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Abstract—A robust and efficient Collision Avoidance (COLAV)
system for autonomous ships is dependent on a high degree of
situational awareness. This includes inference of the intent of
nearby obstacles, including compliance with traffic rules such
as COLREGS, in order to enable more intelligent decision
making for the autonomous agent. Here, a generalized framework
for obstacle intent inference is introduced. Different obstacle
intentions are then considered in the Probabilistic Scenario-Based
Model Predictive Control (PSB-MPC) COLAV algorithm using
an examplatory intent model, when statistics about traffic rules
compliance and the next waypoint for an obstacle are assumed
known. Simulation results show that the resulting COLAV system
is able to make safer decisions when utilizing the extra intent
information.

Index Terms—Maritime collision avoidance, Autonomous
ships, COLREGS, Collision probability, Collision risk, Intention
probability, Model predictive control

I. INTRODUCTION

It is estimated that over 75 % of maritime accidents are
attributed to human errors [1]–[3]. Thus, there are potential
safety gains by introducing autonomously operated ships. The
economical and environmental aspects are also positive, as
for instance seen by the Yara Birkeland initiative, aiming to
replace 40000 yearly truck journeys in Norway [4].

Autonomous ships that operate at sea must rely on a robust
COLAV system in order to efficiently avoid nearby obstacles,
be it dynamic or static ones. To enable this, a high degree
of situational awareness is needed in the system to allow
for intelligent choices of avoidance maneuvers that achieve
acceptable collision risk while not being overly conservative.
Here, information about the intention of nearby obstacles has
high value, as it will enable the COLAV system to take more
informed and less conservative decisions by considering future
trajectories which reflect the current obstacle intention.

Predicting obstacle trajectories and infering their intentions
will be a key part of robust deliberate COLAV systems.
Different approaches for doing this have been introduced
outside the COLAV setting. For COLAV, we are typically
interested in the time scale of minutes, and there are different
methods employing Automatic Identification System (AIS)
data for long-term predictions, as in for instance [5]–[8].
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The intent of objects are predicted in [9] using a Bayesian
approach, when assuming that a finite set of possible endpoints
for their trajectories are known. The method constructs so-
called bridge distributions for each possible endpoint, and uses
a linear motion model conditioned on the endpoint to reduce
the trajectory uncertainty from the current object position to
its waypoint. The motion model parameters are learned using
historic data.

Considering obstacle intentions in collision free path plan-
ning for air traffic and road vehicles has previously been
studied [10] [11]. For instance in [11], goal hypotheses of
road driving obstacles are formed based on the current road
topology, and a probabilistic motion model is used to predict
their future trajectories conditioned on the hypotheses. How-
ever, for maritime applications, it is to the author’s knowledge
only [12] and [13] that considers nearby obstacles to be
agents capable of different maneuvers or intentions. In [12],
an A* search method is applied to collision free path planning
which penalizes high collision risk, traffic rule violations and
path deviation. An intention motion model is used for nearby
civilian vessels, where historical state observations and vessel
characteristics are used to output predicted trajectories and
classify the vessels as compliant to the International Regula-
tions for Avoiding Collisions at Sea (COLREGS) [14] or not.
Information on how this intention model is implemented is
limited. The positional uncertainty of an obstacle’s predicted
trajectory is estimated offline using Monte Carlo Simulation
(MCS) for a given scene. The predicted trajectories also incor-
porate reactive obstacle avoidance for the obstacle to avoid the
own-ship and other vessels. In [13], the maneuvering intent of
obstacles are estimated using a Kalman Filter (KF). The intents
are further used to calculate the collision probability with
obstacles by considering reachable sets. A simple COLAV
system is then implemented by making evasive maneuvers
when the collision probability is above a certain threshold.

In this work, the effect of taking probabilistic informa-
tion of obstacle intentions into account will be showcased.
The novelty lies in introducing a generalized framework for
obstacle intention inference and applying this in a COLAV
system. The probability of a finite set of obstacle intentions is
considered, when the next waypoint of obstacles is assumed
known from some source of information in addition to their
degree of COLREGS compliance. This can be the case when
vessel-to-vessel communication is employed to get waypoint
information of nearby vessels or if local traffic pattern analysis
is used. A modified version of the Probabilistic Scenario-Based
Model Predictive Control (PSB-MPC) [15] is proposed, which



takes obstacle intentions into account through an enhanced
prediction scheme using an Ornstein-Uhlenbeck (OU) process
as in [16]. The scheme allows obstacles to take different
alternative maneuvers at multiple time instants in the horizon.
In addition, an updated method of estimating collision proba-
bilities is used in the PSB-MPC, which calculates the collision
probability estimates considering piecewise linear segments
for the own-ship and obstacle trajectories.

II. INTENTION PROBABILITY FRAMEWORK

A. Generalized Framework

The index a = 1, 2, ..., na is here defined as the obstacle
intention. The probability of intention a for obstacle i is
denoted Pia. The probability is for a finite time interval from
tk−1 to tk, where k is the discrete time index, and is assumed
to be known as an input to the COLAV system in the form of
a conditional probability

Pia = Pr(a|i, I), where
na∑
a=1

Pia = 1 (1)

In general, the variable I contains information on all factors
that will affect the obstacle intention. Factors such as the type
of obstacle, the grounding hazards, nearby static and dynamic
obstacles, weather, the obstacle’s current state of perception,
and its planned route will all affect this probability. A Bayesian
network can here be used to represent the dependence of
obstacle intentions on these factors. This is illustrated for an
example network in Fig. 1. The variable I is here represented
by the seven factors. Note that the network is not unique, and
a modelling choice has been made such that intentions are
indirectly dependent on for instance the ship type and nearby
obstacles through the situation type.
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Local
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Fig. 1. Example Bayesian net for intention inference for an obstacle ship,
considering seven factors (topmost nodes). The situation type is here either
overtaking, head-on or crossing, and whether or not the obstacle is stand-on
or give-way vessel. Nearby dynamic obstacles can e.g. be represented by a
list containing data structures carrying data on their states.

It is a non-trivial task to estimate Pia, as the information
in I must be inferred from a subset of all factors involved.
Knowledge of this variable is assumed. The purpose of this
article is not to show how to infer obstacle intentions, but
to demonstrate the potential gain of using probabilistic infor-
mation about this for decision making in a COLAV system.
However, the framework opens up the possibility to use
machine learning methods to learn Bayesian nets for obstacle
intention inference by for instance employing historic AIS
data.

B. A Simple Intention Model

1) Model Assumptions: Three intentions for an obstacle
are here considered (na = 3), corresponding to the obstacle
keeping its current course and speed (a = 1), taking a
starboard (a = 2) or port turn (a = 3), respectively. It is
assumed that the next waypoint WP i of an obstacle i is
known, for instance through vessel-to-vessel communication,
and also probabilistic information about its tendency to adhere
to COLREGS is known. Then, the situation type (ST ) is used
to determine the intention probability model used. This is
similar to the case in Fig. 1 when only the situation type (ST i),
COLREGS compliance (CCi), nearby obstacles (including the
own-ship) and the next waypoint for obstacle i are considered.
Moreover, the situation type is assumed independent on the
next obstacle waypoint here.

COLREGS compliance is considered when the distance
from the obstacle to the own-ship d0i is less than some thresh-
old dclose [17]. The ST i is formulated as a tuple determining if
it is an overtaking (OT ), head-on (HO) or crossing (CR) sce-
nario, and whether or not the obstacle is the give-way (GW )
or stand-on (SO) vessel. These situations can be determined
using the position, heading and velocity of the own-ship and
obstacle [17]. For the case when d0i > dclose, i.e. when the
ships are outside the defined COLREGS consideration limit,
then ST i = ∅. The conditional intention probabilities can then
be calculated as

Pia = Pr{a|WP i, ST i}Pr{ST i|CCi}Pr{CCi} (2)

An a priori COLREGS compliance probability Pr{CCi}
will be used here, but could in general be inferred through
knowledge on for instance the obstacle ship type and its cur-
rent location. The next obstacle waypoint is assumed known,
but the route towards this waypoint is uncertain. Further,
it is assumed that ST i can be calculated deterministically
given CCi. Thus, the only unknown probability remaining
is Pr{a|WP i, ST i}, which is specified by ad hoc intention
models in this article.

Table I summarizes the conditional intention cases given
WP i, ST i and CCi. In Table I, the intention is indepedent
of the next waypoint for ST i = B to F , as COLREGS
compliance is assumed to have the highest priority. If the
obstacle is not CC, then the waypoint dependent intention
model will be used, i.e. as for ST i = A. Note that this is
weighted by the prior CC probability Pr{CCi}.



TABLE I
CONDITIONAL INTENTION PROBABILITY GIVEN WP i , ST i AND

INDIRECTLY THROUGH CCi . THE SITUATION TYPE IS GIVEN SINGLE
LETTERS FROM A TO F TO MINIMIZE NOTATION SPACE.

CCi ST i Pr{a|WP i, ST i}

True

A = ∅ Pr{a|WP i, A}
B = (OT, SO) Pr{a|B}
C = (CR,SO) Pr{a|C}
D = (OT,GW ) Pr{a|D}
E = (HO,GW ) Pr{a|E}
F = (CR,GW ) Pr{a|F}

False A = ∅ Pr{a|WP i, A}

With the stated assumptions, the intention probability Pia
simplifies to

Pia = Pr{a|WP i, ST i}Pr{CCi} (3)

2) Waypoint Dependent Intention: For ST = A, we con-
sider the waypoint information, where a simple ad hoc model
for the obstacle intention is developed considering the obstacle
course χi and the Line of Sight (LOS) vector Li from the
obstacle to its next waypoint. This is illustrated for an example
head-on scenario in Fig. 2.

The angle θ is defined as the angular difference between
the LOS-vector to the waypoint and the obstacle course, and
used to define the intention probability of straight line motion,
starboard or port maneuvers. The probability for the obstacle
to keep its course a = 1 is then assumed on the form

Pr{a = 1|WP i, A} = α1,WPe
−c1|θ| + α2,WP (4)

where c1 > 0 is a parameter to decide the decrease/increase
in probability as the obstacle turns towards the end point.
The parameters α1,WP and α2,WP determines the maximum

v0

θ
vi

Li

Fig. 2. A head-on scenario with obstacle i in green and own-ship in blue.
Their velocity vectors vi and v0 are also shown. The unknown ground truth
planned obstacle path is shown in grey, with its next waypoint assumed known
to the own-ship as the black dot.

probability for the waypoint dependent intention a. For a
starboard or port maneuver at some time tturn ≥ t0, where t0
is the current time, the intention probabilities are assumed to
be

Pr{a = 2|WP i, A} =


α1,WP (1− e−c1θ)
+ α2,WP if θ ≥ 0.

α3,WP , otherwise.
(5)

Pr{a = 3|WP i, A} =


α1,WP (1− ec1θ)
+ α2,WP if θ ≤ 0.

α3,WP , otherwise.
(6)

respectively. The weigthing parameters satisfy

α1,WP + 2α2,WP + α3,WP = 1 (7)

If the probability of a maneuver to a given side is high due
to the angle θ being large, the probability for a maneuver to
the other side is set to a small constant value α3,WP . The
intention probabilities in (4) - (6) can be verified to sum to
unity.

3) Stand-on Dependent Intention: If the obstacle is stand-
on vessel in either crossing or overtaking, we assume it will
be COLREGS compliant and keep its current course and
speed with a constant high probability, and thus the intention
probabilities for this ST are

Pr{a|B} = Pr{a|C} = {α1,B , α2,B , α3,B} (8)

where αa,ST for a = 1, 2, 3 are parameters which sum to one
for any ST , and αa,B = αa,C by assumption. The parameter
α1,B is typically chosen higher than 0.9 due to the COLREGS
compliance assumption.

4) Give-way Dependent Intention: When the obstacle is the
give-way vessel, the intention probability is assumed to follow
a model dependent on the distance d0i. For the overtaking
situation ST = D, the model is assumed of the form

Pr{a = 1|D} ∝ α1,De
c2(d0i−dclose) (9)

Pr{a = 2|D} ∝ (1− α2,D)(1− ec2(d0i−dclose))
+ α2,D

(10)

Pr{a = 3|D} ∝ (1− α3,D)(1− ec2(d0i−dclose))
+ α3,D

(11)

where c2 > 0 is a parameter to tune the the obstacle intention
a decrease/increase. For the head-on situation ST = E, the
probabilities are assumed of the form

Pr{a = 1|E} ∝ α1,Ee
c2(d0i−dclose) (12)

Pr{a = 2|E} ∝ (1− α2,E)(1− ec2(d0i−dclose))
+ α2,E

(13)

Pr{a = 3|E} ∝ α3,E (14)



Lastly, for the crossing-on situation ST = E, the probabil-
ities are assumed of the form

Pr{a = 1|F} ∝ α1,F e
c2(d0i−dclose) (15)

Pr{a = 2|F} ∝ (1− α2,F )(1− ec2(d0i−dclose))
+ α2,F

(16)

Pr{a = 3|F} ∝ α3,F (17)

In head-on and crossing, a maneuver towards starboard will
be given the highest probability, and thus α2,E and α2,F will
be chosen higher than α1,E and α1,F , respectively. For the
overtaking case, starboard and port maneuver intentions will
be given equal weight, thus α2,D = α3,D, also chosen higher
than the weight α1,D on keeping the current course. To avoid
overconfidence in the decision of the MPC, all parameters
αa,ST i are chosen strictly higher than zero. Note that only
the intention of a given maneuver is quantified through these
models, not the time of occurance and how much change
in course and speed the maneuver will have. The intention
probabilities specified in the models (9) - (11), (12) - (14) and
(15) - (17) sum to one after multiplication with the inverse of
the normalization constant

∑na

a=1 Pr{a = |ST i}.
This intention probability model is ad hoc, makes many

assumptions and neglects a significant amount of factors.
However, the point is merely to display the effect on the per-
formance of a COLAV system when taking such information
into account.

III. OBSTACLE PREDICTION MODEL

The obstacle motion is predicted using a stochastic OU pro-
cess, as in [5], [16]. Here, the state xik = [xik, y

i
k, V

i
x,k, V

i
y,k]T

for obstacle i at time index k is given by the position
and velocity components in north and east, respectively. The
discrete time prediction model for the obstacle from time tk
to tk+1 can then be written as

xik+1 = Φ(tk+1 − tk,γ)xik + Ψ(tk+1 − tk,γ)viOU,k (18)

where

Φ(t,γ) =

[
I (I − e−Γt)Γ−1
0 e−Γt

]
(19)

is the transition matrix and

Ψ(t,γ)viOU,k =

[
tI − (I − e−Γt)Γ−1

I − e−Γt
]
viOU,k (20)

is called the control input function. The parameter viOU,k
determines typical velocities in x and y that the obstacle will
tend to drift towards with time. The matrix Γ is chosen as
diag(γ), where γ = [γx, γy]T and determines the revertion
rate of the process towards the velocity viOU,k.

The covariance matrix of the predictor using the OU process
can be written as

P i
k+1 = P i

k + Σ1 ◦Σ2(tk+1 − tk) (21)

where P i
k is the covariance and

Σ1 =


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(22)

with σx, σxy and σy as the Wiener process noise parameters
in the OU model. The expression for Σ2(tk+1 − tk) can be
found in [16]. The symbol ◦ in (21) denotes the Hadamard
product. The advantage of using this model is the limited
increase in the predicted covariance, due to the revertion
tendency of the process. An alternative would be to use the
Constant Velocity (CV) model, which is sufficient for short-
term predictions where one receive measurements frequently
to reduce the uncertainty. However, for long-term predictions,
the uncertainty can be overestimated by orders of magnitude
when the CV model is used [5]. The model parameters in
general need to be estimated depending on the ship type and
the local traffic area. See [16] for more information on the
OU process model derivation from the stochastic differential
equation (SDE) framework.

IV. UPDATED COLLISION PROBABILITY ESTIMATION

The work in [15] introduced a method for estimating the
collision probability between the own-ship and an obstacle
using the obstacle uncertainty in position and velocity in
a MCS and KF scheme. The method assumes straight line
trajectories for both vessels for the entire time horizon at the
time of evaluation, which will be overly conservative as the
vessels will most likely make maneuvers in the future to reduce
collision risk. This article extends this method by calculating
the collision probability on piecewise linear segments along
the vessel trajectories, to reduce the conservativeness of the
estimate by exploiting the intention models in Section II.
A discretization time step of Tseg = tj − tj−1, for two
time instants tj and tj−1, is used, typically larger than the
prediction time step in the MPC. The concept is illustrated in
Fig. 3 for a maneuvering own-ship and an obstacle.

Piecewise linear segments from tj−1 to tj along the vessel
trajectories are created, with vessel velocities given by the
average over the current segment and direction along the linear
segment. These segments are then used as in the original
method [15] to estimate the collision probability, with one
alternation: If the time until the Closest Point of Approach
(CPA) tcpa is less than tj for two linear segments in consid-
eration, the vessel states at tj instead of tcpa is used in the
MCS part. This is done to constrain the collision probability
evaluation to only consider positions on the discretized vessel
trajectories. The obstacle covariance at the time tj−1 is used
in the MCS [15]. This alteration naturally requires retuning of
the noise parameters rP and qP in the estimation.
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Fig. 3. Illustration of the updated collision probability estimation method.
Note that Tseg is chosen large to make the methodology more clear. Further
note that the CPA drawn in the sketch are examplatory. The obstacle (green)
and own-ship (blue) trajectories are shown in green and gray, respectively.
The obstacle 3σ uncertainty ellipse at t0 is shown in orange. The black dots
indicate the vessel positions at times t0, t1 and t2. The red dots indicate
the vessel positions along the linear segments at CPA, which for the two
segments in the own-ship trajectory gives two CPA times tcpa,1 and tcpa,2.
Since tcpa,1 > t1, the safety zone (cyan) around the own-ship is centered
to the own-ship position at t1, where the vessel positions at t1 is used as
basis for the collision probability estimation. For the second pair of segments,
tcpa,2 ≤ t2 and the safety zone is thus centered over tcpa,2.

V. PROBABILISTIC SCENARIO-BASED MODEL PREDICTIVE
CONTROL

The PSB-MPC algorithm [15], which is an extension to
the original SB-MPC [17], considers a finite set of control
behaviors in the form of offsets (ulm, χ

l
m) to the surge ud

and course χd references from the ship path planner, where
l is a candidate control behavior. For each control behavior,
a cost function penalizing collision risk, COLREGS breaches,
control reference deviation and grounding is evaluated. The
optimal control behavior l∗ yielding minimum cost is then
selected, and the autopilot references for the autonomous ship
are modified to uc = ul

∗

m ·ud and χc = χl
∗

m+χd. See [15] for
more information.

A. Enhanced Prediction Scheme

To make use of knowledge about different obstacle inten-
tions in the MPC, the predictions must allow for port and
starboard turns at different time instants in the horizon, in
addition to the original straight line motion prediction. The
number of turns and time of each turn for an obstacle is
here determined by considering the time remaining until and
distance at the estimated CPA, tcpa and dcpa, respectively.

If there is no predicted collision at tcpa, i.e. the obstacle
does not enter the safety zone of the own-ship with radius
dsafe [15], then the alternative maneuvers are spaced evenly
with tts apart throughout the horizon of length T . If there
is a predicted collision, the time tcpa determines how many

alternative maneuvers are accounted for. Thus, the final turn
time of the obstacle is given by

tft =


t0 + T, if dcpa > dsafe.

t0 + tcpa, if dcpa ≤ dsafe & tcpa > tts.

t0, if dcpa ≤ dsafe & tcpa ≤ tts.
(23)

The case where dcpa ≤ dsafe and tcpa > tts is illustrated
for a head-on scenario in Figure 4. The two vessels are here
predicted to collide at the blue cross (CPA).

The maneuvers are implemented by changing the velocity
viOU,k of the OU model at the turn time. In general, a finite
number of different course changes can be used. In Fig. 4,
three changes are used. As the explosion of obstacle uncer-
tainty is avoided by using an OU process for prediction, its
uncertainty can be divided into pieces given by the amount of
different prediction scenarios specified. The spacing between
turns and amount of different course changes should be set
such that the union of the obstacle uncertainty in all prediction
scenarios cover all possible paths. This is also a trade off with
the computational effort required in the predictions.

B. Multiple Sequential Avoidance Maneuvers

To prevent conservative solutions, the PSB-MPC is allowed
to make nM sequential avoidance maneuvers in the prediction
horizon. The start time of each avoidance maneuver is selected
as follows. The first avoidance maneuver is made at t0. The
subsequent maneuvers are made immediately after the closest
obstacle in the current collision situation makes its maneuver
at t0 + tts, or immediately after tcpa with the closest obstacle.

v0

t0

t1

t2

t3

t4 = tcpa

vi

Fig. 4. The previously shown head-on scenario with obstacle i in green and
own-ship (OS) in blue. Their velocity vectors vi and v0, respectively, are
also shown. The prediction scheme allows for the obstacle to make different
types of port and starboard maneuvers indicated at the discrete times t0 to t3
in this case, in addition to the original straight line prediction. The blue cross
indicates the obstacle position at tcpa.



When the closest obstacle is passed, the subsequent maneuvers
are found in the same manner using the next relevant close
obstacle. Thus, the control behavior l now consist of the avoid-
ance maneuvers

[
(ulm,1, χ

l
m,1), ..., (ulm,nM

, χlm,nM
)
]
. For the

optimal control behavior l∗, the first maneuver (ul
∗

m,1, χ
l∗

m,1) is
the MPC output. We note that the PSB-MPC will re-evaluate
its optimal strategy at regular intervals, e.g. every 5 seconds.

C. Cost Function

To account for multiple obstacle intentions and own-ship
maneuvers in the prediction horizon, the PSB-MPC cost
function for the own-ship control behavior l is modified to

Hl(t0) = max
i

na∑
a=1

Pia(t0)Cl,ia + g(·)+

1

nM

nM∑
M=1

f(ulm,M , u
l
m,M−1, χ

l
m,M , χ

l
m,M−1)+

1

nM − 1

nM∑
M=2

h(χlm,M , χ
l
m,M−1, tM − tM−1)

(24)
where

Cl,ia =

ni
ps(a)∑
s=1

wi,s

nips(a)
max
t∈D(t0)

[
Cl,si (t)Pl,i,sc (t) + κiµ

l,s
i (t)

]
(25)

is the average cost for all predicion scenarios nips involving
intention a for obstacle i. For the case in Fig. 4, nips(1) = 1
and nips(2) = nips(3) = 12. The weights wi,s are given as

wi,s =

{
Pr{CCi}, if obstacle i is CC in s

1− Pr{CCi}, otherwise
(26)

The check whether the obstacle is CC in a prediction scenario
is done by determining whether it breaches COLREGS given
that the own-ship keeps its course. The terms Cl,si , Pl,i,sc (t) and
κiµ

l,s
i (t) are the collision risk cost, collision probability and

COLREGS penalization term, for control behavior sequence
l, obstacle i in its prediction scenario s. Unlike [15], no
discounting is made on the collision cost because this is
done implicitly in the collision probability calculation when
propagating the obstacle uncertainty in time. The set D(t0)
contains all time samples in the prediction horizon.

The control reference cost f(·) is summed over all own-
ship avoidance maneuvers in the control behavior l, where
ulm,0 = um,last and χlm,0 = χm,last are the offsets from the
previous optimal MPC output. For nM > 1, a new control
reference cost has been introduced in h(·), which is given by

h(χ1, χ2, t) =

Ksgne
−

t

Tsgn , if sign(χ1) 6= sign(χ2)

0, otherwise
(27)

and penalizes chattering behavior in course throughout the
horizon, discounted by the time tM − tM−1 between maneu-
vers, with tuning parameters Ksgn and Tsgn. See [15] for more
information on the cost terms and their parameters.

VI. SIMULATION RESULTS

The PSB-MPC is compared against the original SB-MPC
with one avoidance maneuver in two different scenarios. The
performance of the PSB-MPC will be gauged when different
prior probabilities on the obstacle CC is used, when it knows
the next waypoint for each obstacle.

Measurements for the obstacles are generated using a co-
varianceR = diag(25, 25)m2. Obstacles of lengths 30−100 m
are considered. The obstacles are initialized to the ground truth
but with a single-point initialized covariance, and otherwise
tracked using Kalman-filters as in [15], where the filter mea-
surement covariance and process covariance parameters are
chosen as RKF = 2R and σKFa = 0.5 m/s2, respectively.
This represents a conservative KF which expect fast maneuvers
for the obstacle, and therefore gives higher track uncertainty,
as could be the case for a real time tracking system with model
mismatch and/or degraded sensor performance.

Important parameters for the SB-MPC and PSB-MPC,
segment-wise collision probability estimation and intention
models are summarized in Table II. The parameter dclose is
chosen larger than in [15] because it here also determines the
model switching in the ad hoc intent inference. Considering
their common parameters, the two versions are tuned equally.
For the PSB-MPC, course changes of 30, 60 and 90 degrees
are considered for the obstacle predictions. Two sequential
avoidance maneuvers are considered, where the first one
samples 39 control behaviors as in [17], and the second
maneuver samples a subset of those: um,2 ∈ {1, 0.5} and
χm,2 ∈ {−90,−45, 0, 45, 90} degrees, to limit the compu-
tational effort. For the MPC predictions, the initial typical
velocity viOU,k is set to the current velocity estimate of the
obstacle.

Results for the two MPC versions are shown below. The
own-ship using SB-MPC and PSB-MPC are shown in blue

TABLE II
PARAMETERS FOR THE DIFFERENT METHODS AND MODELS.

SB-MPC PSB-MPC
Parameter Value Value

rP - 0.001
qP - 0.017
Tseg - 1 s
dclose 1000m 1000m
na - 3
nM 1 2
tts - 25 s
Ksgn - 5
Tsgn - 4tts
σx - 0.8m/s2

σxy - 0m/s2

σy - 0.8m/s2

γ - [0.1, 0.1]T

α:,WP - {0.875, 0.05, 0.025}
α:,B - {0.9, 0.05, 0.05}
α:,D - {0.05, 0.475, 0.475}
α:,E - {0.05, 0.9, 0.05}
α:,F - {0.05, 0.9, 0.05}



and red with continuous black and dashed black trajectories,
respectively. The obstacles are shown in green with their cor-
responding index number. The obstacle intention probabilities
and distance to the obstacles are also shown. In all scenarios,
the PSB-MPC knows the next waypoint for the obstacles but
not their route.

In the head-on scenario in Fig. 5, the a priori CC probability
is set to Pr{CCi} = 0.1, indicating low trust in the obstacle
to follow COLREGS. The scenario is also set up such that the
obstacle breaches COLREGS through a port maneuver. Due
to the intent inference being used as input to the PSB-MPC, it
predicts a port maneuver from the waypoint information and
therefore initially slows a bit down and makes a large CC star-
board maneuver. The original SB-MPC does not forsee this,
and risks collision with the obstacle. This is also contributed to
the uncertainty in the track estimates, which is not considered
in the original SB-MPC. The switching in intent probabilities
in Fig. 5b occur due to the obstacle entering the COLREGS
consideration limit and when it passes the own-ship. Some
oscillation in the course offset for the PSB-MPC is also seen
partially due to this. Because of a small a priori CC probability,
the waypoint dependent intention will dominate. Note that
alternative behaviors could also be feasible, such as a port turn
to minimize collision risk at the cost of breaching COLREGS.
A weighting between risk aversion and COLREGS compliance
must therefore be made.

Results for the same head-on scenario when having a false
high trust in CC for the obstacle, by setting Pr{CCi} = 0.9,
are shown in Fig. 6. In this case the PSB-MPC makes a
smaller CC starboard maneuver, as it expects the obstacle
also will act accordingly. However, as the probability of non-
CC is 0.1, the waypoint dependent intent causes a higher
port intention probability than the probability of keeping the
current course. Thus, a more conservative starboard maneuver
is made for the PSB-MPC than the SB-MPC, which gives a
higher safety margin when the obstacle makes the unforseen
port turn. The intention probabilities switches one time during
the simulation as ST i changes from E to A when the own-
ship is passed by. As no boundary conditions are enforced on
the probabilities, discrete jumps can occur. The increase in
starboard turn intention at the end is due to the angle θ going
positive at some point during the port turn.

Lastly, results for a combined head-on and crossing scenario
are shown in Fig. 7, where a non-CC obstacle head-on to
the own-ship, basically identical to the case in Fig. 5, makes
a port maneuver too late, and where a CC obstacle with
assumed Pr{CC2} = 0.9 makes a late give-way maneuver in
a crossing situation. The assumed a priori CC probability for
each obstacle i = 1, 2 is set to 0.1 and 0.9, respectively. The
performance of the SB-MPC again causes large hazard with
obstacle 1, as only one deterministic straight line prediction
based on the current track estimates of the obstacles are
considered, while the PSB-MPC is able to utilize the extra
probabilistic information to make a larger proactive avoidance
maneuver starboard. The algorithm could also be tuned to
make the own-ship slow down and then take the turn, or

make a port turn to minimize the collision risk with obstacle
1. As obstacle 2 is almost assumed fully CC, it could be
safer to violate COLREGS and pass the obstacles with a port
maneuver. The next waypoint for obstacle i = 1 again lies
to the east, and the corresponding port intention dominates
due to the low CC trust. Switches occur two times for the
obstacles as they enter the COLREGS consideration limit and
are passed by. The next waypoint for obstacle i = 2 lies in
the south, and an increase in port intention is here seen due
to the angle θ switching sign.

VII. CONCLUSION

The PSB-MPC extended to also consider probabilistic ob-
stacle intentions and multiple sequential avoidance maneuvers,
gives increased situational awareness and thus improved de-
cision making. This is here shown for an ad hoc intention
inference model, which is only used for illustration. As the
complexity of the MPC predictions are significantly increased,
further simulation studies are needed to investigate optimal
tuning parameters and prediction scenario configurations. Ex-
isting methods should be used on AIS data to estimate the pa-
rameters of the OU process used in predictions. Furthermore,
the robustness of the PSB-MPC for various obstacle intention
probability configurations should be studied in more detail.
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