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Abstract— Harsh weather conditions such as wind and ic-
ing are severe debilitators to the operations of unmanned
aerial vehicles in terms of performance, safety and reliability.
Forecasts of atmospheric parameters in the mission area can
open many options in terms of how to best traverse said
environment. The use of hybrid electric propulsion systems in
such vehicles significantly alter operational flexibility and range,
and subsequently the versatility of the platform, but they are
equally vulnerable to atmospheric conditions. This work will
show that taking meteorological forecasts into account when
performing path planning optimization on such a platform can
lead to improvements in energy efficiency of up to 43%, or
reduce the flight time between two points by up to 42%, when
compared to a standard, straight cruising flight.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have seen a surge in
development and research over the past few years, in large
part thanks to the versatility of UAVs as survey or trans-
portation platforms. Two major limiting factors in practical
UAV operations beyond visual line of sight (BVLOS) are
restrictions to the effective range, and challenging weather
conditions.

Atmospheric winds and icing conditions are the main
hazards considered in this research, and developing ways
of safely and efficiently operating in such environments can
expand the domain in which UAVs can be operated BVLOS.
Winds often constitute significant portions of an aircraft’s
airspeed, and the inclusion of horizontal wind maps in path
planning optimization has been shown to lower both flight
times and energy expenditure [1]. Vertical wind is essential
for the studies of primarily soaring flight and sailplanes, and
research has been done into optimal flight in rising air [2].

Icing conditions are considered detrimental to safe op-
eration, but research on stability and operations in such
conditions has increased the last few years [3], [4], [5]. The
advent of advanced icing protection systems (IPS) [6] has
made it possible to mitigate airframe icing at the cost of
energy. UAVs equipped with an electro-thermal IPS will be
considered in this work. Such systems apply electric heating
to exposed surfaces such as the leading edge of wings in
order to actively prevent or remove icing, [7], [8]. Due to
the high electric power demands for IPS, a hybrid electric
UAV (HEUAV) is considered. Installing a hybrid electric
power system (HEPS) mitigates the low specific energy of
the battery by adding energy rich fuel that can be used to
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recharge the battery cells during operation. The system will
still benefit from the high available power from the battery,
thus enabling the use of electro-thermal IPS that have high
peak electric power loads without having to increase the
size of the vehicle. HEUAVs are in their relative infancy,
but are emerging as promising alternatives to established
technologies [9], and can typically provide upwards of a
five-fold increase in flight-time compared to a purely electric
UAV, at a modest cost to system weight.

As autonomy in UAV operations has expanded over the
past few years, so has research in path planning optimization.
A multi-objective evolutionary algorithm to minimize fuel
expenditure given mission constraints was employed in [10].
Subsequently, the same work implements an ideal operating
line control of a thoroughly modelled hybrid electric propul-
sion system. The current work builds on [1] and [11] which
concerns performance optimization of fixed-wing electric
UAVs in winds and icing conditions through path planning
methods.

The overarching objective of the following research is
developing algorithms for optimal path planning of a HEUAV
with electro-thermal IPS given meteorological forecasts as
input data. To realize this, a sufficiently accurate performance
model of the hybrid electric power-train and the aircraft must
be available, where the system should be flexible enough
to be employed with minimal effort to different platform
configurations. The main contributions of the present paper,
when compared to [1] and [11], is that vertical winds and
HEUAVs (rather than electric) are considered. In addition,
there are various improvements in the models and algorithms
that improve the performance of the system.

Optimization using particle swarm optimization (PSO)
will be made both with respect to energy consumption,
and to overall time usage. To demonstrate the potential
savings in these regards, the algorithm will be tested on
multiple simulated data sets with varying severity in weather
conditions, on a realistic HEUAV configuration. Further, the
results will be discussed, and an outline of future work will
be given, to improve on realism, and reach a system that
could feasibly be deployed in the field.

II. ATMOSPHERIC WEATHER MODELING

To ascertain the efficiency of a given path, an accurate
model of different atmospheric parameters at the relevant
time and geographical area is needed. In this paper, the calcu-
lations are made possible by meteorological data provided by
the Norwegian Meteorological Institute as described below.



A. Barometric pressure and air density

Atmospheric pressure has significant effects on the in-
duced drag, lift, ice accumulation and general performance
of an aircraft. The pressure p is estimated in Pa through
the International Standard Atmosphere (ISA) barometric
formula, which relates height over sea level h to pressure
by

p(h) = P0 ·
(

T0

T0 +L0 ·h

) g·M
R·L0

(1)

where P0 is the static sea level pressure of 101325 Pa, T0
is the sea level standard temperature of 288.15 K, L0 is
the standard temperature lapse rate which is around -0.0065
K/m within 11000 meters of altitude, R is the universal
gas constant of 8.3144598 J/mol·K, g is the gravitational
acceleration and M is the molar mass of air at 0.0289644
kg/mol.

Also playing a major role in the aerodynamic forces on
the vehicle is the air density ρ in kg/m3. The density is
calculated by the ideal gas law and varies with surrounding
temperature T and pressure p

ρ(T, p) =
M · p
R ·T

(2)

where temperature T has unit K.

B. Icing conditions

Icing conditions are combinations of atmospheric condi-
tions that lead to the accumulation of ice on an unheated
structure. The formation of ice on the wings of a UAV occurs
through exposure to super-cooled liquid droplets, and can
be critical to operations. Initially, an increase in drag and
subsequent decrease in lift occurs, as the air flow separates
from the wings at lower angles of attack. Ultimately, this
may lead to stalling and crashing the UAV, and has therefore
recently become an area of study for UAV operations in
colder climates [5]. Multiple parameters have an effect on
icing on an airframe, including velocity, droplet size, liquid
water content (LWC), and temperature. In this work, an
aircraft is considered to be in icing conditions when operating
in a temperature below 0°C, an LWC above 0.01 g/m3 and
experiencing a relative humidity above 0.99.

Relative humidity is the ratio of the partial pressure of
water vapour ea to the saturated water vapour pressure at a
given temperature esat . Relative humidity is thus expressed
as

H(ea,esat) =
ea

esat
(3)

where ea in Pa is given by

ea(p,q) =
q · p

0.622+0.378q
(4)

where q is the specific humidity, which is ratio of the mass of
water vapor to the total mass of the air parcel. The saturated
water vapor pressure esat is dependent on T and is given by

esat(T ) = 2+10
0.7859+0.03477(T−273.16)

1+0.00412(T−273.16) (5)

Liquid water content is the measure of the mass of water
within a body of air. Specifically, the LWC parameter has
unit g/m3, and can be extracted from the mixing ratio LWCm
in kg/kg by

LWC(p,LWCm,T ) =
LWCm p

RdT
·103 (6)

where Rd is the specific gas constant for dry air of 287.058
J/kg·K. LWCm is one of the available meteorological param-
eters, hence the need for the above conversion.

The water droplet median volume diameter (MVD) in µm,
is a measure of the diameter of the average droplet in a body
of air, [12]

MV D =

(
3.672+µ

λ

)
(7)

where µ is a size distribution shape parameter given by

µ = min
(

15,
1000
Nc

+2
)

(8)

where Nc is the droplet concentration set to 100 drops/cm3

as a typical value, but can range upwards of 200 drops/cm3

in nominal conditions [13]. The slope parameter given by

λ =

[
π

6
ρw

Γ(4+µ)

Γ(1+µ)

Nc

LWC

]1/3

(9)

where ρw is the density of water in g/m3 and Γ is the gamma
function.

C. Wind

Wind is one of the primary disturbances in UAV op-
erations, and is a significant factor in energy expenditure
and flight times. Given typical wind speeds, flying a stretch
in headwind can easily double flight times. For this rea-
son, there are large potential energy, and time, savings
by optimizing a path taking geographical wind maps into
account. Spatial maps of horizontal wind, separated into east-
bound and north-bound maps with magnitudes varying with
altitude are available for download. These must be properly
interpreted to be of use in the system.

In addition to horizontal wind, vertical wind is also present
in most UAV applications. Although the magnitude of verti-
cal wind vectors is lower than that of zonal and meridional
wind, the effect of updraft on a UAV can lead to gaining
”free” lift, which could play a factor in the calculation of an
optimal path. Several factors can lead to vertical wind, such
as ridge lift, stemming from horizontal wind being deflected
upwards after meeting an obstacle such as a cliff face, which
is exploited by sailplanes and soaring birds alike. Thermal
columns are another potential source of updraft, stemming
from pressure differentials as a result of uneven heating of
Earth’s surface [14].

Let V i
w be the wind speed vector with respect to an inertial

north-east-down (NED) frame such that

V i
w =

wn
we
wd

 (10)



where wn and we are the north- and east-component of the
wind speed vector respectively and wd is the downwards
facing component. The magnitude of the wind vector is then
given by

Vw =
√

wn2 +we2 +wd
2 (11)

D. Meteorological data

Although forecasts would be needed for an operational
planning system, historical data are preferred for testing.
Historical meteorological data of the Scandinavian peninsula
is available through a webapp called THREDDS Data Server
hosted by the Norwegian Meteorological Institute (MET).
Here, a multitude of weather data from 2016 and onwards
is available for download, where one can specify a desired
date, time and geographical coverage and receive relevant
data in the Network Common Data Form (NetCDF). Fully
processed data is currently available at 3 hour intervals, i.e.
at 00, 03, 06, etc. UTC and can be specified freely for the
desired area and altitudes. The service also provides a subset
of parameters hourly, but these are not archived and will
therefore have to be downloaded by the user within 24 hours
of being processed.

Relevant to this application are the following downloaded
maps and parameters. Two separate three-dimensional wind
maps, detailing horizontal wind, indicate longitudinal and
lateral wind. They are structured as a cube matrix, where
each slice indicates a certain altitude, and the maximum
and minimum altitude can be specified before downloading.
Another wind map, detailing upwards wind, stored in the
same format as the horizontal maps, is also acquired. To
get a map of the relative humidity, a map of the spatial
temperature, pressure based on altitude and a map of the
specific humidity is downloaded. A map of the LWCm is
also available and necessary for evaluating icing conditions
and penalties. The maps are indexed with matrices associat-
ing values of latitudes and longitudes to cells in the map
matrix. All the mentioned data is provided with a zonal
and meridional resolution of 2,5 km while the resolution
of the vertical slices are roughly 100 m, but decreasing with
increasing altitude. Assuming constant and evenly distributed
parameters throughout every cell is a simplification, but one
deemed necessary.

The Norwegian Mapping Authority supplies a number
of detailed maps in different categories for the Norwegian
peninsula. Included are digital terrain models (DTM) that
illustrate elevation at a set resolution for a specified geo-
graphical area. For this application DTM maps for sections
of the Universal Transverse Mercator (UTM) zone 33N were
downloaded at a resolution of 10 m, but later further down-
scaled to 200 m for computational and practical purposes.
The data can be downloaded as a Web Coverage Service
(WCS) most easily done by using a given WCS URL in a
dedicated program such as QGIS.

III. AIRCRAFT PERFORMANCE MODEL

A mathematical model of the aircraft is essential for deter-
mining and improving operational performance. Following is

an overview of the relevant equations to express the UAVs
performance in terms of aerodynamic forces and moments as
well as equations of motion. Many of the following equations
of motion follow [15].

A. Equations of motion and power estimation

To efficiently and iteratively create trajectories to be used
in the optimization algorithm, it is desirable to specify a min-
imal amount of independent variables for each discretization
step that can be used to seed the more detailed parameters
that will be used for power and performance calculations.
Four parameters will be used as input data, and since all
necessary weather data is obtained independently, one can
subsequently calculate a range of useful parameters that
follow these four discrete values. The four input parameters
are the flight path angle γ , two coordinates to indicate the
horizontal position of a step and the airspeed Va.

All aerodynamic forces acting on an aircraft are directly
proportional to the vehicle’s Va. Airspeed is a measure of
the aircraft’s velocity relative to the surrounding air, and is
a combination of the vehicle’s ground velocity vector V i

g and
the surrounding wind velocity vector V i

w, given in an earth-
fixed inertial frame by

V i
a =V i

g−V i
w (12)

where V i
g is the vector describing the UAV’s motion with

respect to the ground below, V i
a describes the projections of

the UAV’s relative air velocity vector into the same NED
frame, and Va is the magnitude of the vector V i

a.
Defining γ as the flight path angle, which is the angle

between the horizontal plane and the ground velocity vector,
we can express the time derivative of the UAV’s altitude h
by

ḣ =Vg sinγ (13)

where Vg is the magnitude of the ground velocity vector. The
flight path angle γ will be one of the optimization variables
indicating climbing or descending along the path. V i

g can be
expressed in element form as

V i
g =Vg

cos χ cosγ

sin χ cosγ

−sinγ

 (14)

where χ is the course over ground (COG), calculated as
the angle with respect to north between two desired discrete
positions. The airspeed V i

a can be expressed similar to V i
g

V i
a =Va

cosψ cosγa
sinψ cosγa
−sinγa

 (15)

where ψ is the aircraft heading and γa is the air-mass-
referenced flight-path angle defined as the angle from the
horizontal plane to the airspeed vector. Eq. (12) can now be
rewritten

Va

cosψ cosγa
sinψ cosγa
−sinγa

=Vg

cos χ cosγ

sin χ cosγ

−sinγ

−
wn

we
wd

 (16)



Squaring the norm of each side of Eq. (16) gives

V 2
g −2Vg

cos χ cosγ

sin χ cosγ

−sinγ

T wn
we
wd

+V 2
w −V 2

a = 0 (17)

which can be solved for Vg to give a measure of the actual
ground speed of the aircraft. The horizontal component of
Vg can then be used to get a measure of the flight time ti of
a discretized step i

ti =
Li

Vg cosγ
(18)

where Li is the horizontal distance between two desired
positions. This is then used to calculate altitude changes
based on Eq. (13), as well as energy consumption from
expended power. From Eq. (16) one can also obtain

γa = arcsin
(

Vg sinγ +wd

Va

)
(19)

Simulations performed in [16] relate the angle of attack
α to corresponding aerodynamic lift and drag coefficients
CL and CD for a 2D RG-15 airfoil, whose relation is used
in this work. The generated lift force by the airfoil will
be assumed to counteract the weight of the aircraft during
flight, and scaled by γa, to maintain linearity. The required
lift coefficient of a step is then calculated as

CL =
2mgcosγa

ρSV 2
a

(20)

This coefficient value gives a corresponding angle of
attack and drag coefficient by performing linear interpola-
tions between values obtained from the authors of [16]. The
resultant aerodynamic drag force can then be obtained as

Fdrag =
1
2

ρV 2
a SCD (21)

The propulsion system will have to overcome this drag
force as well as the pitch-adjusted gravitational force. The
required thrust Tprop in Newtons is then given by

Tprop = Fdrag +mg · sin(γa +α) (22)

The required propulsive power in W is proportional to the
required thrust and the desired airspeed, expressed as

Pprop(Tprop,Va) = TpropVa (23)

Further assuming perfect power transmission from the
battery or the rectifier to the electric motor (EM), the work
in Ws becomes

Ws = PEM · ti =
Pprop

ηprop
· ti (24)

for some duration ti in s, where ηprop is the propeller
efficiency, which is a measure of the ratio of the power
applied to the EM and the resulting propulsive power. This
model assumes constant power over the time step, which
is a necessary simplification due to the complexity of the
calculations and length of the path.

B. Icing protection system

As the operational domain in the simulations of this work
concern icing conditions, the UAV is assumed to be equipped
with an electro-thermal IPS such as [7], [8]. An IPS typically
works by predicting or detecting icing conditions during
operations and then employing mitigating actions. This is
done by activating electro-thermal panels installed on the
airframe either melting the ice (de-icing mode), or preventing
ice from forming (anti-icing mode).

In regards to icing, two factors play heavily into the in-
flight performance estimations; power consumption from the
IPS, and the increased drag coefficient as a result of icing on
the airframe. Two separate algorithms, one for de-icing loads,
and one for anti-icing loads, are outputting power loads PIPS
based on

PIPS(Va,LWC,T ) (25)

where Va, LWC and T are airspeed, liquid water content
and temperature respectively. Determining whether to use
de-icing or anti-icing for a given step is done by comparing
the sum of required power for anti-icing and operating with
an ice-free airframe to the sum of using de-icing and flying
with an airframe subjected to a degraded drag model as a
result of ice accumulation.

The models of drag performance penalties and IPS power
loads must be found specifically for each UAV using (icing)
wind tunnel tests or computed using advanced numerical
methods. We will get back to this in connection with the
case study in section V-A.

C. IPS-free performance degradation and ice accumulation

To illustrate the importance of an IPS during flights in
icing conditions, and to investigate the alternatives, it is
desirable to employ a model for aerodynamic performance
degradation as a result of airframe icing. Together with the
data detailing the relationship between angle of attack, CL
and CD on a clean airframe, [16] also produced the same
relationships of the airframe after being exposed to different
icing conditions for a set amount of time. The data spec-
ifies the resulting degraded lift and drag coefficients from
being exposed to icing conditions with specific MVD and
temperature values, using different angles of attack. Interpo-
lating between the values allows estimates of performance
degradations in different icing conditions. The same study
also produced a model for the mass of the ice accumulating
on an airframe, which will also be considered during no-IPS
flight. These models will be explained in greater detail, and
more extensively tested, in [17].

D. Hybrid electric power-train modeling

Hybrid-electric propulsion systems in UAVs is a relatively
new concept, pioneered by the Diamond DA36 E-Star in
2011 [18]. Motivation surrounding the development of HEPS
for UAVs is primarily increasing operational range without
sacrificing the benefits of a smaller aircraft design. As the
operational limitations of the vehicles are determined in
large by the weight and available power, specific energy



density of the power sources arise as an important factor.
Specific energy density refers to the energy per unit mass of
a medium, and is typically denoted by Wh/kg.

Most HEPS use a fuel tank feeding an internal combustion
engine (ICE) connected either mechanically to the drive-
train, or its generated power is converted to electrical energy
through a generator. ICE based HEPS typically get their
energy from gasoline, having a specific energy of around
13 kWh/kg [19]. Much of this energy will be lost during
operation due to inefficiencies in coupling, thermal losses
and combustion, but one can still expect significant amounts
of energy with relatively small amounts of fuel.

There are multiple HEPS configurations, which are de-
scribed in detail in [20]. The one assumed in this research
is a variant of the series hybrid configuration, where there is
no mechanical coupling between the combustion power-train
and the battery. Instead, a brushless AC-motor is driven in
reverse by the ICE to generate electricity. A rectifier converts
the alternating current to direct current, which can drive the
EM and subsequently the propeller, or charge the battery.

Combining a battery model and the ICE-driven power
generation model, one can simulate the power system. The
battery is charged and discharged in the same manner, so the
battery capacity at time step i+1 is given by

Ci+1 =Ci−Ċi(Pi−Pgen,Ci) · ti (26)

where Pi = Pprop +PIPS is the required power at step i, Pgen
is the generated power, ti is the length of the time step and
Ċi is a function describing rate of change of capacity at a
certain voltage given a supply or demand in power. Ċi(Pi,Ci)
is designed such that Ċi(Pi,Ci) =−Ċi(−Pi,Ci) which implies
that the remaining capacity of the vehicle increases if Pgen
> Pi in Eq. (26). Ċi is defined by

Ċi =
Ii

3600
=

Ptot i

3600 ·Voci
(27)

where Ptot i = Pi−Pgen is the total power drawn at step i and
Voci is the battery potential voltage at step i.

It is worth noting that more complex models for com-
bustion and power generation processes exist, but due to the
large discretization steps in the path planning algorithm, they
can be considered relatively constant, as complex behaviors
are likely to disappear over longer horizons. This is further
justified by the structure of the HEPS, in that it can be driven
separately from the EM and the battery, and thus be run at
a constant, ideal operating point.

E. Battery modeling

Integral to most modern HEPS is the battery, which has
become commonplace in UAVs, whether in a fully electric or
hybrid configuration. Not only are there multiple advantages
over pure combustion drive-trains in terms of emissions and
operational noise, but also that of potential power. What
batteries are lacking in terms of energy density compared
to aircraft fuel, they make up for in specific power, which is
the ratio of available power to the weight of a power source
in W/kg, and power density which is the ratio of power

to volume in W/m3. In practice, this opens up options for
the miniaturization of the vehicles, as smaller micro aerial
vehicles (MAV) with limited available weight and design
space can still supply sufficient power to an EM and electric
IPS.

Lithium Polymer (LiPo) battery cells are the most com-
monly used in UAV applications, with a specific power of
up to 430W/kg and a specific energy density of up to 0.22
kWh/l, the highest of the common battery types. In this
work the dynamic model of the battery is based on the
Tremblay’s model from [21] and supplemented by [2]. The
main assumptions for this model are
• Constant internal resistance
• Charging and discharging characteristics are each

other’s reciprocal
• No temperature effects
• No self-discharge
• No memory effects or cycle life

Define
A =Vf ull−Vexp

B =
3

Cexp

Cr =Ccut −C

(28)

where Vf ull is the voltage at maximum capacity, Vexp is the
voltage at the end of the exponential range of the battery,
C is the discharged capacity in Ah, Ccut is the discharged
capacity at the cut-off limit in Ah. The battery potential Voc
in V can then be represented by

Voc(C,V0) =V0−
(

κCcut

Cr

)
+Ae−BC (29)

where V0 is defined as

V0(Voc, Ie f f ) =Vf ull +κ +Rc · Ie f f −A (30)

where Rc is the constant internal resistance in the battery in
Ω and Ie f f is the effective current in A given by

Ie f f =
Pe f f

Voc
(31)

using Ie f f as a variable rather than the constant specified
discharge current as in the regular Tremblay model. This
is due to the power consumption being considered constant
during a discretization step. Further, κ is the polarization
voltage in V given by

κ =

(
Vf ull−Vnom +A(e−BCnom −1)

)
(Ccut −Cnom)

Cnom
(32)

Thus, a nonlinear equation representing Voc is obtained as

V n+1
oc −

(
Vf ull +κ−A− κCcut

Cr
+Ae−BC

)
V n

oc

−RcI1−n
ratedPn

e f f = 0
(33)

where n is the Peukert’s constant for the specific battery,
Irated is the rated maximum discharge current for the battery
in A. The equation can be solved with a nonlinear solver.



IV. MISSION PLANNING

A simulation environment for the meteorological data,
UAV model, mission parameters and optimization algorithm
was built to quantify the energy and time-wise improvements
that could be made. This section will explain the method of
optimization, structure of the code base, the used resources
and specify the platform configuration for the simulations.

A. Cost functions

To realize the optimization algorithm, a proper cost func-
tion is needed. The purpose of the cost function is to quantify
the success of a given solution, which can be used in an
optimization algorithm to compare alternative solutions and
determine the best one. Infeasible solutions are given infinite
cost the moment they are deemed infeasible. Solutions are
deemed infeasible for infractions such as breaching the
highest set altitude (in this case 2300m), going below the
topography at any point or reaching the cut-off capacity in
the battery.

For energy optimization, a measure of expended energy is
required. This is based on the cumulative remaining energy
both in terms of battery capacity, and of fuel. The cost
function is, with that in mind, expressed as a measure of
spent energy in Ah

COSTenergy =Ccut −Cend +
2(Ff ull−F)ηtotρ f uelE f uel

Vexp +Vnom
(34)

where Ccut is the maximum discharged capacity from the
battery, Cend is the remaining battery capacity at the end of
the mission, Ff ull is the initial fuel level, F is the remaining
fuel level, ηtot is the total efficiency in the system, ρ f uel is
the density of fuel, E f uel is the total energy in fuel per kg
and Vexp and Vnom is the voltage at the end of the exponential
range and the nominal range respectively. In a physical sense,
the last term in Eq. (34) expresses how much battery capacity
one could expect to regenerate with the remaining fuel given
an average nominal battery voltage. We note that the rationale
for energy cost minimization is not the cost of fuel and
electric energy itself, but rather that it indirectly maximizes
operational range, endurance and safety margins, [22].

In some situations, it is desirable to optimize the time of
mission completion rather than expended energy. The cost
function is then simply the sum of each time step through a
solution. A further complication to this cost function could be
to penalize energy expenditure close to the cut-off value, so
that one is guaranteed a solution with enough remaining ca-
pacity to perform for instance landing maneuvers. However,
through simulations, this has not been deemed necessary
as most time optimizations have generally caused reduced
energy expenditure, as will be shown in Section VI.

B. Particle swarm optimization

The cost function must be expected to be non-convex
due to the complexity of the atmospheric models and other
non-linearities, and non-smooth due to the use of lookup-
tables and maps. We have therefore chosen an optimization
algorithm that is designed to handle these challenges, i.e.

the particle swarm optimization method, [23]. PSO is based
on the concept of swarm intelligence which is accumulating
knowledge or learning from decentralised, self-organised
systems [24]. Generally, the optimization works by ran-
domizing a population of particles, which is a quantifiable
candidate solution to the optimization problem. These parti-
cles move iteratively and semi-randomly through the viable
search-space through a changing particle velocity which
indicates the direction in which a better solution might be
found.

The aforementioned particles are in essence relatively
simple suggestions of a potential path, designed to seed
a more detailed solution. Each particle contains separate
vectors of waypoint positions in an east-north-up (ENU)
frame, desired airspeeds and climbing angles. Each particle
has an associated particle velocity which has vectors of
similar sizes and physical properties, but these values instead
indicate how much each of the particle vectors should be
updated in an iteration.

After initializing the world-, mission- and UAV-model,
the PSO algorithm is started. To begin with, a generic
baseline solution is generated through a particle swarm that
is specifically chosen. In this initial solution for a transit
mission, the aircraft begins by climbing up to a feasible
height, then maintains this height flying straight towards
the desired ending point at a constant airspeed, before
descending to the appropriate final altitude. The reasons for
this baseline solution is twofold. It yields a viable initial
solution to push the particles towards feasible solutions in
the first, very random steps, and it serves as a quantifiable
measure of improvement after the optimization is complete.
We note that a similar procedure can be made using the same
basic steps, also for more complex missions than transit.

Further, a number of particles (given by a set population
size) are randomly generated within the confounds of the
mission space, and their associated solutions and costs are
calculated. All property vectors of all particles (including the
initial generic solution) are then updated every iteration with
a change given by the associated particle velocities

Wx←Wx +W vel
x

Wy←Wy +W vel
y

A← A+Avel

Γ← Γ+Γ
vel

(35)

where Wx and Wy are the vectors containing the x and
y components of ENU way-points W , A is the vector of
air-speeds and Γ is the vector of flight path angles. After
an update, the particles are constrained to fit within the
predefined confounds of the state-space. Prior to the above
operation, the particle velocities are updated by

W vel
x = w ·W vel

x + c1 · r1 · (Wx,cb−Wx)+ c2 · r2 · (Wx,gb−Wx)

W vel
y = w ·W vel

y + c1 · r1 · (Wy,cb−Wy)+ c2 · r2 · (Wy,gb−Wy)

Avel = w ·Avel + c1 · r1 · (Acb−A)+ c2 · r2 · (Agb−A)

Γ
vel = w ·Γvel + c1 · r1 · (Γcb−Γ)+ c2 · r2 · (Γgb−Γ)

(36)



Fig. 1. Software structure

Eq. (36) indicates changes in velocity based on current states
as well as local and global current best solutions. Vectors
with subscripts cb or gb indicate the values of the best
local and global particle respectively. Local best means the
best value the current particle has reached historically while
global best is the single best particle value that any solution
has been valued at. c1 and c2 are tuneable parameters that
change how desirable it is to learn from local and global bests
respectively, while r1 and r2 are randomly generated positive
vectors of appropriate dimensions, and are regenerated every
iteration for every particle. Finally, w indicates the inertial
weight of the particle, which affects how the particle searches
for solutions. The initial inertial value is set to 1, encouraging
larger searches, but 0<w≤ 1 then linearly decreases through
the iterations, to let all particles converge towards well-
established solutions and focuses the searches more locally.

If a particle reaches the pre-defined spatial domain-limits,
a velocity mirroring is performed. This is done by mirroring
the particle velocity vector to face the opposite direction,
which would imply that the particle is moving away from
the limit it just reached, and back into the appropriate search
space.

C. Algorithm structure

The system was constructed in an object-oriented man-
ner in C++ for reasons of running time, modularity and
accessibility in structure. A flow chart of the structure of
the software can be seen in Figure 1.

Planner is the central module and can be considered the
”main” function of the system. From Planner, a Mission is
created with specified parameters. Further it spawns a World
object, which reads the relevant meteorological data from a
data source and stores this in spatial matrix form with read-
only member functions to extract the relevant parameters at
run-time. An Aircraft model is created, which keeps track of
platform parameters such as physical constraints, power-train
specifications and functions to calculate power requirements

and energy consumption at given time intervals.
Planner then initializes as many Solutions as the specified

population size, each with their own Particle. Solutions keep
track of simulation results for each Particle at a single
iteration, through information such as remaining fuel, battery
capacity, altitudes, time expenditure, etc. Particles have spec-
ified ENU-frame positions, velocities and climbing angles,
which are updated every iteration based on its own Particle
Velocity. A copy of the globally best particle and solution,
as well as a list of the historically best particles for each
member in the population, is kept track of in Planner to
properly update the Particle Velocities.

V. EXAMPLE

A. UAV

To generate quantifiable results and simulations, the con-
figuration of a fixed-wing UAS was applied to the algorithm.
In this case study we use the PX-31 by Maritime Robotics,
illustrated in Figure 2, which is designed with harsh maritime
and arctic environment in mind. With battery power, the
vehicle has an empty weight of 15kg, intended for a max
take-off weight (MTOW) of 22 kg. The intended cruise
velocity of the aircraft is 25 m/s, with a minimum velocity
of 14 m/s and maximum of 40 m/s, [22].

The ICE is a 2,5 hp carburettor engine, corresponding to
a maximum output power of 1860 W. Desired output power
from the generator is around 1 kW to drive the propeller and
slowly charge the battery during cruise in normal conditions.
With an efficiency in the generator of ηgen = 80%, and
the efficiency in the ICE of ηice = 15%, the HEPS would
have a fuel expenditure of around 0.65 kg/h, based on the
specific energy of fuel discussed above. This would give the
entire combustion power-train an efficiency of ηgen ·ηice =
12%, which is reasonable. The propeller efficiency ηprop is
considered to be constant at 50 %.

Using a 4000 cc fuel tank, corresponding to around 3 kg
of fuel at take-off plus an additional 0.5 kg for the actual



Fig. 2. PX-31 fixed-wing UAV.

weight of the tank as well as 2 kg for the ICE and generator
would leave the total weight of the platform 20.5 kg, leaving
1.5 kg for the payload.

The battery parameters are based on a 10-cell LiPo battery,
considered to be fully charged during mission start. The
battery has parameters Ccut = 26.400 Ah, Cexp = 2.640 Ah,
Cnom = 20.400 Ah, Vf ull = 41.8 V, Vexp = 39.67 V, Vnom =
37.67 V, Rc = 0.015 Ω, Irated = 660 A and n = 1.05.

Power requirement loads PIPS for de- and anti-icing
loads are an adaption of [25]. In our simulations, they are
determined explicitly in kW by

Pdeice = (−0.7551 · T − 0.1122) · (0.0211 ·Va + 0.4722) ·
(0.1211 ·LWC+0.9596) ·(1.3277−1.0366 ·(1−e0.3260·T )) ·A

Pantiice = (−0.7551 · T − 0.1122) · (0.0211 ·Va + 0.4722) ·
(0.1211 ·LWC+0.9596) ·A

where T is in °C, LWC in g/m3 and A is the heat surface
area set to 0.05 m times the wingspan of 2.1 m.

Curves representing the required power of the IPS in
Watts, varying with airspeed and temperature can be seen
in Fig. 3. Here, the LWC is considered constant at 0.4 g/m3

as a reasonable icing condition. The model is created using
experimental data between -10°C and 0°C, but shown for
temperatures above -20°C, so the power requirements for
colder temperatures are assumptions.

Performance penalties when experiencing airfoil icing
were estimated in [11] through the simulation tool FENSAP-
ICE. Following computation of the drag coefficient CD in
nominal conditions, essential for calculations of required
power, it is further altered when experiencing airframe icing
through

CD(C0
D,LWC) =C0

D · (0.0785 ·LWC+1.4973) (37)

when using de-icing instead of anti-icing, which would leave
the drag coefficient unaltered in icing conditions.

B. Mission

Here, four distinct mission profiles will be simulated, on
two separate data sets. Firstly, flights between the cities of
Bodø and Tromsø will be considered. This route is distin-
guished as a coastal route traversing highly mountainous

Fig. 3. Power requirements for IPS under different conditions, LWC = 0.4
g/m3

terrain. The second is between the two northern cities of
Kirkenes and Tromsø, located on the same latitude but
roughly 430 km apart. Due to less-than-ideal infrastructure
connecting the two cities, travelling the distance by car would
take north of 10 hours.

VI. RESULTS

Results from four simulated scenarios are presented in
Table I. Profile 1 and 2 are results from February 14. from
Tromsø to Bodø and Bodø to Tromsø respectively. Profile 3
and 4 are from February 10., indicating routes from Kirkenes
to Tromsø and Tromsø to Kirkenes respectively.

The default solution in all profiles is a straight line at
an appropriate altitude based on maximum elevation of the
topography below. The default solutions of Profile 1 and 2
require a higher cruise altitude due to the more mountainous
terrain below. All default solutions were simulated using a
constant desired airspeed of 28 m/s, which is slightly higher
than the stated cruise velocity of the PX-31 of 25 m/s.
This is to remove some of the inflation in time and energy
optimization that stems from just increasing the airspeed
across all steps.

Profile 1 saw energy savings optimization totalling a re-
duction of 43.13% in energy expenditure based on Equation
(34). Profile 2, being simulated on the same weather data,
but in the opposite direction, saw energy savings of 30.69%.
In terms of time optimization Profile 1 and 2 saw a decrease
in time expenditure of 42.37% and 17.57% respectively.

Profile 3 and 4, belonging to a longer mission profile,
saw higher total energy consumption, with optimizations
of similar magnitude, at 43.42% and 41.35% respectively.
Time optimizations for the same profiles were quantified as
40.62% and 31.57% respectively.

VII. DISCUSSION

It is apparent that the most significant reductions in energy
consumption occur when the algorithm is able to avoid icing
conditions through path planning, and reduce the overall
flight time. Avoiding icing conditions allows the algorithm
to run without an active IPS, causing much lower power



Profile Expended
energy

Time
spent

Fuel
left

Battery
cap left

Tot. time
in ice

Avg.
height

Tot. path
length

1 - Default 118.632Ah 6h14m24s 0.265L 20.604Ah 1h18m50s 1320m 328.0km
1 - Energy 67.471Ah 4h15m29s 2.211L 12.965Ah 0h16m49s 1087m 374.8km
1 - Time 69.930Ah 3h35m45s 2.312L 7.463Ah 0h43m48s 1030m 375.3km
2 - Default 47.503Ah 2h15m56s 2.779L 15.771Ah 0h24m55s 1320m 328.0km
2 - Energy 32.924Ah 2h2m27s 3.155L 19.004Ah 0h0m42s 1237m 333.5km
2 - Time 35.986Ah 1h52m3s 3.170L 15.490Ah 0h19m42s 1290m 334.1km
3 - Default 124.758Ah 5h57m15s 0.507L 7.170Ah 3h22m45s 881m 428.5km
3 - Energy 70.590Ah 4h19m55s 1.982L 16.775Ah 0h21m4s 1517m 448.7km
3 - Time 79.146Ah 3h32m9s 1.643L 18.462Ah 1h30m2s 1353m 438.1km
4 - Default 92.614Ah 4h17m24s 1.236L 17.283Ah 2h14m15s 881m 428.5km
4 - Energy 54.314Ah 3h17m5s 2.594L 14.576Ah 0h11m14s 1598m 436.0km
4 - Time 67.412Ah 2h56m9s 2.388L 7.693Ah 1h15m12s 1405m 436.9km

TABLE I
PROFILE 1: TROMSØ - BODØ 14.02, PROFILE 2: BODØ - TROMSØ 14.02

PROFILE 3: KIRKENES - TROMSØ 10.02, PROFILE 4: TROMSØ - KIRKENES 10.02

Fig. 4. Default and optimized energy consumption for Profile 3

consumption. As an example, Profile 3 is estimated to
save around 1.5L of fuel through optimization, potentially
allowing very meaningful expansions of the mission profile,
such as a return flight with the same configuration. Fuel
consumption and remaining battery capacity for this profile
is shown in Fig. 4. Note the default solution’s inability to
properly recharge the battery through certain sections, likely
stemming from constantly high power requirements from
the IPS. Most solutions will prefer higher desired airspeeds
through all steps, as the increased power requirements for
higher speeds is mitigated by the energy saving associated
with a shorter flight time.

Fig. 5 displays the altitudes of the energy optimized path
of Profile 4, with the corresponding icing conditions, terrain
elevations and default solution altitudes. All icing conditions
and terrain displayed belong to the vertical column of the
positions corresponding to the optimized path All altitudes
are rounded to the closest, discrete cell in the weather data.
It is apparent the algorithm generally desires high altitudes,
likely due to the lower air pressure, and the subsequently
lower power consumption, while still staying out of active
icing conditions.

Generally, performing time optimizations also reduce en-
ergy expenditure, but more so in unavoidable icing condi-
tions. The magnitudes of time optimizations is, intuitively,

Fig. 5. Altitudes of energy optimized path for Profile 4 relative to icing
conditions

Fig. 6. Time optimized path in relation to horizontal wind at 1300m altitude
for Profile 2

dependent on the variations in the wind maps. Through sim-
ulations and experimentation, significant reductions in energy
consumption by considering vertical wind was not observed.
Further savings could feasibly be made by allowing tactics
such as energy harvesting through circling flight, as in [2].
A plot of the time optimized path of Profile 2 in relation to
the horizontal wind at an altitude of 1300 m can be seen in
Fig. 6.

As the power consumption of the de-icing system is typ-



ically significantly less than that of the anti-icing protection
system, the degraded drag from experiencing airframe icing
is, through simulations, very seldom high enough to favor
anti-icing over de-icing. Usage of the anti-icing system could
be more favorable when adding penalties to for instance
stability when permitting ice accumulation. Further work
will have to be done in determining which icing protection
strategy should be employed through different steps.

All missions profiles are also attempted on a configuration
without an active IPS, using the ice accumulation data from
[16]. Generally, the default solutions are unable to finish the
routes, quickly draining their batteries. This is due to the
increased drag coefficient causing higher power requirements
than the HEPS can deliver, never allowing the battery to
recharge. Only in Profile 2, taking advantage of the strong
tailwind and short total time in icing conditions, is the
system able to finish without an IPS. However, performing
optimizations on these configurations often achieves similar
performance to that of the results presented in Table I, as
most of the icing conditions are avoidable through path
planning. More detailed results regarding no-IPS flight will
be presented in [17].

The simulations presented in this work are currently done
on static weather maps, which is somewhat unrealistic. An
improvement could be performing an interpolation between
consecutive data-sets based on the cumulative time spent
at every step, but that is expected to lead to optimizations
of similar magnitude as the current version, since the data
would still be deterministic. Another interesting experiment
could be performing optimizations on weather forecasts, but
evaluating based on resulting historical data, which could
give an indication of the uncertainty of these optimizations.

VIII. CONCLUSION

This work has demonstrated the magnitude of the poten-
tial operational savings one can achieve by taking spatial
weather data into account when performing path planning
optimizations for hybrid-electric unmanned aerial vehicles.
This was done by using particle swarm optimization with an
aircraft model equipped with an icing protection system on
historical weather maps. In a practical application, this could
serve as a high-level planning system for long-range UAVs
operating in wind and icing conditions, limited mainly by
the accuracy and resolution of the available weather data.
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