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Abstract—We present a real-time implementation of an es-
timation algorithm for angle of attack, airspeed and wind
velocities estimation on a single board computer. The estimator
uses only sensor data from a standard fixed-wing UAV autopilot,
which consists of a Global Navigation Satellite System receiver,
an inertial measurement unit and a pitot-static tube. This sensor
data is fused with a combination of kinematic, aerodynamic and
stochstic wind models in a nonlinear moving horizon estimator
using numerical optimization. An algorithmic differentiation
toolbox and automatic code generation is used to create a real-
time capable estimator which is able to run within a UAV on an
on-board computer. Hardware in the Loop simulation results
show that the latency of the estimator is significantly below
the expected wind gust period and gives low root-mean-square
estimation errors for angle of attack (0.29◦) , airspeed (0.21m/s)
and wind velocities (0.44m/s).

I. INTRODUCTION

Knowledge of the air data parameters, angle of attack
(AoA) α , angle of sideslip β and airspeed Va, is critical
to assess a fixed-wing aircraft’s performance and safety. If
the angle of attack is increased over a certain value the
flow over the airfoil separates and the aircraft stalls, which
results in a sudden loss of lift. This can cause the aircraft to
reach an unstable flight state which it might be difficult to
recover from. A recent study on UAV mishaps [1] found that
a majority of accidents can be attributed to Loss of Control
events which includes stall events.

In addition to the air data parameters, the prevailing wind
velocities are also quantities of interest. Knowing the wind
velocities allows the operator to use an optimized path for the
UAV, which minimizes flight time or energy consumption [2],
[3]. If the wind velocities are known, the air data parameters
can be calculated using kinematic relationships [4], [5].

It is common to equip larger aircraft with dedicated sensors
to measure the airdata parameters. For smaller fixed wing
aircraft, especially small unmanned aerial vehicles (UAVs),
no cost-effective, lightweight sensor solution exists that can
measure all air data parameters reliably. Recent research has
therefore focused on estimating the air data parameters using
kinematic and aerodynamic models as well as sensor data
from the UAVs autopilot system. A typical autopilot sensor
suite for small UAVs consists of a Global Navigation Satellite
System (GNSS) receiver, measuring position and velocity,

three axis inertial measurement units (IMU), measuring spe-
cific forces and angular velocities, a heading reference system
(i.e. a magnetometer) and a pitot static tube, which measures
the airspeed. A navigation filter within the autopilot uses this
input data to estimate attitude, position and velocity of the
aircraft at a high rate.

Approaches to air data estimation can mainly be catego-
rized into two main groups: Model based approaches, which
utilize an aerodynamic model, and model-free approaches
which are based on exact kinematic relationships. The first
group includes [6] where a detailed aircraft model and a
nonlinear observer is used for wind estimation. A hybrid
system approach using Bayesian estimation is presented in
[7], achieving promising results. Air data estimation methods
using simplified aerodynamic and kinematic models have
been presented in [7], [4] and [6]. In [8] and [9] approaches
to air data estimation for jet aircraft using a full model of
the aerodynamics are presented. The disadvantage of these
methods is that they require a large set of aerodynamic
parameters which typically have to be identified using wind
tunnel experiments or computational fluid dynamics analysis.
In most cases this data is unavailable for specific UAV
airframes, since they are expensive to obtain.

Into the second group falls the work presented in [10]
where kinematic relationships are used to estimate air data
parameters and wind velocities. Four different wind velocity
estimation methods, using kinematic models combined with
different sensor sets in a UKF are studied in [11]. Popular
estimation methods to combine kinematic models with sensor
data are the Extended Kalman Filter (EKF), which has been
used in [12]–[14], and the Unscented Kalman Filter (UKF)
which has been applied to the problem in [15], [16]. Wind
velocity estimation methods based on kinematic models are
easier to apply to the scenario of small UAVs. However, their
performance is limited by the need for excitation since not
all wind directions can be observed at all times [10], and
the assumption that the wind field is static which causes
estimation errors in the case of turbulence.

This paper is based on previous work published in [17].
There we presented a Moving Horizon Estimator (MHE) that
is able to estimate the air data parameters as well as wind



velocities and lift coefficients based on above described sen-
sor set and the combination of kinematic, aerodynamic and
stochastic wind models. Data from extensive flight tests with
two different air frames were presented in [17] to validate
this approach. The results show that the proposed method is
able to estimate the angle of attack and airspeed with low
estimation errors which are within the same accuracy as the
measurement errors of the reference measurement used in
those experiments. Accuracy of the sideslip angle estimate
is limited by the lack of a lateral model. Furthermore, the
estimator provides estimates of the lift coefficients which can
be used for icing detection as shown in [18].

So far the estimator has only been tested offline on
previous recorded flight data. The computational complexity
is high since a nonlinear optimization problem must be solved
repeatedly. In this paper we show how the estimator can be
implemented within a UAV avionics system and that it is able
to run in real-time on a single-board computer. In order to
verify this setup hardware in the loop (HIL) tests with a high-
fidelity aircraft simulation model and the autopilot software is
used. The assessment includes both the real-time capabilities
and the accuracy of the estimator.

II. METHODOLOGY

In this section we will first summarize the modeling of
the problem and the proposed estimator. For a more detailed
discussion we refer to [17]. We will then show how that
estimator has been implemented in the DUNE navigation
environment [19], which is run on an Odroid XU4 single
board computer that is interfaced to a Pixhawk autopilot.
Afterwards the simulation setup will be presented.

A. Modeling

The modeling process is based on [17]. Variables to
be estimated are the static and turbulent wind velocities
decomposed in inertial frame vvvn

s and vvvn
t , the scaled constant

and linear lift coefficients KCL,0 and KCL,α as well as the
pitot-tube scaling factor γ . The lift coefficient scaling factor
K is given by K = ρS

2m , where m is the aircraft’s mass, S is the
surface area of the airfoil and ρ is the air density. Since only
the turbulent wind velocities are assumed to be dynamically
changing we only consider them in the state vector xxx, and
treat the other variables as parameters in the vector ppp.

xxx =
[
un

t vn
t wn

t
]T (1)

ppp =
[
un

s vn
s wn

s KCL0 KCLα γ
]T (2)

The inputs to the system are the velocity over ground
decomposed in body frame

vvvb =
[
ub vb wb

]T
= RRRb

nvvvn
GNSS (3)

where vvvn
GNSS is the velocity over ground decomposed in

inertial frame measured by a GNSS receiver, altitude above
ground h, and attitude given by a rotation matrix RRRb

n. The
inputs are gathered in an input vector uuu.

The continuous-time state transition function is based on
the discrete Dryden wind model [20] and is given by:

fff (xxx,uuu, ppp) =−‖vvvb−RRRb
n (vvv

n
s + vvvn

t )‖ ·LLLvvvn
t (4)

where the spatial wavelengths LLL =
diag

([
L−1

u L−1
y L−1

w
])

are given by:

Lu = Lv =
h

(0.177+0.0027 ·h)1.2 (5)

Lw = h (6)

The random noise transition function due to turbulence is
given by

www(xxx,uuu,νννxxx, ppp) =


σu

√
2∆T Va

Lu
νut

σv

√
2∆T Va

Lv
νvt

σw

√
2∆T Va

Lw
νwt


∣∣∣∣∣∣∣∣∣uuu
xxx
ppp

(7)

with unknown inputs νννxxx =
[
νut νvt νwt

]T , which are
modeled as random Gaussian white noise processes, and Va
defined as [4], [17], [21]:

Va = ‖vvvb
r‖ (8)

where vvvb
r =

[
ur vr wr

]T
= vvvb−RRRb

n (vvv
n
s + vvvn

t ) is called the
relative air velocity vector which is defined as the difference
between velocity over ground and wind velocity both decom-
posed in body frame.

The turbulence amplitudes are given by:

σu = σv =Vw,G
1

(0.177+0.0027 ·h)0.4 (9)

σw = 0.1 ·Vw,G (10)

where Vw,G denotes the wind velocity measured 6 meters
above ground.

The predicted state at a discrete time step k is then given
by:

xxxk+1 = xxxk +∆T fff (xxxk,uuuk, pppk)+www(xxxk,uuuk,νννxxx,k, pppk) (11)

where ∆T is the discretization time step.
The parameters ppp are assumed to be slowly time varying

pppk+1 = pppk +ννν ppp,k (12)

where ννν ppp is Gaussian distributed white process noise. The
covariance matrix of the combined process noise νννqqq =[
νννxxx ννν ppp

]
is given by QQQ.

In order to obtain a measurement model we use a simpli-
fied aerodynamic lift model and a kinematic model. The first
measurement equation uses the z-accelerometer measurement
together with a linearized aerodynamic lift model to relate
the aerodynamic coefficients and the wind velocities via the
indicated airspeed V m

a and angle of attack α (cf. [17], [21],
[22]).

fz =−(V m
a )2 K (CL,0 +αCL,α)+νa (13)

fz is the specific force in vertical direction measured by
an accelerometer and νa is the modeling error which we
assume to be a white Gaussian noise process. Note that if



the measurement of the indicated airspeed Ṽ m
a is affected by

Gaussian white measurement noise ηVa , then (Ṽ m
a )2 will be

biased:

E
[(

Ṽ m
a
)2
]
= E

[
(V m

a +ηVa)
2
]
= E [V m

a ]2 +E
[
η2

Va

]
(14)

= (V m
a )2 +σ2

Va (15)

Therefore, we subtract the noise covariance σ2
Va

from the
squared measurement.

The second measurement equation V m
a = γVa uses the

definition of the airspeed (8) and the calibration factor γ to
relate the measured airspeed to the wind velocities.

The third and fourth measurement equations can be ob-
tained by utilizing the wind triangle

vvvb
r = vvvb−RRRb

n (vvv
n
s + vvvn

t ) =Va

cosα cosβ
sinβ

sinα cosβ

 (16)

and the definition of the angle of attack α and sideslip angle
β ,

α = tan−1
(

wr

ur

)
(17)

β = sin−1
(

vr

Va

)
(18)

which under the assumption cosβ ≈ 1 can be rearranged to:[
ub

wb

]
=

[
1 0 0
0 0 1

]
RRRb

nvvvn
w +Va

[
cosα
sinα

]
+νννki (19)

where νki denotes the approximation error. This relates the
GNSS measurements of the velocity over ground vvvb, given
by (3), to the wind velocities and the relative airspeed Va
given by second measurement equation as well as the angle
of attack α . This is similar to the method described in [10].

This results in the following measurement model:

hhh(((xxx,,,uuu,,, ppp))) =


−K (V m

a )2 (CL0 +CLα α)
Vaγ

ddd1RRRb
n(vvv

n
s + vvvn

t )+Va cos(α)

ddd3RRRb
n(vvv

n
s + vvvn

t )+Va sin(α)

+νννy (20)

with

ddd1 =
[
1 0 0

]
ddd3 =

[
0 0 1

]
where Va and α are functions of xxx, uuu and ppp.

The measurement vector is given by

z̃zzk =


f̃z
˜V m
a

ũb

w̃b

=


fz +η fz

V m
a +ηVa

ub +ηub

wb +ηwb

= zzzk +ηηηz (21)

where ηηηz =
[
η fz ηVa ηub ηwb

]T is the output mea-
surement noise. Since the velocity over ground is both
an input and an output to the system, input and output
noise variables are combined in a measurement noise vec-
tor ηηηm =

[
ηηηvb ηVa η fz

]T with a covariance matrix WWW m.

The approximation errors within the models used in the
measurement function are summarized in the noise variable
νννyyy =

[
νa νv νννki

]
which is assumed to be white Gaussian

noise with a covariance matrix RRR.
We have chosen to separate noise variables for the mea-

surement noise of input and output variables (ηηηm) and
the process noise resulting from model mismatches in the
state transition (νννq) and output functions (νννy). The main
motivation for this noise modeling is ease of tuning of the
estimator since measurement noise covariances can be chosen
according to sensor specifications, whereas the covariance
matrices of the process noise can be chosen according to
the magnitude of the errors in the aerodynamic (13) and
kinematic (16) model.

B. Moving Horizon Estimation

In order to estimate the desired states and parameters we
use a Moving Horizon Estimator (MHE). A MHE minimizes
an objective function Jk in each iteration, which includes the
deviations of the model output from the measurements zzz−
hhh(((xxx,,,uuu,,, ppp))) and the quadratic norm of the noise variables ηηη =[
νννq νννy ηm

]
at each sampling point k−L, . . . ,k, where k

is the current sampling point and L is the window length.

Jk =
k

∑
j=k−L

‖zzz−hhh(((xxx jjj,,,uuu jjj,,, ppp jjj)))‖2
RRR−1 +

k−1

∑
j=k−L

‖ηηη j‖2
WWW−1 (22)

where WWW is the covariance matrix of the noise variables in
ηηη , adjusted for the sampling time, given by:

WWW =

[
QQQ 000[9x5]

000[5x9] WWW m

]
∆T (23)

Since the window length can not be arbitrarily long, we
add an arrival cost approximation to the objective function
which summarizes the information obtained before the cur-
rent filtering interval and get the new objective function

Θk =

∥∥∥∥xxxk−L− x̂xxk−L
pppk−L− p̂ppk−L

∥∥∥∥2

P̂PP−1
k−L

+ Jk (24)

x̂xxk−L, p̂ppk−L and P̂PP
−1
k−L are estimated using a Unscented

Kalman Filter.
The nonlinear program that has to be solved in each

iteration is then

min
θθθ k

Θk(θθθ k,uuuk,zzzk) (25)

where the vector θθθ k includes the vectors xxx j, ppp j,ηηη j at each
time step j = k−L, . . . ,k inside the current window.

The solution of this nonlinear program is subject to both
equality and inequality constraints. To ensure that the solution
fulfills the state transition function (11) we add the following
equality constraints:

xxx j+1 = xxx j +∆T fff (xxx j,uuu j, ppp j)+www(xxx j,uuu j,νννxxx, j, ppp j) (26)

ppp j+1 = ppp j +ννν ppp, j (27)

for j = k−L, · · · ,k−1

Furthermore, we use inequality constraints to bound the
angle of attack in order to force a unique solution of the



trigonometric functions used in the model and to limit the
lift coefficients to a region around a-priori known values.

Observability of this system has been analyzed and dis-
cussed in [17]. Assessing observability of nonlinear systems
analytically is challenging and often does not yield results
that are of practical use. Therefore, a numerical analysis of
the local observability was done by checking the eigenvalues
of the estimated covariance matrix P̂PPk−L for singularity.
During several test flights no occurance of singularity was
recorded and we consequently assume the system to be
locally observable.

For a more detailed discussion of the MHE and the arrival
cost approximation we refer to [17].

C. Implementation

Wait for Input Data

Input Buffer
Length L

Prepare
Input Data

Arrival Cost
(UKF)

Predict
next Solution

Algorithmic Differentiation
(Casadi)

Numeric Solver
Ipopt

Outlier Detection

Calculate Output

vvvb,RRRb
n, fz,V m

a

θθθ 0 x̂xxk−L, p̂ppk−L, P̂PPk−L

Jacobian, Hessian

θθθ ∗

θθθ ∗ p̂ppk−L, P̂PPk−L P̂PPk−L−1

θθθ ∗

Fig. 1: Program Structure

Figure 1 shows a flow-chart to illustrate the structure
of the estimation task. We have chosen an asynchronous
implementation where a new estimation iteration is only
performed when the previous one is completed. Each iteration
begins with waiting to receive messages from all input data
sources. The accelerometer data is filtered with a FIR lowpass
filter in order to reduce noise from the sensor and vibrations.

The samples are then saved in a buffer BBB which has the
same length as the MHE horizon. It saves the sensor data

of the system inputs uuu j and outputs zzz j . At startup, we
wait until the buffer is full before we start any estimation.
In addition, an altitude threshold is imposed below which
samples are skipped in order to differentiate whether the
aircraft is flying or on ground. In order to avoid oversampling,
which would cause the timespan in the current estimation
window to be too short to hold meaningful information, a
minimal sampling time is specified. If the measured sampling
period is below that threshold the sample is skipped. The
minimal sampling period ∆Tmin should be chosen to be half
of the desired output. Note that when using an accelerometer,
the sensor noise can be reduced by using a delta velocity
output that averages over several samples. The specific force
measurement is then given by fz =

∆vz
∆T .

Next we calculate the initial guess for the optimization
algorithm, prepare the input data and compute the arrival
cost. We use warm starting to determine the initial guess θ0
[23]:

1) Shift previous solution vector θθθ ∗ by l elements, and
remove the oldest l elements

2) Predict the value of xk using xk−1, the new input uuu and
the state transition function (11)

3) Parameter values are kept constant and noise variables
set to zero

where l = length(xxx)+ length(ppp)+ length(ηηη). The input data
to the optimization algorithm includes the buffered sensor
data BBB as well as the noise matrices RRR and WWW .

Next, Casadi computes the Hessian and Jacobian of the
objective function Θ at θ0 and supplies them to the numeric
solver, which in our case is Ipopt. The solver then searches
for a new θ with Θ(θθθ ,BBB)<Θ(θθθ 0,BBB). This is repeated until a
convergence criterion is reached or the maximum number of
solver iterations is reached. θθθ ∗ denotes the so found solution.

Disturbances in the signal transmission or in the sensors
themselves can create outliers in the input data. In order
to detect those outliers, we compare the deviation of the
parameters p̂pp∗k from the current solution θθθ ∗ to the parameters
predicted by the UKF ˆpppk−L with the estimated covariance
P̂PPk−L, using

‖ p̂ j,k−L− p∗j,k‖> 3
√

P̂k−L, j j (28)

as a criterion for outlier rejection. In that case the previous
solution is used, the estimated covariance is not updated
and all measurements of that timestep are removed from
the buffer BBB. In order to avoid falsely rejecting samples, a
maximum number of consecutive outliers can be specified.

Using the estimated xxx∗k and ppp∗k , as well as the inputs uuuk
we can now calculate the desired quantities, angle of attack,
sideslip angle and airspeed susing equations (8),(17) and (18).

All elements in Figure 1, but the Algorirthmic Differenti-
ation and Numeric Solver blocks were first implemented in
Matlab and then converted to C code using Matlab’s code-
generation functionality to create a set of library functions.
The system was specified as Casadi [24] code and then the
NLP constructed as described in section II-B. Casadi is then
able to perform the needed differentiations symbolically and



produce C++ code which can be compiled into a standalone
executable.

The estimator was then implemented in C++ as a task
in the DUNE unified navigation environment [19]. DUNE
provides a Linux based framework to coordinate a set of
different processes, called tasks, which can interact through
inter-module communication (IMC) messages. On launch a
solver object is created which links the Casadi executable to
the Task and the solver IPOPT [25]. Within IPOPT we use
the solver MA27 out of the HSL package [26] as a linear
solver.

D. Simulation Setup

The setup of the Hardware in the Loop (HiL) tests is
depicted in Figure 2. As shown the setup consists of four
main parts:

1) A model of a Skywalker X8 flying wing implemented
in Simulink. The simulation model is based on previous
work shown in [27]. The model parameters are iden-
tified from CFD data as shown in [28]. The Simulink
model has UDP interfaces in order to receive control
signals, and send simulated inertial measurement unit,
position, velocity and airspeed data to an autopilot.
Noise can be added to this simulated sensor data.

2) As autopilot we use Ardupilot version 3.9. This au-
topilot software has an inbuilt software in the loop
functionality, which is used in this test. The autopilot
uses an Extended Kalman Filter to estimate position,
velocity and attitude from the input data and uses these
estimates to keep the simulated UAV on a desired path.

3) Using the Mavlink protocol via a TCP link [29] the
autopilot sends the estimated vehicle state to DUNE
which is running on an Odroid X4U single board
computer. TCP is chosen since it ensures a reliable
delivery of the Mavlink messages. We use BalenaOS
[30] as a base operating system on the Odroid and
then run DUNE inside a Debian Linux based Docker
container. This has the benefit that all needed libraries
and packages as well as DUNE itself can be easily
cross-compiled on another PC and then deployed to
the Odroid.

4) Neptus is a ground control station, which in this case
is used as a to send flight plans to DUNE, record the
estimated quantities and synchronize them with their
reference values. These are sent from the Simulink
model via IMC. Neptus also provides a graphical user
interface for mission control.

III. RESULTS

A. Simulation Scenario

The flight path, shown in Figure 3, consists of straight
line segments and loiters as well as airspeed and altitude
changes. This is to assess the performance of the estimator
in various conditions. This flight plan was flown two times for
a total flying time of 1116s. Afterwards continuous loitering
for 700s was performed to assess parameter drift in those
conditions. The wind is set to 3m/s from north direction

TABLE I: MHE Parameters

Parameter Value

L 6

∆Tmin 0.1s

Max. Solver

Iterations 20

xxx0

[
0 0 0

]T

ppp0

[
0 0 0 0 0.4 1

]T

PPP0 diag

([
10−6 10−6 10−6 10−2 · · ·
10−2 10−6 10−5 10−5 10−5

])

QQQ diag

([
10−1 10−1 1 10−4 · · ·
10−4 10−6 10−15 10−30 10−15

])
RRR diag

([
1 10−4 1 1

])
WWW m diag

([
10−2 10−2 10−2 1 10−2

])

and Dryden wind gusts with gust amplitudes of 3m/s. Initial
values for xxx, ppp and PPP as well as parameters used in the
estimator can be found in Table I. The tuning of the estimator
is done as described in [17].

B. Latency

Figure 4 shows a statistic of the time elapsed between the
reception of the input data and the output of the estimates.
The maximal latency is 0.515s and the mean latency is 0.21s.
If we use the Dryden wind turbulence model [20] to calculate
the cut off frequency flim at which −3dB attenuation occurs
for an assumed altitude of 100m and airspeed of 20m/s, we
get flim = 0.0761Hz. This frequency is considerably lower
than the inverse of the maximal latency (which is about
2Hz), and we can therefore assume that the latency does
not influence the quality of the estimates. This shows that
the presented algorithm is able to produce estimates in real-
time.

C. Angle of Attack and Airspeed Estimates

Figure 5 shows the estimated AoA and its reference. It
shows that the estimate convergences quickly to the reference
with small errors overall. Equally, so does the airspeed
estimate shown in Figure 6. Root mean square errors (RMSE)
and maximum errors can be found in Table II. Note that data
from the first 100s has been excluded from these values, to
keep larger errors which only occur in the convergence phase
out of these statistics.

For completeness, estimation errors for the sideslip angle
are also included in Table II. The errors of the sideslip angle
estimates are significantly larger then for the AoA estimates,
which as already discussed in [17] is due to the lack of
information in the lateral axis.

D. Wind Velocity Estimates

The wind velocity estimates in the north and east directions
shown in Figures 7 and 8 show mainly low estimation
errors with some larger errors occurring occasionally. As
explained in more detail in [17], this is due to a lack
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of a model of the lateral dynamics and also no lateral
relative velocity measurements. Since the chosen scenario
includes quite intensive turbulence, these measurements are
only representative for a short time and the error grows
with increasing time between turns. The estimation error
in down direction is quite small since the z-accelerometer
measurement points in that direction most of the time. Some
errors do occur when the aircraft is banking in turns, which
is again due to the lack of information in the lateral axis.
RMSE and maximum errors can be found in Table II.

E. Coefficient Estimates

In Figure 10 the estimate of the constant lift coefficient
and its reference are shown. The estimate is slightly varying
around the reference value over time which is mainly caused
by the unmodeled lift force created by elevator deflections.
Note that there is an offset during loitering where a constant
elevator deflection occurs. The linear lift coefficient estimate
shown in Figure 11 converges quite slowly towards its
reference value. As discussed in [17] this is mainly due to
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Fig. 4: Latency between data received and estimation output

TABLE II: Estimation Errors excluding Convergence Phase

Variable RMSE Max Error

RMSE vw,n 0.44m/s 3.24m/s

RMSE vw,e 0.44m/s 2.26m/s

RMSE vw,d 0.2m/s 0.65m/s

RMSE Va 0.21m/s 1.54m/s

RMSE α 0.29◦ 2.17◦

RMSE β 3.2◦ 8.99◦

Vw,G 3m/s 3m/s



0.00 500.00 1,000.00 1,500.00 2,000.00

0.00

5.00

10.00

Time in Seconds

A
ng

le
of

A
tta

ck
in

D
eg

re
es

Estimated AoA
Reference AoA

Fig. 5: Angle of Attack estimation

0.00 500.00 1,000.00 1,500.00 2,000.00
18.00

20.00

22.00

24.00

26.00

Time in Seconds

A
ir

sp
ee

d
in

m
/s

Estimated Va
Reference Va

Fig. 6: Aispeed estimation

the high process noise in the lift force model. Note that the
convergence speed is faster in continuous loitering, due to the
frequent angle of attack changes as shown in Figure 5. The
estimate of the pitot tube scaling factor is shown in Figure
12. It shows that the scaling factor quickly converges to a
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Fig. 8: Wind estimation east direction
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Fig. 9: Wind estimation down direction

neighborhood of 1. During longer loitering segments some
drift occurs which is due to a non-zero sideslip angle over a
longer time period which violates the assumption in equation
(13) and can causes small biases.

IV. CONCLUSIONS

We have presented a real-time implementation of a Moving
Horizon Estimator which is able to estimate angle of attack,
airspeed and wind velocities with a high level of accuracy us-
ing standard autopilot sensors. Furthermore, estimates of lift
coefficients and the pitot-tube scaling factors are available.
The latency induced by the estimator is small compared to
the occurring frequency components of typical wind spectra
encountered by small UAVs.
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