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Abstract

Vortex formation is one of the fundamental modes in fluid mechanics and
it can develop in almost every realization of fluid motion. Studying its
fundamental dynamics and interactions is of great interest for engineering
applications; the vortex shedding behind slender cylindrical structures with
various cross sections like pipelines, risers, bridges, buildings and wind tur-
bine blades, can cause fluctuating drag and lift forces, which lead to the
vortex-induced vibration (VIV), causing the material subjected to periodic
bending stresses, which eventually can lead to fracture; the vortex shedding
behind the offshore pipeline placed on/close to the seabed determines the
gentle slope of the downstream scour hole. In order to understand the com-
plex physics underpinning the vortex dynamics, some classical flow prob-
lems, i.e. oscillatory lid-driven cavity flows, cavity flows with an inserted
cylinder and wake behind an elliptic cylinder translating above a wall, which
are dominated by the vortex flow have been investigated numerically in the
present thesis.

Flow in a two-dimensional oscillatory lid-driven rectangular cavity with a
depth-to-width ratio 1:2 is investigated, covering a wide range of Reynolds
numbers (based on the velocity amplitude and the cavity depth) and Stokes
numbers (based on the lid oscillation angular frequency and the cavity
depth) where this flow is known to be in the two-dimensional regime. Effects
of these two parameters on vortex dynamics, vertical and horizontal center-
line velocities and the drag force on the lid are presented and discussed. Four
different flow patterns are classified based on the vortex dynamics. More-
over, the corner singularity effect on the flow patterns is also presented and
discussed.

Effects of an inserted circular cylinder on a steady lid-driven cavity flow
are investigated and discussed for different Reynolds numbers (based on the
lid motion velocity and the cavity depth), depth-to-width ratios, cylinder
radii and locations. An immersed boundary method is applied to treat the
circular cylinder surface. Numerical results concerning the vortex structures
and pressure distribution around the cylinder are presented and discussed.
For the depth-to-width ratio of 1:2, seven flow patterns have been classified
based on the vortex structures and their distributions are presented as a
function of the Reynolds numbers and the cylinder radii for a given cylinder
location.
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Wake behind an elliptic cylinder translating above a plane wall is inves-
tigated numerically for Reynolds numbers less than 150 and gap ratios from
0.1 to 5 (i.e., the ratio between the gap and semi-major axis length of the
elliptic cylinder). Numerical results concerning the steady and unsteady
wake structures (Kármán vortex street, the two-layered wake and the sec-
ondary vortex street), the hydrodynamic forces and the onset location of
the two-layered wake are presented and discussed. Four flow patterns are
classified based on the wake structure and their distributions are given in
the space of the Reynolds number and the gap ratio.

Numerical simulations of the oscillating boundary layer on a plane wall
have been conducted for Reδ = 500 and 1120 (based on the boundary layer
thickness and the amplitude of the oscillation velocity), and the present re-
sults for the wall shear stress and instantaneous vorticity contours are in a
good agreement with previous numerical and experimental results.
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Nomenclature

Abbreviation

2D Two-dimensional

3D Three-dimensional

APV Anti-clockwise primary vortex

BLCV Bottom left corner vortex

BRCV Bottom right corner vortex

BV Bottom vortex

CPV Clockwise primary vortex

LWV Left wall vortex

ULCV Upper left corner vortex

URCV Upper right corner vortex

Greek letters

β Coefficient for the Lagrange interpolation

∆t Dimensionless simulation time-step

∆x Dimensionless grid size in the streamwise direction

∆y Dimensionless grid size in the crossflow direction

∆z Dimensionless grid size in the spanwise direction

δ Wall boundary layer thickness

δ/D Wall boundary layer thickness to cylinder diameter ratio

v
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Γ Immersed boundary

λ Weighting factors for the interpolation in different direc-
tions.

ν Kinematic viscosity of fluid

Ω Lid oscillation frequency

ω Vorticity

ψ Stream function

ρ Fluid density

Roman letters

Re Reynolds number

St Stokes number or Strouhal number

G/D Gap-to-diameter ratio

(G/D)c Critical gap-to-diameter ratio

H Cavity depth

D Cylinder diameter or semi-major axis length of the elliptic
cylinder

S Surface area of the cylinder

FD Drag force

CD Instantaneous drag coefficient

CD Time-averaged drag coefficient

FL Lift force

CL Instantaneous lift coefficient

CL Time-averaged lift coefficient

Cp Instantaneous pressure coefficient

Cp Time-averaged pressure coefficient



Nomenclature vii

U Free-stream velocity

Ulid Steady lid motion velocity

Ua Velocity amplitude of the lid oscillation

f Vortex shedding frequency

p0 Static pressure in the freestream

l Distance between the inactive velocity point and the im-
mersed boundary

Subscripts

x Streamwise direction

y Crossflow direction

z Spanwise direction
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Chapter 1

Introduction

1.1 Background & motivation

Vortex formation is one of the fundamental modes in fluid mechanics and it
can develop in almost every realization of fluid motion (Lugt 1983). Study-
ing its fundamental dynamics and interactions is of great interest for engi-
neering applications; the vortex shedding behind slender cylindrical struc-
tures with various cross sections like pipelines, risers, bridges, buildings and
wind turbine blades, can cause fluctuating drag and lift forces, which lead to
the vortex-induced vibration (VIV), causing the material subjected to peri-
odic bending stresses, which eventually can lead to fracture (Blevins 1977,
Williamson & Govardhan 2004); the vortex shedding behind the offshore
pipeline placed on/close to the seabed determines the gentle slope of the
downstream scour hole (Li & Cheng 2001, Liang et al. 2005); the primary
horseshoe vortex formed in front of a pier plays a key role for scour over the
entire process of scouring (Muzzammil & Gangadhariah 2003, Zhao et al.
2010); the upward velocity associated with Görtler vortices can be a signif-
icant mechanism for the sediment transport over ripples (Zedler & Street
2001). Fundamental understanding the vortex formation is also of vital im-
portance in understanding the turbulence; in turbulent boundary layers, the
buffer layer is dominated by the quasi-streamwise vortices, which induce the
low-speed streak while the outer layer is occupied by hairpin-like vortices,
which contain a spanwise-extending head and one or two streamwise-inclined
legs Robinson (1991), Adrian (2007); the energy cascade in homogeneous
isotropic turbulence can be caused by the successive formation of smaller-
scale tubular vortices in the larger-scale straining regions existing between
pairs of larger-scale tubular vortices (Goto 2008), while the physical mech-
anism for the inverse energy cascade in two-dimensional turbulence is at-

1
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tributed to the stretching of small-scale vorticity, i.e. the so-called vortex
thinning (Xiao et al. 2009); a vortex interaction mechanism was proposed
by Yasuda et al. (2019), for generating the energy and enstrophy fluctua-
tions in high-symmetric turbulence; based on the vortex dynamics, various
models have been developed to predict or postdict high Reynolds number
turbulences (Pullin & Saffman 1998).

Identification of the vortex is the first step to study its fundamental
mechanisms in different types of flows. A widely acceptable definition of a
vortex was given by Robinson et al. (1989): a vortex exists when instan-
taneous streamlines mapped onto a plane normal to the vortex core exhibit
a roughly circular or spiral pattern, when viewed from a reference frame
moving with the center of the vortex core. This gives rise to a problem for
identifications of the vortex since the motion of the vortex core can not be
priorly obtained. Various detection algorithms have been implemented to
identify the vortices. The closed or spiral streamlines, as a Galilean variant,
was widely used to identify vortices in steady flows (Dennis & Chang 1970,
Cheng & Hung 2006) but with a poor ability to capture those in unsteady
flows. The vorticity magnitude was used in early studies (Metcalfe et al.
1987, Hussain & Hayakawa 1987). However, it can not identify the vor-
tex in a shear flow, especially when the vorticity magnitude in the shear
layer is comparable to that within the vortex. Thereafter, some Galilean-
invariant identifications of a vortex like the Q method (Hunt et al. 1988)
1988, ∆ method (Chong et al. 1990) and λ2 method (Jeong & Hussain
1995) have been proposed using invariants of the velocity gradient tensor.
These methods have been verified in various numerical and experimental
studies. Recently, Zhu et al. (2020) investigated the vortex structures in
a two-dimensional steady lid-driven cavity. The λ2 criterion identified the
primary vortex and the bottom corner vortices, which are also visualized
by closed streamlines. However, the flow at the upper-left corner was also
identified as a vortex by the λ2-criterion whereas the streamlines were not
closed, thus demonstrating the complexity of vortex identification.

1.2 Outline of the present study

In order to understand the complex physics underpinning the vortex dy-
namics, some classical flow problems, i.e. oscillatory lid-driven cavity flows,
cavity flows with an inserted cylinder and wake behind an elliptic cylinder
translating above a wall, which are dominated by the vortex flow have been
studied in the present thesis.

A brief description of each chapter is provided as follow:
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Chapter 2:
This chapter provides the theoretical background about the Stokes bound-
ary layer, steady and oscillatory lid-driven cavity flows, flow around a free
and a near-wall cylinder in steady current, and flow around the free elliptic
cylinder.

Chapter 3:
This chapter introduces the present numerical method. A non-iterative pro-
jection method is used to solve the incompressible Navier-Stokes equations;
the Adams-Bashforth and Crank-Nicolson schemes are used for the convec-
tive and viscous terms, respectively. The spatial derivatives are evaluated
by means of second-order, central finite-difference operators on a staggered
grid arrangement. The solid surface is treated by an immersed boundary
method. Moreover, some classical immersed boundary methods introduced
in the literature are described and discussed.

Chapter 4:
This chapter presents numerical investigations of flow in an oscillatory lid-
driven rectangular cavity with depth-to-width ratio 1:2. The Reynolds num-
ber and the Stokes number cover a wide range of values where the flow is
known to be two-dimensional. It is observed that the flow can be classified
into four different flow patterns based on the vortex dynamics. The distri-
bution of these flow patterns is given in the Stokes number and Reynolds
number space. For the flow pattern with lowest Reynolds number, there is
no transfer of vortices between two successive oscillation half-cycles while
for the three other patterns, vortices are transferred from one oscillation
half-cycle to the next.

Chapter 5:
This chapter presents comprehensive numerical investigations of flow in a
steady lid-driven cavity of depth to width ratio 1:2 containing a circular
cylinder. Three different Reynolds numbers of 100, 500 and 1000 as well
as four different cylinder radius to cavity depth ratios (0.1, 0.2, 0.3 and
0.4) located at three different positions along the horizontal centerline of
the cavity, are considered. It appears that these flows can be classified into
seven different flow patterns. These flow patterns are given for different
cylinder radii and positions as well as Reynolds numbers.

Chapter 6:
This chapter presents numerical investigations of the flow over an elliptic
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cylinder near a moving wall for Reynolds numbers less than 150. Here the
ratio between the gap (i.e., the distance between the cylinder and the wall)
and the length of the semi-major axis of the elliptic cylinder varies from 0.1
to 5. This ratio is hereafter denoted the gap ratio. The resulting Kármán
vortex street, the two-layered wake and the secondary vortex street have
been investigated and visualized.

Chapter 7:
This chapter presents numerical investigations of oscillatory boundary layer
flow over a plane wall for Reynolds numbers of 500 and 1120 (based on the
boundary layer thickness and the amplitude of the oscillation velocity). The
wall shear stress and the vorticity contours are plotted and compared with
previous numerical and experimental results.

Chapter 8:
This chapter presents a summary of the findings of the present numerical
study and recommendations for the future work.
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Chapter 2

Theoretical background

2.1 Stokes boundary layer

The Stokes boundary layer, also known as Stokes second problem or Rayleigh
problem (Schlichting & Gersten 2016), refers to determining the flow driven
by an infinitely long plate, which is oscillating horizontally with a velocity
U0cos(nt). Here t, U0 and n are the physical time, the velocity amplitude
and frequency of the plate oscillation, respectively. This plate is considered
to be located at y = 0 and oscillate in the x direction, such that the flow is
described by the incompressible Navier-Stokes equations given as follows:

∂u

∂t
= ν

∂2u

∂y2
(2.1)

where u is the velocity in the x direction, ν denotes the kinematic viscosity
and y is the vertical coordinate. The initial and no-slip conditions on the
plate as well as the boundary condition for u far away from the plate are
given by

u(0, 0) = 1 (2.2)

u(0, t) = U0cos(nt) (2.3)

u(∞, t) = 0 (2.4)

The velocity u can be written as the real part of the complex function

u(y, t) = U0R[eintf(y)] (2.5)

which substituted into Eq.(2.1) yields

f ′′ − in

ν
f = 0 (2.6)

7
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with boundary conditions f(0) = 1 and f(∞) = 0. The solution of Eq.(2.1)
is

f(y) = exp

[
−1 + i√

2

√
n

ν
y

]
(2.7)

Consequently, substituting Eq.(2.7) into Eq.(2.5) yields the velocity solution
for the oscillatory boundary layer as follows:

u(y, t) = U0e
−
√

n
2ν
ycos

(
nt−

√
n

2ν
y

)
(2.8)

Figure 2.1 shows the velocity distribution for different times. The velocity
u is highly damped away from the plate by the exponential factor

√
n/2ν ,

of which the reciprocal is defined as the Stokes boundary layer thickness.
This thickness decreases as n increases and increases as ν increases.

Figure 2.1: Velocity distribution close to an oscillating wall (from Schlicht-
ing & Gersten 2016).

2.2 Lid-driven cavity flow

2.2.1 Steady lid-driven cavity flow

Steady lid-driven cavity flow is one of the most studied fluid problems in
computational fluid dynamics. The simplicity of its geometry makes the
problem easy to code and apply boundary conditions. Despite its simple
geometry involved, Shankar & Deshpande (2000) reported the importance
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of this flow in the study of basic fluid mechanics since complex phenomena
such as counter-rotating vortices, instability and transition to turbulence
occur naturally in this flow. The vortices within the cavity provide insight
about such structures in applications like protrusions on the cylinder surface
(Demartino & Ricciardelli 2017), drag-reducing riblets and mixing cavities
(Zumbrunnen et al. 1996). Flow in the between armour blocks in marine
civil engineering applications is similar to that in cavities only to have a
constant exchange of water between the cavity and the main body of the
flow, in contrast to the lid-driven cavity flow studied in the present work
where no such exchange is allowed. Suction of sediment from between ar-
mour blocks is an important problem in river and marine civil engineering
(Sumer et al. 2001, Dixen et al. 2008, Nielsen et al. 2012).

Figure 2.2: Sketch of a two-dimensional steady lid-driven cavity.

A large amount of researches have been conducted on the two-dimensional
steady lid-driven square cavity flow, which is determined by the Reynolds
number given by

Re =
UlidH

ν
(2.9)

where ν is the kinematic viscosity whilst Ulid and H denote the lid motion
velocity and the cavity height.

Figure 2.2 shows a sketch of the two-dimensional lid-driven square cavity
consisting of the three rigid walls with no-slip conditions and a lid moving
with a tangential unit velocity (Ulid). Typical flow patterns within the
cavity are given in figure 2.3 taken from Erturk & Gökçöl (2006) and Shukla
et al. (2007); as the lid moves towards the right (top images of figure 2.3),
the cavity contains a primary vortex and two bottom corner vortices for
Reynolds number of 1000 while an additional left-wall vortex is formed for
Reynolds number of 5000; as the lid moves towards the left (bottom images
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of figure 2.3), the flow pattern varies for different instants a, b and c for
Reynolds number of 10000 due to Hopf bifurcation.

Kawaguti (1961) conducted the first numerical investigation of flow in
the steady lid-driven square cavity for Reynolds numbers up to 128, and
found that flow driven by the lid circulates within the cavity, forming a
large primary vortex. Later, Burggraf (1966) conducted a more extensive
theoretical and numerical study for Reynolds numbers up to 400, and found
that two secondary vortices, counter-rotating with the primary vortex, were
formed at the bottom left and right corners, respectively. Ghia et al. (1982)
investigated the cavity flow for Reynolds numbers up to 10000 using a cou-
pled strongly multigrid method with fine grid resolutions. Additional small
corner vortices, counter-rotating with their adjacent vortices, were observed
when the Reynolds number was larger than 1000. These corner vortices
are also called Moffatt eddies, proposed by Moffatt (1964), who used the
asymptotic approach to study a viscous fluid near a sharp corner between
two plates. Ghia et al. (1982) also found that a small left wall vortex was
formed near the right-moving wall for Reynolds numbers larger than 3200,
and it was counter-rotating with the primary vortex (qualitatively shown
in the top-right image of figure 2.3). Auteri et al. (2002) reported that
the steady lid-driven cavity flow exhibits a transition to unsteady periodic
flow for a critical Reynolds number between 8017.6 and 8018.8 due to Hopf
bifurcation, and more complex time-depend flow patterns were visualized
by Shukla et al. (2007) using streamline contours for the Reynolds num-
ber of 10000 (bottom images of figure 2.3). In addition to the Reynolds
number, the steady lid-driven cavity flow depends strongly on the height to
width ratio of the cavity. Cheng & Hung (2006) conducted a comprehensive
study on the vortex structures for aspect ratios ranging from 0.1 to 7 and
for Reynolds numbers up to 5000, and suggested that for aspect ratios less
than 1, the cavity contains a large primary vortex and more complex sec-
ondary vortices as the Reynolds number increases, while for aspect ratios
larger than 1 the flow is characterized by counter-rotating large vortices,
of which the number increases as the aspect ratio and the Reynolds num-
ber increase. Comprehensive reviews of lid-driven cavity flow are given by
Shankar & Deshpande (2000) and Kuhlmann & Romanò (2019).

Corner singularity, i.e. the infinity vorticity at the upper corners, is
one of the important issues present in the cavity since this singularity can
cause numerical challenges, making it more difficult to obtain an accurate
numerical solution in the close vicinity of the upper corners. For spectral
methods, the global nature of the trial function in conjunction with the
upper corner singularities leads to spurious oscillations (Botella & Peyret
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Figure 2.3: Top images (lid moves towards the right): streamline contours
for steady lid-driven cavity flow for the Reynolds number of 1000 and 5000;
bottom images (lid moves towards the left): streamline contours for steady
lid-driven cavity flow for the Reynolds number of 10000 at dimensionless
time scaled by H/Ulid equal to (a) 2003.5; (b) 2008.75; (c) 2014.0. The top
and bottom images are taken from Erturk & Gökçöl (2006) and Shukla et al.
(2007), respectively.

1998, Botella et al. 2001). This is overcome by combining the trial func-
tions with local analytic solutions based on asymptotic series expansions
in terms of the local Reynolds number, which is small due to the small
flow velocity near the upper corner. Figure 2.4 shows a comparison of the
stream function (ψ) and vorticity contour lines (ω) of the creeping flow in
a two-dimensional lid-driven square cavity using a pseudospectral method
without (a) and with (b) the subtraction of the corner singularity (Schultz
et al. 1989). Spurious eddies are evident in (a), but largely suppressed in
(b). For finite difference, finite volume and finite element methods, the cor-
ner singularities can also result in numerical inaccuracies. Bruneau & Saad
(2006) investigated a steady lid-driven square cavity flow using finite differ-
ence methods for Reynolds numbers of 1000 and 5000, showing that grid
convergence was obtained for the total kinetic energy E = 1

2

∮
S ||Uc||2dS
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(where S is the computation domain, and Uc is the velocity evaluated at
the cell center), whilst grid convergence could not be obtained for neither
the enstrophy Z = 1

2

∮
S ||ω||2dS nor the palinstrophy P = 1

2

∮
S ||∇ω||2dS

(where ω is the vorticity evaluated at the cell center). As pointed out by
Bruneau & Saad (2006), this is caused by the infinite velocity gradients in
the corners, causing the enstrophy and the palinstrophy to approach infinity
as the grid cell size approaches zero.

Figure 2.4: A comparison of the streamline function (ψ, left half) and vor-
ticity contour lines (ω, right half) of the creeping flow in a two-dimensional
lid-driven square cavity using a pseudospectral method without (a) and with
(b) the subtraction of the corner singularity. The figure is taken from Schultz
et al. (1989)

Figure 2.5: Sketch of a two-dimensional oscillatory lid-driven cavity.



2.2. Lid-driven cavity flow 13

2.2.2 Oscillatory lid-driven cavity flow

Although not gaining the attention as much as the steady lid-driven flow,
oscillatory lid-driven cavity flow (figure 2.5) has been investigated over the
years because of its relevance to industrial flows (Karniadakis et al. 2006).
This flow is determined by the Reynolds number based on the lid motion
velocity amplitude (Ua) and the cavity height, and the Stokes number based
the lid oscillation angular frequency and the cavity height to width ratio
given by

Reosc =
UaH

ν
(2.10)

Stosc =
ΩH2

ν
(2.11)

where Ω is the oscillation angular frequency of the lid.

Figure 2.6: Streamline contours of the oscillatory lid-driven square cavity
flow during the first half cycle for the Reynolds number of 400 and Stokes
number of 419 by Mendu & Das (2013).

Iwatsu et al. (1992), Soh & Goodrich (1988) and Mendu & Das (2013)
used numerical simulations to investigate the flow in an oscillatory lid-driven
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square cavity for different ratios of the Reynolds number to the Stokes
number. They found complex vortex dynamics including the merging of the
co-rotating vortices and the counteraction of the counter-rotating vortices,
resulting in the growth and decay of vortices within the cavity during the
oscillation cycle as shown in figure 2.6 taken from Mendu & Das (2013) for
the Reynolds number of 400 and the Stokes number of 419.

The generation mechanism of the corner vortices is attributed to the
flow separation, which is qualitatively similar to the steady lid-driven cav-
ity flow, but with time-dependent movement of the separation points. The
generation mechanisms of the primary vortex have been attributed to two
aspects; i) vorticity produced by the shear motion induced by the oscillat-
ing walls, and ii) roll-up of vortex sheets as the wall-induced flow changes
direction when the fluid meets the vertical walls, proposed by Ovando et al.
(2009), who investigated the flow in a rectangular cavity driven by a simul-
taneous oscillatory motion of the vertical walls, relevant to a piston moving
inside a circular cylinder in combustion engines.

Lopez & Hirsa (2001) reported the possible application of the oscillatory
lid-driven cavity flow as a viable viscometer, which spurred further investi-
gations for the stability of the oscillatory lid-driven rectangular cavity flow,
including the experimental work by Vogel et al. (2003) and Leung et al.
(2005) as well as the stability analysis by Blackburn & Lopez (2003). Their
work provided stability regions based on the Reynolds number and Stokes
number. Three different flow states were found: i) a basic two-dimensional
time-periodic flow, ii) a three-dimensional time-periodic flow with a cellular
structure in the spanwise direction, iii) a three-dimensional irregular flow.

2.3 Flow around a circular cylinder in steady cur-
rent

2.3.1 Boundary layer and separation

Flow around a circular cylinder has been studied extensively because of
its vital importance in understanding vortex shedding in engineering ap-
plications such as marine risers and pipelines. The Reynolds number is a
governing parameter for this flow and defined by (Sumer & Fredsøe 2006)

Re =
DU

ν
(2.12)

where D, U and ν denote the cylinder diameter, free-stream velocity and
the kinematic viscosity of the fluid, respectively.
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Figure 2.7: Definition of the boundary layer and wake region. This figure
is taken from Prsic (2016).

The presence of the fluid viscosity slows down the fluid particles close to
the cylinder surface, forming a thin slow-moving fluid layer called a bound-
ary layer. High vorticity is present inside the boundary layer. This layer
remains attached to the cylinder surface until the occurrence of flow separa-
tion, which is caused by the development of the adverse pressure gradient.
Consequently, the boundary layer detaches from the cylinder surface, form-
ing a free shear layer over the cylinder. An area bounded by the shear layers
from top and bottom of the cylinder is called the wake. The detached shear
layers roll up, forming the vortices, which may remain attached to the cylin-
der or shed downstream. The boundary layer and wake region are visualized
by vorticity contours for Re = 13100 as shown in figure 2.7.

Figure 2.8: Strouhal number (St) for a circular cylinder, presented as a
function of Re. This figure is taken from Sumer & Fredsøe (2006).
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Figure 2.9: Flow regimes in the cylinder wake (from Sumer & Fredsøe 2006)

Vortex shedding is the dominant flow feature for Re > 40. The vortices
are shed alternately from the top and bottom of the cylinder, forming a
recognizable vortex street, which is often called the Kármán - Bernard vor-
tex street. The vortex shedding frequency is commonly studied through a
dimensionless parameter, i.e. the Strouhal number defined by

St =
fD

U
(2.13)

where f is the vortex shedding frequency. Figure 2.8 shows the Strouhal
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number over different flow regimes which will be introduced in the next
section. In the laminar vortex street regime (of interest in the present
study), St increases to about 0.2 as Re increases.

2.3.2 Near-wake flow regimes

Although the dominant characteristics of the vortex shedding are present,
the flow undergoes tremendous changes as Re increases from zero. Different
flow regimes are identified by Sumer & Fredsøe (2006) and summarized in
figure 2.9.

For Re < 5 (figure 2.9a), no separation occurs, such that no recirculation
vortices are formed in the wake. For 5 < Re < 40, a pair of counter-rotating
vortices are formed symmetrically about the center-line of the wake (figure
2.9b), and the wake length increases with increasing Re. As Re increases
further, the flow becomes unstable, forming the phenomenon called vortex
shedding, in which vortices are shed alternately at either side of the cylinder
at a certain frequency (see figures 2.9c-h). For 40 < Re < 200, the vortex
street is laminar and uniform in the cylinder span (figure 2.9c).

Figure 2.10: Time-averaged drag coefficient CD for a circular cylinder, pre-
sented as a function of the Reynolds number (from Sumer & Fredsøe 2006).

The wake experiences a transition to turbulence as the Reynolds number
increases up to 300 (figure 2.9d), and the transition region moves towards
the cylinder as Re increases. When Re ≈ 400, the vortices, once formed,
are turbulent. The wake is completely turbulent while the boundary layer
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separation on the cylinder remains laminar for 300 < Re < 3×105. This
regime is known as the subcritical flow regime (figure 2.9e).

The boundary layer has a transition to turbulence with a further in-
crease of Re. This transition firstly occurs at the boundary layer separation
point on one side of the cylinder for 3×105 < Re < 3.5×105 (figure 2.9f).
This flow regime is called the critical flow regime, which is accompanied
with a discontinuous drop in the time-averaged drag force coefficient CD
(figure 2.10) and with a non-zero time-averaged lift force coefficient CL
(figure 2.11). Here CD = 2FD/(ρU

2D) where FD denotes the drag force,
CL = 2FL/(ρU

2D) where FL is the lift force and ρ is the fluid density. The
boundary layer separation becomes turbulent on both sides of the cylinder
for 3.5×105 < Re < 1.5×106 (figure 2.9g). However, transition to turbulence
in the boundary layer has not been completed yet; the region of the transi-
tion is located somewhere between the stagnation point and the separation
point. This flow is the so-called supercritical flow regime.

The boundary layer becomes fully turbulent on one side of the cylinder
and intermittently turbulent on the other side of the cylinder for 1.5×106 <
Re < 4.5×106 (figure 2.9h). This flow regime is called the upper-transition
flow regime. For Re > 4.5×106, the boundary layer becomes fully turbu-
lent over the cylinder surface (figure 2.9i). This flow regime is called the
transcritical flow regime. Varaitions of CD over different flow regimes are
presented in figure 2.10. Values of CD decrease as Re increases in the lam-
inar flow regimes, i.e. for Re < 200 (of interest in the present study).

Figure 2.11: Time-averaged lift coefficient CL for a circular cylinder, pre-
sented as a function of the Reynolds number (from Sumer & Fredsøe 2006).

2.3.3 Far-wake flow regimes

The Kármán vortex street in the near-wake region described in the last sec-
tion has a transition to a two-layered wake further downstream, followed
by a second transition to a secondary vortex street with larger spatial scale
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than the primary ones. These three wake structures are visualized by vor-
ticity contours in figure 2.12 for Re = 600, presented by Jiang & Cheng
(2019) using two-dimensional numerical simulations.

Durgin & Karlsson (1971) and Karasudani & Funakoshi (1994) con-
ducted experiments to investigate the physical mechanism underpinning the
formation of the two-layered wake. They measured the vertical distance (h)
between the upper and lower wake vortices and the horizontal distance (l)
between two successive co-rotating vortices along the wake, and found that
the ratio (h/l) between these vertical and horizontal distances increases
downstream. At a given downstream location, this ratio reaches a critical
value where two successive vortices shed from the upper part of the cylinder
impose convection of vorticity within the vortex shed from the lower part of
the cylinder. This vortex is located horizontally in between the two upper
vortices (and vice versa if the two successive vortices shed from the lower
part of the cylinder). As a result, this vortex starts to distort and rotate to
align with the stream-wise direction, forming the two-layered wake.

Figure 2.12: Wake behind an isolated circular cylinder for Re = 600. This
figure is taken from Jiang & Cheng (2019).

Two different theories were proposed for the physical mechanism result-
ing in the formation of the secondary vortex street. Experiments conducted
by Cimbala et al. (1988) showed a broad-band frequency spectra of the
cross-stream velocity fluctuation in the far wake. For Reynolds numbers
between 100 and 160, the broad-band spectra contains several prominent
frequencies considerably lower than the Kármán shedding frequency. These
low frequencies are related to the presence of the secondary vortex street
with vortical structures of different sizes. In the view of this, Cimbala et al.
(1988) attributed the physical mechanism for the secondary vortex street to
the hydrodynamic instability of the mean wake. Karasudani & Funakoshi
(1994) further identified the mechanism as the convective instability of the
time-averaged wake flow.

The second theory explains the formation of the secondary vortex street
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in terms of the merging of two-layered vortices. This theory was reported in
the experiments conducted by Matsui & Okude (1983) for Reynolds numbers
less than 160. Their conclusion was questioned by Cimbala et al. (1988).
They argued that the vortex merging observed by Matsui & Okude (1983)
may be the merging of the residual smoke patterns since the smoke diffuses
downstream at much lower rate than the vortex decays. Matsui & Okude
(1983) also conducted experiments for forced (uniform inlet velocity with
perturbations) cylinder wakes, and found that two or three vortices merge
regularly (depending on the forcing frequency), forming the secondary vor-
tex street. Qualitatively similar behaviors were found by Inoue & Yamazaki
(1999) using two-dimensional numerical simulations for forced wakes with
Reynolds numbers between 140 and 1000. The explanation of these behav-
iors, as demonstrated experimentally by Williamson & Prasad (1993) for
Reynolds numbers less than 170, is that the far wake flow is sensitive to
the free-stream perturbation, which leads to spectral peaks in the wake at
the perturbation frequency and at the difference between the Kármán shed-
ding and the perturbation frequencies. Recently, Jiang & Cheng (2019) in-
vestigated unforced (uniform inlet velocity without perturbations) cylinder
wakes using two-dimensional numerical simulations and found two formation
processes for the secondary vortex street; i) the merging of two co-rotating
vortices for Reynolds numbers ranging from 200 to 300; ii) the pairing of
two counter-rotating vortices, followed by the merging of the paired vortices
for Reynolds numbers ranging from 400 to 1000.

2.3.4 Effect of elliptic cross section on the wake

Wakes behind isolated elliptic cylinders have been the focus of some re-
searches due to some practical scenario like the wing and the rotor blade.
Figure 2.13 shows a sketch of flow around an elliptic cylinder in a steady
current. The aspect ratio (AR) of the elliptic cylinder is defined by a/D,
and the Reynolds number (Re) is based on the semi-major axis length D
of the cylinder and the free-stream velocity U . Here the flow direction is
normal to the semi-major axis of the cylinder.

Figure 2.14 shows the vorticity contours of flow behind an elliptic cylin-
der of different AR for Re = 150 (Thompson et al. 2014). A decrease of AR
appears to destabilize the flow, resulting in the formation and irregularity
of the secondary vortex street. Moreover, the transition locations for the
two-layered wake and secondary vortex street move closer to the cylinder
with decreasing AR. They also found that the transition to two-layered
wake occurs at a spacing ratio of Kármán vortices larger than the theo-
retical critical criterion (0.365) obtained by Durgin & Karlsson (1971) and
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Figure 2.13: Sketch of flow around an elliptic cylinder in a steady current.

Karasudani & Funakoshi (1994) using inviscid methods.

2.4 Effect of wall proximity

This topic is closely related to pipelines placed on an erodible sea bed. Scour
may occur below the pipe due to flow action, resulting in suspended spans
of the pipeline where the pipe is suspended above the bed with a small gap,
usually in the range from O(0.1D) to O(1D). Therefore, it is important to
understand the effect of wall proximity on the flow around the pipe.

The key parameters influencing this flow are the Reynolds number (Re),
the gap-to-diameter ratio (G/D) and the wall boundary layer thickness to
diameter ratio (δ/D) as sketched in figure 2.15. Here the wall boundary
layer thickness (δ) at the cylinder’s location in the absence of the cylinder
is commonly used.

The presence of the wall leads to asymmetry of the flow around the
cylinder as shown in figure 2.16. The front stagnation point on the near-
wall cylinder shifts towards the gap, and the separation point on the upper
part of the near-wall cylinder moves upstream while the separation point on
the lower half of the near-wall cylinder moves downstream (figure 2.16b).
This causes an asymmetry in the development of vortices shed from the
upper and lower parts of the cylinder. The upper vortex grows larger and
stronger than the lower vortex. The strength difference between these two
vortices reduces their interaction, weakening or completely suppressing the
regular, periodic vortex shedding.

Bearman & Zdravkovich (1978) investigated flow around a near-wall
cylinder using smoke tunnel measurements, showing that the regular, pe-
riodic vortex shedding is completely suppressed at G/D < 0.3 for 2.4×104

< Re < 4.8×104. Figure 2.17 shows flow patterns visualized by smoke
filaments for G/D = 1.2 and 0.2, indicating the wide regime (where the
vortex shedding exists) and the narrow regime (where the vortex shedding
is completely suppressed and the flow is dominated by a strong asymmetric,
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Figure 2.14: Wake behind an isolated elliptic cylinder for the Reynolds num-
ber of 150 and for different aspect ratios (AR). This figure is taken from
Thompson et al. (2014).

upwards deflected wake), respectively, for Re = 2.5×104. Many numerical
(Sarkar & Sarkar 2010, Ong et al. 2010, Prsic et al. 2016) and experimental
(Bearman & Zdravkovich 1978, Buresti & Lanciotti 1992, Lei et al. 1999,
He et al. 2017) investigations have been conducted in the subcritical regime,
i.e. for values of Re between O(103) and O(105), showing that the critical
gap-to-diameter ratio (G/D)c for the vortex shedding suppression is about
0.2 to 0.3. Moreover, this critical value was found to be affected by the
wall boundary layer thickness at the cylinder location in the absence of the
cylinder; some researches show that (G/D)c decreases as the wall bound-
ary thickness increases (Bearman & Zdravkovich 1978, Buresti & Lanciotti
1992, Lei et al. 1999) while the opposite tendency was reported in some
other works (Taniguchi & Miyakoshi 1990, Lei et al. 2000). The reason for
this discrepancy is not completely clear. Recently, He et al. (2017) used par-
ticle image velocimetry to investigate vortex dynamics at 0 ≤ G/D ≤ 3 for
Re = 1047. Five distinct regions corresponding to different ranges of G/D
were identified based on the formation of wake vortices and the secondary
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Figure 2.15: Sketch of the flow around a circular cylinder near a plane wall.

Figure 2.16: Flow around a free (a) and near-wall (b) circular cylinder
(from Sumer & Fredsøe 2006).

vortex on the wall as well as the interactions among these vortices.

Regarding the effect of wall proximity on the vortex shedding frequency
(St) for the range of G/D where the vortex shedding exists, measurements
of Angrilli et al. (1982) show that the vortex shedding frequency tends to
increase slightly as G/D decreases. Here G/D ranges from 0.5 to 6 and
values of Re are 2860, 3820 and 7460. Similar results was also reported in
the experiments conducted by He et al. (2017) for a lower Re of 1072. He
et al. (2017) suggested that the defection of the gap flow away from the wall
and its following interaction with the upper shear layer may be the cause of
the higher vortex shedding frequency. For Re > 104, the vortex shedding
frequency is almost independent of G/D (Bearman & Zdravkovich 1978,
Zdravkovich 1985a, Taniguchi & Miyakoshi 1990).

Forces on the cylinder is of direct relevance to the pressure distribution
around the cylinder. A dimensionless pressure coefficient (Cp) is commonly
used to study the pressure distribution around a cylinder. Here Cp = 2(p−
p0)/(ρU2) where p0 the static pressure in the freestream. Figure 2.18 shows
the time-averaged pressure distribution (Cp) around the cylinder for Re =
4.8×104 at G/D = 1 and 0.1 (Bearman & Zdravkovich 1978). For G/D =
1, the distribution of Cp is almost symmetric about the horizontal center-
line of the cylinder, similar as that for a free cylinder. As G/D decreases
to 0.1, the distribution of Cp becomes asymmetric (resulting in a non-zero
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Figure 2.17: Flow patterns of cylinder near a plate for the Reynolds number
of 2.5×104 at gap-to-diameter ratios of 1.2 (a) and 0.2 (b). This figure is
taken from Bearman & Zdravkovich (1978).

mean lift force discussed further in the next section) and the base pressure
becomes less negative than forG/D = 1, resulting in a smaller time-averaged
drag coefficient. Similar behaviors were observed by Jensen et al. (1990),
Zdravkovich (1985a) and Lei et al. (1999) as shown in figure 2.19(a). The
differences between various experiments may be attributed to the different
values of Re.

The effect of the boundary layer thickness on the mean drag force was
investigated experimentally and numerically by Lei et al. (1999) and Kazem-
inezhad et al. (2010), respectively. They reported that for a given Re and
a given G/D, the base pressure becomes less negative as δ/D increases,
forming a smaller CD. Zdravkovich (1985a) introduced a new parameter,
namely the gap-to-thickness ratio (G/δ). As shown in figure 2.19(b) for
different values of Re, CD start to decrease with decreasing G/δ once the
cylinder is immersed within the wall boundary layer (G/δ ≤ 1). The
asymmetry of the pressure distribution around the cylinder at small G/D
(figure 2.18b) leads to a non-zero mean lift force. Figure 2.20(a) shows ex-
perimental results of CL as a function of G/D for different values of Re
(Thomschke 1971, Jones 1971, Fredsøe et al. 1987). As G/D decreases, CL
increases due to an increase of suction pressure on the free-stream side of
the cylinder and the downward movement of the front stagnation point. At
small G/D, CL undergoes a substantial drop. Fredsøe & Hansen (1987)
reported that this drop is caused by a decrease of the stagnation pressure
(figure 2.20b) due to a small far-field flow velocity (Us) associated with the
stagnation streamline. However, as the cylinder moves extremely close to
the wall, more fluid will pass over the top of the cylinder, causing a larger
suction pressure on the top half of the cylinder.
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Figure 2.18: Time-averaged pressure coefficients (Cp) around a cylinder
near a wall for G/D=1 and 0.1 (from Sumer & Fredsøe 2006).

Figure 2.19: Time-averaged drag coefficient (CD) around a cylinder near a
wall as a function of (a) G/D and (b) G/δ (from Zdravkovich 1985a).

Buresti & Lanciotti (1992) and Lei et al. (1999) investigated the effect
of δ/D on the time-averaged lift coefficient CL in their experiments. They
reported that as G/D increases CL decreases more rapidly for a larger δ/D.
This behavior was explained by Lei et al. (1999); the presence of thick wall
boundary layers displaces the positive pressure area in front of the cylinder
away from the gap side, generating a downward force. This force contributes
to the reduction of the upward lift force.

2.5 Effect of moving wall proximity

Understanding the flow around a cylinder translating above a plane wall
is of fundamental importance due to its engineering applications such as a
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Figure 2.20: (a) time-averaged lift coefficient (CL) as a function of G/D;
(b) sketch of the stagnation pressure 1

2ρU
2
s (from Sumer & Fredsøe 2006).

submarine moving near a wall in still water. Figure 2.21 shows a sketch of
this flow; the cylinder is moving towards the left at a velocity U with a gap
G from a plane wall. This flow equals the flow around a fixed cylinder in
still water near a wall moving rightwards with a velocity U .

Figure 2.21: Sketch of a circular cylinder translating above a wall.

Taneda (1959) towed a circular cylinder near a plane wall for a Reynolds
number of 170 and found that the vortices are alternately shed from the
cylinder for the gap-to-diameter ratio of 0.6. As the gap-to-diameter ratio
decreases to 0.1, only one single row of vortices was shed from the top of the
cylinder. Qualitatively similar behaviors were observed in the experimental
work by Zdravkovich (1985b) for the Reynolds number of 3350. Nishino et al.
(2007) conducted experiments for two upper-subcritical Reynolds numbers
of 0.4×105 and 1.0×105, classifying three flow regimes: i) the large gap
regime (gap ratios larger than 0.5), where the Kármán vortex shedding
exists; ii) the intermediate-gap regime (gap-to-diameter ratios larger than
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0.35), where the Kármán vortex street becomes intermittent, leading to a
rapid decrease of the mean drag coefficient; iii) the small-gap regime (gap-
to-diameter ratios smaller than 0.35), where the vortex shedding totally
ceases, forming two nearly parallel shear layers containing small vortices.
Of particular interest, the mean drag coefficient in the small-gap regime
is almost constant, suggesting that if the wall boundary layer thickness is
sufficiently small the drag reduction is directly related to the vortex shedding
suppression.

Huang & Sung (2007) conducted two-dimensional numerical simulations
and found that for a Reynolds number of 300 the flow exhibits: i) a Kármán
vortex shedding at a gap-to-diameter ratio of 0.6; ii) a pair-wise vortex
shedding where the lift and drag forces fluctuate with a same frequency at
a gap-to-diameter ratio of 0.2; iii) a single row of vortex shedding from
the upper part of the cylinder at a gap-to-diameter ratio of 0.1. They also
found that for a given Reynolds number the time-averaged drag coefficient
increases to a maximum value as the gap-to-diameter ratio decreases to a
critical value (where alternating vortex shedding does not exist) and then
decreases as the gap-to-diameter ratio decreases further, coincide with the
variation of the base pressure. Jiang et al. (2017) investigated the two- and
three-dimensional instabilities for Reynolds numbers up to 300 for gap-to-
diameter ratios between 0.1 to 19.5 using numerical simulations, showing
that the critical Reynolds number for the onset of the vortex shedding in-
creases with decreasing gap-to-diameter ratios.
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Chapter 3

Numerical method

3.1 Governing equation

Incompressible flow with a constant density ρ and kinematic viscosity ν is
governed by the Navier-Stokes equations described as follows

∂ui
∂xi

= 0 (3.1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.2)

where the Einstein notation using repeated indices is applied. Here ui =
(u, v, w) and xi = (x, y, z) for i = 1, 2 and 3 indicate the velocity and
Cartesian coordinates, respectively, whilst t and p denote the time and
pressure, respectively.

3.2 Non-iterative projection method

A non-iterative projection method, proposed by Armfield & Street (2002), is
applied to solve Eqs.(3.1) and (3.2). This method is identical to the iterative
method but with only a single iteration carried out at each time step. The
Adams–Bashforth and Crank-Nicolson schemes are used for the convective
and viscous terms, respectively. The spatial derivatives are evaluated by
means of second-order, central finite-difference operators on a staggered
grid arrangement. The intermediate velocity u∗i is obtained as

u∗i = uni + ∆t[
1

2
(3Hn

i −Hn−1
i ) +

1

2
(Fni + F ∗i )− 1

ρ

δ

δxi
(pn−1/2)] (3.3)
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where δ/δxi represents the numerical spatial gradient operator; the con-
vective and diffusive terms are denoted by Hi = δ(uiuj)/δxj and Fi =
νδ2(ui)/(δxjδxj), respectively; the superscript n denotes the time step, and
pn−1/2 indicates the pressure obtained at the previous time-step. This in-
termediate velocity will not initially satisfy the continuity, i.e. Eq.(3.1). A
correction of the velocity is then given by

un+1
i = u∗i −∆t

δ

δxj
(φn+1) (3.4)

where φn+1 = pn+1/2−pn−1/2 is determined such that the resulting velocity
field un+1

i satisfies the continuity condition. Substitution of Eq.(3.4) into the
continuity equation δui/δxi = 0 yields a Poisson equation for the pressure
correction

δ2

δx2
j

(φn+1) = − 1

∆t

δu∗i
δxi

(3.5)

As the pressure correction pn+1/2 = pn−1/2 + φn+1 is only solved once each
time-step, it is necessary to obtain an accurate solution φn+1 of the Poisson
equation. Hence a Jacobi preconditioned biconjugate gradient stabilized
method is used to solve Eq.(3.5).

3.3 Immersed boundary method

The immersed boundary method (IBM) has been studied and applied ex-
tensively due to its great advantage in mesh generation, memory and CPU
saving and parallelization. This method was firstly introduced by Peskin
(1972) and has been considerably extended since then Iaccarino & Verzicco
(2003) and Mittal & Iaccarino (2005). The underlying physics of IBM is to
add an additional body-force term fi to the Eq.(3.2), thus yielding

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ fi (3.6)

The IBM can be categorized as continuous forcing approach or discrete
forcing approach. In the continuous forcing approach, Eq.(3.6) is discretized
on a Cartesian grid and solved in the entire domain. This method is used
successfully for problems with elastic bodies such as cardiac mechanics (Pe-
skin 1982), bubble dynamics (Unverdi & Tryggvason 1992), aquatic animal
locomotion (Fauci & McDonald 1995) and flow past flexible filaments (Zhu
& Peskin 2003). However, this method is not suitable for problems with rigid
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Figure 3.1: Treatment of the immersed boundary by Fadlun et al. (2000)
(left) and Peller et al. (2006) (right).

Figure 3.2: Treatment of the immersed boundary by Kim et al. (2001) (left)
and Balaras (2004) (right).

bodies due to the rigid limit and numerical stability constraint (Stockie &
Wetton 1999, Lai & Peskin 2000).

In the discrete forcing approach, Eq.(3.6) is firstly discretized on a Car-
tisian grid disregarding the immersed boundary, i.e. fi = 0. Then, the
boundary condition is imposed implicitly or explicitly on the immersed
boundary. Mohd-Yusof (1997) firstly proposed this method by reversing
the tangential velocities across the immersed boundary and preserving the
normal velocities. Fadlun et al. (2000) further developed this method in
conjunction with a finite difference method. As shown in the left image of
figure 3.1, the forcing term is imposed on the velocity point (Vi,j) closest to
the immersed boundary. The value of this velocity point is linearly interpo-
lated using its adjacent grid velocity (Vi+1,j) and the boundary value (Vb).
However, an ambiguity of the interpolation direction can arise when the en-
forced velocity point can be interpolated in two directions (marked by the
red dashed line in the left image of figure 3.1). To eliminate this ambiguity,
several different methods have been introduced. Peller et al. (2006) (right
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Figure 3.3: Treatment of the immersed boundary by Zhang & Zheng (2007).

image of figure 3.1) obtained the value at the ambiguous point from a sum
of values interpolated in each direction where a weighted factor is multi-
plied based on the horizontal and vertical distances between the ambiguous
point and the immersed boundary. Kim et al. (2001) (left image of figure
3.2) calculated the value at the ambiguous point by a bilinear extrapolation
using the intersection point (Vb) between the immersed boundary and the
wall-normal line through the ambiguous point and three surrounding veloc-
ities (Vi+1,j , Vi+2,j and Vi+2,j−1). They also introduced a mass source/sink
for the grid containing the immersed boundary to satisfy the mass conserva-
tion. Balaras (2004) (right image of figure 3.2) introduced a virtual point Vv
on the line normal to the boundary. The enforced point (Vi+1,j) can be ob-
tained from a linear interpolation using Vb and Vv which can be interpolated
using its surrounding points in the fluid. Later on, Gilmanov & Sotiropou-
los (2005) introduced a quadratic interpolation method which improves the
accuracy in problems with moving boundaries. Zhang & Zheng (2007) pro-
posed a method, in which (figure 3.3) V1 on the immersed boundary is
firstly calculated by a bilinear interpolation method using its surrounding
four points (Vi,j , Vi+1,j , Vi+2,j and Vi+2,j−1). Then, the difference between
the desired boundary value and the calculated boundary value, i.e. Vb-V1,
is extrapolated to the internal layer grid point Vi,j using the same bilinear
weighting functions. Moreover, more boundary points like V2 surrounded
by the same grid points can be interpolated and extrapolated in the similar
way, and then Vi,j can by obtained by averaging the values extrapolated
from different boundary differences, e.g. Vb-V1 and Vb-V2. In this way, the
immersed boundary resolution can be improved by increasing the number
of boundary points instead of increasing the grid resolution (Fadlun et al.
2000, Kim et al. 2001, Gilmanov et al. 2003).

The concept of ghost cells introduces an alternative way of imposing
the boundary conditions. The variables (velocity and pressure) located
within the immersed boundary are identified as ghost points, which are
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Figure 3.4: Definition of the ghost cell.

extrapolated using values from the flow field and the boundary. On a non-
staggered grid arrangement, the ghost values for velocities and pressure are
obtained on the same grid while on a staggered grid arrangement, each
velocity component and pressure need to be calculated at different grids.
Here the boundary conditions are implicitly incorporated through the ghost
cells while the numerical operators do not need to be reformulated near the
boundary. Majumdar et al. (2001) and Tseng & Ferziger (2003) use two-
dimensional linear and quadratic interpolation involving boundary points
and fluid points near the boundary to construct the local polynomial as
shown in figure 3.4. A ghost cell method using a two-dimensional linear
interpolation is described briefly here. The linear interpolation in a two-
dimensional space is given by

φ = a0 + a1x+ a2y (3.7)

where φ denotes the variable value and (x, y) is the coordinate of the vari-
able. The value at the ghost point (φG) is a weighted combination of φ0,
φ1 and φ2 where φ0 denotes the boundary value on the wall normal line
through the ghost point, φ1 and φ2 are the two nearest fluid points. These
three coefficients can be obtained by

an = B−1φn n = 0, 1 and 2 (3.8)

B =

 1 x0 y0

1 x1 y1

1 x2 y2

 (3.9)

where (x0, y0), (x1, y1) and (x2, y2) denote the coordinates of the corre-
sponding three points. In this approach, φG is obtained by an extrapolation
which may have large and negative weighting coefficients, resulting in se-
vere numerical instability. To eliminate this drawback, an image point I is
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Figure 3.5: Example of inconsistent wall condition for pressure. Left image:
no wall condition; right image: Neumann condition for pressure correction
imposed at enforcing points.

identified in the fluid, along the wall normal line through G. It lies at the
same distance as G away from the boundary point (figure 3.4). The value at
the image point (φI) can be interpolated using its nearby fluid values (e.g.
φ2 and φ3) and the boundary value (φ0), such that the weighting coefficient
are guaranteed to be positive and less than unity. Then the values at the
ghost point can be given by

φG = 2φ0 − φI (3.10)

φG = φI (3.11)

where Eqs.(3.10) and (3.11) denote the enforcement of the Dirichlet velocity
condition and Nuemann pressure condition on the wall, respectively.

It should be noted that in the above immersed boundary method, the
wall condition for pressure and velocity is inconsistent. Left image of figure
3.5 shows the method of, e.g. Mohd-Yusof (1997), Fadlun et al. (2000) and
Balaras (2004), in which no wall condition for the pressure is imposed. The
intermediate enforcing velocity (U∗i ) is interpolated using the grid velocity
(u∗i ) and the wall velocity. After the pressure correction, the updated ve-
locity Un+1

i and un+1
i do not meet the wall condition. Figure 3.5 shows

the method of, e.g. Tseng & Ferziger (2003) and Peller et al. (2006), in
which the Neumann condition for the pressure correction is imposed at the
enforcing point (U∗i ), which remains the same at the new time step (Un+1

i ).
However, the grid velocity (un+1

i ) is updated, resulting in the inconsistency
with the wall condition. To eliminate this inconsistency, Ikeno & Kajishima
(2007) and Berthelsen & Faltinsen (2008) introduced an enforcing pressure
gradient, which is interpolated by the Neumann pressure condition at the
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Figure 3.6: Conventional ghost-cell method: sketch for a two-dimensional
case.

immersed boundary and pressure gradients at adjacent grid points. For in-
stance, using an quadratic Lagrange polynominal (Berthelsen & Faltinsen
2008) in x-direction gives(

∂p

∂x

)
g

=
2

a(a+ 1)

(
∂p

∂x

)
Γ

+
2(a− 1)

a

(
∂p

∂x

)
i−1

− a− 1

a+ 1

(
∂p

∂x

)
i−2

(3.12)

where the suffixes g, Γ, i − 1 and i − 2 denote the values obtained at the
forcing point, immersed boundary, the first and second nearest grid points,
respectively, while a is the horizontal distance between the enforcing point
and the immersed boundary.

In a recent work, Chi et al. (2019) reported the main bottlenecks of the
conventional ghost-cell method; i) the convergence rate of the truncation
error is fluctuating and not persistent since the error term based on the
distance between the ghost cell and the boundary does not necessarily con-
verge as the grid size; ii) for multi-directional simulations, as explained in
figure 3.6, the intersection point P1 between the boundary and the wall-
normal line through the ghost point is implicitly enforced by extrapolating
the values at the ghost point, while the boundary intersection points P2 and
P3 relevant to the numerical discretization stencil are not; iii) when con-
sidering high-order spatial discretization schemes, multiple layers of ghost
points are required, resulting in more complex problems relevant to the first
bottleneck and also leads to a complex implementation such as the paral-
lelization and accurate predictions of the boundary layer at sharp corners.
To eliminate second drawback, they employed two different sets of indepen-
dent ghost values at the same ghost cell, accounting for the presence of the
two boundary points P2 and P3. To eliminate the third drawback, the order
of the discretization scheme is reduced progressively as the interpolation
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points move closer to the immersed boundary, such that only one layer of
ghost points is required to reconstruct the boundary forces.

The above discrete immersed boundary methods can also be classified
as sharp-interface direct-forcing methods, in which the forcing term (fi) is
directly imposed on the Eulerian grid which is not coincide with the body
surface. These methods are particularly attractive for simulating the flow
around complex rigid geometries due to its simplicity of implementation
into existing finite-difference or finite-volume methods. However, in these
methods, the boundary motion/deformation can lead to spurious oscillations
of hydrodynamic forces (Lee & You 2013), which are also potential sources
of the numerical instability. In order to suppress the force oscillations, a
family of discrete immersed boundary methods are introduced and classified
as smooth-interface direct forcing formulations, in which the forcing terms
are calculated on a set of Lagrangian points representing the body surface
in conjunction with spreading operations of these forces towards the nearby
Eulerian grids.

Silva et al. (2003) proposed a smooth-interface direct forcing formula-
tion, named “Physical Virtual Model”. The Lagrangian forces are calcu-
lated using second-order Lagrange polynomials. Then, the computed forces
are distributed to Eulerian grids using a Dirac delta function. A drawback
of this method is that the polynomials approximations are not necessarily
consistent with the discretization of the momentum equations from which
the forces are derived. Uhlmann (2005) introduced an improved method, in
which the Peskin’s regularized delta function approach (Peskin 2002) is used
for the force transfer between Lagrangian and Eulerian locations. The basic
computational algorithm steps for this force transfer are briefly described
here. Firstly, the intermediate velocity on the Lagrangian points can be
obtained from surrounding Eurlerian grids as follows:

u∗k =
∑
x∈Γ

u∗E · δh(xk − xE) · h2 (3.13)

where xk and xE denote the locations of the Lagrangian points and Eulerian
points, respectively, and δh(xk−xE) and u∗E represent the delta function as
well as the intermediate velocity on the Eulerian grids, respectively. Then,
the Lagrangian forces can be obtained by

Fk(xk) =
uL − u∗k

∆t
(3.14)

where uL is the desired velocity at the Lagrangian points. The effect of the
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Lagrangian forces then spreads into the Eulerian grids by

f(xE) =
N∑
k=1

Fk(xk) · δh(xE − xk) ·∆Vk (3.15)

where N is the number of Lagrangian points, and ∆Vk denotes the discrete
volume for each Lagrangian point.

However, this method can violate the no-slip condition in simulations
where the Reynolds number is low and the CFL number is large (Kempe
& Fröhlich 2012, Park et al. 2016). A concept of multi-direct forcing (Yu
& Shao 2007, Wang et al. 2008, Kempe & Fröhlich 2012, Breugem 2012)
is introduced to improve the enforcement of the no-slip condition. In their
methods, the Lagrangian forces within the predictor step are corrected iter-
atively before solving the equation for pressure correction. In recent years,
the smooth-interface direct forcing formulations gain much attention and
have been further improved; e.g. Luo et al. (2019) proposed an improved
multi-direct forcing method to dynamically correct effective hydrodynamic
diameters of the particles, which affects the prediction accuracy for both
drag and flow field, in the particle-laden flow; Azis et al. (2019) imple-
mented the smooth-interface direct forcing method on non-conforming, un-
structured grids.

Cut-cell methods (Ye et al. 1999, Muralidharan & Menon 2016) have also
drawn a lot of attention because the conservation of mass and momentum
is strictly enforced by the body-fitted cut-cells, avoiding the spurious force
fluctuations observed in the ghost cell methods (Lee et al. 2011). How-
ever, there are two main problems arising in the cut-cell method; i) the
presence of very small cut-cells, leading to an extremely small simulation
time-step and stiffness of the resulting system of linear equations; ii) the
presence of irregularities in the stencil spacing of the grid point adjacent to
the boundaries, causing the numerical oscillations. Several methods have
been introduced for solving the first issue such as (a) the cell-merging ap-
proach (Ye et al. 1999, Chung 2006), in which the small cell is merged with
its adjacent cell to create a larger cell, (b) the cell linking approach (Kirk-
patrick et al. 2003), where two cells are linked as a “master/slave” pair in
which the pressure gradient and velocity correction calculated at the master
node are used for the slave node, (c) cell mixing/redistribution (Meyer et al.
2010, Seo & Mittal 2011), where the numerical fluxes from the small cells
are mixed with the surrounding cells in a conservative manner.
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Figure 3.7: Definition of the inactive velocity points (�), immersed bound-
ary points (©), and active velocity points (�).

3.4 Present immersed boundary method

In the present work, an immersed boundary method based on the ideas of
Peller et al. (2006) is used to treat the solid surface. Figure 3.7 shows the
treatment of the relationship between the Cartesian grid and the immersed
boundary. A grid cell is blocked out of the simulation if its corresponding
variable (velocity or pressure) lies within the immersed boundary. Then,
the velocity point at the cell face between a blocked cell and an unblocked
cell is set as an inactive velocity (�), which are updated by interpolation
using boundary condition at the immersed boundary points (©) and ac-
tive velocity points (�) within the fluids. Here, a one-dimensional, cubic
Lagrange interpolation scheme is applied according to the following stencil
formulation.

f(x) =
3∑

k=1

βk(x)fk + β(xΓ)fΓ (3.16)

where f(x), fk and fΓ represent the velocity values at the inactive points,
the active velocity points and the immersed boundary, respectively, and the
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Lagrange coefficients βk(x) and β(xΓ) can be obtained by

βk(x) =

(
3∏

j=1,j 6=k

(x− xj)
(xk − xj)

)
x− xΓ

xk − xΓ
(3.17)

β(xΓ) =

(
3∏
j=1

(x− xj)
(xΓ − xj)

)
(3.18)

If an inactive velocity point can be interpolated from two directions,
each direction is multiplied by a weighting factor as follows

f(x) = λxf
x + λyf

y (3.19)

where the superscript x and y denotes the interpolation in x and y-directions,
respectively, and the weighting factors λx and λy are given as

λx =
1

1 + ( lxly )2
and λy =

1

1 + (
ly
lx

)2
(3.20)

where lx and ly is the distance between the inactive velocity point and the
immersed boundary in x and y-directions, respectively, as shown in figure
3.7. Moreover, a Neumann condition for pressure correction is applied at
the inactive velocity points.
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Chapter 4

Vortex dynamics and flow
patterns in a
two-dimensional oscillatory
lid-driven rectangular cavity

Jianxun Zhu1, Lars Erik Holmedal1, Hong Wang1, Dag Myrhaug1

Abstract

The vortex dynamics in a two-dimensional oscillatory lid-driven cavity with
depth-to-width ratio 1:2 has been investigated, covering a wide range of
Reynolds numbers and Stokes numbers where this flow is known to be two-
dimensional regime. Numerical simulations show that the present flow can
be divided into four flow patterns based on the vortex dynamics. The re-
gions of these flow patterns are given in the Stokes number and Reynolds
number space. For the flow pattern with lowest Reynolds number, there is
no transfer of vortices between two successive oscillation half-cycles while
for the three other patterns, vortices are carried over from one oscillation
half-cycle to the next. For a given Stokes number, the flow pattern appears
sequentially as the Reynolds number increases, showing that the transition
between the different flow patterns depends strongly on the Reynolds num-
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ber. However, if the frequency of oscillation is increased (i.e., the Stokes
number is increased) for a given Reynolds number, the extreme of the stream
function have less time to grow and the center of the primary vortex has
less time to move away from the lid. To compensate these effects, the am-
plitude has to be increased with increasing frequency to maintain the same
flow pattern.

4.1 Introduction

Flow in an oscillatory lid-driven cavity has been studied over the years
because of its relevance to industrial flows. Despite the simple geometry
involved, this flow contains several complex hydrodynamic flow structures
and phenomena, such as vortex merging(Leweke et al. 2016, Josserand &
Rossi 2007), flow separation(Sychev 1972, Cheng & Hung 2006), corner sin-
gularities(Shankar & Deshpande 2000, Moffatt 2009), boundary layers(Pan
& Acrivos 1967, Trowbridge & Lentz 2018) and chaotic mixing(Leong & Ot-
tino 1989, Ottino 1990). Comprehensive reviews of lid-driven cavity flows
are given by Shankar & Deshpande (2000) and by Kuhlmann & Romanò
(2019). Oscillatory lid-driven cavity flows are characterized by a Stokes
layer beneath the horizontally oscillating lid which rolls up at the verti-
cal side walls, forming one clockwise and one anti-clockwise primary vortex
which alternate in growing and decaying during the oscillation cycle. Flow
separation leads to the formation and evolution of corner vortices which
in turn interacts with the primary vortices, thus exhibiting a complicated
vortex dynamics, as shown by Soh & Goodrich (1988), Iwatsu et al. (1992)
and Mendu & Das (2013) for square cavities.

Ovando et al. (2009) used numerical simulations to investigate the flow
in a rectangular cavity driven by a simultaneous oscillatory motion of the
vertical walls, relevant to a piston moving inside a circular cylinder in com-
bustion engines. They found two major generation mechanisms for the
primary vortex: i) vorticity produced by the shear motion induced by the
oscillating walls, and ii) roll-up of vortex sheets as the wall-induced flow
changes direction when the fluid meets the vertical walls, as previously ob-
served in experiments by Tabaczynski et al. (1970) and Allen & Chong
(2000)

The possible application of an oscillatory lid-driven cavity flow as a
viable viscometer (Lopez & Hirsa 2001) spurred further investigations of
the stability of the two-dimensional base flow, including the experimental
work by Vogel et al. (2003) and Leung et al. (2005) and the stability analysis
by Blackburn & Lopez (2003). These works resulted in stability regions as
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a function of the Reynolds number Re (based on the height of the cavity
and the oscillation velocity amplitude of the lid) and the Stokes number
St (based on the height of the cavity and the oscillation frequency of the
lid). Three different flow states were found: i) a basic two-dimensional
time-periodic flow, ii) a three-dimensional time-periodic flow with a cellular
structure in the spanwise direction, iii) a three-dimensional irregular flow.

The vortex dynamics for two-dimensional oscillatory lid-driven cavity
flows is more complex than for steady lid-driven cavity flows (Ghia et al.
1982, Cheng & Hung 2006) as it includes the evolution of intermediate
primary and secondary vortices through the oscillation cycle, where the
location and duration of these intermediate vortices depend strongly on the
Reynolds number and the Stokes number. The aim of the present paper
is to provide a further detailed investigation of the vortex dynamics for
an oscillatory lid-driven cavity with depth-to-width ratio 1:2, covering the
wide range of the Reynolds number and the Stokes number where this flow is
known to be in the two-dimensional regime (Vogel et al. 2003). Numerical
simulations show that this flow regime can be further divided into four
different flow patterns based on the vortex dynamics, which is visualized by
instantaneous streamline contours through the first half-cycle of oscillation.
These flow patterns are mapped out in the Stokes number and Reynolds
number space, and a detailed analysis of the vortex dynamics underpinning
the flow pattern classification is presented, including the interaction between
the primary vortices and the corner and wall vortices, which has not been
previously investigated in such detail.

4.2 Governing equations

Incompressible flow with a constant density ρ and kinematic viscosity ν
is governed by the two-dimensional Navier-Stokes equations described as
follows

∂ui
∂xi

= 0 (4.1)

St

Re

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

(4.2)

where the Einstein notation using repeated indices is applied. Here ui =
(u,v) and xi = (x, y) for i = 1 and 2, are the velocity and Cartesian
coordinates, respectively, whilst t, p, Re = U0H/ν and St = ωH2/ν denote
the time, pressure, Reynolds number and Stokes number, respectively, where
H, U0 and ω are the depth of the cavity, the velocity amplitude of the lid
motion and the oscillation frequency of the lid, respectively. The velocity,
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time, pressure and length are scaled with U0, T , ρU2
0 and H, respectively,

where T is the period of the lid oscillation. Figure 4.1 shows a sketch of the
oscillatory lid-driven cavity. The velocity of the lid is given by u = cos(2πt)
while no-slip conditions are imposed on the side and bottom walls.

Figure 4.1: Sketch for the oscillatory lid-driven rectangular cavity flow.

4.3 Numerical Method

Eqs.(4.1) and (4.2) have been solved by using a projection method with a
semi-implicit time integration using a second-order Adams-Bashforth scheme
for the convective terms and a Crank-Nicolson scheme for the diffusive
terms. Second-order central differences with a staggered grid arrangement
are applied in the spatial discretization. The intermediate velocity u∗i is
obtained as

u∗i = uni + ∆t[
1

2
(3Hn

i −Hn−1
i ) +

1

2
(Fni + F ∗i )− 1

Re

δ

δxi
(pn−1/2)] (4.3)

where δ/δxi represents the numerical spatial gradient operator; the con-
vective and diffusive terms are denoted by Hi = δ(uiuj)/δxj and Fi =
νδ2(ui)/(δxjδxj), respectively; the superscript n denotes the time step, and
pn−1/2 indicates the pressure obtained at the previous time-step. The ve-
locity correction is

un+1
i = u∗i −∆t

δ

δxj
(φn+1) (4.4)

where φn+1 = pn+1/2−pn−1/2 is determined such that the resulting velocity
field un+1

i satisfies the continuity condition. Substitution of Eq.(4.4) into the
continuity equation δui/δxi = 0 yields a Poisson equation for the pressure
correction

δ2

δx2
j

(φn+1) = − 1

∆t

δu∗i
δxi

(4.5)
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where Neumann conditions are applied for the pressure corrections on all
the walls and on the lid.

Figure 4.2: Comparisons of u(0.5, y) and v(x, 0.5) between predictions and
reference data for the steady lid-driven cavity flow with Re′ = 100, 400
from Ghia et al. (1982) and Re′ = 1000 from Ghia et al. (1982), Romano
& Kuhlmann (2017), Botella & Peyret (1998) and Bruneau & Saad (2006).

The oscillatory lid-driven cavity flow starts from rest, and after a spin-
up time of typically 6−16 cycles (depending on Re and St), the flow reaches
a fully-developed periodic state, i.e. where the velocity and pressure fields
at t and t+T are equal within a specified numerical accuracy. The criterion
for the flow being fully-developed is given by

max|ui(x, y, t+ T )− ui(x, y, t)
ui(x, y, t+ T )

| ≤ ε, i = 1, 2 (4.6)

where ε = 1× 10−6.

Based on grid convergence tests, a spatial resolution of 100×100 and
100×200 uniform grid points is sufficient to obtain grid independent results,
for the depth-to-width ratios 1:1 and 1:2, respectively.

4.4 Validation against previous numerical and ex-
perimental results

4.4.1 Steady lid-driven cavity flow

Figure 4.2 shows the center-line velocities u(0.5, y) and v(x, 0.5) for a steady
lid-driven flow in a square cavity for Re′ = UH/ν = 100, 400 and 1000,
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where U is the constant lid velocity. The velocity gradients near the wall
increase as Re′ increases, and the thickness of the boundary layers at the
wall decreases as Re′ increases. A good agreement is obtained with the
results by Ghia et al. (1982) for Re′ = 100, 400 and 1000 and by Romano
& Kuhlmann (2017), Botella & Peyret (1998) and Bruneau & Saad (2006)
for Re′ = 1000.

Figure 4.3: Streamline contours for Re′ = 500 and 1000. Present results
(left) and the results by Cheng & Hung (2006) (right) which were digitalized.

Figure 4.3 shows the streamlines for a steady lid-driven flow in a rect-
angular cavity with depth-to-width ratio 1:2 for Re′ = 500 and 1000. The
size of left bottom corner vortex increases substantially and drifts further
off the bottom wall as Re′ increases from 500 to 1000, while the positions
and strengths of the right bottom corner vortex and the primary vortex are
weakly affected by Re′. The present results (left column) are in good agree-
ment with the streamlines (right column) obtained previously by Cheng &
Hung (2006).

Figure 4.4 shows contour lines of the stream-function (black lines) and
the vortices identified by the λ2 method (blue lines) proposed by Jeong
& Hussain (1995) for steady lid-driven rectangular cavity flow with Re′ =
1000. The λ2 method identifies the primary vortex and the bottom corner
vortices, which are also visualized by closed streamlines. However, the flow
at the upper-left corner is also identified as a vortex by the λ2 method
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Figure 4.4: Streamlines (positive values for black full lines; negative values
for black dashed lines) and λ2 = -0.1 (blue lines) contours for steady lid-
driven rectangular cavity flow at Re′ = 1000.

whereas the streamlines are not closed in this case, thus demonstrating the
complexity of vortex identification. In this paper, the stream function is
applied to identify the flow patterns for both the steady and oscillatory
lid-driven cavity flow following the practice of previous works (Gustafson &
Halasi 1986, Shankar et al. 2003, Cheng & Hung 2006, Mendu & Das 2013).

4.4.2 Oscillatory lid-driven cavity flow

Simulations of the flow within an oscillatory lid-driven square cavity have
been compared with previous numerical results (Iwatsu et al. 1992, Liu
2001, Mendu & Das 2013). Figure 4.5 shows the center-line velocity pro-
files u(0.5, y) and v(x, 0.5) for Re = 100, 400 and 1000 at different times
(indicated in the legend) for ω′ = St/Re = 1. The present results are in
good agreement with those of Iwatsu et al. (1992) while showing some devi-
ation from the results obtained by Liu (2001) especially for Re = 1000. The
boundary layer thickness beneath the moving lid decreases as the Reynolds
number (and consequently the Stokes number) increases. This is consistent
with laminar boundary layer theory (i.e. Stokes second problem described
in Schlichting et al. 1979) and also with the findings by Duck (1982).

Simulations of the flow within an oscillatory lid-driven rectangular cav-
ity have been compared with the experimental results previously obtained
by Vogel et al. (2003). They conducted an experimental investigation of
the two-dimensional and three-dimensional flow regimes in an oscillatory
lid-driven cavity with depth-to-width ratio 1:2 and spanwise aspect ratio
1:19.4 for a wide range of Re and St. Here the bottom was moving while
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the upper lid was fixed. Experimental results for the two-dimensional flow

Figure 4.5: Comparisons of u(0.5, y) and v(x, 0.5) between the present re-
sults and those obtained by Iwatsu et al. (1992) and Liu (2001) for the
oscillatory lid-driven cavity flow.

regime are compared with the present results by contours of the z-component
of the vorticity (Ωz = ∂v/∂x− ∂u/∂y) for Re = 166, 332, 498 and 747 for
a fixed St = 53 as shown in Figure 4.6. Here the left column shows Ωz ob-
tained from the measurements, while the right column shows Ωz obtained
by the present numerical simulations. It should be noted that Vogel et al.
(2003) did not present the values of the contours of Ωz obtained from the
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measurements, and thus values of the contours in the numerical simulations
have been chosen (as best fit by eye) to match the measurements. Figure
4.6 shows that the qualitative agreement is fair; the experimental measure-
ments may deviate from the numerical simulations due to the uncertainty
of the measured vorticity. Moreover, the present contours are similar to the
numerical results (not shown here) presented by Vogel et al. (2003).

Figure 4.6: Comparisons between predictions (right column) and measure-
ments (left column) by Vogel et al. (2003) for contours of Ωz at Re = 166,
332, 498 and 747 (from top to bottom) and St = 53. All the data are for
phase t = 0. Dashed and solid lines indicate negative values and positive
values, respectively.
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4.5 Results and discussion

4.5.1 Basic flow patterns

Figure 4.7 shows streamline contours for Re = 125 and St = 23 for the first
half-cycle of oscillation. At t = 0, where the lid velocity is at its largest

Figure 4.7: Streamline contours for flow pattern A at Re = 125 and St =
23.

during the oscillation cycle (the lid is moving towards the right), the cavity
is almost completely occupied by the clockwise primary vortex (CPV ), and
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the flow here is qualitatively similar to a steady lid-driven cavity flow. As
the lid velocity decreases (t = 0.2), flow separation and reattachment cause
a bottom left corner vortex (BLCV ), and a bottom right corner vortex
(BRCV ) as well as a left wall vortex (LWV ). These three vortices grow
in size and strength and the weaker left wall vortex becomes encircled by
the stronger bottom left corner vortex from t = 0.20 to 0.22, and then (t =
0.25) they merge (LWV + BLCV ) to an anti-clockwise vortex which grows
with time, while the clockwise primary vortex shrinks. As the lid starts

Figure 4.8: The evolution of co-rotating vortex pair of different strengths,
i.e. the left wall vortex (LWV ) and the bottom left corner vortex (BLCV ).

moving towards the left (t = 0.3), the flow driven by the lid (rolls down at
the upper left corner) forms an anti-clockwise elongated upper left corner
vortex (ULCV ) confined by the clockwise primary vortex and the (LWV +
BLCV ) vortex. Furthermore, an anti-clockwise upper right corner vortex
(URCV ) appears due to the interaction between the flow moving with the
lid and the clockwise primary vortex. These two vortices near the lid push
the clockwise primary vortex away downwards from the lid, while the (LWV
+ BLCV ) vortex pushes the clockwise primary vortex towards the right.
As a result, from t = 0.3 to t = 0.45 the clockwise primary vortex shrinks
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gradually, and the (LWV + BLCV ) vortex merges with the upper left
corner vortex while the vortices at the upper right corner (URCV ) and
at the bottom right corner (BRCV ) erode rapidly. Finally (t = 0.5), the
clockwise primary vortex vanishes, and the flow becomes anti-symmetric
compared with the flow field at t = 0. In the flow shown in figure 4.7 the
clockwise primary vortex exists without the simultaneous presence of the
anti-clockwise primary vortex (and vice versa) for a small interval of the
oscillation cycle where the magnitude of the lid velocity is largest, i.e. at t
= n/2 where n is the number of cycles. The flow pattern which fulfills this
criterion will hereafter be denoted flow pattern A.

Figure 4.9: The evolution of three co-rotating vortices of different strengths,
i.e. the merged vortex (LWV + BLCV ), the upper left vortex (ULCV )
and the upper right corner vortex (URCV ).

Figure 4.8 shows further details (close-up) of the merging of the left
wall vortex (LWV ) and the bottom left corner vortex (BLCV ), previously
shown in figure 4.7. At t = 0.20, the flow separates at (x, y) = (0, 0.4) and
reattaches at (0, 0.52) at the left wall, forming the small left wall vortex.
As time increases, the separation point moves downward and meets at t =
0.205; the attachment point of the bottom left corner vortex is located at
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(0, 0.3). From t = 0.22 to t = 0.23, these two vortices have nearly equal
strength, and grow in size by vorticity diffusion. Additionally, they grow
in strength due to the positive vorticity near the walls but they do not

Figure 4.10: Vorticity contours Ωz from t = 0.25 to t = 0.50 for St = 23
with Re = 125.

Figure 4.11: Time history of Ωz monitored at the center of the cells nearest
the upper corners through one oscillation cycle for Re = 125 and St = 23.

rotate about each other due to the presence of the walls. It appears that
the left wall vortex grows faster than the bottom left corner vortex, and the
merging of them is qualitatively similar to that of an unequal co-rotating
vortex pair; the weaker bottom left corner vortex deforms rapidly while the
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stronger left wall vortex gradually dominates with core detrainment (from
t = 0.23 to t = 0.24), and finally they merge (t = 0.25) to form the (LWV
+ BLCV ) vortex .

Figure 4.12: Streamline contours for flow pattern B at Re = 200 and St =
23.

Figure 4.9 displays another close-up of figure 4.7, showing the evolution
of the two co-rotating vortices at the upper left corner (ULCV ) and at the
upper right corner (URCV ) as well as the already merged vortex (LWV +
BLCV ). As the lid moves towards the left (t = 0.255), two anti-clockwise
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vortices are formed at the upper left and right corners, respectively. Then
at t = 0.2575 they grow and meet beneath the lid. The weaker upper right

Figure 4.13: Streamline contours for flow pattern C at Re = 350 and St =
23.

corner vortex grows in strength (from t = 0.30 to t = 0.32) and erodes
gradually without the core detrainment of the stronger upper left corner
vortex (from t = 0.35 to t = 0.36), i.e. these two vortices do not merge.
However, the merging between the weaker (LWV + BLCV ) vortex and the
stronger (ULCV ) vortex appears to be present; the core detrainment occurs
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in the stronger vortex as the weaker one moves towards it (from t = 0.30
to t = 0.32), and the merging occurs (t = 0.35), forming the anti-clockwise
primary vortex (APV = LWV + BLCV + ULCV ).

Figure 4.14: Streamline contours for flow pattern D at Re = 550 and St =
23.

The shear layer beneath the moving lid has been further investigated by
visualizing the vorticity contours Ωz in figure 4.10 within the time interval
t = 0.25 to 0.50 (the corresponding streamlines are shown in figure 4.7).
Due to the oscillation cycle, some vorticity remains beneath the lid when
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the lid velocity is zero (at t = 0.25). As the lid moves from the right
towards the left, the thickness of the shear layer beneath the lid increases
both with time and along the lid. It is observed that as the shear layer
beneath the lid becomes thicker, the corner vorticity singularities shown in
figure 4.10 (shown by the contraction of the vorticity contours towards the
upper corners) become more visible. This is further visualized in figure 4.11,
showing the vorticity evaluated at the center of the cell nearest to the upper
left and right corners through the oscillation cycle. The magnitude of the
vorticity Ωz on the bisection of the singular corner and in the immediate
vicinity of the corner is small as the lid velocity is zero (at t = 0.25 and t =
0.75), which is consistent with the observation from figure 4.10 for t = 0.25.
As the lid moves towards the left in the time interval from t = 0.25 (where

Figure 4.15: The merging process of the asymmetric vortex pair, i.e. the
anti-clockwise bottom vortex (BV ) and primary vortex (APV ).

u = 0) to t = 0.35 (where u = -0.588), the magnitude of the near-corner
vorticities increases. As the lid velocity increases further, the magnitude of
the vorticity near the right corner becomes slightly larger than that near
the left corner with the maximum deviation observed at t = 0.50 (where u
= -1). This is consistent with the shear layer beneath the lid being thicker
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at the left corner than at the right corner as shown in figure 4.10 for t =
0.50. Some further aspects of the upper corner singularities will be discussed
below in Section 4.5.2.

Figure 4.12 shows streamline contours for Re = 200 and St = 23 for the
first half-cycle of oscillation. Here, a remaining part of the anti-clockwise
primary vortex (APV ) from the previous half-cycle of oscillation is present
at the left wall; this vortex does not completely vanish at any instance of the
oscillation cycle as it does for flow pattern A shown in figure 4.7. Except
from this, the vortex dynamics is similar to that of flow pattern A: the
remaining part of the anti-clockwise primary vortex merges gradually with
the bottom left corner vortex (t = 0.24) in the same manner as the left wall
vortex does in flow pattern A; the upper left and right corner vortices are
formed beneath the lid (t = 0.3), and from t = 0.34 to t = 0.5 the upper left
corner vortex merge gradually with the (APV + BLCV ) vortex, forming
the anti-clockwise primary vortex while the upper left corner vortex and
the upper right corner vortex erode. However, a small part of the clockwise
primary vortex remains as the next half-cycle of oscillation starts. The flow
pattern exhibiting this behavior is denoted flow pattern B.

Figure 4.13 shows streamline contours for Re = 350 and St = 23 for
the first half-cycle of oscillation. At t = 0, the remaining part of the anti-
clockwise primary vortex is so large that it separates the bottom left corner
vortex from the clockwise primary vortex, resulting in a bottom left corner
vortex (BLCV ′) with a clockwise rotation instead of the anti-clockwise ro-
tation observed in flow patterns A and B. As the lid velocity decreases, this
clockwise bottom vortex (BLCV ′) decreases gradually in size and strength
(from t = 0.04 to t = 0.24) and finally vanishes (t = 0.24). The merging
of ULCV and APV , the erosion of URCV and the decay of the clockwise
primary vortex with time are qualitatively similar to those observed in flow
patterns A and B, except that the bottom right corner vortex does not erode
(t = 0.5). This is because the bottom right corner vortex here is isolated
from the anti-clockwise primary vortex by the remaining clockwise primary
vortex. Consequently, the flow here carries two vortices (the clockwise pri-
mary vortex and the bottom right corner vortex) between the two successive
half-cycles of oscillation. The flow exhibiting this behavior is denoted flow
pattern C.

Figure 4.14 shows streamline contours for Re = 550 and St = 23 for the
first half-cycle of oscillation. At t= 0, the cavity is occupied by the clockwise
primary vortex as well as the remaining part of the anti-clockwise primary
vortex and the clockwise bottom left corner vortex. As the clockwise pri-
mary vortex core approaches the bottom, a closed region of recirculation
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appears on the wall, leading to the formation (t = 0.16) of an anti-clockwise
bottom vortex (BV ) which does not appear in flow patterns A-C. This
behavior is qualitatively similar to the observations of Walker et al.Walker
et al. (1987) who found that as a primary vortex ring approaches a solid
wall, a wall eddy with opposite vorticity will be present in the close vicinity
of the wall. The interaction between the co-rotating vortex pair (BV and
APV ) is described in further details in figure 4.15; flow separation and reat-
tachment occur between (x, y) = (0.725, 0) and (0.84, 0) at the bottom for
t = 0.1525, forming the bottom vortex (BV ), which grows gradually (t =
0.16) due to the vorticity diffusion and meets (t = 0.1625) with the primary
vortex (APV ), and is eventually (t = 0.22) destroyed by the stronger pri-
mary vortex (APV ) which remains relatively unaffected as shown in figure
4.14 (from t = 0.2 to t = 0.22). The flow state which includes the bottom
vortex is denoted flow pattern D.

Figure 4.16: Contours of Ωz for Re = 550 and St = 23; dashed and solid
lines indicate negative values and positive values, respectively.

Further details of the vortex generating mechanisms are obtained by
contours of Ωz shown in figure 4.16. Here the vorticity contours for t = 0
and t = 0.16 corresponds to the streamlines (for t = 0 and t = 0.16) shown
in figure 4.14. The generation of vorticity along the oscillating lid as well as
the vorticity which occurs due to the vertical wall are clearly visualized. As
pointed out by Ovando et al. (2009), the vortex shedding (figure 4.16, t =
0.16) due to the rolling down of the vortex sheets at the right wall follows
the qualitative behavior of a vortex approaching a wall perpendicularly, first
predicted by Peace & Riley (1983) and observed experimentally by Walker
et al. (1987) and Allen & Chong (2000). As the vortex is approaching
the wall (figure 4.16, t = 0), a region with opposite vorticity sign occurs
between the vortex and the wall, causing the vortex to rebound from the
wall (figure 4.16, t = 0.16); this can also be seen from figure 4.14 (t = 0
and t = 0.16). These mechanisms are similar to those previously visualized
by Ovando et al. (2009) for a rectangular cavity with two simultaneously



70 70

oscillating vertical walls.

4.5.2 Effect of upper corner vorticity singularity

Now the flow in the vicinity of the upper left and right corners where the
vorticity is singular will be discussed. These singularities cause numerical
challenges, making it more difficult to obtain an accurate numerical solution
in the close vicinity of the upper corners. For spectral methods, the global
nature of the trial function in conjunction with the upper corner singulari-
ties leads to spurious oscillations. This is overcome by combining the trial
functions with local analytic solutions based on asymptotic series expan-
sions in terms of the local Reynolds number, which is small due to the small
flow velocity near the upper corner(Botella & Peyret 1998, Botella et al.
2001). Also for finite difference, finite volume and finite element methods,
the upper corner singularities lead to numerical inaccuracies. Bruneau &
Saad (2006) applied a finite difference method showing that for a steady
lid-driven square cavity flow for Re = 1000 and 5000, grid convergence
was obtained for the total kinetic energy E = 1

2

∮
S ||U ||2dS (where S is the

computation domain, and Ωz is evaluated at the cell center), whilst grid con-
vergence could not be obtained for neither the enstrophy Z = 1

2

∮
S ||Ωz||2dS

nor the palinstrophy P = 1
2

∮
S ||∇Ωz||2dS. As pointed out by Bruneau

& Saad (2006), this is caused by the infinite velocity gradients in the cor-
ners, causing the enstrophy and the palinstrophy to approach infinity as the
grid cell size approaches zero. Similar results are obtained in the present
work for oscillating lid-driven cavities. Figure 4.17 shows the total energy
E for St = 23 and Re = 550 through the oscillation cycle obtained from
both a resolution of 200×100 and 400×200 grid cells (in the x and y direc-
tion, respectively) with a maximum deviation of 0.8% between the two grid
resolutions. However, for the enstrophy (also shown in figure 4.17), the cor-
responding maximum deviation is 5.9%. This result is qualitatively similar
to those by Bruneau & Saad (2006) who obtained corresponding deviations
from 4%-8% and from 4%-10% for steady lid-driven flow with Re = 1000
and 5000, respectively. Although grid convergence of both the enstrophy
and the palinstrophy can be obtained by letting the lid velocity approach
zero locally at the corners (Bruneau & Saad 2006), this case is not relevant
for comparison with laboratory measurements, as pointed out by Shankar
& Deshpande (2000). A close-up of the vorticity contours in the vicinity
of the left corner is shown in figure 4.18 for the two different resolutions of
200×100 and 400×200 grid cells; the difference between the contour lines
obtained from the two grid resolutions is small. Although the upper corner
singularities affect the accuracy of the numerical solution, particularly in



4.5. Results and discussion 71

the close vicinity of the corners, the vorticity is adequately resolved in the
present simulations, as demonstrated in figure 4.18.

Figure 4.17: Time history of energy (left) and enstrophy (right) over one
oscillation cycle for Re = 550 and St = 23.

Figure 4.18: Close-up of Ωz for the upper left corner at grid resolution
200×100 (left) and refined grid resolution 400×200 (right) for St = 23 with
Re = 550.

4.5.3 Distribution of the basic flow patterns in (St, Re)-space

Figure 4.19 shows the distribution of flow patterns A-D in the (St, Re)-
space; the full line denotes the transition between 2D and 3D flow.Vogel
et al. (2003) More than 400 numerical simulations with Re from 10 to 875
and with St from 23 to 53 have been conducted to map out the regions in
the (St, Re)-space of the flow patterns represented by the dashed lines in
figure 4.19. For a given St number, the flow patterns A-D appear sequen-
tially as Re increases, showing that the transition between the different flow
patterns strongly depends on Re. Furthermore, as St increases, the Re for
the transition between different flow patterns increases. This is because an
increase in St for a given Re leads to less time for the extrema of the stream
function to grow and for the primary vortex center to move away from the
lid. Consequently, a higher Re is required to maintain the same flow pat-
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tern. This effect appears to be stronger for the flow pattern D than for the
flow pattern A. It appears that the transition between the different flow
patterns (i.e. the dashed lines) is given by an approximately linear relation
between Re and St.

Figure 4.19: Basic flow patterns A −D of the two-dimensional oscillatory
lid-driven cavity within (St, Re)-space.

Figure 4.20 shows the scaled drag force (defined as
∫ 2

0
∂u
∂y |y=1dx) beneath

the moving lid through one oscillation cycle for St = 23 and for Re = 125,
200, 350 and 550; i.e. for the flow patterns A-D. It appears that an increase
in Re leads to a moderate growth and phase shift of the drag force. Figure
4.21(a) shows the phase shift between the lid oscillation velocity and the
drag force on the lid for Re = 10, 125, 250 and 490 and for St = 23, 28, 33,
38, 43, 48 and 53. The phase shift increases monotonically as St increases
whereas an increase of Re results in lower phase shifts. The maximum phase
shift is 30o (for St = 53 and Re = 10), which is considerably smaller than
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the 45o phase shift obtained from the Stokes’ classical second problem.
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Figure 4.20: The drag force beneath the moving lid at St =23 and for Re =
125, 200, 350 and 550; i.e. for the flow patterns A-D.

Figure 4.21(b) shows the horizontal velocity component along the verti-
cal center-line of the cavity for t = 0.2 and 0.6 for St = 53 and for Re = 10
and 490. The flow driven by an infinite plate (Stokes solution) is given for
comparison. As Re decreases, the near-lid velocity becomes more similar to
the Stokes solution. This is consistent with the observation in figure 4.21(a)
showing that the flow with smallest Re and largest St exhibits the phase
shift (30o) between the drag force and the lid velocity, which is closest to
that from the Stokes solution (45o). However, farther away from the lid,
the velocity component obtained for Re = 490 is closer to Stokes solution
than that obtained for Re = 10.

4.6 Summary and conclusions

This paper provides a detailed investigation of the vortex dynamics in the
oscillatory lid-driven cavity with depth-to-width ratio 1:2, covering a wide
range of Reynolds numbers and Stokes numbers where this flow is known to
be in the two-dimensional flow regime. The predictions have been success-
fully compared with previous numerical results for steady (Ghia et al. 1982,
Romano & Kuhlmann 2017, Botella & Peyret 1998, Bruneau & Saad 2006,
Cheng & Hung 2006) and oscillatory (Iwatsu et al. 1992, Liu 2001, Mendu
& Das 2013) lid-driven cavity flows as well as with experimental results
obtained by Vogel et al. (2003) for oscillatory lid-driven cavity flows. Fur-
thermore, the effect of the upper corner vorticity singularity is discussed:
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Stokes solution

Re = 10, St = 53

Re = 490, St = 53

Figure 4.21: (a): phase shift of the drag force on the moving lid at Re = 10,
125, 250 and 490 for St = 23, 28, 33, 38, 43, 48 and 53; (b): the horizontal
velocity along the center-line of the cavity at t = 0.2 and 0.6 for St = 53
with Re = 10 and 490.

the total energy exhibits grid convergence while the enstrophy does not;
these results are qualitatively similar to those obtained by Bruneau & Saad
(2006) for a steady lid-driven flow. Although the upper corner singularities
affect the numerical accuracy of the predictions, it is demonstrated that the
vorticity is adequately resolved.

It appears that the two-dimensional flow regime can be further divided
into four flow patterns based on the vortex dynamics, which is visualized
by streamline contours. The classification of these basic flow patterns can
be summarized as follows:r For flow pattern A, there is no transfer of vortices between each suc-

cessive half-cycle of oscillation; this means that the clockwise primary
vortex (generated by the lid moving towards the right) and the anti-
clockwise primary vortex (generated by the lid moving towards the
left) are not present simultaneously at the end of each half-cycle of
oscillation.r For flow pattern B, a small part of the clockwise primary vortex re-
mains as the next half-cycle of oscillation starts, and thus the flow
carries the primary vortex between each successive half-cycle of oscil-
lation when the lid velocity is largest.r For flow pattern C, the flow carries two vortices between each suc-
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cessive half-cycle of oscillation. When the lid is moving towards the
right, these two vortices consist of the anti-clockwise primary vortex
and the clockwise bottom left corner vortex from the last half-cycle of
oscillation.r Flow pattern D is similar to flow pattern C, except the intermediate
appearance of an additional bottom vortex during each half-cycle of
oscillation.

These flow structures are unique functions of the Reynolds number and
the Stokes number, and the pattern changes with these parameters. The
increased forcing quantified by the Reynolds number and the Stokes num-
ber leads to finer flow structures and hence different flow patterns. If the
frequency of oscillation is increased for a given Reynolds number, the ex-
trema of the stream function have less time to grow and the centre of the
primary vortex has less time to move away from the lid. To compensate
these effects, the amplitude has to be increased with increasing frequency
to maintain the same flow pattern.
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Chapter 5

Flow patterns in a steady
lid-driven rectangular cavity
with an embedded circular
cylinder

Jianxun Zhu1, Lars Erik Holmedal1, Hong Wang1, Dag Myrhaug1

Abstract

A detailed investigation of the flow in a steady lid-driven cavity of depth to
width ratio 1:2 containing a circular cylinder is provided. Three different
Reynolds numbers (based on the lid velocity and cavity depth) of 100, 500
and 1000 as well as four different cylinder radius to cavity depth ratios (0.1,
0.2, 0.3 and 0.4) located at three different positions along the horizontal
centerline of the cavity, are considered. It appears that these flows can be
classified into seven different flow patterns. These flow patterns are given for
different cylinder radii and positions as well as Reynolds numbers. There
is a tendency that for a given cylinder radius, there are more transitions
between different flow patterns for a small radius than for a large radius
while for a given Reynolds number, the number of transitions is larger for
high Reynolds numbers than for low Reynolds numbers. Overall, a larger
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number of flow patterns tend to emerge as the Reynolds number increases
for small radii. The largest variety of flow patterns occur for the left-sided
cylinder due to the interaction with the large anti-clockwise circulation flow
formed at the bottom left corner.

5.1 Introduction

Steady lid-driven flows containing a solid body have gained considerable
attention due to its engineering applications in heat exchangers and electric
coolers. The presence of a solid body within the cavity such as a circular
(Oztop et al. 2009, Khanafer & Aithal 2013) or square (Islam et al. 2012)
cylinder changes the flow patterns substantially, forming strong vortices
which are not present in the absence of the solid body. This might strongly
affect e.g. mixing or cooling properties of the cavity since these vortices
might cause large gaps between isotherms, thus affecting the heat transfer
within the cavity. For an incompressible fluid, the effect of moderate tem-
perature gradients on the flow might be small, i.e. the Richardson number
is small. In this case the flow is dominated by momentum and the flow
structures are nearly independent of the temperature field.

Oztop et al. (2009) and Khanafer & Aithal (2013) investigated mixed
convection and heat transfer in a steady lid-driven square cavity containing
a circular cylinder by using a finite volume method and a finite element
formulation, respectively. Oztop et al. (2009) showed that changing the the
cylinder position and radius leads to deformation of both the streamlines
and the isotherms in the cavity, although the primary and bottom corner
vortices were not investigated in detail. The deformation of the primary
vortex caused by the cylinder radius and the temperature field has been
investigated numerically by Khanafer & Aithal (2013) who found that for a
low Richardson number of 0.01 (forced convection flow), a primary vortex is
formed between the moving lid and the centered circular cylinder, and that
an increase in the cylinder radius leads to the primary vortex breaking up
into two vortices. As the Richardson number increases, these vortices shrink
gradually and disappear due to the natural (thermal) convection. Similar
results were obtained by Billah et al. (2011).

Galaktionov et al. (1999) developed an analytical method to study creep-
ing flow in a steady-lid driven rectangular cavity with a centered fixed and
rotating circular cylinder. As the upper lid moves towards the right for
the fixed cylinder, they found that the flow is symmetric about the vertical
centerline of the cavity with two clockwise vortices attached to the upper
left and the upper right sides of the cylinder.
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Khanafer et al. (2017) used a finite element formulation to investigate the
mixed convection in a lid-driven square cavity with two circular cylinders.
These two cylinders are placed symmetrically about the vertical centerline
of the cavity. They found that, for low Richardson numbers, an elongated
clockwise vortex was formed between the lid and the two cylinders. As these
two cylinders move closer to the bottom, this elongated vortex increases in
size. As the two cylinders move closer to the lid, the vortex appears to be
split into three clockwise vortices located beneath the mid of the lid as well
as at the upper left and right corners, respectively.

The hydro-magnetic mixed convection in a steady lid-driven square cav-
ity with a heat-conducting circular cylinder was investigated by Chatterjee
& Gupta (2014) as well as Ray & Chatterjee (2014) who also studied the ef-
fect of corner heaters with Joule heating. The mixed convection for nanoflu-
ids in a steady lid-driven square cavity with embedded circular cylinders was
investigated by Chatterjee et al. (2014), Bansal & Chatterjee (2015) as well
as Chatterjee & Halder (2016).

Billah et al. (2011) and Khanafer & Aithal (2013) investigated the ef-
fect of the cylinder radius on the primary vortex for flow within a steady
lid-driven square cavity with an embedded cylinder. However, a detailed in-
vestigation of the flow structures (including the primary vortex, corner and
bottom vortices as well as the pressure around the circular cylinder) has not
been previously presented. The aim of the present work is to present such
detailed results for very low Richardson numbers, where the effect of the
temperature field is negligible. Moreover, the effect of increasing the cavity
aspect ratio on this flow has not been investigated previously.

Specifically, a detailed investigation of the flow structures within a lid-
driven cavity of height to length ratio 1:2 containing a circular cylinder are
conducted for a range of Reynolds numbers (based on the lid velocity and
the cavity height), cylinder radius to cavity height ratio, for left-, right-
and mid-centered cylinders are provided. Numerical simulations show that
this flow can be classified into seven different flow patterns which are here
visualized by streamlines. These flow patterns are unique functions of the
Reynolds number, the ratio between the cylinder radius and the cavity
height, as well as the position of the cylinder within the cavity.
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5.2 Numerical method

5.2.1 Basic numerical scheme

Incompressible flow with a constant density ρ and kinematic viscosity ν
is governed by the two-dimensional Navier-Stokes equations described as
follows

∂ui
∂xi

= 0 (5.1)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

(5.2)

where the Einstein notation using repeated indices is applied. Here ui =
(u,v) and xi = (x, y) for i = 1 and 2, are the velocity and Cartesian coor-
dinates, respectively, whilst t, p and Re = UH/ν denote the dimensionless
time, dimensionless pressure and Reynolds number, respectively, where H
is the depth of cavity and U is the lid motion velocity. The time, pressure
and length are scaled by H/U , ρU2 and H, respectively.

Eqs.(5.1) and (5.2) are discretized on a staggered mesh arrangement
using second-order central differences. A projection method using a second-
order Adams-Bashforth scheme for the convective terms and a Crank-Nicolson
scheme for the diffusive terms is applied. The intermediate velocity u∗i is
obtained as

u∗i = uni + ∆t[
1

2
(3Hn

i −Hn−1
i ) +

1

2
(Fni + F ∗i )− δ

δxi
(pn−1:2)] (5.3)

where δ/δxi represents the numerical spatial gradient operator; the con-
vective and diffusive terms are denoted by Hi = δ(uiuj)/δxj and Fi =
νδ2(ui)/(δxjδxj), respectively; the superscript n denotes the time step, and
pn−1:2 is the pressure obtained at the previous time-step. The velocity cor-
rection is given as

un+1
i = u∗i −∆t

δ

δxj
(φn+1) (5.4)

where φn+1 = pn+1:2− pn−1:2 is determined such that the resulting velocity
field un+1

i satisfies the continuity condition. Substitution of Eq.(5.4) into the
continuity equation δui/δxi = 0 yields a Poisson equation for the pressure
correction

δ2

δx2
j

(φn+1) = − 1

∆t

δu∗i
δxi

(5.5)

which is solved using a Jacobi preconditioned bi-conjugate gradient stabi-
lized method.
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5.2.2 Implementation of the immersed boundary method

Figure 5.1: Definition of the inactive velocity points (�), immersed bound-
ary points (©), and active velocity points (�).

The immersed boundary technique is based on a direct forcing approach
combined with a finite difference method firstly proposed by Fadlun et al.
(2000). As shown in figure 5.1, the staggered velocity components nearest
the immersed boundary are set as inactive velocity points (�) which are up-
dated by interpolation. Here, a one-dimensional, linear interpolation scheme
is applied in each direction according to the following stencil formulation

ui =
xi − xΓ

xi+1 − xΓ
ui+1 +

xi+1 − xi
xi+1 − xΓ

uΓ, i = 1, 2 (5.6)

where uΓ and xΓ are the velocity and position of the immersed boundary,
respectively.

If an inactive velocity point can be interpolated from two directions,
each direction is multiplied by a weighting factor as follows (Peller et al.
2006, Berthelsen & Faltinsen 2008)

ui = λxu
x
i + λyu

y
i (5.7)

where the superscript x and y denotes the interpolation in x and y-directions,
respectively, and the weighting factors λx and λy are given as

λx =
1

1 + ( lxly )2
and λy =

1

1 + (
ly
lx

)2
(5.8)

where lx and ly is the distance between the inactive velocity point and the
immersed boundary in x and y-directions, respectively, as shown in figure
5.1. A Neumann condition is applied for the pressure correction at the
inactive velocity points.
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5.3 Results and discussion

5.3.1 Uniform flow past a free circular cylinder at Re′ = 40

Two-dimensional flow past a circular cylinder has been investigated using
the present method for a Reynolds number (Re′ = U0D/ν, where D is
the diameter of cylinder and U0 is free-stream velocity) equal to 40. The
dimensionless free-stream velocity U0 = 1 is specified at the inlet boundary
while a Neumann condition is imposed on the velocity at the outlet and at
the top and bottom of the flow domain. Non-slip conditions are applied on
the cylinder. The pressure is set to be zero at the outlet and a Neumann
condition for the pressure correction is used at the other boundaries. Figure
5.2 shows the computation domain where the inlet and lateral boundaries
are located 8D upstream of the cylinder and the outlet is located at 20D
downstream of the cylinder. A uniform mesh of size 0.02D is employed for
this domain.

Figure 5.2: Computation domain for flow past a free circular cylinder.

After a spin-up time of t = t∗U0/D = 200 (where t∗ is the physical
time), the flow reaches a steady and symmetric state where two attached
recirculating vortices are formed behind the cylinder. The streamlines for
the flow past the cylinder at Re′ = 40, as well as the separation angle
θ, wake length Lw, the horizontal distance a between the rear stagnation
point of the cylinder and the recirculation center and vertical distance b be-
tween the symmetric recirculation centers, are shown in figure 5.3. Here the
characteristic wake dimensions Lw, a and b are scaled by D. The pressure
coefficient (Cp = p−p∞

0.5ρU2
0

, where p∞ is the pressure at the outlet) along the

bottom half boundary of the cylinder is presented in figure 5.3, showing a
good agreement with both experimental (Grove et al. 1964) and numeri-
cal (Dennis & Chang 1970, Tseng & Ferziger 2003, Berthelsen & Faltinsen
2008) results. The characteristic wake dimensions Lw, a and b as well as the



5.3. Results and discussion 85

Figure 5.3: Left image: streamlines for the flow over a cylinder at Re′ =
40 and nomenclature used in Table 5.1; separation angle θ, wake length Lw,
horizontal distance a between the rear stagnation point of the cylinder and
the recirculation center and vertical distance b between the symmetric recir-
culation centers; right image: comparison between the present and previous
results for the pressure coefficient (Cp) on the bottom half of the cylinder
surface at Re′ = 40. The upstream stagnation point is located at θ = 180◦.

drag coefficient (CD) are given in table 5.1. The predicted separation angle
θ and wake length Lw compare well with the experimental results obtained
by Coutanceau & Bouard (1977) while the predicted distance a is smaller
than their measurements, but in good agreement with the numerical results
obtained by Bouchon et al. (2012) and Gautier et al. (2013). Moreover,
a good agreement for the drag coefficient is obtained by comparison with
previously numerical predictions (Bouchon et al. 2012, Gautier et al. 2013,
Fornberg 1980, Tseng & Ferziger 2003, Patil & Lakshmisha 2009) as shown
in table 5.1.

Table 5.1: The physical parameters obtained by the present numerical
method and previous works for the flow past a circular cylinder at Re′ = 40.

CD θ Lw a b

Tseng & Ferziger (2003) 1.53 2.21
Coutanceau & Bouard (1977) 126.2◦ 2.13 0.76 0.59
Bouchon et al. (2012) 1.50 126.6◦ 2.26 0.71 0.60
Gautier et al. (2013) 1.49 126.4◦ 2.24 0.71 0.59
Fornberg (1980) 1.50 124.4◦ 2.24
Patil & Lakshmisha (2009) 1.56 127.3◦ 2.14
Present study 1.56 126.8◦ 2.27 0.74 0.60
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5.3.2 Flow in a steady lid-driven square cavity with an em-
bedded cylinder

The vortex structures in a steady lid-driven square cavity with a centered
cylinder have been investigated for Reynolds numbers (Re = UH/ν) equal
to 100, 500 and 1000. Moreover, two cylinders of dimensionless radius r =
r′/H = 0.2 and 0.3 are considered.

Figure 5.4: Streamline contours for the flow in a steady lid-driven square cavity
with a centered cylinder of r = 0.2 (left column) and 0.3 (right column) for Re =
100, 500 and 1000. Solid and dashed lines denote the positive and negative contour
values, respectively; for the streamline contours, the equal difference in value of
0.005 between the two unmarked adjacent contour lines is used.

Figure 5.4 shows the velocity components u and v along x = 0.5 and
y = 0.5, respectively, for the steady lid-driven cavity containing a centered
cylinder of r = 0.2 for Re = 1000. A coarse mesh of ∆x = ∆y = 0.01 and a
fine mesh of ∆x = ∆y = 0.005 are used to obtain the present results, which
are in good agreement with those given by Cai et al. (2017) It appears that
the coarse mesh is sufficient to obtain grid independent results.

Figure 5.5 shows the streamline contours within a steady lid-driven
square cavity with a centered cylinder of r = 0.2 (left column) and 0.3
(right column). For the smallest cylinder (left column), the lid-driven flow
rolls up at the upper boundary of the cylinder, forming an elongated clock-
wise primary vortex while flow separation and reattachment at the bottom
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Figure 5.5: Comparison of the velocity profiles for steady lid-driven square
cavity flow containing a centered cylinder of r = 0.2 for Re = 1000 obtained
by the present method and by Cai et al. (2017): left image, distribution of
the horizontal velocity component u along x = 0.5; right image, distribution
of the vertical velocity component v along y = 0.5.

corner induce two weak anti-clockwise bottom corner vortices which are
also present in the absence of the cylinder (Cheng & Hung 2006). As Re
increases from 100 to 1000 (left column), the primary vortex decreases in
size and moves closer towards the cylinder while the bottom corner vortices
grow in size and strength. For the largest cylinder (at Re = 100; right
column), it appears that the primary vortex breaks up into two clockwise
vortices. These patterns were previously predicted by Khanafer & Aithal
(2013) for the same Re, size and position of the cylinder for a low Richard-
son number Ri = 0.01, implying that the flow is dominated by momentum
instead of temperature gradients and consequently that this prediction is
comparable with the present one where the effect of temperature gradients

is neglected. Here Ri = Gr/Re2, where Gr = gβ(Th−Tc)H3

ν2
; g is the acceler-

ation due to gravity; β is the thermal expansion coefficient; Th and Tc are
the temperatures of the hot and cold walls, respectively). As Re increases
to 1000 (right column), only one primary vortex is present both for r =
0.2 and 0.3, indicating that the size of cylinder is a key parameter for the
break-up of the primary vortex. Moreover, increasing the cylinder size leads
to a weaker primary vortex core as well as weaker bottom corner vortices.

5.3.3 Flow patterns in a steady lid-driven rectangular cavity
with an embedded cylinder

A detailed investigation of the flow within the steady lid-driven cavity of
height to length ratio AR = 1:2 containing a circular cylinder has been
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conducted for Re = 100, 500 and 1000. Three different locations, i.e. (x, y)
= (0.5, 0.5), (1, 0.5) and (1.5, 0.5), as well as four different cylinder radii (r
= 0.1, 0.2, 0.3 and 0.4) are considered using a resolution of 200x100 uniform
grid cells which is sufficient for obtaining grid independent results. Flow in
a steady lid-driven cavity of AR = 1:2 without the cylinder is given as a
reference in figure 5.6 for Re = 100, 500 and 1000. These results are in
good agreement with previous results by Cheng & Hung (2006), showing
that the cavity contains a clockwise primary vortex as well as two anti-
clockwise bottom corner vorticies. It is shown that an increase in Re leads
to a noticeable growth of the bottom left corner vortex. Further validations
for pure lid-driven cavity flows are given in Zhu et al. (2020).

Figure 5.6: Streamline contours for flow in a steady lid-driven cavity of AR
= 1:2 without the cylinder for Re = 100, 500 and 1000.

5.3.3.1 Left-centered cylinder

Figure 5.7 shows streamline contours for flow in a steady lid-driven cavity of
AR = 1:2 containing a cylinder located at (0.5, 0.5) for r = 0.1, 0.2, 0.3 and
0.4 with Re = 100. For r = 0.1, the cavity contains a clockwise primary
vortex to the right of the cylinder and two anti-clockwise bottom corner
vortices. This flow denotes the flow pattern I which remains qualitatively
the same for r = 0.2. As r increases further to 0.3, a new clockwise vortex
is formed at the upper left side of the cylinder; this is also present for r
= 0.4. This flow pattern is denoted II. Increasing r from 0.1 to 0.4 leads
to a weakening of the primary vortex to the right of the cylinder while
the bottom corner vortices are only weakly affected. This is due to the
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decreased space between the left wall and the cylinder impeding the growth
of the primary vortex.

Figure 5.8 shows streamline contours for the same geometry as in figure
5.7 for Re = 500. For r = 0.1, there is a large clockwise primary vortex to
the right of the cylinder while the flow circulates anti-clockwisely around
the cylinder. This is due to the growth of the bottom left corner vortex (as
Re increases) which also exists in a steady lid-driven cavity of the same AR
without the cylinder as shown in figure 5.6 (see also Cheng & Hung 2006;
figure 3). The flow in this circulation region rolls up at the upper left side
of the cylinder and down at the lower right side of the cylinder, forming
two anti-clockwise vortices. This flow is denoted flow pattern III. As r
increases to 0.2, the decreasing gap between the cylinder and the adjacent
walls leads to a larger velocity there, destroying the anti-clockwise flow
circulation region shown for r = 0.1. Instead, a bottom vortex is formed.
This flow pattern is denoted IV and remains the same as r increases to 0.3
but with a smaller bottom vortex than for r = 0.2. For r = 0.4, this bottom
vortex vanishes, and the flow here is thus exhibiting flow pattern II.

Figure 5.7: Streamline contours for flow in a steady lid-driven cavity of AR
= 1:2 containing a left-centered cylinder with r = 0.1, 0.2, 0.3 and 0.4 for
Re = 100

Figure 5.9 shows streamline contours for the same geometry as figures 5.7
and 5.8 for Re = 1000. For r = 0.1, a larger anti-clockwise circulation region
than for Re = 500 (figure 5.8) is formed around the cylinder while a large
clockwise primary vortex exists to the right of the cylinder. It appears that
within the anti-clockwise circulation region, a clockwise vortex is formed at
the upper left side of the cylinder. This flow pattern is denoted V. For r =
0.2, two anti-clockwise vortices are formed at the upper left and the lower
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Figure 5.8: Streamline contours for flow in a steady lid-driven cavity of AR
= 1:2 containing a left-centered cylinder with r = 0.1, 0.2, 0.3 and 0.4 for
Re = 500.

right side of the cylinder, and the flow is thus exhibiting pattern III. For r
= 0.3, the flow exhibits pattern IV but with a larger and stronger bottom
vortex than for Re = 500 (figure 5.8). As r increases further to 0.4, the
bottom vortex remains and a clockwise vortex, which also appears in flow
pattern II (figure 5.8 for r = 0.3 and 0.4), is formed at the upper left side
of cylinder. This flow pattern is denoted VI.

Figure 5.9: Streamline contours for flow in a steady lid-driven cavity of AR
= 1:2 containing a left-centered cylinder with r = 0.1, 0.2, 0.3 and 0.4 for
Re = 1000.
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5.3.3.2 Centered cylinder

Figure 5.10 shows streamline contours for the centered cylinder located at (1,
0.5) for Re = 100 and r = 0.1, 0.2, 0.3 and 0.4. The flow exhibits pattern II
for all values of r but the clockwise vortex to the left of the cylinder is larger
than for the left-centered cylinder (figure 5.7 for r = 0.3 and 0.4). Young
et al. (2005) investigated creeping flow for a steady lid-driven rectangular
cavity containing a centered rotating and non-rotating cylinder. Two equal
clockwise vortices attached to the upper left and right side of the cylinder
were formed for the non-rotating cylinder. In the present case, however, the
non-linearity of the convective term results in asymmetry of these vortices
with the vortex to the right of the cylinder being significantly larger than
that to the left of the cylinder. As r increases, the left clockwise vortex
grows gradually in size due to more flow rolling down from the lid at the
upper left side of the cylinder. Moreover, it appears that the maxima of
the stream function for the left and right clockwise vortices decrease as r
increases while the bottom corner vortices are only weakly affected by the
cylinder size.

Figure 5.10: Streamline contours for flow in a steady lid-driven cavity of
AR = 1:2 containing a centered cylinder with r = 0.1, 0.2, 0.3 and 0.4 for
Re = 100.

Figures 5.11 and 5.12 show streamline contours for the same geometry
as shown in figure 5.10 but for Re = 500 and 1000, respectively. The flow
exhibits pattern II for all values of r and Re but with an amplification of
the bottom corner vortices due to the higher Reynolds number, which also
leads to a weaker clockwise vortex pair attached to the cylinder, as well
as the vortex to the left of the cylinder being larger relative to the vortex
to the left of the cylinder. As Re increases the vortex to the right of the
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Figure 5.11: Streamline contours for flow in a steady lid-driven cavity of
AR = 1:2 containing a centered cylinder with r = 0.1, 0.2, 0.3 and 0.4 for
Re = 500.

cylinder moves towards the bottom. Moreover, an increase in r leads to a
decay of the bottom left corner vortex while the bottom right vortex is only
weakly affected.

Figure 5.12: Streamline contours for flow in a steady lid-driven cavity of
AR = 1:2 containing a centered cylinder with r = 0.1, 0.2, 0.3 and 0.4 for
Re = 1000.

5.3.3.3 Right-centered cylinder

Figure 5.13 shows streamline contours for the cylinder located at (1.5, 0.5)
with Re = 100 and r = 0.1, 0.2, 0.3 and 0.4. For r = 0.1, the cavity contains
one clockwise vortex to the upper left side of the cylinder and two bottom
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corner vortices; this flow is denoted flow pattern VII. For r = 0.2, 0.3 and
0.4, a clockwise vortex is also formed at the upper right side of the cylinder;
here the flow exhibits pattern II.

Figure 5.13: Streamline contours for flow in a steady lid-driven cavity of
AR = 1:2 containing a right-centered cylinder with r = 0.1, 0.2, 0.3 and
0.4 for Re = 100.

Figure 5.14: Streamline contours for flow in a steady lid-driven cavity of
AR = 1:2 containing a right-centered cylinder with r = 0.1, 0.2, 0.3 and
0.4 for Re = 500.

Figures 5.14 and 5.15 show the streamline contours for Re = 500 and
1000, respectively, for the same geometry as in figure 5.13. An increase
in Re (for a given r) causes the bottom corner vortices to grow, while an
increase of r (for a given Re) leads to a decay of the bottom corner vortices.
For r = 0.1, the flow exhibits pattern VII both for Re = 500 and 1000 but
with a smaller clockwise vortex to the left of the cylinder than for Re = 100
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Figure 5.15: Streamline contours for flow in a steady lid-driven cavity of
AR = 1:2 containing a right-centered cylinder with r = 0.1, 0.2, 0.3 and
0.4 for Re = 1000.

(figure 5.13). For r = 0.2, the flow exhibits pattern II for Re = 500 with
smaller clockwise vortices attached to the cylinder than for Re = 100 while
for Re = 1000 the flow exhibits pattern VII. For r = 0.3 and 0.4, the flow
exhibits pattern II both for Re = 500 and 1000.

5.3.3.4 Distribution of flow patterns

Figure 5.16 shows the distribution of flow patterns within the steady lid-
driven cavity of AR = 1:2 containing a left-centered (top image) and right-
centered (bottom image) cylinder. For the centered cylinder, only flow pat-
tern II exists (and hence this distribution is not plotted here). The cavity
flow with a left-centered cylinder exhibits all the flow patterns, depending
on Re and r, except flow pattern VII. This is due to the large anti-clockwise
circulation flow formed at the bottom left corner (which also exists in the
absence of the cylinder), which here is strongly affected by r and Re. For a
given r, there is a tendency that there are more transitions between different
flow patterns for small r than for large r (for Re ranging from 100 to 1000)
while for a given Re, the number of transitions is larger for high Re than
for low Re (for r ranging from 0.1 to 0.4). Figure 5.16 also shows which
transitions are possible. For example, flow pattern V can only have transi-
tion to flow pattern III (by either increasing r or decreasing Re), while flow
pattern IV can have transition to flow pattern I (by either increasing r or
decreasing Re), to flow pattern III (by either decreasing r or increasing Re)
and to flow pattern VI (by increasing r). For the right-centered cylinder
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Figure 5.16: Distribution of flow patterns within the steady lid-driven cav-
ity of AR = 1:2 containing a left-centered (top image) and right-centered
(bottom image) cylinder.

(bottom image of figure 5.16), only one new flow pattern VII is formed for
relatively small r. An increase of r leads to a clockwise vortex to the right of
the cylinder (forming flow pattern II). To compensate this effect, a higher
Re is required to maintain flow pattern VII.

The solid lines in figure 5.16 denote the transition lines between two
different flow patterns. These lines can be given in the form of functional
relationships between r and Re as follows:

Re = 10955× r2 − 771.36× r + 417.96, III ↔ IV

Re = 10000× r2 + 500× r + 400, III ↔ V

Re = −13333× r2 + 10333× r − 1550, I ↔ II

Re = 2000× r − 250, II ↔ VI
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5.3.3.5 Pressure distribution around the cylinder

In the present work, the pressure at the bottom left corner (p0) is taken as
a reference point. The pressure coefficient around the cylinder is given by

Cp =
p− p0
1
2ρU

2
(5.9)

where p is the pressure around the cylinder.
Figure 5.17 (a) shows the pressure coefficient Cp around left-centered

cylinders for four different radii (r = 0.1, 0.2, 0.3 and 0.4) for Re = 100.
As r increases, Cp increases. This might be explained by that an increase
of r leads to an increase of the gap flow velocity between the cylinder and
its adjacent walls (since the gap decreases) as plotted in figure 5.17 (b),
which shows u(0.5, y) along the gap G between the cylinder bottom and the
bottom wall for r = 0.1, 0.2, 0.3 and 0.4 with Re = 100.

Figure 5.17: (a) pressure coefficient Cp around the left-centered cylinder
with r = 0.1, 0.2, 0.3 and 0.4 for Re = 100; (b) horizontal velocity u(0.5, y)
along the gap between the bottom wall and the cylinder bottom for r = 0.1
0.1, 0.2, 0.3 and 0.4 with Re = 100; (c) Cp around the left-centered cylinder
with r = 0.2 for Re = 100, 500 and 1000; (d) Cp around the left-centered,
centered and right-centered cylinder with r = 0.2 for Re = 100.

Figure 5.17 (c) shows Cp around the left-centered cylinder with r = 0.2
for Re = 100, 500 and 1000. For Re = 100, the base stagnation pressure
(i.e., Cp at the base point) and the front stagnation pressure (i.e., Cp at the
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stagnation point) are consistent with the observation elaborated in figure
5.7. As Re increases to 500, Cp decreases significantly since the flow velocity
around the cylinder decreases as visualized by the streamline contours in
figures 5.7 and 5.8. For Re = 1000, Cp decreases further and the front
stagnation pressure disappears. This is consistent with the observation that
the fluid moves anti-clockwise around the cylinder as shown in figure 5.9.

Figure 5.17 (d) shows Cp around the left-centered, centered and right-
centered cylinders with r = 0.2 for Re = 100. As the cylinder moves towards
the right wall, the front and back stagnation points move clock-wise around
the cylinder, and the pressure increases since the pressure is larger in the
right part of the cavity than in the left part.

5.4 Summary and conclusions

A detailed investigation of the flow patterns in the steady lid-driven cavity
of depth to width ratio 1:2 containing a circular cylinder of different radii
and positions is provided. Here the Reynolds numbers are 100, 500 and
1000 whilst the radii are 0.1, 0.2, 0.3 and 0.4. The positions of the cylinder
are left-centered, centered and right-centered. It appears that this flow
can be classified into seven different flow patterns visualized by streamline
contours. The flow pattern I is composed of one clockwise vortex to the
right side of the cylinder and two bottom corner vortices; flow pattern II is
composed by two clockwise vortices attached to the left and right side of the
cylinder as well as two bottom corner vortices; flow pattern III contains two
anti-clockwise vortices attached to the upper left and bottom right sides of
the cylinder, a clockwise vortex at the upper right side of the cylinder as
well as a bottom right corner vortex; flow patterns IV and VI are composed
by flow patterns I and II, respectively, with an additional bottom vortex;
flow pattern V is characterized by the anti-clockwise vortex at the lower
right side of the cylinder vanishing from flow pattern III; flow pattern VII is
characterized by the clockwise vortex to the right of the cylinder vanishing
from flow pattern II.

These flow patterns are given for different cylinder radii and positions
as well as Reynolds numbers. There is a tendency that for a given cylinder
radius, there are more transitions between different flow patterns for a small
radius than for a large radius (for Reynolds numbers ranging from 100 to
1000) while for a given Reynolds number, the number of transitions is larger
for high Reynolds numbers than for low Reynolds numbers (for radii ranging
from 0.1 to 0.4). Overall, a larger number of flow patterns tend to emerge as
the Reynolds number increases for small cylinder radii. The largest variety
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of flow patterns occur for the left-centered cylinder due to the interaction
with the large anti-clockwise circulation flow formed at the bottom left
corner.
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Chapter 6

Near-wall effect on flow
around an elliptic cylinder
translating above a plane
wall

Jianxun Zhu1, Lars Erik Holmedal1, Hong Wang1, Dag Myrhaug1

Abstract

In this work the flow over an elliptic cylinder near a moving wall is investi-
gated for Reynolds numbers less than 150. Here the ratio between the gap
(i.e., the distance between the cylinder and the wall) and the length of the
semi-major axis of the elliptic cylinder varies from 0.1 to 5. This ratio is
hereafter denoted the gap ratio. The resulting Kármán vortex street, the
two-layered wake and the secondary vortex street have been investigated
and visualized. Numerical simulations show that for steady flow, the wake
is composed of two asymmetric recirculation vortices while a decrease in
the gap ratio suppresses the vortex shed from the lower part of the cylinder.
For the unsteady flow, the wake can be classified into four different patterns
based on the wake structures (the Kármán vortex street, the two-layered
wake and the secondary vortex street). The regions of these wake pattern
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are given in the gap ratio and Reynolds number space, showing that the
critical Reynolds number for the transition between different patterns in-
creases as the gap ratio decreases. An overall increase of the mean drag
coefficient with increasing gap ratios is observed except for a sudden drop
which occurs within a small gap ratio range. Moreover, as the gap ratio
increases, the onset location of the two-layered wake firstly decreases due
to a decrease in flow velocity in the gap, and then increases due to the
weakening of the wall suppression effect.

6.1 Introduction

The wake behind an isolated circular cylinder has been studied extensively
because of its vital importance in understanding vortex shedding in engi-
neering applications such as marine risers and bridges. At low Reynolds
numbers (based on the cylinder diameter and the free-stream velocity), the
flow is symmetrical around the cylinder without flow separation. As the
Reynolds number increases to about 7, laminar separation occurs, forming
a pair of counter-rotating vortices which are symmetrical about the cen-
terline of the wake (Dennis & Chang 1970, Sen et al. 2009), and as the
Reynolds number increases further, the well-known Kármán vortex street
is formed (Le Gal et al. 2001, Kumar & Mittal 2006). This vortex street
exhibits a transition to a two-layered wake farther downstream, followed by
a second transition (even farther downstream) to a secondary vortex street
with larger spatial scales than the primary ones (Cimbala et al. 1988). The
physical mechanism underpinning the formation of the two-layered wake was
investigated experimentally by, e.g. Durgin & Karlsson (1971) and Karasu-
dani & Funakoshi (1994). They measured the vertical distance (h) between
the upper and lower wake vortices and the horizontal distance (l) between
two successive co-rotating vortices along the wake, and found that the ratio
(h/l) between these vertical and horizontal distances increases downstream.
At a given downstream location, this ratio reaches a critical value where two
successive vortices shed from the upper part of the cylinder impose convec-
tion of vorticity within the vortex shed from the lower part of the cylinder.
This vortex is located horizontally in between the two upper vortices (and
vice versa if the two successive vortices shed from the lower part of the
cylinder). As a result, this vortex starts to distort and rotate to align with
the stream-wise direction, forming the two-layered wake.

Experiments conducted by Cimbala et al. (1988) showed a broad-band
time frequency spectra of the vertical velocity fluctuation in the far wake.
For Reynolds numbers between 100 and 160, the broad-band spectra con-
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tains several prominent frequencies considerably lower than the Kármán
shedding frequency. It appears to be a strong correlation between these low
frequencies and the secondary vortex street, which contains vortices with
spatial scales larger than the Kármán vortices. In the view of this, Cimbala
et al. (1988) attributed the formation for the secondary vortex street to the
hydrodynamic instability of the mean wake. This hypothesis was supported
by Kumar & Mittal (2012) who conducted two-dimensional numerical sim-
ulations of flow around an isolated circular cylinder for a Reynolds number
of 150. Here packets of fluctuating vortices (i.e. based on the fluctuating
velocity field) with a range of spatial scales were formed in the far wake,
and these vortex packets grew stronger (i.e. contained larger vorticity)
through convection. On this basis, Kumar & Mittal (2012) argued that
the transition from the two-layered wake to the secondary vortex street is
due to the convective instability of the mean wake flow. Matsui & Okude
(1983) conducted experimental measurements for flow around an isolated
circular cylinder for Reynolds numbers less than 160 and explained the
formation of the secondary vortex street in terms of merging of Kármán
vortices. They also found that when the wake was forced acoustically by
one-half and one-third of the Kármán shedding frequency, two and three of
vortices merged into a large secondary vortex, respectively. The explana-
tion of this behavior, as demonstrated by Williamson & Prasad (1993) in
their experiments for Reynolds numbers less than 170, is that the far wake
flow is sensitive to the perturbation of the free-stream velocity. A very
small perturbation of the free-stream velocity can lead to visible spectral
peaks with the perturbation frequency and with the frequency difference be-
tween the Kármán shedding and the perturbation. Recently, Jiang & Cheng
(2019) investigated unforced (uniform inlet velocity without perturbations)
cylinder wakes using two-dimensional numerical simulations and found two
formation mechanisms for the secondary vortex street; i) the merging of two
co-rotating vortices for Reynolds numbers ranging from 200 to 300; ii) the
pairing of two counter-rotating vortices, followed by the merging of these
paired vortices for Reynolds numbers ranging from 400 to 1000.

Wakes behind other bluff bodies such as square (Arif & Hasan 2019a,b)
and elliptic cylinders have been investigated due to the practical impact on,
e.g., submarines (Mittal & Balachandar 1996) and heat exchangers (Khan
et al. 2005). For elliptic cylinders, the flow depends both on the aspect ratio
of the elliptic cylinder (defined by the ratio of the semi-minor to semi-major
axis length) and the incident angle (defined by the angle between the inlet
flow direction and the semi-minor axis) in addition to the Reynolds number
based on the free-stream velocity and the semi-major axis length. Johnson
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et al. (2001) used two-dimensional numerical simulations to investigate flow
around an isolated elliptic cylinder of aspect ratios ranging from 0.01 to 1
(i.e. from a flat plat to a circular cylinder) for Reynolds numbers up to 200
at zero incident angle. They found that for an aspect ratio of 0.5, the flow
is steady for a Reynolds number of 40 while Kármán vortex shedding exists
for a Reynolds number of 75. As the Reynolds number increases further to
125, the Kármán vortex street is followed by a two-layered wake (farther
downstream); as the Reynolds number increases even further to 150, the
secondary vortex street is formed in the far wake. This secondary vortex
street moves upstream and becomes more irregular as the Reynolds num-
ber increases up to 200. The critical Reynolds number for the onset of the
Kármán vortex street, the two-layered wake and the secondary vortex street
in the wake increases as the aspect ratio increases. Johnson et al. (2004)
investigated the power spectrum numerically of the vertical velocity along
the horizontal centerline downstream of the cylinder, revealing the presence
of secondary and tertiary frequencies in the far wake. These frequencies are
lower than the Kármán shedding frequency. The peaks of the power spec-
trum at these low frequencies become larger farther downstream, triggering
the transition from the two-layered wake to the secondary vortex street. Ra-
man et al. (2013) conducted two-dimensional simulations for the flow around
an elliptic cylinder with aspect ratios from 1 to 10 for Reynolds numbers
from 50 to 500. They found that the vortex shedding can be suppressed
by increasing the aspect ratio for a given Reynolds number. Yoon et al.
(2016) and Paul et al. (2014) found that the critical Reynolds number for
the vortex shedding suppression decreases as the angle of attack increases
from 0◦ to 90◦. Subburaj et al. (2018) used the immersed boundary method
and the level set method to investigate the two-dimensional flow around
the elliptic cylinder with aspect ratios of 0.25 and 0.5 near a free surface
for a Reynolds number of 180 with different angles of attack, showing that
for a submergence depth of 0.096, the vortex shedding is suppressed at the
angle of attack of 45◦ while metastable states appear at -45◦; at 90◦ vortex
shedding is partially suppressed.

Transitional movements of bluff bodies near a stationary plane wall are
both important in academic research and engineering applications such as
e.g. submarines or AUV (Autonomous Underwater Vehicle) moving near a
seabed. The latter is of great importance for inspections of subsea structures
as well as for mapping of the ocean bathymetry and collection of both phys-
ical data (e.g. of wave-induced velocities, current velocities and sediment
concentration) and biological data (e.g. fish larvae, plankton and contam-
ination). Taneda (1965) and Zdravkovich (1985) towed a circular cylinder
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along a plane wall in a water tank for Reynolds numbers of 170 and 3550,
respectively, and found alternating vorticies shed from the upper and lower
parts of the cylinder with a gap-to-diameter ratio of 0.6. When the same
experiment was conducted for a gap-to-diameter ratio of 0.1, only a single
row of vortices were shed from the upper part of the cylinder. Huang &
Sung (2007) conducted two-dimensional numerical simulations, finding that
for a Reynolds number of 300 the flow exhibits: i) a Kármán-like vortex
shedding at a gap-to-diameter ratio of 0.6; ii) a pair-wise vortex shedding,
where the lift and drag forces fluctuate with the same frequency at a gap-
to-diameter ratio of 0.2; iii) a single row of vortex shedding from the upper
part of the cylinder at a gap-to-diameter ratio of 0.1. The drag force in-
creases as the gap-to-diameter ratio increases (for a given Reynolds number)
up to a critical value (i.e., at the onset of the Kármán-like vortex shedding)
where the drag force reaches its maximum value. As the gap-to-diameter
ratio increases further the drag force decreases. It appears that the drag
force is closely correlated to the base pressure (Sumer et al. 2006), i.e.,
the lowest pressure located at the downstream side of the cylinder. As the
gap-to-diameter ratio increases up to the critical value, the vortices behind
the cylinder become stronger due to the weakening of the wall suppres-
sion effect, thus drawing in fluid at a higher rate (Bearman & Trueman
1972) resulting in a lower base pressure and a larger drag force. As the
gap-to-diameter ratio increases beyond this critical value, stronger vortices
are shed from the bottom of the cylinder, resulting in an enhanced interac-
tion with the vortices shed from the top of the cylinder, causing a higher
vortex shedding frequency. This implies a shorter time interval for the vor-
tices to grow before they move downstream, resulting in weaker vortices,
which again cause a larger base pressure and a smaller drag force (Sumer
et al. 2006). Moreover, as the gap-to-diameter ratio decreases (for a given
Reynolds number), the stagnation point at the front of the cylinder moves
downwards along the cylinder, causing a more asymmetric flow distribution
around the cylinder, resulting in a larger lift force (Sumer et al. 2006). Jiang
et al. (2017) conducted a comprehensive set of numerical investigations of
the two- and three-dimensional wake transitions for Reynolds numbers up
to 300 at gap-to-diameter ratios between 0.1 to 19.5. They found that for
flow in the two-dimensional regime, the critical Reynolds number for the on-
set of the vortex shedding increases as the gap-to-diameter ratio decreases.
This behavior further confirms that the presence of the wall weakens the
interaction between the vortices shed from the top and bottom part of the
cylinder, thus delaying the vortex shedding.

The development of the Kármán vortex street, the two-layered wake and



108 108

the secondary vortex street behind isolated cylinders have been investigated
previously for a wide range of Reynolds numbers and aspect ratios. Paul
et al. (2014) showed that the critical Reynolds number for the onset of the
flow separation and the Kármán vortex shedding decreases with decreasing
aspect ratios. Johnson et al. (2001) found that the critical Reynolds num-
ber for the onset of the two-layered wake and the secondary vortex street
decreases with decreasing gap ratio. Thompson et al. (2014) found that an
increase in Reynolds number for a given gap ratio or a decrease in gap ratios
for a given Reynolds numbers results in the onset location of the two-layered
wake and the secondary vortex street (which becomes more irregular) being
closer to the cylinder. Moreover, Jiang et al. (2017) showed that the pres-
ence of a moving wall have a significant effect on the flow around a near-wall
circular cylinder, e.g., suppressing the Kármán vortex shedding, changing
the lift and drag coefficients by varying the gap ratio. However, the effect
of a moving wall on the two-layered wake and the secondary vortex street
behind a near-wall elliptic cylinder with an aspect ratio less than 1 has not
been investigated previously. This is presented in the present work, together
with the resulting forces on the elliptic cylinder itself.

Specifically, the flow over an elliptic cylinder with the aspect ratio of
0.4 near a moving wall is investigated for Reynolds numbers less than 150.
Here the ratio between the gap (i.e., the distance between the cylinder
and the wall) and the length of the semi-major axis of the elliptic cylinder
varies from 0.1 to 5. The resulting Kármán vortex street, the two-layered
wake and the secondary vortex street have been investigated and visualized.
Numerical simulations show that for the steady flow, the wake is composed
either of two asymmetric recirculation vortices or one recirculation vortex
behind the cylinder; for the unsteady flow, the wake can be classified into
four different patterns based on the wake structures. These wake patterns
are mapped out in the gap ratio and Reynolds number space, and a detailed
analysis of the near-wall effect (i.e., the effect of the gap ratios) on the lift
and drag coefficients as well as on the onset location of the two-layered wake
are presented.

6.2 Problem definition and governing equations

The current paper addresses the flow around an elliptic cylinder moving
parallel to a wall with a constant velocity. It is convenient for numerical
simulations to use a uniformly translating frame of reference fixed on the
cylinder, such that the cylinder is stationary whilst the wall and the fluid
move towards the right at a uniform speed as shown in figure 6.1. The



6.3. Numerical methods 109

aspect ratio (AR) of the cylinder is defined by the semi-minor (a) to semi-
major (D) axis length ratio, i.e. AR = a/D. The gap ratio is given by
G/D where G is the gap between the moving wall and the cylinder, and
the Reynolds number is based on the major axis, i.e. Re = UD/ν where
ν is the kinematic viscosity. Here the incompressible flow with a constant
density ρ is governed by the dimensionless two-dimensional Navier-Stokes
equations given as

∂ui
∂xi

= 0 (6.1)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

(6.2)

where the Einstein notation using repeated indices is applied. Here ui =
(u,v) and xi = (x, y) for i = 1 and 2, indicate the velocity and Cartesian
coordinates, respectively, whilst t and p denote the time and pressure, re-
spectively. The velocity, time, pressure and length are scaled by U , D/U ,
ρU2 and D, respectively.

Figure 6.1: Definition of relevant dimensions

6.3 Numerical methods

A projection method is used for solving Eqs.(6.1) and (6.2). The con-
vective terms and the diffusive terms are discretized by Adams–Bashforth
and Crank-Nicolson schemes, respectively. The spatial derivatives are dis-
cretized with a second-order centred finite difference scheme on a staggered
grid arrangement. The Poisson equation for pressure correction is solved
using a biconjugate gradient stabilized method (Van der Vorst 1992) with
a Jacobi preconditioner.
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The cylinder geometry is taken into account by a direct-forcing immersed
boundary method (Peller et al. 2006). Figure 6.2 shows the treatment of
the Cartesian grid and the immersed boundary. A grid cell is blocked out of
the simulation if its corresponding variable (velocity or pressure) lies within
the immersed boundary. Then, the velocity point at the cell face between a
blocked cell and an unblocked cell is set as an inactive velocity (�), which
are updated by interpolation using the physical boundary condition at the
immersed boundary point (©) and the active velocity point (�) within
the fluid. Here, weighted one-dimensional, cubic Lagrange interpolation
schemes are applied as follows:

Figure 6.2: Definition of the inactive velocity points (�), immersed bound-
ary points (©), and active velocity points (�).

f(x) =
3∑

k=1

βk(x)fk + β(xΓ)fΓ (6.3)

where x and xΓ denote the locations of the inactive point and the immersed
boundary, respectively, whilst f(x), fk and fΓ represent the velocity values
at the inactive points, the active velocity points and the immersed boundary,
respectively. Here the Lagrange coefficients βk(x) and β(xΓ) can be obtained
by

βk(x) =

(
3∏

j=1,j 6=k

(x− xj)
(xk − xj)

)
x− xΓ

xk − xΓ
(6.4)
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β(xΓ) =

(
3∏
j=1

(x− xj)
(xΓ − xj)

)
(6.5)

where xj denote the location of the jth active point.

If an inactive velocity point can be interpolated from two directions,
each direction is multiplied by a weighting factor as follows:

f(x) = λxf
x + λyf

y (6.6)

where the superscript x and y denotes interpolation in the x and y-directions,
respectively, and the weighting factors λx and λy are given as

λx =
1

1 + ( lxly )2
and λy =

1

1 + (
ly
lx

)2
(6.7)

where lx and ly is the distance between the inactive point and the immersed
boundary in the x and y-direction, respectively, as shown in figure 6.2.
Moreover, a Neumann condition for the pressure correction is applied at
the inactive velocity points.

Figure 6.3: Streamlines for the flow over a cylinder at Re = (a) 40, (b) 100
and (c) 200 as well as the nomenclature used in Table 6.1; separation angle
θ, wake length Lw, horizontal distance a between the rear stagnation point
of the cylinder and the recirculation center and vertical distance b between
the symmetric recirculation centers



112 112

6.4 Validation against previous numerical and ex-
perimental results

Numerical investigations of the two-dimensional flow around an isolated
circular cylinder are conducted for Re = 40, 100 and 200. A dimension-
less free-stream velocity U = 1 is specified at the inlet boundary while a
Neumann condition is imposed for the velocity at the outlet and lateral
boundaries. A no-slip condition is applied at the cylinder. The pressure
is set to be zero at the outlet and a Neumann condition for the pressure
correction is imposed at the other boundaries. A spin-up time of t = t∗U/D
= 200 (where t∗ is the physical time) was found to be sufficient to obtain a
fully developed flow for all the cases. For Re = 40, the flow reaches a steady
state where two counter-rotating vortices which are symmetrical about the
centerline of the wake are formed (see figure 6.3a); for Re = 100 and 200, the
flow exhibits an unsteady state where periodic alternating vortex shedding
(Kármán vortices) occurs as visualized by the streamlines in figure 6.3(b)
and 6.3(c).

Table 6.1: The physical parameters obtained by the present numerical
method and previous works for the flow around a circular cylinder at Re =
40; the superscript ∗ denotes that the results were obtained by experiments.
The front stagnation point is located at θ = 180◦.

CD θ Lw a b
∗Coutanceau & Bouard (1977) 53.8◦ 2.13 0.76 0.59
Linnick & Fasel (2005) 1.54 53.6◦ 2.28 0.72 0.60
Fornberg (1980) 1.50 55.6◦ 2.24
Patil & Lakshmisha (2009) 1.56 52.7◦ 2.14
Taira & Colonius (2007) 1.54 53.7◦ 2.30 0.73 0.60
Berthelsen & Faltinsen (2008) 1.59 53.9◦ 2.29 0.72 0.60
Coarse mesh (0.02) 1.57 52.5◦ 2.26 0.72 0.60
Fine mesh (0.01) 1.59 53.1◦ 2.26 0.72 0.60

The inlet is located 10 cylinder diameters upstream of the cylinder cen-
ter; the outlet is located 20 diameters downstream of the cylinder center,
while the top and bottom boundaries are located 10 diameters away from the
cylinder center. A fine uniform grid (∆x = ∆y = 0.01) is applied in a small
square region around the cylinder (i.e. −0.7 ≤ x ≤ 0.7, −0.7 ≤ y ≤ 0.7).
From the edges of this region, the grid is stretched (using geometric series)
in both the horizontal and vertical directions, using stretch ratios less than
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1.05.

Table 6.2: Comparisons between present results and previous numerical and
experimental results: Strouhal number St, lift coefficient amplitude CL,a,
drag coefficient CD and amplitude CD,a for uniform flow around a circular
cylinder at Re = 100 and 200; the superscript ∗ denotes that the results
were obtained by experiments.

Re = 100 C̄D St CL,a CD,a
∗Williamson (1989) - 0.164 - -
Calhoun (2002) 1.33 0.175 0.298 0.014
Russell & Wang (2003) 1.38 0.169 0.300 0.007
Xu & Wang (2006) 1.42 0.171 0.340 0.013
Berthelsen & Faltinsen (2008) 1.38 0.169 0.340 0.010
Wang et al. (2009) 1.38 0.170 0.357 -
Coarse mesh (0.02) 1.36 0.170 0.323 0.010
Fine mesh (0.01) 1.37 0.171 0.337 0.012

Re = 200 C̄D St CL,a CD,a
∗Williamson (1989) - 0.197 - -
Calhoun (2002) 1.17 0.202 0.668 0.058
Russell & Wang (2003) 1.29 0.195 0.500 0.022
Xu & Wang (2006) 1.42 0.202 0.660 0.040
Berthelsen & Faltinsen (2008) 1.37 0.200 0.700 0.046
Wang et al. (2009) 1.26 0.195 0.708 -
Coarse mesh (0.02) 1.35 0.200 0.707 0.047
Fine mesh (0.01) 1.36 0.200 0.706 0.048

Table 6.1 shows comparisons between the results obtained in the present
work and available results obtained from experiments (Coutanceau & Bouard
1977) and numerical simulations for Re = 40 (Linnick & Fasel 2005, Forn-
berg 1980, Patil & Lakshmisha 2009, Taira & Colonius 2007, Berthelsen
& Faltinsen 2008). Here CD is the drag coefficient; θ, Lw, a and b (as
shown in figure 6.3) denote the separation angle, wake length, the hori-
zontal distance between the rear stagnation point of the cylinder and the
recirculation center as well as the vertical distance between the symmetric
recirculation centers, respectively. The drag coefficient CD is defined as CD
= 2Fd/(ρU

2D), where Fd is the drag force acting on the cylinder in the
x-direction. The wake parameters Lw, a and b are scaled by the diameter
of the cylinder. Table 6.1 shows that a good agreement is obtained with
previous experimental (Coutanceau & Bouard 1977) and numerical (Linnick
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& Fasel 2005, Fornberg 1980, Patil & Lakshmisha 2009, Taira & Colonius
2007, Berthelsen & Faltinsen 2008) results.

Figure 6.4: Sketch of the computational domain and the boundary conditions
for the flow around an elliptic cylinder near a moving wall.

Table 6.2 shows comparisons between the present results and available
results obtained from experiments (Williamson 1989) and the numerical sim-
ulations (Calhoun 2002, Russell & Wang 2003, Xu & Wang 2006, Berthelsen
& Faltinsen 2008, Wang et al. 2009) for Re = 100 and 200. The quanti-
ties which are compared are the time-averaged drag coefficient (C̄D), the
Stroudhal number St = Df/U(where f represents the vortex shedding fre-
quency), the lift coefficient amplitude (CL,a) and the drag coefficient ampli-
tude (CD,a). The present results are in good agreement with those obtained
by Berthelsen & Faltinsen (2008) who used an immersed boundary method
similar as the present method. Overall, the present results are in fair to
good agreement with those presented in Table 6.2.

A grid refinement test was conducted using a coarse grid (∆x = ∆y =
0.02) in the small rectangular domain around the cylinder, and then stretch-
ing the grid vertically and horizontally from the edges of this domain. The
deviation from the results obtained with the fine grid was less than 1.2 %
for the quantities given in Tables 6.1 and 6.2.

6.5 Results and discussion

Numerical investigations of the flow around an elliptic cylinder with an as-
pect ratio AR = 0.4 near a moving wall have been conducted for Re ranging
from 30 to 150 for gap ratios G/D ranging from 0.1 to 5. Figure 6.4 shows
the computational domain, the location of the cylinder and the boundary
conditions. The inlet and top boundaries are located 20D away from the
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Figure 6.5: Grid for the whole computational domain and a close-up of the
uniform grid around the cylinder at G/D = 0.2.

cylinder center; the outlet is located 50D downstream of the cylinder center,
and the bottom boundary is located (G/D+0.5)D from the cylinder center.
A dimensionless velocity u = 1 is set at the inlet, and a Neumann condition
is imposed for the velocity at the top and outlet boundaries. A no-slip con-
dition is applied at the cylinder and the bottom wall which moves towards
the right at u = 1. The pressure equals to zero at outlet and a Neumann
condition for the pressure correction is imposed at other boundaries.

A uniform grid (∆x = ∆y = 0.02) is applied to a region (marked by a
blue rectangle) around the cylinder. The edges of this region is located 0.7
semi-major axis lengths away from the cylinder center. The grid is stretched
from the top and left edges of this edge, using constant stretch ratios less
than 1.02. From the right edge, the grid is stretched over the next 10 semi-
major axis lengths downstream (using a stretch ratio of 1.01) until ∆x =
0.1 which is held constant over the rest of the downstream region. For gap
ratios less than 1, the grids between the cylinder bottom and the bottom wall
have the same vertical size, i.e. ∆y = 0.02. For gap ratios larger than 1, the
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Figure 6.6: Time history of CD (upper two curves) and Cl (lower two
curves) for Re = 150 with G/D = 0.2 and 2.

Table 6.3: Comparisons of the St, C̄D and C̄l obtained by the computation
domain 2 with the uniform mesh sizes ∆x = ∆y = 0.02 and 0.01 for Re =
150 and G/D = 0.1.

Mesh size St C̄D C̄l

Coarse (∆x = ∆y = 0.02) 0.105 1.66 0.36
Fine (∆x = ∆y = 0.01) 0.106 1.67 0.35

grid is stretched symmetrically from the bottom wall and from the cylinder
bottom to the center position between them, using a stretching ratio less
than 1.01. Figure 6.5 shows the complete grid for the whole computational
domain and a close-up of the uniform grid around the cylinder for G/D
= 0.2. For all the simulations conducted in this study, a spin-up time of
t = 400 was found to be sufficient to obtain a fully developed flow where
the fluctuation amplitude and period of CD and Cl are fully developed, as
exemplified in figure 6.6 showing the time history of CD and Cl for Re =
150 with G/D = 0.2 and 2. This was checked for each simulation.

To test grid independence, numerical simulations were conducted using
the coarse grid resolution and the fine grid resolution as given in Table
6.3 for the largest Reynolds number Re = 150 and the smallest gap ratio
G/D = 0.1. Table 6.3 shows St, C̄D and C̄l obtained by the two grid
resolutions, showing deviations of 0.9%, 0.6% and 2.7%, respectively, from
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those obtained with the coarse grid. Thus, the coarse grid is remaining
sufficient to obtain the grid independent results.

6.5.1 Steady state

Flow around an isolated elliptic cylinder with AR = 0.4 is in the steady
regime for Re = 30 while vortex shedding occurs for Re = 40 as visualized by
vorticity and streamline contours in figures 6.7(a) and 6.7(b), respectively.
Here the critical Reynolds number Rec for the onset of the vortex shedding
is 35±5 which is smaller than the critical Reynolds number for a circular
cylinder (AR = 1) which ranges from 45 to 49 (Jackson 1987, Le Gal et al.
2001, Kumar & Mittal 2006); a decrease in AR leads to a decrease of Rec.
The effect of the aspect ratio on the critical Reynolds number has been
investigated numerically by Thompson et al. (2014) and Paul et al. (2014),
finding that Rec decreases from 47.2 to 31.6 and from 48.5±0.5 to 23.5±0.5,
respectively, as AR decreases from 1 to 0.1. Thompson et al. obtained a
larger Rec for AR = 0.1 than Paul et al.. This is mainly because the
blockage ratio of the grid system used by Thompson et al. is 1%, which is
much smaller than 6.25% used by Paul et al..

Figure 6.7: Vorticity contours and streamlines (black solid lines) for flow
around an isolated elliptic cylinder of AR = 0.4 for (a) Re = 30 and (b)
Re = 40; for flow around an elliptic cylinder of AR = 0.4 for Re = 40 at
(c) G/D = 0.4 and (d) G/D = 0.2.

Figures 6.7(c) and 6.7(d) show the vorticity and streamline contours for
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Re = 40 at G/D = 0.4 and 0.2, respectively. The flow reaches a steady
state (i.e. no vortex shedding) at G/D = 0.4 (figure 6.7c) while at the
same Re the flow exhibits vortex shedding for the isolated cylinder (figure
6.7b). This is because the shear layer (negative vorticity) generated near
the moving wall weakens the shear layer beneath the bottom of the cylinder
(positive vorticity), thus delaying the onset of vortex shedding. This is the
same mechanism as has been previously observed for a circular cylinder near
a moving wall (Rao et al. 2013, 2015, Jiang et al. 2017). As G/D decreases
further to 0.2, the lower recirculation vortex as observed in figure 6.7(c)
vanishes. The impact of G/D on the front stagnation point for a circular
cylinder near a moving wall was investigated by Jiang et al. (2017) using
two-dimensional numerical simulations, showing that the front stagnation
point moves downwards along the cylinder as G/D decreases. This behavior
is also observed in the present studies and is visualized by the streamlines
in figures 6.7(c) and 6.7(d). It appears that more fluid move upwards along
the cylinder due to the enhanced blockage effect in the gap (as can be seen
by the downward movement of the front stagnation point in figure 6.7c and
6.7d) caused by decreasing G/D, forming a larger recirculation vortex for
G/D = 0.2 than for G/D = 0.4. This behavior is qualitatively similar to
the observation by Jiang et al. (2017) for the flow around a circular cylinder
near a moving wall.

Figure 6.8(a) shows the recirculation vortex centers for Re ranging from
30 to 70 at G/D = 0.2 and 0.4, i.e. in the parameter range where the flow
is steady. The upper recirculation vortex is formed for all the values of Re
and G/D considered here while the lower recirculation vortex disappears
for Re ≤ 40 at G/D = 0.2. It appears that the lower recirculation vortex
center is located closer to the cylinder than the upper recirculation vortex
center, and this difference is larger for G/D = 0.2 than for G/D = 0.4 due to
stronger wall suppression effect on the lower recirculation vortex. For G/D
= 0.4, an increase of Re leads to a smaller difference since thinner shear
layers are formed, resulting in a weaker interaction between the shear layers
beneath the cylinder bottom and near the wall. For G/D = 0.2, however,
an increase of Re does not affect the bottom vortex much due to the wall
suppression effect.

Figure 6.8(b) shows CD and Cl against Re in the steady flow regime,
i.e., for Re ∈ [30 , 100] at G/D = 0.2 and 0.4. For a given Re, CD and
Cl are larger for G/D = 0.2 than for G/D = 0.4. For a given G/D, CD
and Cl decrease almost linearly as Re increases in log-log scale. This is in
qualitative agreement with results observed previously by Rao et al. (2013,
2015) (for the steady flow regime, i.e., no vortex shedding) for a fixed and
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Figure 6.8: (a) Locations of the vortex center behind the cylinder; (b) the
drag (CD) and lift (Cl) coefficient for Re from 30 to 70 and for G/D = 0.2
and 0.4; (c) and (d) show the pressure (Px) and viscous (Fx) drag coeffi-
cients, respectively, for Re from 30 to 70 and for G/D = 0.2 and 0.4.

a rotating circular cylinder near a moving wall for G/D ranging from 0.05
to 4. Figures 6.8 (c) and (d) show the drag force due to the pressure (Px)
and due to the cylinder friction (Fx) against Re for G/D = 0.2 and 0.4,
respectively. It appears that G/D has a weaker effect on Fx than on Px,
implying that the G/D affects the cylinder friction less than the pressure
distribution around the cylinder as previously demonstrated by Sumer et al.
(2006) for a circular cylinder.

6.5.2 Unsteady state

6.5.2.1 Wake patterns

Figure 6.9 shows vorticity contours of the flow around an isolated elliptic
cylinder with AR = 0.4 for Re = 130. The three different wake structures
(separated by vertical dashed lines) can be classified into three different
flow regimes (Thompson et al. 2014, Jiang & Cheng 2019); i) the near wake
where clockwise and anti-clockwise vortices are alternately shed from the
upper and lower parts of the cylinder, forming the Kármán vortex street;
ii) further downstream the Kármán vortex street breaks down and develops
into a two-layered wake (Durgin & Karlsson 1971, Karasudani & Funakoshi
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Figure 6.9: Instantaneous vorticity contours for flow around an isolated
elliptic cylinder of AR = 0.4 with Re = 130.

1994, Thompson et al. 2014); iii) the far wake where the hydrodynamic
instability of the two-layered wake (Johnson et al. 2004, Kumar & Mittal
2012) leads to a secondary vortex street characterized by larger scales and
lower frequencies than the Kármán vortex street.

Figure 6.10 shows instantaneous vorticity contours for the flow around
an elliptic cylinder near a moving wall forRe= 130 and forG/D = 2, 0.8, 0.2
and 0.1. For G/D = 2 (figure 6.10a), the wake structure is composed of the
Kármán vortex street, the two-layered wake and the secondary vortex street.
This flow structure is qualitatively similar to that for an isolated elliptic
cylinder (figure 6.9). Moreover, it is worth noting that the onset location
of the two layered wake is nearly the same (this will be further discussed in
section 6.5.2.3), while the secondary vortex occurs farther downstream for
G/D = 2 than for the isolated cylinder. The bottom wall shear layer is a
result of the vortex (with positive vorticity) shed from the cylinder bottom;
a region with negative vorticity occurs between the vortex and the wall.
This result is valid for a vortex in the vicinity of a wall as first predicted by
Peace & Riley (1983), observed experimentally by Walker et al. (1987) and
Allen & Chong (2000), and shown by Ovando et al. (2009) and Zhu et al.
(2020) using numerical simulations. This flow is denoted wake pattern A.
Figure 6.11 shows the amplitude va of the vertical velocity fluctuation along
the downstream cylinder centerline for the isolated cylinder and for G/D
= 2 and 0.8. In the near-wake region, va decreases downstream (which is
consistent with the decay of the Kármán vortex street and the transition
to the two-layered wake where a calm region is formed between the two
vortex layers; see figure 6.9 and figure 6.10a-6.10b). Then, va grows farther
downstream for the isolated cylinder and for G/D = 2, which coincides
with the transition from the two-layered wake to the secondary vortex street
(see figure 6.9 and figure 6.10a). Furthermore, figure 6.11 shows that the
presence of the moving wall leads to a significant reduction of va in the
far-wake region, consistent with the delayed onset of the secondary vortex
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Figure 6.10: Instantaneous vorticity contours for flow around an elliptic
cylinder of AR = 0.4 near a moving wall with Re = 130 and G/D = 2, 0.8,
0.2 and 0.1.

street for G/D = 2; the secondary vortex street appears farther downstream
for G/D = 2 (figure 6.10a) than for the isolated cylinder (figure 6.9).

As G/D decreases to 0.8 (figure 6.10b), the secondary vortex street
disappears in the far wake region, which is present for G/D = 2 (figure
6.10a) and for the isolated cylinder (figure 6.9). This is consistent with
the observation that va remains almost zero in the far wake region (figure
6.11); i.e., the vertical fluctuations are further suppressed as the wall is
approached. Thus the wake structure here is composed of the Kármán
vortex street and the two-layered wake; this flow is denoted the wake pattern
B. Here the onset location of the two-layered wake for G/D = 0.8 is closer
to the cylinder than for G/D = 2. The transition location from the Kármán
vortex street to the two-layered wake is closer to the cylinder for G/D =
0.8 than that for G/D = 2. This will be further discussed and quantified in
section 6.5.2.3.
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Figure 6.11: Amplitude of the vertical velocity fluctuation along the wake
centerline for the isolated cylinder and for G/D = 0.8 and 2 at Re = 130.

Figure 6.12: Distribution of wake patterns, i.e. wake pattern A (�), wake
pattern B (�), wake pattern C (©), wake pattern D (•) and the steady state
(♦) within (G/D, Re)-space;

As G/D decreases further to 0.2 (figure 6.10c), the lower vortex (behind
the bottom of the cylinder) is shed immediately following the upper one
(behind the top of the cylinder), forming a vortex pair moving downstream
and deflecting away from the wall. This pair-wise vortex shedding destroys
the geometric arrangement of the vortices required for the transition to the
two-layered wake. Thus the Kármán vortex street and the two-layered wake
break down simultaneously; this flow is denoted wake pattern C.

For G/D = 0.1 (figure 6.10 d), the upper shear layer (behind the top
of the cylinder) becomes more elongated than for G/D = 0.2, and rolls
down at a downstream location of x ≈ 5. The shear layer near the wall
rolls up when meeting the rolled-down shear layer at x ≈ 15, forming a new
vortex pair moving downstream and deflecting away from the wall. This
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behavior is qualitatively similar to that observed for G/D = 0.2 except for
the existence of a quasi-steady near-wake region (x < 5), where the drag
and lift coefficients are almost constant as will be discussed later in section
6.5.2.2); this flow is denoted the wake pattern D.

Figure 6.13: Time history of CD and Cl for flow around an elliptic cylinder
of AR = 0.4 near a moving wall with Re = 130 and G/D = 2, 0.8, 0.2 and
0.1.

Figure 6.12 shows the distribution of the wake patterns A, B, C and
D as well as the steady state flow (i.e., no vortex shedding occurs) in the
(G/D, Re)-space. Wake pattern D only exists at G/D = 0.1 for Re =
130. For Re ≤ 110, the wake pattern A does not exist (i.e., the secondary
vortex street does not appear) and the steady state flow appears only at
small values of G/D and Re. Overall, it appears that as G/D decreases (for
a given Re), the flow undergoes a transition sequence from wake pattern
A → wake pattern B → wake pattern C. Moreover, as Re increases (for
a given G/D), the critical gap ratio for the transition between two wake
patterns (except wake pattern D) decreases. This critical gap ratio G/Dc

denotes a threshold value where one wake pattern exists and below which
another wake pattern appears. For example, the transition between wake
patterns B and C occurs for G/D ∈ [0.36, 0.4] (where G/Dc = 0.38± 0.02)
for Re = 110 and for G/D ∈ [0.3, 0.32] (where G/Dc = 0.31 ± 0.01) for
Re = 130. This might be explained by that an increase of Re leads to an
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enhanced growth of the secondary instability (i.e., the transition of wake
pattern B to A) as well as the vortex shedding behind the bottom of the
cylinder (i.e., the transition from the steady state flow to wake pattern
C). Conversely, a decrease in G/D suppresses the growth of va (i.e., the
secondary instability) in the far-wake region (figure 6.11) and the Kármán
vortex shedding. Therefore, a smaller G/D is required for a higher Re to
maintain the same wake pattern.

Figure 6.14: (a): variations of the time-averaged drag coefficient (CD),
viscous (Fx) and pressure (Px) drag coefficient at various G/D for Re =
150; (b): time history of the CD for Re = 150 and for G/D = 0.2, 0.24,
0.3 and 0.36. Here T is the vortex shedding period, which is different for
different G/D.

6.5.2.2 Hydrodynamic forces

Figure 6.13 shows the time history of the drag coefficient CD and the lift
coefficient Cl for flow around the elliptic cylinder near a moving wall for Re
= 130 at G/D = 2, 0.8, 0.2 and 0.1, i.e., corresponding to the flow shown
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in figure 6.10. For both G/D = 2 and G/D = 0.8, it is observed that every
second crest value of CD is larger than the crest values in between; this
effect is strongest for G/D = 0.8. The smaller crest values are caused by
the vortex shed from the bottom part of the cylinder, whilst the larger crest
values are caused by the vortex shed from the top of the cylinder (Huang
& Sung 2007, Wang et al. 2018). It is observed that the lift coefficient Cl
oscillates with half the frequency of CD both for G/D = 2 and G/D = 0.8
since two vortices with opposite sign are shed from the top and bottom of
the cylinder within each oscillation period and CD is not sensitive to the
sign of the vortex (Norberg 2003). For G/D = 0.2, the upper and lower
vortices are not shed alternately; the lower vortex is shed and follows the
upper vortex immediately, forming a vortex pair moving downstream (as
previously shown in figure 6.10c). Consequently, the small crest caused by

Figure 6.15: Vorticity contours for flow around an elliptic cylinder near a
moving wall with G/D = 0.2, 0.24, 0.3 and 0.36 at instants A, B, C and
D, respectively, marked in figure 6.14; for contours with values from -5.5 to
5.5, the difference in value between two adjacent contour lines is 1. Dashed
and solid line indicate the negative and positive values, respectively.

the alternately shedding lower vortex (see, e.g., figure 6.10b and figure 6.13
for G/D = 0.8) disappears, resulting in a constant crest value of CD and
the same oscillating frequency but with different phases for CD and Cl. A
similar explanation was also found by Huang & Sung (2007) for the flow
around a circular cylinder near a moving wall with G/D = 0.2 and Re =
300. As G/D decreases further to 0.1, the oscillations of CD and Cl vanish
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since the vortex shedding near the cylinder is suppressed as shown in figure
6.10(d).

Figure 6.14(a) shows the time-averaged drag coefficient (CD), the time-
averaged drag coefficients due to the pressure (Px) and due to the skin
friction (Fx) against G/D for Re = 150. Here CD = Px + Fx. The value
of CD increases gradually for G/D ∈ [0.1 , 1.4] except for a sudden drop at
G/D ∈ [0.24 , 0.3], which will be further explained below. For G/D larger
than 1.4, CD remains nearly constant. A similar behavior is observed for
Px while Fx is hardly affected by G/D at all. The overall increase of CD as
G/D increases is mainly due to the time-averaged pressure difference over
the cylinder, which is closely related to the growth of the vortex attached to
backside of the cylinder as shown in figure 6.15; a stronger attached vortex
draws in fluid more rapidly from the base region behind the cylinder during
its growth, leading to a smaller pressure behind the cylinder and thus a
larger pressure difference over the cylinder, leading to larger values of Px
and thus of CD.

Figure 6.16: (a) the Strouhal number St, (b) the injection rate Γtop of the
circulation into the upper vortex over the top of the cylinder and the injection
rate Γgap of the circulation into the lower vortex through the gap for Re =
150 with G/D = 0.2, 0.24, 0.3 and 0.36.

Here the increase of CD for G/D ∈ [0.2, 0.24] and G/D ∈ [0.3, 0.36]
observed in figure 6.14(a) is investigated; the decay of CD for G/D ∈ [0.24,
0.3] will be discussed in the paragraph below. The time-history of CD
at G/D = 0.2, 0.24, 0.3 and 0.36 for Re = 150 during one dimensionless
vortex shedding cycle is shown in figure 6.14(b). Here the largest value of
CD is smaller for G/D = 0.2 than for G/D = 0.24 (marked as A and B,
respectively). This coincides with the occurrence of the lower vortex behind
the bottom of the cylinder shown in figures 6.15(a) and (b), which show the
lower vortex becomes stronger (i.e., the vorticity increases) as G/D increases
from 0.2 to 0.24. This is because an increase in G/D weakens the effect of
the bottom-wall shear layer on the vortex shedding, thus contributing to
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the formation of the stronger lower vortex (Jiang et al. 2017), i.e., the wall
suppression effect on the lower vortex shedding becomes weaker. Thus an
increase in G/D enhances the dimensionless vortex shedding frequency here
represented by the Strouhal number St as shown in figure 6.16(a) for the
moving wall (the case of applying the slip wall condition will be discussed
below). Figure 6.14(b) shows that CD is smaller for G/D = 0.3 than for
G/D = 0.36 at the instants C and D, coinciding with the occurrence of
the upper vortex which is weaker for G/D = 0.3 than for G/D = 0.36 as
shown in figure 6.15(c) and (d), respectively. This is because the circulation
generated at the front of the cylinder is injected into the upper vortex over
the cylinder top with lower frequency for G/D = 0.3 than for G/D = 0.36
(consistent with the variation of St as shown in figure 6.16a for a moving
wall). This behavior can be quantified by the cycle-averaged circulation

Γtop(= − 1
T

∫ T
0 (
∫ 2
G/D+1 uωzdy)dt) and Γgap(=

1
T

∫ T
0 (
∫ G/D

0 uωzdy)dt) (will be

discussed below), which represent the rate of the circulation generated at
the front of the cylinder injected into the upper and lower vortices shed from
the cylinder, respectively. Figure 6.16(b) shows a smaller Γtop for G/D =
0.3 than for G/D = 0.36, leading to a weaker upper vortex for G/D = 0.3
than for G/D = 0.36, thus resulting in a smaller CD for G/D = 0.3 than
for G/D = 0.36. This behavior is also observed as G/D increases from 0.2
to 0.24 (figure 6.16b), which is consistent with a slightly larger CD for G/D
= 0.24 than for G/D = 0.2 during the growth phases of the upper vortex
(i.e., at instants C and D) shown in figure 6.14(b). Overall, it appears that
for G/D ∈ [0.2, 0.24] and G/D ∈ [0.3, 0.36] an increase of G/D weakens
the wall suppression effect on the vortex shedding behind the cylinder, thus
forming a stronger lower vortex behind the cylinder while the circulation is
injected over the top of the cylinder with higher frequency, contributing to
a stronger upper vortex.

Now the sudden drop of CD for G/D ∈ [0.24, 0.3] observed in figure
6.14(a) is discussed. As shown in figure 6.14(b), the value of CD is smaller
for G/D = 0.3 than for G/D = 0.24 during the entire shedding cycle. This
implies that both the upper and lower vortices are weaker for G/D = 0.3
than for G/D = 0.24. The formation of the weaker upper and lower vortices
for G/D = 0.3 relative to G/D = 0.24 is consistent with the decrease of Γtop
and Γgap as G/D increases from 0.24 to 0.3 as shown in figure 6.16(b). It
should be noted that the vortex shedding frequency ( 1

T ) is almost the same
for G/D = 0.24 and 0.3 (which will be further explained in the following
paragraph) shown in figure 6.16(b). Hence, the decrease of both Γtop and
Γgap is determined by the total circulation convecting into the vortices from

the top of the cylinder (Γtop = −
∫ T

0 (
∫ 2
G/D+1 uωzdy)dt) and through the gap
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(Γgap =
∫ T

0 (
∫ G/D

0 uωzdy)dt) during one vortex shedding cycle. The decrease
of Γtop as G/D increases from 0.24 to 0.3 is due to less fluid moving upwards
along the cylinder since the front stagnation point moves upwards along the
cylinder as G/D increases as depicted in figure 6.7(c) and (d); the decrease
of Γgap is due to the decrease of the gap velocity as G/D increases. However,
the wall suppression effect is weaker for G/D = 0.3 than for G/D = 0.24,
which (as an isolated effect) would lead to an increase of CD from G/D
= 0.24 to G/D = 0.3. It appears that for G/D ∈ [0.24, 0.3], the total
vortex strength (i.e., from the upper and lower vortices) is stronger affected
by the circulation injection rate than by the wall suppression effect. This
is contrary to the case of G/D ∈ [0.2, 0.24], where Γgap decreases whilst
Γtop increases, resulting in that CD increases, indicating that the lower
vortex strength here is stronger affected by the wall suppression than by
the circulation generated at the front of the cylinder. Moreover, it is worth
to note that Γgap(= Γgap/T ) also keeps decreasing as G/D increases, which
is different from Γtop and CD as shown in figure 6.16(b) and figure 6.14(a),
respectively. It appears that the decrease of T induced by increasing G/D
does not compensate the simultaneous decrease of Γgap due to the decrease
of flow velocity in the gap caused by increasing G/D.

Figure 6.17: (a) the time-averaged drag coefficient CD and (b) the Strouhal
number St for the flow around an elliptic cylinder near a moving wall for
Re = 100 and 130 with G/D from 0.2 to 0.5.

Now the nearly constant value of St for G/D ∈ [0.24, 0.3] for Re = 150
(figure 6.16a, moving wall where the no-slip conditions u = 1 and v = 0
are imposed) is discussed. For a given Re, the vortex shedding frequency
is mainly affected by the wall suppression effect and the bottom-wall shear
layer. The effect of these shear layers can be eliminated by conducting
simulations with a slip condition (∂u∂y = 0, v = 0) imposed on the bottom
wall. At large gap ratios, e.g., for G/D > 0.3 (figure 6.16a), St is almost
equal for the two boundary conditions because the shedding vortices are
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weakly affected by the bottom-wall shear layers. Here St increases as G/D
increases due to the weakening of the wall suppression effect. For G/D ∈
[0.2, 0.24] the vortex suppression effect is larger than for G/D > 0.3 but
in this gap ratio range, the bottom-wall shear layers cause the vortex shed
from the cylinder bottom to roll up such that it is located closer to the
vortex shed from the cylinder top. This results in an enhancement of the
vortex shedding frequency (St) for G/D ∈ [0.2, 0.24] which compensates the
decrease of St induced by the strengthening of the wall suppression effect
(as G/D decreases from 0.3 to 0.24), thus resulting in the nearly equal St
for G/D ∈ [0.24, 0.3]. Moreover, for G/D ∈ [0.2, 0.24], St increases as G/D
increases but is larger than for the case of applying the slip condition as
shown in figure 6.16(a).

Figure 6.17(a) shows the time-averaged drag coefficient CD (a) and the
Strouhal number St (b) for Re = 100 and 130. For Re = 130 CD exhibits
a qualitatively similar behavior as for Re = 150 (shown in figure 6.14a),
showing an overall increase of CD as G/D increases from 0.2 to 0.3 with a
sudden drop for G/D ∈ [0.3, 0.32]. However, the sudden drop of CD does
not occur for Re = 100. This is because here the bottom-wall shear layer
becomes weaker, thus reducing its effect on the vortex shedding frequency at
small G/D, i.e., as G/D increases the vortex shedding frequency increases
smoothly as shown in figure 6.17(b) without a nearly constant region similar
to that for Re = 130. Hence the circulation is injected into the vortex
with higher frequency as G/D increases, contributing to a stronger vortex
shedding, i.e., a smooth growth of CD.

Figure 6.18: The mean lift coefficient C l against G/D for Re = 150.

Figure 6.18 shows the time-averaged lift coefficient (C l) against G/D for
Re = 150. The non-zero C l is caused by the asymmetric flow distribution
around the stream-wise centerline of the cylinder due to the presence of
the moving wall. As G/D increases, the flow tends to be less asymmetric,
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leading to a decrease of C l. A qualitatively similar behavior was also found
for flow around a circular cylinder near a moving wall for Re < 500 (Huang
& Sung 2007, Rao et al. 2013, Jiang et al. 2017).

Figure 6.19: (a) time-averaged vertical velocity field and (b) instantaneous
vorticity contours for flow around an isolated cylinder for Re = 130. The
dashed black line denotes the transition location for the two-layered wake.

6.5.2.3 The onset location of the two-layered wake

As previously proposed by Jiang & Cheng (2019), the onset location of
the two-layered wake behind the isolated elliptic cylinder (for AR = 0.4
and for Re = 130), can be identified by the location of the positive and
negative local maxima of the time-averaged vertical velocity contours (i.e.,
the vertical dashed line in figure 6.19a). A snapshot of the instantaneous
vorticity contours are shown in figure 6.19(b) depicting the Kármán vortex
and the two-layered wake farther downstream.

Figure 6.20 shows the time-averaged vertical velocity contours (left col-
umn) and the instantaneous vorticity contours (right column) for Re = 130
at G/D = 2 and 0.8. Here the distribution of the time-averaged velocity
becomes asymmetric about the horizontal center-line of the cylinder; the
positive local maximum is slightly farther away from the cylinder than the
negative maximum. Thus the transition to the two-layered wake occurs
farther downstream for the upper part than for the lower part of the cylin-
der. This is because the lower vortex behind the cylinder is weaker than
the upper vortex due to wall suppression effect, and thus the upper vortex
induces a stronger vorticity convection within the lower vortex (Durgin &
Karlsson 1971, Karasudani & Funakoshi 1994). Consequently, the lower
vortex distorts and rotates to align with the stream-wise direction at a lo-
cation closer to the cylinder than the horizontal upper vortex. Here the
negative maximum is used to identify the onset location of the two-layered
flow for G/D = 2 and 0.8 (figure 6.20a and c, respectively). As G/D de-
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Figure 6.20: Time-averaged vertical velocity field (left column) and instan-
taneous vorticity contours (right column) for flow around an elliptic cylinder
near a moving wall for Re = 130 with G/D = 2 and 0.8.

creases from 2 to 0.8, the distance (xloc) between the onset location of the
two-layered wake and the cylinder center decreases. This behavior can be
further explained by the spacing ratio h/l of the Kármán vortices (Durgin
& Karlsson 1971, Karasudani & Funakoshi 1994) (figure 6.21a), where l de-
notes the distance between two same-sign (here negative) vortices (V 1 and
V 2) while h represents the distance between the vortex (V 3) with opposite
sign (here positive) and the line connecting V 1 and V 2. This spacing ratio
h/l increases as the Kármán vortices move downstream, and then reaches a
threshold value at xloc, where the transition of the two-layered wake occurs.

The threshold value of h/l, for the transition to the two-layered wake,
is here determined by the center of the V 3 vortex being located at the
dashed line (determined by the time-averaged vertical velocity; figure 6.20a).
Here the threshold values are 0.453, 0.45 and 0.449 for the isolated elliptic
cylinder with AR = 0.4 and Re = 100, 130 and 150, respectively. This is
in qualitative agreement with the results obtained by Durgin & Karlsson
(1971) and Karasudani & Funakoshi (1994) for an isolated circular cylinder,
reporting threshold values in the range 0.45-0.5 for Re ranging from 80 to
150. It appears that the threshold value does not vary much with AR and
Re in the absence of the wall; the threshold value is dominated by the wall.
The wall suppression effect leads to the V 1 and V 2 vortices being stronger
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Figure 6.21: (a): definition of the spacing ratio h/l of the Kármán vortices,
where l denotes the distance between two same sign vortices (V 1 and V 2)
while h represents the distance between the positive vortex (V 3) and the line
connecting V 1 and V 2; (b): variations of the threshold value of the spacing
ratio h/l against G/D for Re = 130.

than the V 3 vortex, thus causing a stronger vorticity convection within the
V 3 vortex than that for the isolated cylinder where these three vortices are
of almost equal strength (Durgin & Karlsson 1971). Consequently, the V 3
vortex distorts and rotates closer to the cylinder as G/D decreases (i.e.,
as the wall suppression effect becomes stronger), forming the two-layered
wake; i.e., xloc decreases as G/D decreases as shown in figure 6.22. This
coincides with the behavior for the threshold value of h/l, which decreases
with decreasing G/D as shown in figure 6.21(b) for Re = 130. In contrast,
xloc increases as G/D decreases from 0.6 to 0.5 for Re = 100 and from 0.5
to 0.4 for Re = 130. It appears that an increase of the low velocity in the
gap with decreasing G/D leads to the lower shear layer beneath the cylinder
rolling up slightly farther downstream for G/D = 0.4 (figure 6.23a) than
for G/D = 0.5 (figure 6.23b), thus resulting in a larger xloc.

Thompson et al. (2014) investigated the effect of Re on xloc for the flow
around an isolated elliptic cylinder for AR ∈ [0.25, 1], and found that xloc
decreases as Re increases from 100 to 150. This is because an increase in Re
leads to a stronger increase of h/l downstream, resulting in the threshold
value of h/l being achieved closer to the cylinder. This behavior is quali-
tatively similar to that observed in figure 6.22 for a given G/D. Moreover,
xloc is less sensitive to G/D when G/D > 1.4 for Re = 100 and G/D >
1 for Re = 130 and 150. This can be explained by that a decrease in Re
forms a thicker shear layer on the bottom of the cylinder, which starts to
interact with the bottom-wall shear layer at relatively large G/D for low
Re (Lei et al. 2000).
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Figure 6.22: The distance (xloc) between the onset location of of the two-
layered wake and the cylinder center for G/D from 3 to 0.2 and for Re =
100, 130 and 150.

6.6 Summary and conclusions

This paper provides a detailed numerical investigation for the flow around
an elliptic cylinder with an aspect ratio of 0.4 translating above a plane wall
in still water, where the Reynolds number is in the range from 30 to 150
and the gap ratio (i.e., the ratio between the distance of the cylinder from
the wall and the length of the semi-major axis of the cylinder) ranging from
0.1 to 3.

In the steady flow regime, the wake contains two asymmetric counter-
rotating recirculation vortices attached to the cylinder. Here the lower vor-
tex center is located closer to the cylinder than the upper vortex center.
This difference increases as the gap ratio decreases (for a given Reynolds
number) due to stronger wall suppression effect on the lower vortex for
lower gap ratios. As the Reynolds number increases (for a given gap ra-
tio), this difference decreases since thinner shear layers are formed,resulting
in a weaker interaction between the shear layers beneath the cylinder bot-
tom and above the wall. Moreover, as the gap ratio decreases (for a given
Reynolds number) the time-averaged drag coefficient decreases while the
time-averaged lift coefficient increases; as the Reynolds number increases
(for a given gap ratio), the drag and lift coefficients decrease almost linearly
in log-log scale.

In the unsteady flow regime, four different wake patterns have been
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Figure 6.23: The vorticity contours for the flow around an elliptic cylinder
near a moving wall for Re = 130 with G/D = 0.4 and 0.5; for contours with
values from -5.5 to 5.5, the difference in value between two adjacent contour
lines is 1. Black dashed and solid lines indicate the negative and positive
values, respectively, while the red and blue dashed lines denote a reference
line at x = 1.4 and the onset location of the two-layered wake, respectively.

classified; i) at relatively large gap ratios, the flow, which is denoted wake
pattern A, contains the Kármán vortex street, the two-layered wake and
the secondary vortex street; ii) a decrease in the gap ratio leads to the sup-
pression of the vertical fluctuations in the far-wake region, resulting in the
disappearance of the secondary vortex street; this represents wake pattern
B; iii) a further decrease in the gap ratio leads to the break-down of the
Kármán vortex, resulting in a pair-wise vortex shedding (denoted wake pat-
tern C) or iv) forming a quasi-steady near-wake region (with constant lift
and drag coefficients) and a pair-wise vortex shedding farther downstream,
which is denoted wake pattern D. Moreover, an increase in the Reynolds
number (for a given gap ratio) enhances the vortex shedding behind the
cylinder, thus triggering the transition between two different wake patterns.
Therefore, a smaller gap ratio is required for a higher Reynolds number to
maintain the same wake pattern, i.e., a smaller critical gap ratio is required
for the transition between two different wake patterns (except wake pattern
D).

The time-averaged drag coefficient increases gradually as the gap ratio
increases (for a given Reynolds number) due to the decay of the wall suppres-
sion effect. A sudden drop of the time-averaged drag coefficient is observed
as the gap ratio increases from 0.3 to 0.32 as well as from 0.24 to 0.3 for the
Reynolds number of 130 and 150, respectively, where the vortex shedding
frequency remains nearly constant. It appears that the vortex strength here
is determined by the total circulation injected into the wake from the top
and the bottom of the cylinder. This total circulation decreases as the gap
ratio increases due to less fluid moving upwards along the cylinder and a
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decrease of the gap flow velocity. Consequently, the weaker upper and lower
vortices are formed for the larger gap ratio, resulting in the sudden drop
of the time-averaged drag coefficient. Moreover, the time-averaged lift co-
efficient increases as the gap ratio decreases (for a given Reynolds number)
due to more asymmetric flow distribution around the cylinder.

Stronger wall suppression effect for smaller gap ratios leads to the upper
vortex being stronger than the lower vortices, thus enhancing the convection
of the vorticity within the lower vortex. Consequently, the lower vortex
distorts and rotates to align with the stream-wise direction at a location
closer to the cylinder than the horizontal upper vortex, showing that the
onset location of the two-layered wake moves closer to the cylinder as the
gap ratio decreases (for a given Reynolds number).

Overall, the present work gives some insight into the physical process of
transitional movements of bluff bodies near a stationary plane wall (includ-
ing the far-wake dynamics) which is relevant for engineering and geophysical
applications such as e.g. an AUV moving over the seabed. In future studies
the effects of the aspect ratio and the angle of attack, as well as the effect
of turbulence on this physical process (i.e., on wake patterns, drag and lift
coefficients) should be addressed.
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Chapter 7

Numerical simulation of
oscillatory boundary layer

Jianxun Zhu1, Lars Erik Holmedal1

7.1 Introduction

Oscillatory flow generated by an unsteady pressure gradient near a flat
wall is relevant to a bottom boundary layer under surface gravity waves.
This flow depends on the Reynolds number defined by u∗0δ

∗/ν∗, where u∗0
denotes the amplitude of the velocity oscillations in the irrotational region,
and δ∗ =

√
2ν∗/ω∗ is the conventional boundary layer thickness. Here

ω∗ and ν∗ are the angular frequency of fluid oscillations and the kinematic
viscosity, respectively. A star is used to denote dimensional quantities.

The oscillatory boundary layer can be classified into four flow regimes:
i) for low Reynolds numbers the flow is laminar and unidirectional and
can be described by the Stokes solution (Stokes 1851); ii) for Reynolds
numbers larger than about 100, the disturbed laminar regime occurs, where
small perturbations appear but do not lead to significant modification of the
laminar velocity profile (Vittori & Verzicco 1998); iii) when the Reynolds
number becomes larger than about 550 the flow is in the intermittently tur-
bulent regime where turbulent bursts appear during the decelerating phase
of the cycle (Vittori & Verzicco 1998); iv) for Reynolds numbers larger than
about 3500 the fully developed turbulent regime is observed, where the flow
remains turbulent during the whole cycle (Jensen et al. 1989).

1Department of Marine Technology, Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway
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7.2 Numerical method

The oscillatory flow is considered to be incompressible and generated by an
oscillating pressure gradient ∂p∗/∂x∗ defined as follows

∂p∗

∂x∗
= −ρ∗u∗0ω∗sin(ω∗t∗),

∂P ∗

∂y∗
= 0,

∂P ∗

∂z∗
= 0 (7.1)

where ρ∗ denotes the density; x∗, y∗ and z∗ indicate the stream-wise, span-
wise and cross-stream coordinates, respectively; t∗, u∗0 and ω∗ are the time,
the amplitude and angular frequency of the velocity oscillation, respectively.
The following dimensionless variables are introduced:

t = ω∗t∗, (x, y, z) =
(x∗, y∗, z∗)

δ∗
, (u, v, w) =

(u∗, v∗, w∗)
U∗0

, p =
p∗

ρ∗U∗20
(7.2)

Hence, the incompressible Navier-Stokes equations in dimensionless form
with Cartesian coordinates (x1, x2, x3) = (x, y, z) can be written as follows:

∂ui
∂xi

= 0 (7.3)

∂ui
∂t

+
Reδ

2

∂uiuj
∂xj

= −Reδ
2

∂p

∂xi
+ δ1,isin(t) +

1

2

∂2ui
∂xj∂xj

(7.4)

where (u1, u2, u3) = (u, v, w) are the Cartesian velocity components and δ1,i

is the Kronecker delta function.

Eqs. (7.3) and (7.4) are solved by using a projection method with a semi-
implicit time integration using a second-order Adams-Bashforth scheme for
the convective terms and a Crank-Nicolson scheme for the diffusive terms.
The spatial discretization employs the centered second-order finite differ-
ences on a staggered grid.

7.3 Validation against previous results

In order to validate the correctness of the numerical code, numerical simula-
tions of the oscillating boundary layer for Reδ = 500 and 1120 have been con-
ducted and compared with the numerical and experimental results obtained
by Vittori & Verzicco (1998) and Jensen et al. (1989), respectively. These
simulations were conducted in the same computational domain (Lx, Ly, Lz)
= (25.13δ∗, 12.57δ∗, 25.13δ∗), and numerical grids 64×32×64, 97×49×97
and 100×60×100 were used for Reδ = 500, 1000 and 1120, respectively. The
grid size is uniform in the x and y-directions, while the grid is stretched with
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a constant ratio in the z-direction (i.e., from the bottom wall to the top of
the computational domain). The imperfection conditions adopted by, e.g.
Vittori & Verzicco (1998) and Scandura (2007) are imposed on the bottom
wall to trigger the turbulence. After the turbulence has been developed
(about two oscillation cycles), the wall imperfection condition is removed
and the simulation is continued on a smooth flat wall.

Figure 7.1: Temporal development of stream-wise (a) and cross-stream (b)
velocity components at x = 3.93, y = 3.93, z = 0.25 for Reδ = 500.

Figure 7.2: Contour plot of the span-wise vorticity Ωy for Reδ = 500 at t =
21.99 in the plane y = 5.69. Contour values are from -0.021 to 0.021 with
∆Ωy = 0.002; continues lines denote the positive vorticity, while dashed
lines represent the negative vorticity.

The flow for Reδ = 500 is categorized as the disturbed laminar regime,
where disturbances of the flow velocities are present during the end of the
acceleration phase as shown in figure 7.1. From figure 7.1(a), the distur-
bances of the stream-wise velocity u appear before u reaches the maximum
value, i.e., during the end of the deceleration phase. Meanwhile, the fluctu-
ation of the cross-stream velocity (w) grows significantly as shown in figure
7.1(b). A good agreement is obtained with the figures 3 (a) and (b) of Vit-
tori & Verzicco (1998). Figure 7.2 shows the span-wise vorticity contours
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for Reδ = 500 at t = 21.99 in a vertical plane y = 5.69. The vorticity
was calculated after the average in the x-direction of the velocity field was
removed. The results are in a good agreement with the results shown in
figure 5(c) of Vittori & Verzicco (1998) and figure 1 of Scandura (2007).

Figure 7.3: Time development of wall shear stress for oscillating turbulent
boundary layer at Reδ = 1120; continuous line: present numerical results;
dots: experimental results of Jensen et al. (1989).

A further check of the numerical code has been conducted for Reδ =
1120, where the flow is in the intermittently turbulent regime. Figure 7.3
shows the time-history of the dimensionless wall shear stress τ = τ∗/(ρU∗20 )
averaged in x- and y-directions for Reδ = 1120. A good agreement is ob-
tained with the experimental results (dots) obtained by Jensen et al. (1989).
A sudden increase of the wall shear stress (i.e., the occurrence of turbulence)
is present at the end of the accelerating and early decelerating phase.



References 145

References

Jensen, B. L., Sumer, B. M. & Fredsøe, J. (1989), ‘Turbulent oscillatory
boundary layers at high Reynolds numbers’, Journal of Fluid Mechanics
206, 265–297.

Scandura, P. (2007), ‘Steady streaming in a turbulent oscillating boundary
layer’, Journal of Fluid Mechanics 571, 265–280.

Stokes, G. G. (1851), On the effect of the internal friction of fluids on the
motion of pendulums, Vol. 9, Pitt Press Cambridge.

Vittori, G. & Verzicco, R. (1998), ‘Direct simulation of transition in an
oscillatory boundary layer’, Journal of Fluid Mechanics 371, 207–232.



146 146



Chapter 8

Conclusions and future
works

8.1 Conclusions

The present numerical method was successfully validated against the previ-
ous numerical and experimental results for the lid-driven cavity flows, flow
past an isolated circular cylinder and the oscillatory turbulent boundary
layer. Numerical investigations were conducted for steady and oscillatory
lid-driven cavity flows, the flow in a steady lid-driven cavity with an embed-
ded circular cylinder and the flow over an elliptic cylinder near a moving
wall. The main conclusions are as follows:

A detailed investigation of the flow patterns in an oscillatory lid-driven
cavity with depth-to-width ratio 1:2, covering a wide range of Reynolds
numbers and Stokes numbers where this flow is known to be in the two-
dimensional flow regime, was conducted using two-dimensional numerical
simulations. Four distinct flow patterns are classified based on the vortex
dynamics, which is visualized by streamline contours. These flow structures
are unique functions of the Reynolds number and the Stokes number, and
the pattern changes with these parameters. An increase of the driven force
quantified by the two parameters results in finer flow structures and hence
different flow patterns. If the oscillation frequency increases for a given
Reynolds number, the extrema of the stream function have less time to
grow and the primary vortex center has less time to move away from the
lid. To compensate these effects, a larger oscillation amplitude is required
for an increased frequency to maintain the same flow pattern.

A detailed investigation of the flow patterns in the steady lid-driven
cavity of depth to width ratio 1:2 containing a circular cylinder of differ-
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ent radii and positions was conducted for Reynolds numbers of 100, 500
and 1000 and the cylinder radii of 0.1, 0.2, 0.3 and 0.4. The positions of
the cylinder are left-centered, centered and right-centered in the cavity. It
appears that this flow can be classified into seven different flow patterns
visualized by streamline contours. For a given cylinder position, the distri-
bution of these flow patterns was given as a function of the cylinder radius
and the Reynolds number. More transitions between different flow patterns
exist for a small radius than for a larger radius. For a given cylinder radius,
there are more transitions for high Reynolds numbers than for low Reynolds
numbers. Overall, a larger number of flow patterns tend to emerge as the
Reynolds number increases for small cylinder radii. The largest variety of
flow patterns occur for the left-centered cylinder due to the interaction with
the large anti-clockwise circulation flow formed at the bottom left corner.

A detailed numerical investigation for the flow around an elliptic cylinder
with an aspect ratio of 0.4 translating above a plane wall in still water has
been conducted for Reynolds numbers in the range from 30 to 150 and the
gap ratios (i.e., the ratio between the distance of the cylinder from the wall
and the length of the semi-major axis of the cylinder) ranging from 0.1 to
5.

In the steady flow regime, the wake contains two asymmetric counter-
rotating recirculation vortices attached to the cylinder. Here the lower vor-
tex center is located closer to the cylinder than the upper vortex center.
This difference increases as the gap ratio decreases (for a given Reynolds
number) due to stronger wall suppression effect on the lower vortex for
lower gap ratios. As the Reynolds number increases (for a given gap ra-
tio), this difference decreases since thinner shear layers are formed,resulting
in a weaker interaction between the shear layers beneath the cylinder bot-
tom and above the wall. Moreover, as the gap ratio decreases (for a given
Reynolds number) the time-averaged drag coefficient decreases while the
time-averaged lift coefficient increases; as the Reynolds number increases
(for a given gap ratio), the drag and lift coefficients decrease almost linearly
in log-log scale.

In the unsteady flow regime, four different wake patterns have been
classified; i) at relatively large gap ratios, the flow, which is denoted wake
pattern A, contains the Kármán vortex street, the two-layered wake and
the secondary vortex street; ii) a decrease in the gap ratio leads to the sup-
pression of the vertical fluctuations in the far-wake region, resulting in the
disappearance of the secondary vortex street; this represents wake pattern
B; iii) a further decrease in the gap ratio leads to the break-down of the
Kármán vortex, resulting in a pair-wise vortex shedding (denoted wake pat-
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tern C) or iv) forming a quasi-steady near-wake region (with constant lift
and drag coefficients) and a pair-wise vortex shedding farther downstream,
which is denoted wake pattern D. Moreover, an increase in the Reynolds
number (for a given gap ratio) enhances the vortex shedding behind the
cylinder, thus triggering the transition between two different wake patterns.
Therefore, a smaller gap ratio is required for a higher Reynolds number to
maintain the same wake pattern, i.e., a smaller critical gap ratio is required
for the transition between two different wake patterns (except wake pattern
D).

The time-averaged drag coefficient increases gradually as the gap ratio
increases (for a given Reynolds number) due to the decay of the wall suppres-
sion effect. A sudden drop of the time-averaged drag coefficient is observed
as the gap ratio increases from 0.3 to 0.32 as well as from 0.24 to 0.3 for the
Reynolds number of 130 and 150, respectively, where the vortex shedding
frequency remains nearly constant. It appears that the vortex strength here
is determined by the total circulation injected into the wake from the top
and the bottom of the cylinder. This total circulation decreases as the gap
ratio increases due to less fluid moving upwards along the cylinder and a
decrease of the gap flow velocity. Consequently, the weaker upper and lower
vortices are formed for the larger gap ratio, resulting in the sudden drop
of the time-averaged drag coefficient. Moreover, the time-averaged lift co-
efficient increases as the gap ratio decreases (for a given Reynolds number)
due to more asymmetric flow distribution around the cylinder.

Stronger wall suppression effect for smaller gap ratios leads to the upper
vortex being stronger than the lower vortices, thus enhancing the convection
of the vorticity within the lower vortex. Consequently, the lower vortex
distorts and rotates to align with the stream-wise direction at a location
closer to the cylinder than the horizontal upper vortex, showing that the
onset location of the two-layered wake moves closer to the cylinder as the
gap ratio decreases (for a given Reynolds number).

8.2 Future works

The near future work is the implementation of the three-dimensional Navier-
Stokes solver in conjunction with the immersed boundary method with par-
allel computing. The code can be validated by comparison with previous
results of, e.g., the turbulent channel flow, the oscillatory turbulent bound-
ary layer and the steady flow around an isolated or near-wall cylinder. Some
recommendations for future works are given as follows:
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r Three-dimensional vortex dynamics and turbulent flow in the oscil-
latory lid-driven cavity. This thesis focuses on the two-dimensional
vortex dynamics and the laminar flow. Only few investigations have
been conducted on the oscillatory lid-driven three-dimensional cavity
flow, which is of vital importance to understand the three-dimensional
vortex interaction, the three-dimensional instability and the turbulent
characteristics for vortex flows.r Three-dimensional wake transition behind the elliptic cylinder trans-
lating above a plane. This thesis focuses on the two-dimensional flow
features. It was found that the two-layered wake formed near the el-
liptic cylinder has a significant effect on the three-dimensional wake
transition in the near-wake region. The mechanism underlying this
effect is still not well-known. Moreover, the effects of the Reynolds
number, the aspect ratio of the elliptic cylinder and the gap ratio on
this flow are worth to be investigated.r Oscillatory flow around a small-diameter cylinder near a seabed. The
current design method is overly conservative for small-diameter pipelines
because the pipeline is experienced a velocity reduction in the wave-
induced boundary layers, which has not been accounted for in estimat-
ing hydrodynamic forces on pipelines. Most previous studies focus on
the oscillatory flow around the cylinder for low KC numbers (based
on the amplitude of the oscillatory velocity, the oscillation period and
the cylinder diameter). The KC number are usually large for small-
diameter cylinders. The numerical investigations here can be of great
interest for both academic researches and industrial applications.
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Fluid flow in steady and oscillatory lid-driven square

cavities
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Abstract. This paper presents numerical simulations of steady and oscillatory lid-driven
cavity flow at different Reynolds numbers with a fixed aspect ratio of 1:1. A projection method
(P2 pressure correction method) is applied to solve the incompressible Navier-Stokes equations.
The code is validated by comparison with published works of steady lid-driven flow at Re = 100,
400 and 1000. Oscillatory lid-driven cavity flow at different Reynolds numbers (100, 400 and
1000) at a fixed oscillation frequency has been investigated. It is observed that the oscillatory
lid-driven cavity flow is substantially affected by the Reynolds number.

1. Introduction
Steady lid-driven cavity flow is one important benchmark for Navier-Stokes solvers due to its
simple geometry and can also serve as a simplified model for industrial applications like e.g.
wave-induced flow in sandpits (see e.g. [1]). Flow phenomena such as corner vortices and
longitudinal vortices exist within the cavity. Flow structures in the cavity vary significantly
at different Reynolds numbers Re = Uh/ν and aspect ratios D = h/l (where ν, U , h and l
are the kinematic viscosity of the fluid, the steady lid motion velocity, the depth and width
of the cavity, respectively). Flow in a square cavity was investigated extensively by [2]. The
predictions, limited up to Re = 400, show that there are three vortices existing in the cavity (one
primary vortex occupying the central core and two other relatively small vortices located at the
bottom corners of the cavity). Steady square lid-driven cavity flow at Re ≤ 10000 was presented
by [3] and [4]. The primary vortex and two corner vortices grow in strength as the Reynolds
number increases while an upper left wall vortex is observed when the Reynolds number increases
to 3200.

A few studies have been carried out for flow in a square cavity driven by an oscillating
wall. The vortex dynamics have been investigated by [5] at different Reynolds numbers and
Stokes numbers (here, the Stokes number is St = ωA2/ν, where ω and A are the frequency and
amplitude of the lid motion) for equal values (Re = St) ranging from 0 to 600. It is observed
that one counter-rotating vortex pair and two corner vortices occur within the cavity during one
cycle. Similar results have also been presented by [6], [7] and [8].

In the present paper, the steady lid-driven cavity flow at different Reynolds numbers has
been investigated and compared with corresponding results obtained from [4]. Simulations of
the oscillatory lid-driven cavity flow at a fixed oscillation frequency have been conducted at
different Reynolds numbers. The results show good agreement with the previous data presented
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by [8]. This approach facilitates a detailed study of the oscillatory lid-driven cavity flow covering
a wide range of physical parameters in terms of Stokes numbers and Reynolds numbers.

2. Problem formation
A definition sketch of the flow in a square lid-driven cavity is shown in Figure. 1. The flow is
considered to be incompressible and homogeneous. The continuity equation and Navier-Stokes
equations are given as:

∇ · ~U = 0 (1)

∂~U

∂t
+ ~U · ∇~U = −1

ρ
∇p+ ν∆~U (2)

where ~U is the velocity vector with the horizontal velocity component u and vertical component
w; Re = Ulidh/ν for steady lid-driven cavity flow and Re = Umaxh/ν for oscillatory lid-driven
cavity flow (where Ulid is the steady velocity and Umax is the velocity amplitude, respectively).
Moreover, the velocity presented in this paper is scaled by Ulid and Umax for the steady and the
oscillatory lid-driven flow, respectively. No-slip velocity and Neumann pressure conditions are
imposed on all the walls.

Figure 1. Schematic of the steady and oscillatory lid-driven cavity flow.

3. Numerical method
Equations (1) and (2) are discretized by second order central differences in space with a staggered
grid arrangement. The impulse equations have been integrated in time using a semi-implicit
second order scheme in conjunction with a projection method, where Adams-Bashforth and
Crank-Nicolson are applied to the convective terms and diffusive terms, respectively.

A P2 projection method has been applied in a standard manner to solve the Navier-Stokes
equations. Here an intermediate velocity field (which does not satisfy the continuity equation) is
obtained by using the pressure gradient from the last time step (P2 method). A Poisson equation
for the pressure is solved in such a way that the resulting pressure gradients are applied to correct
the intermediate velocity field such that the resulting velocity satisfies the continuity equation.

4. Results of test cases and examples
4.1. Grid convergence test
The grid convergence test is carried out by using the predictions of the steady lid-driven flow
in a square cavity at Re = 100, 400 and 1000. Five different uniform grid resolutions have
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been applied for each Reynolds number. The minimum values of the velocities u(0.5, z/h) and
w(x/h, 0.5) and the maximum values of w(x/h, 0.5) are shown in Table 1. At Re = 100, these
values obtained from 64× 64 grid cells deviate less than 0.1% from those obtained from 48× 48
grid cells. As the Reynolds number increases to 400, the deviation between the values from
96× 96 and 128× 128 grid cells is less than 0.1% while for Re = 1000, this deviation is obtained
between 128× 128 and 160× 160 grid cells.

Table 1. Results of cases with different grid resolutions

Test Velocity at the central line
Cases minzu(0, z/h) minxw(0, x/h) maxxw(0, x/h)

32 -0.2072 -0.2461 0.1734
48 -0.2099 -0.2488 0.1757
64 -0.2111 -0.2499 0.1765
96a -0.2117 -0.2506 0.1771
128 -0.2120 -0.2508 0.1773

Re = 100
48 -0.3118 -0.4352 0.0.2871
64 -0.3179 -0.4417 0.2933
96 -0.3225 -0.4472 0.2976

128a -0.3242 -0.4493 0.2991
160 -0.3250 -0.4498 0.2998

Re = 400
64 -0.3634 -0.4970 0.3524
96 -0.3753 -0.5117 0.3636
128 -0.3797 -0.5172 0.3679
160a -0.3818 -0.5197 0.3699
192 -0.3825 -0.5207 0.3703

Re = 1000

aThe case for investigation.

4.2. Two-dimensional steady lid-driven flow in a square cavity
The steady flow predictions with Re = 100, 400 and 1000 are presented in this section. Figure.
2 depicts the velocity profiles on the center-line of the cavity showing good agreement with
the corresponding results obtained from [4]. The slope of the velocity profiles u(0.5, z/h) and
w(x/h, 0.5) is nearly constant in the core region (i.e. away from the wall) for a Reynolds number
of 1000. Moreover, the region with near uniform vorticity grows with increasing Reynolds number
as shown in Figure. 3. It is demonstrated that the thickness of the boundary layers at the walls
decreases as the Reynolds number increases.

Figure. 4 shows streamlines for the primary vortex and corner vortices at Re = 100, 400 and
1000. The primary vortex core moves towards the centre of the cavity and increases in strength
while the corner vortices grow both in size and strength as the Reynolds number increases. The
right corner vortex is smaller and weaker than the left vortex. Moreover, the stream-function
and the vorticity contours are in good agreement with the results in [4].

4.3. Two-dimensional oscillatory lid-driven flow in a square cavity
Here results for the periodic solutions on the oscillatory lid-driven cavity flow at Re = 100, 400
and 1000 with a fixed oscillation frequency parameter ω′ = π/3 (here, ω′ = hω/Umax = h/A)
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are given. The results are presented for 10 intervals of each oscillation cycle.
The oscillatory lid-driven cavity flow is expected to give a time-periodic flow. The criterion

for the flow being fully developed is:

max|~Un(x, z, t+ T )− ~Un−1(x, z, t)|
max|~Un(x, z, t)|

≤ ε (3)

where n denotes the time step number; ε = 1× 10−6 and T is the period of the lid motion.
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Figure 2. Comparisons of u(0.5, z/h) and w(x/h, 0.5) between predictions of the steady lid-
driven cavity flow and reference data from Ghia et al. [4] at various Reynolds numbers

Figures 5 and 6 show the velocity profiles u(0.5, z/h) and w(x/h, 0.5), respectively. It is
observed that the velocity profiles at t and t+T/2 are mirror images of each other. Comparison
with the results in Fig. 2 reveals that the velocity profiles for the oscillatory lid-driven cavity
flow are more complex than those for the steady lid-driven cavity flow. For instance, the
velocity u(0.5, z/h) at t = 0.3T changes from a negative value to a positive maximum, and then
decreases again to a negative value. Thereafter, it increases gradually to zero as it approaches
the bottom wall. In other words, the direction of the velocity changes twice along the center-
line indicating that at least one counter-rotating vortex pair emerge in the central region of the
cavity. The boundary layer thickness beneath the moving lid decreases as the Reynolds number
and consequently the Stokes number increase. This is consistent with laminar boundary layer
theory (i.e. Stokes second problem described in [9]); the boundary layer thickness increases as
the oscillation period (i.e. Stokes number) increases. Furthermore, the number of local extrema
of w(x/h, 0.5) increases as the Reynolds number increases. This indicates, as shown in Figure.
7 that the number of vortices near the central plane of the cavity increases.

Figure. 7 shows streamlines for different Reynolds numbers at t = 0.4T . The location and
number of vortices within the cavity change for different Reynolds numbers. At Re = 100, two
counter-rotating vortices occur in the cavity (one primary counterclockwise vortex and one small
clockwise vortex are formed during the initial phase of the lid motion). As the Reynolds number
increases from 100 to 400, an additional counterclockwise vortex appears beneath the clockwise
vortex, and the size of the clockwise vortex increases. At Re = 1000, four vortices appear in the
cavity, comprising two counter-rotating vortex pairs. Thus it appears that the flow structures
in the cavity become more complex as the Reynolds number increases. The results for Re =
100, 400 and 1000 with ω′ = π/3 are in good agreement with results obtained by [8].
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Figure 3. Contours of y-vorticity for the steady
lid-driven cavity flow at different Reynolds
numbers
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Figure 4. Contours of stream-function for
the steady lid-driven cavity flow at different
Reynolds numbers
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Figure 5. Profiles of u(0.5, z/h) for the
oscillatory lid-driven cavity flow at different
Reynolds numbers with a fixed ω′ = π/3
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5. Summary and Conclusions
The flow features in the steady and oscillatory lid-driven cavity have been investigated. It
appears that the oscillatory lid-driven flow exhibits more complex fluid dynamical behaviors than
the steady lid-driven flow. For the chosen oscillation frequency, the boundary layer thickness
at the top lid decreases as the Reynolds number increases. Finally, the number of vortices
appearing in the central part of the cavity increases with increasing Reynolds number.
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Figure 7. Streamline patterns of the oscillatory lid-driven flow with different Reynolds numbers
at t = 0.4T .
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Abstract. This paper provides numerical investigations of flow in a steady lid-driven cavity of 
depth to width ratio 1/3 containing a circular cylinder. The inner cylinder is treated using a 
direct-forcing immersed boundary method, and a project method is applied to solve the 
incompressible Navier-Stokes equations. Three different Reynolds numbers and positions of the 
cylinder are considered; for a lower Reynolds number, flow structures are weakly affected by the 
cylinder near the left wall while two clockwise vortices attached to the cylinder are formed as the 
cylinder moves rightwards; for a moderate Reynolds number, an anticlockwise bottom vortex is 
formed for the cylinder near the left wall, and it disappears as the cylinder is shifted rightwards; 
for the largest Reynolds number, two anti-clockwise vortices attached the cylinder are formed for 
the cylinder close to the left wall, and as the cylinder moves gradually closer to the left wall a 
bottom vortex is formed and disappears together with the clockwise vortex to the right side of the 
cylinder.

1. Introduction
Vortex structures, e.g. elongated primary vortices and corner vortices, within a steady lid-driven
cavity are controlled by two parameters; i) Reynolds number based on the lid motion velocity
and the depth of the cavity; ii) the aspect ratio of cavity. These flow structures will change due
to an inserted square or circular cylinder within the cavity. Understanding the influence of the
inserted cylinder on the flow structures is of fundamental importance in engineering applications
like heat exchangers and electronic coolers.

Oztop et al.[1] and Khanafer and Aithal[2] numerically investigated mixed convection and
heat transfer in a steady lid-driven square cavity containing a circular cylinder by using a finite
volume method and a finite element formulation, respectively. They found that for the forced
convection flow an increase in the cylinder’s size leads to the primary vortex breaking up into
two vortices, and various locations of the cylinder result in the movement of the vortex cores.
Moreover, a large gap between isotherms which affects the heat transfer was present due to
strong flow circulation (i.e. the vortex formed in the cavity).

The lid-driven cavity flow with multiple embedded obstacles were also investigated and
applied to test the accuracy of some numerical methods, e.g. the immersed boundary method
by Su et al.[3] and the immersed interface method by Ito et al.[4] due to its low computational
cost. Moreover, in the absence of the lid motion, many investigations were conducted for the
natural convection (dominated by the temperature gradient) in a cavity containing obstacles
with different locations and geometries (see e.g. [5, 6, 7]).
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A thorough investigation of the vortex structures for steady lid-driven cavity flow containing
a cylinder has, to the limit of author’s knowledge, not been conducted in detail for purely forced
convection flow. The present paper provides a detailed investigation of vortex structures in a
two-dimensional steady lid-driven cavity of depth to width ratio 1/3 with an embedded circular
cylinder with a dimensionless radius of 0.2 (i.e. the ratio between the cylinder radius and the
cavity depth). Three different Reynolds numbers (100, 500 and 1000) based on the depth of
the cavity and three different locations of the cylinder have been considered. A direct forcing
immersed boundary method combined with the finite difference method proposed by e.g. Fadlun
et al. [8] and improved by Peller et al.[9] is applied due to its easy meshing and efficiency of
solving the Navier-Stokes equations in Cartesian grids.

2. Problem formation and numerical method
The flow with a constant density ρ and kinematic viscosity ν is governed by the two-dimensional
Navier-Stokes equations described as follows:

∂ui
∂xi

= 0 (1)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

(2)

where the Einstein notation using repeated indices is applied. Here ui = (u,v) and xi = (x, y) for
i = 1 and 2, are the velocity and Cartesian coordinates, respectively, whilst t, p and Re = UH/ν
denote the dimensionless time, dimensionless pressure and Reynolds number, respectively, where
H is the depth of cavity and U is the lid motion velocity. The time scale, pressure scale and
length scale is H/U , 0.5ρU2 and H, respectively.

Equations (1) and (2) are solved using a semi-implicit second order scheme in conjunction with
a projection method, where Adams-Bashforth and Crank-Nicolson are applied to the convective
terms and diffusive terms, respectively. A second-order central difference scheme is applied on
a staggered mesh arrangement.

Figure 1. Definition of the blocked cell (grey square), the regular cell (white square), the active
(white arrows) and inactive (black arrows) velocity points.

The immersed boundary method is based on a direct forcing approach combined with finite
difference method. The relationship between the grid and the immersed boundary is shown
in figure 1. A cell with the pressure point inside the solid is defined as a blocked cell while
the rest cells inside the fluid are denoted by the regular cells. The velocity components at the
connection face between the blocked and regular cells are set as inactive velocity points (I and
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Figure 2. Comparison of the velocity profiles of the steady lid-driven cavity flow containing
a centered cylinder of r = 0.2 for Re = 1000 obtained by the present method and by Cai et
al.[11]: left image, distribution of velocity component u along x = 0.5; right image, distribution
of velocity component v along y = 0.5.

N), and those connecting two regular cells are considered as active velocity points (. and 4).
The inactive velocity points is updated by interpolation of its adjacent active velocity points. A
linear interpolation applied in directions is given as follows

ui =
xi − xΓ

xi+1 − xΓ
ui+1 +

xi+1 − xi
xi+1 − xΓ

uΓ, i = 1, 2 (3)

where uΓ and xΓ denote the velocity components and the position of the solid surface,
respectively.

A weighting factor λ is introduced in Eq.(2) for the inactive velocity components which are
interpolated from two directions[9, 10].

ui = λxu
x
i + λyu

y
i (4)

where the superscripts x and y denote the interpolation in x and y-directions, respectively.
Moreover, a Neumann condition is applied for the pressure correction at the inactive velocity
points.

3. Results and discussion
3.1. Verification against previous numerical results
A numerical simulation for flow in a steady lid-driven square cavity containing a centered circular
cylinder has been conducted for Re = 1000. The velocity of the lid is given by u = 1, and no-slip
conditions are imposed on the side and bottom walls as well as the cylinder. The dimensionless
cylinder radius r equals to 0.2 (= r′/H). Two grid resolutions of 100×100 and 200×200 uniform
cells are considered for the grid convergence test. Figure 2 shows the velocity profiles for u (left)
and v (right) along x = 0.5 and y = 0.5, respectively. Previous numerical results obtained by
Cai et al.[11] using an immersed boundary method which takes the body force as a Lagrange
multiplier were included for comparison. A good agreement is obtained using both the coarse
and fine meshes. It appears that the coarse mesh is sufficient to obtain the grid independent
results.



COTech

IOP Conf. Series: Materials Science and Engineering 700 (2019) 012008

IOP Publishing

doi:10.1088/1757-899X/700/1/012008

4

Figure 3. Streamfunctions within a steady lid-driven cavity of AR = 1/3 with and without a
circular cylinder for Re = 100. The cylinder is positioned at (x, y) = (0.5, 0.5), (1.5, 0.5) and
(2.5, 0.5).

3.2. Flow in a steady lid-driven rectangular cavity containing a circular cylinder
Predictions for flow in a steady lid-driven rectangular cavity containing a circular cylinder are
presented for Re = 100, 500 and 1000 in this section. The depth to width ratios (AR) of
the cavity is 1/3, and three different locations of the cylinder with r = 0.2 are considered
to investigate their effects on flow structures. Moreover, the steady lid-driven cavity flows at
respective Re are predicted for comparison purpose.

Figure 3 shows the streamfunctions within a steady lid-driven cavity of AR = 1/3 containing
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Figure 4. Streamfunctions within a steady lid-driven cavity of AR = 1/3 with and without a
circular cylinder for Re = 500. The cylinder is positioned at (x, y) = (0.5, 0.5), (1.5, 0.5) and
(2.5, 0.5).

a circular cylinder for Re = 100. The cylinder is located at (x, y) = (0.5, 0.5), (1.5, 0.5) and (2.5,
0.5). The cavity without the cylinder contains a clockwise primary vortex and two small anti-
clockwise bottom corner vortices. These vortex structures qualitatively remain for the cylinder
positioned at (0.5, 0.5) but with a slightly weaker primary vortex core and the nearly vanishing
bottom left corner vortex. The bottom right corner vortex are weakly affected since it is far
away from the cylinder. As the cylinder is positioned at (1.5, 0.5), the primary vortex present in
the cavity without a cylinder appears to break into two clockwise vortices due to the presence of
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Figure 5. Streamfunctions within a steady lid-driven cavity of AR = 1/3 with and without a
circular cylinder for Re = 1000. The cylinder is positioned at (x, y) = (0.5, 0.5), (1.5, 0.5) and
(2.5, 0.5).

the cylinder at the right side of which the flow driven by the lid rolls down. Similar qualitatively
vortex structures were previously investigated by Young et al.[12] for creeping flow within a
steady lid-driven rectangular cavity with a centered cylinder. They found two equal clockwise
vortices attached to the upper left and right side of the cylinder, respectively. In present cases,
the non-linear effect from the convective terms attributes to the asymmetry of the attached
vortices where the left one is smaller and weaker than the right one. As the cylinder is shifted
to (2.5, 0.5), a decrease in space between the cylinder and the right wall suppresses the growth
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of the right vortex, causing the left vortex becoming larger than the right one. This behavior
qualitatively remains the same for Re = 500 as the cylinder moves rightwards from (1.5, 0.5) to
(2.5, 0.5) shown in figure 4.

Figure 4 shows the streamfunctions for the same geometry shown in figure 3 but for Re = 500.
In the cavity without the cylinder, a new clockwise vortex is formed beneath the lid, and flow
separation occurs at x = 2, forming a larger bottom corner than that for Re = 100 (figure 3).
As the cylinder is inserted at (0.5, 0.5), flow separation remains at x = 2 while the presence of
the cylinder leads to the flow rolling down at the lower right side of the cylinder and reattaching
the bottom wall, thus forming a large bottom vortex. For the cylinder located at (1.5, 0.5)
and (2.5, 0.5), the clockwise vortex beneath the lid disappears, forming qualitatively similar
vortex structures present for Re = 100 (figure 3) but with stronger vortex cores. Moreover, the
attached vortices for Re = 100 (figure 3) is larger than those for 500 (figure 4) with the cylinder
located at (2.5, 0.5). It appears that an increase in Re leads to a higher flow velocity around
the cylinder, thus impeding the growth of the attached vortices.

Figure 5 shows the streamfunctions for the same geometry shown in figure 3 but for Re =
1000. In the cavity without the cylinder, an increase in Re forms a larger bottom left corner
vortex and a small clockwise bottom vortex. This small bottom vortex disappears as the cylinder
is inserted in the cavity. For the cylinder positioned at (0.5, 0.5), the cylinder is surrounded by
a stronger anti-clockwise flow circulation due to a larger Re, such that the flow rolls down at the
right side of the cylinder and up at the upper left side of the cylinder, forming two anti-clockwise
attached vortices. The right one is much larger than the left one. As the cylinder is positioned
at (1.5, 0.5), the bottom left corner vortex present in the cavity without the cylinder appears to
break up into a large bottom left corner vortex and a bottom vortex. As the cylinder moves to
(2.5, 0.5), the primary vortex in the cavity without the cylinder disappears (due to a higher Re)
while the flow rolls up at the upper left side of the cylinder, forming the left attached vortex.

4. Summary and conclusion
The present paper provides a detailed investigation for flow in a steady lid-driven cavity of
depth to width aspect ratio 1/3 containing a circular cylinder with a radius equals to 0.2. Three
different Reynolds numbers and three different locations are considered. For a lower Reynolds
number (Re = 100), the cylinder causes the flow rolling up and down, forming two clockwise
vortices. As the cylinder moves rightwards, the left one grows while the right one decays. For
a moderate Reynolds number (Re = 500), a large bottom vortex is formed for cylinder located
near the left wall, and it disappears as the cylinder moves rightwards. For the largest Reynolds
number (Re = 1000), two attached anti-clockwise vortices are formed around the cylinder located
near the left wall. As the cylinder moves gradually closer the left wall, a large bottom vortex is
formed and disappears together with the clockwise vortex to the right side of the cylinder.
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Strength and Collapse Analysis of Ship Structures. 

(Dr.Ing. Thesis) 

IMT-

2003-1 

Chen, Haibo, MK Probabilistic Evaluation of FPSO-Tanker Collision 

in Tandem Offloading Operation. (Dr.Ing. Thesis) 

IMT-
2003-2 

Skaugset, Kjetil Bjørn, MK On the Suppression of Vortex Induced Vibrations 
of Circular Cylinders by Radial Water Jets. (Dr.Ing. 

Thesis) 

IMT-

2003-3 

Chezhian, Muthu Three-Dimensional Analysis of Slamming. (Dr.Ing. 

Thesis) 

IMT-

2003-4 

Buhaug, Øyvind Deposit Formation on Cylinder Liner Surfaces in 

Medium Speed Engines. (Dr.Ing. Thesis) 

IMT-

2003-5 

Tregde, Vidar Aspects of Ship Design: Optimization of Aft Hull 

with Inverse Geometry Design. (Dr.Ing. Thesis) 

 
 

IMT-

 
 

Wist, Hanne Therese 

 

Statistical Properties of Successive Ocean Wave 
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2003-6 Parameters. (Dr.Ing. Thesis) 

IMT-

2004-7 

Ransau, Samuel Numerical Methods for Flows with Evolving 

Interfaces. (Dr.Ing. Thesis) 

IMT-
2004-8 

Soma, Torkel Blue-Chip or Sub-Standard. A data interrogation 
approach of identity safety characteristics of 

shipping organization. (Dr.Ing. Thesis) 

IMT-
2004-9 

Ersdal, Svein An experimental study of hydrodynamic forces on 
cylinders and cables in near axial flow. (Dr.Ing. 

Thesis) 

IMT-
2005-10 

Brodtkorb, Per Andreas The Probability of Occurrence of Dangerous Wave 

Situations at Sea. (Dr.Ing. Thesis) 

IMT-

2005-11 

Yttervik, Rune Ocean current variability in relation to offshore 

engineering. (Dr.Ing. Thesis) 

IMT-

2005-12 

Fredheim, Arne Current Forces on Net-Structures. (Dr.Ing. Thesis) 

IMT-

2005-13 

Heggernes, Kjetil Flow around marine structures. (Dr.Ing. Thesis 

IMT-
2005-14 

Fouques, Sebastien Lagrangian Modelling of Ocean Surface Waves and 
Synthetic Aperture Radar Wave Measurements. 

(Dr.Ing. Thesis) 

IMT-
2006-15 

Holm, Håvard Numerical calculation of viscous free surface flow 

around marine structures. (Dr.Ing. Thesis) 

IMT-

2006-16 

Bjørheim, Lars G. Failure Assessment of Long Through Thickness 

Fatigue Cracks in Ship Hulls. (Dr.Ing. Thesis) 

IMT-

2006-17 

Hansson, Lisbeth Safety Management for Prevention of Occupational 

Accidents. (Dr.Ing. Thesis) 

IMT-
2006-18 

Zhu, Xinying Application of the CIP Method to Strongly 
Nonlinear Wave-Body Interaction Problems. 

(Dr.Ing. Thesis) 

IMT-

2006-19 

Reite, Karl Johan Modelling and Control of Trawl Systems. (Dr.Ing. 

Thesis) 

IMT-
2006-20 

Smogeli, Øyvind Notland Control of Marine Propellers. From Normal to 

Extreme Conditions. (Dr.Ing. Thesis) 

IMT-

2007-21 

Storhaug, Gaute Experimental Investigation of Wave Induced 

Vibrations and Their Effect on the Fatigue Loading 

of Ships. (Dr.Ing. Thesis) 

IMT-

2007-22 

Sun, Hui A Boundary Element Method Applied to Strongly 

Nonlinear Wave-Body Interaction Problems. (PhD 

Thesis, CeSOS) 

IMT-

2007-23 

Rustad, Anne Marthine Modelling and Control of Top Tensioned Risers. 

(PhD Thesis, CeSOS) 

IMT-

2007-24 

Johansen, Vegar Modelling flexible slender system for real-time 

simulations and control applications 

IMT-
2007-25 

Wroldsen, Anders Sunde Modelling and control of tensegrity structures. 
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(PhD Thesis, CeSOS) 

IMT-

2007-26 

Aronsen, Kristoffer Høye An experimental investigation of in-line and 

combined inline and cross flow vortex induced 

vibrations. (Dr. avhandling, IMT) 

IMT-

2007-27 

Gao, Zhen Stochastic Response Analysis of Mooring Systems 

with Emphasis on Frequency-domain Analysis of 

Fatigue due to Wide-band Response Processes 

(PhD Thesis, CeSOS) 

IMT-

2007-28 

Thorstensen, Tom Anders Lifetime Profit Modelling of Ageing Systems 

Utilizing Information about Technical Condition. 

(Dr.ing. thesis, IMT) 

IMT-

2008-29 

Refsnes, Jon Erling Gorset Nonlinear Model-Based Control of Slender Body 

AUVs (PhD Thesis, IMT) 

IMT-

2008-30 

Berntsen, Per Ivar B. Structural Reliability Based Position Mooring. 

(PhD-Thesis, IMT) 

IMT-
2008-31 

Ye, Naiquan Fatigue Assessment of Aluminium Welded Box-

stiffener Joints in Ships (Dr.ing. thesis, IMT) 

IMT-

2008-32 

Radan, Damir Integrated Control of Marine Electrical Power 

Systems. (PhD-Thesis, IMT) 

IMT-

2008-33 

Thomassen, Paul Methods for Dynamic Response Analysis and 

Fatigue Life Estimation of Floating Fish Cages. 

(Dr.ing. thesis, IMT) 

IMT-

2008-34 

Pákozdi, Csaba A Smoothed Particle Hydrodynamics Study of 

Two-dimensional Nonlinear Sloshing in 

Rectangular Tanks. (Dr.ing.thesis, IMT/ CeSOS) 

IMT-

2007-35 

Grytøyr, Guttorm A Higher-Order Boundary Element Method and 

Applications to Marine Hydrodynamics. 

(Dr.ing.thesis, IMT) 

IMT-

2008-36 

Drummen, Ingo Experimental and Numerical Investigation of 

Nonlinear Wave-Induced Load Effects in 
Containerships considering Hydroelasticity. (PhD 

thesis, CeSOS) 

IMT-
2008-37 

Skejic, Renato Maneuvering and Seakeeping of a Singel Ship and 

of Two Ships in Interaction. (PhD-Thesis, CeSOS) 

IMT-

2008-38 

Harlem, Alf An Age-Based Replacement Model for Repairable 

Systems with Attention to High-Speed Marine 

Diesel Engines. (PhD-Thesis, IMT) 

IMT-

2008-39 

Alsos, Hagbart S. Ship Grounding. Analysis of Ductile Fracture, 

Bottom Damage and Hull Girder Response. (PhD-

thesis, IMT) 

IMT-

2008-40 

Graczyk, Mateusz Experimental Investigation of Sloshing Loading 

and Load Effects in Membrane LNG Tanks 
Subjected to Random Excitation. (PhD-thesis, 

CeSOS) 

IMT-
2008-41 

Taghipour, Reza Efficient Prediction of Dynamic Response for 
Flexible amd Multi-body Marine Structures. (PhD-
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thesis, CeSOS) 

IMT-

2008-42 

Ruth, Eivind Propulsion control and thrust allocation on marine 

vessels. (PhD thesis, CeSOS) 

IMT-
2008-43 

Nystad, Bent Helge Technical Condition Indexes and Remaining Useful 

Life of Aggregated Systems. PhD thesis, IMT 

IMT-

2008-44 

Soni, Prashant Kumar Hydrodynamic Coefficients for Vortex Induced 

 Vibrations of Flexible Beams,  PhD 

thesis, CeSOS 

IMT-

2009-45 

Amlashi, Hadi K.K. Ultimate Strength and Reliability-based Design of 

Ship Hulls with Emphasis on Combined Global and 

Local Loads. PhD Thesis, IMT 

IMT-

2009-46 

Pedersen, Tom Arne Bond Graph Modelling of Marine Power Systems. 

PhD Thesis, IMT 

IMT-
2009-47 

Kristiansen, Trygve Two-Dimensional Numerical and Experimental 
Studies of Piston-Mode Resonance. PhD-Thesis, 

CeSOS 

IMT-

2009-48 

Ong, Muk Chen Applications of a Standard High Reynolds Number   

Model and a Stochastic Scour Prediction Model for 

Marine Structures. PhD-thesis, IMT 

IMT-

2009-49 

Hong, Lin Simplified Analysis and Design of Ships subjected 

to Collision and Grounding. PhD-thesis, IMT 

IMT-
2009-50 

Koushan, Kamran Vortex Induced Vibrations of Free Span Pipelines, 

PhD thesis, IMT 

IMT-

2009-51 

Korsvik, Jarl Eirik Heuristic Methods for Ship Routing and 

Scheduling. PhD-thesis, IMT 

IMT-
2009-52 

Lee, Jihoon Experimental Investigation and Numerical in 
Analyzing the Ocean Current Displacement of 

Longlines. Ph.d.-Thesis, IMT. 

IMT-

2009-53 

Vestbøstad, Tone Gran A Numerical Study of Wave-in-Deck Impact usin a 

Two-Dimensional Constrained Interpolation Profile 

Method, Ph.d.thesis, CeSOS. 

IMT-

2009-54 

Bruun, Kristine Bond Graph Modelling of Fuel Cells for Marine 

Power Plants. Ph.d.-thesis, IMT 

IMT 

2009-55 

Holstad, Anders Numerical Investigation of Turbulence in a Sekwed 

Three-Dimensional Channel Flow, Ph.d.-thesis, 

IMT. 

IMT 
2009-56 

Ayala-Uraga, Efren Reliability-Based Assessment of Deteriorating 

Ship-shaped Offshore Structures, Ph.d.-thesis, IMT 

IMT 
2009-57 

Kong, Xiangjun A Numerical Study of a Damaged Ship in Beam 

Sea Waves. Ph.d.-thesis, IMT/CeSOS. 

IMT 

2010-58 

Kristiansen, David Wave Induced Effects on Floaters of Aquaculture 

Plants, Ph.d.-thesis, CeSOS. 



 

12 

IMT 

2010-59 

Ludvigsen, Martin An ROV-Toolbox for Optical and Acoustic 

Scientific Seabed Investigation. Ph.d.-thesis IMT. 

IMT 

2010-60 

Hals, Jørgen Modelling and Phase Control of Wave-Energy 

Converters. Ph.d.thesis, CeSOS. 

 

IMT 

2010- 61 

Shu, Zhi Uncertainty Assessment of Wave Loads and 

Ultimate Strength of Tankers and Bulk Carriers in a 
Reliability Framework. Ph.d. Thesis, IMT/ CeSOS 

IMT 

2010-62 

Shao, Yanlin Numerical Potential-Flow Studies on Weakly-

Nonlinear Wave-Body Interactions with/without 

Small Forward Speed, Ph.d.thesis,CeSOS.  

IMT 

2010-63 

Califano, Andrea Dynamic Loads on Marine Propellers due to 

Intermittent Ventilation. Ph.d.thesis, IMT. 

IMT 

2010-64 

El Khoury, George Numerical Simulations of Massively Separated 

Turbulent Flows, Ph.d.-thesis, IMT 

IMT 

2010-65 

Seim, Knut Sponheim Mixing Process in Dense Overflows with Emphasis 

on the Faroe Bank Channel Overflow. Ph.d.thesis, 

IMT 

IMT 
2010-66 

Jia, Huirong Structural Analysis of Intect and Damaged Ships in 
a Collission Risk Analysis Perspective. Ph.d.thesis 

CeSoS. 

IMT 
2010-67 

Jiao, Linlin Wave-Induced Effects on a Pontoon-type Very 
Large Floating Structures (VLFS). Ph.D.-thesis, 

CeSOS. 

IMT 

2010-68 

Abrahamsen, Bjørn Christian Sloshing Induced Tank Roof with Entrapped Air 

Pocket. Ph.d.thesis, CeSOS. 

IMT 

2011-69 

Karimirad, Madjid Stochastic Dynamic Response Analysis of Spar-

Type Wind Turbines with Catenary or Taut 

Mooring Systems. Ph.d.-thesis, CeSOS. 

IMT -
2011-70 

Erlend Meland Condition Monitoring of Safety Critical Valves. 

Ph.d.-thesis, IMT. 

IMT – 

2011-71 

Yang, Limin Stochastic Dynamic System Analysis of Wave 

Energy Converter with Hydraulic Power Take-Off, 
with Particular Reference to Wear Damage 

Analysis, Ph.d. Thesis, CeSOS. 

IMT – 
2011-72 

Visscher, Jan Application of Particla Image Velocimetry on 

Turbulent Marine Flows, Ph.d.Thesis, IMT. 

IMT – 

2011-73 

Su, Biao Numerical Predictions of Global and Local Ice 

Loads on Ships. Ph.d.Thesis, CeSOS. 

IMT – 

2011-74 

Liu, Zhenhui Analytical and Numerical Analysis of Iceberg 

Collision with Ship Structures. Ph.d.Thesis, IMT. 

IMT – 
2011-75 

Aarsæther, Karl Gunnar Modeling and Analysis of Ship Traffic by 
Observation and Numerical Simulation. 

Ph.d.Thesis, IMT. 
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Imt – 

2011-76 

Wu, Jie Hydrodynamic Force Identification from Stochastic 

Vortex Induced Vibration Experiments with 

Slender Beams. Ph.d.Thesis, IMT. 

Imt – 

2011-77 

Amini, Hamid Azimuth Propulsors in Off-design Conditions. 

Ph.d.Thesis, IMT. 

 

 

IMT – 
2011-78 

Nguyen, Tan-Hoi Toward a System of Real-Time Prediction and 
Monitoring of Bottom Damage Conditions During 

Ship Grounding. Ph.d.thesis, IMT. 

IMT- 
2011-79 

Tavakoli, Mohammad T. Assessment of Oil Spill in Ship Collision and 

Grounding, Ph.d.thesis, IMT. 

IMT- 

2011-80 

Guo, Bingjie Numerical and Experimental Investigation of 

Added Resistance in Waves. Ph.d.Thesis, IMT. 

IMT- 

2011-81 

Chen, Qiaofeng Ultimate Strength of Aluminium Panels, 

considering HAZ Effects, IMT 

IMT- 
2012-82 

Kota, Ravikiran S. Wave Loads on Decks of Offshore Structures in 

Random Seas, CeSOS. 

IMT- 
2012-83 

Sten, Ronny Dynamic Simulation of Deep Water Drilling Risers 

with Heave Compensating System, IMT. 

IMT- 

2012-84 

Berle, Øyvind Risk and resilience in global maritime supply 

chains, IMT. 

IMT- 

2012-85 

Fang, Shaoji Fault Tolerant Position Mooring Control Based on 

Structural Reliability, CeSOS. 

IMT- 

2012-86 

You, Jikun Numerical studies on wave forces and moored ship 

motions in intermediate and shallow water, CeSOS. 

IMT- 

2012-87 

Xiang ,Xu Maneuvering of two interacting ships in waves, 

CeSOS 

IMT- 
2012-88 

Dong, Wenbin Time-domain fatigue response and reliability 
analysis of offshore wind turbines with emphasis on 

welded tubular joints and gear components, CeSOS 

IMT- 
2012-89 

Zhu, Suji Investigation of Wave-Induced Nonlinear Load 
Effects in Open Ships considering Hull Girder 

Vibrations in Bending and Torsion, CeSOS 

IMT- 

2012-90 

Zhou, Li Numerical and Experimental Investigation of 

Station-keeping in Level Ice, CeSOS 

IMT- 
2012-91 

Ushakov, Sergey Particulate matter emission characteristics from 
diesel enignes operating on conventional and 

alternative marine fuels, IMT 

IMT- 
2013-1 

Yin, Decao Experimental and Numerical Analysis of Combined 
In-line and Cross-flow Vortex Induced Vibrations, 

CeSOS 
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IMT- 

2013-2 

Kurniawan, Adi Modelling and geometry optimisation of wave 

energy converters, CeSOS 

IMT- 

2013-3 

Al Ryati, Nabil Technical condition indexes doe auxiliary marine 

diesel engines, IMT 

IMT-
2013-4 

Firoozkoohi, Reza Experimental, numerical and analytical 
investigation of the effect of screens on sloshing, 

CeSOS 

IMT- 
2013-5 

Ommani, Babak Potential-Flow Predictions of a Semi-Displacement 
Vessel Including Applications to Calm Water 

Broaching, CeSOS 

IMT- 

2013-6 

Xing, Yihan Modelling and analysis of the gearbox in a floating 

spar-type wind turbine, CeSOS 

IMT-7-

2013 

Balland, Océane Optimization models for reducing air emissions 

from ships, IMT 

IMT-8-

2013 

Yang, Dan Transitional wake flow behind an inclined flat 

plate-----Computation and analysis,  IMT 

IMT-9-

2013 

Abdillah, Suyuthi Prediction of Extreme Loads and Fatigue Damage 

for a Ship Hull due to Ice Action, IMT 

IMT-10-

2013 

Ramìrez, Pedro Agustìn Pèrez Ageing management and life extension of technical 

systems- 

Concepts and methods applied to oil and gas 

facilities, IMT 

IMT-11-

2013 

Chuang, Zhenju Experimental and Numerical Investigation of Speed 

Loss due to Seakeeping and Maneuvering. IMT 

IMT-12-
2013 

Etemaddar, Mahmoud Load and Response Analysis of Wind Turbines 
under Atmospheric Icing and Controller System 

Faults with Emphasis on Spar Type Floating Wind 

Turbines, IMT 

IMT-13-

2013 

Lindstad, Haakon Strategies and measures for reducing maritime CO2 

emissons, IMT 

IMT-14-
2013 

Haris, Sabril Damage interaction analysis of ship collisions, IMT 

IMT-15-
2013 

Shainee, Mohamed Conceptual Design, Numerical and Experimental 
Investigation of a SPM Cage Concept for Offshore 

Mariculture, IMT 

IMT-16-
2013 

Gansel, Lars Flow past porous cylinders and effects of 
biofouling and fish behavior on the flow in and 

around Atlantic salmon net cages, IMT 

IMT-17-

2013 

Gaspar, Henrique Handling Aspects of Complexity in Conceptual 

Ship Design, IMT 

IMT-18-
2013 

Thys, Maxime Theoretical and Experimental Investigation of a 
Free Running Fishing Vessel at Small Frequency of 

Encounter, CeSOS 

IMT-19-

2013 

Aglen, Ida VIV in Free Spanning Pipelines, CeSOS 
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IMT-1-

2014 

Song, An Theoretical and experimental studies of wave 

diffraction and radiation loads on a horizontally 

submerged perforated plate, CeSOS 

IMT-2-

2014 

Rogne, Øyvind Ygre Numerical and Experimental Investigation of a 

Hinged 5-body Wave Energy Converter, CeSOS 

IMT-3-

2014 

Dai, Lijuan  Safe and efficient operation and maintenance of 

offshore wind farms ,IMT 

IMT-4-

2014 

Bachynski, Erin Elizabeth Design and Dynamic Analysis of Tension Leg 

Platform Wind Turbines, CeSOS 

IMT-5-

2014 

Wang, Jingbo Water Entry of Freefall Wedged – Wedge motions 

and Cavity Dynamics, CeSOS 

IMT-6-
2014 

Kim, Ekaterina Experimental and numerical studies related to the 
coupled behavior of ice mass and steel structures 

during accidental collisions, IMT 

IMT-7-

2014 

Tan, Xiang Numerical investigation of ship’s continuous- mode 

icebreaking in leverl ice, CeSOS 

IMT-8-
2014 

Muliawan, Made Jaya Design and Analysis of Combined Floating Wave 
and Wind Power Facilities, with Emphasis on 

Extreme Load Effects of the Mooring System, 

CeSOS 

IMT-9-

2014 

Jiang, Zhiyu Long-term response analysis of wind turbines with 

an emphasis on fault and shutdown conditions, IMT 

IMT-10-
2014 

Dukan, Fredrik ROV Motion Control Systems, IMT 

IMT-11-

2014 

Grimsmo, Nils I. Dynamic simulations of hydraulic cylinder for 

heave compensation of deep water drilling risers, 

IMT 

IMT-12-
2014 

Kvittem, Marit I. Modelling and response analysis for fatigue design 

of a semisubmersible wind turbine, CeSOS 

IMT-13-

2014 

Akhtar, Juned The Effects of Human Fatigue on Risk at Sea, IMT 

IMT-14-

2014 

Syahroni, Nur Fatigue Assessment of Welded Joints Taking into 

Account Effects of Residual Stress, IMT 

IMT-1-

2015 

Bøckmann, Eirik Wave Propulsion of ships, IMT 

IMT-2-

2015 

Wang, Kai Modelling and dynamic analysis of a semi-

submersible floating vertical axis wind turbine, 

CeSOS 

IMT-3-

2015 

Fredriksen, Arnt Gunvald A numerical and experimental study of a two-

dimensional body with moonpool in waves and 

current, CeSOS 

IMT-4-

2015 

Jose Patricio Gallardo Canabes Numerical studies of viscous flow around bluff 

bodies, IMT 
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IMT-5-

2015 

Vegard Longva Formulation and application of finite element 

techniques for slender marine structures subjected 

to contact interactions, IMT 

IMT-6-

2015 

Jacobus De Vaal Aerodynamic modelling of floating wind turbines, 

CeSOS 

IMT-7-

2015 

Fachri Nasution Fatigue Performance of Copper Power Conductors, 

IMT 

IMT-8-

2015 

Oleh I Karpa Development of bivariate extreme value 

distributions for applications in marine 

technology,CeSOS 

IMT-9-

2015 

Daniel de Almeida Fernandes An output feedback motion control system for 

ROVs, AMOS 

IMT-10-

2015 

Bo Zhao Particle Filter for Fault Diagnosis: Application to 

Dynamic Positioning Vessel and Underwater 

Robotics, CeSOS 

IMT-11-

2015 

Wenting Zhu Impact of emission allocation in maritime 

transportation, IMT 

IMT-12-
2015 

Amir Rasekhi Nejad Dynamic Analysis and Design of Gearboxes in 
Offshore Wind Turbines in a Structural Reliability 

Perspective, CeSOS 

IMT-13-
2015 

Arturo Jesùs Ortega Malca Dynamic Response of Flexibles Risers due to 

Unsteady Slug Flow, CeSOS 

IMT-14-

2015 

Dagfinn Husjord Guidance and decision-support system for safe 

navigation of ships operating in close proximity, 

IMT 

IMT-15-

2015 

Anirban Bhattacharyya Ducted Propellers: Behaviour in Waves and Scale 

Effects, IMT 

IMT-16-

2015 

Qin Zhang Image Processing for Ice Parameter Identification 

in Ice Management, IMT 

IMT-1-

2016 

Vincentius Rumawas Human Factors in Ship Design and Operation: An 

Experiential Learning, IMT 

IMT-2-

2016 

Martin Storheim Structural response in ship-platform and ship-ice 

collisions, IMT 

IMT-3-

2016 

Mia Abrahamsen Prsic Numerical Simulations of the Flow around single 

and Tandem Circular Cylinders Close to a Plane 

Wall, IMT 

IMT-4-

2016 

Tufan Arslan Large-eddy simulations of cross-flow around ship 

sections, IMT 
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IMT-5-

2016 

Pierre Yves-Henry Parametrisation of aquatic vegetation in hydraulic 

and coastal research,IMT 

IMT-6-
2016 

Lin Li Dynamic Analysis of the Instalation of Monopiles 

for Offshore Wind Turbines, CeSOS 

IMT-7-
2016 

Øivind Kåre Kjerstad Dynamic Positioning of Marine Vessels in Ice, IMT 

IMT-8-
2016 

Xiaopeng Wu Numerical Analysis of Anchor Handling and Fish 
Trawling Operations in a Safety Perspective, 

CeSOS 

IMT-9-
2016 

Zhengshun Cheng Integrated Dynamic Analysis of Floating Vertical 

Axis Wind Turbines, CeSOS 

IMT-10-
2016 

Ling Wan Experimental and Numerical Study of a Combined 
Offshore Wind and Wave Energy Converter 

Concept 

IMT-11-
2016 

Wei Chai Stochastic dynamic analysis and reliability 
evaluation of the roll motion for ships in random 

seas, CeSOS 

IMT-12-
2016 

Øyvind Selnes Patricksson Decision support for conceptual ship design with 
focus on a changing life cycle and future 

uncertainty, IMT 

IMT-13-
2016 

Mats Jørgen Thorsen Time domain analysis of vortex-induced vibrations, 

IMT 

IMT-14-
2016 

Edgar McGuinness Safety in the Norwegian Fishing Fleet – Analysis 

and measures for improvement, IMT 

IMT-15-
2016 

Sepideh Jafarzadeh Energy effiency and emission abatement in the 

fishing fleet, IMT 

IMT-16-
2016 

Wilson Ivan Guachamin Acero Assessment of marine operations for offshore wind 
turbine installation with emphasis on response-

based operational limits, IMT 

IMT-17-
2016 

Mauro Candeloro Tools and Methods for Autonomous  Operations on 
Seabed and Water Coumn using Underwater 

Vehicles, IMT 

IMT-18-
2016 

Valentin Chabaud Real-Time Hybrid Model Testing of Floating Wind 

Tubines, IMT 

IMT-1-
2017 

Mohammad Saud Afzal Three-dimensional streaming in a sea bed boundary 

layer 

IMT-2-
2017 

Peng Li A Theoretical and Experimental Study of Wave-
induced Hydroelastic Response of a Circular 

Floating Collar 

IMT-3-
2017 

Martin Bergström A simulation-based design method for arctic 

maritime transport systems 
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IMT-4-

2017 

Bhushan Taskar The effect of waves on marine propellers and 

propulsion 

IMT-5-
2017 

Mohsen Bardestani A two-dimensional numerical and experimental 
study of a floater with net and sinker tube in waves 

and current 

IMT-6-
2017 

Fatemeh Hoseini Dadmarzi Direct Numerical Simualtion of turbulent wakes 

behind different plate configurations 

IMT-7-
2017 

Michel R. Miyazaki Modeling and control of hybrid marine power 

plants 

IMT-8-
2017 

Giri Rajasekhar Gunnu Safety and effiency enhancement of anchor 
handling operations with particular emphasis on the 

stability of anchor handling vessels 

IMT-9-
2017 

Kevin Koosup Yum Transient Performance and Emissions of a 
Turbocharged Diesel Engine for Marine Power 

Plants 

IMT-10-
2017 

Zhaolong Yu Hydrodynamic and structural aspects of ship 

collisions 

IMT-11-
2017 

Martin Hassel Risk Analysis and Modelling of Allisions between 

Passing Vessels and Offshore Installations 

IMT-12-
2017 

Astrid H. Brodtkorb Hybrid Control of Marine Vessels – Dynamic 

Positioning in Varying Conditions 

IMT-13-
2017 

Kjersti Bruserud Simultaneous stochastic model of waves and 

current for prediction of structural design loads 

IMT-14-
2017 

Finn-Idar Grøtta Giske Long-Term Extreme Response Analysis of Marine 

Structures Using Inverse Reliability Methods 

IMT-15-
2017 

Stian Skjong Modeling and Simulation of Maritime Systems and 
Operations for Virtual Prototyping using co-

Simulations  

IMT-1-
2018 

Yingguang Chu Virtual Prototyping for Marine Crane Design and 

Operations 

IMT-2-
2018 

Sergey Gavrilin Validation of ship manoeuvring simulation models 

IMT-3-

2018 

Jeevith Hegde Tools and methods to manage risk in autonomous 

subsea inspection,maintenance and repair 

operations 

IMT-4-
2018 

Ida M. Strand Sea Loads on Closed Flexible Fish Cages 

IMT-5-
2018 

Erlend Kvinge Jørgensen Navigation and Control of Underwater Robotic 

Vehicles 
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IMT-6-

2018 

Bård Stovner Aided Intertial Navigation of Underwater Vehicles 

IMT-7-
2018 

Erlend Liavåg Grotle Thermodynamic Response Enhanced by Sloshing 

in Marine LNG Fuel Tanks 

IMT-8-
2018 

Børge Rokseth Safety and Verification of Advanced Maritime 

Vessels 

IMT-9-
2018 

Jan Vidar Ulveseter Advances in Semi-Empirical Time Domain 

Modelling of Vortex-Induced Vibrations 

IMT-10-
2018 

Chenyu Luan Design and analysis for a steel braceless semi-
submersible hull for supporting a 5-MW horizontal 

axis wind turbine 

IMT-11-
2018 

Carl Fredrik Rehn Ship Design under Uncertainty 

IMT-12-
2018 

Øyvind Ødegård Towards Autonomous Operations and Systems in 
Marine Archaeology 

IMT-13- 
2018 

Stein Melvær Nornes Guidance and Control of Marine Robotics for 
Ocean Mapping and Monitoring 

IMT-14-
2018 

Petter Norgren Autonomous Underwater Vehicles in Arctic Marine 
Operations: Arctic marine research and ice 

monitoring 
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