3.4.
In Section 3.5 a chapter summary is presented.

Publications

This chapter is based on [8], [9] and [15].

3.1 The super-twisting algorithm with adaptive gains

In this section the STA with adaptive gains, which will be used for trajectory
tracking in this chapter, will be introduced. In recent years, SMC has been further
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3. Tracking using the Super-Twisting Algorithm

developed into higher-order SMC schemes, which removes the chattering problem.
The STA with adaptive gains, proposed by [69], is the most powerful second-order
continuous SMC algorithm, as it attenuates chattering and does not require the
consideration of any conservative upper bound on the disturbance in order to main-
tain sliding because of the adaptive gains. The STA with adaptive gains proposed
in [69] can be written by the update law

uSTA(o? = —alo|*?sgn(o) + v (3.1)
0 = —Psta segn(o)
where o is the sliding surface and the adaptive gains are defined as
_Jw 4 ?fcr;éO (3.2)
0, ifo=0
and
Bsta = 2ea + \ + 4g? (3.3)

where €, A\, 71 and w; are positive constants and o is the sliding surface.

3.2 Tracking control laws

In this section, we will present two tracking control laws for the AIAUV based
on the STA with adaptive gains: one where only the STA with adaptive gains is
used, and one where the STA with adaptive gains is combined with a HOSMO.
The reason for this is that the STA is only applicable to systems where the control
input appears in the equation for the first derivative of the sliding variable, both the
position and velocity of the ATAUV must therefore be available for measurement.
For the case when only the position measurements are available, we use a HOSMO,
as proposed in [46], to estimate the states.

3.2.1 Control law based on the STA with adaptive gains

In this section, a control law based on the STA with adaptive gains is presented.

Sliding surface:

For SMC to be used, a sliding surface needs to be designed. The surface should
be designed such that when the sliding variable o goes to zero, the state variables
asymptotically converge to zero, and such that the control input 7(¢) appears in
the first derivative of o. Define #; = éq, where éq is given by (2.9) and

R (D) O3x3 03% (n—1) .

Zo = | Ozx3 (3 +5(8)  Osxne1) | (C—C) =Ty(H)C (3.4)
O(r—1)x3 O(r—1)x3 Itn—1)x(n-1)

where ¢ and (4 are defined in (2.3) and (2.4), respectively. The sliding surface can

then be chosen as
0q = T1 + 22 € R6+(n71) (35)
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3.2. Tracking control laws

If 0, =0, we will now have Z; + 2 = 0. Since I3 = Z1, we can write this as
I =—& (3.6)

which will ensure that Z; globally exponentially converges to zero. Now, since
Z1 = &g, the state variables ¢, will also globally exponentially converge to zero if
o4 = 0. To drive the sliding surface to zero, we will use the STA with adaptive
gains.

Control input:

Now, we want the control input 7(¢) to be chosen such that ¢, = ugra, so that
o4 and ¢4 will reach zero in finite time. However, since we do not know anything
about the model, we choose our control input to be

7(q) = usra(oy) (3.7)

with o, defined as in (3.5). With this choice, ugta appears in 4, as desired.

3.2.2 Control law based on the STA with adaptive gains
combined with a higher-order sliding mode observer

In this section, a control law based on the STA with adaptive gains combined with a
HOSMO will be derived. Using Lyapunov theory, we will show that (ée, f) =(0,0)
is an asymptotically stable equilibrium point of (2.1) and (2.11) with the proposed
control law. We here use the Euler angles representation of the model (Section 2.1.2)
when we create the control law. The reason is that the HOSMO does not work with
quaternions, as there is then a different number of states in position versus velocity.

State observer

Because velocity measurements are not available, a state observer has to be de-
signed. We want to use the third-order sliding mode observer (SMQ) presented in
[46], as it has been proven to be FTS in [57]. To use this third-order SMO, we
introduce a change of variables. Define zy = &, where &, is given by (2.10), and
x9 = Je(n2)¢, where J.(12)( is given by (2.11). The dynamics can then be written
as

Ty = %(Je(ﬂ2))<7£1(772)$2 + Mﬁl(Q)Je(W)( — C(q, I ()w2) I ()22 (3.8)

— D(q,J;  (n2)w2) I ()22 — g(q, RE) + T(Q)>

Assumption 3.1. We assume that 2 (J.(n2))J; (n2)22 is a small bounded dis-
turbance, which we will call d(t).

Remark 3.1. For all practical purposes, Assumption 3.1 will be satisfied since the
ATAUYV is a mechanical system and has a limited control input, which will cause
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3. Tracking using the Super-Twisting Algorithm

the velocities of the system to be bounded. If the velocities are bounded < (J.(12))
will be small and bounded. Furthermore, J,(12) is bounded since it consists of
elements with cos and sin. For theoretical purposes, it should be proven that this
assumption hold; however, this proof will be left as a topic for future work.

We also define f(-) = —=C(q, J; ' (n2)w2) J.  (n2)x2—D(q, J;  (n2)w2) Jt (n2) 20—
g(g, RE) to reduce the space used to write the model. The model can then be writ-
ten as

i = d(t) + M~ (q)Je(n2) (f(-) +7(q))

By designing the third-order SMO structure as in [46], the third-order SMO can
be written as

(3.9)

T =22+ 2

g =d5+ 22+ M (q)Je(n2)7(q) (3.10)

Irs = Z3
where

7 = k1|el|2/3 sgn(e)
z9 = k2|61|1/3 sgn(el) (3.11)

z3 = kg sgn(ey)

and k; € R6T(=1 k€ R6+H(=1 and k3 € RS+ are gains to be chosen
according to [48] and [49], where e; = 2, —2; € RS ("= One choice of parameters
that satisfies the requirements in [48] and [49] is, according to [19], ki = 6L/3,
ko = 11L'/? and ks = 6L, where L € RT("=1) is a sufficiently large constant.
Note that the mathematical operations in (3.10) and (3.11) are performed in an
element-wise manner. By defining es = a9 — &3 and e3 = —&3 + F(-), where
F(:)=d(t)+ M~ (q)Je(n2) (), the error dynamics of the HOSMO can be written
as

él = —k‘1|61|2/3 sgn(el) + e2
o = —kaler|V/? sgn(er) + es. (3.12)
é3 = —kssgn(er) + F(*)

If |[F(-)| < A, then the third-order SMO errors go to zero in finite time [57]. Since
F(-) is a combination of d(t), C(q, J; *(n2)x2)J. Y (n2) w2, D(q, J7 1 (n2)w2)J 1 (n2) 22

and g(gq, RL), and since the ATAUV is a mechanical system, these matrices will not
change infinitely fast. It is therefore a valid assumption to assume that F(p, (,72)

is bounded.

Sliding surface

As mentioned previously, we have to design a sliding surface to use SMC. The
sliding surface has to be designed such that when the sliding variable o goes to
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zero, the state variables asymptotically converge to zero, and such that the control
input 7(q) appears in the first derivative of . When the velocity measurement is
available, we choose the sliding surface to be

Oe =& +&y €ROT(D (3.13)

where 7, = &,, with & defined as in (2.12), and &2 = Je(n2)¢ — Je(n2,4)Ca, where
Je(n2)C is defined in (2.11). If o, = 0, we will now have &; + &5 = 0. Since &y = 77,
we can write this as

i = —i (3.14)

which will ensure that Z; globally exponentially converges to zero. Now, since
T = ée, the state variables ée will also globally exponentially converge to zero if
o = 0. When the velocity measurement is not available, the observed state values
are used, and we can therefore write the sliding surface with the observed values
as

Oc = %1 + .%2 e RO+H(—1) (3.15)

where 71 = 1 — &e,q and Ty = Gy — Je(n2,4)Ca- Since the third-order SMO errors
in (3.12) go to zero in finite time, 6. = o, after some finite time. Thus, if 6. goes
to zero, the tracking objective will be satisfied. To drive the sliding surface to zero,
we will use the STA with adaptive gains.

Control input

By designing the control input 7(g) such that 6e = ugTa, we achieve that ¢, and
e reach zero in finite time since the STA is FTS. Taking the time derivative of
(3.15) and substituting #; and 2, defined in (3.10), we find that

Oc =Ty +T2=1=01 —T1,q+ T2 —T24

=G+ 21 — d14+ 23+ 20+ M(q) " e(2)7(q) — F2.a (3.16)
By choosing 7(q) to be
7(q) = Je(m2) "M (q)(=&2 — 21 + d1,0 — &3 — 22 + d2,a + usTA) (3.17)
we obtain |
Oc = USTA- (3.18)

Stability analysis

In this section, we perform a stability analysis of the closed-loop system, and it
is shown that the tracking error converges asymptotically to zero. We consider
the closed-loop system defined by (2.1), (2.11) and (3.17). By using the fact that
%1 = x1 — e1 and that &5 = x5 — €9, from Section 3.2.2; (3.15) can be written as

A~

O'e:$1—61—$1,d+$2—€2—$2,d=§~e—€1 +£e_62 (3.19)
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Through rearranging, we obtain that the tracking error dynamics is

fo=—E+0c+e1+e (3.20)

Furthermore, the velocity tracking error f is represented by the sliding variable &,
cf., (3.8) and (3.15). The overall closed-loop dynamics with 7(q) given by (3.7) is

thus given by &, given in (3.18), & given in (3.20) and the state observer error
given in (3.12). The closed-loop dynamics is thus

fo=—bc4beoter+e
DY Ge=—alo?sen(e) + v
0 = —Psta sgn(de)

o (3.21)

é1 = —kiler sgn(er) + ey
D4 €= —kler|/Fsgn(er) +es
é3 = —kgsgn(e1) + F(-)

Theorem 3.1. Consider the closed-loop system (2.1), (2.11), and (3.17). Assume
that the HOSMO in (3.10) and (3.11) is used to estimate x1 and x5, where it is
assumed that |F(-)] < A, and assume that the sliding surface is chosen as in (3.15).
Then, the complete system is represented by the cascaded system in (3.21), and the
origin of the cascaded system is UGAS, which ensures the asymptotic convergence
of the tracking error.

Proof. Analysis of subsystem 1, with e; =0 and e = 0: With e; = 0 and e; = 0,
subsystem 1 can be written as

ge = _ge + (}e
Doy Ge=—alg[2sgn(Ee) +v (3.22)
¥ = —fgta sgn(de)

This can then be divided into two subsystems:

> | a=--é+e

> { 6. = —al6.[V2sgn(6.) + v (3:23)
12

0 = —fgra sgn ()

where Lemma A.7 can be used. Subsystem ) 17 with 6. = 0 is analysed first.
This is clearly a globally exponentially stable linear system, but since we will need
a Lyapunov function to analyse this system when 6., # 0, we use the Lyapunov

function candidate Vu(ge) = %{? for the analysis. The derivative of V7 yields

‘./ll(ée) = éefe = ée(_ge) = —52 < _||ée||2 (3'24)
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3.2. Tracking control laws

This means that the Lyapunov function satisfies:

Fallz[|* < Vii (@) < kol|z[|*

oV (3.25)
8; fui(t,z) < —ks|[z]|

with ky = ko = %, ks = 1 and a = 2. Hence, by virtue of Theorem A.4, the origin for
subsystem » 17 with 6. = 0 is globally exponentially stable (GES, Definition A.3).

Subsystem Y 15 has the structure of the STA with adaptive gains. In [69], a
Lyapunov function is proposed for systems with this structure. Here, it is proven
that the Lyapunov function proposed is indeed a Lyapunov function for subsystem
>"12 and that for any initial conditions, &, 6. — 0 in finite time by using the STA
with adaptive gains given by Eq. (3.2) and Eq. (3.3), where €, A\, 71 and w; are
arbitrary positive constant. It is also proven that the sliding surface . = 0 will
be reached in finite time. Now, since the subsystem is GFTS and autonomous,
it is also UGAS by Proposition A.1 and Proposition A.2, which also implies that
[|6e(t)]] < B1VE > 0.

To verify that the solutions of Y ; are uniformly globally bounded (UGB, Def-
inition A.9), subsystem ) ;; must be analysed with 6, # 0. The derivative of the
Lyapunov function V7 is then as follows:

Vll(ée) = _||§~e||2 +6e§~e
I+ BN — 1IN + Bl (3.20)
AT e

IN

A

where 0 < 6 < 1. The solutions are then UGB because the conditions of The-
orem A.5 are satisfied. Consequently, the conditions of Lemma A.7 are satisfied,
which implies that the origin of subsystem > ; is UGAS.

Analysis of subsystem 2: In [57] a Lyapunov function is proposed for a third-order
observer. It is proven that the Lyapunov function is radially unbounded and positive
definite and that it is a Lyapunov function for subsystem > 5, whose trajectories
converge in finite time to the origin e = 0 for every value of |F(t)| as long as F(t)
is bounded. Since F(t) is bounded by assumptions, the origin is GFTS for every
value of F(t), which means that the origin is also UGAS by Proposition A.1 and
Proposition A.2, which in turn implies ||e(t)|] < 52Vt > 0.

Analysis of the complete system: To analyse the complete system Lemma A.7 is
used. To check if the solutions of the complete system are UGB, the boundedness of
ée must be evaluated when e; # 0 and es # 0, and for this, the Lyapunov function
V11 is used. Note that the boundedness of &, follows from ;2 being UGAS because
> 12 is not perturbed by > o.

Vit(&e) = —|I€|1> + (6c +e1 + e2)e
< &N + O] — OlIEN + (B + 282) 1| (3.27)
- s 2
< U-BNEIR v ) > 2t2

0
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where 0 < 6 < 1. The solutions are then UGB because the conditions of The-
orem A.5 are satisfied. Consequently, the conditions of Lemma A.7 are satisfied,
which implies that the complete system is UGAS. U

3.3 Simulation results

In this section, we present simulation results for trajectory tracking using the con-
trol laws presented in Section 3.2. We present both results showing the optimal
performance of the algorithm, but also realistic ones that are based on using the
control gains obtained in experiments during the fall of 2018. We use the simulation
model presented in Section 2.2 and the Eelume 2016 version of the robot presented
in Section 2.2.1.

3.3.1 Adaptive gains

For implementation purposes, a small boundary is put on ¢ so the adaptive gains
can be expressed as

. wiy/ 5, if o] > ap,
= i
0, if o] < aum, (3.28)

B = 2ea + \ + 42

where the design parameter «,, is a small positive constant chosen empirically.
This boundary was introduced because numerically ¢ will never be exactly zero,
meaning that in practical implementations the second condition of (3.2) will never
be met, which would make the adaptive gains increase to infinity.

3.3.2 Optimal performance

In this section the optimal performance case will be presented, by using the control
law from Section 3.2.1. The task that is performed in the simulation is trajectory
tracking for the base of the ATAUV. A suitable path for the base to follow is gen-
erated by giving set-points to an inverse kinematic controller. The set-points given
are for the end-effector of the ATAUV, and the inverse kinematic then generates
a reference trajectory for the base and joints, such that the end-effector reaches
it target. Three different set-points are given to the inverse kinematic, and they
change at 5, 200, 400 seconds. For the simulations, a fixed-step solver with a step
size of 10™* was used.

Simulations

Since the STA has an adaptive gain «, the choice of parameters is not that im-
portant for the STA. The choice of gains can impact how fast the adaptive gain
reaches its optimal value, but it will always reach that value. The gains for the
STA were therefore chosen by tuning them manually. Specifically, the gains in
the super-twisting algorithm with adaptive gains were set to e, = [0.0001e4]%,
Al = [0.166 568]T, Y1 = [614]T, w1 = [8614]T and QA = [0.005614]T, where €; is
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Figure 3.1: Optimal simulation results using the control law from Section 3.2.1

a 1 x i vector of ones. In Figure 3.1a, the simulation results for the position and
orientation of the base are presented and in Figure 3.1b, the simulation results for
the joint angles are presented. In Figure 3.1c¢ the thruster forces and joint torques
applied are presented and in Figure 3.1d the sliding surface o is shown.

Discussion

We can see from Figure 3.1a and Figure 3.1b that the ATAUV follows the given
position, orientation and joints trajectories very well. This is also supported by
Figure 3.1d, as o is below 0.15 for the position and orientation and below 0.015
for the joints in absolute value. From Figure 3.1c we can see that the forces used
is smooth, i.e. no chattering and below 50 N, which is the limit for the thrusters.
That means that the forces used to control the ATAUYV is indeed applicable.

3.3.3 Realistic simulations

In this section simulation results based on control gains obtained in experiments
during the fall of 2018 will be presented, for both control laws presented in Sec-
tion 3.2. The test cases used are the C-shape and the C-shape with a moving head.
The test cases are explained in Section 2.3.3. To make the simulations a valid com-
parison with the experiments, we use a P-controller for the joints. The reason for
this choice is that the Eelume 2016 robot has an internal joint controller, which
is a P-controller. To create a continuous trajectory we use a filter to generate a
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3. Tracking using the Super-Twisting Algorithm

continuous trajectory between set-points. For the simulations, the ode3 fixed-step
solver with a step size of 0.002 was used.

Simulations

To ensure that the comparison between the simulations and experiments is as fair
as possible, the gains used during the simulations are the gains found during the
experiments. The gains for the STA with adaptive gains and the HOSMO are
presented in Table 3.1. The gain for the HOSMO, L, is different from the one
used during the experiments for the C-shape and the C-shape with a moving head
because we observed chattering in the simulations when we used L = 0.01, which
was not experienced in the experiments.

Table 3.1: Simulation: Control gains for the STA with adaptive gains

Gains Tests
C-shape | C-shape w/moving head | C-shape w/moving head w/HOSMO
€ 1-10°° 1-10°° 1-10°°
A 0.05 0.05 0.05
" 0.5 0.5 05
w1 0.4 0.4 0.2
L 0.1 HOSMO not used 0.1

The results when using the control law proposed in Section 3.2.1 are presented
in Figure 3.2. Figure 3.3 shows the simulation results when velocity measurements
are not available and the control law proposed in Section 3.2.2 is used. Note that
if higher gains had been used in the simulations, the results would have improved.

Discussion

As shown in Figure 3.2 and Figure 3.3, the ATAUYV follows the given position and
orientation very well for both simulation cases, both when the control law from
Section 3.2.1 and when the control law with the HOSMO from Section 3.2.2 is used.
The ATAUYV does have some issues with following the 6 reference in both cases, but
that might be because there is a small deviation between the desired control input
and the control input that we obtain from the thruster allocation scheme. Note
that when we, in the simulations, gave the thruster allocation scheme more time
to catch up with the reference before it was set to zero again, we observed that
the reference was eventually followed. Since we want a back-to-back comparison
between simulations and experiments, we kept, the same timing in the simulations
as in the experiments. We also observe some oscillations in 6 and 1 in the C-shape
with a moving head case, as shown in Figure 3.2c and Figure 3.3c, and the reason
for the oscillations is the moving head; moreover, we observe that the oscillations
in the states are consistent with the movement of the head.

For the C-shape and the C-shape with a moving head, we do observe an im-
provement in the performance when the HOSMO is used, and the reason for this
improvement can be found by comparing Figure 3.2b and Figure 3.3b, and Fig-
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3. Tracking using the Super-Twisting Algorithm

ure 3.2d and Figure 3.3d. As shown in these plots, when the HOSMO is used,
higher thruster forces are used.

Figure 3.2 and Figure 3.3 also show that for both control schemes the thruster
forces used are below 50 N, which is the limit of the thrusters on the actual Eelume
robot. This result means that the forces used to control the AIAUV are indeed
applicable.

3.4 Experimental investigation

In this section, the experimental results obtained during the fall of 2018 are pre-
sented. The purpose of the experiments is to validate the theory and the robustness
of the control approaches, by showing that the proposed approaches also work in
experiments and not only in the ideal case of the simulations. The robot used is
the Eelume 2016 version of the robot presented in Section 2.3.1 and the test cases
used are the same as for the simulations, and are explained in Section 2.3.3.

3.4.1 Results

The gains were increased until we observed that rather than following the reference,
the ATAUV began to oscillate around the reference. We therefore chose gains that
created a small deviation from the reference rather than gains that were more
aggressive (higher), where the ATAUV would oscillate around the reference. These
oscillations might be caused by delays in the thrusters. We attempted to use the
same gains for both test cases, i.e., we attempted to find the best possible gains
for the C-shape, and then we used the same for the C-shape with a moving head
for a fair comparison. For the STA with adaptive gains, the choice of gains is
not very important because the gains will adapt to their best possible values by
themselves. We did, however, observe that if we chose the initial adaptive gains to
be too high, the Eelume ATAUYV started to oscillate. We therefore had to use lower
gains when the HOSMO was used in the case of the C-shape with a moving head.
The reason for this is probably because when the HOSMO was used, the thruster
forces increased. The gains for the STA with adaptive gains and the HOSMO are
presented in Table 3.2.

Table 3.2: Experiments: Control gains for the STA with adaptive gains

Gains Tests
C-shape | C-shape w/moving head | C-shape w/moving head w/HOSMO
€ 1-10°° 1-10°° 1-10°°
A 0.05 0.05 0.05
" 0.5 0.5 0.5
w1 0.4 0.4 0.2
L 0.01 HOSMO not used 0.01

In Figure 3.4 the results when using the control law proposed in Section 3.2.1
are presented. Note that here the velocity estimates come from the Kalman filter.
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Figure 3.4: Experimental results using the control law from Section 3.2.1

In Figure 3.5 we see the results when velocity measurements are not available and
the control law proposed in Section 3.2.2 were used.

3.4.2 Discussion

In the C-shape, we observe from Figure 3.4a that the reference was followed nicely,
but we do observe a small deviation from the 6 reference caused by a transient,
i.e., when the 0 reference is changed to 10deg at 300 s. We also observe a small
transient deviation in ¢ at 300 s, which is also caused by the change in 6 reference.
In the C-shape with a moving head, Figure 3.4c shows that the movement of the
head caused oscillations in ¢ and 6, but the position reference was still followed.
From Figure 3.4b and Figure 3.4d, we find that there is some chattering in the
control input, which could potentially have been reduced by reducing the gains,
but if we reduced the gains, we would not obtain the desired tracking performance.

We observed an improvement in the tracking performance when the HOSMO
was used without a very large increase in thruster use; this can be seen by comparing
Figure 3.4 and Figure 3.5. In the C-shape, we observe from Figure 3.5a that we
have almost perfect tracking. In the C-shape with a moving head, we observe from
Figure 3.5¢ some small oscillations in ¢ and € caused by the movement of the head,
but the movement is much smaller than for the case when the HOSMO is not used
and is present almost only when the 6 reference is changed to 10deg at 300 s. We
also see some rapid oscillations ¢ and 6, which are also caused by the moving head.
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3. Tracking using the Super-Twisting Algorithm

T

—x--%4 thr,1
r -
—y--4 | | ‘[ thr2|
il il
_— }“ WM il il il ‘uw)‘ K
: : — . pa— i e u\'i"‘l"’“ bl
0 100 200 300 400 500 600 700 & \ T""'s
Time [s] 8 g
£
b=y R
/ —y-- ¥y S0k
o
0 100 200 300 400 500 600 700 100 200 300 400 500 600
Time [s] Time [s]
(a) Tracking in C-shape (b) Thruster forces used in C-shape
30 T T T . T
-
[ —y--¥4
r | —
s e z
— L " L L L 3
0 100 200 300 400 500 600 700 &
Time [s]
201

-30
0

. . . )
300 400 500 600 700
Time [s]

(¢) Tracking in C-shape with a moving head

100

L L L
300 400 500 600
Time [s]

200 700

(d) Thruster forces used in C-shape with a
moving head

Figure 3.5: Experimental results using the control law from Section 3.2.2

Exactly why they appear is however, not clear. Additional measurement noise from
Qualisys was observed in these tests, but the noise did not affect the performance.
Thus, the conclusion would be that the HOSMO works well and creates better
performance than the Kalman filter that we used. When we used the HOSMO, we
observed an increase in chattering, most likely because some chattering exists in the
estimated states from the HOSMO. From the HOSMO errors in Figure 3.6, where
the first sub-plot shows e; = x1 — 21 and the second sub-plot shows ey = o — 29,
we observe that the errors are quite small and that they appear to be noise, this

means that the HOSMO is indeed applicable.

If we compare the results obtained in the simulations (Figure 3.2 and Fig-
ure 3.3) and the results obtained in the experiments (Figure 3.4 and Figure 3.5)
for both control schemes, we find that they are quite similar. For the C-shape, the
trajectories were almost perfectly tracked, whereas for the C-shape with a moving
head, we observed some oscillations in some of the states, which were caused by the
moving head. For the C-shape and the C-shape with a moving head, we observed
an improvement in performance when the HOSMO was used. The tracking perfor-
mance in the experiments is almost better than the tracking performance in the
simulations. The reason for this might be because we used gains that were optimal

for the experiments.
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3.5 Chapter summary

In this chapter, we have proposed the STA with adaptive gains for solving the tra-
jectory tracking problem of ATAUVs in 6DOF. We have also proposed the STA with
adaptive gains together with a HOSMO for solving the trajectory tracking problem
of ATAUVs in 6DOF when velocity measurements are not available. Furthermore,
we have proved the asymptotic convergence of the tracking error when the control
law including the HOSMO is used. We have shown how well the algorithm can per-
form in an optimal performance example, and we have presented comprehensive
simulation and experimental results for two different shapes, representing opera-
tion mode. The results validate and verify that the proposed approaches are well
suited for control of an ATAUV.

The simulation and experimental results were almost equally good. Some small
offsets and oscillations observed in the experiments were not present in the simula-
tions, but that is to be expected since the experiments have outliers and measure-
ment noise.

In the experiments, we observed an increase in performance when the HOSMO
was used instead of the Kalman filter. Therefore, the HOSMO is indeed applicable
for state estimation.
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Chapter 4

Tracking using the Generalized
Super-Twisting Algorithm

This chapter investigates the use of the GSTA to solve the trajectory tracking
problem for ATAUVs. The tracking problem is also solved in the case that velocity
measurements are not available by using the GSTA in combination with a HOSMO.
The closed-loop systems are then analysed.

Contributions of this chapter

The contributions of this chapter can be summarized as follows. The trajectory
tracking control problem of an AIAUV in 6DOF is solved using the GSTA. The
tracking errors are proven to converge asymptotically to zero. Furthermore, the
GSTA is proven to give global uniform finite-time stability, whereas in [18], the
GSTA was only proven to give global finite-time stability. Comprehensive simu-
lation and experimental results that validate that the approach is well suited for
control of an ATAUV are presented. The trajectory tracking control problem of an
ATAUYV in 6DOF is also solved with the GSTA combined with a HOSMO. Ad-
ditionally, the tracking errors are proven to converge asymptotically to zero, and
comprehensive simulation and experimental results are presented that validate that
the approach is well suited for control of an ATAUV.

Organization of this chapter

The chapter is structured as follows. In Section 4.1 the GSTA is given in detail. The
control law and observer design for tracking the desired trajectory is presented and
analysed in Section 4.2. The simulation results are presented in Section 4.3 and the
experimental results are presented in Section 4.4. In Section 4.5 a chapter summary
is presented.

Publications

This chapter is based on [10], [15] and [16].
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4. Tracking using the Generalized Super-Twisting Algorithm

4.1 The generalized super-twisting algorithm

In this section, the equations describing the GSTA are presented in detail. The
GSTA is an extension of the STA that provides finite-time convergence in the
presence of time- and state-dependent perturbations, which is essential for robust
control of the ATAUV. The GSTA proposed in [18] can be written as

ugsta = —ki¢1(0) + 2
2'1 = —k2¢2(0') (4.1)
where
$1(0) = [0]* + BasTac
1. o 3 P (4.2)
pa(0) = §[UJ + iﬁGSTA[UJ2 + BGsTAT

where [a|® = |a|’sgn(a) and k1, ks and Bggra are controller gains. With the extra
linear term, compared to the STA, three degrees of freedom are obtained in the
design of the GSTA gains: ky, ko and SggTa. The linear growth term Bgstac
in ¢ helps to counteract the effects of state-dependent perturbations, which can
exponentially increase in time. By choosing the gains as described in [18], the
algorithm is proven to make o go to zero, globally and in finite time, in the presence
of state- and time-dependent uncertain control coefficients and perturbations. Note
that the gains, when chosen as described in [18], are defined based on bounds on
the perturbations.

4.2 Tracking control laws

In this section, we propose two tracking control laws for the AIAUV based on the
GSTA: first, we present one control law where we use the GSTA; then, we present
a control law where the GSTA is combined with a HOSMO.

4.2.1 Control law based on the GSTA

In this subsection, the tracking control law for the ATAUV using the GSTA will
be presented. Using Lyapunov theory, we will show that (§,,() = (0,0) is an
asymptotically stable equilibrium point of (2.1) and (2.6) with the proposed control
law.

Error dynamics

Define 77 = éq, where §~q is given by (2.9) and

Ré’(ﬁ) 03x3 O3><(nfl) B
Ta=| O3xz 313+ S5E)  Osxm-1) | (C—Ca) =T/ (4.3)
On—1)x3 Otn—1)x3 Itn—1)x(n—1)

where ¢ and (4 are defined in (2.3) and (2.4), respectively. The reason for choosing
Zo = T(-)C is that this makes T3 = 1, and by using that, we can prove that the
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4.2. Tracking control laws

error variables asymptotically converge to zero when the sliding surface is equal to
zero (see Section 4.2.1 for the proof), which is a requirement when designing the
sliding surface. If 5 was chosen to be equal to 5, then this would not have been the
case. By differentiating (2.9) and (4.3) and using ¢ from (2.1) and &, from (2.6),

the error dynamics is

1

Ty =

2
Ty = %(T(ﬁ))Tfl(ﬁ)fz + MG+ Qd)T(ﬁ)( — C(G+ qa, T ()2 + Ca)

(4.4)
(T~ (B)Z2 + Ca) — D(q+ qa, T (P)Z2 + Ca) (T (B)E2 + ()

~ 9(@+ a0, RE) + (@ + aa) — M@+ aa)a)
To reduce the space used to write the error dynamics, we will introduce some new
functions, f1(-) = £(T(:))T"(-) and f2() = =C()(T7'(-)Z2+Ca) =D ()T (-)Z2+
Ca) — g(+) — M(-)Cq, such that the error dynamics can be written as
xr1 = .fg

. 4.5
Ty = f1(-)2 + M ()T(C)(f2() + 7()) (9

Sliding surface

To use an SMC approach, we must first design a sliding surface. The sliding surface
should be designed such that when the sliding variable o goes to zero, the error
variables asymptotically converge to zero and such that the control input 7(-)
appears in the first derivative of o. The sliding surface is chosen as

0y =& 4+ 3 €ROHD), (4.6)
If 04 =0, we will have Z; + 22 = 0. Since T = 5:1, we can write this as
I = —i (4.7)

which ensures that z; globally exponentially converges to zero. Since &, = éq, the

original state variable fq will also globally exponentially converge to zero if o4 = 0.
The GSTA, which is described in Section 4.1, is then used to drive the sliding
surface to zero.

Control input

In this section, we design a control law based on the GSTA described in Section 4.1,
which we show achieves the tracking control objective in Section 4.2.1. By using
the fact that 7 = 22 from (4.4), (4.6) can be written as

Ty =0, — 7. (4.8)
By differentiating (4.6), we obtain
Gg =1 +ao =T+ f1(-)T2 + M O)TC) (f2() +7()) (4.9)
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4. Tracking using the Generalized Super-Twisting Algorithm

and by using Z» = o, — Z1, we obtain
&g =0q =1+ fi(-)(og +Z1) + MTICO)TC) (f20) +7()- (4.10)

Now, we want the control input 7(-) to be chosen such that ¢, = uggra, such that
o4 and &, reach zero in finite time. However, since we do not know fi(-) and fa(-),
we choose our control input to be

7'() = Tﬁl(')uGSTA (4.11)

and in Section 4.2.1, we will show that this control input achieves the tracking
control objective.

Stability analysis

In this section, we will analyse the closed-loop system resulting from the control
law proposed and we show that the tracking error converges asymptotically to zero.
Parts of the analysis build upon the results obtained in [18], but we extend these
results by proving uniformity for the GSTA, which makes it possible to show that
the tracking errors for the complete system converge asymptotically to zero.

By introducing ¢ (o, Z1,t) = ¢1(04, Z1,t) +@2(04, T1,t), where ¢1(0,Z1,t) = 0,
[(-) = M~1(-), and using 7(-) as in (4.11), we can rewrite (4.10) as

64 = —kiL(:)p1(0q) + p1(og, 1,t) + T'(+) (z + T )pa(ag, 71, t)) (4.12)

where ¢1(0q,%1,1) = 0q + fi()og + L(-)(=C(-)oq — D(-)o4) and ‘P2(0q7x17t) =
1+ [1()B AT O)(=CO) (@1 +T()Ca) = D) (F1+T()¢a) =T ()9 () =T (-)M(-)Ca ;

Then, by means of (4.8) and setting 0,1 = 04 and 042 = 2 + I (-)pa2(0y, Z1,t
we can write the overall closed-loop dynamics as

E 1{ "Eliffilﬁ*gq’l

Z Gg1 = —k1l()p1(0g1) + p1(og1,71,t) + T(-)og 2
2| Gg2 = —kata(0g1) + 5 (D ()pa(og, 1, 1))

(4.13)

Theorem 4.1. Consider the error dynamics given by (4.4), and let the sliding
surface o4 be defined by (4.6). Let the control input be given by (4.11). Then, the
closed-loop dynamics are described by (4.13), and the origin of this cascade system
is UGAS, which ensures the asymptotic convergence of the tracking error when
0 < kil < T() < karl, lp1()] < alr(o,)| and |4 (01 (Yea()] < A, where ki,
ky, o and A are positive constants.

Proof. To analyse the cascade system (4.13), Lemma A.7 will be used. Note that
the system is actually interconnected, but since subsystem 1 is well behaved as
long as o, does not explode, i.e. Z; is bounded, the system can be analysed with
cascaded theory by analysing along the trajectories with Z;(¢) bounded. When
analysing the complete system, we will prove that this is indeed the case, i.e. prove
that Z1(¢) is UGB. We first start by analysing subsystem 1 without perturbations.
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4.2. Tracking control laws

Analysis of subsystem 1 with 04,7 = 0: With o,; = 0, subsystem 1 can be

written as
S { d=-m (4.14)

This is clearly a globally exponentially stable linear system, but since we will need
a Lyapunov function to analyse this system when o, ; # 0, we use the Lyapunov
function candidate Vi (#;) = 1#7 for the analysis. The derivative of V; yields

Vi(dh) = #rin = 31(=71) = —&] < —[|& [ (4.15)
This means that the Lyapunov function satisfies

El|Z1]|* < Vi(@1) < kaf|@4]]*

IV, R (4.16)
ﬁf(t’x) < —ksl|z |

with k1 = ko = %, k3 = 1 and a = 2. Hence, by virtue of Theorem A.4, the origin
for subsystem » 1 with 0,71 = 0 is GES.

Analysis of subsystem 2: Subsystem > 5 has the same structure as the system
in [18]; thus, we can use the results obtained in [18]. For completeness, and because
we will base the further analysis on the Lyapunov function obtained here, we recall
the results from [18]. In [18], the origin of the system is proven to be GFTS if
0 < kI <T() < karl, o1()] < alér(0,)] and |2 (T2 ()a())] < A, where k.
kar, a and A are positive constants. Since the system is GFTS; it is also globally
asymptotically stable (Definition A.2) by Proposition A.2. To prove that the origin
of subsystem 2 is UGAS or GUFTS, we will use Theorem A.6. In the analysis,
we will use the Lyapunov function found in [18], which was used to prove GFTS,
but the analysis itself, i.e., proving uniformity by using Theorem A.6 is novel. The
function V = ¢TP¢, where €7 = [¢1(041) 042] and P = pll ;ﬂ, pip2 > 1,
is the generalized Lyapunov function for subsystem 2; see [18] for details. This
function is globally proper and continuous (but not Lipschitz continuous on the
line 041 = 0). For 0,41 # 0, this function is differentiable and

DVF(O‘q,l,O’q,Z)(O—(bl?O-(I72) < —m V(Uq,laaqﬂ) (4.17)

where 1 > 0 and

Tq.1 (kT ()¢i(og1) + @1(0g,1,81,t) + T (-)og2
(é'q,2> S F(Uq,l,Uq,Q) - < —k2¢2(0'q,1) 4 %(Fil(')@Q(Uq,l,i‘l,t)) ) (4.18)

Foro,11 = 0and 042 # 0, we need to calculate a generalized directional derivative.
Thus, consider the limit

0gqg,1 0q,2\ _
Dipyfu V(0 002) = lim V(hpun™', 042 + hpun™®) —V(0,04.2)

n—00 hn,

(4.19)

where {h,} € K (K is a set of all sequences of real numbers converging to zero,
e, {hn} € K& hy — 0,hy, #0), up = (up®  un®)T, {u,} € M(d) (M(d) is a
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set of all sequences of real vectors converging to d € R™, i.e. {u,} € M(d) < u,, —
64,2

d,u, € R"), and d € F(0,0,52). In this case, up”" — 0,2 and u,"* — ¢, where
q € [~3ks = A, Tko £+ A Hence,

Din,} quntV(0,0q.2) = lim Vlndq2, 92+ Pnd) = V10, 70.2)

n— 00 ho,

. 2
- nlggo (p1 (|hnaq,2‘(1/2) sgn(hnoq,2) + 6hn0q72) - 2(|hn0q,2‘(1/2) sgn(hno4,2)

+ ﬁhnoq,2)(0q,2 + hnq) + p2(0q,2 + hnq)2 - p203,2)/hn = -
(4.20)

Therefore,

DF(UqJ’Uq’Q)V(O, O'q,z) = {—OO} S —,Uzly/V(O, O—q’Q) for 04,2 # 0 (4.21)

and the origin of subsystem 2 is therefore GUFTS Theorem A.6, and therefore, it
is also UGAS. This result implies that ||og(¢)|| < 8 V¢ > 0.

Analysis of the complete system: To analyse the complete system, Lemma A.7 is
used. To check whether the solutions of the complete system are UGB, the bound-
edness of Z; must be evaluated when o, # 0. The derivative of the Lyapunov
function V7 is then as follows:

Vi(@1) = —[|@1]|* + o181

1212 + 011112 = 8111 | + BlJ | (4.22)

IN

. . B
~A= Ol ¥ ]
where 0 < 6 < 1. The solutions are then UGB because the conditions of The-
orem A.5 are satisfied. Consequently, the conditions of Lemma A.7 are satisfied,
which implies that the origin of the complete system is UGAS. O

IN

One way for the inequalities in Theorem 4.1 to be satisfied is if the assumptions
in the following theorem are satisfied.

Theorem 4.2. Consider the closed-loop system in (4.13). If the following as-
sumptions are satisfied:

Assumption 4.1. The ATAUYV is neutrally buoyant.
Assumption 4.2. The ATAUV has only revolute joints.

Assumption 4.3. The reference trajectory and its derivatives are continuous and
bounded by design.

Assumption 4.4. The matrix ||%T()|| < Ty is bounded, where T'(-) is de-
fined in (4.3), the Coriolis-centripetal matrix is bounded by [|C(")|] < Cusllx2|
and ||%C’()H < Cpllx2||, the damping matrix is bounded by ||D(-)|| < Dasl|x2|
and ||%D()|| < Dpl|z2]|, and the matrix of gravitational and buoyancy forces is
bounded by || 5g()|| < garlla2|l-
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Assumption 4.5. Z5(t) is bounded.

then positive constants ky,, kyr, a and A exist such that
1. Inequality 1: 0 < kI <T(-) < kpI
2. Inequality 2: |¢1(+)] < agp1(0)]
3. Inequality 3: |%(F’1(~)<p2(-))| <A
are satisfied.

Remark 4.1. Assumptions 1-3 are valid due to the design of ATAUVs and their
reference trajectories. Assumptions 4-5 are valid since the AIAUV is a mechanical
system.

Proof. To be able to prove that the above inequalities are satisfied, we first note
some properties that arise from having revolute joints [4]:

1. Property 1: 0 < Apin(M) < ||M|] < Amax(M)
2. Property 2: M = M7 >0
3. Property 3: M =C + C7T and ¢(T(M —2C)( =0 ¥V (e ROH-1)

Proof of Inequality 1: 0 < kI <T() < kpTl
Since I'(:) = M ~1(-), we need to prove that

0 <k <M () <kyl (4.23)

where k,, and kj; are positive constants. From Property 1, we have that M is lower
and upper bounded; the inverse will therefore also be lower and upper bounded by
0 < 1/Amax(M) < [|M~Y| < 1/Amin(M), which means that k,, = 1/Amax(M) and
kar = 1/ Amin(M). Inequality 1 is therefore satisfied.

Proof of Inequality 2: |¢1(-)| < al¢1(0)]
Since 1 (0, 71.1) = 0+ fi()o + T () (~C(-)o = D(-)o) with fi(-) = £(T()NT1(-),
we need to prove that

o+ f1(-)o +T(-)( = C()o — D(-)o)| < alpi(0)| = a|[o]* + BasTac| (4.24)

By rewriting

1+ A +TO(=C) = D0))llo] < aléi(0)] = al[o]? + Bastac|  (4.25)

we find that if
1+ fi() +T()(=C() = D())| < a, (4.26)

the inequality holds. Now, T'(+) is a matrix that contains the rotation matrix RL,
the identity matrix and the expression (1/2)(7l3+S(€)), which comes from Jy, o4 (D).
Since they are all bounded, the matrix T'(-) will also be bounded. The matrix 7'(-)
is also nonsingular since quaternions are used, which means that 7~!(-) exists and
will also be bounded. By taking the derivative of T'(-), we find that for 4 (7(-)) to
be bounded, Z2(t) needs to be bounded, which it is by assumption. The function
f1(+) is therefore a function of bounded signals, and f;(-) is thus bounded. The

function I'(-) is found to be bounded in the proof of Inequality 1. The matrices
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4. Tracking using the Generalized Super-Twisting Algorithm

C() and D(-) are bounded by assumption as long as Zs(t) is bounded, which is

bounded by assumption. The matrices C(-) and D(-) are therefore bounded, and

since all the functions on the right-hand side of (4.26) are bounded, the inequality

holds. Equation (4.24) is therefore satisfied, and thus, Inequality 2 is satisfied.
Proof of Inequality 3: | % (T~ (-)p2(-))| < A

Since @2(0,@1,t) = %1 + f1(1)Z1 + L()(=C()(Z1 + T(-)¢a) — D()(@1 + T()Ca) —

T()g(-) = T()M(-)Ca), we need to prove

%(Ffl(') ( —Z1+ A()F T (= CO)E +T()Ca)

_ (4.27)
= D)@ +T()a) = T(g() = TOM()a) ) ) < A
By differentiating, we find that for the above to hold, we need %fl(), %F(-),
%C()a %D()a g()a %g() and %M() to be lgounded since jl(t)a i‘Q(t) fl(')7 F()a
T(-), M(:), C(-), D(), 4(T(-)), Ca, Ca and ¢4 have previously been proven to be
bounded or are bounded by assumption. For the function %fl() to be bounded,
we need for the matrix g—; (1) to be bounded, which it is by assumption; thus,
%fl() is bounded. The time derivative %F() is bounded if %M() and M(-) are
bounded. Since C(-) is bounded, %M() is bounded (from Property 3), and M (-)
is bounded by Property 1. The function %F() is therefore bounded. Furthermore,
4C(-) and £ D(-) are bounded since 5 (t) is bounded by assumption. The matrix
g(+) is bounded since the ATAUV is neutrally buoyant, and %g() is bounded by
assumption since Zs(t) is bounded. Now, since (4.27) is satisfied, Inequality 3 is
satisfied. O

Remark 4.2. If the assumptions in Theorem 4.2 are satisfied, the inequalities in
Theorem 4.1 are satisfied if the positive parameters «, k., kyps and A are chosen
according to inequalities (4.23), (4.26) and (4.27) given in the proof, and the pro-
cedure in [18] can then be used to choose the gains ki, ks and Sggra in (4.1) and
(4.2), which will ensure the finite-time convergence.

4.2.2 Control law based on the GSTA combined with a
higher-order sliding mode observer

In this subsection, the tracking control law for the ATAUV using the GSTA com-
bined with the HOSMO will be presented. Using Lyapunov theory, we will show
that (ée,f) = (0,0) is an asymptotically stable equilibrium point of (2.1) and
(2.11) with the proposed control law. We here use the Euler angles representation
of the model (Section 2.1.2) when we create the control law. The reason is that
the HOSMO does not work with quaternions, as there is then a different number
of states in position versus velocity.

Third-order sliding mode observer

Because velocity measurements are unavailable, a HOSMO will be developed in this
subsection for state estimation. We want to use the third-order SMO presented in
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4.2. Tracking control laws

[46] because the third-order SMO has been proven to be FTS in [57]. To use this
HOSMO, we introduce a change of variables. Define x; = ., where &, is given by
(2.10), and zo = J(n2)¢, where J(n2)C is given by (2.11); then, the dynamics can
be written as

.fl = T2
By = %(J(W))J*l(?h)fﬂz + M q) I (n2) (= C(q, T (m2)a2) J ' (o) (4.28)

— D(q,J  (m2)a2) J " (n2)x2 — g(q, RE) + 7(q))

Assumption 4.6. We assume that %(J(J)J*l(')xg is a small bounded distur-
bance, which we will call d(t).

Remark 4.3. For all practical purposes, Assumption 4.6 will be satisfied since the
ATAUYV is a mechanical system and has a limited control input, which will cause
the velocities of the system to be bounded. If the velocities are bounded 4 (J(-))
will be small and bounded. Furthermore, J~1(-) is bounded since it consists of
elements with cos and sin. For theoretical purposes, it should be proven that this
assumption hold; however, this proof will be left as a topic for future work.

We also introduce a new function f(-) = —C(-)J~(-)xy — D(:)J1(-)a2 — g(*)
to reduce the space used to write the model. The model can then be written as
il = T2
@y = d(t) + M ()T () (f() +7()

Now that we have introduced the change of variables, the HOSMO can be in-
troduced. By designing the HOSMO structure as in [46], the HOSMO is chosen
as

(4.29)

a1 = do+21,
Ty = d3+20+M 1) J()7(), (4.30)
i3 = z3,
where
21 = kile|*® sgn(er)
2o = kole1|Y/? sgn(eq) (4.31)
z3 = kssgn(eq)

and k; € ROT(=D Ly € ROH—1 and kg € R6H("=1 are gains to be chosen
according to [48] and [49], where e; = 21 —2; € RS (=1 One choice of parameters
that satisfies the requirements in [48] and [49] is, according to [19], ki = 6L'/3,
ky = 11LY? and ks = 6L, where L € R6+("=1 ig a sufficiently large constant. By
defining ey = x9 — &2 and e3 = —&3 + F(+), where F(-) = d(t) + M~1(:)J()f(*),
the error dynamics of the HOSMO can be written as

é1 = —kiler|*® sgn(er) + e

&y = —kaler|"? sgn(er) + es. (4.32)

é3 = —kssgn(ey) + F(*)
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4. Tracking using the Generalized Super-Twisting Algorithm

If |F'(-)| < A, then the HOSMO errors go to zero in finite time |57]. Since F(-) is
a combination of d(t), C(-)J~1(-)z2, D(-)J~*(-)x and g(-), and since the ATAUV
is a mechanical system, these matrices will not change infinitely fast. Therefore,
assuming that F(-) is bounded is a valid assumption.

Sliding surface

As previously discussed, to use an SMC approach, we must first design a sliding
surface. The sliding surface should be designed such that when the sliding vari-
able o goes to zero, the state variables asymptotically converge to zero and such
that the control input 7(-) appears in the first derivative of o. If we had velocity
measurements available, we would choose the sliding surface as

Oe = &1 + &y, €RIF(D (4.33)

where 7; = ée, with ée defined as in (2.12), and &9 = Je(12){ — Je(n2,4)Ca, where
Je(n2)¢ is defined in (2.11). Now, if 0. = 0, we will have Z; + Z = 0. Since
g =Tg —Taq =T — L1, = L1, we can write this as

T =—% (4.34)

which will ensure that z; globally exponentially converges to zero. Now, since
T, = ée, the state variables ée will also globally exponentially converge to zero if
e = 0. Since the velocity measurement is not available, the observed state values
are used, and we can therefore write the sliding surface with the observed values
as

6o =1+ Iy, €RIFOD (4.35)

where &1 = & — &0 g and g = &g — J.(12,4)Ca- Since the HOSMO errors in (4.32) go
to zero in finite time, . = o, after some finite time. Thus, if 6. = 0, the tracking
objective will be satisfied.

Control input

In this section, we will design a control law based on the GSTA described in Sec-
tion 4.1, which we will show achieves the tracking control objective in Section 4.2.2.
By designing the control input 7(-) such that Ge = uasTA, we thus achieve that &,
and &, reach zero in finite time since the GSTA is FTS. Taking the time derivative
of (4.35) and substituting Z;, and 2, defined in (4.30), we find that

Oc=T1+To =21 — 1,0+ T2 — Do

(4.36)
= .fi'Q —+ zZ1 — il,d + Zi'g + z9 —+ Mﬁl()J()T() — jj‘de
By choosing 7(-) to be
() =J (OM()(— 22 — 21 + d1,0 — &3 — 20 + do,q + UGSTA) (4.37)
we obtain .
&e = UGSTA- (438)
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4.2. Tracking control laws

Stability analysis

In this section, we will analyse the closed-loop system resulting from the control
law proposed and we show that the tracking error converges asymptotically to zero.
We consider the closed-loop system (2.1), (2.11), (4.37). By using the facts that
21 = x1 — e1 and that I3 = xo — eq, from Section 4.2.2, (4.35) is

Ue:$1—61—$1,d+$2—62—$2,d:§e—61 +£e—€2 (4.39)

By rearranging, we obtain that the tracking error dynamics is

fe=—Ec+Gc+er+e (4.40)
Furthermore, the velocity tracking error f is represented by the sliding variable &.;
cf. (4.29) and (4.35). The overall closed-loop dynamics with 7(-) given by (4.37) is

thus given by 6. given in (4.38), & given in (4.40) and the HOSMO error given in
(4.32). The closed-loop dynamics is thus

o=—bc+0c+er+e
Zl be=—kip1(6)e + 2

Z = —ka2(0)e

€1 = —k1|el|2/3 sgn(er) + eo
Zz &y = —kaler|'/* sgn(er) + e

é3 = —kzsgn(er) + F(-)

(4.41)

Theorem 4.3. Consider the closed-loop system (2.1), (2.11), and (4.37). Assume
that the HOSMO in (4.30) and (4.31) is used to estimate x1 and xo, where it is
assumed that |F'(:)] < A, is used to estimate x, and o, and assume that the
sliding surface is chosen as in (4.35). Then, the complete system is represented
by the cascaded system in (4.41), and the origin of the cascaded system is UGAS,
which ensures the asymptotic convergence of the tracking error.

Proof. Analysis of subsystem 1 with ey = 0 and eo = 0: With e; = 0 and ey = 0,
subsystem 1 can be written as

ge = _ée + a'e
Doy b= —ki61(6)e + 2 (4.42)
z= _k2¢2(&e)

This subsystem is then equal to the system analysed in Section 4.2.1 with I'(:) = 1,
v1(-) = 0 and ¢3(-) = 0, which satisfy the inequalities in Theorem 4.1. We can
therefore conclude that subsystem 1 is UGAS.

Analysis of subsystem 2: In [57], a Lyapunov function is proposed for a third-
order SMO. It is proven that the Lyapunov function is radially unbounded and
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4. Tracking using the Generalized Super-Twisting Algorithm

positive definite and that it is a Lyapunov function for subsystem > 5, whose tra-
jectories converge in finite time to the origin e = 0 for every value of |F(-)| as long
as F'(-) is bounded. Since F(-) is bounded by assumptions, the origin is GFTS for
every value of F'(-), which means that the origin is also UGAS by Proposition A.1
and Proposition A.2, in turn implying that ||e(t)|| <0 V¢ > 0.

Analysis of the complete system: To analyse the complete system, Lemma A.7
is used. To check whether the solutions of the complete system are UGB, the
boundedness of fe must be evaluated when e; # 0 and e5 # 0, and for this purpose,
the Lyapunov function candidate V(ge) = %53 is used. Note that the boundedness
of 6. was proven in the proof of Theorem 4.1. The derivative of the Lyapunov
function candidate V is then as follows:

V(ge) = _||£e||2 + (&e +e + 62)56

< &l P + O1IEIP — OlIEIP + (5 + 26)] (4.43)
- - 20
<—-0ar v g2t

where 0 < 6 < 1. The solutions are then UGB because the conditions of The-
orem A.5 are satisfied. Consequently, the conditions of Lemma A.7 are satisfied,
which implies that the complete system is UGAS. O

4.3 Simulation results

In this section, we present simulation results for trajectory tracking using the con-
trol laws presented in Section 4.2. We present both results showing the optimal
performance of the algorithm, but also realistic ones that are based on using the
control gains obtained in experiments during the fall of 2018. We use the simulation
model presented in Section 2.2 and the Eelume 2016 version of the robot presented
in Section 2.2.1.

4.3.1 Optimal performance

In this section the optimal performance case will be presented, by using the control
law from Section 4.2.1. The task that is performed in the simulation is trajectory
tracking for the base of the AIAUV. A suitable path for the base to follow is gen-
erated by giving set-points to an inverse kinematic controller. The set-points given
are for the end-effector of the AIAUV, and the inverse kinematic then generates
a reference trajectory for the base and joints, such that the end-effector reaches
it target. Three different set-points are given to the inverse kinematic, and they
change at 5, 200, 400 seconds. For the simulations, a fixed-step solver with a step
size of 10™* was used.

Simulations

The gains for the GSTA were chosen as k1 = [5e14]”, ko = [0.0002e14]T and
Basta = [15e14]T where e; is a 1 x i vector of ones. In Figure 4.1a, the simulation
results for the position and orientation of the base are presented and in Figure 4.1b,
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Figure 4.1: Optimal simulation results using the control law from Section 4.2.1

the simulation results for the joint angles are presented. In Figure 4.1c the thruster
forces and joint torques applied are presented and in Figure 4.1d the sliding surface
o is shown.

Discussion

We can see from Figure 4.1a and Figure 4.1b that the AIAUV follows the given
position, orientation and joints trajectories very well. This is also supported by
Figure 4.1d, as o is below 0.07 for the position and orientation and below 0.015
for the joints in absolute value. From Figure 4.1c we can see that the forces used
is smooth, i.e. no chattering and below 50 N, which is the limit for the thrusters.
That means that the forces used to control the AIAUV is indeed applicable.

4.3.2 Realistic simulations

In this section simulation results based on control gains obtained in experiments
will be presented, for both control laws presented in Section 4.2. The test cases used
are the C-shape, the C-shape with a moving head and the I-shape. The test cases
are explained in Section 2.3.3. To make the simulations a valid comparison with the
experiments, we use a P-controller for the joints. The reason for this choice is that
the Eelume 2016 robot has an internal joint controller, which is a P-controller. To
create a continuous trajectory we use a filter to generate a continuous trajectory
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4. Tracking using the Generalized Super-Twisting Algorithm

between set-points. For the simulations, the ode3 fixed-step solver with a step size
of 0.002 was used.

Simulations

The gains used for the simulations are those found during the experiments to
ensure that the comparison between the simulations and experiments is as correct
as possible. The gains for the GSTA and the HOSMO were chosen as in Table 4.1.
Note that we used lower gains for the I-shape than for the two other shapes, and
we also used different gains for the two control schemes. The reason for that is that
when the control scheme with the HOSMO was used the control input was more
aggressive, which can be seen from the results. This led to higher forces being used
and therefore we had to use lower gains to not get oscillations in the experiments.
Also note that the gains for the HOSMO, L, are different from those used during
the experiments for the C-shape and the C-shape with a moving head, because
we observed chattering in the simulations when we used L = 0.01, which was not
experienced in the experiments.

Table 4.1: Simulations: Control gains for the GSTA

Gains Tests
C-shape | C-shape w/moving head I-shape I-shape
k1 1 1 2 1
ko 0.0006 0.0006 0.0006 0.0006
8 24 24 12 3
L 0.1 0.1 HOSMO not used 0.1

The results when using the control law proposed in Section 4.2.1 are presented
in Figure 4.2. Figure 4.3 shows the simulation results when velocity measurements
are not available and the control law proposed in Section 4.2.2 is used. Note that
if higher gains had been used in the simulations, the results would have improved.

4.3.3 Discussion

As shown in Figure 4.2 and Figure 4.3, the ATAUV follows the given position
and orientation very well for all three shapes, both when the control law from
Section 4.2.1 and when the control law with the HOSMO from Section 4.2.2 is
used. The ATAUYV does have some issues with following the 6 reference in all cases,
but that might be because there is a small deviation between the desired control
input and the control input that we obtain from the thruster allocation scheme,
as shown in Figure 4.4. Note that when we, in the simulations, gave the thruster
allocation scheme more time to catch up with the reference before it was set to zero
again, we observed that the reference was eventually followed. Since we want a back-
to-back comparison between simulations and experiments, we kept the same timing
in the simulations as in the experiments. We can also observe a small deviation
in 1 at 600 s for all cases, which is a transient because of the changes in position
references that occur at 600 s. In the I-shape, there is a transient deviation in
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Figure 4.2: Simulation results using the control law from Section 4.2.1

also after 100 s, and the reason for this is probably the lower gains. We also observe
some oscillations in 6 and v in the C-shape with a moving head case, as shown
in Figure 4.2c and Figure 4.3c, and the reason for the oscillations is the moving
head; moreover, we observe that the oscillations in the states are consistent with
the movement of the head.

For the C-shape and the C-shape with a moving head, we do observe an im-
provement in the performance when the HOSMO is used, and the reason for this
improvement can be found by comparing Figure 4.2b and Figure 4.3b, and Fig-
ure 4.2d and Figure 4.3d. As shown in these plots, when the HOSMO is used,
higher thruster forces are used. However, for the I-shape, comparing Figure 4.2f
and Figure 4.3f shows that less force is used, thus making the performance in the
I-shape when the HOSMO is used poorer, which is logical since lower gains are

59



4. Tracking using the Generalized Super-Twisting Algorithm

(c) Tracking in C-shape with a moving head
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Figure 4.3: Simulation results using the control law from Section 4.2.2

used when the HOSMO is used.

Figure 4.2 and Figure 4.3 also show that for both control schemes the thruster
forces used are below 50 N, which is the limit of the thrusters on the actual Eelume
robot. This result means that the forces used to control the AIAUV are indeed

applicable.

4.4 Experimental investigation

In this section, the experimental results obtained during the fall of 2018 are pre-
sented. The purpose of the experiments is to validate the theory and the robustness
of the control approaches, by showing that the proposed approaches also work in
experiments and not only in the ideal case of the simulations. The robot used is
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the Eelume 2016 version of the robot presented in Section 2.3.1 and the test cases
used are the same as for the simulations, and are explained in Section 2.3.3.

4.4.1 Results

In this section, the experimental results from the performed tests are presented.
The GSTA was easy to make work in the experiments, and it did not require
much effort in tuning. The gains were increased until we observed that rather than
following the reference, the AIAUV began to oscillate around the reference. We
therefore chose gains that created a small deviation from the reference rather than
gains that were more aggressive (higher), where the ATAUV would oscillate around
the reference. These oscillations might be caused by delays in the thrusters. The
gains for the GSTA and the HOSMO were chosen as shown in Table 4.2.

Table 4.2: Experiments: Control gains for the GSTA

Gains Tests
C-shape | C-shape w/moving head I-shape I-shape
kq 1 1 2 1
ko 0.0006 0.0006 0.0006 0.0006
8 24 24 12 3
L 0.01 0.01 HOSMO not used 0.1

In Figure 4.5 the results when using the control law proposed in Section 4.2.1
are presented. Note that here the velocity estimates come from the Kalman filter.
In Figure 4.6 we see the results when velocity measurements are not available and
the control law proposed in Section 4.2.2 were used.

4.4.2 Discussion

In the C-shape, we observe from Figure 4.5a that the reference was followed nicely,
but we do observe a small deviation from the 6 reference caused by a transient, i.e.,
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Figure 4.5: Experimental results using the control law from Section 4.2.1

when the € reference is changed to 10deg at 300 s. We also observe small transient
deviations in ¢ and 0 at 100 s, 300 s and 600 s, which are when the position reference
is changed. These are similar to the deviations observed in the simulations. In the
C-shape with a moving head, Figure 4.5¢ shows that the movement of the head
caused oscillations in z, ¢, # and 1, but the position reference was still followed. In
the I-shape shown in Figure 4.5¢, we observe that the reference was followed nicely
for all DOFs except ¢, which is logical since ¢ is unactuated in the I-shape. From
Figure 4.5b, Figure 4.5d and Figure 4.5f, we find that there is some chattering in
the control input, which could potentially have been reduced by reducing the gains,
but if we reduced the gains, we would not obtain the desired tracking performance.

We observed an improvement in the tracking performance when the HOSMO
was used without an increase in thruster use; this can be seen by comparing Fig-
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Figure 4.6: Experimental results using the control law from Section 4.2.2

ure 4.5 and Figure 4.6. In the C-shape, we observe from Figure 4.6a that we have
almost perfect tracking. In the C-shape with a moving head, we observe from Fig-
ure 4.6¢ some small oscillations in z, ¢ and 6 caused by the movement of the head,
but the movement is much smaller than for the case when the HOSMO is not used
and is present almost only when the 6 reference is changed to 10deg at 300 s. In
the I-shape shown in Figure 4.6e, we observe some deviation from the reference
trajectory, but we do see that the trajectory is essentially followed. The I-shape is
therefore the only case where we have worse performance with the control scheme
with the HOSMO. The reason for this result is probably the lower gains, as we
had oscillations in the ATAUV when we used the same gains as we did for the con-
trol law without the HOSMO, i.e., the control law from Section 4.2.1. Additional
measurement noise from Qualisys was observed in these tests, but the noise did
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Figure 4.7: Estimation errors for the HOSMO during C-shape (the first sub-plot
shows e; = &1 — & and the second sub-plot shows ey = x5 — &9)

not affect the performance. Thus, the conclusion would be that the HOSMO works
well and creates better performance than the Kalman filter that we used. When we
used the HOSMO, we observed an increase in chattering, most likely because some
chattering exists in the estimated states from the HOSMO. From the HOSMO
errors in Figure 4.7, where the first sub-plot shows e; = 1 — 1 and the second
sub-plot shows e; = x5 — T2, we observe that the errors are quite small and that
they appear to be noise, this means that the HOSMO is indeed applicable.

If we compare the results obtained in the simulations (Figure 4.2 and Fig-
ure 4.3) and the results obtained in the experiments (Figure 4.5 and Figure 4.6)
for both control schemes, we find that they are quite similar. For the C-shape, the
trajectories were almost perfectly tracked, whereas for the C-shape with a moving
head, we observed some oscillations in some of the states, which were caused by
the moving head. For the I-shape, as expected, the tracking performance was not
as good as for the other shapes since the gains used for the I-shape were lower
and the ATAUV is underactuated in ¢ in this shape. For the C-shape and the C-
shape with a moving head, we observed an improvement in performance when the
HOSMO was used, whereas for the I-shape, we found a decrease in performance.
The reason for this result was probably the lower gains. For the experiments in
general, we observed that the tracking performance was slightly worse than in the
simulation results; however, this result is expected since in the experiments, we had
outliers and errors in the position measurements. The fact that we did not have
feedback from the thrusters probably also affected the errors, because we were not
necessarily obtaining the forces from the thrusters that we were asking for. If we
consider the difference in thruster use, we find that the main difference was more
chattering in the thruster forces in the experiments. The reason for this result was
probably thruster delays and measurement noise.

4.5 Chapter summary

In this chapter, we have proposed the GSTA for solving the trajectory tracking
problem of ATAUVs in 6DOF. We have proven that the closed-loop system is UGAS
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4.5. Chapter summary

and that the GSTA gives GUFTS, not only GFTS. We have shown how well the
algorithm can perform in an optimal performance example, and we have presented
comprehensive simulation and experimental results for three different, shapes, rep-
resenting both transport mode and operation mode. The results validate and verify
that the proposed approach is well suited for control of an ATAUV. Furthermore,
we have also solved the trajectory tracking problem in 6DOF using the GSTA in
combination with a HOSMO. Additionally, we have proven that the closed-loop
system is UGAS. The same three shapes were used to obtain comprehensive sim-
ulation and experimental results, and these validate and verify that the proposed
approach is well suited for control of an ATAUV.

The simulation and experimental results were almost equally good. Some small
offsets and oscillations observed in the experiments were not present in the simula-
tions, but that is to be expected since the experiments have outliers and measure-
ment noise.

In the experiments, we observed an increase in performance when the higher-
order sliding mode observer was used instead of the Kalman filter. Therefore, the
higher-order sliding mode observer is indeed applicable for state estimation.
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Chapter 5

Comparison of Two Sliding Mode
Control Algorithms

In this chapter, we will compare the previously proposed tracking control laws
presented in Chapter 3 and Chapter 4. Specifically, we will compare the control
law using the STA with adaptive gains presented in Section 3.2.1 and the control
law using the GSTA presented in Section 4.2.1. We will also compare the control
law where the STA with adaptive gains is combined with a HOSMO, which is
presented in Section 3.2.2 with the control law where the GSTA is combined with
a HOSMO, which is presented in Section 4.2.2. We also solve the tracking problem
using a PID controller to evaluate how the SMC algorithms perform compared to
a standard linear controller. The main objective of this chapter is a comparison
between the STA with adaptive gains, the GSTA and a PID controller.

Contributions of this chapter

The contributions of this chapter can be summarized as follows. We demonstrate
the applicability of the proposed control laws from Chapter 3 and Chapter 4, and we
compare these two different algorithms for solving the trajectory tracking problem
for ATAUVs in 6DOF: the STA with adaptive gains and the GSTA. Furthermore,
their performance is compared with that of a PID controller

Organization of this chapter

The chapter is structured as follows. In Section 5.1, we present two tracking control
laws for the AIAUV based on the PID controller: one where we assume that the
velocity is known, and one where we use the estimated velocity from a HOSMO.
The simulation results are presented in Section 5.2 and the experimental results
are presented in Section 5.3. In Section 5.4 a chapter summary is presented.

Publications

This chapter is based on [15].
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5. Comparison of Two Sliding Mode Control Algorithms

5.1 PID controller

To benchmark the two SMC algorithms, we also include a PID controller in the
comparison. Therefore, in this section, we propose two tracking control laws for
the ATAUV based on the PID controller: one where we assume that the velocity is
known, and one where we use the estimated velocity from a HOSMO.

5.1.1 Control law based on the PID controller

In this subsection, the tracking control law for the ATAUV using the PID controller
is presented. The control input when the PID controller is used is defined as

7(q) = —kple — hal — i / X (5.1)

where &, is defined as in (2.12) and ¢ = ¢ — (g, where ¢ and ¢y are defined as in
(2.3) and (2.4), respectively. The constants k,, kq and k; are controller gains.

5.1.2 Control law based on the PID controller combined with a
HOSMO

In this subsection, the tracking control law for the AIAUV using the PID controller
with the estimated velocity from the HOSMO is presented.

State observer

Because velocity measurements are not available, a state observer has to be de-
signed. We want to use the third-order SMO presented in [46], as it has been
proven to be FTS in [57]. By designing the third-order SMO structure as in [46],
the third-order SMO can be written as

Lf’l =T9+ 21
To = &3+ 20 + M (q)J(m2)7(q) (5.2)

T3 = Z3
where

21 = k‘1|€1|2/3 sgn(ep)
2o = kale1 |3 sgn(er) (5.3)

z3 = k‘g sgn(el)

and k; € ROH( =Dk, ¢ ROH=1 and k3 € R6H("=1 are gains to be chosen
according to [48] and [49], where e; = &, — @1 € RO ("1 with ¢, defined as in
(2.10). One choice of parameters that satisfies the requirements in [48] and [49] is,
according to [19], ky = 6LY3, ky = 11LY/? and k3 = 6L, where L € R6*T(~1) ig
a sufficiently large constant. Note that the mathematical operations in (5.2) and
(5.3) are performed in an element-wise manner.
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5.2. Simulation results

Control input

The control input when the PID controller with the velocity from the third-order
SMO from (5.2) and (5.3) are used can be found as

() = —hple — kal — ks / E.dt (5.4)

where £, is defined as in (2.12) and é = J.(n2) " t#9—(y4, where &5 and (4 are defined
as in (5.2) and (2.4), respectively. The constants k,, kq and k; are controller gains.

5.2 Simulation results

In this section, we present simulation results for trajectory tracking using the con-
trol laws presented in Section 3.2, Section 4.2 and Section 5.1. We use the simulation
model presented in Section 2.2 and the Eelume 2016 version of the robot presented
in Section 2.2.1.

The test cases used are the C-shape and the C-shape with a moving head.
The test cases are explained in Section 2.3.3. To make the simulations a valid
comparison with the experiments, we use a P-controller for the joints. The reason
for this choice is that the Eelume 2016 robot has an internal joint controller, which
is a P-controller. To create a continuous trajectory we use a filter to generate a
continuous trajectory between set-points. For the simulations, the ode3 fixed-step
solver with a step size of 0.002 was used. To ensure that the comparison between
the simulations and experiments is as fair as possible, the gains used during the
simulations are the gains found during the experiments. The gains for the STA with
adaptive gains and the HOSMO are presented in Table 3.1; for the GSTA and the
HOSMO, the gains are presented in Table 4.1; and for the PID controller, the gains
are presented in Table 5.1. For the SMC algorithms, the gains for the HOSMO,
L, are different from those used during the experiments for the C-shape and the
C-shape with a moving head because we observed chattering in the simulations
when we used L = 0.01, which was not experienced in the experiments.

Table 5.1: Simulation: Control gains for the PID controller

Gains Tests
C-shape | C-shape w/moving head
kp 20 20
kq 0.4 0.4
k; 0.1 0.1
L 0.01 0.01

The trajectory tracking results using the control laws from Section 3.2.1, Sec-
tion 4.2.1 and Section 5.1.1, i.e., without the HOSMO, are presented in Figure 5.1.
Note that the orientation errors are presented in terms of Euler angles for visu-
alization, even though the control laws use quaternions. This is also the case for
the rest of the results presented in this chapter. The corresponding thruster forces
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Figure 5.1: Simulation: Trajectory tracking results using the control laws without
the HOSMO

are shown for the C-shape in Figure 5.2 and for the C-shape with a moving head
in Figure 5.3. In Table 5.2, the root mean square error (RMSE) and maximum
error for the position and orientation are given for each control law without the
HOSMO and for both simulation test cases, i.e., the C-shape and the C-shape with
a moving head. In Table 5.3, the root mean square (RMS) for the thruster forces
and the derivative of the thruster forces are given for each control law without
the HOSMO and for both simulation test cases. The RMS of the thruster forces
provides an idea of how much force is used, and the RMS of the derivative of the
thruster forces provides a measure of how much chattering is present in the thruster
forces. The trajectory tracking results using the control laws from Section 3.2.2,
Section 4.2.2 and Section 5.1.2, i.e., with the HOSMO, are presented in Figure 5.4.
The corresponding thruster forces are shown for the C-shape in Figure 5.5 and
for the C-shape with a moving head in Figure 5.6. In Table 5.4, the RMSE and
maximum error for the position and orientation are given for each control law with
the HOSMO and for both simulation test cases. In Table 5.5, the RMS for the
thruster forces and the derivative of the thruster forces are given for each control
law with the HOSMO and for both simulation test cases. Note that if higher gains
had been used in the simulations, the results would have improved, at least for the
GSTA.
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Figure 5.2: Simulation: Thruster forces Figure 5.3: Simulation: Thruster forces

used in the C-shape when the control used in the C-shape with a moving

laws without the HOSMO are used head when the control laws without the
HOSMO are used

5.2.1 Discussion

As shown in Figure 5.1, the ATAUV follows the given position and orientation
very well for both test cases as all errors are quite small when the control laws
from Section 3.2.1, Section 4.2.1 and Section 5.1.1, i.e., without the HOSMO, are
used. This result indicates that all the control laws are applicable. As shown in
Figures 5.1a and 5.1b, in the C-shape case, the STA with adaptive gains provides
the best result overall, i.e., the lowest error, and the GSTA provides the second
best. The reason why the STA with adaptive gains provides better results than the
GSTA is probably that we have to tune the GSTA manually, while the STA with
adaptive gains adaptively finds the best gains. However, if we more closely examine
some of the results for ¢ and 0, we do find that for ¢, the GSTA provides the lowest

71



5. Comparison of Two Sliding Mode Control Algorithms

Table 5.2: Simulation: Comparison of results when the control laws without the
HOSMO are used

Algorithm Root Mean Square Error (RMSE) Maximum error
g C-shape C-shape w/moving head C-shape | C-shape w/moving head
STA Position 0.0008 0.0019 0.0090 0.0167
Orientation | 0.0116 0.0228 0.0301 0.0720
GSTA Position 0.0054 0.0068 0.0303 0.0327
Orientation | 0.0114 0.0193 0.0330 0.0535
PID Position 0.0087 0.0115 0.0509 0.0521
Orientation | 0.0154 0.0249 0.0455 0.0699

Table 5.3: Simulation: Comparison of the thruster forces used when the control
laws without the HOSMO are used

Root Mean Square (RMS)
Algorithm Tihr Tthr
C-shape | C-shape w/moving head | C-shape | C-shape w/moving head
STA 2.16 1.89 5.32 2.19
GSTA 1.84 1.91 5.05 0.31
PID 1.80 1.87 0.74 0.67

Table 5.4: Simulation: Comparison of results when the control laws with the
HOSMO are used

Aleorithm Root Mean Square Error (RMSE) Maximum error
g C-shape C-shape w/moving head C-shape | C-shape w/moving head
STA Position 0.0009 0.0032 0.0091 0.0271
Orientation | 0.0078 0.0198 0.0206 0.0676
GSTA Position 0.0059 0.0075 0.0304 0.0341
Orientation | 0.0072 0.0125 0.0205 0.0348
PID Position 0.0083 0.0112 0.0497 0.0524
Orientation | 0.0147 0.0245 0.0434 0.0692

error, and for 8, GSTA and PID provide a slightly lower error than the STA with
adaptive gains. From Figures. 5.1c and 5.1d, we observe the same tendencies for
the C-shape with a moving head as for the C-shape case, i.e., in x, y, z and 7,
the STA with adaptive gains provides the smallest error, and the GSTA is the
second best. However, for ¢ and 6, the errors are much more similar. Examining
Table 5.2 confirms what we can observe from Figure 5.1, i.e., that the STA with
adaptive gains provides the smallest error for the position, and that the GSTA is
the second best, whereas for orientation, the GSTA and the STA with adaptive
gains have much more similar results, and the GSTA actually provides a slightly
smaller error. The PID controller clearly offers the worst tracking performance for
both position and orientation. If we take the thruster use of the different algorithms
into consideration, i.e., Figures 5.2 and 5.3, we find that for both test cases, the
STA with adaptive gains uses more force than the GSTA and the PID controller,
while the GSTA and the PID use very similar amounts of force. However, the RMS
of 74y, in Table 5.3 shows that over time, there is actually not a large difference in
how much force is used. The STA with adaptive gains uses slightly more force in
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Figure 5.4: Simulation: Trajectory tracking results using the control laws with the
HOSMO

Table 5.5: Simulation: Comparison of the thruster forces used when the control
laws with the HOSMO are used

Root Mean Square (RMS)
Algorithm Tthr Tehr
C-shape | C-shape w/moving head | C-shape | C-shape w/moving head
STA 2.25 2.05 15.78 9.48
GSTA 2.11 2.22 10.99 7.90
PID 1.82 1.89 1.43 1.37

the C-shape case, but for the case of the C-shape with a moving head, it is very
similar. However, from the RMS of 73, we find that there is the most chattering
in the control input from the STA with adaptive gains, there is less in that from
the GSTA, and the control input from the PID controller shows the least rapid
changes in the thrust forces. However, the value of the RMS of 7, is so small that
the chattering that is introduced by the STA with adaptive gains is negligible.
When the control laws with the HOSMO are used, i.e., the control laws from
Section 3.2.2, Section 4.2.2 and Section 5.1.2, we observe the same tendencies in
Figure 5.4 as when the control laws without the HOSMO are used. As shown in
Figures 5.4a and 5.4b, the STA with adaptive gains provides the smallest errors
for z, y, z and 9, and the GSTA gives the second smallest errors. For ¢, however,
the GSTA provides the smallest error, while the STA with adaptive gains results
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in oscillations. For 6, the results are more similar between the STA with adaptive
gains and the GSTA, while the PID controller gives rise to a larger error. As

shown in Figures 5.4c and 5.4d, the results for the C-shape with a moving head

are the same as those for the C-shape case, except that the results for ¢ and 6
are now more similar. Examining Table 5.4 confirms what we can observe from

Figure 5.4, i.e., that the STA with adaptive gains provides the best results for
position, while the GSTA gives slightly better results for orientation. The PID

controller exhibits the worst tracking performance. If we take the thruster use of

the different algorithms into consideration, i.e., Figures 5.5 and 5.6, we find that
the STA with adaptive gains also uses more force for both test cases, whereas
the GSTA and the PID controller use quite similar amounts of force. Over time,
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however, as seen in Table 5.5 from the RMS of 7., there is actually not a large
difference in how much force is used. From the RMS of 7,., we find that there is
the most chattering in the control input from the STA with adaptive gains, there is
less in that from the GSTA, and the PID controller shows the least rapid changes
in the thrust forces. However, the value of the RMS of 74, is so small that the
chattering that is introduced by the STA with adaptive gains is negligible.

If we compare the results obtained with the control laws from Section 3.2.1,
Section 4.2.1 and Section 5.1.1, i.e., without the HOSMO, and the results obtained
with the control laws from Section 3.2.2; Section 4.2.2 and Section 5.1.2, i.e., when
the HOSMO is used, by comparing Table 5.2 with Table 5.4, Table 5.3 and Ta-
ble 5.5, we find that when the HOSMO is used, we obtain better tracking results
for the orientation for all the algorithms, as well as better tracking for position
when the PID controller is used. Additionally, note that the difference between the
position errors, i.e., with and without the HOSMO, is smaller than the difference
between the orientation errors, i.e., the control laws with the HOSMO provide the
best performance overall. The reason for the better tracking performance is prob-
ably due to the increase in thruster use. The thruster use is, however, well within
the boundaries of what the Eelume ATAUV can provide, which is 50 N.

To conclude, we find that we obtain the best tracking performance in position
by using the STA with adaptive gains, and the GSTA provides the best tracking
performance in orientation. If we simultaneously consider the errors for position and
orientation, we find that the STA with adaptive gains provides the best tracking
performance, but there is not a large difference between the STA with adaptive
gains and the GSTA. The reason for this difference is probably that we have to
tune the GSTA manually, whereas the method with adaptive gains adaptively finds
the best gains and thus has an advantage. If we use the HOSMO to estimate the
linear and angular velocities in the control laws, we improve our results.

5.3 Experimental investigation

In this section, experimental results obtained during the fall of 2018 are presented.
In Section 3.4 experimental results for the STA with adaptive gains was presented,
and in Section 4.4 experimental results for the GSTA was presented. In this section
we will present these results together with the results obtained for the PID con-
troller to perform a comparison between the STA with adaptive gains, the GSTA
and the PID controller. The robot used is the Eelume 2016 version of the robot pre-
sented in Section 2.3.1 and the test cases used are the same as for the simulations,
and are explained in Section 2.3.3.

5.3.1 Results

In this section, the experimental results from the performed tests are presented.
All three algorithms, i.e., the STA with adaptive gains, the GSTA and the PID
controller, were easy to apply successfully in the experiments, and none of them
required much effort in tuning. In the experiments, we increased the gains until
we observed that the AIAUV started to oscillate around the reference instead of
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following it. The gains that we chose therefore create a small deviation from the
reference rather than oscillations around the reference. If we would have chosen
more aggressive (higher) gains, the ATAUV would have oscillated. These oscillations
might be caused by delays in the thrusters. For all the algorithms, we attempted to
use the same gains for both test cases, i.e., we attempted to find the best possible
gains for the C-shape, and then we used the same for the C-shape with a moving
head for a fair comparison. For the STA with adaptive gains, the choice of gains
is not very important because the gains will adapt to their best possible values by
themselves. We did, however, observe that if we chose the initial adaptive gains to
be too high, the Eelume ATAUYV started to oscillate. We therefore had to use lower
gains when the HOSMO was used in the case of the C-shape with a moving head.
The reason for this is probably because when the HOSMO was used, the thruster
forces increased. The gains for the STA with adaptive gains and the HOSMO are
presented in Table 3.2; for the GSTA and the HOSMO, the gains are presented in
Table 4.2; and for the PID controller, the gains are listed in Table 5.6.

Table 5.6: Experiments: Control gains for the PID controller

Gains Tests
C-shape | C-shape w/moving head
ky 20 20
kq 0.4 0.4
ki 0.1 0.1
L 0.01 0.01

The trajectory tracking results using the control laws from Section 3.2.1, Sec-
tion 4.2.1 and Section 5.1.1, i.e., without the HOSMO, are presented in Figure 5.7.
The corresponding thruster forces are shown for the C-shape in Figure 5.8 and for
the C-shape with a moving head in Figure 5.9. In Table 5.7, the RMSE and maxi-
mum error for the position and orientation are given for each control law without
the HOSMO and for both test cases. In Table 5.8, the RMS for the thruster forces
and the derivative of the thruster forces are given for each control law without the
HOSMO and for both test cases. The trajectory tracking results using the control
laws from Section 3.2.2, Section 4.2.2 and Section 5.1.2, i.e., with the HOSMO,
are presented in Figure 5.10. The corresponding thruster forces are shown for the
C-shape in Figure 5.11 and for the C-shape with a moving head in Figure 5.12.
In Table 5.9, the RMSE and maximum error for the position and orientation are
given for each control law with the HOSMO and for both test cases. In Table 5.10,
the RMS for the thruster forces and the derivative of the thruster forces are given
for each control law with the HOSMO and for both test cases. Note that the sim-
ulation study indicates that if higher gains could have been used without causing
oscillations, then the tracking accuracy would have been improved.

5.3.2 Discussion

As shown in Figure 5.7, the ATAUYV follows the given position and orientation very
well for both test cases, as all errors are quite small when the control laws from
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Figure 5.7: Experiments: Trajectory tracking results using the control laws without

the HOSMO

Table 5.7: Experiments
HOSMO are used

: Comparison of results when the control laws without the

Algorith Root Mean Square Error (RMSE) Maximum error
gorithm C-shape C-shape w/moving head C-shape | C-shape w/moving head
STA Position 0.0054 0.0121 0.0345 0.0579
Orientation | 0.0163 0.0255 0.0707 0.1074
GSTA Position 0.0133 0.0327 0.0446 0.1039
Orientation | 0.0210 0.0216 0.0740 0.0674
PID Position 0.0158 0.0392 0.0663 0.1382
Orientation | 0.0194 0.0362 0.0669 0.1167

Section 3.2.1, Section 4.2.1 and Section 5.1.1, i.e., without the HOSMO, are used.
As shown in Figure 5.7a, in the C-shape case, the STA with adaptive gains provides
the best results for the position. The GSTA and PID controller have much more
similar results for the position as the GSTA has almost as large position errors
as the PID controller; however, we do observe that the position errors for the
PID controller oscillate more than the position errors for the GSTA. As shown
in Figure 5.7b, for the orientation, the results are more similar for all algorithms.
From Figures 5.7c and 5.7d, the same tendencies are observed for the C-shape
with a moving head as for the C-shape case, i.e., for the position, the STA with
adaptive gains gives the smallest error, whereas for the orientation, the tracking
performance is more similar. Examining Table 5.7 confirms what we find from
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Figure 5.7, i.e., that the STA with adaptive gains gives the smallest error for the
position, whereas for the orientation, which algorithm performs the best depends
on the case, i.e., C-shape or C-shape with a moving head. The reason why the STA
with adaptive gains outperforms the two other algorithms is probably because it
has adaptive gains and is therefore robust against tuning. Table 5.7 also shows that
the GSTA does outperform the PID controller by a small margin. If we take the
thruster use of the different algorithms into consideration, by looking at Figures 5.8
and 5.9, we find that for both test cases, the STA with adaptive gains uses more
force than the GSTA and the PID controller and that the GSTA uses more force
than the PID controller. However, based on the RMS of 7,., Table 5.8 shows that
over time, there is actually not a large difference in how much force is used. In the
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Table 5.8: Experiments: Comparison of the thruster forces used when the control
laws without the HOSMO are used

Root Mean Square (RMS)
Algorithm Tihr Tthr
C-shape | C-shape w/moving head | C-shape | C-shape w/moving head
STA 1.94 2.76 2.95 7.24
GSTA 1.82 2.18 1.46 1.95
PID 1.44 2.14 0.75 0.93
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Figure 5.10: Experiments: Trajectory tracking results using the control laws with

the HOSMO

C-shape case, the STA with adaptive gains uses slightly more force than the GSTA,
and the GSTA uses more force than the PID controller. In the case of the C-shape
with a moving head, however, the PID controller and the GSTA use very similar
amounts of force, while the STA with adaptive gains uses more. Nevertheless, from
the RMS of 74, we can however that there is the most chattering in the control
input from the STA with adaptive gains, there is less in that from the GSTA, and
the PID controller shows the least rapid changes in the thrust forces. However, the
value of the RMS of 735, is so small that the chattering that is introduced by the
STA with adaptive gains is almost negligible. The reason why the chattering may
appear to be considerable in the plots is because of the time scale used.

When the control laws with the HOSMO are used, i.e., from Section 3.2.2,
Section 4.2.2 and Section 5.1.2, we observe the same tendencies in Figure 5.10 as
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when the control laws without the HOSMO are used, but we find from Figures 5.10a
and 5.10b and from Figures 5.10c and 5.10d that the STA with adaptive gains is no
longer clearly better. We also observe that we have some more measurement noise
in the measurements from the measurement system, but the algorithms are robust
against this noise. As shown in Table 5.9, we have the same results as those when
the HOSMO is not used, i.e., the STA with adaptive gains provides the smallest
error for position, whereas for the orientation, the GSTA gives the smallest error.
The PID controller provides the worst tracking performance. From the maximum
error in Table 5.9, the measurement noise impacts the maximum error results since
if we would have filtered the position measurements such that the peaks in the
measurements were not there, we would have obtained a lower maximum error for
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Table 5.9: Experiments: Comparison of results when the control laws with the
HOSMO are used

Aleorithm Root Mean Square Error (RMSE) Maximum error
g C-shape C-shape w/moving head C-shape | C-shape w/moving head
STA Position 0.0064 0.0177 0.0640 0.1007
Orientation | 0.0087 0.0215 0.1035 0.1321
GSTA Position 0.0100 0.0252 0.0661 0.0871
Orientation | 0.0062 0.0147 0.0914 0.0618
PID Position 0.0143 0.0394 0.0549 0.1428
Orientation | 0.0181 0.0431 0.0779 0.1327

Table 5.10: Experiments: Comparison of the thruster forces used when the control
laws with the HOSMO are used

Root Mean Square (RMS)
Algorithm Tthr Tehr
C-shape | C-shape w/moving head | C-shape | C-shape w/moving head
STA 3.02 3.34 17.49 13.51
GSTA 1.85 2.23 4.77 5.05
PID 1.71 2.09 4.27 4.64

all algorithms, particularly the STA with adaptive gains and the GSTA, as there
are some large peaks in those measurements. If we take the thruster use of the
different algorithms into consideration, i.e., Figures 5.11 and 5.12, we find that the
STA with adaptive gains uses more force for both test cases and that the GSTA
uses more force than the PID controller in the C-shape case, whereas in the case of
the C-shape with a moving head, the PID controller and the GSTA use almost the
same amount of force. However, as shown in Table 5.10, the RMS of 7, indicates
that the STA does use more force than the GSTA and the PID controller in both
test cases, whereas the PID controller and the GSTA use almost the same amount
of force. From the RMS of 75,., we can also observe that there is the most chattering
in the control input from the STA with adaptive gains, there is less in that from
the GSTA, and the PID controller shows the least rapid changes in the thruster
forces. However, the value of the RMS of 7y, is so small that the chattering that
is introduced by the STA with adaptive gains is negligible. The reason why there
may appear to be considerable chattering in the plots is again because of the time
scale used.

If we compare the results obtained with the control laws from Section 3.2.1,
Section 4.2.1 and Section 5.1.1, i.e., without the HOSMO, and the results obtained
with the control laws from Section 3.2.2; Section 4.2.2 and Section 5.1.2, i.e., when
the HOSMO is used, by comparing Table 5.7 with Table 5.9, Table 5.8 and Ta-
ble 5.10, we find that when the HOSMO is used, we obtain better tracking results
for the orientation for all the algorithms, as well as better tracking for position
when the GSTA is used. Additionally, note that the difference between the po-
sition errors, i.e., with and without the HOSMO, is smaller than the difference
between the orientation errors, i.e., the control laws with the HOSMO provide the
overall best performance. The reason for the better tracking performance is prob-
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ably due to the increase in thruster use. The thruster use is, however, well within
the boundaries of what the Eelume ATAUV can provide, which is 50 N.

If we compare the simulation results (Figures. 5.1 and 5.4) and the experimental
results (Figures. 5.7 and 5.10) for both test cases, we find that the results are quite
similar and that all algorithms are applicable with and without the HOSMO to
control the ATAUV. We also find that it is the same algorithms that provide the best
tracking results in the simulations and the experiments, i.e., the STA with adaptive
gains and the GSTA in a good second place. We also observed an improvement
in the tracking performance for all algorithms when the HOSMO was used in
both simulations and experiments. Of course, the tracking errors, i.e., the position
and orientation errors, are larger in the experiments than in the simulations, but
that is to be expected because of measurement noise, thruster dynamics and other
unmodelled dynamics. The fact that we did not have feedback from the thrusters
likely also affected the errors because we were not necessarily obtaining the forces
from the thrusters that we were asking for.

5.4 Chapter summary

In this chapter, we have compared three different algorithms for solving the tra-
jectory tracking problem for ATAUVs in 6DOF: the STA with adaptive gains, the
GSTA and a PID controller. Comprehensive simulation and experimental results
for two different test cases, i.e., the C-shape and the C-shape with a moving head,
representing the operation mode, have been presented and used to compare the
performance of the three mentioned algorithms. The results indicate that we ob-
tain the best tracking performance in position by using the STA with adaptive
gains, and the GSTA gives the best tracking performance in orientation. If the
errors for position and orientation are added together, we find that the STA with
adaptive gains provides the best tracking performance overall, but there is not a
large difference between the STA with adaptive gains and the GSTA. The reason
for this difference is probably that we have to tune the GSTA manually, whereas the
STA adaptively finds the best gains. The PID controller offers the worst tracking
performance. The same two test cases were used to obtain comprehensive simu-
lation and experimental results for the three algorithms in combination with the
HOSMO. The results have been used to compare the control laws and to study the
performance of the HOSMO. When the HOSMO was used to estimate the linear
and angular velocities in the control laws, we improved our results. This means
that the HOSMO is indeed applicable for state estimation.

In both the simulations and in the experiments, it was the STA with adaptive
gains that provided the best overall tracking performance, but the GSTA was not
far from achieving the same tracking results. Thus, the fact that we had to tune the
GSTA manually is probably the reason that we achieved lower tracking performance
with this algorithm. The STA with adaptive gains is therefore better in practice
than the GSTA, but the GSTA does have some theoretical advantages as it is proven
to provide GFT stability for a larger class of systems. These additional theoretical
properties make it possible to prove that the closed-loop system is UGAS without
the HOSMO when the GSTA is used (proven in [16] or Chapter 4). This is not
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possible for the STA with adaptive gains.

The simulation and experimental results were almost equally good. Of course,
the tracking errors, i.e., the position and orientation errors, are larger in the ex-
periments than in the simulations, but that is to be expected because of outliers,
measurement noise and because of the accuracy of the measurement system.
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Chapter 6

The Generalized Super-Twisting
Algorithm with Adaptive Gains

In this chapter we propose an adaptive GSTA for a class of system whose per-
turbations and uncertain control coefficients are time- and state-dependent, i.e. we
combine the best properties of the STA with adaptive gains [69] (used in Chapter 3)
and the GSTA [18] (used in Chapter 4). The proposed approach consists in using
dynamically adapted control gains that ensure global finite-time convergence. The
theoretical advantage of the GSTA is that GFT stability is proven for a larger class
of systems, i.e., systems for which both the perturbations and the control coeffi-
cients may depend on both state and time and the control coefficients are uncertain.
The advantage with adaptive gains is that no conservative upper bound has to be
considered on the perturbations and control coefficients to maintain sliding. We
prove that the resulting closed-loop system is GFTS.

Contributions of this chapter

The contributions of the chapter can be summarized as follows. A novel adaptive
GSTA is proposed for a class of systems whose perturbations and uncertain control
coefficients are time- and state-dependent. The proposed approach consists in using
dynamically adapted control gains in a GSTA, which ensures global finite-time con-
vergence. A non-smooth strict Lyapunov function is used to obtain the conditions
for the global finite-time stability. It is also shown that the adaptive GSTA makes
the tracking errors of the ATAUV converge asymptotically to zero. A simulation
and experimental study for the ATAUV is performed to show the effectiveness of
the proposed algorithm.

Organization of this chapter

The remainder of the chapter is organized as follows. In Section 6.1, the problem
statement and main results are given. The case study for the ATAUV is presented
in Section 6.2 and the experimental study is presented in Section 6.3. In Section 6.4
a chapter summary is presented.
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Publications

This chapter is based on [12] and [13].

6.1 Problem statement and main results

In this section, we prove that the proposed GSTA with adaptive gains causes the
system trajectories to globally converge to zero in finite time while accounting for
unknown bounds on the uncertain control coefficient and perturbation term.

6.1.1 System dynamics

Consider the dynamic system represented by the differential equation
& = (o, tyu+ p(0,1) (6.1)

where o € R is the state vector and v € R is the control input vector. The func-
tions 7y(o,t) and ¢(o,t) are uncertain functions depending on the state and time.
Following [18], we adopt the following assumptions:

Assumption 6.1. The functions (o, t) and ¢(o,t) are Lipschitz continuous func-
tions with respect to t, and (o, t), p(0,t) € Ct with respect to o.

Assumption 6.2. The uncertain control coefficient function is bounded by
0<ky < 7(07 t) < kum (62)
where k,, and kj,; are positive constants.

Assumption 6.3. The perturbation term (o, t) can be split into two components:

o(o,t) = p1(o,t) + pa(o,t) (6.3)

where the first component vanishes at the origin, i.e., p1(0,t) =0V ¢ > 0, and is
bounded by
lpi(o,t)] < al¢i(o)],  a>0 (6.4)

Remark 6.1. For the adaptive GSTA which will be presented below, if we insert
(6.8) for ¢1(c) in (6.4), we have that |py(o,t)| < al|o|2 sgu(o) + Bo| < al|o|z +
Blo|). This means that the perturbation term ¢q(o,t) has to be contained in the
sector limited by the curves +a(|o|2 + S]o|), and can only grow at most linearly
in o.

Assumption 6.4. The total time derivative of the non-vanishing component of
the perturbation term divided by the control coefficient (o, t) can be represented
as

d, 4 | D2 o Oy —10p2 o O\ .
2 (17 (o )p2(0,)) = R R ek Yl Ko
51(0',15) 52(0.77:)

=01(0,t) + b2(0,1)0

(6.5)
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where 61 (0o, t) and d2(0,t) are bounded by positive constants:
‘(51(0‘, t)| < 51, |62(0’, t)| < 52 (66)

Remark 6.2. This means that the non-vanishing term divided by the control
coefficient y~1(0,t)¢2(0,t) can only grow linearly in o. Since 7(o,t) has to be
lower and upper bounded by constants (Assumptions 6.2), this means that the
non-vanishing term s (0, t) can only grow at most linearly in o.

Remark 6.3. Note that Assumptions 6.2-6.4 are strongly related with the proof
of the positive definiteness of the matrix Q(¢) in (6.13), as they are needed to be
able to bound the variables in (6.15), where the bounds are defined as in (6.16).

6.1.2 Generalized super-twisting algorithm with adaptive gains

In this section, the equations describing the adaptive GSTA are presented. The
GSTA proposed in [18] can be written as
U =—k +z €R
AGSTA 161(0) ©67)
Z = —kaoa(0)
with
¢1(0) = [0]% + fo

1 3 (6.8)
¢2(0) = 5[0)°+ 5Bl0)% + %0
where [a|® = |a|’sgn(a) and k; € R, ks € R and 3 € R are constant controller
gains. Motivated by [69], we propose to instead let ky and ko be adaptive gains
defined by the following update laws:

, T ifo#0

kl = “i 27 1 7 7& (693)
0, ifo=0

ko = 2eky + A + 42 (6.9b)

where e € R, A € R, 71 € R and w; € R are positive constants.

6.1.3 Closed-loop dynamics
The closed-loop dynamics are obtained by substituting (6.3) and (6.7) into (6.1),
yielding

&= —kiv(o,t)p1(0) + ¢1(0,t) + (0, t) (2 + v (o, t)pa(0, 1)) (6.10)

By defining 07 = o and 09 = 2z + v~ (01, t)p2(01,t), we can represent the closed-
loop dynamics as

61 = (01, 1) (= kaga (o) + 77 (o1, t)pr (01, 1) + 02) (6.11a)
52 = —kaa(on) + (1701, )20, 1) (6.11b)
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Theorem 6.1. Suppose that y(o1,t) and ¢(o1,t) in system (6.1) satisfy Assump-
tions 6.1-6.4. Then, the closed-loop dynamics in (6.11) are GFTS, such that the
states o1 and oo converge to zero and z converges to —y~1(0,t)p2(0,t), globally
and in finite time, if the gains k1 and ko are designed as expressed in (6.9), 8 > 0,

A>0, w1 >0,7>0ande= 3= %, where wy > 0 and 2 > 0.

Remark 6.4. Note that the proof is for a one-dimensional case; however, since
SMC approaches do not use model information, the n dimensions can simply be
separated into n one-dimensional cases. The proof thus holds for n dimensions as
long as Assumptions 6.1-6.4 hold for each dimension. This will be demonstrated in
the case study presented in Section 6.2.

Proof. From [18], we have that the closed-loop system in (6.11) is GFTS when
constant values of k1, k2 and 8 > 0 are used in (6.7) and the gains are chosen in
accordance with [18, Theorem 2.1]. This is proven using the Lyapunov function
candidate

b2
where pips > 1 and £7 = [¢1(01) 02]. It is shown that the derivative along the
trajectory of the system is

Vo < =2v(o1, )¢ (01)ET Q)€

Vo=¢"Pe, P= [f 1 _1} (6.12)

§ (6.13)
< =V (o1, 02) — peVo(o1,02)
where
me/\2 {P} 2k,€
p1 = $, fo = B (6.14)
max{P} AnlaX{P}

and Q(t) is positive definite if the gains are chosen in accordance with [18, Theo-
rem 2.1]. For the proposed adaptive GSTA, however, ki and ko are not constants.
Instead, k1 and ks are time-varying functions given by (6.9). Motivated by [69], we
use the Lyapunov function candidate defined in (6.12) to find a k; that satisfies
(6.9a) such that Q(t) is positive definite when ks is chosen as expressed in (6.9b).
From [18], the elements of Q(t) are

_ @) (12(15)] _ { kpy — ko 3 (paks — (krh +ﬁ1))}
Q) {Q2(t) qa3(t) %(pzkz — (k1h + 1)) h (6.15)
with
p1= (pl f2(o1, 1 ) = p1 € [p,, 1] = [p1 _% p1+ é}
¢ (o1) = B’ B
7. — 61 017 7 o 1 =
s =404, )(k2 o ) = Fy € [ky, ko] = [E(kg ~201), (ko t 251)}
I _ - 901 oyt 7 _ o a
kl—(k1—’y 1( ¢1 01 ):>k khkl]_[kl—km’kl—i—km}
7 p2da(o1,t 3 ngz p272
h_( o (1) ):>he [1—?,14—7}
(6.16)
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If we choose ky = ki — 2 and ko = %(k‘Q +201), such that Q(t) is as negative as
possible, we can rewrite Q(t) as

(6.17)

Q) = [ (k1 — 22)p1 — - (k2 + 261) QQ(t)]

%(m (ko +26,) — ((kl_k(jn)ﬁ+ﬁ1)> h

For the matrix Q(¢) in (6.17) to be positive definite, we need ¢;(t) > 0 and

det(Q(t)) > 0. By using ks as given in (6.9b) and calculating the determinant
of Q(t) in (6.17), we obtain

det(Q(t)) = q1(t)qs(t) — ¢3(t)

ke Vb1 — kl (2€k1+)\+4€2+251)>i~1

1 23 a -~ 2
- _ahpy  2h,  Ah 4e®h 201k
QEpQ /\])2 462])2 n 251])2 ~ ah )2
1

1
4\ K, . . o * Ko,

By introducing k, = “hpl .Y P —|— 4e? h—l— 2‘51h > 0and kp, = )‘pz + 45 P2y 25”’2 + o k
0, we can rewrite (6. 18)

det(Q(t)) = ((Nﬁl - ?:h>k1 - k) - i((ﬁf - B)kl + ;51)2

_ 2eh e?p3  ehpa  1-o\ o
= ((hpl_km)kl ’“) ((kQ " o +1h )i
ckpp2  €p1p2 I
+( e hkb+ hpl)lir Sk2 - kbp1+4p1 6.19)

2p2  chpy  1; 2%h ek 7
:(_8p2+6 pz_h2>k%+(hp1_€_€ bP2 | EP1D2
km km k??i

1.
*p%*ka

) - 1, 1
+ Shky — 2hp1>k1 - Zkl% + ikbpl 1

= (kg — ke)k$ + (ke — kp)ky + kn — kg
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with
2
ko= 52 + h2 >0 (6.20a)
km
h
kg = 222 5 0 (6.20D)
k'HL
- D 1-
ke = hpy + 2202 4 Shi >0 (6.20¢c)
2¢h ekpyps 1+ .
kp="— —h .20d
f km+km +2p1>0 (6.20d)
1 1.
1
kn = ikbﬁl >0 (620f)
A solution to
det(Q(1)) = (kq — ke)ki + (ke — kp)k1 + kn — kg >0 (6.21)
is then & .
ky > -4 —h 6.22
I s (6.22)

where we must choose p; and py such that ky < k. and k4 = k.. To ensure that
kq = k., we choose

) (6.23)
2¢e

By substituting (6.23) into (6.20a) and (6.20b), we obtain

_ 2¢e 22 2
ke = = + 4h 2h
E (6.24)
E m -
k., = 2 _ h2
T k2

thus showing that kg = k. is ensured. To ensure that k; < k., we calculate

k’f < ke
2¢h  ekypy 1. - epipa 1 (6.25)
-— —hp1 < h —hk
km+ T +2P1 p1 + ko +2 b
By substituting (6.23) into (6.25), we obtain
2¢h  eky hky 1 epy bk, 1
— + —— h h - fhk:
e e e L L b
2¢h  hk, 1 hiy
22 4 SRy < by + = hk (6.26)
2 _
. D1
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This means that by choosing p; > 7= or

2e 52
> — 4+ — 6.27
P> + 5 (6.27)
we can ensure that k¢ < k.. Therefore, by choosing k; as in (6.22), p; as in (6.27)
and po as in (6.23), we obtain det(Q(t)) > 0. Now, to ensure that g¢;(t) > 0, we
calculate

q1 (t) >0
1 9 <
( m) ~ o (2eky A4 4R 428) > 0 (6.28)
( ) b= 2p = LA+ e 4+ 25,) >
RO
By choosing
~ 2eN"1/a 1 5 -
(5 N (a1 2
k1 > kqy (pl km) (kmpl + . ()\ + 4e* + 2(51)) (6.29)
we can ensure that ¢;(¢) > 0. By combining (6.22) and (6.29), we obtain
k
k1 > g k 6.30
1 ke — k'f + q ( )

which will ensure both that det(Q(t)) > 0 and that ¢;(¢) > 0. Note that the term
—ky, that appears in the numerator in (6.22) is removed since kj, > k, could lead
to q1(t) < 0. Also note that this does not affect det(Q(¢)) > 0 since kpk_igkf > ]ZQ:Z’;
because kp > 0. From this, we can conclude that if we choose k; as in (6.30), py
as in (6.27) and po as in (6.23), then the matrix Q(¢) will be positive definite, thus
ensuring that the closed-loop system in (6.11) will be GFTS when constant gains
are used; in other words, we have proven that there exists a gain k; such that Q(t)
is positive definite. We now need to prove that when the adaptive gains defined in
(6.9) are adopted, k; will converge such that (6.30) is satisfied.
Now, we will use the Lyapunov function candidate

1
272
where k7 > 0 and k5 > 0 are constants, to prove that the closed-loop dynamics

n (6.11) are also GFTS with the adaptive gains given in (6.9). By taking the
derivative of (6.31), we obtain

1
V= Vot gl = K)o (ks — k) (6.31)
1

V="t — " (k:1 kX + (k’g — k3o (6.32)
By using the fact that V, < —,ulV% (01, 02) and subtracting and adding \/%Ucl —
k| + \/%U{:Q — k3|, we can rewrite (6.32) as
m—mﬁ—%m—m— Tl K s
+%(k1—k{)k1+%(k2—k§)k2+\/%|kl kil + ol — k5 |
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By using the well-known inequality
(@® + o7+ 22 < Jal + |yl + |2 (6.34)
in (6.31), we obtain

1 1 3
VV = (Vo 5y = kD o (ke — K3)?)
1 1 1 ’
< Vi 4+ —lk1 — k| + —=—1k2 — k3
0 /72’71| 1 1| /7272| 2 2‘
We can then derive
1 w1 w2
— Vg — ———lky — k| — ——== ko — k| < —VV 6.36
iVt = by k| = ks — k] < (6.3
where 7 = min(p;,wr,ws). Considering (6.36), we can rewrite (6.33) as
V< Ve + — (ki —k)ki + —(ka — k3)k2

w1 w2
+—Ik — k]| + —==|k2 — K3
\/E| 1 I \/%| 2 |
By [69, Proposition 1], we have that the adaptation law given in (6.9) causes the
adaptive gains k; and ke to be bounded. Then, there exist positive constants kJ
and k3 such that

ki(t) — kT <0,  ka(t)—ki <0  Vt>0. (6.38)
We can therefore reduce (6.37) to
. 1 1. w1 1. wo )
V<—nVe—|k —kf|| —ki——= ) — |ka = K| —ka— —— 6.39
< -7 L 1(711 m) L2 2|(722 T (6.39)
where we must ensure that
1. w1 > (1 . w2 )
— k=Kl —k——— ) — k2= K| —ho———= ) =0 6.40
i = 451 - = )~ ke = k31— (6.40)
to achieve finite-time convergence. The satisfaction of (6.40) should be achieved
through the adaptation of the gains k1 and ko, i.e.,

for = wiy/ 2 (6.41a)
foo = woy /2 (6.41b)

If we select € = ;22 %, then (6.9b) and (6.41b) are equal, since

2w

ko = 2ek1 + A + 4e? = kg = 2€k1 = ];32 = w1/ 271 = way/ % (642)

For finite-time convergence, k() must satisfy (6.30). This means that k() must
increase in accordance with (6.41a) until (6.30) is satisfied; since k1 (t) increases lin-
early, (6.30) will be satisfied in finite time. This guarantees the positive definiteness
of the matrix Q(t). Once (6.30) is satisfied, finite-time convergence is guaranteed
according to (6.39), and as nicely described in the Introduction of [67], this implies
that the closed-loop system in (6.11) is GFTS. O
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6.2. Case Study: Articulated Intervention-AUV

6.2 Case Study: Articulated Intervention-AUV

In this section, we apply the theoretical results of Section 6.1 for the tracking
control of an ATAUV in a case study to show the effectiveness of the proposed
control algorithm.

6.2.1 Tracking control law using the adaptive GSTA

In this section, we develop a tracking control law for the ATAUV based on the
adaptive GSTA and show that the tracking errors converge asymptotically to zero.

Define the virtual reference vector (., = (4 — qu, where (4 is defined as in
(2.4), &, is defined as in (2.9) and A = diag(K,RP(p) sgn(f)Iz K,), where 7
is defined as in (2.8) and K, and K|, are constant, positive definite gain matrices.
Let the sliding surface be defined as

c=(—¢ eRSHOD (6.43)
where ( is defined as in (2.3) and let the control input be given by
T(q) = UAGSTA € R6+(n_1) (6.44)

where upgsTa is given in (6.7)-(6.9). By differentiating (6.43) and inserting (2.1),
we obtain

6=(=G=M"()-CO)=DO¢—g()+7() =& (6.45)

and by using the fact that ¢ = (, + o from (6.43), we obtain the following equation
describing the dynamics of o:

6 =M ()(=CC)(G +0) = DO)(G +0) = g() +7()) = G (6.46)

Now, we can separate (6.46) into 6 + (n — 1) one-dimensional equations such
that Theorem 6.1 can be used. The dynamics of ¢; can then be described by

Gi = my () (=ei()Gri + 03) = di()(Gri + 03) = 9i() + 7)) = G (6.47)
2i ()= ()(Grati + 00) — () (Grti + 026) — 92i())

where (,; and CH are the velocity reference and its derivative, respectively, cor-
responding to o; = (; — Gi; m; H(+), ¢;(+) and d;(+) are the ith elements on the
diagonals of the matrices M~1(-), C(-) and D(-), respectively; g; is element i
in the vector ¢(-); and 7;(-) is element i in the control input 7(-). The vectors
m;ll() € ROF(=D=1 ¢ () € RS+(=D=1 and d(-) € RS+(=D=1 consist of
the elements (7,75), where j = 1: 6+ (n — 1) but j # i, in the matrices M ~1(-),
C(-) and D(-), respectively. The vectors (., € ROT(=D-1 5, ¢ RO+(—1-1
and g;(-) € RS+("=D=1 consists of the elements j, where j = 1: 6 + (n — 1) but
j # 1, in the velocity reference vector (., the state vector ¢ and the vector g(-)
respectively.
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6. The Generalized Super-Twisting Algorithm with Adaptive Gains

Now, by introducing ¢;(0;,t) = ¢1,:(0:,t) +p2.:(0i,t), where ¢ ;(0,t) = 0, and
7i(-) = m;'(-) and substituting 7;(-) from (6.44) and (6.7)-(6.9) into the above
expression, we obtain

Gi = —k1,i%i()d1(03) + ¢1,i(05,t) + 7 () (2 + 97 ()p2,i(0i, 1)) (6.48)

where ¢1:(0i,1) = in(')(—Ci(l')Uz‘ — di(-)o;) and @3 (0i,t) = Yi()(—ci()Gri —
di ()Gr,i=9i () =mi(-)Gri) Fmy; () (=i () (Crzitosi) =i () (it ozi) —g#i(-))-
By setting 01,; = 0; and 02 ; = Zi+’yi_1(')<p2,i(0u t), we can then write the dynamics
as

01, = —k1,i7i()o1(015) + p1,i(01,it) +7i(-)o2,i
. d, (6.49)
02, = —kz,i¢2(01,i) + %(% (')902,1‘(01,@70)

Now, if v(+), ¢1.(-) and @2 ;(-) satisfy Assumptions 6.1-6.4, then Theorem 6.1 will
be satisfied, and the dynamics in (6.49) will be GFTS. The sliding surface ¢ = 0
is then a GFTS equilibrium point, which means that ¢ converges to zero in finite
time.

Now, to prove that v(-), ¢1,;(-) and @2 ;(-) satisfy Assumptions 6.1-6.4, we need
to adopt the following assumptions regarding the ATAUV:

Assumption 6.5. The ATAUYV is neutrally buoyant.

Assumption 6.6. The ATAUV has only revolute joints. The following properties
then hold [4]:

1. Property 1: 0 < Apin(M) < |[|M|| < Apax(M).
2. Property 2: M = M7T > 0.
3. Property 3: M = C 4+ CT and ¢(T(M —2C)¢ =0 V (e RO,

Assumption 6.7. The reference trajectory and its derivatives are continuous and
bounded by design.

Remark 6.5. Assumptions 6.5-6.7 are valid due to the design of the ATAUV and
the reference trajectories.

Assumption 6.8. The following conditions hold:

1. |v()ei()| < ka,e, where k, . is a positive constant.
2. |7i()di(+)] < ka4, where kg q is a positive constant.

Assumption 6.9. The following conditions hold:
Lo |4 (ci()| < koy ey + Koy e, 63|, where ks, ¢, and ks, ., are positive constants.

2. |4 (di(

3. |5(9i())| < ke, g + ko, ,g]0:], Where ks, g, and ks, g, are positive constants.

)
D] < ksy.ay + ksy.d4, 04|, where ks, 4, and ks, 4, are positive constants.
)

4. |%(71_1 )(m;zl()csﬁl()))‘ < k51702 + k52702|di|7 where k51702 and k52702 are
positive constants.
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3. |%(’7;1()(m;11()d751(>))| < k51,d2 + k52,d2‘di" where k51,d2 and k627d2 are
positive constants.

6. |%(’Yz_l()(m;zl()g7él()))| < kfsl,gz + k52,92‘0'-i|7 where k51>92 and k52792 are
positive constants.

Remark 6.6. For all practical purposes, Assumptions 6.8 and 6.9 will be satisfied
since the ATAUV is a mechanical system and has a limited control input, which
will cause the velocities of the system to also be bounded. For theoretical purposes,
it should be proven that these assumptions hold; however, this proof will be left as
a topic for future work. Some of the assumptions can also be discarded when the
adaptive GSTA is extended to MIMO systems; this is also a topic for future work.

Now, Assumption 6.2 holds because of Property 1 in Assumption 6.6, while
Assumptions 6.3 and 6.4 hold because of Assumptions 6.8 and 6.9, respectively.
The conditions of Theorem 6.1 are thus satisfied in each dimension, and therefore,
by Theorem 6.1, the dynamics in (6.49) are GFTS. The sliding surface ¢ = 0 is
therefore a GFTS equilibrium point, which means that o converges to zero in finite
time.

Once the system trajectories are confined to o = 0, the tracking error dynamics
are given by

o= —K,RP(p) (6.50a)
C—Ca=—Ag, & @ = —sgn(n)é (6.50b)
§=—K, (6.50¢)

For the position error (6.50a) it is proven in [27] that the equilibrium point 7
is UGAS, and for the orientation error (6.50b) it is proven in [27] that there are
two uniformly asymptotically stable equilibrium points, [£,7] = [0, £1], both rep-
resenting perfect alignment between the desired and the actual orientation of the
ATAUV. Finally, (6.50c), shows that the joint angle errors, ¢, converge uniformly

globally exponentially to zero, since K is chosen positive definite.

6.2.2 Simulation results

In this section, we present simulation results for trajectory tracking using the con-
trol law presented in Section 6.2.1. We present results showing the optimal perfor-
mance of the algorithm.

Adaptive gains

For implementation purposes, a small boundary is put on ¢ so the adaptive gains

can be expressed as
J1,i :
. w1/ 5 if o3| > i
kl,i{ by e ol t (6.51a)

0, if |01| S Qm g

ko = 2eik1; + A + 4e} (6.51b)
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Figure 6.1: Tracking results using adaptive GSTA

where the design parameter a,, € RSt~ is a small positive constant chosen
empirically. This boundary was introduced because numerically ¢ will never be
exactly zero, meaning that in practical implementations the second condition of
(6.9a) will never be met, which would make the adaptive gains increase to infinity.

Optimal performance

In this section we present results showing the optimal performance of the algorithm,
and compare them with results obtained using the GSTA. We use the simulation
model presented in Section 2.2 and the Eelume 2016 version of the robot presented
in Section 2.2.1.

The simulation case chosen highlights the two different modes, transport mode
and operation mode, which are explained in detail in [79]. Transport mode is for
long-distance travel, and operation mode is for performing inspections and inter-
vention tasks. In this case we start in transport mode, i.e. start with the robot
in an I-shape (all the joint angles are equal to zero: ¢ = 0deg), moving forward
in the z-direction and downward in the z-direction, before moving into operation
mode at 80s. In operation mode we perform an inspection, by setting the ATAUV
in C-shape (every second joint angle is equal to 45 deg), and then moving joint 7
and 8 in a circular motion such that link 9 is moving around, performing an inspec-
tion. For the simulations, a fixed-step solver with a step size of 10~* was used. The

gains were chosen as: Sagsta = [80e14]T, A = [0.1eg  10es]”, & = 7z, /%[614]T,

Y1 = [614]T, wp = [2614]T, Yo = [4 10_1063 8-10_963 4- 10_1063}T, Wo = [2614}T
and a,, = [5-107%eg  5-107%g]T, where e; is a 1 x i vector of ones. In Figure 6.1
the reference trajectory for the position, the orientation and the movement of the
joints together with the states are shown. In Figure 6.2a the sliding surface o is
shown, in Figure 6.3a the thruster forces and joint torques used are shown, and in
Figure 6.4 the evolution of the gain ki (t) over time is shown.

From Figure 6.1 we can see that the desired trajectories for position, orientation
and the joints are tracked very well. This is also supported by Figure 6.2, as o is
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(a) Sliding surface o using adaptive GSTA (b) Sliding surface o using GSTA

Figure 6.2: Sliding surface o

below 0.07 for the position and orientation and below 5-10~* for the joints in
absolute value. From Figure 6.3 we can see that the forces used is smooth, i.e. no
chattering and applicable. In Figure 6.4 we can see that the gain k;(¢) increases
linearly and converges to a suitable value, this fits what we found in Section 6.1.

For comparison, in Figure 6.2b the sliding surface ¢ and in Figure 6.3b the
thruster forces and joint torques are shown, when the GSTA with constant gains
is used, with gains k1 = [5e14]T, ko = [0.02e14])7 and Bgsta = [80e14]”. By com-
paring the sliding surfaces in Figure 6.2 we can see that the adaptive GSTA gives
considerably smaller sliding surface values than the GSTA with constant gains. By
comparing the thruster forces and joint torques in Figure 6.3 we can see that when
the joints move at 80 s (because the ATAUV is moving into operation mode) the
adaptive GSTA provides higher thruster forces and joint torques. The rest of the
time the thruster forces and joint torques used are similar. This is probably some of
the reason why the adaptive GSTA gives a much smaller sliding surface. However,
we do also see that the sliding surface is smaller for the adaptive GSTA when the
thruster forces and joint torques used are similar. We can therefore conclude that
the adaptive GSTA here gives better tracking performance than the GSTA with
constant gains.

6.3 Experimental study: Articulated Intervention AUV

In this section we will describe an experimental study with an ATAUV to show
how the proposed control algorithm performs in experiments. We first show re-
alistic simulation results where the control gains used will be those obtained in
experiments during the summer of 2020. We then present the experimental results
obtained during the summer of 2020. We also present a comparison with the STA
with adaptive gains (3.1) and the original GSTA (4.1) to evaluate whether adding
adaptive gains to the GSTA actually improves the resulting tracking capabilities,
as we then get both the theoretical advantages afforded by the GSTA and the prac-
tical advantages afforded by adaptive gains. Additionally, we compare the results
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Figure 6.3: Control input
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with those of a standard PID controller.

6.3.1 Realistic simulations

In this section, simulation results with control gains obtained in experiments during
the summer of 2020 will be presented. We used the simulation model presented in
Section 2.2 and the Eelume 2020 version of the robot presented in Section 2.2.2. The
test case used is the inspection case explained in Section 2.4.3. For the simulations,
the ode3 fixed-step solver with a step size of 0.01 was used.

Results AGSTA

The gains used for the GSTA with adaptive gains are presented in Table 6.1. The

Table 6.1: Control gains for the adaptive GSTA for the inspection case

Gain Values
€ 1-1077e7,
A 0.1e7)
71 @?4
w1 [66 0.0168]T
B [5eg  es]T
O, 0.05¢eT,

results obtained when using the control law proposed in Section 6.2.1 are presented
in Figure 6.5. In Fig. 6.5d label ¢; corresponds to the torque used for joint ¢, and
in Fig. 6.5e and Fig. 6.5f label x corresponds to the evolution of the adaptive gains
k1(t) and ko(t), respectively, over time for the a-dimension, label y corresponds to
the evolution of the adaptive gains k1 (t) and k2 (t) over time for the y-dimension,
etc.

Results comparison

For comparison, we also obtained results using the previously mentioned algo-
rithms, i.e. the STA with adaptive gains (3.1) and the GSTA (4.1). For both the
STA with adaptive gains and the GSTA, we used the sliding surface defined in
(6.43). We also compare the results with those of a standard PID controller (5.1).
The reason we chose to include a PID controller as a representative standard con-
trol method is because it is one of the most widely used types of controllers and
is known to yield good results if tuned correctly. However, it does not provide any
stability guarantee. We used the gains found for the STA with adaptive gains, the
GSTA and the PID controller during the experiments during the summer of 2020,
which are presented in Table 6.2, Table 6.3 and Table 6.4, respectively. The track-
ing errors for all algorithms are presented in Figure 6.6. In Figure 6.7, we present
the thruster forces and joint torques for all algorithms except the adaptive GSTA,
for which the forces and torques have been previously presented in Figure 6.5. For
the STA with adaptive gains, the evolution of the adaptive gains over time can be
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Figure 6.5: Simulation results using the adaptive GSTA for the inspection case
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Table 6.2: Control gains for the STA with adaptive gains for the inspection case

Gain Values
€ 1-107%T,
A 0.1e7)
mn ety
w1 [66 O.Oleg]T
Qm 0.05¢T,

Table 6.3: Control gains for the GSTA for the inspection case

Gain Values
]fl [266 eg]T
ko | [0.004eg 0.002eg]”
6 [8066 1568}71

Table 6.4: Control gains for the PID controller for the inspection case

Gain Values
k}p [25066 2068]T
kd [8066 568]T
k‘i [566 eg]T

seen in Figure 6.8. In Table 6.5, the RMSEs and maximum errors of the position,
orientation and joint angles are given for all the algorithms. In Table 6.6, the RMS
values of the thruster forces, the derivative of the thruster forces, the joint torques,
and the derivative of the joint torques are given for all the algorithms. The RMS of
the thruster forces and the joint torques provides a measure of how much control
effort that is used, and the RMS of the derivative of the thruster forces and the
derivative of the joint torques provides a measure of how much chattering that is
present in the thruster forces and the joint torques.

Discussion

From the adaptive GSTA simulation results in Figure 6.5 we can see that the desired
trajectories for position, orientation and the joint angles are tracked very well. We
can see from Figure 6.5b that we get some small oscillations on joints ¢3 and g5
after approximately 200 s. These oscillations may occur because of the position
and orientation movement of the AIAUV. From Figure 6.5¢, we can see that the
forces used are well below 60 N, which is approximately the limit of the thrusters
in the 2020 version of the robot. We do see some chattering in the beginning of
the simulation, however, this stops after approximately 300 s. From Figure 6.5d,
we can see that the joint torques are smooth and below 16 Nm, which is the limit
on the joint torques. The control inputs are therefore applicable. From Figure 6.5¢
and Figure 6.5f, we can also see that the gains k;(¢) and k2(t) converge to suitable
values, which agrees with the theoretical results we found in Section 6.1.
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Figure 6.6: Simulation: Tracking errors for the inspection case

From Figure 6.6a, we can see that the adaptive GSTA clearly results in the
smallest position errors. In orientation however, we can see from Figure 6.6b that
the results are quite similar for the adaptive GSTA, the GSTA and the PID con-
troller, while the STA with adaptive gains have larger overshoots. From Figure 6.6¢
and Figure 6.6d we can see that the two adaptive algorithms have more chattering
and oscillations in the states, while the GSTA and the PID controller have larger
errors in most of the states. These findings are further supported by Table 6.5,
which shows that the adaptive GSTA gives the best RMSEs and maximum er-
ror values for position and for the joints. For orientation however, we see that the
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Figure 6.8: Simulation: Evolution of the adaptive gains over time for the STA with
adaptive gains for the inspection case

Table 6.5: Simulation: Comparison of the tracking results for the inspection case

Algorithm RMSE | Maximum error
Position 0.0007 0.0052
AGSTA Orientation | 0.0066 0.0262
Joints 0.0050 0.0305
Position 0.0029 0.0256
STA Orientation | 0.0209 0.0829
Joints 0.0091 0.0391
Position 0.0014 0.0114
GSTA Orientation | 0.0056 0.0300
Joints 0.0130 0.0421
Position 0.0020 0.0152
PID Orientation | 0.0078 0.0292
Joints 0.0108 0.0357

GSTA actually gives the best RMSE, while the adaptive GSTA gives the best max-
imum error, however the difference is not large. We can therefore conclude that the
adaptive GSTA exhibits the best tracking performance overall, i.e., the smallest
errors. Regarding the thruster and torque use of the different algorithms, we can
see from Figure 6.5¢, Figure 6.5d and Figure 6.7 that the force use is quite similar
for all of the considered algorithms. However, from Table 6.6, we can see that there
are some small differences between the algorithms. From the RMS of the thruster
forces we see that it is actually the GSTA that uses the most thruster force, while
the adaptive GSTA is not far behind, which may be the reason why the GSTA
performs so well in orientation. We can also see that the STA with adaptive gains
is the algorithm that uses the least amount of thruster force, which may be the
reason why it performs the overall worst on tracking in position and orientation.
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Table 6.6: Simulation: Comparison of the control inputs for the inspection case

Algorithm . RMS -
Tthr Tthr Tq Tq
AGSTA 1.8466 | 7.2346 | 0.8684 | 0.6239
STA 1.5135 | 0.2469 | 0.7505 | 0.1109
GSTA 1.8969 | 6.6455 | 0.7811 | 2.4089
PID 1.7548 | 0.0423 | 0.7665 | 0.0182

If we look at the RMS value for the joint torques, however, we can see that it is
the adaptive GSTA which uses the most torque, which may be one of the reasons
that it gives such good results on tracking for the joints. We can also see that the
STA with adaptive gains uses the least amount of torque, but it still gives better
tracking for the joints, than the GSTA and the PID controller, however, the differ-
ence in torque use is quite small. From the RMS value of 7, we can see that the
adaptive GSTA and the GSTA are the ones that introduces the most chattering,
this may be connected with that they are the algorithms that also gave the best
tracking performance. From the RMS value of 7,, we can, however, see that the
GSTA have the highest value, even though the adaptive GSTA and the STA with
adaptive gains give better tracking for the joints than the GSTA. However, here
the RMS values are so small that the chattering that is introduced by the GSTA
is not visible in Figure 6.7d, and therefore negligible.

6.3.2 Experimental investigation

In this section, the experimental results obtained during the summer of 2020 are
presented. The purpose of the experiments was to validate the underlying theory
and the robustness of the control approach by showing that the proposed approach
also works in practice and not only in the ideal case presented in simulations. The
robot used was the Eelume 2020 version of the robot presented in Section 2.4.1
and the test case used was the same as for the simulation, and was explained in
Section 2.4.3.

Results AGSTA

The gains used for the GSTA with adaptive gains are presented in Table 6.1. For
the adaptive GSTA the choice of initial gains is not very important since the gains
will autonomously adapt to a suitable value by themselves, however, the starting
point of the adaptive gains does determine the convergence rate and convergence
time of the adaptive gains, which means that some effort should be used to select
the starting point of the adaptive gains. During the experiments we noticed that it
was easy to find a starting point for the adaptive gains that yielded good tracking
results. The results obtained using the control law proposed in Section 6.2.1 are
presented in Figure 6.9.

105



6. The Generalized Super-Twisting Algorithm with Adaptive Gains

0 —
==y
ak —z
E ]
sy
2 L Zd
0 100 200 300 400 500 600 700 800 900 1000
Time [s]
20 : : - -
—
20 1 =
S0 B0y
sl
60 -
a
80
0 200 400 600 800 1000
Time [s]
(a) Tracking of position and orientation
—""nnk!,(x.z)
—""nnky(x,vz)
f""lmkg,(v)
imrl\nk!,(-Y)
—""lmks.(x,z)
f""nnks,(x.-z)
200 400 600 800 1000
Time [s]
—""nnksm
_ P )
Z
3 ik x2)
s i iz
M)
7mrlmk,,(¥)
o 200 400 600 800 1000
Time [s]
(¢) Thruster forces 7¢p,
50
40
—i
30 —y—
z— v
20 f
=
10
0 200 400 600 800 1000
Time [s]
15
1 —a,——a
— %%
9,—a,
05 — —a,——q,
—
0
0 200 400 600 800 1000
Time [s]

(e) Evolution of k1 (t) over time

Oﬁbww&;wmg

0 200 400 600 800 1000
Time [s]

Time [s]

(b) Tracking of joint angles

10
E S IANDOSCIANNA AN NIV —,
g 0 s
g %
E s —%
-10 . :
0 200 400 600 800 1000
Time [s]
10
= 5
£ —q,
= —qs
g o g
g =%
[ —%
-10
0 200 400 600 800 1000
Time [s]
(d) Joint torques 74
0.101
[
0.1008 P
——y
0.1006 w—nge—nj
et
0.1004 f
—
0.1002
[ 200 400 600 800 1000
Time [s]
0.10003
0.10002 —h %
%%
=
010001} —a,—
0.1
0 200 400 600 800 1000
Time [s]

(f) Evolution of k2(t) over time

Figure 6.9: Experimental results using the adaptive GSTA for the inspection case
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Results comparison

For comparison, we also obtained results using the previously mentioned algo-
rithms, i.e. the STA with adaptive gains (3.1), the GSTA (4.1) and a PID con-
troller (5.1). For both the STA with adaptive gains and the GSTA, we used the
sliding surface defined in (6.43). The gains found for the STA with adaptive gains,
the GSTA and the PID controller during the experiments during the summer of
2020 are presented in Table 6.2, Table 6.3 and Table 6.4, respectively. The tracking
errors for all algorithms are presented in Figure 6.10. In Figure 6.11, we present
the thruster forces and joint torques for all algorithms except the adaptive GSTA,
for which the forces and torques have been previously presented in Figure 6.9. For
the STA with adaptive gains, the evolution of the adaptive gains over time can be
seen in Figure 6.12. In Table 6.7, the RMSEs and maximum errors of the position,
orientation and joint angles are given for all the algorithms. In Table 6.8, the RMS
values of the thruster forces, the derivative of the thruster forces, the joint torques,
and the derivative of the joint torques are given for all the algorithms.

Table 6.7: Experiments: Comparison of the tracking results for the inspection case

Algorithm RMSE | Maximum error
Position 0.0096 0.1021
AGSTA Orientation | 0.0134 0.0824
Joints 0.0212 0.1890
Position 0.0180 0.1202
STA Orientation | 0.0232 0.1424
Joints 0.0240 0.1639
Position 0.0069 0.0390
GSTA Orientation | 0.0160 0.0834
Joints 0.0187 0.1073
Position 0.0096 0.0566
PID Orientation | 0.0140 0.0675
Joints 0.0158 0.1150

Table 6.8: Experiments: Comparison of the control inputs for the inspection case

Algorithm . RMS -
Tthr Tthr Tq Tq
AGSTA 3.3061 | 4.2939 | 2.4505 | 0.1900
STA 3.6476 | 6.2583 | 2.4103 | 0.1964
GSTA 3.2591 | 1.3542 | 2.6514 | 0.8800
PID 3.3327 | 2.6029 | 2.6013 | 0.8044
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From the adaptive GSTA experimental results in Figure 6.9 we can see that the
desired trajectories for the position, orientation and the joint angles are tracked
very well. From Figure 6.9a we see that the desired position trajectories are almost
perfectly tracked, and that the desired orientation trajectories are also perfectly
tracked except for yaw, where there are some small oscillations around 200 s. For
the joint angles we can see from Figure 6.9b that the joints do deviate from the
desired joint angles trajectories in a square oscillation pattern. These oscillations
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Figure 6.12: Experiments: Evolution of the adaptive gains over time for the STA
with adaptive gains for the inspection case

may occur because of a dead-zone in the joint control or a time-delay between
the set and the actual joint torques. Specifically, the adaptive GSTA will try to
make the joint angle errors smaller, but with dead-zones and time delays the joints
will not be able give the torque the adaptive GSTA calculates momentarily, and
the joints therefore overshoot as the resulting torque applied becomes too high.
From Figure 6.9c, we can see that the forces used are well below 60 N, which is
approximately the limit of the thrusters in the 2020 version of the robot. We do
see some tendencies of chattering, but the chattering is not as bad as it looks in
the figure, since the figure has a small width compared to the time scale. From
Figure 6.9d, we can see that the joint torques are smooth and are below 16 Nm,
which is the limit on the joint torques. From Figure 6.9e and Figure 6.9f, we can
also see that the gains ki (t) and ko(t) increase linearly and converge to suitable
values, which agrees with the theoretical results we found in Section 6.1.

By comparing the simulation results shown in Figure 6.5 with the experimental
results shown in Figure 6.9, we can see that we have slightly worse tracking in yaw
because of the small oscillations around 200 s, that appear in the experiments. We
can also see that the tracking of the joints is significantly worse. This is probably
due to the joint dynamics that is not modelled in the simulator. In the simulator we
get the torque that we calculate momentarily, and we can apply also small torque
values, i.e. we do not have a dead-zone. If we compare Table 6.5 with Table 6.7, we
see that both the RMSEs and the maximum errors are better for the simulation,
but that is to be expected because of measurement noise, thruster dynamics, joint
dynamics and other unmodelled dynamics that are inherent in experiments. If we
compare the force used by comparing Figure 6.5¢ with Figure 6.9c and Figure 6.5d
with Figure 6.9d, we see that significantly less force was used in the simulations,
and this is also confirmed by comparing Table 6.6 with Table 6.8. Nevertheless, the
experimental results and the simulation results are quite similar, indicating that
the adaptive GSTA is indeed applicable for controlling the ATAUV.
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From Figure 6.10a and Figure 6.10b, it is very difficult to see which of the pro-
posed algorithms gives the smallest error, as there are some chattering tendencies.
From Figure 6.10c and Figure 6.10d, we can see that the square oscillating ten-
dencies are mostly present for the two adaptive algorithms. This may be because
the two adaptive algorithms try to get closer to the desired joint angles trajecto-
ries, but because of a probable dead-zone in the joints or time-delay for the joint
torques, end up using too much force and therefore overshoots. It can therefore be
seen that the GSTA and the PID controller give smaller tracking errors for the joint
angles. From Table 6.7 we can see that it is actually the GSTA that gives the best
RMSE value for position, while the adaptive GSTA and the PID controller give
the same value. For orientation it is the adaptive GSTA that gives the best RMSE
value. If we then add the RMSE value together for the adaptive GSTA, the GSTA
and the PID controller, we do actually see that the adaptive GSTA and the GSTA
get the same value, and the PID controller gets a larger value. We could therefore
say that the adaptive GSTA and the GSTA give equally good tracking. For the
joint angles however, the GSTA and the PID controller give better RMSE values
than the adaptive algorithms. The GSTA is therefore actually the algorithm that
gives the overall best tracking. If we look at the maximum error values, we see that
the GSTA gives the best (lowest) value for position, and that the PID controller
gives the best value for orientation, while the adaptive GSTA actually is third and
second, respectively. For the joint angles the GSTA and the PID controller give
the best values also for the maximum error. However, if we look at the error plots
in Figure 6.10 we do see that there are some outliers for especially the adaptive
GSTA in the position errors, and for all the algorithms for the joint angles. The
maximum error does therefore not give a fair comparison. These outliers may also
have affected the RMSE values, which can be a reason for the higher RMSE for the
adaptive GSTA in position. If we take the thruster use of the different algorithms
into consideration, i.e. Figure 6.9c, Figure 6.9d and Figure 6.11, we see that there
is not such a large difference in the amount of force used. If we look at Table 6.8 we
can confirm by looking at the RMS value of the thruster forces and joint torques
that the difference in the amount of force used is not that large. From the RMS
value of 75, and 74, we can see that the adaptive algorithms introduce some chat-
tering into the thruster forces. However, here the RMS values are so small that the
chattering that is introduced are negligible.

By comparing Figure 6.6 with Figure 6.10, we can see that overall, the tracking
errors are smaller in the simulations, which can also be confirmed by comparing
Table 6.5 with Table 6.7. This is to be expected because of measurement noise,
thruster dynamics, joint dynamics and other unmodelled dynamics that unavoid-
ably affect the experiments. When we compare the forces used, by comparing Fig-
ure 6.5¢, Figure 6.5d and Figure 6.7 with Figure 6.9¢c, Figure 6.9d and Figure 6.11,
we can see that during simulations we use much less force than during experi-
ments, which can also be confirmed by comparing Table 6.6 with Table 6.8. This
may be because our simulation model is completely neutrally buoyant, while the
2020 version of the robot is slightly negatively buoyant.

One thing worth noticing is that the results on which algorithms that perform
the best out of the STA with adaptive gains, the GSTA and the PID controller
are quite different from the results previously shown in Chapter 5. If we compare
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Table 6.5 with Table 6.7 and Table 6.6 with Table 6.8 it is, however, quite obvious
that this is connected with the amount of force used, as in Chapter 5 it was the
STA with adaptive gains which used most force and got the best tracking results.
This may mean that we were able to tune the GSTA and the PID controller better
this time, and that therefore the adaptive gains did not have such a large impact
on the results. We could possibly also have been able to get better results with the
STA with adaptive gains if we had chosen a better starting point for the adaptive
gains. It is, however, easier to tune the adaptive controllers, and get good results
without extensive tuning efforts.

6.4 Chapter summary

A novel adaptive GSTA is proposed. The proposed approach consists of using dy-
namically adapted control gains to ensure GFT convergence in the presence of
time- and state-dependent perturbations and uncertain control coefficients, such
that no conservative upper bound on the uncertainties is considered. It is also
shown that the proposed adaptive GSTA causes the tracking errors of the AIAUV
to converge asymptotically to zero, and a simulation and experimental study is
performed which shows the effectiveness of the proposed adaptive GSTA. The sim-
ulation and experimental results validate and verify that the proposed approach is
well suited for controlling an ATAUV. The results are almost equally good between
the simulations and experiments. The tracking errors are larger in the experiments
than in the simulations; however, this is to be expected because of measurement
noise, the thruster dynamics, the joint dynamics and other unmodelled dynamics
that inevitably affect the experiment.

We also present a comparison with the STA with adaptive gains, the GSTA
and a PID controller. In simulations we saw that the adaptive GSTA clearly gave
the best results. The experimental results were, however, not so clear, because the
GSTA actually ended up being the algorithm that gave the overall best tracking
performance, mostly because of the poor performance in tracking of the desired
joint angle trajectories when using the adaptive GSTA. This means that the choice
of starting point for the adaptive gains on the joints may have been poor. We
also saw that the results were different than in Chapter 5, which may suggest that
we were able to tune the GSTA and the PID controller very well in the latest
experiments. It is, however, much easier to tune the adaptive controllers and get
good results without extensive tuning efforts.
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Chapter 7

Combined Kinematic and Dynamic
Control

In this chapter, we propose a combined kinematic and dynamic control approach for
VMSs. The main idea is to combine the SRMTP framework [20] with a robust SMC
while simultaneously ensuring that the task errors remain bounded. The kinematic
stability analysis of the SRMTP method is based on the results in [3]. Any SMC
can be used as long as it is able to make the velocity vector converge to the velocity
reference vector in finite time. The reference vector is chosen as the output from
the SRMTP inverse kinematic controller. This novel approach allows us to analyse
the stability properties of the kinematic and dynamic subsystems together in the
presence of model uncertainty while retaining the possibility of solving multiple
tasks simultaneously. The finite-time convergence property of the SMC allows us
to show that the multiple set-point regulation tasks will converge asymptotically to
zero without the strict requirement that the velocities are perfectly controlled. The
proposed control approach and the corresponding stability analysis, thus avoids
the assumption of perfect dynamic control that is common in kinematic stability
analyses for vehicle manipulators.

Contributions of this chapter

The contributions of this chapter can be summarized as follows. A novel combined
kinematic and dynamic control approach is proposed for VMSs. The main idea is to
combine the SRMTP framework with a robust SMC while simultaneously ensuring
that the task errors remain bounded. This novel approach allows us to analyse the
stability properties of the kinematic and dynamic subsystems together in the pres-
ence of model uncertainty while retaining the possibility of solving multiple tasks
simultaneously. We present two examples of robust SMC that satisfy the required
condition of making the velocity vector converge to the velocity reference vector in
finite time. A simulation and experimental study is performed to demonstrate the
effectiveness of the proposed method.
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Organization of this chapter

The remainder of this chapter is structured as follows. The mathematical model of
the VMS is presented in Section 7.1, and a brief introduction to inverse kinematic
control and the SRMTP method is provided in Section 7.2. The main result with the
corresponding stability analysis is described in Section 7.3. The simulation study
is presented in Section 7.4 and the experimental study is presented in Section 7.5.
In Section 7.6 a chapter summary is presented.

Publications

This chapter is based on [11], [13] and [14].

7.1 Vehicle-manipulator model

The model considered in this chapter is presented in this section. The dynamics of a
large class of systems can be described by the vehicle-manipulator model [32], given
by (2.1) and (2.11), where D(q, ¢) is only for floating and submerged vehicles. The
dynamic model in (2.1) and (2.11), can be formulated with respect to a coordinate
frame having its origin at an arbitrary position on the vehicle manipulator. In this
chapter, we assume that the model is formulated with respect to an arbitrary link
of the vehicle manipulator such that the velocity state vector, (, is defined as

Va
¢(=|w},| eRSH(=D (7.1)
q

where v{, and w{, are the body-fixed linear and angular velocities of the chosen
link of the vehicle manipulator, respectively, and ¢ is the vector of joint velocities.

Remark 7.1. The formulation in (2.1) and (2.11), preserves the following impor-
tant properties [32]:

. M=MT>0

2. 2T(M —2C)z =0 V xeROH—D

3. 27Dz >0 V zeROH-D

7.2 Inverse kinematic control

Robot manipulators are designed to perform specific tasks associated with either
the internal configuration of the robot (joint/configuration space) or the external
configuration with respect to the environment (operational/task space). A task
that specifies a desired position and/or orientation of the end effector of the robot
is an example of a common operational space task. A comprehensive collection of
possible tasks for underwater robotic vehicles is presented in [4]. An m-dimensional
task can be described by the task variable, x;(t) € R™, defined as

Xi(t) = f(&e(t)), (7.2)
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where & (t) is the vector of generalized coordinates describing the configuration of
the vehicle manipulator defined in Section 7.1. The function f(-) maps the con-
figuration into the task space coordinates. The task variable x; (), the generalized
coordinates &.(t) and the system velocities ((t) have the following important dif-
ferential relationship:

. 8f(§e(t)) . af fe t

) = L8 = L0 o)) = nenewy  @9)
0. O&e

where J;(&.(t)) € R™*(6+(=1) i the configuration-dependent task Jacobian ma-

trix. Let x;q(t) € R™ be the desired trajectory for the task variable x;(t) and

define the task error y; € R™ as

Xi = Xi,d — Xi- (7.4)

To determine the motion required to achieve convergence of the task error y;
to zero, it is common to use the closed-loop inverse kinematic (CLIK) routine
expressed as

G =i (Xia + NiXa), (7.5)

where J; = JI'(J;JT)~! is the right Moore-Penrose pseudo-inverse of the task
Jacobian, (. is the reference velocity vector, and A; > 0 is a positive-definite gain
matrix. The single-task approach can be extended to multiple simultaneous tasks
using the SRMTP method [20]:

Go=J7 (X, + Mixa) + Nido (xo,a + Aaxe) + - -

o : (7.6)
+ Nig. (k=15 (Xk,a + AxXr)

where the null space projectors of the task Jacobians are given by N; = (I — J;‘ Ji)s
and Nip (xr—1) = Null([JlT,JQT,...,Jg_JT) represents the combined null space
projector of tasks 1 through k — 1. The null space projector matrices ensure that
conflicting velocity components generated by the lower-priority tasks are filtered
out such that these do not affect the satisfaction of the higher-priority tasks. In
[3], it is shown that all the task errors will converge to zero, provided that ((t) =
¢-(t) Vit > 0 (i.e., neglecting the dynamics), that the tasks are compatible and
specified as time-independent regulation tasks (i.e., x;q = 0) and that the task
gains A; are chosen appropriately.

In the next section, we extend the kinematic stability analysis in [3] by com-
bining it with a dynamic control law for the model described in Section 7.1, and
we show that all the regulation task errors will converge asymptotically to zero
without the strict requirement that ((¢) = (,.(¢t) V¢ > 0.

7.3 Combined kinematic and dynamic stability analysis

In this section, we propose a combined kinematic and dynamic control law for the
model presented in Section 7.1 performing an arbitrary number of regulation tasks.
By combining the SRMTP method with an SMC that is FTS, we show, by extend-
ing the Lyapunov analysis for regulation tasks presented in [3] to also include the
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system dynamics, that all the regulation task errors will converge asymptotically
to zero without the strict requirement that ¢(¢) = ¢,.(t)Vt > 0. This novel approach
then avoids the assumption of perfect dynamic control that is common in kinematic
stability analyses for vehicle manipulators. We then provide two examples of SMC
algorithms that satisfy the requirement of being FTS.

To be able to use SMC, we must first define a sliding surface. Define the sliding
surface as

where ¢, = [(v{,, (Wa)T (]ﬂT € RO+("=1) ig the reference velocity vector
given as the output of the SRMTP inverse kinematics routine in (7.6) for regulation
tasks (i.e., time-independent tasks). By differentiating (7.7) and inserting (2.1), we
obtain

)T

6=C~G=M(~-C(-D(~g+7) ¢ (7.8)
and by using that { = (.40 from (7.7), we obtain the following equation describing
the dynamics of o:

6=M=C((+0)—D(G+0)—g+7) =G (7.9)
Now, define x as a vector of all the regulation task errors, i.e.,
. [ T
X=[X{, %3, - Xt (7.10)

By taking the time derivative of (7.10) and using (7.3), x;¢ =0 and ( = ( + 0o
from (7.7), we have

)L( =—Xx= 7J(§e)< = *J(ge)(gr + 0)7 (711)

where J(&.) = [JlT, JI JE]T is a matrix that contains the corresponding Ja-
cobian matrices for the tasks. We make the following assumption about J(&.):

Assumption 7.1. J(&.) in (7.11) is bounded.

Remark 7.2. Note that the matrix J(&.) will be bounded as long as singularities
in the task representations are avoided. This is also necessary for the complete
control method to be singularity-free.

The total error dynamics can then be obtained by combining (7.8) and (7.11):

X =-J(&)(G +0) (7.12a)
d:M_l(_C(Cr+U)_D(CT+U)_9+T>_éT (7-12b)

Theorem 7.1. Assume that Assumption 7.1 is satisfied. Let the control input of
(2.1) be given by the SMC law

T = USMC(U)a (713)

where o is the sliding surface in (7.7) and usmc is any SMC that stabilizes the
sliding surface o = 0 in finite time. The sliding surface 0 = 0 is then an FTS
equilibrium of (7.12b), which ensures asymptotic convergence of the regqulation task
errors, i.e.,

lim x(t) = 0.

t—o0
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Proof. In [3], it is shown that if the generalized velocities of the vehicle-manipulator
follow the reference velocities, i.e., { = (., then the regulation task errors asympto-
tically converge to zero, i.e., lim; o, X(¢t) = 0. Here, we will extend this analysis to
include the dynamic control part of the problem. The closed-loop dynamics (7.12b),
(7.13) is FTS by assumption, which means that { = (. after some finite time 7.
This also implies that ||o|| < §; V¢ > 0, where 01 is a positive constant. Now, rather
than assuming that ¢ = ¢, as done in [3], we take into account that { = ¢, + o.

We will now analyse the stability properties of the origin of (7.12a) using the
Lyapunov function candidate (LFC) V(¥) = +Y7'x. The derivative of the LFC is,
by (7.12a), as follows:

V=x"x=-xX"J() +0) (7.14)
From [3], we have that
X1 ()G = XTP (€)X, (7.15)
where P(§) is defined as
Ay Oy s i Omymy
JoJ Ay TNy A ... LNJIA
P(&,) = . (7.16)
JerJiTA Je i NUIF Ay L Je A NJEA
JeJiAr JeN1JS A oo JENJTA

where N = Nia..(k—1)- Note that P is positive definite [3]. By using (7.15), we can
write the LFC derivative as

V=-xX"P()x - X"J(&)o (7.17)

Since, as stated above, we have that ||o(t)|| < d; ¥Vt > 0, we can rewrite (7.17) as
follows:

V < = Amin(P)IXI> + 01/ (€ 111X
= —Xmin (P)|[XII* + OlIXII* — O1IXI1* + 1117 (€ IX]] (7.18)

()~ O v (1) > 2TE

where 0 < 6 < Apuin(P), since P is positive definite. By Assumption 7.1, J(&.)
is bounded; thus, the conditions of Theorem A.5 are satisfied. We can then con-
clude that the solutions are globally uniformly ultimately bounded (Definition A.9),
which means that ||x(¢)|| < 02Vt > 0, where 2 is a positive constant. Consequently,
the regulation task errors will not escape to infinity when o # 0. Now, after a finite
time T, the sliding surface 0 = 0 will be reached. Once the system trajectories are
confined to o = 0, the error dynamics are given by

IN

X =—J(&)C (7.19)
and the origin of (7.19) is asymptotically stable and the regulation task errors will
thus asymptotically converge to zero, i.e., lim;_ ., x(t) = 0 [3]. O
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Remark 7.3. This proof can be extended to include trajectory tracking tasks for
link i by including J;7; (¢}, 4(t) — A(&e.i(t) — Ee.ia(t))), where J, is the geometric
Jacobian, which maps the velocity state vector { to the linear and angular velocities
of link 1, (}'i’d is the desired body-fixed velocity of the link frame of link i, A is a
gain matrix, and & ; and &, ; 4 is the position and the desired position, respectively,
of link 7, as the primary task in (7). When the sliding surface and the tasks errors
have gone to zero, i.e., ¢ — ¢ = 0, Jyi((t) = Cf; 4(t) = A(€e,i(t) — i a(t)) remain,
which will make & ;(t) — &,i,q4(t) converge to zero if A is chosen correctly and the
tasks are orthogonal. Orthogonal tasks are a strict requirement, which in practice
means that the tasks utilise separate degrees of freedom of the vehicle manipulator.

7.3.1 First-order SMC

In this section, we will show that a first-order SMC stabilizes the sliding surface
o = 0, where o is given by (7.7), in finite time. Part of the analysis of the chosen
first-order SMC is based on [5], which considers a set-point regulation problem
for a UVMS without taking the inverse kinematic problem into account. In this
chapter, we modify the analysis in [5] to show the finite-time convergence of the
velocity controller.

Theorem 7.2. Let the control input usmc in (7.13) be given by
7= g(q,Rmp) — Kgo0 — K sgn(o), (7.20)

where Kq > 0, G(q, Ryp) represents the estimate of the gravity/buoyancy forces and
moments, and

_ 1, foro; >0
sgn(o;) = { —1, foro; <0

The gain K is chosen as

K >k + Koy, (7.21)
where Ky > 0 and K is an upper bound chosen to satisfy
k2 110(¢, )G + D(g, )6+ 3(a, Rav) + M (q)¢ |- (7.22)

The sliding surface o in (7.7) of the system (7.12b), (7.20) will then converge
exponentially and in finite time to the sliding surface o = 0.

Proof. Consider the LFC for the system (7.12b), (7.20)
1
Vo = §O'TM0' >0, Vo#0, (7.23)

which is positive definite as M(q) > 0. Differentiating (7.23) and inserting (7.7)
and (7.12b) yields

V, =0 Mé&+ EO‘TMO‘
) 1 )
= o[- CC- D¢ g MG | + 507 Mo (7.24)
) 1 )
— —o"Do + o7 [r —CC - DG —g— MQ} + 507 [M - 20} .
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The last term in (7.24) is equal to zero because M — 2C is skew symmetric, cf.,
Remark 7.1. Inserting (7.20) yields

Vo’ __ CTT(Kd + D)o — ol [K sgn(o)] + o" —CG = DG — g~ Mér (7.25)

< — o' (Kq+ D)o — Kllo|| +[|C¢ + DG+ § + MG |||l
where we have used the Cauchy-Schwarz inequality. Using (7.21), (7.22), we have
Vy < —0l(K4+ D)o — Kyllo|| <0, Yo #0. (7.26)

The first term in (7.26) ensures exponential convergence towards the sliding sur-
face ¢ = 0, while the second term ensures, by use of the comparison lemma
(Lemma A.8), that o reaches the sliding surface in finite time. Thus, we have
exponential and finite-time convergence to the sliding surface. O

Remark 7.4. To determine x, we need to find an upper bound on the expression
in (7.22). This upper bound depends on the size of the task errors. To avoid &,
and thus K, becoming undesirably large, a reference model [29] can be used to
obtain sufficiently smooth desired trajectories and avoid large jumps in the task
errors when changing set-points. Such a reference model can also include saturating
elements to limit the desired velocities.

Remark 7.5. The above analysis assumes ideal actuators. In practice, time delays
and imperfections in the actuators will cause high-frequency chattering when SMC
is applied. To eliminate the chattering problem, the discontinuous signum function
in (7.20) is typically replaced by a high-slope saturation function. In this case,
we achieve the ultimate boundedness of the task errors. For set-point regulation
problems, integral action can be introduced in the control law to achieve zero
steady-state error [40].

7.3.2 Generalized super-twisting with adaptive gains

In this section, we will show that the GSTA with adaptive gains stabilizes the
sliding surface o = 0, where o is given by (7.7), in finite time. In Chapter 6, the
GSTA with adaptive gains was proposed and employed for trajectory tracking for
an ATAUV, and the tracking error for the ATAUV was shown to asymptotically
converge to zero. In this chapter, a different sliding surface is employed. We show
that the adaptive GSTA can also be applied to stabilise the sliding surface o in
(7.7) in finite time.

Theorem 7.3. Let the control input usyc in (7.13) be given by the GSTA with
adaptive gains defined in (6.7)-(6.9). The sliding surface o in (7.7) of the system
(7.12b), (7.13), (6.7) will then converge in finite time to the sliding surface o = 0.

Proof. The dynamics of ¢ are described by (7.12b). Now, by introducing ®(o,t) =
®1(0,t) + Pa(0,t), where ®1(0,¢) = 0, I'(-) = M, and by setting 7 as in (6.7),
we obtain

& = —kT()pr(0) + ®1(0, ) + T()(z + T ()Ba(0.1)) (7.27)
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where ®(0,t) = I'(-)(=Co — Do) and ®y(0,t) = T'(-)(=C¢ — D¢ — g — ME,).
Now, by setting o1 = 0 and o9 = 2+ T~ 1(-)®3(0, t), we can write the dynamics as

0"1 = —k1F(~)gb1(0'1) + (1)1(0'1,t) + F(')O’Q

' d, ., (7.28)
0y = —kapa(o1) + %(F (1) ®2(01,1))

From Section 6.2.1, under Assumptions 6.5-6.9 the dynamics in (7.28) are globally
FTS. The sliding surface o = 0 is therefore a global F'TS surface, which means that
o converges to zero in finite time. O

7.4 Simulation case study

In this section, a case study using an ATAUYV is presented to show the effectiveness
of the proposed combined kinematic and dynamic controller using the two different
SMC algorithms from Section 7.3. To further highlight the advantages of using the
SRMTP method combined with an SMC algorithm, we will also show the results
in which the SRMTP method is combined with two standard control methods. We
will also highlight the robustness the SMC algorithms provide by presenting the
results for two different AIAUVs. The AIAUV is a lightweight underwater vehi-
cle that has multiple joints and multiple thrusters [79]. The AIAUYV is subject to
hydrodynamic and hydrostatic parameter uncertainties, uncertain thruster char-
acteristics, unknown disturbances, unmodelled dynamics and large coupling forces
caused by joint motion. It is therefore an example of a vehicle manipulator for
which we cannot assume that the reference output is tracked perfectly by the dy-
namic controller since it has a low mass and the coupling forces caused by the joint
motion are large. We use the simulation model presented in Section 2.2 and the
Eelume 2016 version of the robot presented in Section 2.2.1.

7.4.1 Simulation tasks

The combined kinematic and dynamic control of the ATAUV is demonstrated using
the following three set-point regulation tasks:

1. Control the position and orientation of the centre link (main task)
2. Control the pitch and the yaw angle of the front end of the ATAUV
3. Control the pitch and yaw angle of the back end of the ATAUV

This combination of tasks illustrates the ability of the ATAUV to move to a position
of interest and then perform a double observation task by simultaneously adjusting
the pitch and the yaw angles of the back end and the front end of the ATAUV.
The expressions for the task error and the task Jacobian for task 1 are as follows:
Task 1 - Position and orientation of the centre link
- e 7 1T
X1 = [(nl,lc)Tang:c]
Ji = [Isxe Osxs],

where 7{ ;. is the position deviation of the centre link and 7, . is the orientation
deviation of the centre link. The task Jacobian J; for task 1 is the identity matrix
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since the task is completely described by the position and orientation of the centre
link.

The second task is fulfilled using the two double-joint modules in front of the
centre link, which means that the expressions for the task error and the task Ja-
cobian for task 2 are as follows:

Task 2 - Orientation of the front end
Xo=1[001] 7.
Jo = Jep(row 5-6)

where 7)o ¢ is the orientation deviation of the front end, and J.f is the front end
Jacobian. The front end Jacobian relates the body-fixed velocities of the front end
to the body-fixed velocity of the centre link and the joint velocities.

The third task utilizes the two double-joint modules behind the centre link,
which means that the expressions for the task error and the task Jacobian for
task 3 are the following:

Task 3 - Orientation of the back end

where 7, ;, is the orientation deviation of the back end, and J is the back end Ja-
cobian. The back end Jacobian relates the body-fixed velocities of the back end to
the body-fixed velocity of the centre link and the joint velocities. By using the two
double-joint modules in front of the centre link to fulfil the second task and the two
double-joint modules behind the centre link to fulfil the third task, the available de-
grees of freedom are divided between the tasks. Although unnecessary, this ensures
that the tasks are compatible such that all tasks can be fulfilled simultaneously.
The reference velocities, (., are calculated according to

G = J Aix1 + N1JS Aoxa + NiJ5 Asxs (7.29)

Task 2 and task 3 are always compatible, which allows us to multiply task 3 only
with the null space projector of task 1 N;. The set-points x; 4 are manually con-
trolled and filtered through a third-order reference filter to avoid discontinuities and
large jumps in the calculated reference velocities. The gain parameters in (7.29)
are set to Ay = diag(0.5,0.5,0.5,0.1,0.5,0.5), Ao = 0.5242, and A3 = 0.55xo.

7.4.2 Results using the ATAUV described by Table 2.2

In this section, the results using the ATAUV described by Table 2.2 will be used.
Figure 7.1 shows the results when the first-order SMC (7.20) is used, with the
control gains chosen as K = diag(50eg, 75¢eg) and K, = diag(30eq, 45¢es), where e;
is a 1 x 7 vector of ones. Note that the sgn function in (7.20) is replaced by a high-
slope saturation function with a boundary layer to avoid chattering in the control
input, with a width of [0.07e14]. Figure 7.2 shows the results when the GSTA
with adaptive gains (6.7) is used, with the control gains chosen as 3 = [80e14]%,
£ = [1075614]71, A= [0.166,1068]T, Y1 = [614]T and w; = [614]T. For the GSTA

121



7.

Combined Kinematic and Dynamic Control

]

U

K, . . .
0 200 400 600 800
Time [s]
(a) Centre link position
60 g T T
40
20
g o
-20
-40
-60
200 400 600 800
Time [s]
(c) Front end orientation
25
201
I~

L

Force [N]

400 600
Time [s]

0 200

(e) Thruster forces ¢p,

800

[SEEINY

Torque [Nm]

200 400

Time [s]

600 800

(b) Centre link orientation

60

-60
200 400 600 800
Time [s]
(d) Back end orientation
30 g T
20t 1 —q,
101 1 q
_ﬁ A —9
=t : £ -
N By
_10F 1 —Y%
20} 1%
-30 -
0 200 400 600 800
Time [s]

(f) Joint torques 74

Figure 7.1: Results when the first-order SMC is used for the AIAUV described by

Table 2.2
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with adaptive gains, a small boundary is placed on ¢ for implementation purposes.
The adaptive gains are then represented by (6.51) where the design parameter
A = [0.005¢6,5 - 10 %eg] L.

To further highlight the advantages of using the SRMTP method combined
with an SMC we will also show results where the SRMTP method is combined
with standard control methods. We will show results with a PID controller and a
standard feedback linearisation controller. The PID controller used is defined as

T=—%§+@Q—h/fﬁ (7.30)

where f = (¢ — ¢ and k,, kg and k; are controller gains. The reason we chose
to include a PID controller as a standard control method is because it is one of
the most widely used controllers and is known for obtaining good results if tuned
correctly. However, it does not provide any stability guaranties and is difficult to
tune for optimal performance. We therefore also include results using a feedback
linearisation controller. The feedback linearisation controller gives stability guar-
anties and is easy to tune as long as the model parameters are known. The feedback
linearisation controller used is defined as

T=M(=kpy{+ )+ CC+DC+g (7.31)

where 5 = ( — (¢ and k), is a control gain.

Figure 7.3 shows the results when the PID controller (7.30) is used, with the
control gains chosen as k, = 250, kg = 80 and k; = 10. Figures 7.4 and 7.5
shows the results when the feedback linearisation controller (7.31) is used, with the
control gain chosen as k, = 10. The reason two figures are included for the feedback
linearisation controller is because the feedback linearisation controller had problems
when the thruster allocation scheme used was included; we therefore included one
figure where the thruster allocation was used, i.e., Figure 7.4, and one figure where
the thruster allocation was not used, i.e., Figure 7.5. The reasons why the feedback
linearisation controller had problems with the thruster allocation scheme will be
discussed in the discussion section below.

Discussion

Figures 7.1a and 7.1b show the commanded and the actual position and orientation
of the centre link corresponding to task 1 when the first-order SMC (7.20) is used.
There is a small deviation from the set-point for the centre link pitch angle due to
the boundary layer of the saturation function, which is in agreement with ultimate
boundedness described in Remark 7.5. The results for tasks 2 and 3 are shown in
Figure 7.1c and Figure 7.1d. The combined kinematic and dynamic control law is
able to fulfil all the tasks simultaneously, as stated in Theorem 7.1 in combination
with Theorem 7.2, but some transient deviations can be observed for the front and
the back orientations when changing the pitch and yaw set-points for the centre
link. These deviations occur because task 1 is the primary task and tasks 2 and 3 are
secondary tasks. The first term in (7.29) does not consider the task errors for tasks
2 and 3. Satisfying the desired centre link orientation will therefore introduce errors
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Figure 7.2: Results when the GSTA with adaptive gains is used for the AIAUV
described by Table 2.2
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in the orientations of the front end and the back end. These deviations disappear
as soon as the second term in (7.29) compensates for these task errors. Figures 7.1e
and 7.1f show the thruster forces and joint torques used. The control inputs are
smooth and below 100 N, which is the limit for the thrusters. The control inputs
are therefore feasible.

Figures 7.2a and 7.2b show the commanded and the actual position and ori-
entation of the centre link corresponding to task 1 when the GSTA with adaptive
gains (6.7) is used. We now find that the small deviation from the set-point for the
centre link pitch angle is eliminated. This result occurs because when the GSTA
with adaptive gains is used, we do not have to introduce a boundary layer. The
results for tasks 2 and 3 are shown in Figure 7.2c and Figure 7.2d. As shown, the
combined kinematic and dynamic control law is able to fulfil all the tasks simul-
taneously, as stated in Theorem 7.1 in combination with Theorem 7.3, but some
transient deviations can be observed for the front and the back orientations when
changing the pitch and yaw set-points for the centre link for the GSTA with adap-
tive gains. The reason why we are unable to remove these deviations is because they
are introduced by the SRMTP method, as described when the transient errors for
the first-order SMC was presented. The simulation results support the theoretical
results, and we find that all the set-point tasks are fulfilled. Figures 7.2e and 7.2f
show the thruster forces and joint torques used. The control inputs are smooth and
below 100 N, which is the limit for the thrusters. The control inputs are therefore
feasible.

Figures 7.3a and 7.3b show the commanded and the actual position and orien-
tation of the centre link corresponding to task 1 when the PID controller (7.30) is
used. We can see that when the PID controller is used, the reference is tracked;
small deviations from the position and orientation are observed when the other
set-points are changed. We also see that the transient error for pitch is much larger
than that of the SMC algorithms. The PID controller also introduces some over-
shoot in all states. The results for tasks 2 and 3 are shown in Figure 7.3c and Figure
7.3d. The PID controller is able to fulfil all the tasks simultaneously; however, here,
we not only have transient deviations for the front and the back orientations when
changing the pitch and yaw set-points for the centre link but also note tendencies
of overshoot and also some other transient errors. The transient errors caused by
the changing of set-points are also larger than that of the SMC algorithms. We
tried to increase the gains to determine if that led to better performance, but we
then obtained a non-feasible control input. The only way to obtain a better per-
formance would therefore be to find another combination of gains, with k, < 250,
that yielded better results. After extensive tuning efforts, the results shown here
represent the best performance we could achieve. It is therefore clear that the SMC
algorithms perform better than the PID controller, and they are also much easier
to tune to obtain optimal performance. Figures 7.3e and 7.3f show the thruster
forces and joint torques used. The control inputs are smooth and below 100 N,
which is the limit for the thrusters. The control inputs are therefore feasible.

Figures 7.4a and 7.4b show the commanded and the actual position and orien-
tation of the centre link corresponding to task 1 when the feedback linearisation
controller (7.31) is used. We expect perfect tracking since there is no model un-
certainty, and from the figures, we see that the position is perfectly tracked. For
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the orientation however, there are some small deviation in yaw. From Figure 7.4c
we can see that task 2 is fulfilled, however, from Figure 7.4d, we see that task 3
is not perfectly fulfilled. It cannot follow the pitch reference perfectly, and there is
a large jump in yaw. The reason task 3 is not perfectly fulfilled is because of the
thruster allocation scheme. This can be seen from Figure 7.5, when we sent the
calculated desired force in six degrees of freedom (6DOF) directly to the model, i.e.
the thruster allocation scheme was not used. From Figures 7.5a, 7.5b, 7.5¢ and 7.5d
we can see that task 1, task 2 and task 3 are fulfilled when the thruster allocation
scheme is not used, and that the trajectories are perfectly followed, except for the
small transient deviation for the front and the back orientation when the pitch
and yaw set-points for the centre link are changed, which are introduced by the
SRMTP method. The reason the thruster allocation scheme is creating problems
for the feedback linearisation controller is because we have to use a damped inverse
to calculate the force that will be distributed to the thrusters, since the robot is
un-actuated in roll when the joints angles are equal to zero. The un-actuated roll
axis causes the inverse of the thruster configuration matrix to become singular,
and a damped inverse therefore has to be used. However, the damped inverse does
not obtain the commanded force in 6DOF that we sought, which created problems
for the feedback linearisation controller. The reason why only the base is affected
may be because task 1 is fulfilled given that it is the primary task, while task 2 is
fulfilled because the joints are not affected. The reason the base is affected is there-
fore because the reference generated by the SRMTP method is for the base. We
can therefore see that the feedback linearisation controller is much more sensitive
to unmodelled dynamics, since the effects of the thruster allocation scheme are not
visible for any of the SMC algorithms. Note that we chose k, = 10 because that
was when we achieved the best performance when using the thruster allocation
scheme. Figures 7.4e, 7.5e, 7.4f and 7.5f show the thruster forces and joint torques
used. The control inputs are smooth and below 100 N, which is the limit for the
thrusters. The control inputs are therefore feasible.

7.4.3 Simulations with model parameter errors

In this section, we will show results where the ATAUYV link lengths are reduced by
20%. The ATAUV simulation model is then given by the parameters in Table 7.1.
However, the model used to find the control inputs is not changed; this is to high-
light the robustness of the SMC algorithms. This means that we keep the controller
gains and the estimates of the model parameters as in Section 7.4.2.

Figure 7.6 shows the results when the first-order SMC (7.20) is used, and Figure
7.7 shows the results when the GSTA with adaptive gains (6.7) is used. Since
the PID controller already showed that its performance is worse than the SMC
algorithms, we did not include results from the PID controller in this section. For
the feedback linearisation controller, we include only the results for the case where
the thruster allocation scheme is not used, as shown in Figure 7.8.
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Figure 7.6: Results when the first-order SMC is used for the AIAUV described by
Table 7.1
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Figure 7.7: Results when the GSTA with adaptive gains is used for the AIAUV
described by Table 7.1
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described by Table 7.1
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Table 7.1: Eelume 2016 link properties (link lengths reduced by 20%)

Link nr. | Length [m] | Mass [kg] | Thrusters
1 0.50 12.6 None
2,4,6,8 0.08 2.0 None
3 0.47 12.0 2. 7. Y
5 0.64 16.3 3:X,X,Z
7 0.47 12.0 2V, Z
9 0.30 7.5 None

Discussion

From Figures 7.6 and 7.7, we can see that the tracking results are almost identical
to those obtained in Section 7.4.2. We can therefore conclude that the SMC algo-
rithms are robust to modelling uncertainties, as their performance is not affected
by making the ATAUV smaller. From Figure 7.8, we can see that the feedback
linearisation controller is greatly affected by the change of model. To obtain these
results, we had to change the control gain to k, = 200; if we used the gains chosen
in Section 7.4.2, we could not obtain any stable results. With %k, = 200, we can see
from Figures 7.8a and 7.8b that task 1 is almost fulfilled, while in Figures 7.8c and
7.8d, we can see that task 2 and 3 are not fulfilled. Figures 7.8e and 7.8f reveal that
the control input in this case is not feasible. We found that we had to set &, = 500
for all the tasks to be fulfilled with the feedback linearisation controller. Thus, for
the feedback linearisation controller to work with modelling uncertainties, we have
to tune the controller correctly, which can be difficult. The SMC algorithms are
therefore much more applicable for the ATAUV which is prone to modelling errors
and uncertainties.

7.5 Experimental case study

In this section, a case study using the ATAUV based on experimental results ob-
tained during the summer of 2020 is presented. The purpose of the experiments
was to validate the underlying theory and the robustness of the control approach
by showing that the proposed approach also works in practice and not only in the
ideal case presented in simulations. The robot used is the Eelume 2020 version
of the robot presented in Section 2.4.1 and the test case used is the task-priority
case described in Section 2.4.3. We will also present simulation results for the
test case presented in Section 2.4.3, such that we can compare the experimental
results with simulation results. We show results with the adaptive GSTA from Sec-
tion 7.3.2. We were not able to get experimental results by using the control law
from Section 7.3.1. The first-order SMC algorithm was to difficult to tune during
the experiments, and even with extensive tuning efforts, we were not able to get
it to work. So we will not show results with the first-order SMC. The tuning was
simpler for the higher-order SMCs, and we were able to obtain results with both
the STA with adaptive gains (3.1) and the GSTA (4.1). We can therefore present a
comparison with the STA with adaptive gains and the GSTA to evaluate whether
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adding adaptive gains to the GSTA actually improves the resulting tracking capa-
bilities, as we then get both the theoretical advantages afforded by the GSTA and
the practical advantages afforded by adaptive gains. Additionally, we compare the
results with those of a standard PID controller.

7.5.1 Realistic simulations

In this section, simulation results with control gains obtained during the experi-
ments are presented. We used the simulation model presented in Section 2.2 and
the Eelume 2020 version of the robot presented in Section 2.2.2. The test case used
is the SRMTP case from Section 2.4.3. For the simulations, the ode3 fixed-step
solver with a step size of 0.01 was used.

Results AGSTA

We were not able to directly use the gains obtained during the experiments; it was
necessary to make some small changes to the experimental gains to allow them to
work properly in the simulations. However, we used the experimental gains as the
starting point and attempted to modify them as little as possible. The gains used
for the GSTA with adaptive gains are presented in Table 7.2. For the adaptive
GSTA, it was necessary only to change the A\ gain for the joints from 0.1 to 1.
The results obtained when using the control law proposed in Section 7.3.2 are

Table 7.2: Simulation: Control gains for the adaptive GSTA for the task-priority
case

Gain Values
€ 1-107%€7,
A ety
gh! ety
w1 [66 0. 188]T
B Bes es]”
QU 0.05¢e7,

presented in Figure 7.9, and the evolution of the adaptive gains over time for the
adaptive GSTA can be seen in Figure 7.10. In Fig. 7.9f label ¢; corresponds to the
torque used for joint 7, and in Fig. 7.10 label x corresponds to the evolution of the
adaptive gains k; (t) and ky(t) over time for the z-dimension, label y corresponds to
the evolution of the adaptive gains k1 (t) and ko(t) over time for the y-dimension,
etc.

Results comparison

For comparison, we also obtained results using the previously mentioned algo-
rithms, i.e., the STA with adaptive gains from (3.1) and the GSTA from (4.1).
For both the STA with adaptive gains and the GSTA, we used the sliding sur-
face defined in (7.7). We also compare the results with those of a standard PID
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Figure 7.9: Simulation results using the adaptive GSTA for the task-priority case

135



7. Combined Kinematic and Dynamic Control

1.0005

1.0004

15 gy
—y—0 1.0003 —
10 z v —y—¢
1.0002 z v

1.0001

0 100 200 300 400 500 600 700 1
0 100 200 300 400 500 600 700

Time [s] )
Time [s]
i 1.00003
—a —
t ——a,——q,  1.00002 7:; ::
B 9Q—0
o —% %  1.00001 ety
o
0 100 200 300 400 500 600 700 : 0 100 200 300 400 500 600 700
Time [s] Time [s]
(a) Evolution of ki (¢) over time (b) Evolution of k2(t) over time

Figure 7.10: Simulation: Evolution of the adaptive gains over time for the adaptive
GSTA for the task-priority case

controller (7.30). The reason we chose to include a PID controller as a representa-
tive standard control method is because it is one of the most widely used types of
controllers and is known to yield good results if tuned correctly. However, it does
not provide any stability guarantee. As mentioned previously, we were not able to
use the control gains found during the experiments directly. The gains used in the
simulations are presented in Table 7.3 for the STA with adaptive gains, in Table 7.4
for the GSTA and in Table 7.5 for the PID controller. For the STA with adaptive
gains, we needed only to change the A gain for the joints from 0.1 to 1. For the
GSTA, it was necessary to change the 5 gains from [80es 15es] to [25es  4besg],
and for the PID controller, we needed to change the k, gain for the joints from
20 to 40 and the k; gain for the joints from 10 to 15. The tracking errors for all

Table 7.3: Simulation: Control gains for the STA with adaptive gains for the task-
priority case

Gain Values
€ 1-107%7,
A ety
gh! ety
w1 [66 0. 168]T
Qi 0.05¢T,

the algorithms are presented in Figure 7.11. We have in this section chosen to use
error plots, instead of trajectory plots as in Section 7.4, to make the comparison
easier and more visible. In Figure 7.12, we present the thruster forces and joint
torques for all algorithms except the adaptive GSTA, for which the forces and
torques have been previously presented in Figure 7.9. For the STA with adaptive
gains, the evolution of the adaptive gains over time can be seen in Figure 7.13.
In Table 7.6, the RMSEs and maximum errors of the position and orientation for

136



7.5. Experimental case study

Table 7.4: Simulation: Control gains for the GSTA for the task-priority case

Gain Values

1{31 [366 GS}T

ko [0.004¢e6 O.OOQ@S}T
3 [25e5  45eg]T

Table 7.5: Simulation: Control gains for the PID controller for the task-priority

case

Gain Values
ky, | [250es 40es]T
kd [8066 1068}T
k; [15e6 15eg]T

each task are given for all algorithms. In Table 7.7, the RMS values of the thruster
forces, the derivative of the thruster forces, the joint torques, and the derivative
of the joint torques are given for all algorithms. The RMS of the thruster forces
and the joint torques provides a measure of how much control effort, that is used,
and the RMS of the derivative of the thruster forces and the derivative of the joint
torques provides a measure of how much chattering that is present in the thruster
forces and the joint torques.

Table 7.6: Simulation: Comparison of the tracking results for the task-priority case

Al ith RMSE Maximum error
gorithm Task 1 | Task 2 | Task 1 Task 2
Position 0.0313 | 0.0382 | 0.2295 0.2124
AGSTA Orientation | 0.0113 | 0.0146 | 0.0698 0.0787
STA Position 0.0467 | 0.0581 | 0.3057 0.2713
Orientation | 0.0216 | 0.0239 | 0.1227 0.1158
GSTA Position 0.1106 | 0.1177 | 0.5683 0.3832
Orientation | 0.0483 | 0.0550 | 0.1816 0.1755
PID Position 0.0512 | 0.0763 | 0.2732 0.2882
Orientation | 0.0227 | 0.0356 | 0.0891 0.1385

Table 7.7: Simulation:

Algorithm - RMS -
Tthr Tthr Tq Tq
AGSTA 4.7933 0.4191 1.9777 | 0.4487
5.8351 0.7371 2.4834 | 0.8704
GSTA 4.3251 | 107.6121 | 1.8879 | 83.8284
5.4231 0.1324 2.3276 | 0.0778

Comparison of the control inputs for the task-priority case
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Figure 7.11: Simulation: Tracking errors for the task-priority case

Discussion

Figure 7.9a and Figure 7.9b show the commanded and actual position and orienta-
tion of the front end corresponding to task 1 when the GSTA with adaptive gains
(6.7) is used. For task 1, we can see some small transient deviations at approxi-
mately 200 s and 400 s in the position and in the yaw orientation. These transient
errors correspond to a roll movement of the front end, which may indicate that
movement in the roll direction interferes with movement in the other DOFs. The
results for task 2 are shown in Figure 7.9c and Figure 7.9d. As shown, the com-
bination of the SRMTP method and the dynamic control law enables all tasks to
be performed simultaneously, as indicated by Theorem 7.1 in combination with
Theorem 7.3; however, some transient deviations can also be observed for task 2.
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Figure 7.13: Simulation: Evolution of the adaptive gains over time for the STA
with adaptive gains for the task-priority case

We see some small transient errors around 200 s and 400 s in position and yaw that
correspond to roll movements for task 1 and task 2. We also see small transient
errors in the roll and pitch directions at approximately 550 s, which correspond
to movement in the z-direction for task 1. As previously discussed in Section 7.4,
these deviations occur because task 1 is the primary task, whereas task 2 is the
secondary task. The first term in (2.13) does not consider the task errors for task 2.
The attempt to achieve the desired front end position and orientation will conse-
quently introduce errors in the back end position and orientation. These deviations
disappear as soon as the second term in (2.13) compensates for these task errors.
The simulation results therefore support the theoretical results, and we find that all
the set-point tasks are fulfilled. From Figure 7.9e, we can see that the forces used
are smooth and well below 60 N, which is approximately the limit of the thrusters
in the 2020 version of the robot. From Figure 7.9f, we can see that the joint torques
are smooth and below 16 Nm, which is the limit on the joint torques. The control
inputs are therefore feasible. From Figure 7.10a and Figure 7.10b, we can also see
that the gains k1 (¢) and k2(t) increase linearly and converge to suitable values.

From Figure 7.11, we can clearly see that there are some points that exhibit
transient errors introduced by the SRMTP method. However, we also see that the
magnitudes of these transient errors are different for the different control algo-
rithms. From Figure 7.11a, we can see that the adaptive GSTA clearly results in
the smallest position errors for task 1, while the STA with adaptive gains yields
the second smallest errors. However, the STA with adaptive gains also introduces
some oscillation in z. The PID controller achieves the third smallest errors, while
the GSTA results in the largest errors. Figure 7.11b shows that this is also the case
for the orientation errors for task 1. However, it appears that the PID controller
actually yields better results than the STA with adaptive gains. The STA with
adaptive gains also introduces some oscillations into the states. When we consider
the position errors for task 2 in Figure 7.11c, we see that the STA with adaptive
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gains again yields better results than the PID controller, but the STA with adap-
tive gains also introduces oscillation in z, while the adaptive GSTA still results in
the lowest errors and best results. When we additionally consider the orientation
errors for task 2 in Figure 7.11d, we see that here also, the adaptive GSTA achieves
the lowest errors. The STA with adaptive gains again introduces some oscillations
into the states; however, it also yields the second smallest errors. These findings are
further supported by Table 7.6, which shows that the adaptive GSTA results in the
smallest RMSE values and maximum error values in both position and orientation
for both tasks. We can therefore conclude that the adaptive GSTA exhibits the
best tracking performance overall, i.e., the smallest errors. The STA with adaptive
gains comes in second overall, even though the PID controller has smaller maxi-
mum error values for task 1. The PID controller thus takes third place, while the
GSTA comes fourth.

Regarding the thruster and torque use of the different algorithms, we can see
from Figure 7.9¢, Figure 7.9f and Figure 7.12 that the force use is quite similar for
all of the considered algorithms. However, the GSTA uses less force than the other
algorithms and introduces some chattering, which may be the reason why it results
in the highest tracking errors. From Table 7.7, we can see that there are some
small differences among the other algorithms, as well. However, the RMS values of
the thruster forces and the joint torques indicate that the adaptive GSTA uses the
least force after the GSTA, even though it produces the best tracking performance.
Nevertheless, the STA with adaptive gains and the PID controller also use very
similar amounts of force. Furthermore, from the RMS values of 7, and 7, we can
see that the only algorithm that introduces chattering is the GSTA.

7.5.2 Experimental investigation

In this section, the experimental results obtained during the summer of 2020 are
presented. The robot used was the Eelume 2020 version of the robot presented in
Section 2.4.1 and the test case used was the same as for the simulation, and was
explained in Section 2.4.3.

Results AGSTA

The gains for the GSTA with adaptive gains are presented in Table 7.8. For the
adaptive GSTA, the choice of the gains should not be very important since the gains
will autonomously adapt to suitable values, and indeed, it was observed during the
experiments that it was easy to find a starting point for the adaptive gains that
yielded good tracking results. The results obtained using the control law proposed
in Section 7.3.2 are presented in Figure 7.14, and the evolution of the adaptive
gains over time for the adaptive GSTA can be seen in Figure 7.15.

Results comparison

For comparison, we also obtained results using the previously mentioned algo-
rithms, i.e., the STA with adaptive gains (3.1), the GSTA (4.1) and a PID con-
troller (7.30). For the SMC algorithms, we used the sliding surface defined in (7.7).
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Figure 7.14: Experimental results using the adaptive GSTA for the task-priority
case
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Table 7.8: Experiments: Control gains for the adaptive GSTA for the task-priority
case

Gain Values
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Figure 7.15: Experiments: Evolution of the adaptive gains over time for the adaptive
GSTA for the task-priority case

The gains found for the STA with adaptive gains, the GSTA and the PID controller
during the experiments are presented in Table 7.9, Table 7.10 and Table 7.11, re-
spectively. The tracking errors for all algorithms are presented in Figure 7.16. Fig-
ure 7.17 shows the thruster forces and joint torques for all algorithms except the
adaptive GSTA, for which the forces and torques have been previously presented in
Figure 7.14. For the STA with adaptive gains, the evolution of the adaptive gains
over time can be seen in Figure 7.18.  In Table 7.12, the RMSEs and maximum

Table 7.9: Experiments: Control gains for the STA with adaptive gains for the
task-priority case

Gain Values
€ 1-1077e7,
A les 0.lel
7 €14
w1 [66 0.168}T
Qi 0.05¢T,
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Table 7.10: Experiments: Control gains for the GSTA for the task-priority case

Gain Values

k‘l [366 eg]T

ko [0.004eg 0.00268]T
B [80es 15eg]”

Table 7.11: Experiments: Control gains for the PID controller for the task-priority
case

Gain Values
kp [25066 2068]T
kq [80es 10eg]”
]Ci [1566 1068]T

errors of the position and orientation for each task are given for all algorithms. In
Table 7.13, the RMS values of the thruster forces, the derivatives of the thruster
forces, the joint torques, and the derivatives of the joint torques are given for all
algorithms.

Table 7.12: Experiments: Comparison of the tracking results for the task-priority
case

Aleorithm RMSE Maximum error
gor Task 1 | Task 2 | Task 1 Task 2
AGSTA P_OSIUO.H 0.0521 | 0.0760 | 0.3323 0.4011
Orientation | 0.0220 | 0.0296 | 0.1040 0.1054
STA Position 0.0651 | 0.0839 | 0.4213 0.5638
Orientation | 0.0235 | 0.0321 | 0.1253 0.1831
GSTA Position 0.0649 | 0.0915 | 0.4154 0.5304
Orientation | 0.0215 | 0.0328 | 0.1267 0.1560
PID Position 0.0851 | 0.1020 | 0.4900 0.5545
Orientation | 0.0263 | 0.0366 | 0.1394 0.1797

Discussion

Figure 7.14a and Figure 7.14b show the commanded and actual position and ori-
entation of the front end corresponding to task 1 when the GSTA with adaptive
gains (6.7) is used. For task 1, we can see a small transient deviation at approx-
imately 400 s in the yaw orientation. This transient error corresponds to a roll
movement of the front end, which may indicate that movement in the roll direction
interferes with movement in the yaw direction. Some other small oscillations are
also evident, but these can simply be attributed to experimental uncertainties. The
results for task 2 are shown in Figure 7.14c and Figure 7.14d. It is seen that the
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Figure 7.16: Experiments: Tracking errors for the task-priority case

combination of the SRMTP method and the dynamic control law allows all tasks
to be performed simultaneously, as indicated by Theorem 7.1 in combination with
Theorem 7.3. Some transient deviations can also be observed for task 2. We see
some small transient errors at approximately 200 s and 400 s in position and yaw
that correspond to roll movements for task 1 and task 2. We also see small transient
errors in the roll and pitch directions at approximately 550 s, which correspond to
movement in the z-direction for task 1. The reason why we are unable to eliminate
these deviations is because they are introduced by the SRMTP method, as dis-
cussed in Section 7.5.1. The experimental results therefore support the theoretical
results, and we find that all set-point tasks are achieved. From Figure 7.14e, we can
see that the forces used are well below 60 N, which is approximately the limit of the
thrusters in the 2020 version of the robot. From Figure 7.14f, we can see that the

145



7. Combined Kinematic and Dynamic Control

40
ik x2)
_2 M x.2)
Z thr,,
g 0 Imk3.(Y)
S *‘"’nnk;,(.\n
-20 —""lmks,(xz)
[T
40 |Inks.1X, Z)
100 200 300 400 500 600 700
Time [s]
40
— ik v)
_ —‘“’lmks,(.v;
3
£ ik x-2)
i2 mky,lX.Z)
_mrlmky,(-‘()
thr,
40 ik, ()

100 200 300 400 500 600 700
Time [s]
(a) Thruster forces 74, used for STA with
adaptive gains
40

—""lmka.(x.z)

20 — Wik x2)

ik, )

Force [N]
o

— Mk )

—""nnks.(x,zy

= mrlmks.(X.ll
100 200 300 400 500 600 700
Time [s]

f“"lmks.(vl
—""nnks.(-vy

M x.2)

Force [N]

— ik x2)

— Wik )

)

100 200 300 400 500 600 700
Time [s]

(c¢) Thruster forces 7, used for the GSTA

— M x2)
_2 M x-2)
£ " thr,
% o M
g — M
(18 3
20 M x2)
4 f""nnks,(x‘,z)
100 200 300 400 500 600 700
Time [s]
40
i
_2 M)
=3 thr,
i) M x.2)
5 — i x2)
w 7
-20 M)
40 imrllnky,(‘()

100 200 300 400 500 600 700
Time [s]

(e) Thruster forces 7, used for the PID con-
troller

=

3

&

Torque [Nm]
o o

0 100 200 300 400 500 600 700
Time [s]

Torque [Nm]
S o o

0 1(;0 260 360 400 560 600 700
Time [s]
(b) Joint torques 74 used for STA with adaptive
gains
15
10

&

Torque [Nm]
o o

100 200 300 400 500 600 700
Time [s]

&

Torque [Nm]
o o

>

100 200 300 400 500 600 700
Time [s]

&
o

(d) Joint torques 74 used for the GSTA

3

Torque [Nm]
o o

-5
-10
-15
100 200 300 400 500 600 700
Time [s]
15 T r
10 1

Torque [Nm]
H o o

3

o
o

100 200 300 400 500 600 700
Time [s]

(f) Joint torques 74 used for the PTD controller

Figure 7.17: Experiments: Thruster forces 7, and joint torques 7, used for the

task-priority case

146



7.5. Experimental case study

70
1.0014
60 001
1.0012
50 — (2
L Ty 1.001 —x—¢
40 2y e~y
1.0008 z ¥
30
1.0006
20 . :
0 100 200 300 400 500 600 700 1.0004
Time [s] 0 100 200 300 400 500 600 700

Time [s]

0.1001

0.10008 —a,—0,
7“2 o q6

%%
% 0.10006
4G—19; %%
—q,—q,  0.10004
0.10002

0 0.1

—a,—0

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Time [s] Time [s]
(a) Evolution of «(t) over time (b) Evolution of 8(t) over time

Figure 7.18: Experiments: Evolution of the adaptive gains over time for the STA
with adaptive gains for the task-priority case

Table 7.13: Experiments: Comparison of the control inputs for the task-priority
case

Algorithm - RMS -
Tthr Tthr Tq Tq
AGSTA 5.0325 | 7.8897 | 2.1488 | 0.3898
STA 3.6394 | 5.7950 | 2.2093 | 0.3645
GSTA 3.6527 | 3.3307 | 2.2126 | 0.3398
PID 3.2469 | 42.1036 | 2.1960 | 5.3478

joint torques are smooth and below 16 Nm, which is the limit on the joint torques.
The control inputs are therefore feasible. From Figure 7.15a and Figure 7.15b, we
can see that the gains k;(¢) and ko(t) converge to suitable values.

By comparing the simulation results in Figure 7.9 with the experimental results
in Figure 7.14, we can see that the same transient errors introduced by the SRMTP
method occur in both the simulations and experiments. In the experiments, we also
see some more oscillations and larger deviations; however, this is to be expected
because of measurement, noise, the thruster dynamics, the joint dynamics and other
unmodelled dynamics that inevitably affect the experiment. A comparison of the
thruster forces and joint torques reveals that the greatest difference between the
simulations and experiments is that there is a stronger tendency towards chattering
in the control inputs in the experiments; in addition, less force is used in the
simulations. Nevertheless, the experimental results and the simulation results are
quite similar, indicating that the adaptive GSTA is indeed applicable for controlling
the ATAUV.

From the position error plots in Figure 7.16, we can clearly see that there
are some points that exhibit transient errors introduced by the SRMTP method.
This behaviour is less clear in the orientation error plots, although some tendency
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towards such a pattern is also seen here. It is also evident that the magnitudes of
the transient errors are different for the different control algorithms, although it is
not as easy to distinguish the different algorithms from each other as it is in the
simulation results. We can see from Figure 7.16a that the adaptive GSTA yields the
smallest position errors in = and y for task 1, although it is difficult to determine
which algorithm performs the best in z. The STA with adaptive gains performs
second best, while the performances of the GSTA and the PID controller are not
easy to distinguish. In Figure 7.16b, it is also difficult to distinguish among the
different algorithms based on the results in the roll and pitch directions for task 1,
as the errors are quite small for all algorithms. For the yaw direction, the adaptive
GSTA is seen to result in the smallest error for task 1, and the STA with adaptive
gains yields the second best results; however, it is again difficult to distinguish
between the GSTA and the PID controller. When we consider the position errors
for task 2 in Figure 7.16¢c, we can see that for the x and y directions, the adaptive
GSTA yields the smallest errors, while the results for z show little distinction. When
we additionally consider the orientation errors for task 2 in Figure 7.16d, we see
that here also, it is difficult to distinguish among the different algorithms based on
the results for the roll and pitch directions; however, the adaptive GSTA is seen to
result in the lowest error in yaw, although the other algorithms are still difficult to
distinguish from each other in the yaw direction. These findings are also supported
by Table 7.12, from which we can see that the adaptive GSTA results in the smallest
RMSE values and maximum error values in both position and orientation for both
tasks, with the exception of the RMSE orientation results for task 1, for which it
is actually the GSTA that produces the lowest value. We can therefore conclude
that the adaptive GSTA achieves the best tracking performance overall, i.e., the
smallest errors. In terms of the RMSE values and the maximum errors, the STA
with adaptive gains and the GSTA actually yield very similar results. The GSTA
usually achieves the best results for task 1, while the STA with adaptive gains
achieves the best results for task 2. By contrast, the PID controller exhibits the
highest RMSE values for both tasks and the highest maximum error values for
task 1. Meanwhile, the highest maximum error values for task 2 correspond to the
STA with adaptive gains. In Figure 7.16¢ and Figure 7.16d, an outlier is evident
in the results for the STA with adaptive gains; this outlier is probably the reason
why the maximum error for task 2 is so high for the STA with adaptive gains.
Regarding the thruster and torque use of the different algorithms, we can see from
Figure 7.14e, Figure 7.14f and Figure 7.17 that there are no large differences in
the amounts of force used. Nevertheless, Table 7.13 reveals some small differences
among the algorithms. The RMS values of the thruster forces indicate that the
adaptive GSTA uses the greatest amount of force, which may be the reason why
the adaptive GSTA achieves the best overall performance. Nevertheless, the other
algorithms also use very similar amounts of thruster force. The RMS values of the
joint torques also are all very similar. From the RMS values of 7,., we can see that
there is some chattering in the thruster inputs for all algorithms; however, the most
rapid changes are observed with the PID controller. From the 7, results, we can
see that there is no chattering in the torque control inputs of the SMC controllers,
while the PID controller introduces some rapid changes.

By comparing Figure 7.11 with Figure 7.16, we can see that overall, the tracking
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errors are smaller in the simulations, which can also be confirmed by comparing
Table 7.6 with Table 7.12. This is to be expected because of measurement noise,
the thruster dynamics, the joint dynamics and other unmodelled dynamics that in-
evitably affect the experiment. However, the GSTA actually shows better tracking
performance in the experiments. This probably means that we could have found
gains in the simulations that would have yielded better results. When we compare
the forces used, by comparing Figure 7.9e, Figure 7.9f and Figure 7.12 with Fig-
ure 7.14e, Figure 7.14f and Figure 7.17, we can see evidence of more chattering in
the control inputs during the experiments, which can also be confirmed by com-
paring Table 7.7 with Table 7.13. One other interesting observation is that while
the adaptive GSTA uses less force in the simulations than in the experiments, the
other algorithms actually use more force in the simulations than in the experiments.
This may be because we tuned the gains of the controllers up in the simulations to
obtain results similar to those obtained in the experiments.

One thing worth noting is that the results of this performance comparison
between the STA with adaptive gains, the original GSTA and the PID controller are
similar to those previously obtained in Chapter 5. This strengthens the notion from
Chapter 6 that we in the results presented in Chapter 6 either chose very good gains
for the GSTA and the PID controller, or did not choose an optimal starting point
for the adaptive gains. Either way, we here see the advantage of the adaptive gains,
as the results we obtain do not depend on our tuning capabilities. We also see that
adding adaptive gains to the GSTA, thereby combining the theoretical advantages
afforded by the GSTA and the practical advantages afforded by adaptive gains,
improves the consequent tracking results and capabilities.

7.6 Chapter summary

In this chapter, we have proposed a combined kinematic and dynamic control
approach for VMSs and presented an extended stability analysis for multiple set-
point regulation tasks. The proposed method extends existing inverse kinematics
control approaches to include dynamic control, and the analysis extends previous
stability analyses and shows that the multiple set-point regulation tasks will con-
verge asymptotically to zero without the strict requirement that the velocities are
perfectly controlled. This novel approach thus avoids the assumption of perfect
dynamic control that is common in kinematic stability analyses for vehicle ma-
nipulators. The applicability of the method is demonstrated through a simulation
and experimental study of an ATAUV, which is a VMS with deep couplings be-
tween kinematics and dynamics. The simulation study includes performing three
simultaneous tasks, and the results show that all the regulation tasks converge
to their respective set-points. The simulation study also includes results from two
standard control methods, namely, a PID controller and a feedback linearisation
controller, and the results from two different ATAUVs to highlight the advantages
and robustness we achieve when using SMC in the combined controller.

In the experimental study we performed two simultaneous tasks, where we con-
trolled both the front end and the back end of the ATAUV in 6DOF, and the results
showed that all the regulation tasks converged to their respective set-points. We

149



7. Combined Kinematic and Dynamic Control

showed both simulation and experimental results, such that we could compare the
experimental results with the ideal case of the simulations. We showed results for
the adaptive GSTA, the STA with adaptive gains, the GSTA and a PID controller.
It was the adaptive GSTA that gave the overall best tracking results, and we can
therefore conclude that adding adaptive gains to the GSTA does indeed improve
the consequent tracking results and capabilities. The simulation and experimental
results were almost equally good. Of course, the tracking errors are larger in the
experiments than in the simulations, but that is to be expected because of mea-
surement noise, thruster dynamics, joint dynamics and other unmodelled dynamics
that inevitably affect the experiments.
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Chapter 8

Conclusions and Future Work

In this thesis, we developed trajectory tracking controllers for an articulated in-
tervention autonomous underwater vehicle (AUV) in 6DOF based on sliding mode
control. We used as little model knowledge as possible since an articulated intervention-
AUYV is subject to hydrodynamic and hydrostatic parameter uncertainties, uncer-
tain thruster characteristics, unknown disturbances, and unmodelled dynamics.
The stability of the proposed control approaches were analysed theoretically, and
their performance was tested in simulations and experiments.

The first sliding mode control approach we proposed for trajectory tracking
control for an articulated intervention-AUV was the super-twisting algorithm with
adaptive gains. This algorithm is the most powerful second-order continuous sliding
mode control algorithm, as it attenuates chattering and does not require the con-
sideration of any conservative upper bound on the disturbance to maintain sliding
because of the adaptive gains. We solved the trajectory tracking control problem
for an articulated intervention-AUV in 6DOF using the super-twisting algorithm
with adaptive gains. We considered both the case where velocity measurements
were available and the case where they were not. When velocity measurements
were not available, we used a higher-order sliding mode observer to estimate the
linear and angular velocities. Furthermore, we proved the asymptotic convergence
of the tracking errors when the control scheme including the higher-order sliding
mode observer was used. Finally, we demonstrate the applicability of the presented
control schemes with comprehensive simulation and experimental results.

The second sliding mode control approach proposed for trajectory tracking
control for an articulated intervention-AUV was the generalized super-twisting al-
gorithm. The generalized super-twisting algorithm is an extension of the super-
twisting algorithm that provides finite-time convergence in the case when both the
perturbations and control coefficients are state- and time-dependent, and the con-
trol coefficients are uncertain, which is essential for robust control of an articulated
intervention-AUV. We solved the trajectory tracking control problem for an artic-
ulated intervention-AUYV in 6DOF using the generalized super-twisting algorithm.
Furthermore, we proved the asymptotic convergence of the tracking errors. We also
considered the case where velocity measurements were unavailable by solving the
tracking control problem using the generalized super-twisting algorithm in com-
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bination with a higher-order sliding mode observer. Furthermore, we proved the
asymptotic convergence of the tracking errors when the higher-order sliding mode
observer was included. Moreover, we presented comprehensive simulation and ex-
perimental results that validated and demonstrated the applicability of both control
schemes.

In the subsequent chapter, we compared the previously proposed tracking con-
trol laws. Specifically, we compared the control law using the super-twisting algo-
rithm with adaptive gains and the control law using the generalized super-twisting
algorithm. We also compared the control laws in combination with a higher-order
sliding mode observer. Additionally, we solved the tracking problem using a PID
controller to evaluate how the sliding mode control algorithms perform compared
to a linear controller. In both the simulations and experiments, the super-twisting
algorithm with adaptive gains provided the best overall tracking performance, but
the generalized super-twisting algorithm produced similar tracking results. Thus,
the fact that we had to tune the generalized super-twisting algorithm manually was
probably the reason we achieved lower tracking performance with this algorithm.
Therefore, in practice, the super-twisting algorithm with adaptive gains is better
than the generalized super-twisting algorithm, but the generalized super-twisting
algorithm does have some theoretical advantages as it is proven to provide global
finite-time stability for a larger class of systems. These additional theoretical prop-
erties made it possible to prove that the closed-loop system was uniformly globally
asymptotically stable without the higher-order sliding mode observer when the
generalized super-twisting algorithm was used. This proof was not possible for the
super-twisting algorithm with adaptive gains.

Based on the results of the comparison, we developed an adaptive generalized
super-twisting algorithm for a class of systems whose perturbations and uncer-
tain control coefficients are time- and state-dependent, i.e., we combined the best
properties of the super-twisting algorithm with adaptive gains and the generalized
super-twisting algorithm. The proposed approach uses dynamically adapted con-
trol gains to ensure global finite-time convergence. The advantage of adaptive gains
is that no conservative upper bound must be considered on the perturbations and
control coefficients to maintain sliding. We proved that the resulting closed-loop
system was globally finite-time stable. Furthermore, we demonstrated the effective-
ness of the proposed adaptive generalized super-twisting algorithm by solving the
trajectory tracking control problem for an articulated intervention-AUV in 6DOF.
Additionally, we showed that the adaptive generalized super-twisting algorithm
makes the tracking errors of the articulated intervention-AUV converge asymptoti-
cally to zero. We also presented simulation and experimental results that validated
and demonstrated the applicability of the proposed control law.

Finally, to utilize the redundancy of this highly flexible underwater vehicle,
we proposed a combined kinematic and dynamic control approach for vehicle-
manipulator systems. The main idea is to combine the singularity-robust multiple
task-priority framework with a robust sliding mode controller while simultaneously
ensuring that the task errors remain bounded. Any controller can be used, as long
as it is able to make the velocity vector converge to the velocity reference vector
in finite time. The output from the singularity-robust multiple task-priority in-
verse kinematic controller was chosen as the reference vector. This novel approach
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allowed us to analyse the stability properties of the kinematic and dynamic subsys-
tems together in the presence of model uncertainty while retaining the possibility
of solving multiple tasks simultaneously. The finite-time convergence of the sliding
mode controller allowed us to show that multiple set-point regulation tasks will
converge asymptotically to zero without the strict requirement that the velocities
be perfectly controlled. This novel approach thus avoids the assumption of perfect
dynamic control that is common in kinematic stability analyses for robot manipu-
lators and vehicle manipulator systems. We provided two examples of sliding mode
controllers that are able to make the velocity vector converge to the velocity ref-
erence vector in finite time: a first-order sliding mode controller and the adaptive
generalized super-twisting algorithm. The applicability of the proposed method
was illustrated via a simulation study, where the primary task was to control the
position and orientation of the centre link of an articulated intervention-AUV and
the secondary tasks were to control the orientations of the front end and back
end of the articulated intervention-AUV, and an experimental study, where the
primary task was to control the position and orientation of the front end of the
articulated intervention-AUV and the secondary task was to control the position
and orientation of the back end of the articulated intervention-AUV.

Future work will include extending the adaptive generalized super-twisting al-
gorithm to multiple-input multiple-output systems. Methods where sliding mode
control can be integrated or combined with an optimisation method should also be
investigated. The reason for this is that sliding mode control introduces consider-
able energy into the system and, especially for an articulated intervention-AUV,
it is often necessary to minimise or limit the control input since the vehicle has a
limited amount of thrust and power. Energy-efficient robust control should there-
fore be investigated, as it is an important future step for conducting autonomous
underwater operations.
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Appendix A

Stability Definitions and Theorems

A.1 Notation

e Ry ={zeR:2>0}

e B(r) = {x € R™: ||z|| < r} is an open ball of the radius r € R, with the
center at the origin.

e {y} + B(e) is an open ball of the radius € > 0 with center at y € R".
e int(Q2) is the interior of a set 2 C R™.

e For a given number r € R and a given positive definite function W : R™ — R
defined on 2 let us introduce the set II(W,r) = {x € Q : W(x) < r} which is
called the level set of the function W.

A.2 Definitions and propositions

Definition A.1 (Cross-product operator, [30, Definition 2.2]). The vector cross-
product x is defined by

Axa:=S\a (A1)
where S € S5(3) is defined as
0 —=XAs Ao A
SN =-8TN =X 0 M|, A=\ (A.2)
A2 A 0 A3

A.2.1 Stability
Consider the non-autonomous system

&= f(t,x) (A.3)
where f : [0,00) x D — R™ is piecewise continuous in ¢ and locally Lipschitz in « on

[0,00) x D and D C R™ is a domain that contains the origin @ = 0. Suppose that
the origin « = 0 is an equilibrium of the system (A.3). We define the following.
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A. Stability Definitions and Theorems

Definition A.2 (Stability, [40, Definition 4.4]). The equilibrium point z = 0 of
(A.3) is
e stable if, for each ¢ > 0, there is § = §(e,tp) > 0 such that

lz(to)|| < 6 = |lz(t)|| <&,  Vt>to >0 (A.4)

e uniformly stable if, for each € > 0, there is 6 = d(¢) > 0, independent of ¢,
such that (A.4) is satisfied.
e unstable if it not stable.

e asymptotically stable if it is stable and there is a positive constant ¢ = ¢(tp)
such that x(t) — 0 as t — oo, for all ||z(t)|] < c.

e uniformly asymptotically stable if it is uniformly stable and there is a positive

constant ¢, independent of tg, such that for all ||z(to)|| < ¢, x(t) — 0 as

t — oo, uniformly in {¢¢; that is, for each n > 0, there is T = T'(n) > 0 such
that

@l < VE>to+TO), Vet <c (A.5)

e uniformly globally asymptomatic stable if it is uniformly stable, d(¢) can be
chosen to satisfy lim._, ., 0(¢) = oo, and, for each pair of positive numbers 7
and ¢, there is T'= T'(n, ¢) > 0 such that

eIl <n,  Vt=to+T(n,c), Vlalt)ll<c (A-6)

Definition A.3 (Exponential stability, [40, Definition 4.5]). The equilibrium point
x =0 of (A.3) is exponentially stable if there exist a positive constants ¢, k and A
such that

lz(D)]] < kllz(to)lle "), Vlla(t)]| < (A.7)

and globally exponentially stable if (A.7) is satisfied for any initial state z(to).

Proposition A.1 (|60, Proposition 2]). Let a set-valued function F : R™ — R"
be defined and upper-semi-continuous in R™. Let F(x) be non-empty, compact and
convex for any x € R™. If the origin of the system

i€ F(z) (A.8)

is asymptotically stable then it is uniformly asymptotically stable.

A.2.2 Finite-time stability

Consider the extended differential inclusion
e F(t ), teR (A.9)
for t > to with an initial condition
z(to) = w0, (A.10)

where xo € R" is given.

156



A.2. Definitions and propositions

Definition A.4 (Lyapunov stability [60, Definition 5]). The origin of the system
(A.9) is said to be Lyapunov stable if Ve € Ry and Vtg € R there exists § =
0(g,t9) € Ry such that Vg € B(J)

e any solution z(t, g, zo) of Cauchy problem (A.9), (A.10) exists for ¢ > to;

o x(t,tg, o) € Be) for t > 1.
If the function § does not depend on ¢( then the origin is called uniformly Lyapunov
stable.

Definition A.5 (Finite-time attractivity, [60, Definition 11]). The origin of the
system (A.9) is said to be finite-time attractive if Yty € R there exists a set
V(t()) CR":0€e Hlt(V(t())) such that Vzq € V(to)

e any solution x(t, tg, zo) of Cauchy problem (A.9), (A.10) exists for ¢ > tg;

e T(ty,x0) < +oo for xg € V(ty) and for ¢, € R.

Definition A.6 (Uniform finite-time attractivity, [60, Definition 13]). The origin
of the system (A.9) is said to be uniformly finite-time attractive if it is finite-time at-
tractive with a time-invariant attraction domain ¥V C R” such that the settling time
function T'(¢o, o) is locally bounded on R xV uniformly on ¢y € R, i.e. for any y € V
there exist ¢ € Ry such that {y} + B(e) C V and supy cp 4eqy1+8(e)1 (to; 2o) <
+00.

Definition A.7 (Finite-time stability, [60, Definition 12]). The origin of the sys-
tem (A.9) is said to be finite-time stable if it is Lyapunov stable and finite-time
attractive. If V(tp) = R”™ then the origin of (A.9) is called globally finite-time
stable.

Definition A.8 (Uniform finite-time stability, [60, Definition 14]). The origin
of the system (A.9) is said to be uniformly finite-time stable if it is uniformly
Lyapunov stable and uniformly finite-time attractive. The origin of (A.9) is called
globally uniformly finite-time stable if ¥V = R".

Proposition A.2 ([60, Proposition 3]). If the origin of the system (A.9) is finite-
time stable then it is asymptotically stable and x(t,to, zg) = 0 fort > to+To(to, xo)-

A.2.3 Boundedness

Definition A.9 (Boundedness, [40, Definition 4.6]). The solutions of (A.3) is
e uniformly bounded if there exsist a positive constant ¢, independent of ¢ty > 0,
and for any a € (0,c¢), there is § = B(a) > 0, independent of t;, such that

lz(to)ll <a=[lz(@®) <8,  Vt=to (A.11)

e uniformly globally bounded if (A.11) holds for arbitrarily large a.

e uniformly ultimately bounded with ultimate bound b if there exist positive
constants b and ¢, independent of ¢, > 0, and for every a € (0,c¢), there is
T =T(a,b) > 0, independent of g, such that

lz(to)ll <a=llz(®)[| < B, Vt=to+T (A.12)

e uniformly globally ultimately bounded if (A.12) holds for arbitrarily large a.
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A. Stability Definitions and Theorems

A.2.4 Adaptive gains

Let the adaptive gains be defined as

=

_Jenys e 20 (A.13a)
0, ifo=0

B =2ea+ A+ 4¢3 (A.13b)

where €, A\, v; and w; are positive constants and o is the sliding surface.

Proposition A.3 (|69, Proposition 1]). The adaptive gains a(t) and B(t) defined
by (A.13) are bounded.

A.3 Theorems and lemmas

A.3.1 Exponential stability

Theorem A.4 (Exponential stability, [40, Theorem 4.10]). Let z = 0 be an
equilibrium point for (A.3) and D C R™ be a domain containing x = 0. Let
V :[0,00) x D — R be a continuously differentiable function such that

killz|[* <V (t,2) < kaf[z|[*
vV oV (A.14)
o2 < _ a

Vt >0 and Vx € D, where k1, ko, k3, and a are positive constants. Then, x = 0
is exponentially stable. If the assumptions hold globally, then x = 0 is globally
exponentially stable.

A.3.2 Boundedness

Theorem A.5 (Boundedness, [40, Theorem 4.18]). Let D C R™ be a domain
that contains the origin and V : [0,00) x D — R be a continuously differentiable
function such that

ar([[z]]) < V(t,z) < ax(][=]])

v oV (A.15)

— 4+ —f(t,x) < —Ws(z), V >p>0

o S (w) < —Wae), Vlell 2k

Yt >0 and Vo € D, where oy and ay are class K functions and Ws(x) is contin-
wous positive definite function. Take r > 0 such that B, C D and suppose that

p < ag H(a(r)) (A.16)

Then there exists a class KL function B and for every initial state x(to), satisfying
l|z(to)|| < ag(ai(r)), there is T > 0 (dependent on x(to) and p) such that the
solution of (A.3) satisfies

|zl < B(lz(to)ll.t —to), ¥V to<t<to+T

le@)| < oy (az(n), ¥ t>to+T (A.17)
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A.3. Theorems and lemmas

Moreover, if D = R™ and oy belong to class Ko, then (A.17) hold for any initial
state x(to), with no restrictions on how large p is.

A.3.3 Finite-time stability

Theorem A.6 (Uniform finite-time stability, [60, Theorem 12]). Let a continuous
function V : R™ — R be proper on an open non-empty set Q CR™: 0 € int(Q) and

DF(t71)V(I’) < 7T‘Vp($), t>ty, x€§, (A].S)

where v € Ry and 0 < p < 1. Then the origin of the system (A.9) is uniformly
finite-time stable with an attraction domain U defined by

U =11V, A\(h)) N B(h) (A.19)
where A(h) = infyepn.|jo)|=n Y (¥) (since V() is proper there exist a continuous posi-

tive definite function V(x) such that V(z) < V(z)Vx € Q) and h < sup,cg, .5rycar
and the settling time function T(-) is estimated as follows:

V=P ()
T < — . A.20
(z0) < "= p) forzg €U (A.20)
A.3.4 Cascaded systems
Consider the cascaded system
> i = faltan) + ot ) (A.21a)

Zg {552 = fa(t, z2) (A.21b)

where 21 € R", 75 € R™, 2 := [z, 21]7. We assume that the functions fi(t,z1),
fa(t, z2) and ¢(t, z) are continuous in their arguments, locally Lipschitz in z, uni-
form in ¢, and fi(¢, 1) is continuously differentiable in both arguments. We also
assume that there exists a non-decreasing functions G(-) such that

lg(t, 2)| < G(|x]). (A.22)

Lemma A.7 (Cascaded systems, [53, Lemma 2.1]). The cascade (A.21) is uni-
formly globally asymptomatic stable if and only if the systems
.’bl = fl(t,xl) (A23)

and (A.21b) are uniformly globally asymptomatic stable and the solutions of (A.21)
are uniformly globally bounded.
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A. Stability Definitions and Theorems

A.3.5 Comparison lemma

Lemma A.8 (Comparison lemma, [40, Lemma 3.4]). Consider the scalar differ-
ential equation

W= fltu),  ulte) =g (A:24)

where f(t,u) is continuous in t and locally Lipschitz in u, for all t > 0 and all
w € J C R. Let [to,T) (T could be infinity) be the mazimal interval of existence
of the solution u(t), and suppose u(t) € J for all t € [tg,T). Let v(t) be a contin-
uous function whose upper right-hand derivative DVo(t) satisfies the differential
inequality

Dto(t) < f(t,v(t)), v(to) < ug (A.25)

with v(t) € J for all t € [to,T). Then, v(t) < u(t) for all t € [ty,T).
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